

Delft University of Technology

Multi-agent reinforcement learning via distributed MPC as a function approximator

Mallick, Samuel; Airaldi, Filippo; Dabiri, Azita; De Schutter, Bart

DOI
10.1016/j.automatica.2024.111803
Publication date
2024
Document Version
Final published version
Published in
Automatica

Citation (APA)
Mallick, S., Airaldi, F., Dabiri, A., & De Schutter, B. (2024). Multi-agent reinforcement learning via distributed
MPC as a function approximator. Automatica, 167, Article 111803.
https://doi.org/10.1016/j.automatica.2024.111803

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.automatica.2024.111803
https://doi.org/10.1016/j.automatica.2024.111803

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Automatica 167 (2024) 111803

S
D

t
l
m
i
B
h
s
w
m
p
a
f
e
i
a

a
i

(
(

h
0

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Brief paper

Multi-agent reinforcement learning via distributedMPC as a function
approximator✩

amuel Mallick ∗, Filippo Airaldi, Azita Dabiri, Bart De Schutter
elft Center for Systems and Control, Delft University of Technology, Delft, The Netherlands

a r t i c l e i n f o

Article history:
Received 8 December 2023
Received in revised form 16 April 2024
Accepted 23 May 2024
Available online xxxx

Keywords:
Multi-agent reinforcement learning
Distributed model predictive control
Networked systems
ADMM

a b s t r a c t

This paper presents a novel approach to multi-agent reinforcement learning (RL) for linear systems
with convex polytopic constraints. Existing work on RL has demonstrated the use of model predictive
control (MPC) as a function approximator for the policy and value functions. The current paper is the
first work to extend this idea to the multi-agent setting. We propose the use of a distributed MPC
scheme as a function approximator, with a structure allowing for distributed learning and deploy-
ment. We then show that Q-learning updates can be performed distributively without introducing
nonstationarity, by reconstructing a centralized learning update. The effectiveness of the approach is
demonstrated on a numerical example.

© 2024 Elsevier Ltd. All rights are reserved, including those for text and datamining, AI training, and
similar technologies.
1. Introduction

Reinforcement learning (RL) (Sutton & Barto, 2018) has proven
o be a popular approach for control of complex processes. For
arge or continuous state and action spaces, function approxi-
ators are commonly used to learn representations of the pol-

cy. Deep neural networks (DNNs) (Arulkumaran, Deisenroth,
rundage, & Bharath, 2017) are a prevalent choice in this context;
owever, they often lack interpretability and are not conducive to
afety verification, resulting in traditional DNN-based RL not yet
idely being accepted in the control community. Alternatively,
odel predictive control (MPC) is an extremely successful control
aradigm (Borrelli, Bemporad, & Morari, 2016), involving solving
finite-horizon optimal control problem in a receding horizon

ashion. Extensive results on the stability and performance of MPC
xist (Mayne, Rawlings, Rao, & Scokaert, 2000). However, MPC
s entirely model-based, with its performance depending on an
ccurate system model.
The integration of MPC and RL is a promising direction for

chieving safe and interpretable learning-based control (Hew-
ng, Wabersich, Menner, & Zeilinger, 2020; Rosolia & Borrelli,

✩ This paper is part of a project that has received funding from the European
Research Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (Grant agreement No. 101018826- CLariNet). The
material in this paper was not presented at any conference. This paper was
recommended for publication in revised form by Associate Editor Luca Schenato
under the direction of Editor Christos G. Cassandras.
∗ Corresponding author.

E-mail addresses: s.h.mallick@tudelft.nl (S. Mallick), f.airaldi@tudelft.nl
F. Airaldi), a.dabiri@tudelft.nl (A. Dabiri), b.deschutter@tudelft.nl
B. De Schutter).
ttps://doi.org/10.1016/j.automatica.2024.111803
005-1098/© 2024 Elsevier Ltd. All rights are reserved, including those for text and
2018). In particular, MPC has been proposed as a replacement
for DNN function approximators in RL (Gros & Zanon, 2020).
In this context, the optimal control action and cost of the MPC
optimization problem represent the policy and value function
respectively. An MPC-based policy facilitates the use of the rich
theory underlying MPC for obtaining insights into the policy, and
allows to deliver certificates on the resulting behavior. The state
of the art (Airaldi, De Schutter, & A., 2023; Gros & Zanon, 2020,
2022), however, relies on a centralized approach with a single
learning agent. This is in general prohibitive for multi-agent sys-
tems, where centralization requires either a specific topology,
with all agents connected to the central agent, or multi-hop
communication across intermediate agents, where the number
of hops grows with the network size. Additionally, centralized
computation can become too complex, and requires the sharing
of sensitive information, such as objective functions, with the
central agent.

Addressing these challenges, distributed control of multi-agent
systems offers computational scalability and privacy, with only
neighbor-to-neighbor communication. Many existing works have
adapted the MPC methodology to the distributed setting with
distributed MPC (Maestre & Negenborn, 2014) and, likewise, RL
to the multi-agent setting RL (MARL) setting, in which multiple
learning agents act in a common environment. A central chal-
lenge in MARL is that the interaction of simultaneously learning
agents renders the learning target of each agent nonstationary,
degrading the performance and convergence properties of single-
agent algorithms (Busoniu, Babuska, & De Schutter, 2008). Several
works have tried to circumvent this problem using a central-
ized training and decentralized execution paradigm (Alqahtani,
Scott, & Hu, 2022; Lowe, Wu, Tamar, Harb, Abbeel, & Mordatch,
data mining, AI training, and similar technologies.

https://doi.org/10.1016/j.automatica.2024.111803
https://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2024.111803&domain=pdf
mailto:s.h.mallick@tudelft.nl
mailto:f.airaldi@tudelft.nl
mailto:a.dabiri@tudelft.nl
mailto:b.deschutter@tudelft.nl
https://doi.org/10.1016/j.automatica.2024.111803

S. Mallick, F. Airaldi, A. Dabiri et al. Automatica 167 (2024) 111803

2
u
t
l
Y
2
b
a
2
a
a
a
M

M
a
t
v
p
i

a
o
t
t
t

l
r
i
M
a
c
e

2

2

T
a
s
w
v
1
x
d
F

2

M
t
a
a

t
G
n
a
t

l

s

w
r

o
p
o
c
t

J

w

(
{

p
t
θ

a
c

2

p
t
c
b

b
g
r

x

z

y

w
g

017). However, centralized training is often either unrealistic or
navailable. Some approaches address the nonstationarity issue
hrough communication across the network of agents during
earning (Suttle, Yang, Zhang, Wang, Basar, & Liu, 2019; Wai,
ang, Wang, & Hong, 2018; Zhang, Yang, Liu, Zhang, & Basar,
018). These works provide theoretical convergence guarantees,
ut focus on linear function approximation. MARL has also been
ddressed with DNN function approximators (Foerster et al.,
017; Gupta, Egorov, & Kochenderfer, 2017); however, these
pproaches do not emphasize information exchange between
gents, and suffer from the same drawbacks as DNN-based single-
gent RL. Addressing the nonstationarity of learning targets in
ARL remains an open challenge.
This paper proposes the following contributions. The use of

PC as a function approximator in RL is extended to the multi-
gent setting. To this end we propose a structured convex dis-
ributed MPC scheme as an approximator for the policy and
alue functions, introducing a novel, model-based MARL ap-
roach for linear systems, free from nonstationary. The method
s distributed in training and deployment, with data sharing only
between neighbors, irrespective of the network size and topol-
ogy, thus avoiding centralized computation and multi-hop data
communication. Furthermore, privacy of sensitive information
in local parameters and functions is preserved, with only state
trajectories being shared, in contrast to a centralized approach
where local functions are shared with the central agent. Thanks
to the MPC-based approximation, insights into the policy can
be gained from the learned components, e.g., the prediction
model and constraints. Additionally, in contrast to DNN-based
approaches, it is possible to inject a priori information, e.g., model
pproximations. Furthermore, we prove a result for consensus
ptimization; relating the dual variables recovered distributively
hrough the alternating direction method of multipliers (ADMM)
o the optimal dual variables of the original problem, that enables
he distributed learning.

