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Combinatorial Nonnegative Matrix-Tensor
Factorization for Hyperspectral Unmixing
Using a General �q Norm Regularization

Saeid Gholinejad and Alireza Amiri-Simkooei

Abstract—Hyperspectral unmixing (HU), an essential procedure
for various environmental applications, has garnered significant
attention within remote sensing communities. Among different
groups of HU methods, nonnegative matrix factorization (NMF)-
based ones have gained widespread popularity due to their high
capability of simultaneously extracting endmembers and their cor-
responding abundances. However, converting a 3-D hyperspectral
data cube into a 2-D matrix format leads to the loss of spatial and
potential correlation information. Consequently, in recent years,
nonnegative tensor factorization (NTF) methods, which preserve
the 3-D nature of hyperspectral data cube, have been extensively
embraced by numerous researchers. Nevertheless, incorporating
prior information into NTF-based problems faces limitations owing
to the inconsistency of such information, particularly concerning
�1 norm sparsity and the abundance sum-to-one constraint (ASC).
To address this limitation, our study introduces a novel general reg-
ularization term. This term leverages sparsity and ASC simultane-
ously, integrating it into a matrix-tensor factorization framework.
Our proposed method, named a matrix-tensor-based HU method
with general �q norm regularization (MTUHLq), is established
on the block term decomposition (BTD) paradigm, which ensures
physical interpretability and simple implementation. To investigate
the performance of the proposed MTUHLq , a series of experiments
on both synthetic and real hyperspectral datasets were conducted.
The results of the implemented experiments indicated that the
proposed method outperformed other state-of-the-art HU methods.

Index Terms—Abundance sum-to-one constraint (ASC),
hyperspectral unmixing (HU), nonnegative matrix factorization
(NMF), nonnegative tensor factorization (NTF), sparse
regularization.

I. INTRODUCTION

CONTAINING a large number of narrow spectral bands,
hyperspectral images (HSIs) are known as one of the

most wealthy resources of information about the Earth’s sur-
face. A wide range of their applications can be enumerated in
various fields including agricultural, environmental, geological,
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and mineralogical problems. Despite this excellent capability,
the existence of mixed pixels in these images due to the low
spatial resolution of the sensor, multiscattering, and microscopic
mixing, has affected their use in remote sensing processes [1].

To deal with the abovementioned challenge, hyperspectral
unmixing (HU) has been presented, which is also a preprocess
for many other remote sensing analyses. HU is the procedure
of decomposing a mixed pixel into its constituent endmembers
and their corresponding abundances. Generally, according to the
approach at hand, unmixing models can be divided into physics-
based models and data-driven models [2]. Physics-based un-
mixing models, like the linear mixing model (LMM) [3], rely
on established physical principles to simulate light-material
interactions, while data-driven models, such as deep learning
ones [4], [5], learn directly from data without explicit physical
modeling, leveraging complex relationships within hyperspec-
tral data. While data-driven models have become popular for
their ability to autonomously extract intricate features from data,
opting for a physics-based model in this context presents several
compelling advantages, like interpretability, transparency, and
few computational resources and training data. Furthermore,
physics-based models can be customized to leverage domain-
specific knowledge and prior information, enhancing their per-
formance and adaptability to specific application needs.

Based on the mixing level, i.e., microscopic or macroscopic,
different physics-based HU methods are categorized under two
different models: 1) LMM [3], and 2) nonlinear mixing model
(NLMM) [2]. LMM assumes that the mixing of pixels is due
to the low spatial resolution of the hyperspectral sensor, while
NLMM also considers multiscattering and microscopic mixing.

LMM is widely used in the remote sensing community due to
its simplicity and proper performance. LMM-based HU methods
can be divided into three main categories including geometrical,
statistical, and sparse-regression-based methods [3]. Geometri-
cal methods try to embed data points in a simplex in the feature
space, and therefore, the procedure of endmember extraction
using geometrical methods is to find the vertices of the simplex.
Therefore, geometrical methods are only used in endmember
extraction, and inevitably, abundances are estimated through
some postprocessing algorithms such as fully constrained
least squares (FCLS) [6]. Statistical methods, considered as
blind source separation methods, simultaneously estimate end-
members and abundances. Nonnegative matrix factorization
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(NMF)-based methods [7], [8] are the most famous ones in
the statistical category of HU methods. Sparse regression-based
methods [9] are semisupervised types of HU methods that utilize
spectral libraries as the matrix of endmembers.

Compared with the other two categories, statistical methods,
especially NMF-based methods, are more powerful in extracting
both endmember and abundance matrices. Despite the great ad-
vantages of the NMF algorithm, the nonconvexity of its problem
leads the results to local minima. To alleviate this challenge, dif-
ferent studies proposed several versions of the NMF problem by
imposing some constraints on the main NMF objective function,
having regularization effects. Moreover, many studies focus on
the structure of the NMF problem to excel in the performance of
the NMF algorithm. Readers are referred to [8] for more details
on NMF-based methods.

To take into account spatial relationships between pixels of
HSI, various spatial constraints are also added to the NMF
problem. Abundance separation and smoothness constrained
NMF (ASSNMF) was proposed by Liu et al. [10] to mini-
mize the mutual information of the abundances of the different
endmembers. It simultaneously reduced abrupt changes in the
abundance of the adjacent pixels. Local neighborhood weights
have been introduced into the NMF problem in [11]. Some other
structured NMF methods were also proposed to incorporate
spatial information into the problem [12], [13], [14]. In addition
to these methods, a large number of spatially constrained NMF
methods belong to the total variation (TV)-based algorithms.
TV regularization promotes piecewise smoothness in the abun-
dances matrix of the neighboring pixels for the same endmem-
bers. It was first introduced in HU by the study of Iordache
et al. [15] and followed by a series of other studies like double
reweighted �1 minimization with TV regularizer [16], row-
sparsity spectral unmixing via TV (RSSUn-TV) [17], improved
collaborative nonnegative matrix factorization and TV algorithm
(ICoNMF-TV) [18], a data-driven graph TV regularization-
based NMF [19], robust double spatial regularization sparse
unmixing (RDSRSU) [20], and a weighted TV regularized blind
unmixing (wtvBU) based on the log-exp function [21].

In spite of adding several spatial constraints, loss of spatial
information in the HU problem through NMF-based methods
is still inevitable. This is due to the 3-D nature of the HSIs,
which is distorted in the matricization process. To overcome
this limitation, tensors [22] are the best alternatives for matrices,
which can represent an HSI as a cube; as it really is. Accordingly,
considering HSI as a third-order tensor, and regarding the HU
as a nonnegative tensor factorization (NTF) problem is more
appropriate to preserve the original 3-D mode of the HSI. To the
best of our knowledge, the study of [23] was the first to introduc
NTF into the HU problem. Subsequently, a wide array of studies
has been presented in this field, which can be categorized into
three main groups based on the tensor decomposition procedure:
canonical polyadic decomposition (CPD), Tucker tensor decom-
position (TTD), and block term decomposition (BTD) [24].

CPD decomposes a third-order tensor into a series of rank-
one tensors. The abovementioned NTF-based study by Zhang
et al. [23] applied CPD for the first time in HU. ULTRA [25]
and its extended version ULTRA-V [26] were also other

CPD-based methods that imposed low-rank regularization terms
on the abundance and endmember tensors. Low-rank multifea-
ture HU based on CPD was another study in this field [27].
Another decomposition method, TTD, decomposes a tensor into
a set of matrices and one small core tensor. In this context, the
study of Sun et al. [28] was the only one, in which a blind
unmixing method, based on �1 norm and TTD was proposed.

Generally, CDP and TTD-based results in HU are not physi-
cally interpretable [29]. Consequently, there are not many stud-
ies in the HU literature that apply these two types of decomposi-
tion. In contrast, BTD, which decomposes anN -order tensor into
R component tensors, has been extensively applied in the HU
methods due to its high compatibility with the spectral mixing
model.

A remarkable point in applying BTD for HU belongs to the
study of Qian et al. [30], in which a matrix-vector nonnegative
tensor decomposition (MV-NTF) was proposed. Despite the
superiority of this method against many NMF-based algorithms,
there are some challenges that reduce the accuracy of its out-
comes. Suffering from some difficulties including low signal-
to-noise ratio (SNR), bare identifiability, and ill-conditioning of
tensor decomposition, along with the ignorance of detailed spa-
tial structure information through BTD, are the most important
challenges, which MV-NTF faces [31], [32]. Accordingly, sev-
eral methods were presented, incorporating different constraints
into the MV-NTF framework.

