

Author: Longxiang Xu

5722918

Mentor #1: Camilo León-Sánchez

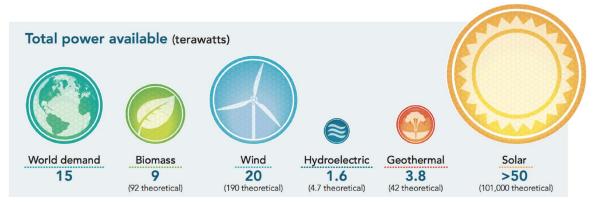
Mentor #2: Giorgio Agugiaro

Co-reader: Olindo Isabella and Jérôme Henri Kämpf

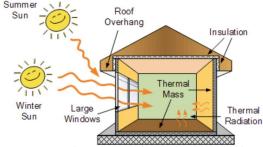
Delegate: Azarakhsh Rafiee

Content

- Research background & Objective
- Related Work
- Methodology
- Results & Discussion
- Conclusions

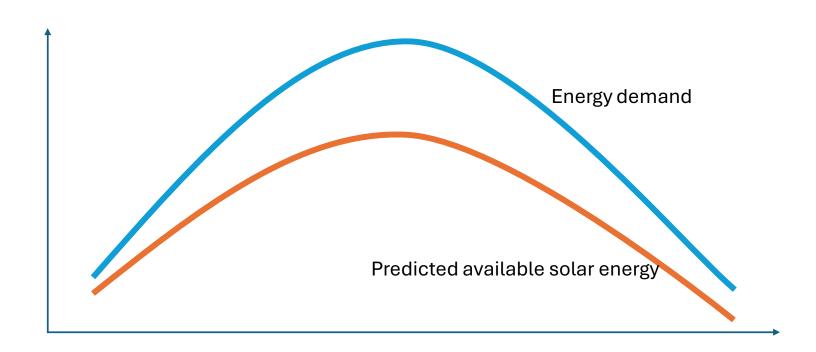


Why predicting solar irradiance is important?



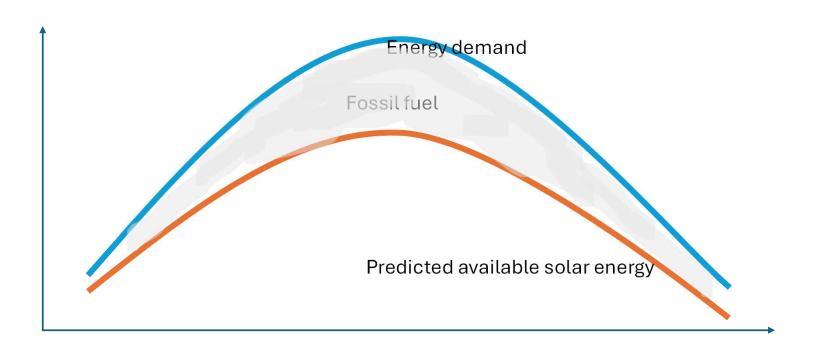
Adrian C. (2010)

https://rmi.org/insight/page/28/

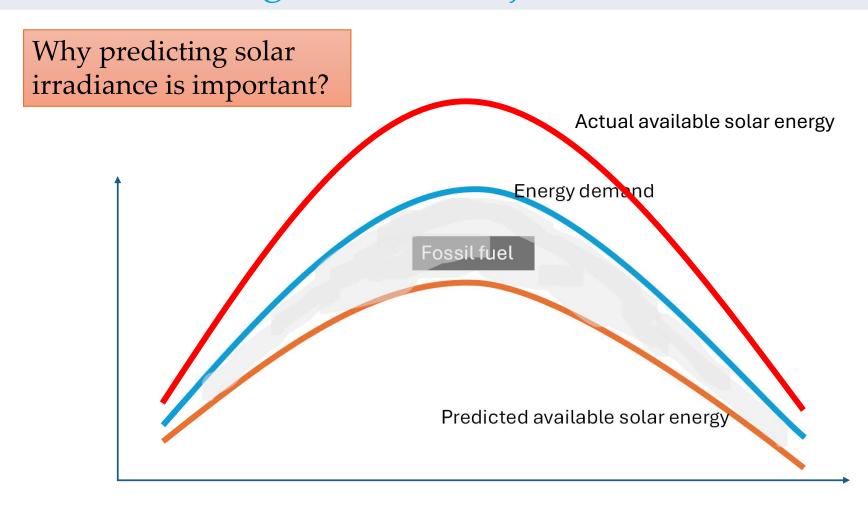


4

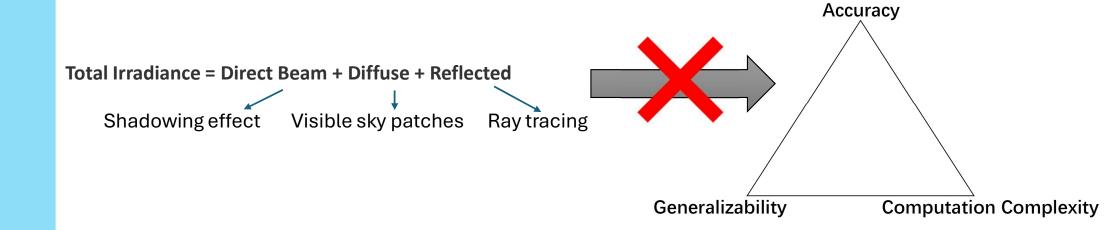
https://au.pinterest.com/pin/passive-solar-building-design-360-building-solutions--718394578055713790/



Why predicting solar irradiance is important?



Why predicting solar irradiance is important?



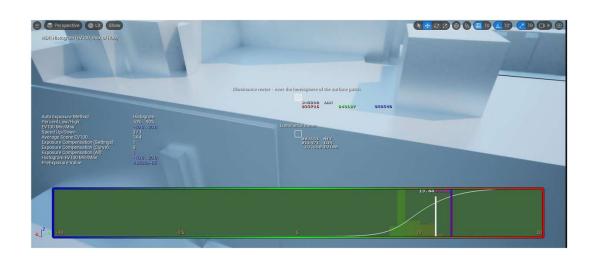
What is the research gap?

How can a solar irradiance simulation method be developed to balance accuracy and computational efficiency for city-scale simulations while utilizing semantic information from 3D city models?

- In what ways can semantic data derived from 3D city models refine the precision of solar irradiance simulations by considering the direct, diffuse and reflected solar components?
- What are the potential trade-offs between accuracy and computation simplification when utilizing 3D city models for estimating solar irradiance at an urban scale?

Related Work

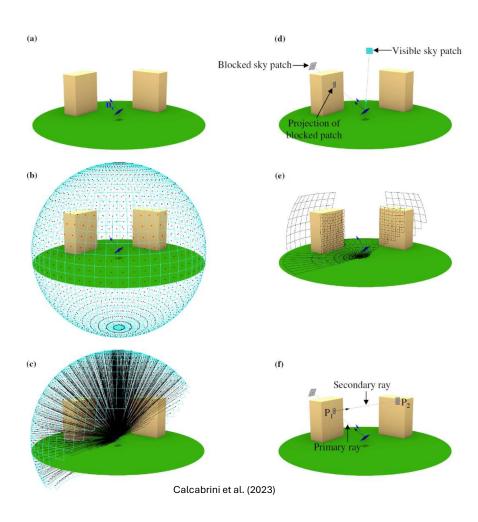
Related Work: Viewshed-based methods


(b) The resulting viewshed

Calcabrini, A. (2023)

- Simplified surroundings
- Inaccurate shadowing effect
- Lack of support for 3D data

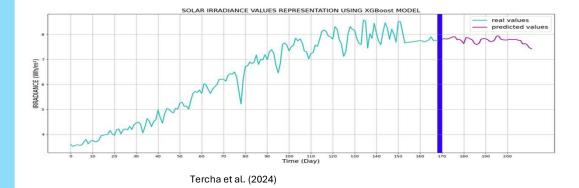
Related Work: Pixel counting methods



Meines, S. (2023)

- Black/Grey box mechanism
- Low generalizability

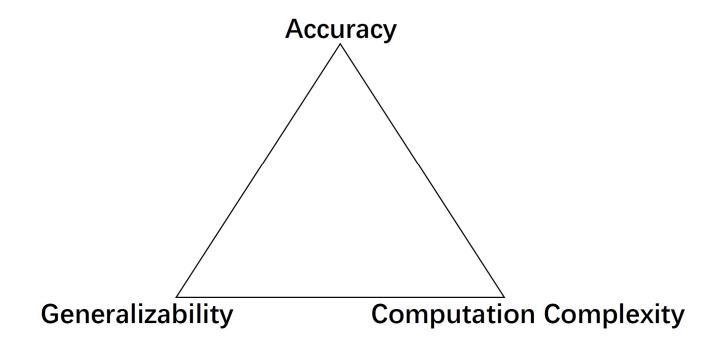
Related Work: Ray Tracing based methods


Computational expensive

Related Work: Empirical methods

$$I_{T} = I_{h,b}R_{b} + I_{h,d} \left[(1 - F_{1}) \left(\frac{1 + \cos \beta}{2} \right) + F_{1} \frac{a}{b} + F_{2} \sin \beta \right] + I_{h} \rho \left(\frac{1 - \cos \beta}{2} \right)$$