The paper is structured as follows. Section 2 provides the prob-
em description and background theory. In Section 3 we present a
esult on the dual variables in ADMM, which will be used later on
n the paper. In Section 4 we introduce the structured distributed
PC function approximator. In Section 5 we propose Q-learning
s the learning algorithm, and show how the parameter updates
an be performed distributively. Section 6 gives an illustrative
xample.

. Preliminaries and background

.1. Notation

Define the index sets M = {1, . . . ,M} and K = {0, . . . ,N−1}.
he symbols t , k, and τ represent time steps in an RL context,
n MPC context, and iterations of an algorithm, respectively. The
ymbols s and a refer to states and actions in an RL context,
hile x and u are used for MPC. We use bold variables to gather
ariables over a prediction window, e.g., u = (u⊤(0), . . . , u⊤(N −
))⊤ and x = (x⊤(0), . . . , x⊤(N))⊤. A vector stacking the vectors
i, i ∈ M, in one column is denoted coli∈M(xi). The term local
escribes components known only by the corresponding agent.
or simplicity we write (xτ)⊤ as xτ ,⊤.

.2. Problem description

We define a multi-agent Markov decision process (MDP) for
agents as the tuple (S, {Ai}i∈M, P, {Li}i∈M, G). The set S is

he global state set, composed of the local state sets for each
gent S = S1 × · · · × SM . Moreover, Ai is the local action set
nd L is the local cost function for agent i, while P describes
i

2

he state transition dynamics for the whole system. The graph
= (M, E) defines a coupling topology between agents in the

etwork, where edges E are ordered pairs (i, j) indicating that
gent i may affect the cost and state transition of agent j. Define
he neighborhood of agent i as Ni = {j ∈ M|(j, i) ∈ E, i ̸= j}. Note
that an agent is not in its own neighborhood, i.e., (i, i) /∈ E . We
assume the graph G is connected. Additionally, agents i and j can
communicate if i ∈ Nj or j ∈ Ni.

We consider agents to be linear dynamical systems with state
si ∈ Si ⊆ Rn and control input ai ∈ Ai ⊆ Rm. The true dynamics
P of the network are assumed to be unknown, and we introduce
an approximation of the dynamics for agent i, parametrized by a
ocal parameter θi, as

i(t + 1) = fθi (si(t), ai(t), {sj(t)}j∈Ni)

= Ai,θisi(t)+ Bi,θiai(t)+
∑
j∈Ni

Aij,θisj(t)+ bθi ,
(1)

ith bθi ∈ Rn a constant offset allowing (1) to capture affine
elationships.

We consider a co-operative RL setting. At time step t , agent i
bserves its own state si,t ∈ Si and takes an action with a local
olicy parametrized by the local parameter θi; πθi (si,t) = ai,t ,
bserving the incurred local cost Li,t and next state si,t+1. The
ooperative goal is to minimize, by modifying the parameters θi,
he discounted cost over an infinite horizon

({πθi}i∈M) = E

(
∞∑
t=0

γ tLt

)
, (2)

ith Lt = 1
M

∑
i∈M Li,t the average of the agents’ local costs,

and γ ∈ (0, 1]. We define the global parametrization as θ =

θ⊤1 , . . . , θ⊤M)⊤. The joint policy, parametrized by θ , is then πθ (s) =
πθi (si)}i∈M. The joint action a = {ai}i∈M is generated by the joint
olicy; πθ (s) = a, where s is the joint state s = {si}i∈M. Note that
he local policy πθi is parameterized with the same parameter
i as the dynamics fθi because the policy generates an action via
n optimization problem in which these dynamics form equality
onstraints (see Section 4).

.3. Consensus optimization

Section 4 shows that evaluation of the proposed MPC-based
olicy and value functions can be posed as a consensus optimiza-
ion problem and solved using the ADMM and global average
onsensus (GAC) algorithms. This section provides the relevant
ackground.
ADMM: ADMM solves problems of the form

min
x∈X ,z∈Z

{fADMM(x)+ gADMM(z) : Ax+ Bz = c} (3)

y alternating between minimization of the augmented Lagran-
ian, split over x and z, and maximization of the result with
espect to the multipliers y as:
τ+1
= argmin

x∈X
L(x, zτ , yτ) (4a)

τ+1
= argmin

z∈Z
L(xτ+1, z, yτ) (4b)

τ+1
= yτ
+ ρ(Axτ+1

+ Bzτ+1
− c), (4c)

ith y the Lagrange multipliers, ρ > 0, and L(x, z, y) = fADMM(x)+
ADMM(z) + y⊤(Ax + Bz − c) + ρ

2 ∥Ax + Bz − c∥22 the augmented
Lagrangian. We have the following convergence result:

Proposition 1 (Mota, Xavier, Aguiar, & Püschel, 2018). Assume the
optimal solution set of (3) is nonempty and has optimal objective
P⋆, the functions f and g are convex, X and Z are convex
ADMM ADMM

S. Mallick, F. Airaldi, A. Dabiri et al. Automatica 167 (2024) 111803

p
g
l

g

x

s
t

t
(
s

X

P
r

{

w
P
(

z

y

T
a
P
f
p
{

o
n
v

o

(

P

4

c
T
i
m

4

p

s

T
c
a
b
s
i
s
F

Q

olytopic sets, and A and B are full column rank. Then, fADMM(xτ)+
ADMM(zτ)→ P⋆ as τ →∞. Additionally, {(xτ , zτ)}∞τ=1 has a single
imit point (x⋆, z⋆), which solves (3).

Consider the following optimization problem defined over the
raph G:

min
1,...,xM

∑
i∈M

Fi(xi, {xj}j∈Ni) (5a)

s.t. hi(xi, {xj}j∈Ni) ≤ 0, i ∈M (5b)

gi(xi, {xj}j∈Ni) = 0, i ∈M, (5c)

where Fi, hi, and gi are convex and local to agent i, along with its
tate xi ∈ Rn. To solve this problem distributively we introduce
he augmented state x̃i = (x⊤i , col⊤j∈Ni

(x(i)j))⊤ for agent i, where
x(i)j is a local copy of agent j’s state. We then introduce a global
copy of each state z = (z⊤1 , z⊤2 , . . . , z⊤M)⊤, with zi corresponding
o xi. The relevant portion of the global copies for agent i is z̃i =
z⊤i , col⊤j∈Ni

(zj))⊤. Define the local feasible sets for the augmented
tates as

ĩ = {x̃i|hi(xi, {x
(i)
j }j∈Ni) ≤ 0, gi(xi, {x

(i)
j }j∈Ni) = 0}. (6)

roblem (5) can then be reformulated with the addition of a
edundant constraint

min
x̃i∈X̃i}i∈M,z

∑
i∈M

Fi(xi, {x
(i)
j }j∈Ni)

s.t. x̃i − z̃i = 0, i ∈M,

(7)

hich is a particular instance of (3) satisfying the assumptions in
roposition 1 (See Appendix A). The steps in (4), when applied to
7), reduce to Boyd (2010, Section 7.2):

x̃τ+1
i = argminx̃i∈X̃i

Fi(xi, {x
(i)
j }j∈Ni)+ yτ ,⊤

i (x̃i)

+
ρ

2 ∥x̃i − z̃τ
i ∥

2
2, i ∈M

(8a)

τ+1
i =

1
|Ni| + 1

(xτ+1
i +

∑
j∈Ni

x(j),τ+1i), i ∈M (8b)

τ+1
i = yτ

i + ρ(x̃τ+1
i − z̃τ+1

i), i ∈M. (8c)

his is a distributed procedure as each step decouples over the
gents, and uses only local and neighboring information. By
roposition 1, at convergence of ADMM the local variable x̃i
or each agent will contain the minimizers x⋆

i of the original
roblem (5), and copies of the minimizers for neighboring agents
x(i),⋆j }j∈Ni .