Xiong et al. [32] added the TV regularization term into the
MV-NTF problem to exploit local spatial information. A com-
binatorial method of NMF and NTF, named SCNMTF, was also
proposed in [33] to simultaneously use the advantages of both,
i.e., preserving the intrinsic structure information by MV-NTF
and exploiting detailed spatial information by pixelwise NMF. A
weighted nonlocal low-rank tensor decomposition was proposed
in [34], where TV regularization and collaborative sparseness
were also imposed. Double-weighted sparse NTF (DWSNTF)
was proposed in [35], in which combinatorial �1,1 norm was
incorporated into MV-NTF with a multiplicative two-part weight
tensor. One of the parts enhanced sparsity in the abundance
maps, and the other part was embedded to take into account
the detailed spatial information.

Sparse and low-rank constraints were imposed on the MV-
NTF framework by Zheng et al. [36], iteratively through �1
and nuclear norms. A combination of the TV and low-rank
regularizers, together with a regularizer based on nonlocal ten-
sor similarity was proposed in [37] to achieve smooth abun-
dance maps with preserving edges. Weighted nuclear norm and
�1/2 sparsity regularizers were also applied on the MV-NTF
framework in [38]. Feng et al. [39] provided a weighted group
sparsity-constrained tensor decomposition, in which weighted
combinatorial �2,1 norm and also weighted TV norm were
included in the MV-NTF problem. Sparsity enhanced convolu-
tional decomposition, named SeCoDe [40], was another method
based on BTD. This method employed a convolutional operation
to establish the relationship between adjacent pixels, and also
used a two-layer sparse regularization term to exploit structural
information of abundance maps. To expedite the process of BTD
and make it more compatible with structural prior information, a
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method was proposed in [41] that reexpressed BTD in the form
of a constrained matrix factorization problem. A hypergraph
regularized BTD-based method was also proposed in [29] to
better reflect the relationship of neighboring pixels in the HU
process via NTF.

Although NTF-based HU methods exhibit impressive capa-
bilities, limitations arise when attempting to incorporate supple-
mentary prior information into their problem. Moreover, some-
times the obtained results are physically uninterpretable [29].
One of the main associated limitations is the imposition of the
�1 norm sparsity constraint together with the strict ASC. This
is due to the inconsistency of the mentioned constraints, so
that the convergence of one leading to the nonconvergence of
the other [42]. Therefore, as mentioned earlier, the extracted
abundances lack physical significance, meaning they are neither
sparse nor sum-to-one. This problem manifests more promi-
nently in NTF-based methods, where ASC is applied on the
main objective function as a separate term. To alleviate this
problem, in this study, we introduce a new general �q norm
regularization term, which simultaneously establish sparsity and
ASC. Notably, the proposed term leverages a relaxed form of
ASC, where the sum of abundances in a pixel is not strictly
constrained to be equal to one. Then, we incorporate the men-
tioned regularization term into the combinatorial NMF-NTF
problem, making it beneficiary of both NMF preservation of lo-
cal spatial information and NTF avoiding structural information
loss. Totally, the main contributions of our proposed method,
called matrix-tensor-based HU method with general �q norm
regularization (MTUHLq), are given as follows.

1) To take the advantages of two conflicting aspects, the
sparsity and ASC, we have introduced a novel general
regularization term capable of addressing both simulta-
neously. This regularization term relies on the �q norm,
adaptable to various optimization scenarios, and encom-
passes a relaxed version of ASC, making it more suitable
and feasible compared to a strict implementation.

2) To the best of our knowledge, while the �1 or other
norm regularizers have been previously introduced in the
NTF-based unmixing problem, this is the first instance of
incorporating the �q norm into the problem of NTF.

3) While �q norm regularization-based unmixing is typi-
cally optimized in a complicated procedure using the
majorization-minimization algorithm, we have imple-
mented it in a much simpler form. We employ a straight-
forward optimization scheme using a multiplicative iter-
ative algorithm, which largely enhances ease of imple-
mentation. Through extensive experiments conducted on
synthetic and real hyperspectral datasets, our method
demonstrates a high capability in accurately extracting
endmembers and their corresponding abundances. Ad-
ditionally, we analyze the impact of various parameters
within our proposed model on synthetic hyperspectral
data.

The rest of this article is organized as follows. First, in
Section II, the preliminaries of the proposed method including
tensor algebra and notations, LMM, and MV-NTF are explained.
Our proposed objective function for HU and updating rules for its

minimization are introduced in detail in Section III. Experiments
on the synthetic and real HSIs are analyzed and discussed in
Section IV. Finally, Section VI concludes this article.

II. BACKGROUNDS

A. Tensor: Notations and Algebra

Tensor is a multidimensional array, defined by a parameter
called order [22]. The order of a tensor is the number of its
dimensions. In the following, a few definitions are provided.
In this article, a scaler (zero-order tensor) is represented by a
lowercase letter y, a vector (first-order tensor) is shown by a
bold lowercase y, a matrix (second-order tensor) is given by a
bold capital letter Y , and a tensor is denoted by a calligraphic
letter Y .

Definition 1. (Tensor Mode): Tensor’s different dimensions
are called modes. Let suppose Y ∈ RI1×···×IN is a N th-order
tensor. Then it has N modes. For example, a matrix has two
modes: column mode and row mode.

Definition 2. (Tensor Fiber): A fiber is a 1-D section of a
tensor, extracted by fixing the indices of all the dimensions
except one.

Definition 3. (Tensor Slice): A slice is a 2-D section of a
tensor, obtained by fixing all but two indices.

Definition 4. (Mode-n Unfolding): Mode-n unfolding is the
process of matricization of a tensor in such a way that constructs
a matrix containing all the mode-n vectors of a tensor. For
third-order tensor Y ∈ RI×J×K , three unfolded matrices can
be obtained as follows:

(Y (1))(j−1)K+k,i = yijk

(Y (2))(k−1)I+i,j = yijk

(Y (3))(i−1)J+j,k = yijk. (1)

Definition 5. (Outer Product): The outer product of two
tensors A ∈ RI1×···×IP and B ∈ RJ1×···×JQ is a higher order
tensor C ∈ RI1×···×IP×J1×···×JQ , whose elements are calculated
as follows:

Ci1i2···ipj1j2···jQ = (A ◦ B)i1i2···ipj1j2···jQ = ai1i2···ipbj1j2···jQ .
(2)

Definition 6. (Kronecker Product): The Kronecker product of
two matrices A ∈ RI×J and B ∈ RK×R is an IK × JR block
matrix, calculated as

A⊗B =

⎡
⎢⎢⎣
a11B · · · a1JB

...
. . .

...

aI1B · · · aIJB

⎤
⎥⎥⎦ . (3)

Definition 7. (Khatri-Rao Product): Let assume two matrices
A ∈ RI×K and B ∈ RJ×K , which have the same number of
columns. The Khatri–Rao product of these two matrices is
matrix C ∈ RIJ×K , which is achieved as

C = (A�B) = (a1 ⊗ b1 · · ·aK ⊗ bK). (4)

Definition 8. (�̄ Operation): If A = [A1 · · ·AR] and B =
[B1 · · ·BR] are two block matrices with the same number of
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submatrices, then

A�̄B = (A1 ⊗B1 · · ·AR ⊗BR). (5)

B. Linear Mixing Model

As already mentioned, the LMM [3] considers the macro-
scopic factor in the mixture of pixels, i.e., the low resolution
of the sensor. This model assumes that the reflectance value of
a given pixel is a linear combination of its constituent spectral
signatures and their corresponding abundances. Let y ∈ RK×1

be a pixel of an HSI with K spectral bands, then under the LMM
we have

y = Cs + η (6)

wheres ∈ RR×1 andη ∈ RK×1 are the abundances and random
noise vectors, respectively. Moreover, C ∈ RK×R is the matrix
of spectral signatures of the endmembers, called endmembers
matrix. R is the number of endmembers, which is usually
obtained using some subspace identification or intrinsic dimen-
sionality estimation methods [43], [44], [45], [46]. Considering
all pixels of the HSI, (6) can be extended as follows:

Y = CS + H (7)

where Y ∈ RK×N , S ∈ RR×N , and H ∈ RK×N are, respec-
tively, HSI, abundances, and random noise matrices, and N is
the total number of pixels.