Perez, R. (1987)



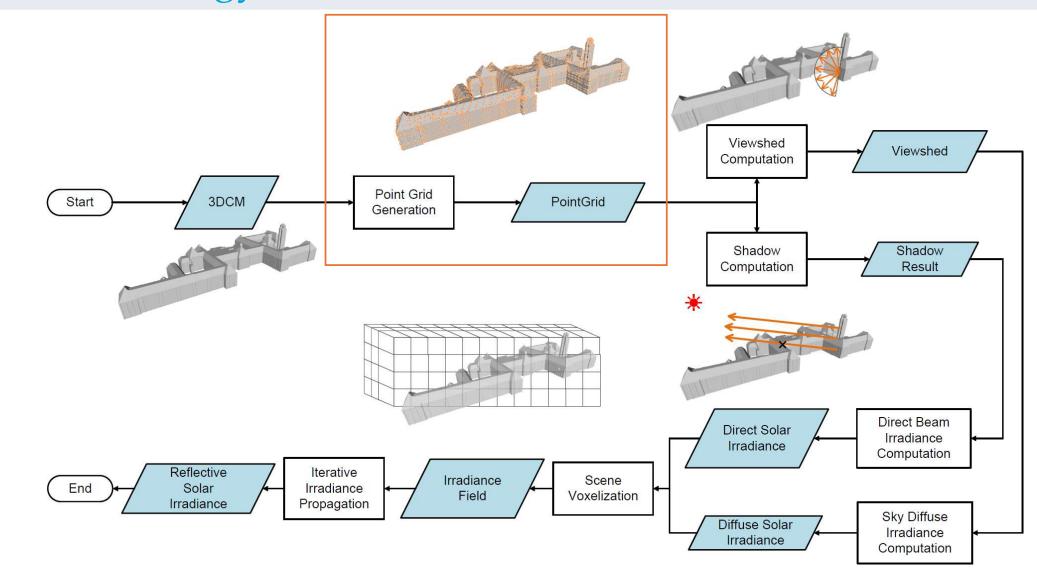
- Low accuracy
- Low generalizability

Related Work: Summary

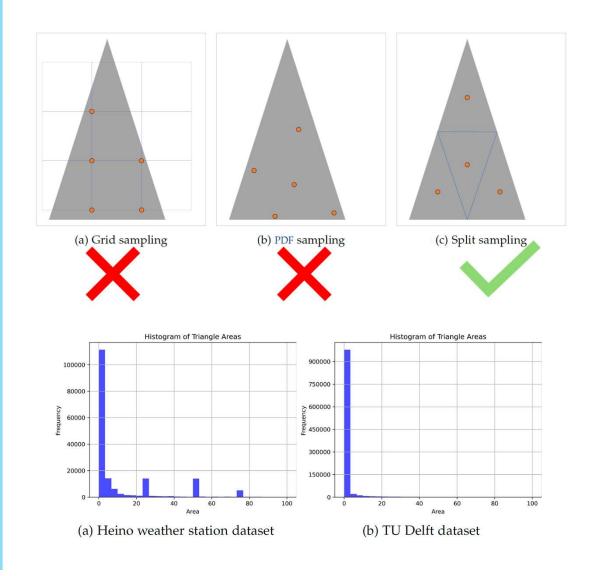
The "impossible" triangle

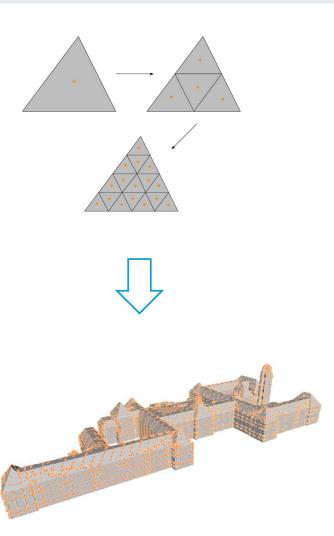


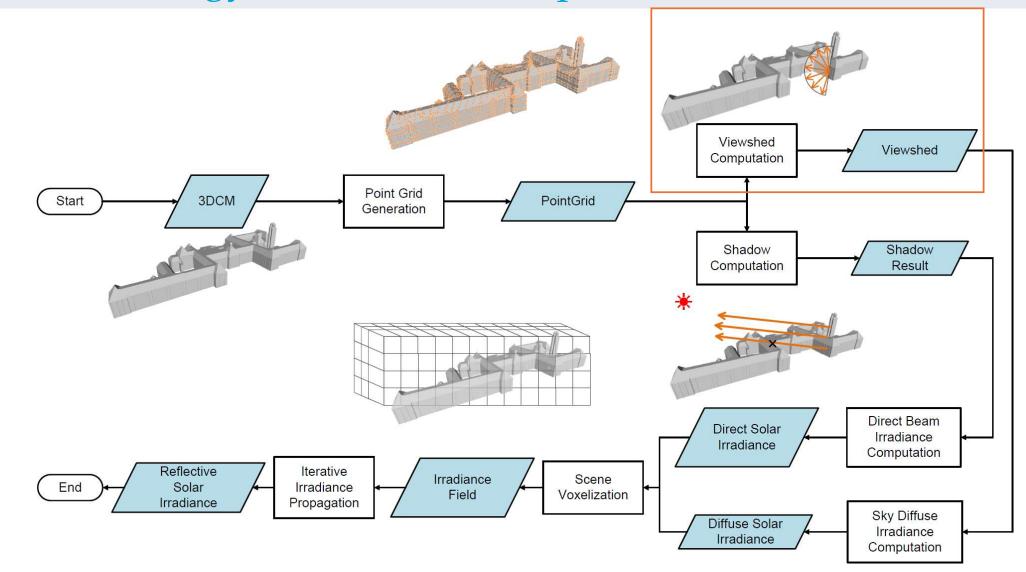
Methodology

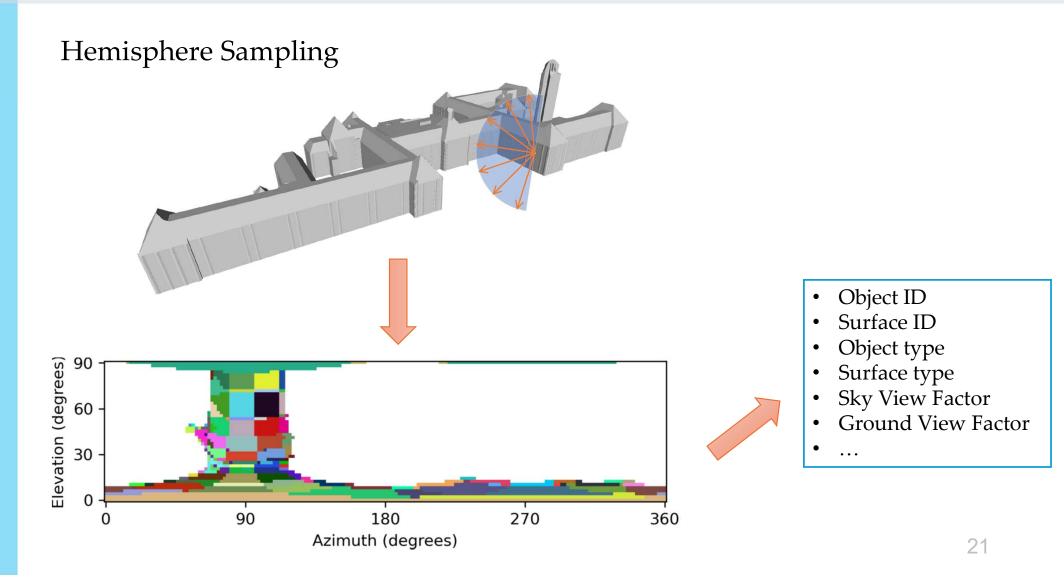


Methodology

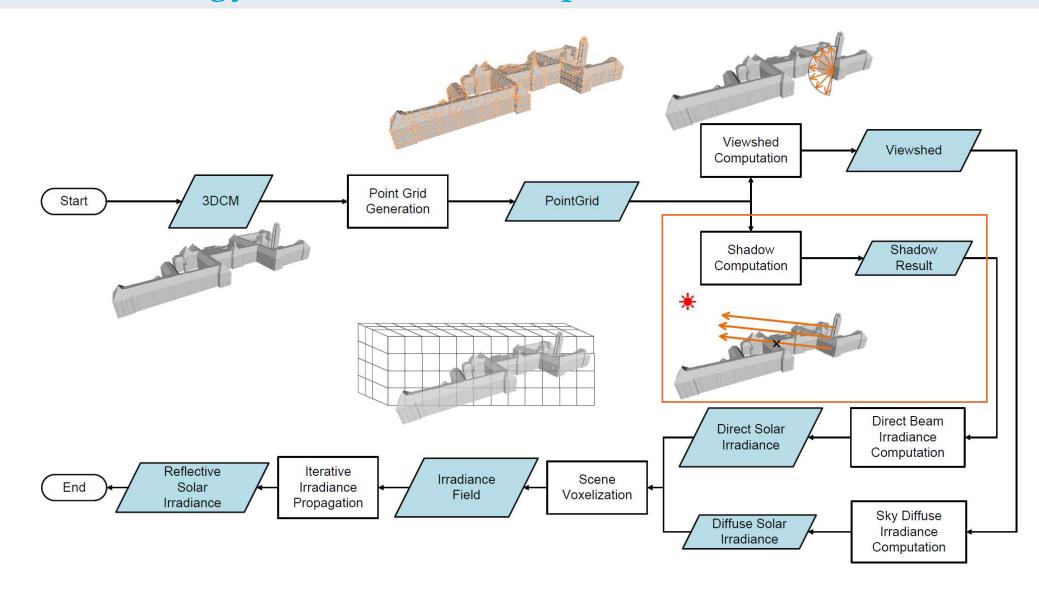



Methodology: Point Grid Generation

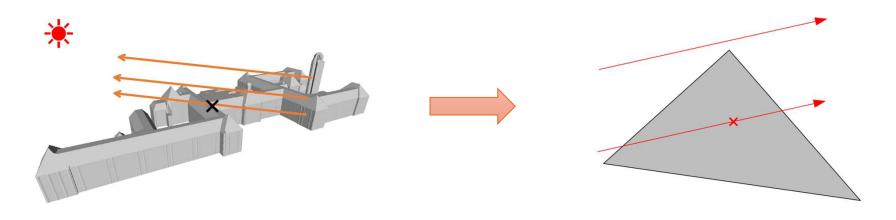

Methodology: Point Grid Generation



Methodology: Viewshed Computation

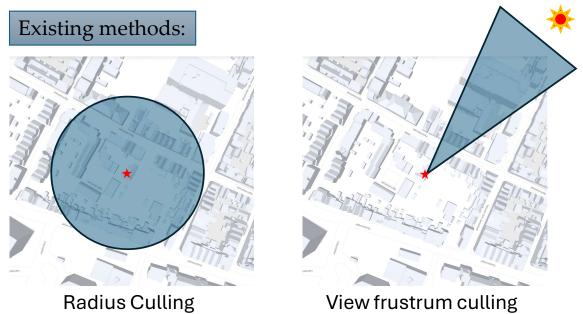


Methodology: Viewshed Computation



Methodology: Viewshed Computation

Determine shadowing effect: Ray-Object Intersection Test



For 3DCM with 500,000 surfaces and 1,000,000 sample points:

500,000,000,000 (500 billion) intersection tests

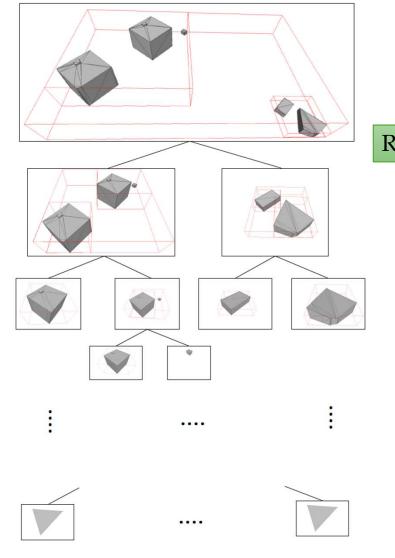
Problem remains:

- Radius setting
- Computation complexity

Existing methods:

Radius Culling

View frustrum culling

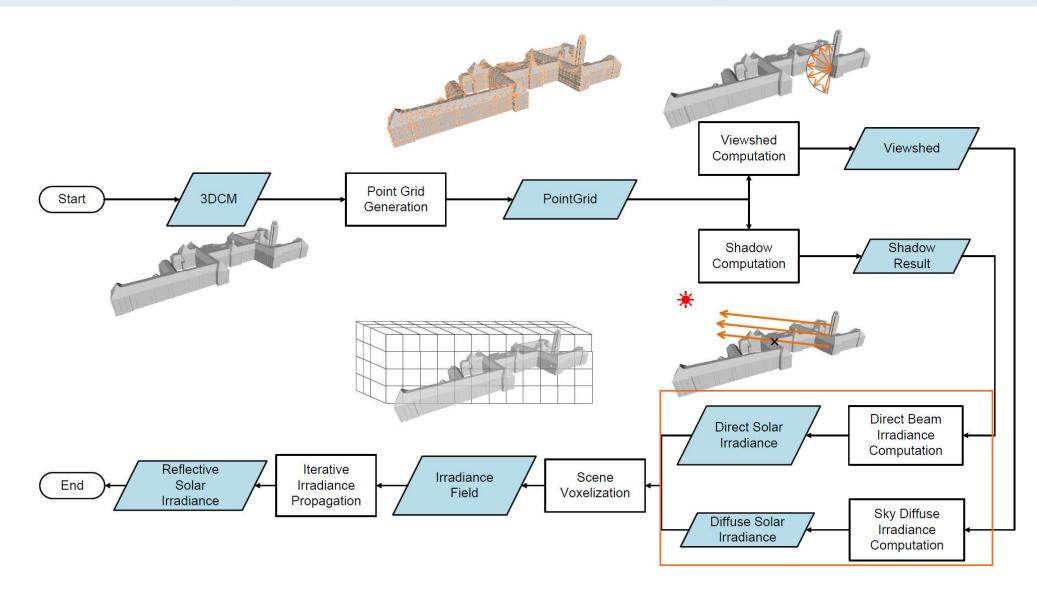

Problem remains:

- Radius setting
- Computation complexity

https://www.pinterest.com/pin/275352964692412846/

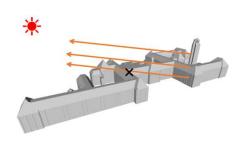
Bounding Volume Hierarchy

Reduce computation complexity from O(NM) to O(NlogM)

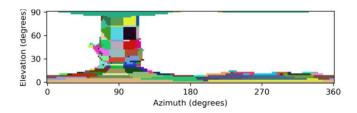

For 3DCM with 500,000 surfaces and 1,000,000 sample points:

A tree depth of 19 is enough

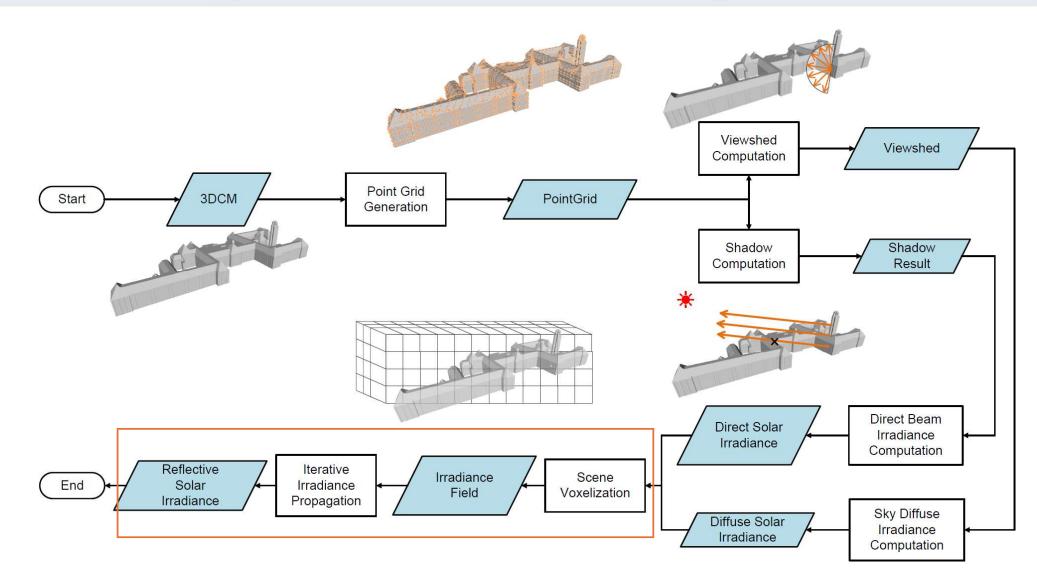
38,000,000 <<< 500 billion



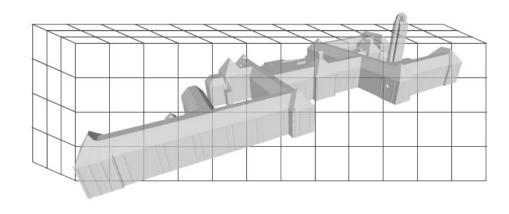
Methodology: Direct and Diffuse Computation