GAC: The GAC algorithm allows a network of agents to agree
n the average value of local variables vi,0 ∈ R, i ∈ M, commu-
icating over the graph G. For each agent, the algorithm updates
alues as vτ+1

i = P(i, i)vτ
i +
∑

j|(i,j)∈E P(i, j)vτ
j , where P ∈ RM×M

+ is a
doubly stochastic matrix, i.e., entries in each row and column sum
to 1. The iterates converge as limτ→∞ vτ

i = M−1
∑

i∈M vi,0, i ∈
M, with M the number of agents (Olfati-Saber, Fax, & Murray,
2007).

3. Local recovery of optimal dual variables from ADMM

In this section we provide a result linking the dual variables
from the local minimization step (8a) to a subset of the dual
variables in the original problem (5). This will be used later to
construct the distributed learning update. The Lagrangian of (5)
is

L({xi}i∈M, {λi}i∈M, {µi}i∈M) =
∑
i∈M

(
fi(xi, {xj}j∈Ni)

⊤ ⊤
) (9)
+ λi hi(xi, {xj}j∈Ni)+ µi gi(xi, {xj}j∈Ni) ,

3

where λi and µi are the multipliers associated with the inequality
and equality constraints, for each agent. We stress that these
multipliers are related to the local constraints, and differ from
the consensus multipliers {yi}i∈M used in the ADMM iterations.
Denote the optimal multipliers as ({λ⋆

i }i∈M, {µ⋆
i }i∈M). At iteration

τ of ADMM, the Lagrangian of the local minimization step (8a) for
agent i is

Lτ
i (xi, λ

τ
i , µ

τ
i) = fi(xi, {x

(i)
j }j∈Ni)

+ λ
τ ,⊤
i hi(xi, {x

(i)
j }j∈Ni)+ µ

τ ,⊤
i gi(xi, {x

(i)
j }j∈Ni)

+ yτ ,⊤
i (x̃i)+

ρ

2
∥x̃i − z̃τ

i ∥
2
2.

(10)

Denote the optimal multipliers for iteration τ as (λ⋆,τ
i , µ

⋆,τ
i).

Proposition 2. Assume that the assumptions in Proposition 1 hold
for problem (5). Additionally assume that the functions Fi are strictly
convex. Then, at convergence of ADMM, the optimal multipliers from
the local minimizations (8a) converge to the corresponding subset of
ptimal multipliers for the original problem (5), i.e.,

λ
⋆,τ
i , µ

⋆,τ
i)→ (λ⋆

i , µ
⋆
i), i ∈M, as τ →∞. (11)

roof. See Appendix B.

. Distributed MPC as a function approximator

In Gros and Zanon (2020) it was shown how an MPC scheme
an capture the RL policy, state-value, and action-value functions.
his section introduces a distributed counterpart, parametrized
n θ = (θ⊤1 , . . . , θ⊤M)⊤, approximating these quantities for a
ulti-agent system.

.1. Parametrized distributed MPC scheme

Consider the distributed MPC-based action-value function ap-
roximation:

Qθ (s, a) = min({xi},{ui},{σi})i∈M
∑

i∈M

(
βθi (xi(0))

+
∑

k∈K

(
γ k(lθi (xi(k), ui(k), {xj(k)}j∈Ni)

+w⊤σi(k))
)
+γ NVf,θi

(
xi(N)

)) (12a)

.t. ∀i ∈M, ∀k ∈ K :

ui(0) = ai, xi(0) = si (12b)

xi(k+ 1) = fθi
(
xi(k), ui(k), {xj(k)}j∈Ni

)
(12c)

hθi

(
xi(k), ui(k), {xj(k)}j∈Ni

)
≤ σi(k). (12d)

he functions βθi , lθi , and Vf,θi are the initial, stage, and terminal
ost approximations respectively, fθi is a model approximation,
nd hθi is an inequality constraint function. Each is parametrized
y a local parameter θi and known only to the corresponding agent,
uch that knowledge of the components of the MPC scheme
s distributed across the agents. Parameterized terminal con-
traints could be included, but are omitted here for simplicity.
or conciseness, we summarize (12) as

θ (s, a) = min
∑
i∈M

Fθi (xi, {xj}j∈Ni ,ui, σ i)

s.t. ∀i ∈M,

Gθi (si, ai, xi, {xj}j∈Ni ,ui) = 0
(13)
Hθi (xi, {xj}j∈Ni ,ui, σ i) ≤ 0.

S. Mallick, F. Airaldi, A. Dabiri et al. Automatica 167 (2024) 111803

T

π

z

p
f
k

4

b
l
l

a
a
u
i
n
t

w
d

5

c
a

a
c
a
w

he joint policy is then computed as

θ (s) = argmin
{u(0)i}i∈M

∑
i∈M

Fθi (xi, {xj}j∈Ni ,ui, σ i)

s.t. ∀i ∈M, ∀k ∈ K :
(12c)–(12d), xi(0) = si

(14)

and the global value function Vθ (s) can be obtained as the optimal
value of (14), satisfying the fundamental Bellman equations (Gros
& Zanon, 2020).

Intuitively, this structured MPC scheme approximates the local
cost of each agent through the local cost functions. Interactions
between coupled agents enter the scheme via the parametrized
stage costs Fθi , the dynamics in Gθi , and the inequality constraints
in Hθi . Inexact knowledge of agents’ dynamics, constraints, inter-
agent interactions, and local costs can be encoded in an initial
guess of the local parameters θi. Through learning, the cost and
model representations will be modified to improve the global
performance. The constraints in (13) are chosen to be affine
and the functions Fθi to be strictly convex in their arguments
xi, {xj}j∈Ni ,ui, and σ i, such that (13) satisfies the assumptions
for Propositions 1 and 2. This is not a strong assumption for
linear systems, as the true optimal value function is convex
when the stage costs are convex, as is common in the liter-
ature (Borrelli et al., 2016). Indeed, for quadratic stage costs,
with a sufficiently long prediction horizon, a convex optimization
problem can capture the true infinite horizon cost (Chmielewski
& Manousiouthakis, 1996).