Abundance nonnegativity constraint (ANC) and ASC are also
imposed on the LMM problem. ANC ensures the nonnegativity
of the abundances, while ASC enforces that the sum of the end-
members’ abundances in a pixel is equal to one. Consequently,
HU under the LMM is the process of finding matrices C and S
as

min
C,S

1

2
‖Y −CS‖2F

s.t. C,S ≥ 0∑
i

Sij = 1 ; j = 1, . . . , N (8)

where ‖.‖2F is the Frobenius norm of a matrix.

C. Matrix Vector Nonnegative Tensor Decomposition

MV-NTF decomposes a 3-D HSI tensor into a set of tensors,
each of which is factorized as the outer product of a matrix and a
vector, i.e., abundance matrix and endmember vector [30]. This
can be defined as the following model:

Y =
R∑

r=1

Er ◦ cr +H

=

R∑
r=1

ArB
T
r ◦ cr +H (9)

where Y ∈ RI×J×K is a I × J HSI image in K spectral bands.
Er ∈ RI×J and cr ∈ RK×1 are, respectively, abundance matrix
and spectral signature vector of the rth endmember, and H ∈
RI×J×K is random noise tensor.

Ar ∈ RI×Lr and Br ∈ RJ×Lr are two factor matrices, used
as auxiliary matrices in the process of HSI unmixing. Two block
matricesA = [A1 · · ·AR] andB = [B1 · · ·BR] and endmem-
ber matrix C = [c1 · · · cR] are also created using Ar, Br, and
cr with r = 1, . . . , R. The parameter Lr is the maximum rank
of the abundance map, which is empirically formulated in the
previous studies as [30]

Lr =
2

3
min(I, J) (10)

which is rounded to its nearest integer to ensure that Lr is an
integer. To solve the model in (9), the minimization problem of
the reconstruction error betweenY and itsR components is used
as follows:

min
A,B,C

1

2

∥∥∥∥∥Y −
R∑

r=1

ArB
T
r ◦ cr

∥∥∥∥∥
2

F

s.t. Ar,Br, cr ≥ 0.

(11)

As stated in [30], the above optimization problem is solved
through the alternating least squares minimization algorithm,
which decomposes the main problem into some subproblems.
Accordingly, under the framework of the multiplicative updating
rules, A and B can be obtained as

A← A ∗ (Y T
(1)M)/(AMTM) (12)

B ← B ∗ (Y T
(2)M)/(BMTM) (13)

where in (12) M = B�̄C and in (13) M = C�̄A. Two ∗
and / symbols are also used for elementwise multiplication and
division, respectively. Moreover, C is achieved as follows:

C ← C ∗ (Y T
(3)M)/(CMTM) (14)

where M = [(A1 �B1)1Lr
· · · (AR �BR)1Lr

] and 1Lr
is a

Lr-vector containing all ones.

III. MATRIX-TENSOR HU WITH GENERAL �q NORM

REGULARIZER (MTHULq)

In this section, first the proposed regularization term to si-
multaneously impose sparseness and ASC is introduced. Then,
MTHULq model for HU is explained. Afterward, the corre-
sponding updating rules and implementation issues are dis-
cussed.

A. Proposed Regularization Term

As mentioned in the previous section, sparseness and ASC
terms are not consistent [42]. This means that it is not possible
to simultaneously fulfill both terms. Therefore, the extracted
abundance maps from these methods are neither sparse enough
nor the sum-to-one constraint is applied. To tackle this problem
and enhance extracted abundance maps, we define a new regu-
larization term that simultaneously applies sparseness and ASC
on the abundance maps.
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According to ASC, the sum of elements in each column of
the abundance matrix S should be equal to one. This means

R∑
i=1

Si,j = 1 ; j = [1, . . . , N ]. (15)

Let us also assume the following constraint:

R∑
i=1

S2
i,j = 1 ; j = [1, . . . , N ]. (16)

Ideally, to establish the aforementioned relation, each column
of the matrix S should contain only one element equal to one,
and the rest being zeros. This is exactly the solution of the �0
norm minimization, which makes a completely sparse solution.
Therefore, the constraint in (16) has an extremely sparse prop-
erty while keeping also the ASC property. A general and more
relaxed form of (16) is as

R∑
i=1

Sq
i,j = α ; j = [1, . . . , N ] (17)

where 0 < q ≤ 2 and a ≤ 1. Let suppose S(:, t) =
[S1,t, . . . ,SR,t]

T be a sample column of matrix S. Then,
applying the constraint in (17) on this column gives

Sq
1,t + · · ·+ Sq

R,t = α. (18)

Two above equations are nonlinear, which require linearization
for integration into our formulation. We use the Taylor series
expansion for this purpose. Using the first two terms of the Taylor
expansion, the above formula can be rewritten in the following
form:

(S0
1,t)

q + q(t01,t)
q−1(S1,t − S0

1,t) + · · ·+ (S0
R,t)

q

+ q(S0
R,t)

q−1(SR,t − S0
R,t) = α (19)

where S0(:, t) = [S0
1,t, . . . ,S

0
R,t] is an initial value for the tth

column of S. Using simple mathematical operations, (19) can
be written as follows:

(1− q)f1 + qf2 = α (20)

where

f1 = (S0
1,t)

q + · · ·+ (S0
R,t)

q

f2 = (S0
1,t)

q−1S1,t + · · ·+ (S0
R,t)

q−1SR,t. (21)

To simplify the above equations, we can reform f1 as

f1 =
[
(S0

1,t)
q−1 · · · (S0

R,t)
q−1

]
⎡
⎢⎢⎣
S0

1,t

...

S0
R,t

⎤
⎥⎥⎦

= ((S0(:, t))
q−1)TS0(:, t) (22)

and f2 as

f2 =
[
(S0

1,t)
q−1 · · · (S0

R,t)
q−1

]
⎡
⎢⎢⎣
S1,t

...

SR,t

⎤
⎥⎥⎦

= ((S0(:, t))
q−1)TS(:, t). (23)

By generalizing the above relationships to all columns of matrix
S, we have

fg
1 =

(
(Sq−1

0 )TS0

)
∗ IN (24)

and

fg
2 =

(
(Sq−1

0 )TS
)
∗ IN (25)

where fg
1 and fg

2 are the generalized forms of f1 and f2, and IN

is the identity matrix of size N . Thus, (20) can be rewritten as

(1− q)fg
1 + qfg

2 = αIN . (26)

Then, the above equation can subsequently be simplified as

F ∗ IN = 0 (27)

where

F = (1− q)
(
(Sq−1

0 )TS0

)
+ q

(
(Sq−1

0 )TS
)
− αIN . (28)

Finally, the regularization term on the abundance matrix S
can be defined as

Φ(S) = ‖F ∗ IN‖2F . (29)

B. MTHULq Model

Inspired by the study of Li et al. [33], a matrix-tensor model
for HU can be considered as

min
A,B,C

1

2
‖Y −

R∑
r=1

ArB
T
r ◦ cr‖2F +

1

2
‖Y − CS‖2F

+
δ

2
‖S −

R∑
r=1

(ArBr
T ) ◦ ir‖2F

s.t. A,B,C, S ≥ 0 ; 1T
RS = 1T

N . (30)

In the above equation, ir is a column vector of the iden-
tity matrix I = [i1 · · · iR] ∈ RR×R. δ controls the similarity
between abundances, obtained by NMF and NTF, which are,
respectively, in S and

∑R
r=1 ArBr

T . Moreover, S ∈ RI×J×R

is the third-order tensor, obtained as follows:

S(:, :, r) = Mat(S(r, :)) ; r = [1, . . . , R] (31)

where Mat(.) denotes the matricization operator.
As is clear in (30), ASC is taking into account the constraints

of the problem. To impose sparseness into the objective function
of matrix-tensor HU in such a way that it does not conflict with
the ASC, the proposed regularization term in (29) is added to
the problem in (30) as

min
A,B,C

1

2
‖Y −

R∑
r=1

ArB
T
r ◦ cr‖2F +

1

2
‖Y − CS‖2F

+
δ

2
‖S −

R∑
r=1

(ArBr
T ) ◦ Ir‖2F +

λ

2
Φ(S)

s.t. A,B,C, S ≥ 0 ; 1T
RS = 1T

N . (32)
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C. Update Rules

To solve the proposed model in (32), first, the main problem
should be split into some subproblems, and then, optimize each
of them through the multiplicative iterative algorithm.