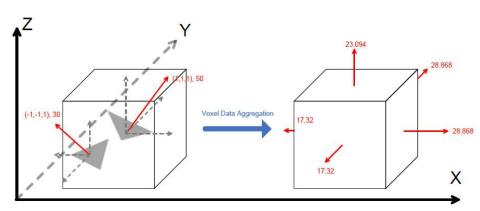
Methodology: Direct and Diffuse Computation


$$I_{S,dir,\beta} = M_{shadow} \cdot DNI \cdot \cos \delta$$

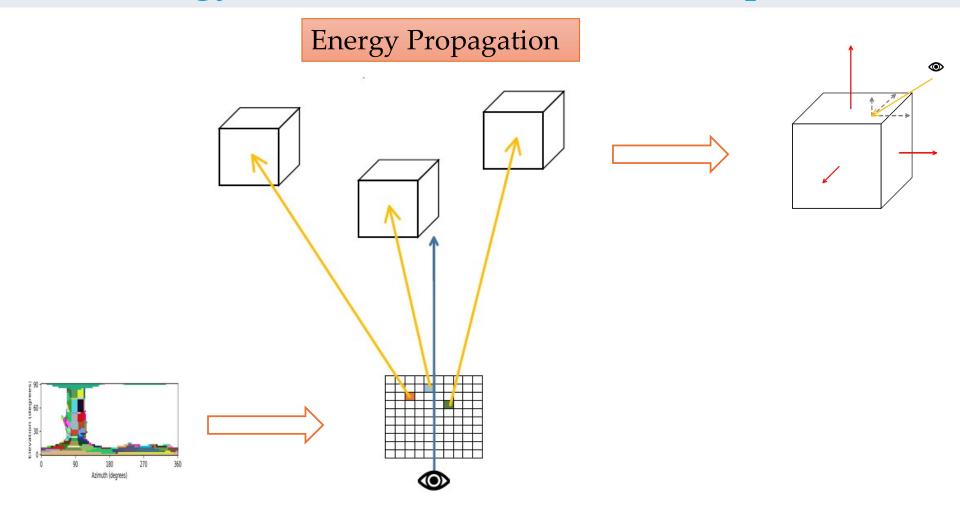
$$I_{S,diff,\beta} = DHI \cdot SVF$$



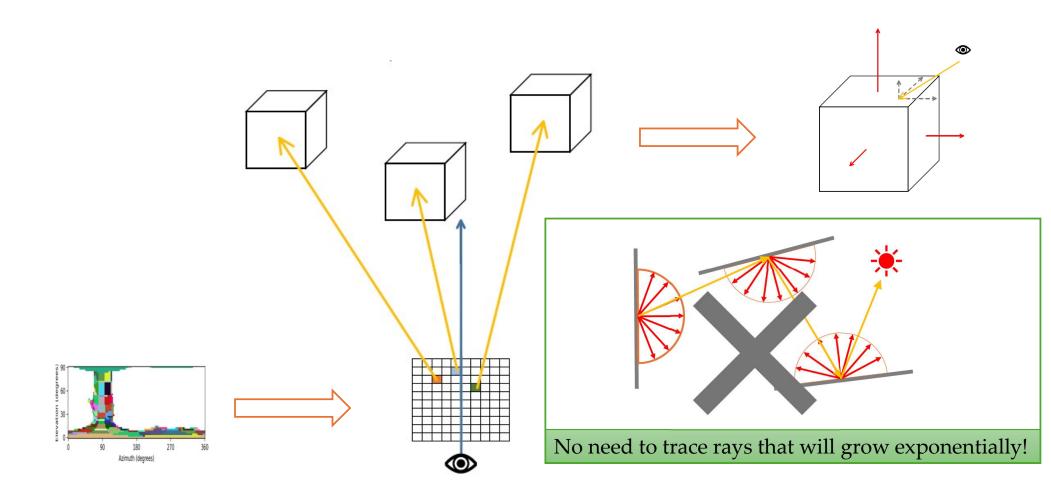
Methodology: Direct and Diffuse Computation



Methodology: Reflective Irradiance Computation

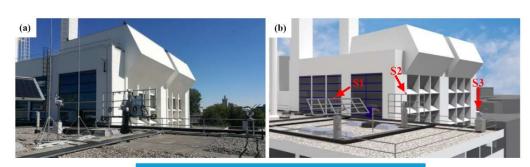

Light field

Aggregate the sample points within voxels

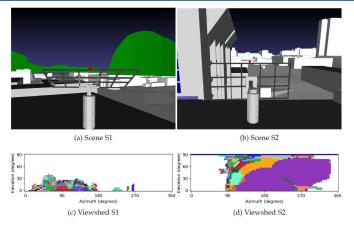


Methodology: Reflective Irradiance Computation

Methodology: Reflective Irradiance Computation


Results & Discussion

Results & Discussion: Validation

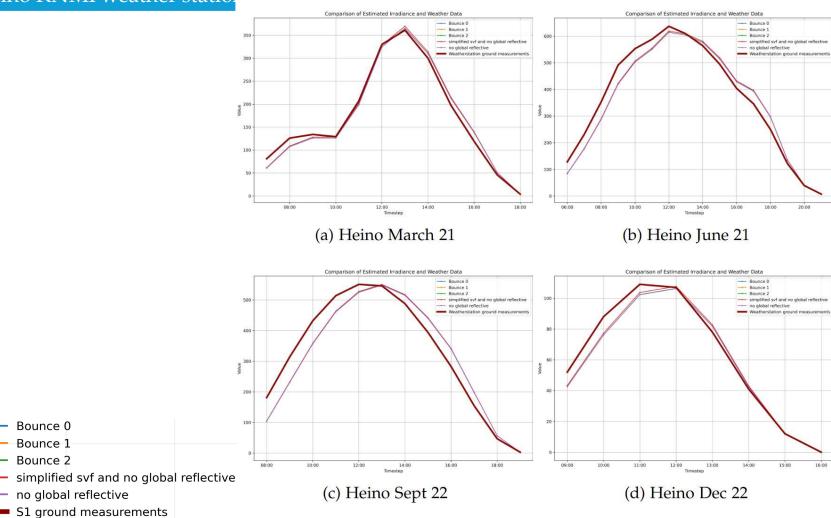


Heino KNMI weather station

TU Delft (PVMD group data)

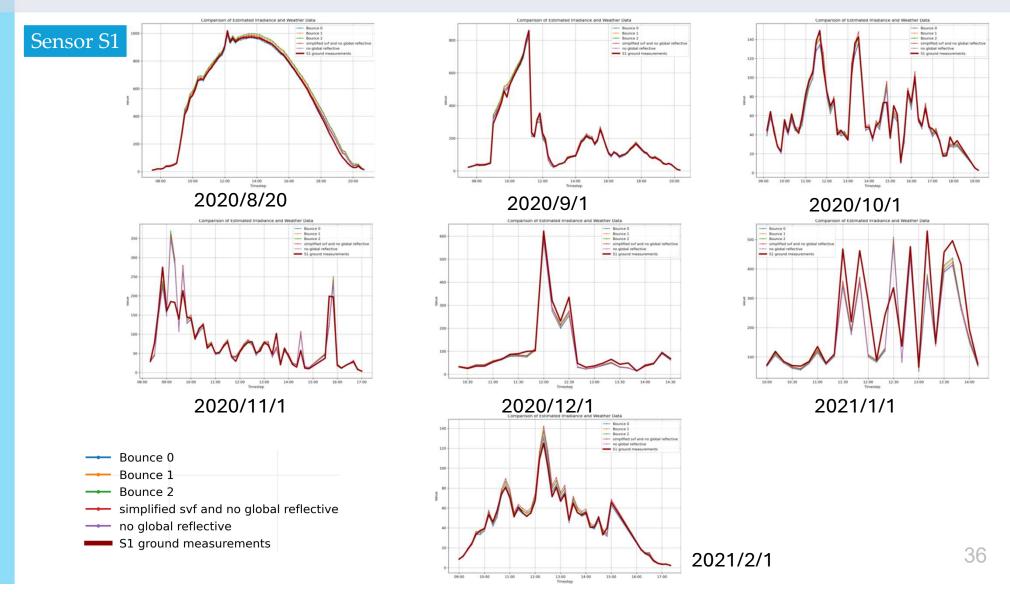
Calcabrini et al. (2023)