4.2. Distributed evaluation

The ADMM and GAC algorithms can be used to solve (12)
distributively. Each agent stores a local copy of the predicted
states of neighboring agents over the prediction horizon, and
constructs the augmented state x̃i = (x⊤i , col⊤j∈Ni

(x(i)j))⊤, where
x(i)j is agent i’s local copy of agent j’s predicted state over the
prediction horizon. Global copies are introduced of each state
prediction z = (z⊤1 , z⊤2 , . . . , z⊤M)⊤, with the relevant components
of z for agent i denoted z̃i = (z⊤i , col⊤j∈Ni

(zj))⊤.
As in Section 2.3, ADMM solves (13) by the following itera-

tions:

x̃τ+1
i ,uτ+1

i , στ+1
i = argmin Fθi (xi, {x

(i)
j }j∈Ni ,ui, σ i)

+
∑

k∈K yτ ,⊤
i (k)(x̃i(k))+ ρ

2 ∥x̃i(k)− z̃i(k)τ∥22
s.t. Gθi (si, ai, xi, {x

(i)
j }j∈Ni ,ui) = 0

Hθi (xi, {x
(i)
j }j∈Ni ,ui, σ i) ≤ 0

(15a)

τ+1
i =

1
|Ni| + 1

(xτ+1
i +

∑
j∈Ni

x(j),τ+1i) (15b)

yτ+1
i = yτ

i + ρ(x̃τ+1
i − z̃τ+1

i). (15c)

By Proposition 1, as τ → ∞, the outputs of the local minimiza-
tion (15a) converge to the minimizers of the original problem
(13), i.e., x̃τ+1

i ,uτ+1
i , στ+1

i → x̃⋆
i ,u

⋆
i , σ

⋆
i . Agents then evaluate

their local objective component F ⋆
θi
= Fθi (x

⋆
i , {x

(i),⋆
j }j∈Ni ,u

⋆
i , σ

⋆
i).

The global action-value Qθ (s, a) =
∑

i∈M F ⋆
θi

can then be agreed
upon across the network via the GAC algorithm. Each agent makes
the naive initial guess Qθ (s, a) = MF ⋆

θi
, i.e., each agent assumes

that all other agents have the same local cost. The GAC algorithm
gives convergence of these values, as per Section 2.3, to the
average

∑
i∈M F ⋆

θi
, which is the global action-value.

Evaluation of the global value Vθ (s) and the joint policy follows
from applying the same steps to (14). From the optimal control
4

sequence u⋆
i agents evaluate their local component ai = πθi (si) =

u⋆
i (0) of the joint policy πθ (s). We highlight that, while the joint
olicy is a function of the global state s, the local policies are
unctions only of the local state si, i.e., πθi (si), as (15a) requires
nowledge only of si.

.3. Summary of distributed MPC as function approximator

We briefly summarize the key points of the distributed-MPC-
ased approximator. Each agent stores local knowledge of its
earnable parameter θi, and its local parametrized functions βθi ,
θi , Vf,θi , fθi , and hθi . In addition, it maintains its own state predic-
tion xi, copies of predictions for its neighbors’ states {x

(i)
j }j∈Ni , and

n additional set of copies required for agreement. Finally, each
gent stores the local Lagrange multipliers yi used in ADMM. Eval-
ating Qθ (or Vθ), from the perspective of agent i, is summarized
n Algorithm 1. For simplicity, both ADMM and GAC use a fixed
umber of iterations in the algorithm, TA and TC respectively, with
he consequences discussed in Section 5.2.

Algorithm 1 Evaluation of Qθ (s, a) for agent i.
1: Inputs: si and ai (not ai if evaluating (14)).
2: Initialize: {x(i)j }j∈Ni ← 0, zi ← 0, yi ← 0.
3: for τ = 0, 1, . . . , TA do
4: Get x̃τ+1

i ,uτ+1
i , στ+1

i via (15a).
5: For j ∈ Ni, send x(i),τ+1j and receive x(j),τ+1i .
6: Perform averaging step (15b).
7: For j ∈ Ni, send zτ+1

i and receive zτ+1
j .

8: Perform local multipliers update (15c).
9: end for

10: Q̄θ (s, a)← MFθi (x
TA
i , {x(i),TAj }j∈Ni ,u

TA
i , σ

TA
i)

11: Perform TC iterations GAC, with initial guess Q̄θ (s, a), to agree
on Qθ (s, a).

12: Outputs: Global state-value Qθ (s, a)
(
local action ai ← uTA

i (0)
if evaluating (14)

)
.

5. Distributed Q-learning

In this section we show that using Q-learning as the RL al-
gorithm to learn the local parameters θi enables a distributed
learning update that avoids nonstationarity. Q-learning (Sutton &
Barto, 2018) adjusts, at each time step t , the global parameters
θ = (θ⊤1 , . . . , θ⊤M)⊤ as

δt = Lt + γVθ (st+1)− Qθ (st , at)
θ ← θ + αδt∇θQθ (st , at),

(16)

here α ∈ R is a learning rate and δt ∈ R is the temporal-
ifference (TD) error at time step t .

.1. Separable Q-learning updates

The update (16) appears to be centralized due to the global
omponents at , Lt , st , st+1, and θ . However, the structure of (12)
llows decomposition into local updates of θi for each agent.

Addressing first the TD error δt , we have shown in Section 4 that
Vθ (s) and Qθ (s, a) can be evaluated distributively. The globally
veraged cost Lt is the average of all agents’ locally incurred
osts Li,t , and can be shared across the network using the GAC
lgorithm. This can be incorporated into line 11 of Algorithm 1,
ith no additional communication overhead.

S. Mallick, F. Airaldi, A. Dabiri et al. Automatica 167 (2024) 111803

w
e
a

p

W
c
t
2
L

∇

O
a∑
a

a
p

θ

p
i
t
o
E
v
c
m
o L

w

We now address the gradient term∇θQθ (st , at). The Lagrangian
of (12) is

Lθ (s, a, p) =
∑
i∈M

(
Fθi (xi, {xj}j∈Ni ,ui, σ i)

+ λ⊤i Gθi (si, ai, xi, {xj}j∈Ni ,ui)

+ µ⊤i Hθi (xi, {xj}j∈Ni ,ui, σ i)
)

,

(17)

here λi and µi are the multiplier vectors associated with the
quality and inequality constraints, respectively, and the primal
nd dual variables are grouped as

= ({xi}, {ui}, {σ i}, {λi}, {µi})i∈M. (18)

e stress again that the multipliers in p are associated with the
onstraints of (12), and are unrelated to the multipliers yi used in
he ADMM procedure. Via sensitivity analysis (Büskens & Maurer,
001), the gradient ∇θQθ (s, a) coincides with the gradient of the
agrangian at the optimal primal and dual variables p⋆:

θQθ (s, a) =
∂Lθ (s, a, p⋆)

∂θ
. (19)

bserve that (17) is separable over parameters θi, states si, actions
i, and subsets of the primal and dual variables pi, i.e., Lθ (s, a, p) =
i∈M Lθi (si, ai, pi), where Lθi is the ith term within the sum (17),

nd pi = (xi,ui, σ i, {xj}j∈Ni , λi, µi). We then express (19) as

∂
∑

i∈M Lθi (si, ai, p
⋆
i)

∂θ
=

⎡⎢⎢⎣
∂Lθ1 (s1,a1,p⋆

1)
∂θ1
...

∂LθM (sM ,aM ,p⋆
M)

∂θM

⎤⎥⎥⎦ , (20)

nd the centralized parameter update (16) can be hence un-
acked into M local updates:

i ← θi + αδt
∂Lθi (si,t , ai,t , p

⋆
i)

∂θi
, i ∈M. (21)

What then remains to be shown is that the subset of optimal
rimal and dual variables p⋆

i for (12) is available locally to agent
. By Proposition 1, at convergence of ADMM, the local minimiza-
ion (15a) returns the minimizers (x⋆

i ,u
⋆
i , σ

⋆
i) and local copies

f the minimizers of neighboring agents {x(i),⋆j }j∈Ni = {x
⋆
j }j∈Ni .

ach agent hence has local knowledge of the optimal primal
alues in p⋆

i . For the optimal dual values, by Proposition 2, at
onvergence of ADMM, the optimal dual variables of the local
inimization (15a) for agent i are equal to the relevant subset
f optimal dual variables for the original problem, i.e., (λ⋆

i , µ
⋆
i).