Update A and B: Assuming that other variables are fixed,
the subproblem for optimizing A is as follows:

J (A) =
1

2
‖Y(1) − MAT ‖2F +

δ

2
‖S(1) − (QAT )‖2F

+ Tr(ΓA) (33)

where M = B�̄C and Q = B�̄IR. S(k) and Γ are also
mode-k matricization of the tensor S and Lagrange multiplier,
respectively. According to the Karush–Kuhn–Tucker (KKT)
conditions, the following equations should be satisfied to op-
timize the model in (33):

− Y(1)
TM +AMTM − δS(1)

TQ+ δAQTQ+ Γ = 0
(34)

Γ ∗A = 0. (35)

Substituting (35) into (34) gives

A← A ∗ (Y(1)
TM+δS(1)

TQ
)
/
(
AMTM+δAQTQ

)
.

(36)

Similarly, the update rule for B is achieved as

B ← B ∗ (Y(2)
TM + δS(2)

TQ
)
/
(
BMTM + δBQTQ

)
(37)

where M = C�̄A and Q = IR�̄A.
Update C: The subproblem of optimizing C is as follows:

J (C) =
1

2
‖Y(3) − MCT ‖2F +

1

2
‖Y −CS‖2F + Tr(ΓC)

(38)

where M = [(A1 �B1)1L · · · (AR �BR)1L] and 1L is the
summation matrix of size L containing all ones. Hence, the
update rule for C is as follows:

C ← C ∗ (Y(3)
TM + Y ST

)
/
(
CMTM +CSST

)
.

(39)

Update S: Three terms in the main problem of the MTHULq

in (32) are functions of S. The first term is the NMF problems,
whose optimization process has been extensively investigated in
the previous studies [8].

The second part, which controls the similarity between NMF
and NTF extracted abundances, can be seen as

‖S − SNTF‖2F (40)

where

SNTF(r, :) = vec(ArB
T
r ) ; r = 1, . . . , R (41)

where vec is the vectorization operator.
The third part of optimizing S is the minimization of the pro-

posed regularization term, Φ(S). Accordingly, the subproblem
of optimizing S is as

J (S) = 1

2
‖Y f −CfS‖2F +

δ

2
‖S − SNTF‖2F

Algorithm 1: Pseudo-Code of the Proposed MTHULq Al-
gorithm.

Input: HSI in 2D and 3D versions, Y ∈ RK×N and
Y ∈ RI×J×K ; Number of endmembers R; Regularization
parameters λ, δ, and β; Parameter of the proposed
regularization term, q and α.

Output: C and S.
1: Initialize C and S using VCA-FCLS [47], and A and B

using NMF.
2: while stopping criteria are not met do
3: Update A with Eq. (36).
4: Update B with Eq. (37).
5: Update C with Eq. (39).
6: Update S with Eq. (45).
7: end while

+
λ

2
Φ(S) + Tr(ΓS) (42)

in which

Y f =

[
Y

β1T
N

]
, Cf =

[
C

β1T
R

]
. (43)

Along with the proposed Φ(S), the two above assumptions
promote ASC. Taking the partial derivative ofJ (S)with respect
to S

∇SJ (S) = −CT
f Y f +CT

f CfS − δSNTF + δS

+ (λf ∗ IN )(qSq−1
0 )T + Γ. (44)

Substituting f from (28) into the above equation and applying
KKT conditions, the update rule for S is achieved as

S ← S ∗
(
CT

f Y f + δSNTF + λα(qSq−1
0 )T

)
/
(
CT

f CfS + δS + λG
)

(45)

where

G =
[(

(1− q)(Sq−1
0 )TS0 + q(Sq−1

0 )TS
)
∗ IN

]
(qSq−1

0 )T .

(46)

D. Implementation Issue and Computational Complexity

Two stopping criteria are also considered including the num-
ber of iterations and norm of relative changes of the abundance
matrix as

ε = ‖Si+1 − Si‖2 (47)

where Si and Si+1 are the extracted abundance matrices in
the ith and (i+ 1)th iterations, respectively. In this study, the
maximum number of iterations is equal to 2000 and ε = 0.005.

The complete pseudocode of the proposed MTHULq

method is presented in Algorithm 1. Clearly, this algo-
rithm is primarily driven by matrix multiplications, which
are smaller in scale. The parts involving exponentiating a
matrix are constant. Totally, there are four updating steps
including (36), (37), (39), and (45), which are the cores
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of the process in each iteration. The number of floating-
point operations, needed for (36), is RL(4I + 2IJK +
2JKRL+ 4IRL+ JK + 2IJR+ 2JR2 L+ JR). For (37),
this number is RL(4 J + 2IJK + 2IKRL+ 4JRL+ IK +
2IJR+ 2IR2 L+ IR). Moreover, for (39) the number is
R(4K + 4IJK + 4IJR+ 4KR+ 3IJL), and it is R(6IJ +
2IJK + 2KR+ 2R+ 2IJR+ I2 J2R+ I2 J2) + I3 J3. To
sum up, the overall computational complexity of MTHULq is
O(IJKRL+ IKR2 L2 + I2 J2R2 + I3 J3).

IV. EXPERIMENTS

To examine the performance of the proposed method, we have
conducted a series of experiments in this section. The first part of
the experiments has been applied to the synthetic data to choose
the optimum values for the MTHULq parameters including λ,
q, and α. The proposed method also have two other parameters
δ and β. However, these two parameters have been set as in [33]
to have a fair comparison.

The robustness of the MTHULq against different SNR values
and the number of endmembers has been also evaluated in this
part of our experiments. In the last part, real HSIs have been
utilized to represent the performance of the proposed method in
real-world scenarios.

A number of state-of-the-art HU algorithms including graph
�1/2 sparse NMF (GLNMF) [48], MV-NTF [30] and its ASC
included version (MV-NTF-S), SCNMTF [33], and EWSP-
NTF [38] have been implemented for comparison. GLNMF
is a powerful NMF-based algorithm, which has been used as
a benchmark method in different HU studies. MV-NTF is the
basis of many NTF-based HU methods and has been used in
many studies as a competing method, along with MV-NTF-S.
SCNMTF is a combinatorial NMF and NTF-based method,
whose objective function is very similar to the objective function
of our MTHULq with just one difference, which is the sparse
regularization term. EWSP-NTF is a recently introduced NTF-
based method. This method incorporates weighted nuclear norm
and �1/2 sparse regularizers into the MV-NTF problem. It should
be noted that all tunable parameters of the aforementioned
competing methods have been set according to their original
references.

Besides the visual evaluation, the results of the different
methods have been quantitatively compared using two metrics,
i.e., spectral angle distance (SAD) and root-mean-squares error
(RMSE). SAD is a criterion to examine the performance of HU
algorithms in endmembers estimation and is calculated as

SADr = arccos

(
cTr ĉr
‖cr‖‖ĉr‖

)
(48)

where cr and ĉr are true and estimated spectral signatures
for the rth endmember, respectively. RMSE is also a criterion
to determine the dissimilarity between the true and estimated
abundance maps. It is obtained as follows:

RMSE =

(
1

N
|S − Ŝ|2

) 1
2

(49)

Fig. 1. Endmembers selected from the USGS library to generate synthetic
data.

where S and Ŝ are, respectively, true and estimated abundance
maps.

A. Synthetic Data Experiments

In this part of the experiments, several synthetic data were
generated to analyze the accuracy of the experimental methods’
outcomes. We designed three groups of experiments on the
synthetic data, each of which followed a specific goal. The
first group of experiments is established to analyze the impact
of regularization parameter λ, and two regularization term’s
parameters, q and α. Then, experiments are conducted on the
synthetic data with different numbers of endmembers. Finally,
the performance of experimental methods in the different noise
levels is investigated in the third group of experiments on
synthetic data. In each group of the experiments, the noise
level and the number of endmembers are assigned based on
their goals. Nevertheless, the same procedure is used to gen-
erate endmembers with a given noise level and the number of
endmembers.

To generate synthetic data, a number of pure signatures are
selected from the USGS library [49] as endmembers, which
cover wavelengths in the range of 0.38–2.5 µm in 224 spectral
bands with 10 nm bandwidth. Selected endmembers from the
USGS library are shown in Fig. 1. In each of the following
experiments, some or all of these endmembers have been utilized
according to the problem in hand.