34

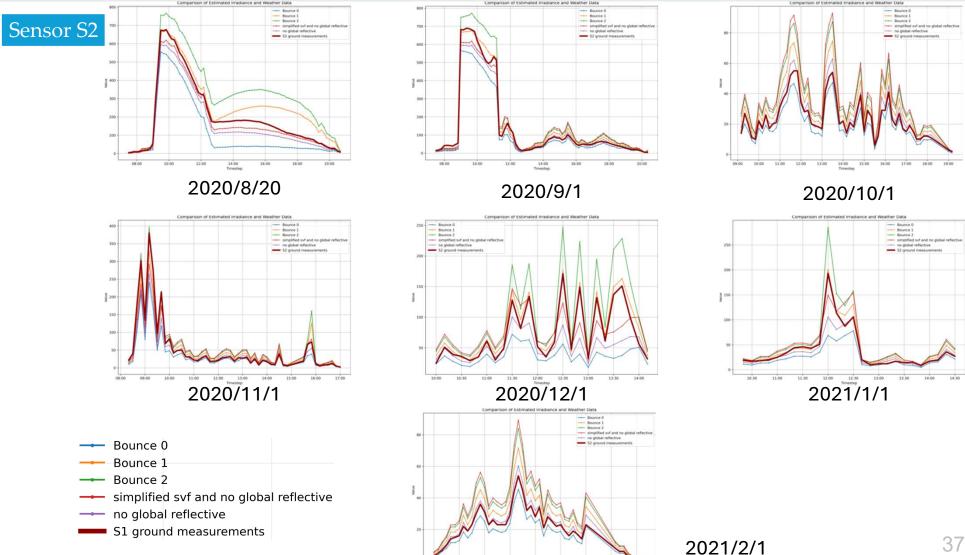

Results & Discussion: Validation

Heino KNMI weather station

Bounce 0 Bounce 1 Bounce 2

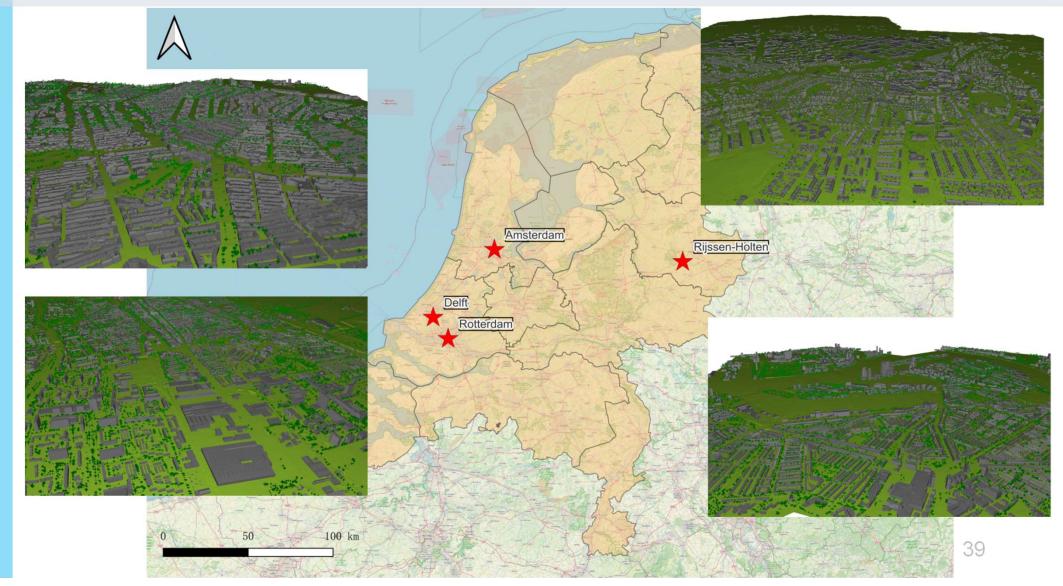

-- no global reflective

S1 ground measurements



Results & Discussion: Validation

Results & Discussion: Validation


Results & Discussion: Validation

Sensor S2

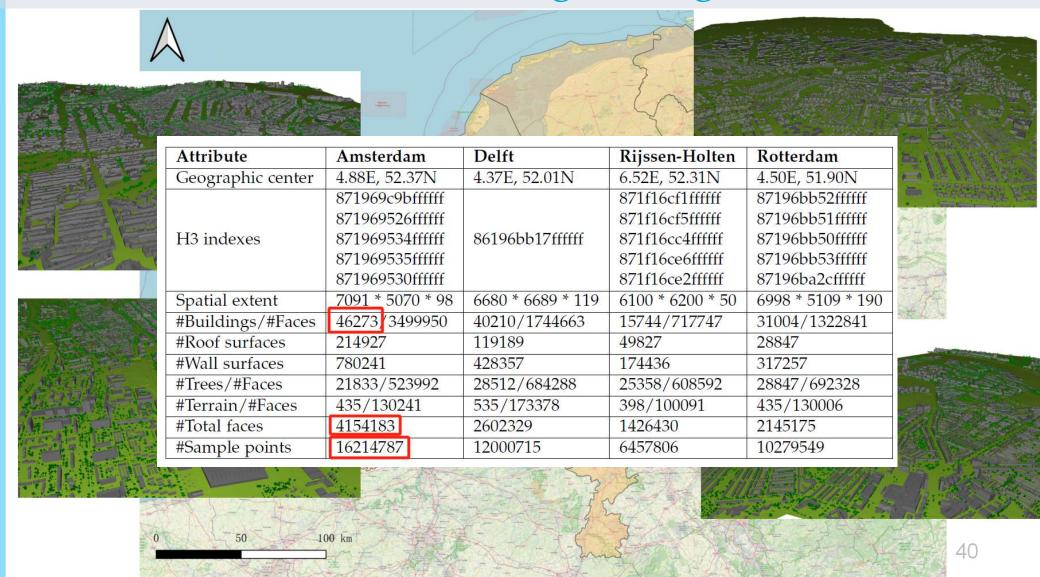
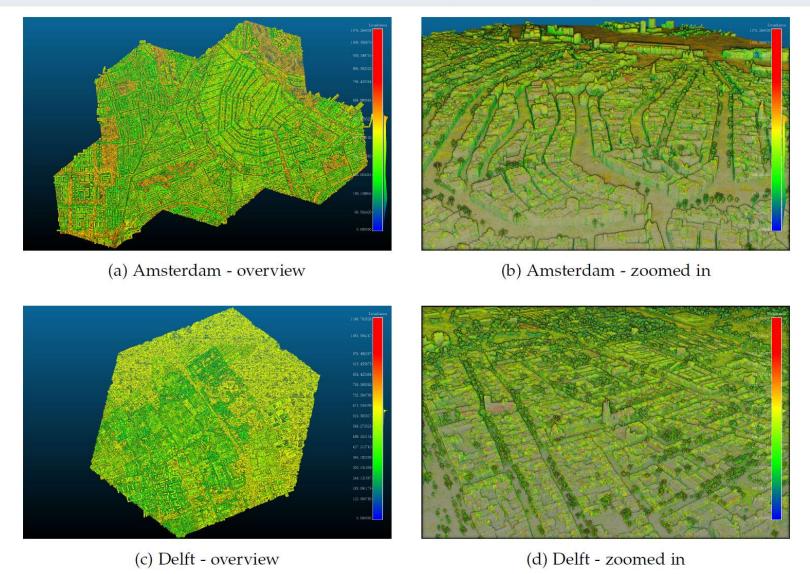
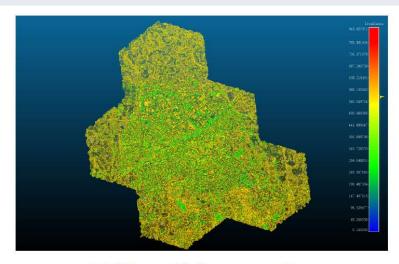
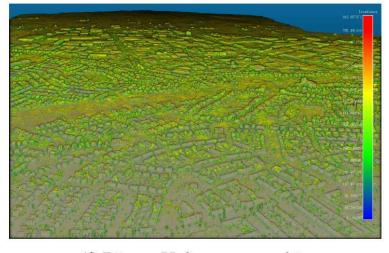