Each agent hence has local knowledge of the optimal dual values
in p⋆

i as well. Agents can therefore perform the local update (21).
Nonstationarity is avoided as the local updates reconstruct the
centralized update of the whole network (16).

5.2. Implementation details

In this section we discuss some auxiliary details in the imple-
mentation of our proposed approach.

• Exploration can be added to the approach in, e.g., an epsilon-
greedy fashion, in which case the agent adds a random
perturbation to the objective (12a) with some probability
ϵi, where ϵi decreases as training progresses (Airaldi et al.,
2023; Zanon & Gros, 2021). This causes a perturbation in the
joint policy. It is assumed that the system, with exploration
injected, is sufficiently persistently exciting.
5

• The finite termination of ADMM and the GAC algorithm
introduces errors in the evaluation of Vθ and Qθ , πθ , and p⋆,
and could lead to instability in the learning. To counter this,
large numbers of ADMM and GAC iterations may be used in
a simulated learning phase, when there are no constraints
on computation time between actions. This is desirable as
primal and dual variables with high precision are needed to
reliably compute the sensitivity (19). On the contrary, at de-
ployment, sensitivities are not required and only the policy
must be evaluated. Thus, the iteration numbers can be re-
duced, as ADMM often converges to modest accuracy within
few iterations (Boyd, 2010). Additionally, experience replay
(ER) (Airaldi et al., 2023; Lin, 1992) can improve learning
stability by using an average of past observations when
calculating the gradient and the TD error. In our method ER
requires no extra mechanism as agents can maintain a local
history of values for δ and ∇θiLθi (s, p

⋆
i). In our numerical

experiments, we found the learning to succeed with ER and
modest numbers of ADMM and GAC iterations.
• The variables α > 0 and γ ∈ (0, 1] are hyperparameters;

as the distributed update fully reconstructs the centralized
update, existing methods for selecting these parameters in
centralized learning apply directly, e.g., see Sutton and Barto
(2018, Chapter 9.6).

6. Example

This section presents a numerical example. Source code and
simulation results can be found at https://github.com/SamuelM
allick/dmpcrl-concept.Additionally, the longer online version of
this manuscript includes a power systems case study. We modify
the system from Gros and Zanon (2020), forming a three-agent
system with state coupling in a chain, i.e., 1↔ 2↔ 3, with real
(unknown) dynamics si(t+1) = Aisi(t)+Biai(t)+

∑
j∈Ni

Aijsj(t)+
[ei(t), 0]⊤ where

Ai =

[
0.9 0.35
0 1.1

]
, {Aij}j∈Ni =

[
0 0
0 −0.1

]
, (22)

with B = [0.0813, 0.2]⊤ and ei(t) uniformly distributed over
the interval [−0.1, 0]. The RL task is to drive the states and
control towards the origin while avoiding violations of the state
constraints s ≤ si ≤ s, with local costs as:

i,t (si, ai) = ∥si∥22 +
1
2
∥ui∥

2
2

+max
(
0, ω⊤(s− si)

)
+max

(
0, ω⊤(si − s)

)
,

(23)

ith ω = [102, 102
]
⊤, s = [0,−1]⊤, and s = [1, 1]⊤. Non-

positive noise on the first state biases that term towards violating
the lower bound of zero. This renders the task challenging, as
the agents must regulate the state to zero, and yet driving the
first dimension to zero will result in constraint violations due
to the noise. The true model is unknown, with agents instead
knowing a uniform distribution of models, containing the true
model:

Âi =

[
1+ a1,i 0.25+ a2,i

0 1+ a3,i

]
, {Âij}j∈Ni =

[
0 0
0 ci

]
, (24)

with B̂i = [0.0312 + b1,i, 0.25 + b2,i]⊤ and, for all i, the random
variables distributed uniformly as a1,i, a2,i, a3,i ∈ [−0.1, 0.1],
b ∈ [0, 0.075], b ∈ [−0.075, 0] and c ∈ [−0.1, 0]. We
1,i 2,i i

https://github.com/SamuelMallick/dmpcrl-concept
https://github.com/SamuelMallick/dmpcrl-concept
https://github.com/SamuelMallick/dmpcrl-concept
https://github.com/SamuelMallick/dmpcrl-concept
https://github.com/SamuelMallick/dmpcrl-concept
https://github.com/SamuelMallick/dmpcrl-concept
https://github.com/SamuelMallick/dmpcrl-concept
https://github.com/SamuelMallick/dmpcrl-concept
https://github.com/SamuelMallick/dmpcrl-concept
https://github.com/SamuelMallick/dmpcrl-concept
https://github.com/SamuelMallick/dmpcrl-concept
https://github.com/SamuelMallick/dmpcrl-concept
https://github.com/SamuelMallick/dmpcrl-concept
https://github.com/SamuelMallick/dmpcrl-concept
https://github.com/SamuelMallick/dmpcrl-concept
https://github.com/SamuelMallick/dmpcrl-concept
https://github.com/SamuelMallick/dmpcrl-concept
https://github.com/SamuelMallick/dmpcrl-concept
https://github.com/SamuelMallick/dmpcrl-concept
https://github.com/SamuelMallick/dmpcrl-concept
https://github.com/SamuelMallick/dmpcrl-concept
https://github.com/SamuelMallick/dmpcrl-concept
https://github.com/SamuelMallick/dmpcrl-concept
https://github.com/SamuelMallick/dmpcrl-concept
https://github.com/SamuelMallick/dmpcrl-concept
https://github.com/SamuelMallick/dmpcrl-concept
https://github.com/SamuelMallick/dmpcrl-concept
https://github.com/SamuelMallick/dmpcrl-concept
https://github.com/SamuelMallick/dmpcrl-concept
https://github.com/SamuelMallick/dmpcrl-concept
https://github.com/SamuelMallick/dmpcrl-concept
https://github.com/SamuelMallick/dmpcrl-concept
https://github.com/SamuelMallick/dmpcrl-concept
https://github.com/SamuelMallick/dmpcrl-concept
https://github.com/SamuelMallick/dmpcrl-concept
https://github.com/SamuelMallick/dmpcrl-concept
https://github.com/SamuelMallick/dmpcrl-concept
https://github.com/SamuelMallick/dmpcrl-concept
https://github.com/SamuelMallick/dmpcrl-concept
https://github.com/SamuelMallick/dmpcrl-concept
https://github.com/SamuelMallick/dmpcrl-concept
https://github.com/SamuelMallick/dmpcrl-concept
https://github.com/SamuelMallick/dmpcrl-concept
https://github.com/SamuelMallick/dmpcrl-concept
https://github.com/SamuelMallick/dmpcrl-concept
https://github.com/SamuelMallick/dmpcrl-concept
https://github.com/SamuelMallick/dmpcrl-concept

S. Mallick, F. Airaldi, A. Dabiri et al. Automatica 167 (2024) 111803

.
T
(
p

s
t
a
d
d

a
Z
h
ϵ

p
r
a
o
i
t
a
f
o
l
c
s
t
i
T
a
d

b
t
a
M

Fig. 1. Accuracy of the dual variables recovered by Proposition 2 as a function
of the ADMM iteration index τ .

implement the following distributed MPC scheme:

min
{(xi,ui,σi)}i∈M

∑
i∈M

(
Vi,0 +

∑
k∈K

f ⊤i

[
xi(k)
ui(k)

]
+

1
2
γ k (
∥xi(k)∥2 +

1
2
∥ui(k)∥2 + ω⊤σi(k)

))
s.t. ∀i ∈M, ∀k ∈ K :

xi(k+ 1) = Aixi(k)+ Biui(k)