Abundance maps, and subsequently synthetic image, are gen-
erated using the procedure stated in [50] as in the following steps.

1) An image with size z2 × z2 is divided into z2 blocks, each
of which is randomly assigned an endmember.

2) A low-pass filter with z + 1 window size is used to mix
the pixels of the image.
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Fig. 2. Abundance maps of a sample synthetic data with six endmembers.

3) To prevent the existence of the pure pixels and provide
a highly mixed scenario, pixels with abundance fractions
larger than a predefined value are replaced by a mixture
of all endmembers with equal proportions.

4) Finally clean image obtained from the previous steps is
polluted by zero-mean white Gaussian noise whose SNR
is defined as

SNR = 10log10

E[yT y]

E[eT e]
(50)

where y and e are, respectively, the clean signal and the
noise, and E[.] is the expectation operator.

The noise-free abundance maps of a sample synthetic data
with 6 endmembers, generated through the above procedure,
are illustrated in Fig. 2.

1) Parameters Setting: In this part of our experiments, we
analyze the impact of the parameters λ, q, andα on the unmixing
outcomes. The two other regularization parameters have been set
according to [33] as δ = 10 and β = 10 for a fair comparison.
The tests of this part were performed on the synthetic data with
six endmembers and SNR = {30, 50} dB. Different SNR values
have been applied to prevent influencing noise level.

First, we analyze the regularization parameter λ. To this
end, we set q = 2 and α = 1, and select λ from the set
{10, 5, 1, 0.5, 0.1, 0.05, 0.01}. The results of this test are illus-
trated in Fig. 3. As shown in the figure, at SNR = 50, λ =
{5, 10} had the best performance in estimating endmembers.
However, a general examination of the two graphs in this figure
indicates that the proposed method had proper results when
λ is less than 1. Finally, according to the total results of the
experiments, we can consider λ = 0.1 to be a suitable choice in
the remaining experiments on the synthetic data.

After optimizing λ, in this part, to investigate the effect of
norm value q on the results of the proposed MTHULq , we
conduct the experiments on the previously mentioned data with
q ∈ { 14 , 1

2 ,
3
4 , 1,

3
2 , 2}, while keeping λ = 0.1 and α = 1. The

results obtained from these experiments are shown in Fig. 4. As
is clear in this figure, all the q values have achieved acceptable
SAD and RMSE values, and the difference between results is
mostly negligible. However, the best results have been gained
when q = {0.25, 0.5}. Although q = 0.25 has had better SAD

values among these two values, its corresponding RMSE values
in the case with SNR = 50 dB are the highest. Consequently, we
select q = 0.5 as the best norm value in the synthetic datasets’
experiments.

Finally, to determine the optimum α value, a set of experi-
ments have been conducted, in which α has been selected from
the range [0 : 0.1 : 1]. In these experiments, λ = 0.1 and q = 0.5
have been applied according to the previous investigations. SAD
and RMSE values obtained from these experiments are shown
in Fig. 5. As is clear, the SAD and RMSE values do not have
the same trends when α increases. For example, α = 0 yields
the best SAD values while having the highest RMSEs. Totally,
it is inferred that α values in the range [0.5− 0.9] can be proper
choices. Therefore, the middle point of this range, i.e., α = 0.7,
which is more relaxed than α = 1 is selected for synthetic
data.

2) Number of Endmembers Analysis: To examine the perfor-
mance of the experimental methods in changing the number of
endmembers, synthetic data using 3, 6, and 9 endmembers and
SNR = {30, 60} dB were generated. Two different SNR values
were considered to prevent the influence of noise level. The
results of this experiment have been shown in Tables I and II.

Table I shows the mean SAD values of the extracted endmem-
bers. As is reported in this table, SCNMTF outperformed other
methods in extracting endmembers in all cases. Our proposed
method had also proper results in comparison with four other
methods. However, as is shown in Table II, the main achievement
of the proposed method is high-precision abundance maps,
where their corresponding RMSE values are lower than all the
methods in all cases.

A remarkable point in the results of Table II is the superiority
of MV-NTF-S over MV-NTF. This could be attributed to the
inclusion of the ASC constraint in MV-NTF-S, which clearly
demonstrates the impact of this constraint on the quality of the
extracted abundance maps.

3) Noise Analysis: To investigate the impact of noise level
on the performance of the proposed method along with other
experimental ones, synthetic data were generated using six
endmembers with SNR values from the set {30, 40, 50, 60} dB.
Endmembers used in this part are also the same as those applied
in experiments in Section IV-A1. Moreover, the parameters
proposed for the method are λ = 0.1, q = 0.5, and α = 0.7, as
optimized in the previous experiments for synthetic data. Results
obtained from implementing different methods on the synthetic
data with different SNR values are illustrated in Fig. 6.

As is clear from Fig. 6(a), although MTHULq has higher
SAD values than other methods in some cases, the decreasing
trend shows its high capability in extracting endmembers, to the
extent that in SNR = 60 dB, it had the best accuracy along with
SCNMTF. For the SAD values, it can be said that GLNMF had
the best performance, which is due to using a manifold structure
designed to reduce its sensitivity to noise.

In the RMSE metric, as shown in Fig. 6(b), the results of
the proposed method are almost always more accurate than the
others. As previously mentioned, we focus on the quality of
the abundance maps and impose a new regularization parameter
on them. Therefore, we expected that the main progress of our
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Fig. 3. Analysis of the MTHULq’s performance against different λ regularization parameter values.

Fig. 4. Analysis of the MTHULq’s performance against different norm values q.

Fig. 5. Analysis of the MTHULq’s performance against different α values.
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TABLE I
SAD VALUES WITH RESPECT TO THE DIFFERENT NUMBER OF ENDMEMBERS

TABLE II
RMSE VALUES WITH RESPECT TO THE DIFFERENT NUMBER OF ENDMEMBERS

Fig. 6. Analysis of the performance of different experimental methods with respect to the different noise levels.

proposed method would be in improving the accuracy of the
final abundance maps, which has been met.

B. Real Data Experiments

To investigate the performance of the proposed method in
real-world scenarios, experiments on the three real hyperspec-
tral datasets datasets, including Samson dataset, Jasper Ridge
dataset, and Urban dataset [51], have been conducted in the
following. Regarding parameters, all of them, except λ, have
been set as supposed or tuned in the synthetic data experiments;
i.e., δ = 10, β = 10, q = 0.5, and α = 0.7. The regularization
parameter λ has been set to 5 in the real scenarios.

1) Samson Dataset: Samson dataset is a real hyperspectral
dataset, whose real endmembers’ signatures and abundance
maps are available. It is originally of size 952× 952 and has
156 spectral bands. Since the size of this image is too large,
in this study, a subset of it, which contains 95× 95 pixels, has

been applied. There are three endmembers in the Samson dataset
including “rock,” “tree,” and “water.” A false-color composite
of this dataset is shown in Fig. 7(a).

Results obtained through the implementation of six different
experimental methods on the Samson dataset have been reported
in Tables III and IV. Table III shows that the EWSP-NTF
outperformed other methods for extracting all the endmembers.
However, as in Table IV, our proposed MTHULq has had the best
performance in extracting abundance maps. Extracted endmem-
bers and abundance maps generated by different methods have
been, respectively, represented in Figs. 8 and 9. The results of
this figure is also illustrate the superiority of EWSP-NTF in end-
member extraction, and our proposed MTHULq in abundance
estimation.

2) Jasper Ridge Dataset: Jasper Ridge dataset is the second
real hyperspectral data used to analyze the performance of the
experimental methods in real case scenarios. It is a popular
hyperspectral dataset in different HU studies, originally of size
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TABLE III
SAD VALUES OBTAINED BY IMPLEMENTATION OF DIFFERENT METHODS ON THE SAMSON DATASET

TABLE IV
RMSE VALUES OBTAINED BY IMPLEMENTATION OF DIFFERENT METHODS ON THE SAMSON DATASET

Fig. 7. False color composite of the real hyperspectral datasets. (a) Samson
dataset. (b) Jasper Ridge dataset. (c) Urban dataset.