Metrics	Setting	2020/8/20	2020/9/1	2020/10/1	2020/11/1	2020/12/1	2021/1/1	2021/2/1	Average
	b=0	0.9695	0.9972	0.9897	0.9929	0.6786	0.9036	0.9966	0.9326
	b=1	0.9735	0.9964	0.9897	0.9872	0.9907	0.9903	0.9966	0.9892
Correlation	b=2	0.9558	0.9949	0.9897	0.9856	0.9932	0.9941	0.9966	0.9871
	setting 1	0.9968	0.9928	0.9897	0.9825	0.7749	0.9256	0.9966	0.9513
	setting 2	0.9949	0.9972	0.9897	0.9929	0.8111	0.9346	0.9966	0.9596
	b=0	-0.4327	-0.2205	-0.1831 [†]	-0.3358	-0.4966	-0.3751	-0.1822 [†]	-0.3180
	b=1	0.2435	0.0487*	0.2865	0.0050*	0.1035 [†]	0.1123*	0.2880	0.1554^{\dagger}
nMBE	b=2	0.5738	0.2183	0.5091	0.1988	0.4224	0.3729	0.5108	0.4009
	setting 1	-0.1065*	0.0513 [†]	0.6040	0.0649^{\dagger}	0.0293*	0.2467	0.6059	0.2137
	setting 2	-0.2009 [†]	-0.0995	0.0842*	-0.1906	-0.2910	-0.1509 [†]	0.0854*	-0.1090*
	b=0	0.4327	0.2205	0.1831 [†]	0.3365	0.4966	0.3776	0.1835 [†]	0.3186
	b=1	0.2554	0.0999*	0.2878	0.2071*	0.1142*	0.1436*	0.2880	0.1994^{\dagger}
nMAE	b=2	0.5770	0.2410	0.5094	0.2241+	0.4224	0.3746	0.5108	0.4085
	setting 1	0.1180*	0.1787	0.6041	0.3220	0.3162 [†]	0.3318	0.6059	0.3538
	setting 2	0.2024+	0.1221+	0.1024*	0.2491	0.3186	0.2021+	0.0874*	0.1834*
	b=0	0.4968	0.3493	0.2119 [†]	0.6674	0.7139	0.7306	0.2150 [†]	0.4836
	b=1	0.3234	0.1330*	0.3535	0.3141*	0.1395*	0.2083*	0.3498	0.2602*
nRMSE	b=2	0.6471	0.3613	0.6051	0.3212 [†]	0.5451	0.6336	0.6109	0.5320
	setting 1	0.1427*	0.2271	0.7133	0.4467	0.4023 [†]	0.4745^{\dagger}	0.7227	0.4470
	setting 2	0.2340^{+}	0.2163+	0.1382*	0.5347	0.5158	0.4785	0.1190*	0.3195+

Table 6.6.: Sensor S2. Table showing various metrics across different settings and dates. Numbers marked with * represent the best entry, while the numbers marked with † represent the worst entry




1



(e) Rijssen-Holten - overview

(g) Rotterdam - overview

(f) Rijssen-Holten - zoomed in

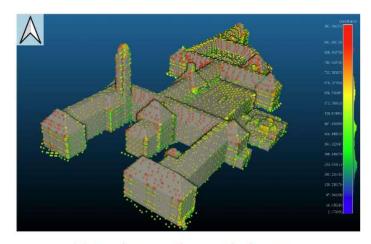
(h) Rotterdam - zoomed in

	ntion for 20 nutes time i	21 Feb 1 with interval	Within several i	minutes!		27 hou	rs
City	#Timestep	Shadow computation	SVF computation	Direct+Diffuse	Reflective	Total	Reflective ratio
Amsterdam	54	2.33	406.48	27.06	98302.20	98738.07	99.56
Delft	54	1.57	301.10	16.21	79782.55	80101.43	99.60
Rijssen-Holten	54	1.02	151.44	5.97	42941.12	43093.58	99.65
Rotterdam	54	1.58	240.70	14.39	80424.76	80681.43	99.68

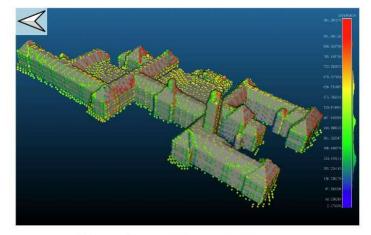
Attribute	Amsterdam	Delft	Rijssen-Holten	Rotterdam
Geographic center	4.88E, 52.37N	4.37E, 52.01N	6.52E, 52.31N	4.50E, 51.90N
	871969c9bffffff		871f16cf1ffffff	87196bb52ffffff
	871969526ffffff		871f16cf5ffffff	87196bb51ffffff
H3 indexes	871969534ffffff	86196bb17ffffff	871f16cc4ffffff	87196bb50ffffff
	871969535ffffff		871f16ce6ffffff	87196bb53ffffff
	871969530ffffff		871f16ce2ffffff	87196ba2cffffff
Spatial extent	7091 * 5070 * 98	6680 * 6689 * 119	6100 * 6200 * 50	6998 * 5109 * 190
#Buildings/#Faces	46273/3499950	40210/1744663	15744/717747	31004/1322841
#Roof surfaces	214927	119189	49827	28847
#Wall surfaces	780241	428357	174436	317257
#Trees/#Faces	21833/523992	28512/684288	25358/608592	28847/692328
#Terrain/#Faces	435/130241	535/173378	398/100091	435/130006
#Total faces	4154183	2602329	1426430	2145175
#Sample points	16214787	12000715	6457806	10279549

12 hours

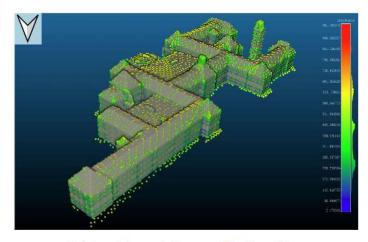
Orientation	Amsterdam	Delft	Rijssen-Holten	Rotterdam
east	301.90	390.17	361.43	349.95
north	267.16 ⁻	435.10	424.53	400.49
northeast	293.52	414.16	451.07	405.99
northwest	303.21	408.25	446.68	398.53
south	457.67*	615.00*	484.40	611.62*
southeast	440.36	549.69	492.35	516.33
southwest	379.14	587.55	494.79*	592.71
west	302.90	546.36	443.82	499.84

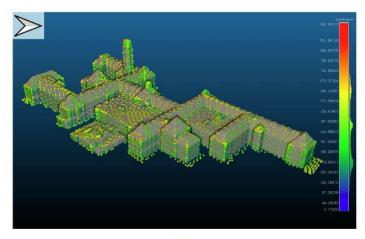

Inclination	Amsterdam	Delft	Rijssen-Holten	Rotterdam
-0°	135.98	168.86	116.81	195.08
-75°	304.13	453.66	329.67	442.60
-60°	265.97	368.49	220.01	328.79
-45°	214.57	276.47	209.53	237.93
-30°	163.63	277.59	135.32	165.47
-15°	131.12	144.04	128.71	155.22
0°	494.71	575.38	502.79	581.44
15°	440.42	553.81	506.38	540.40
30°	502.76	597.69*	518.69*	581.93
45°	504.07*	594.85	503.19	595.61*
60°	457.81	575.24	480.62	580.60
75°	428.53	543.52	426.92	545.44
90°	273.96	411.45	300.83	405.19

City	Orientation	Inclination	Irradiance
Amsterdam	south	45°	634.20
Delft	south	30°	791.49
Rijssen-Holten	south	45°	636.74
Rotterdam	south	30°	812.10

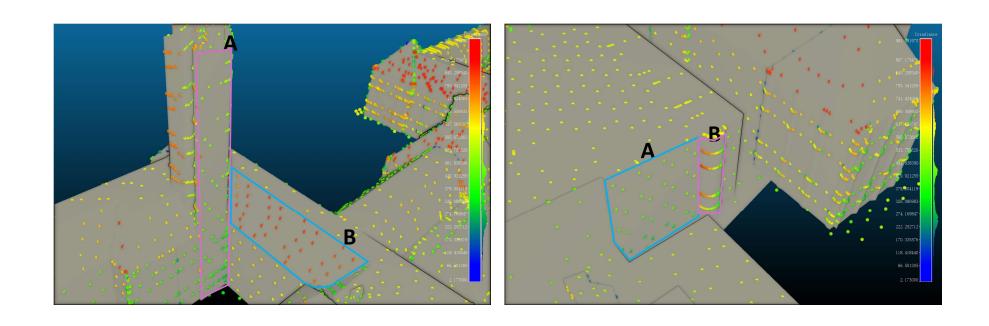

City	Orientation	Inclination	Irradiance
Amsterdam	north	-15°	39.08
Delft	north	-15°	56.83
Rijssen-Holten	southwest	-30°	62.83
Rotterdam	northwest	-15°	78.83

Surface type	Amsterdam	Delft	Rijssen-Holten	Rotterdam
Wall surface	260.65	393.17	288.28	390.05
Roof surface	497.54*	592.64*	509.72*	587.60*
Terrain surface	406.78	547.52	504.82	532.83
Vegetation surface	363.20	456.67	325.88	441.15