+

∑
j∈Ni

Aijxj(k)+ bi

s+ xi − σi(k) ≤ xi(k) ≤ s+ xi + σi(k)
− 1 ≤ ui(k) ≤ 1, xi(0) = si

where M = 3, K = {0, . . . , 9}, and γ = 0.9. The learnable param-
eters for each agents are then θi = (Vi,0, xi, xi, bi, fi, Ai, Bi, {Aij}j∈Ni)
he initial values for Ai, Bi, {Aij}j∈Ni are the inaccurate model
24) with the random variables set to zero. All other learnable
arameters are initialized to zero.
To illustrate Proposition 2, for a given global state s, Fig. 1

hows the error between the true optimal dual variables and
hose recovered from evaluating the MPC scheme with ADMM, as
function of the ADMM iteration index τ . The locally recovered
ual variables are close to the true values, with the error initially
ecreasing with the iteration index.
We now compare the learning performance of our distributed

pproach with the centralized approach inspired from Gros and
anon (2020), using the same MPC scheme, and the same learning
yperparameters for both. We use an exploration probability of
i = 0.7, exponentially decaying with rate 0.99, with local costs
erturbed uniformly over the interval [−1, 1]. We use a learning
ate of α = 6e−5, exponentially decaying with rate 0.9996,
nd ER with an average over 15 past samples at an update rate
f every 2 time steps. For the distributed approach we use 50
terations in ADMM and 100 iterations in GAC. These values were
uned to keep the iterations low without introducing significant
pproximation errors. Fig. 2 shows the state and input trajectories
or the three agents during training. Fig. 3 shows the evolution
f the global TD error and the collective cost. Fig. 4 shows the
earnable parameters of the second agent during training (similar
onvergence profiles are observed for the other agents). It is
een that the behavior of the distributed approach is similar to
hat of the centralized approach, reducing the TD error and costs
ncurred, with the centralized approach converging slightly faster.
he costs are reduced by maintaining the first state of each agent
bove zero to prevent expensive violations of the state constraint
ue to coupling and noise.
We compare the performance of the distributed policy against

oth a distributed nominal MPC controller (NMPC) and a dis-
ributed stochastic MPC controller (SMPC) based on the scenario
pproach (Schildbach, Fagiano, Frei, & Morari, 2014). The nominal
PC controller uses the inexact model (24), with all random
 t

6

Fig. 2. Centralized (left) and distributed (right). Evolution of the states and
inputs during training. Agent 1 (blue), agent 2 (red), agent 3 (purple), and bounds
(dashed). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 3. Evolution of TD errors (top) and stage costs (bottom) during training.

Fig. 4. Evolution of learnable parameters for agent 2 during training. Distributed
(blue) and centralized (red). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

variables set to 0. For the SMPC controller we consider the case
where the true model is unknown and N = 25 samples of the
model distribution (24) and the noise distribution are used to
account for the uncertainty. The number of samples was manually
tuned to balance conservativeness and robustness (Schildbach
et al., 2014). We also consider the case where the exact model
(22) is known, and only the noise distribution is sampled. The
controllers are compared in Fig. 5, showing the closed-loop cost
accumulated over 100 time steps. The learned policy can be seen
to improve from a performance initially comparable to NMPC,
learning to outperform SMPC, and approaching the performance
of SMPC with a perfect model. We highlight that our approach
retains the computational complexity of NMPC, while SMPC is
significantly more complex, optimizing over N copies of the state
rajectories.

S. Mallick, F. Airaldi, A. Dabiri et al. Automatica 167 (2024) 111803

c

w
t
p
f

h

λ

I
s
c

s

F

M {λi}i∈M, {µi}i∈M),
s

∇

B
r

w

Fig. 5. NMPC and SMPC compared against policy at training time steps t (log
scale).

7. Conclusions

This paper has extended the idea of using MPC-based RL to the
multi-agent setting. We have proposed a novel approach to MARL
via the use of distributed MPC as a distributed function approx-
imator within Q-learning. A result on the optimal dual variables
in ADMM is first presented. The structure of the distributed MPC
function approximator is then detailed, and is shown to enable a
distributed evaluation of the global value functions and the local
policies. Finally, by using Q-learning to update the parametriza-
tion of the MPC scheme, the parameter updates can also be
performed fully distributively. The effectiveness of the newly
proposed method is demonstrated on a numerical example.

A limitation of the proposed approach is the convexity require-
ment on the MPC scheme, restricting the class of systems for
whom the optimal policy can be captured to linear systems with
convex cost functions. Additionally, as both the ADMM and GAC
algorithms use iterative communication between neighbors, the
approach is less suited for applications with high communication
costs. Future work will look at extending the idea to other RL
methods, such as policy-based approaches, and a formal analysis
on the propagation of errors from the finite termination of the
ADMM and GAC algorithms.

Appendix A. Equivalence of (3) and (7)

Define the aggregate of the local augmented states as x̄ =
oli∈M(x̃i) and the feasible set as X̄ = X̃1 × · · · × X̃M . Problem
(7) can then be written in the form of (3) as

min
x̄∈X̄ ,z
{fADMM(x̄)+ gADMM(z) : Ax̄+ Bz = c}, (A.1)

where fADMM(x̄) =
∑

i∈M Fi(x̃i), gADMM(·) is the zero map, and c =
0. Furthermore, A = Iq×q, q =

∑
i∈M n(|Ni| + 1), and B ∈ Rq×nM

is a block matrix that contains negative identity matrix entries
picking out the corresponding global states, with all other entries
being zero matrices. Clearly, matrix A is full column rank. For B,
we note that every column has at least one identity entry, and
that by rearranging its rows we can express it as [−InM×nM , B⊤

+
]
⊤,

where B+ contains the remaining rows. Therefore, B is full column
rank. The assumptions in Proposition 1 are hence satisfied.

Appendix B. Proof of Proposition 2

The proof involves showing that the Karush–Kuhn–Tucker
(KKT) conditions for the local minimization problems (8a), when
aggregated for all agents, are equivalent to the KKT conditions
of the original problem (5). Then, due to strict convexity of
both (5) and (8a), the primal and dual solutions are unique,
and the equivalence between the optimal dual variables fol-
lows. We write the optimal primal and dual variables of (5)
as ({x⋆

i }i∈M, {λ⋆
i }i∈M, {µ⋆

i }i∈M), and the optimal primal and dual
variables of (8a) for agent i, at convergence of ADMM, as (x⋆

i ,

{x(i),⋆} , λ̂⋆, µ̂⋆). Primal variable equivalence is given by
j j∈Ni i i

7

Proposition 1, i.e., the x⋆
i ’s are equivalent for both problems. Also,

optimal local copies are equal to their true values

{x(i),⋆j }j∈Ni = {x
⋆
j }j∈Ni i ∈M. (B.1)

First, we state the KKT conditions of (5). These are

hi(x⋆
i , {x

⋆
j }j∈Ni) ≤ 0 i ∈M

gi(x⋆
i , {x

⋆
j }j∈Ni) = 0 i ∈M

(B.2a)

λ⋆
i ≥ 0 i ∈M (B.2b)

λ
⋆,⊤
i hi(x⋆

i , {x
⋆
j }j∈Ni) = 0 i ∈M (B.2c)

∇x

(∑
i∈M

Fi(xi, {xj}j∈Ni)+ λ⊤i hi(xi, {xj}j∈Ni)

+ µ⊤i gi(xi, {xj}j∈Ni)
)
| {(xi,λi,µi)}i∈M
={(x⋆i ,λ⋆

i ,µ⋆
i)}i∈M

= 0, (B.2d)

here x = (x⊤1 , . . . , x⊤M)⊤. Now consider the composition of
he KKT conditions of each agent’s local minimization (8a). First,
rimal feasibility, dual feasibility, and complementary slackness
or agent i:

i(x⋆
i , {x

(i),⋆
j }j∈Ni) ≤ 0, gi(x⋆

i , {x
(i),⋆
j }j∈Ni) = 0,

ˆ ⋆
i ≥ 0, λ̂

⋆,⊤
i hi(x⋆

i , {x
(i),⋆
j }j∈Ni) = 0.