512× 614 pixels in 224 bands. Since there is no ground truth
for the whole surface of the HSI, a 100× 100 subscene of this
dataset is commonly used in different HU problems. Moreover,
atmospherically affected bands and water vapor absorption ones,
including bands 1–3, 108–112, 154–166, 220, and 224, have
been removed from this dataset, remaining 198 bands. There are
four endmembers in the Jasper Ridge dataset, including “tree,”
“dirt,” “water,” and “road.” An illustration of the false color
composite of this dataset is shown in Fig. 7(b).

SAD and RMSE values, obtained from the implementation of
different experimental methods on the Jasper Ridge dataset, are
reported in Tables V and VI. Estimated endmembers by different
methods on the Jasper Ridge and their corresponding abundance
maps are also illustrated in Figs. 10 and 11, respectively.

Results in Table V show that EWSP-NTF, in total, per-
formed best in extracting endmembers’ signatures. A closer
examination of this table shows that the main reason for this
superiority is the lowest SAD value for the “road” endmember.
But, a remarkable point is that this SAD values are some-
times misleading. This is revealed by comparing the results of
Table V with Figs. 10 and 11. For example, also EWSP-NTF
has the best SAD value in extracting “road” endmember, figures
show that this method has been unsuccessful in accurately ex-
tracting both the endmember and abundances of “road” when
compared to other methods. Therefore, neglecting this end-
member, MV-NTF and our proposed MTHULq outperformed
others in endmember extraction from Jasper Ridge dataset.
In RMSE values, as shown in Table VI, MTHULq overally
had the best results. Fig. 11 also proves the higher quality of
the MTHULq abundance maps, compared to other competing
methods.

3) Urban Dataset: One of the most commonly used datasets
in the HU literature is the Urban dataset, characterized by its
extensive spatial coverage and complex land cover distribution.
Acquired by the HYDICE sensor, the dataset boasts a 2-m
spatial resolution, consisting of 307× 307 pixels. Comprising
210 spectral bands within the 400–2500 nm range and a spectral
resolution of 10 nm, the dataset provides comprehensive spectral
information. Bands 1–4, 76, 87, 101–111, 136–153, and 198–
210, were usually removed due to water vapor absorption and at-
mospheric effects. Consequently, the applied dataset comprises
162 spectral bands. There are four endmembers in the scene of
this dataset: “asphalt,” “grass,” “tree,” and “roof.” A false color
composite of this dataset has been represented in Fig. 7(c).

Quantitative results obtained from applying experimental
methods to urban data are presented in Tables VII and VIII.
In addition, Figs. 12 and 13 depict the extracted endmembers
and their corresponding abundances, respectively.

As evident in Table VII, MTHULq has demonstrated the most
favorable results in endmember estimation. In three out of four
cases, the proposed MTHULq exhibits the lowest SAD values.
While SCNMTF achieved the best SAD value for the “roof”
endmember, a detailed analysis of Fig. 12 reveals its failure
to consistently extract this specific endmember. Consequently,
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Fig. 8. Estimated endmembers (depicted in red) and true endmembers (depicted in blue) of the Samson dataset. The rows, arranged from top to bottom, represent
rock, tree, and water, respectively.

Fig. 9. Abundance maps generated by experimental methods, applied to the Samson dataset, alongside the corresponding true abundance maps. Rows from top
to bottom belong, respectively, to rock, tree, and water.

TABLE V
SAD VALUES OBTAINED BY IMPLEMENTATION OF DIFFERENT METHODS ON THE JASPER RIDGE DATASET

TABLE VI
RMSE VALUES OBTAINED BY IMPLEMENTATION OF DIFFERENT METHODS ON THE JASPER RIDGE DATASET
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Fig. 10. Estimated endmembers (depicted in red) and true endmembers (depicted in blue) of the Jasper Ridge dataset. The rows, arranged from top to bottom,
represent tree, water, dirt, and road, respectively.

Fig. 11. Abundance maps generated by experimental methods, applied to the Jasper Ridge dataset, alongside the corresponding true abundance maps. Rows from
top to bottom belong, respectively, to tree, water, dirt, and road.

TABLE VII
SAD VALUES OBTAINED BY IMPLEMENTATION OF DIFFERENT METHODS ON THE URBAN DATASET

TABLE VIII
RMSE VALUES OBTAINED BY IMPLEMENTATION OF DIFFERENT METHODS ON THE URBAN DATASET
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Fig. 12. Estimated endmembers (depicted in red) and true endmembers (depicted in blue) of the Urban dataset. The rows, arranged from top to bottom, represent
asphalt, grass, tree, and roof, respectively.

Fig. 13. Abundance maps generated by experimental methods, applied to the Urban dataset, alongside the corresponding true abundance maps. Rows from top
to bottom belong, respectively, to asphalt, grass, tree, and roof.

a comprehensive examination of both quantitative and visual
results substantiates that MTHULq surpasses other methods in
effectively extracting endmembers from the Urban dataset.

As deduced from Table VIII, our proposed MTHULq exhib-
ited the most favorable overall average RMSE after GLNMF.
The superiority of GLNMF primarily stems from the RMSE
value associated with the “tree” endmember. Nevertheless, a
closer inspection of the abundance maps for this endmember in
Fig. 13 reveals the highest quality in the MTHULq abundance
map. Overall, the analysis of this figure underscores the high
quality of the abundance maps extracted by this method.

V. DISCUSSION

Based on the experimental section, our proposed method
demonstrates a high capability for extracting accurate results,
particularly in abundance estimation. As evidenced by the

results obtained from both synthetic and real data, MTHULq

achieved the lowest RMSE values in most of the experiments.
This outcome aligns with our expectations, as we incorporated
an additional regularization term on the abundance maps. The
pivotal aspect of these findings lies in the interpretability of the
results generated by our proposed term. Our combinatorial term
not only facilitated the application of the ASC to a large extent
but also enforced sparsity on the abundance estimates at the same
time. Moreover, our exploration of a general norm allowed us to
attain the optimal type of the sparsity on our datasets. Another
noteworthy point is that we relaxed the stringent ASC norm,
commonly applied in NTF-based algorithms, yet still achieved
a high degree of consistency in ensuring that the sum of pixels’
abundances equals one.

In extracting endmembers, although our proposed MTHULq

was not the best in some experiments, it had proper results
in all experiments. The notable point is that, although other
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methods have shown better results than our proposed method in
some experiments, they have exhibited significant weaknesses in
certain cases. For example, the powerful EWSP-NTF method,
which outperformed our method in some cases based on the
SAD values, practically failed in extracting the road endmember
in the Jasper Ridge dataset (see Fig. 10), leading to a failure
in extracting the corresponding abundance map (see Fig. 11).
Another example is the result of the state-of-the-art SCNMTF
in extracting the roof endmember from the Urban dataset. As
evident from Fig. 12, SCNMTF failed to properly extract the
spectral signature of the roof, leading to poor results in abun-
dance estimation, as illustrated in Fig. 13. These extremely weak
results are not evident in the outcomes of our MTHULq , and our
approach has consistently yielded acceptable results, even if it
has not always achieved the best outcomes.

VI. CONCLUSION

To enhance the results of the HU process, especially extracted
abundance maps, a new general �q norm-based regularization
term was proposed in this study, which was incorporated into
the combinatorial matrix-tensor-based HU. Unlike conventional
sparse regularization terms, our proposed term is consistent
with ASC, and even essentially ensures it. Our method, named
MTHULq , was established on the BTD paradigm. Quantita-
tive and qualitative investigations using both real and synthetic
hyperspectral datasets demonstrate the powerful performance
of the proposed MTHULq , particularly in extracting accurate
abundance maps. Like any other project, the present study also
faces certain challenges that can serve as guidelines for future
research. While our MTHULq approach effectively improves
the extracted abundance maps, there were cases where the
corresponding endmembers did not achieve sufficient accuracy,
especially in high-level noise scenarios. Therefore, we suggest
future research projects focus on refining the endmember ex-
traction aspect of HU as a key area of investigation. In addition,
exploring the generalization of the model’s parameters can also
be a valuable direction for future studies.

REFERENCES

[1] N. Keshava and J. Mustard, “Spectral unmixing,” IEEE Signal Process.
Mag., vol. 19, no. 1, pp. 44–57, Jan. 2002, doi: 10.1109/79.974727.

[2] R. Heylen, M. Parente, and P. Gader, “A review of nonlinear hyperspectral
unmixing methods,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.,
vol. 7, no. 6, pp. 1844–1868, Jun. 2014, doi: 10.1109/jstars.2014.2320576.