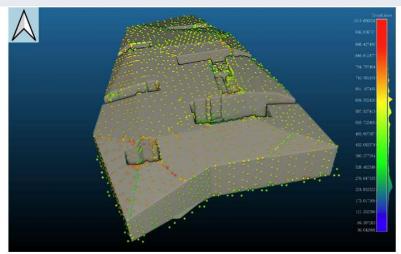



(a) Looking at the north direction

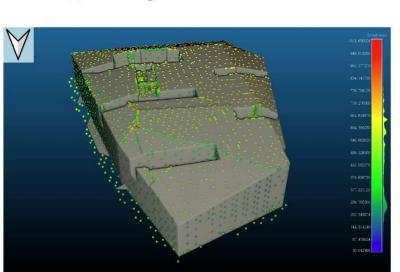
(b) Looking at the east direction

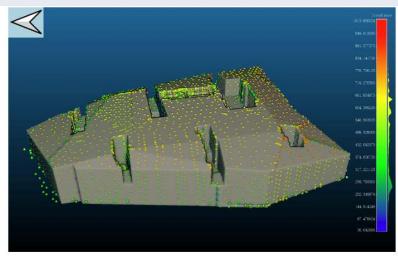


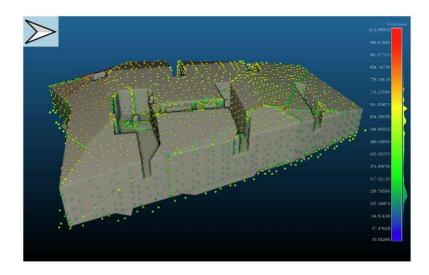
(c) Looking at the south direction



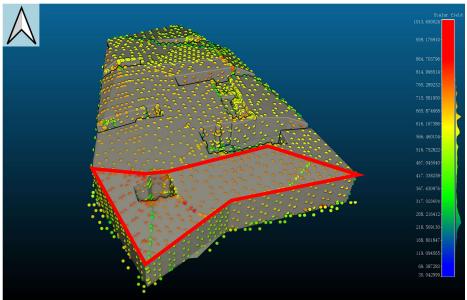
(d) Looking at the west direction





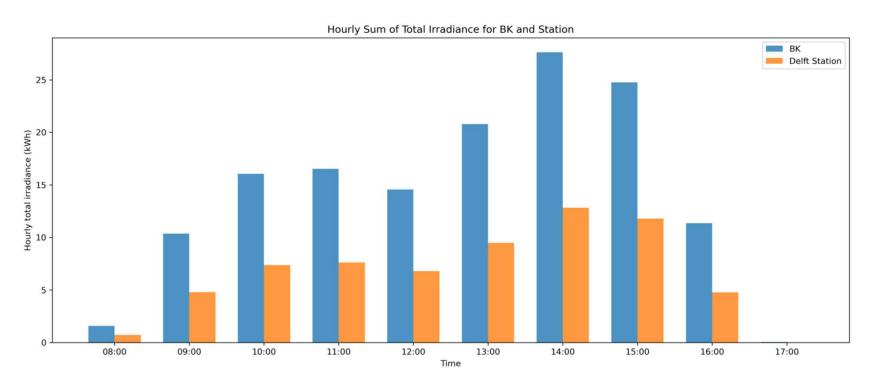


(a) Looking at the north direction



(b) Looking at the east direction

Orientation	BK	Delft Station
east	343.83	380.12
north	268.48	340.37
northeast	298.51	350.99
northwest	293.43	340.57
south	526.48	632.45*
southeast	465.82	545.03
southwest	676.35*	504.08
west	427.11	434.49


Delft Station	BK	Inclination
394.72	368.65	-75°
Nan	274.00	-30°
383.80	409.29	0°
582.82	424.01	15°
670.40*	640.90*	30°
602.24	609.10	45°
Nan	570.48	60°
Nan	471.85	75°
428.60	380.09	90°

Building	Orientation	Inclination	Irradiance
BK	southwest	75°	867.58
Delft Station	southwest	30°	779.85

Building	Orientation	Inclination	Irradiance
BK	northeast	90°	227.48
Delft Station	north	45°	103.19

Surface type	BK	Delft Station
Wall surface	379.01	428.13
Roof surface	576.70*	563.80*

Daily total:

• BK: 143.70 kWh

• Delft Station: 66.24 kWh

20 Days of electricity use for an average NL households

- More detailed usage of 3DCM information can provide high accuracy
 - With more detailed modelling of reflective irradiance, the accuracy is higher under clear-sky conditions

Metrics	Setting	2020/8/20	2020/9/1	2020/10/1	2020/11/1	2020/12/1	2021/1/1	2021/2/1	Average
	b=0	0.9695	0.9972	0.9897	0.9929	0.6786	0.9036	0.9966	0.9326
	b=1	0.9735	0.9964	0.9897	0.9872	0.9907	0.9903	0.9966	0.9892
Correlation	b=2	0.9558	0.9949	0.9897	0.9856	0.9932	0.9941	0.9966	0.9871
	setting 1	0.9968	0.9928	0.9897	0.9825	0.7749	0.9256	0.9966	0.9513
	setting 2	0.9949	0.9972	0.9897	0.9929	0.8111	0.9346	0.9966	0.9596
	b=0	-0.4327	-0.2205	-0.1831 [†]	-0.3358	-0.4966	-0.3751	-0.1822 [†]	-0.3180
100,000	b=1	0.2435	0.0487*	0.2865	0.0050*	0.1035 [†]	0.1123*	0.2880	0.1554^{\dagger}
nMBE	b=2	0.5738	0.2183	0.5091	0.1988	0.4224	0.3729	0.5108	0.4009
	setting 1	-0.1065*	0.0513^{\dagger}	0.6040	0.0649 [†]	0.0293*	0.2467	0.6059	0.2137
	setting 2	-0.2009 [†]	-0.0995	0.0842*	-0.1906	-0.2910	-0.1509 [†]	0.0854*	-0.1090*
_	b=0	0.4327	0.2205	0.1831 [†]	0.3365	0.4966	0.3776	0.1835 [†]	0.3186
	b=1	0.2554	0.0999*	0.2878	0.2071*	0.1142*	0.1436*	0.2880	0.1994^{\dagger}
nMAE	b=2	0.5770	0.2410	0.5094	0.2241	0.4224	0.3746	0.5108	0.4085
	setting 1	0.1180*	0.1787	0.6041	0.3220	0.3162 [†]	0.3318	0.6059	0.3538
	setting 2	0.2024+	0.1221 [†]	0.1024*	0.2491	0.3186	0.2021+	0.0874*	0.1834*
nRMSE	b=0	0.4968	0.3493	0.2119 [†]	0.6674	0.7139	0.7306	0.2150 [†]	0.4836
	b=1	0.3234	0.1330*	0.3535	0.3141*	0.1395*	0.2083*	0.3498	0.2602*
	b=2	0.6471	0.3613	0.6051	0.3212 ^T	0.5451	0.6336	0.6109	0.5320
	setting 1	0.1427*	0.2271	0.7133	0.4467	0.4023 [†]	0.4745 [†]	0.7227	0.4470
	setting 2	0.2340^{\dagger}	0.2163 [†]	0.1382*	0.5347	0.5158	0.4785	0.1190*	0.3195+

Table 6.6.: Sensor S2. Table showing various metrics across different settings and dates. Numbers marked with * represent the best entry, while the numbers marked with † represent the worst entry

- Accurate modelling of direct beam irradiance and sky diffuse solar irradiance provide good results
 - But performance not stable

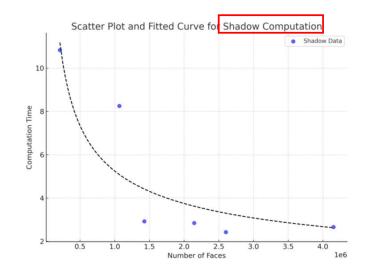
Metrics	Setting	2020/8/20	2020/9/1	2020/10/1	2020/11/1	2020/12/1	2021/1/1	2021/2/1	Average
	b=0	0.9695	0.9972	0.9897	0.9929	0.6786	0.9036	0.9966	0.9326
	b=1	0.9735	0.9964	0.9897	0.9872	0.9907	0.9903	0.9966	0.9892
Correlation	b=2	0.9558	0.9949	0.9897	0.9856	0.9932	0.9941	0.9966	0.9871
_	setting 1	0.9968	0.9928	0.9897	0.9825	0.7749	0.9256	0.9966	0.9513
	setting 2	0.9949	0.9972	0.9897	0.9929	0.8111	0.9346	0.9966	0.9596
	b=0	-0.4327	-0.2205	-0.1831 [†]	-0.3358	-0.4966	-0.3751	-0.1822 [†]	-0.3180
	b=1	0.2435	0.0487*	0.2865	0.0050*	0.1035 [†]	0.1123*	0.2880	0.1554 [†]
nMBE	b=2	0.5738	0.2183	0.5091	0.1988	0.4224	0.3729	0.5108	0.4009
_	setting 1	-0.1065*	0.0513^{\dagger}	0.6040	0.0649^{\dagger}	0.0293*	0.2467	0.6059	0.2137
	setting 2	-0.2009 [†]	-0.0995	0.0842*	-0.1906	-0.2910	-0.1509 [†]	0.0854*	-0.1090*
	b=0	0.4327	0.2205	0.1831 [†]	0.3365	0.4966	0.3776	0.1835 [†]	0.3186
	b=1	0.2554	0.0999*	0.2878	0.2071*	0.1142*	0.1436*	0.2880	0.1994+
nMAE	b=2	0.5770	0.2410	0.5094	0.2241+	0.4224	0.3746	0.5108	0.4085
_	setting 1	0.1180*	0.1787	0.6041	0.3220	0.3162 [†]	0.3318	0.6059	0.3538
	setting 2	0.2024^{\dagger}	0.1221 [†]	0.1024*	0.2491	0.3186	0.2021 [†]	0.0874*	0.1834*
	b=0	0.4968	0.3493	0.2119 [†]	0.6674	0.7139	0.7306	0.2150 [†]	0.4836
nRMSE	b=1	0.3234	0.1330*	0.3535	0.3141*	0.1395*	0.2083*	0.3498	0.2602*
	b=2	0.6471	0.3613	0.6051	0.3212+	0.5451	0.6336	0.6109	0.5320
_	setting 1	0.1427*	0.2271	0.7133	0.4467	0.4023 [†]	0.4745 [†]	0.7227	0.4470
	setting 2	0.2340^{\dagger}	0.2163 [†]	0.1382*	0.5347	0.5158	0.4785	0.1190*	0.3195 [†]