(B.3)

nserting the equivalence (B.1) into (B.3), we find that the compo-
ition of these conditions for all agents are the original problem’s
onditions (B.2a)–(B.2c).
For ease of exposition in showing the equivalence of the

tationarity conditions, let us define

i(xi, {xj}j∈Ni , λi, µi) = Fi(xi, {xj}j∈Ni)

+ λ⊤i hi(xi, {xj}j∈Ni)+ µ⊤i gi(xi, {xj}j∈Ni).
(B.4)

oreover, we group the primal and dual variables as p = ({xi}i∈M,
uch that the stationarity condition (B.2d) reads

x

(∑
i∈M

Fi(xi, {xj}j∈Ni , λi, µi)
) ⏐⏐⏐

p=p⋆
= 0. (B.5)

y decomposing the derivative operator and considering each
ow l of (B.5) we have(

∂

∂xl

∑
i∈M

Fi(xi, {xj}j∈Ni , λi, µi)
) ⏐⏐⏐⏐

p=p⋆

= 0. (B.6)

Observing that ∂
∂xl

Fi(xi, {xj}j∈Ni , λi, µi) = 0 if i /∈ Nl∪ l, from (B.6)
e have(

∂

∂xl
Fl(xl, {xj}j∈Nl , λl, µl)

) ⏐⏐⏐⏐
p=p⋆

+

∑
i∈Nl

(
∂

∂xl
Fi(xi, {xj}j∈Ni , λi, µi)

) ⏐⏐⏐⏐
p=p⋆

= 0.
(B.7)

We highlight that the partial derivative terms within the sum are
not zero, as xl is one of the elements of {xj}j∈Ni . We will now
show that the condition (B.7) for each l can be reconstructed by
a unique subset of the KKT conditions arising in the agents’ local
minimizations. Consider the stationarity conditions of the agents’
local minimizations. The primal and dual variables for agent i are
grouped as pi = (x̃i, λ̂i, µ̂i). The stationarity condition for agent
i’s local minimization can be written as

∇x̃i

(
Fi(xi, {x

(i)
j }j∈Ni , λ̂i, µ̂i)

+ yτ ,⊤
i x̃i +

ρ

2
∥x̃i − z̃τ

i ∥
2
2

) ⏐⏐
pi=p⋆

i
= 0.

(B.8)

Evaluating the derivative of the second term, we have

∇x̃i

(
Fi(xi, {x

(i)
j }j∈Ni , λ̂i, µ̂i)

) ⏐⏐
pi=p⋆

i
τ ⋆ τ

(B.9)

+ yi + ρ(x̃i − z̃i) = 0.

S. Mallick, F. Airaldi, A. Dabiri et al. Automatica 167 (2024) 111803

F
z(

w
o
s
b
(

R

A

A

A

B

B

B

C

F

G

G

G

H

L

L

M

M

M

O

R

S

S

S

W

Z

Z

rom Proposition 1, we have that at convergence of ADMM, x̃⋆
i −

˜⋆i = 0. Decomposing the derivative operator we have[
∂

∂xi
colj∈Ni (

∂

∂x(i)j
)

]
Fi(xi, {x

(i)
j }j∈Ni , λ̂i, µ̂i)

) ⏐⏐⏐⏐
pi=p⋆

i

+

[
yτ
i

colj∈Ni (y
(i),τ
j)

]
= 0

(B.10)

We denote this as Ψi =

[
Ψ

(i),⊤
i col⊤j∈Ni

(Ψ (i)
j)
]⊤

, where Ψ
(i)
j is the

row of (B.10) corresponding to the partial derivative with respect
to x(i)j . Let us sum all rows of the agents’ local stationarity condi-
tions which correspond to the partial derivative with respect to
xl, or a copy of xl, to get

Ψ
(l)
l +

∑
i∈Nl

Ψ
(l)
i = 0. (B.11)

The result is equal to zero as each term in the sum is zero. The
sum expression reads(

∂

∂xl
Fl(xl, {x

(l)
j }j∈Nl , λ̂l, µ̂l)

) ⏐⏐⏐⏐
pl=p⋆

l

+

∑
i∈Nl

(
∂

∂x(i)l
Fi(xi, {x

(i)
j }j∈Ni , λ̂i, µ̂i)

) ⏐⏐⏐⏐
pi=pi∗

+ yτ
l +

∑
i∈Nl

y(i),τl = 0,

(B.12)

where again we highlight that the partial derivative terms in the
sum are not zero, as l ∈ Ni. It is shown in Boyd (2010) that
the sum of the dual ADMM variables corresponding to the same
global variables is zero after the first iteration of the procedure,
i.e., yτ

l +
∑

i∈Nl
y(i),τl = 0, τ > 1. Hence, at convergence, we have(

∂

∂xl
Fl(xl, {x

(l)
j }j∈Nl , λ̂l, µ̂l)

) ⏐⏐⏐⏐
pl=p⋆

l

+

∑
i∈Nl

(
∂

∂x(i)l
Fi(xi, {x

(i)
j }j∈Ni , λ̂i, µ̂i)

) ⏐⏐⏐⏐
pi=p⋆

i

= 0.
(B.13)

Substituting the equivalence of the local copies (B.1) and observ-
ing that(

∂

∂x(i)l
Fi(xi, {x

(i)
j }j∈Ni , λ̂i, µ̂i)

) ⏐⏐⏐⏐
pl=p⋆

l

=(
∂

∂xl
Fi(xi, {xj}j∈Ni , λ̂i, µ̂i)

) ⏐⏐⏐⏐
pl=p⋆

l

,

(B.14)

e obtain the equivalent stationarity condition from the lth row
f (B.5). Repeating the sum in (B.11) for each agent, we recon-
truct the equivalent rows of (B.5). We then have equivalence
etween the stationarity conditions on ({λ̂⋆

i }i∈M, {µ̂⋆
i }i∈M) and on

{λ⋆
i }i∈M, {µ⋆

i }i∈M). This concludes the proof.

eferences

iraldi, F., De Schutter, B., & A., D. (2023). Learning safety in model-based re-
inforcement learning using MPC and Gaussian processes. IFAC-PapersOnLine,
56(2), 5759–5764, 22nd IFAC World Congress.

lqahtani, M., Scott, M. J., & Hu, M. (2022). Dynamic energy scheduling and
routing of a large fleet of electric vehicles using multi-agent reinforcement
learning. Computers & Industrial Engineering, 169, Article 108180.

rulkumaran, K., Deisenroth, M. P., Brundage, M., & Bharath, A. N. (2017). Deep
reinforcement learning: A brief survey. IEEE Signal Processing Magazine, 34(6),
26–38.

orrelli, F., Bemporad, A., & Morari, M. (2016). Predictive control for linear and
hybrid systems. Cambridge University Press.
8

Boyd, S. (2010). Distributed optimization and statistical learning via the alter-
nating direction method of multipliers. Foundations and Trends in Machine
Learning, 3(1), 1–122.