[3] J. M. Bioucas-Dias et al., “Hyperspectral unmixing overview: Geomet-
rical, statistical, and sparse regression-based approaches,” IEEE J. Sel.
Topics Appl. Earth Observ. Remote Sens., vol. 5, no. 2, pp. 354–379,
Apr. 2012.

[4] J. S. Bhatt and M. V. Joshi, “Deep learning in hyperspectral unmixing: A
review,” in Proc. IEEE Int. Geosci. Remote Sens. Symp., 2020, pp. 2189–
2192.

[5] V. S. S, V. S. Deshpande, and J. S. Bhatt, “A practical approach for
hyperspectral unmixing using deep learning,” IEEE Geosci. Remote Sens.
Lett., vol. 19, pp. 1–5, 2022.

[6] D. Heinz and Chein-I-Chang, “Fully constrained least squares linear spec-
tral mixture analysis method for material quantification in hyperspectral
imagery,” IEEE Trans. Geosci. Remote Sens., vol. 39, no. 3, pp. 529–545,
Mar. 2001, doi: 10.1109/36.911111.

[7] D. D. Lee and H. S. Seung, “Learning the parts of objects by non-negative
matrix factorization,” Nature, vol. 401, no. 6755, pp. 788–791, Oct. 1999,
doi: 10.1038/44565.

[8] X.-R. Feng, H.-C. Li, R. Wang, Q. Du, X. Jia, and A. J. Plaza, “Hyperspec-
tral unmixing based on nonnegative matrix factorization: A comprehensive
review,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 15,
pp. 4414–4436, 2022.

[9] M.-D. Iordache, J. M. Bioucas-Dias, and A. Plaza, “Sparse unmixing of
hyperspectral data,” IEEE Trans. Geosci. Remote Sens., vol. 49, no. 6,
pp. 2014–2039, Jun. 2011, doi: 10.1109/tgrs.2010.2098413.

[10] X. Liu, W. Xia, B. Wang, and L. Zhang, “An approach based on
constrained nonnegative matrix factorization to unmix hyperspectral
data,” IEEE Trans. Geosci. Remote Sens., vol. 49, no. 2, pp. 757–772,
Feb. 2011.

[11] J. Liu, J. Zhang, Y. Gao, C. Zhang, and Z. Li, “Enhancing spectral
unmixing by local neighborhood weights,” IEEE J. Sel. Topics Appl.
Earth Observ. Remote Sens., vol. 5, no. 5, pp. 1545–1552, Oct. 2012,
doi: 10.1109/jstars.2012.2199282.

[12] H. Zhang, H. Zhai, L. Zhang, and P. Li, “Spectralspatial sparse sub-
space clustering for hyperspectral remote sensing images,” IEEE Trans.
Geosci. Remote Sens., vol. 54, no. 6, pp. 3672–3684, Jun. 2016,
doi: 10.1109/tgrs.2016.2524557.

[13] X. Wang, Y. Zhong, L. Zhang, and Y. Xu, “Spatial group sparsity regular-
ized nonnegative matrix factorization for hyperspectral unmixing,” IEEE
Trans. Geosci. Remote Sens., vol. 55, no. 11, pp. 6287–6304, Nov. 2017,
doi: 10.1109/tgrs.2017.2724944.

[14] S. Khoshsokhan, R. Rajabi, and H. Zayyani, “Clustered multitask non-
negative matrix factorization for spectral unmixing of hyperspectral data,”
J. Appl. Remote Sens., vol. 13, no. 2, p. 1, May 2019, Art. no. 026509,
doi: 10.1117/1.jrs.13.026509.

[15] M.-D. Iordache, J. M. Bioucas-Dias, and A. Plaza, “Total variation
spatial regularization for sparse hyperspectral unmixing,” IEEE Trans.
Geosci. Remote Sens., vol. 50, no. 11, pp. 4484–4502, Nov. 2012,
doi: 10.1109/tgrs.2012.2191590.

[16] R. Wang, H.-C. Li, A. Pizurica, J. Li, A. Plaza, and W. J. Emery, “Hy-
perspectral unmixing using double reweighted sparse regression and total
variation,” IEEE Geosci. Remote Sens. Lett., vol. 14, no. 7, pp. 1146–1150,
Jul. 2017, doi: 10.1109/lgrs.2017.2700542.

[17] J.-J. Wang, T.-Z. Huang, J. Huang, H.-X. Dou, L.-J. Deng, and X.-L.
Zhao, “Row-sparsity spectral unmixing via total variation,” IEEE J. Sel.
Topics Appl. Earth Observ. Remote Sens., vol. 12, no. 12, pp. 5009–5022,
Dec. 2019, doi: 10.1109/jstars.2019.2950700.

[18] Y. Yuan, Z. Zhang, and Q. Wang, “Improved collaborative non-negative
matrix factorization and total variation for hyperspectral unmixing,” IEEE
J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 13, pp. 998–1010,
2020, doi: 10.1109/jstars.2020.2977399.

[19] J. Qin et al., “Blind hyperspectral unmixing based on graph total vari-
ation regularization,” IEEE Trans. Geosci. Remote Sens., vol. 59, no. 4,
pp. 3338–3351, Apr. 2021, doi: 10.1109/tgrs.2020.3020810.

[20] F. Li, S. Zhang, C. Deng, B. Liang, J. Cao, and S. Wang, “Robust
double spatial regularization sparse hyperspectral unmixing,” IEEE J. Sel.
Topics Appl. Earth Observ. Remote Sens., vol. 14, pp. 12569–12582, 2021,
doi: 10.1109/jstars.2021.3132164.

[21] H. Song, X. Wu, A. Zou, Y. Liu, and Y. Zou, “Weighted total variation reg-
ularized blind unmixing for hyperspectral image,” IEEE Geosci. Remote
Sens. Lett., vol. 19, pp. 1–5, 2022, doi: 10.1109/lgrs.2021.3094826.

[22] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,”
SIAM Rev., vol. 51, no. 3, pp. 455–500, 2009.

[23] Q. Zhang, H. Wang, R. Plemmons, and V. P. Pauca, “Spectral unmixing
using nonnegative tensor factorization,” in Proc. 45th Annu. Southeast
Regional Conf., 2007, pp. 531–532, doi: 10.1145/1233341.1233449.

[24] M. Wang et al., “Tensor decompositions for hyperspectral data processing
in remote sensing: A comprehensive review,” IEEE Geosci. Remote Sens.
Mag., vol. 11, no. 1, pp. 26–72, Mar. 2023.

[25] T. Imbiriba, R. A. Borsoi, and J. C. M. Bermudez, “A low-rank tensor
regularization strategy for hyperspectral unmixing,” in Proc. IEEE Stat.
Signal Process. Workshop, 2018, pp. 373–377.

[26] T. Imbiriba, R. A. Borsoi, and J. C. M. Bermudez, “Low-rank tensor
modeling for hyperspectral unmixing accounting for spectral variabil-
ity,” IEEE Trans. Geosci. Remote Sens., vol. 58, no. 3, pp. 1833–1842,
Mar. 2020.

[27] M. Jouni, M. Dalla Mura, L. Drumetz, and P. Comon, “MultiHU-TD:
Multi-feature hyperspectral unmixing based on tensor decomposition,”
IEEE Trans. Geosci. Remote Sens., vol. 61, pp. 1–21, 2023.

https://dx.doi.org/10.1109/79.974727
https://dx.doi.org/10.1109/jstars.2014.2320576
https://dx.doi.org/10.1109/36.911111
https://dx.doi.org/10.1038/44565
https://dx.doi.org/10.1109/tgrs.2010.2098413
https://dx.doi.org/10.1109/jstars.2012.2199282
https://dx.doi.org/10.1109/tgrs.2016.2524557
https://dx.doi.org/10.1109/tgrs.2017.2724944
https://dx.doi.org/10.1117/1.jrs.13.026509
https://dx.doi.org/10.1109/tgrs.2012.2191590
https://dx.doi.org/10.1109/lgrs.2017.2700542
https://dx.doi.org/10.1109/jstars.2019.2950700
https://dx.doi.org/10.1109/jstars.2020.2977399
https://dx.doi.org/10.1109/tgrs.2020.3020810
https://dx.doi.org/10.1109/jstars.2021.3132164
https://dx.doi.org/10.1109/lgrs.2021.3094826
https://dx.doi.org/10.1145/1233341.1233449


9548 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

[28] L. Sun and H. Guo, “Blind unmixing of hyperspectral images based on l 1
norm and tucker tensor decomposition,” IEEE Geosci. Remote Sens. Lett.,
vol. 19, pp. 1–5, 2021.