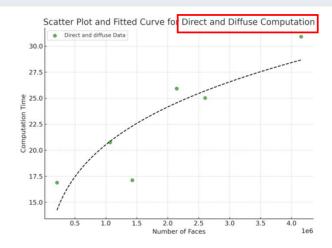
Table 6.6.: Sensor S2. Table showing various metrics across different settings and dates. Numbers marked with * represent the best entry, while the numbers marked with † represent the worst entry

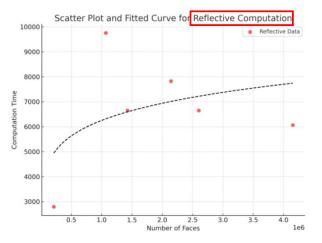
- Method scalable for city-scale applications
 - Simulation not detailed model reflective components takes within several minutes
 - 1~5 hours for simulation of 1 million sample points, one day, 10 minutes time interval)
 - 24 hours for 16 million sample points

Attribute	Value
Geographic center	52.43, 6.26
Spatial extent	2665 * 2665 * 17
#Buildings/#Faces	272/29409
#Trees/#Faces	3950/94800
#Terrain/#Faces	121/86020
#Total faces	210229
#Sample points	1539022

Attribute	Value				
Geographic center	52.6, 4.23				
Spatial extent	1174 * 1178 * 99				
#Buildings/#Faces	1114/99738				
#Trees/#Faces	3/153				
#Terrain/#Faces	20/964403				
#Total faces	1064294				
#Sample points	889500				


Date	#Timestep	Shadow computation	SVF computation	Direct+Diffuse	Reflective	Total	Reflective ratio
2024/3/21	12	0.13	37.37	0.29	3232.19	3269.98	98.84
2024/6/21	16	0.20	46.61	0.37	5271.96	5319.14	99.11
2024/9/22	12	0.22	44.67	0.29	4675.88	4721.06	99.04
2024/12/22	8	0.20	41.60	0.26	4022.49	4064.55	98.97
		Table 6.7.: Com	putation time Heino	with proposed me	:hod		
Date	#Timestep	Shadow computation	SVF computation	Direct+Diffuse	Reflective	Total	Reflective ratio
2024/8/21	80	0.62	51.03	1.47	12319.02	12372.14	99.57
2024/9/1	77	0.58	49.63	1.39	15331.52	15383.12	99.66
2024/10/1	57	0.51	41.64	1.00	9093.19	9136.34	99.53
2024/11/1	50	0.44	32.25	0.99	8118.75	8152.43	99.59
2024/12/1	26	0.23	31.56	0.59	4073.14	4105.52	99.21
2024/1/1	26	0.12	23.44	0.46	3765.48	3789.50	99.37
2024/2/1	45	0.22	26.76	0.68	8017.02	8044.68	99.66
City	#Timest	ep Shadow computation	on SVF computation	Direct+Diffuse	Reflective	Total	Reflective ratio
Amsterdan	ı	54 2.3	33 406.4	3 27.06	98302.20	98738.07	99.56
Delft		54 1.5	57 301.10	16.21	79782.55	80101.43	99.60
Rijssen-Hol	lten	54 1.0	02 151.4	5.97	42941.12	43093.58	99.65
Rotterdam		54 1.5	58 240.70	14.39	80424.76	80681.43	99.68


Attribute	Amsterdam	Delft	Rijssen-Holten	Rotterdam
Geographic center	4.88E, 52.37N	4.37E, 52.01N	6.52E, 52.31N	4.50E, 51.90N
	871969c9bffffff		871f16cf1ffffff	87196bb52ffffff
	871969526ffffff		871f16cf5ffffff	87196bb51ffffff
H3 indexes	871969534ffffff	86196bb17ffffff	871f16cc4ffffff	87196bb50ffffff
	871969535ffffff		871f16ce6ffffff	87196bb53ffffff
	871969530ffffff		871f16ce2ffffff	87196ba2cffffff
Spatial extent	7091 * 5070 * 98	6680 * 6689 * 119	6100 * 6200 * 50	6998 * 5109 * 190
#Buildings/#Faces	46273/3499950	40210/1744663	15744/717747	31004/1322841
#Roof surfaces	214927	119189	49827	28847
#Wall surfaces	780241	428357	174436	317257
#Trees/#Faces	21833/523992	28512/684288	25358/608592	28847/692328
#Terrain/#Faces	435/130241	535/173378	398/100091	435/130006
#Total faces	4154183	2602329	1426430	2145175
#Sample points	16214787	12000715	6457806	10279549



• Method scalable for city-scale applications

- Simulation not detailed model reflective components takes within several minutes
- 1~5 hours for simulation of 1 million sample points, one day, 10 minutes time interval)
- 24 hours for 16 million sample points

Results & Discussion: Limitations

Accuracy

Under overcast conditions the method does not show clear advantage

Computation Time

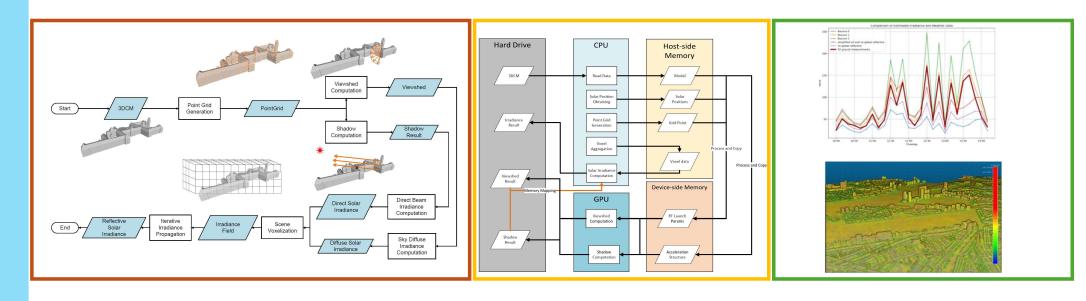
• Reflective solar irradiance computation takes up over 99% of computation time (Not optimized)

• Ground Measurement Data Availability

- Only S2 has complex visibility
- Lack of material data

• Simplification still exist

- 3DCM
- Isotropic model for sky diffuse
- Voxelization
- Assume all surfaces to be Lambertian surfaces



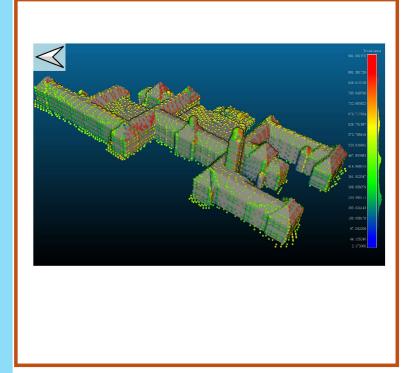
Conclusions

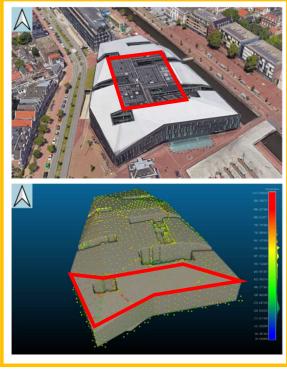
Conclusions

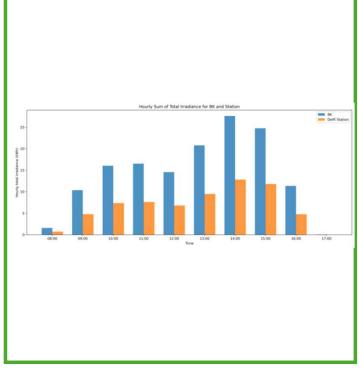
Developed, implemented, and tested a solar irradiance simulation method that is realistic and scalable.

Development

Implementation




Testing



Conclusions

We discussed and tested the potential applications of the proposed simulation method.

Visualization

Solar panel installation

Energy potential

Conclusions: Future work

- More detailed input data
- Enhanced modeling of sky diffuse irradiance
- Improved light field representation
- Model calibration
- Database input support
- Integration with remote sensing data

Conclusions: Future work

- More detailed input data
- Enhanced modeling of sky diffuse irradiance
- Improved light field representation
- Model calibration
- Database input support
- Integration with remote sensing data

Thank you for your attention!