üskens, C., & Maurer, H. (2001). Sensitivity analysis and real-time optimization
of parametric nonlinear programming problems. In Online optimization of
large scale systems (pp. 3–16). Berlin, Heidelberg: Springer.

usoniu, L., Babuska, R., & De Schutter, B. (2008). A comprehensive survey of
multiagent reinforcement learning. IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews), 38(2), 156–172.

hmielewski, D., & Manousiouthakis, V. (1996). On constrained infinite-time
linear quadratic optimal control. Systems & Control Letters, 29(3), 121–129.

oerster, J., Nardelli, N., Farquhar, G., Afouras, T., Torr, P. H. S., Kohli, P., et
al. (2017). Stabilising experience replay for deep multi-agent reinforce-
ment learning. In International conference on machine learning. PMLR (pp.
1146–1155).

ros, S., & Zanon, M. (2020). Data-driven economic NMPC using reinforcement
learning. IEEE Transactions on Automatic Control, 65(2), 636–648.

ros, S., & Zanon, M. (2022). Learning for MPC with stability & safety guarantees.
Automatica, 146, Article 110598.

upta, J. K., Egorov, M., & Kochenderfer, M. (2017). Cooperative multi-agent
control using deep reinforcement learning. Autonomous Agents and Multiagent
Systems, 66–83.

ewing, L., Wabersich, K. P., Menner, M., & Zeilinger, M. N. (2020). Learning-
based model predictive control: Toward safe learning in control. Annual
Review of Control, Robotics, and Autonomous Systems, 3(1), 269–296.

in, L.-J. (1992). Self-improving reactive agents based on reinforcement learning,
planning and teaching. Machine Learning, 8, 293–321.

owe, R., Wu, Y., Tamar, A., Harb, J., Abbeel, P., & Mordatch, I. (2017). Multi-
agent actor-critic for mixed cooperative-competitive environments. Advances
in Neural Information Processing Systems, 30.

aestre, J. M., & Negenborn, R. R. (Eds.), (2014). Distributed Model Predictive
Control Made Easy. Dordrecht, The Netherlands: Springer.

ayne, D. Q., Rawlings, J. B., Rao, C. V., & Scokaert, P. O. M. (2000). Con-
strained model predictive control: Stability and optimality. Automatica, 36(6),
789–814.

ota, J. F. C., Xavier, J. M. F., Aguiar, P. M. Q., & Püschel, M. (2018). A proof of
convergence for the alternating direction method of multipliers applied to
polyhedral-constrained functions. arXiv:1112.2295.

lfati-Saber, R., Fax, J. A., & Murray, R. M. (2007). Consensus and cooperation in
networked multi-agent systems. Proceedings of the IEEE, 95(1), 215–233.

osolia, U., & Borrelli, F. (2018). Learning model predictive control for iterative
tasks. A data-driven control framework. IEEE Transactions on Automatic
Control, 63(7), 1883–1896.

childbach, G., Fagiano, L., Frei, C., & Morari, M. (2014). The scenario approach for
stochastic model predictive control with bounds on closed-loop constraint
violations. Automatica, 50(12), 3009–3018.

uttle, W., Yang, Z., Zhang, K., Wang, Z., Basar, T., & Liu, J. (2019). A multi-
agent off-policy actor-critic algorithm for distributed reinforcement learning.
arXiv:1903.06372.

utton, R. S., & Barto, A. G. (2018). Reinforcement Learning: An Introduction. MIT
Press.

ai, H., Yang, Z., Wang, Z., & Hong, M. (2018). Multi-agent reinforcement
learning via double averaging primal-dual optimization. Advances in Neural
Information Processing Systems, 31.

anon, M., & Gros, S. (2021). Safe reinforcement learning using robust MPC. IEEE
Transactions on Automatic Control, 66(8), 3638–3652.

hang, K., Yang, Z., Liu, H., Zhang, T., & Basar, T. (2018). Fully decentralized
multi-agent reinforcement learning with networked agents. In International
conference on machine learning. PMLR (pp. 5872–5881).

Samuel Mallick received the B.Sc. and M.Sc. degrees
from The University of Melbourne in 2020 and 2022,
respectively. He is currently a Ph.D. candidate at the
Delft Center for Systems and Control, Delft University
of Technology, The Netherlands. His research interests
include model predictive control, reinforcement learn-
ing, and distributed control of large-scale and hybrid
systems.

Filippo Airaldi received the B.Sc. and M.Sc. degrees
from the Polytechnic University of Turin, Italy, in 2017
and 2019, respectively. He is currently a Ph.D. can-
didate at the Delft Center for Systems and Control,
Delft University of Technology, The Netherlands. His
research interests include model predictive control,
reinforcement learning, and other machine learning
techniques, and in particular in their combination in
learning-based control.

http://refhub.elsevier.com/S0005-1098(24)00297-8/sb1
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb1
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb1
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb1
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb1
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb2
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb2
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb2
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb2
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb2
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb3
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb3
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb3
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb3
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb3
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb4
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb4
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb4
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb5
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb5
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb5
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb5
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb5
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb6
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb6
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb6
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb6
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb6
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb7
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb7
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb7
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb7
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb7
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb8
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb8
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb8
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb9
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb9
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb9
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb9
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb9
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb9
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb9
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb10
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb10
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb10
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb11
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb11
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb11
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb12
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb12
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb12
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb12
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb12
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb13
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb13
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb13
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb13
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb13
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb14
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb14
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb14
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb15
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb15
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb15
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb15
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb15
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb16
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb16
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb16
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb17
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb17
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb17
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb17
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb17
http://arxiv.org/abs/1112.2295
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb19
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb19
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb19
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb20
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb20
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb20
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb20
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb20
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb21
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb21
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb21
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb21
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb21
http://arxiv.org/abs/1903.06372
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb23
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb23
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb23
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb24
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb24
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb24
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb24
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb24
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb25
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb25
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb25
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb26
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb26
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb26
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb26
http://refhub.elsevier.com/S0005-1098(24)00297-8/sb26

S. Mallick, F. Airaldi, A. Dabiri et al. Automatica 167 (2024) 111803

a
m
n

Azita Dabiri received the Ph.D. degree from the
Automatic Control Group, Chalmers University of Tech-
nology, in 2016. She was a Post-Doctoral Researcher
with the Department of Transport and Planning, Delft
University of Technology, from 2017 to 2019. In 2019,
she received an ERCIM Fellowship and also a Marie
Curie Individual Fellowship, which allowed her to
perform research at the Norwegian University of Tech-
nology (NTNU), as a Post-Doctoral Researcher, from
2019 to 2020, before joining the Delft Center for
Systems and Control, Delft University of Technology, as

n Assistant Professor. Her research interests are in the areas of integration of
odel-based and learning-based control and its applications in transportation
etworks.
9

Bart De Schutter received the Ph.D. degree (summa
cum laude) in applied sciences from KU Leuven, Bel-
gium, in 1996. He is currently a Full Professor and Head
of Department at the Delft Center for Systems and Con-
trol, Delft University of Technology, The Netherlands.
His research interests include multi-level and multi-
agent control, model predictive control, learning-based
control, and control of hybrid systems, with applica-
tions in intelligent transportation systems and smart
energy systems. Prof. De Schutter is a Senior Editor
of the IEEE Transactions on Intelligent Transportation

Systems.

	Multi-agent reinforcement learning via distributed MPC as a function approximator
	Introduction
	Preliminaries and background
	Notation
	Problem description
	Consensus optimization

	Local recovery of optimal dual variables from ADMM
	Distributed MPC as a function approximator
	Parametrized distributed MPC scheme
	Distributed evaluation
	Summary of distributed MPC as function approximator

	Distributed Q-learning
	Separable Q-learning updates
	Implementation details

	Example
	Conclusions
	Appendix A. Equivalence of eq:ADMMgeneral,eq:ADMMcon
	Appendix B. Proof of Proposition 2
	References