[29] P. Zheng, H. Su, H. Lu, and Q. Du, “Adaptive hypergraph regularized
multilayer sparse tensor factorization for hyperspectral unmixing,” IEEE
Trans. Geosci. Remote Sens., vol. 61, pp. 1–18, 2023.

[30] Y. Qian, F. Xiong, S. Zeng, J. Zhou, and Y. Y. Tang, “Matrix-vector
nonnegative tensor factorization for blind unmixing of hyperspectral im-
agery,” IEEE Trans. Geosci. Remote Sens., vol. 55, no. 3, pp. 1776–1792,
Mar. 2017.

[31] A. Cichocki et al., “Tensor decompositions for signal processing ap-
plications: From two-way to multiway component analysis,” IEEE
Signal Process. Mag., vol. 32, no. 2, pp. 145–163, Mar. 2015,
doi: 10.1109/msp.2013.2297439.

[32] F. Xiong, Y. Qian, J. Zhou, and Y. Y. Tang, “Hyperspectral unmixing via
total variation regularized nonnegative tensor factorization,” IEEE Trans.
Geosci. Remote Sens., vol. 57, no. 4, pp. 2341–2357, Apr. 2019.

[33] H.-C. Li, S. Liu, X.-R. Feng, and S.-Q. Zhang, “Sparsity-constrained
coupled nonnegative matrixtensor factorization for hyperspectral unmix-
ing,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 13,
pp. 5061–5073, 2020, doi: 10.1109/jstars.2020.3019706.

[34] L. Sun, F. Wu, T. Zhan, W. Liu, J. Wang, and B. Jeon, “Weighted
nonlocal low-rank tensor decomposition method for sparse unmixing of
hyperspectral images,” IEEE J. Sel. Topics Appl. Earth Observ. Remote
Sens., vol. 13, pp. 1174–1188, 2020.

[35] H.-C. Li, S. Liu, X.-R. Feng, R. Wang, and Y.-J. Sun, “Double weighted
sparse nonnegative tensor factorization for hyperspectral unmixing,” Int.
J. Remote Sens., vol. 42, no. 8, pp. 3180–3191, 2021.

[36] P. Zheng, H. Su, and Q. Du, “Sparse and low-rank constrained tensor factor-
ization for hyperspectral image unmixing,” IEEE J. Sel. Topics Appl. Earth
Observ. Remote Sens., vol. 14, pp. 1754–1767, 2021, doi: 10.1109/js-
tars.2020.3048820.

[37] Y. Yuan, L. Dong, and X. Li, “Hyperspectral unmixing using nonlocal
similarity-regularized low-rank tensor factorization,” IEEE Trans. Geosci.
Remote Sens., vol. 60, pp. 1–14, 2022.

[38] P. Yang, T.-Z. Huang, J. Huang, and J.-J. Wang, “Efficient weighted-
adaptive sparse constrained nonnegative tensor factorization for hyper-
spectral unmixing,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.,
vol. 15, pp. 10113–10130, 2022.

[39] X. Feng, L. Han, and L. Dong, “Weighted group sparsity-constrained
tensor factorization for hyperspectral unmixing,” Remote Sens., vol. 14,
no. 2, Jan. 2022, Art. no. 383, doi: 10.3390/rs14020383.

[40] J. Yao, D. Hong, L. Xu, D. Meng, J. Chanussot, and Z. Xu, “Sparsity-
enhanced convolutional decomposition: A novel tensor-based paradigm
for blind hyperspectral unmixing,” IEEE Trans. Geosci. Remote Sens.,
vol. 60, pp. 1–14, 2022.

[41] M. Ding, X. Fu, and X.-L. Zhao, “Fast and structured block-term tensor
decomposition for hyperspectral unmixing,” IEEE J. Sel. Topics Appl.
Earth Observ. Remote Sens., vol. 16, pp. 1691–1709, 2023.

[42] J. Sigurdsson, M. O. Ulfarsson, and J. R. Sveinsson, “Hyperspectral
unmixing with �q regularization,” IEEE Trans. Geosci. Remote Sens.,
vol. 52, no. 11, pp. 6793–6806, Nov. 2014.

[43] J. M. Bioucas-Dias and J. M. Nascimento, “Hyperspectral subspace identi-
fication,” IEEE Trans. Geosci. Remote Sens., vol. 46, no. 8, pp. 2435–2445,
Aug. 2008.

[44] B. Rasti, M. O. Ulfarsson, and J. R. Sveinsson, “Hyperspectral subspace
identification using sure,” IEEE Geosci. Remote Sens. Lett., vol. 12, no. 12,
pp. 2481–2485, Dec. 2015.

[45] S. Gholinejad, R. Shad, H. S. Yazdi, and M. Ghaemi, “Improving signal
subspace identification using weighted graph structure of data,” IEEE
Geosci. Remote Sens. Lett., vol. 14, no. 6, pp. 831–835, Jun. 2017.

[46] X. Zhu, Y. Kang, and J. Liu, “Estimation of the number of endmembers
via thresholding ridge ratio criterion,” IEEE Trans. Geosci. Remote Sens.,
vol. 58, no. 1, pp. 637–649, Jan. 2020.

[47] J. Nascimento and J. Dias, “Vertex component analysis: A fast algorithm
to unmix hyperspectral data,” IEEE Trans. Geosci. Remote Sens., vol. 43,
no. 4, pp. 898–910, Apr. 2005, doi: 10.1109/tgrs.2005.844293.

[48] X. Lu, H. Wu, Y. Yuan, P. Yan, and X. Li, “Manifold regularized sparse
NMF for hyperspectral unmixing,” IEEE Trans. Geosci. Remote Sens.,
vol. 51, no. 5, pp. 2815–2826, May 2013, doi: 10.1109/tgrs.2012.2213825.

[49] R. Clark et al., “USGS digital spectral library splib06a: US geological
survey, digital data series 231, 2007,” 2007. [Online]. Available: http://
speclab.cr.usgs.gov/spectral.lib06/ds231/index.html

[50] Y. Qian, S. Jia, J. Zhou, and A. Robles-Kelly, “Hyperspectral unmixing
via l_1/2 sparsity-constrained nonnegative matrix factorization,” IEEE
Trans. Geosci. Remote Sens., vol. 49, no. 11, pp. 4282–4297, Nov. 2011.

[51] F. Zhu, “Hyperspectral unmixing: Ground truth labeling, datasets, bench-
mark performances and survey,” 2017, arXiv:1708.05125.

Saeid Gholinejad received the Ph.D. degree in re-
mote sensing from the University of Isfahan, Isfahan,
Iran, in 2020.

Since 2021, he has been a Postdoctoral Researcher
in remote sensing with the University of Isfahan.
His research interests include hyperspectral image
processing, geometric processing of remotely sensed
images, and pattern recognition.

Alireza Amiri-Simkooei received the Ph.D. degree
in mathematical geodesy from the Delft University of
Technology, Delft, The Netherlands, in 2007.

He is currently an Associate Professor with the
Department of Control and Operations, Faculty of
Aerospace Engineering, Delft University of Technol-
ogy. He has authored or coauthored more than 95
research peer-reviewed journal articles in ISI jour-
nals. His areas of interest include aviation acoustics,
machine learning, advanced estimation and approxi-
mation methods, precise positioning applications us-

ing space systems, and assessment of noise characteristics of geoscience data
series. His research area also focused on the least-squares variance component
estimation with applications to GPS data.

Dr. Amiri-Simkooei has been the Associate Editor of the Journal of Surveying
Engineering (ASCE) since 2015.

https://dx.doi.org/10.1109/msp.2013.2297439
https://dx.doi.org/10.1109/jstars.2020.3019706
https://dx.doi.org/10.1109/jstars.2020.3048820
https://dx.doi.org/10.1109/jstars.2020.3048820
https://dx.doi.org/10.3390/rs14020383
https://dx.doi.org/10.1109/tgrs.2005.844293
https://dx.doi.org/10.1109/tgrs.2012.2213825
http://speclab.cr.usgs.gov/spectral.lib06/ds231/index.html
http://speclab.cr.usgs.gov/spectral.lib06/ds231/index.html


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


