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wind turbine
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(2) Department of Mechanical Engineering, Faculty of engineering, University of Malta.
(3) Department of Aerodynamics, Wind Energy and Propulsion, Delft University of
Technology.

E-mail: daniel.micallef@um.edu.mt

Abstract.
The performance of a wind turbine located above a cubic building is not well understood.

This issue is of fundamental importance for the design of small scale wind turbines. One variable
which is of particular importance in this respect is the turbine height above roof level. In this
work, the power performance of a small wind turbine is assessed as a function of the height
above the roof of a generic cubic building. A 3D Computational Fluid Dynamics model of a
10m x 10m x 10m building is used with the turbine modelled as an actuator disc. Results have
shown an improvement in the average power coefficient even in cases where the rotor is partially
located within the roof separation zone. This goes against current notions of small wind turbine
power production. This study can be of particular importance to guide the turbine installation
height on building roof tops.

1. Introduction and objectives
The aerodynamics of small and micro-scale wind turbines located on top of a cubic building
block has had little attention in the literature. It is hypothesised that there is a specific critical
height of the turbine from the roof above which the turbine performance starts to be enhanced.
The interaction between the separation bubble over the roof of a building and a wind turbine
can be either positive when flow is augmented or negative when the performance of the turbine
is undermined by its interaction with the zone of separated flow.

The objectives of this work can be summarised as follows: (1) To determine the influence
of the wind turbine-to-roof interaction on the turbine power coefficient and (2) To establish a
relationship between turbine height from a building roof and the power performance.

2. State of the art
Roof-top mounted wind turbines offer significant potential in reducing the carbon footprint of
buildings, yet their cost-effectiveness is impacted by having to operate in the lower regions of
the atmospheric boundary layer where wind flows are lower and more turbulent. Computational
Fluid Dynamics (CFD) is an indispensable tool for identifying optimal locations for mounting
wind turbines, taking advantage of flow augmentations induced by buildings. Some of the
earliest analysis involving the application of CFD as a tool for siting of building-mounted wind
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turbines were presented by [1]. These have been followed by comprehensive works some of
which have been reviewed by [2] and [3]. [4] applied a CFD RANS solver with an SST k − ω
turbulence model to simulate the wind flows over a cluster of houses in a suburban environment
to investigate the influence of the rooftop geometry on the wind flow conditions. It was found
that houses with flat roofs tend to result in higher power for the same turbine hub elevation than
those having pitched or pyramidal roofs. The numerical predictions have also indicated that flat
roofs generally cause lower turbulence intensities downstream, resulting in a more consistent
power output. [5] conducted further analysis to cover more roof geometries, including vaulted,
domed and wedged shaped. [6] extended the use of CFD by for micro-siting of small roof-top
wind turbines over a relatively large build-up area by coupling ANSYS R©CFX to the wind atlas
software WAsP R©. Although the above works assessed in detail flow conditions around the
buildings, the localised effects resulting from the presence of the wind turbine have so far not
given too much attention. Existing literature suggests the need for further work using CFD to
examine turbine wake aerodynamics in the presence of buildings.

3. Method
3.1. Wind turbine model
An Actuator Disc (AD) model as described in various sources in literature such as [7, 8, 9] is
used to model the turbine loading on the air. The turbine is assumed to have a radius of 1m. As
described in Troldborg et al. [8], the axial thrust and power coefficient are defined respectively:

CT (r, θ) =
f(r, θ)

1
2ρV

2
0 (r, θ)

(1)

CP (r, θ) =
f(r, θ)Vz(r, θ)

1
2ρV

3
0 (r, θ)

(2)

where f is the thrust per unit area dT
dA , ρ is the air density, r is the radial location from

the rotor’s centre,Vz is the axial velocity at the rotor disc, and V0 is the reference free stream
velocity. The choice of the upstream position of where to define the wind velocity V0 might not
be as trivial as when the turbine is investigated in isolation. When the building is present, the
definition of the ’free’ stream becomes somewhat ambiguous in that the free stream is usually
defined as the velocity at the rotor hub position without the turbine influence. The sensitivity
to the choice of this upstream position will be discussed in another section.

The thrust coefficient is assumed to be fixed and uniform across the entire rotor disc, with
the value corresponding to that for optimal operation, CT (r, θ) = 0.89. This way the prescribed
loading (per unit area) f(r, θ) could be calculated from eqn. 1. In reality, this condition is
necessary in order to be able to establish the thrust and hence be able to apply the appropriate
load on the actuator disc. This is also the approach followed by [8] for the application to the
effects of sheared free-stream velocities.

A Gaussian blur along the axial direction is used to remove the disc pressure jump singularity.
Due to the various descriptions of this approach in previous literature, the readers are referred
to sources such as Mikkelsen [7], Troldborg et al. [8] and Micallef et al. [10]. The Computational
Fluid Dynamics (CFD) model is implemented using the commercial software ANSYS R©Fluent
15.0. While in the work of Troldborg et al. [8], the definition of the free stream velocity V0(r, θ)
was simply taken as the velocity corresponding to the wind speed profile far upstream from the
turbine, in this case, such a definition becomes less clear. This is due to the presence of the
building bluff body. The sensitivity of the result to this issue will be explored further in this
paper.
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3.2. Assumptions and parameters used
To maintain focus on the research objective, a number of parameters are assumed to be fixed.
These include, the position of the turbine along the roof (assumed to be located at the center
of the roof), the dimensions of the cubic building (10m × 10m × 10m) and the wind speed
profile (6m/s wind speed at the reference hub height of 14m). An isolated building case is also
considered and hence there is no upstream turbulence generation due to the presence of other
buildings or structures. This corresponds to Returbine = 844, 648 based on the turbine diameter
and Rebuilding = 4, 223, 270 on the basis of building characteristic dimension of 10m. At such
high Re numbers, the thrust experienced by the rotor disc and the pressures acting on the
building are well known to be Re number independent and hence the use of a single wind speed
is well justified.

3.3. Problem discretisation and verification of solution
Two types of meshes were used with and without the building being present. A structured
mesh approach was used to minimise the number of cells and improving convergence trends.
Fig. 1 shows two views of the mesh employed near and around the building envelope. Some
high aspect ratio cells resulted which could have created some numerical convergence issues
for regions where the flow is not aligned with the long edge of the cell. In this case however,
the simulation converged without any noticeable problems. A point worth noting is that when
the use of the RNG k − ε turbulence model was used, the simulation showed some numerical
instability.

The turbine actuator disc location is also indicated. To ensure mesh independence the
guidelines by Roache & Patrick [11] and Celik et al.[12] were used and the final mesh is depicted
in fig. 1 which includes the detail of the turbine region.

The domain size used follows the guidelines of Franke et al.[13] and is equivalent to 6H
upstream from the building position, 12H downstream from the building to the outlet, 6H from
the sides of the building to the side of the domain, 6H from the building roof to the domain top
surface. For all simulations, both convergence residuals were monitored as well as velocities at
different locations in the flow field. The residuals were all below 10−4 and showed convergence
after around 5000 iterations. The velocities at the monitor points also converged satisfactorily
without showing any further variations with increased iterations beyond around 5000, depending
on the simulation case.

3.4. Turbulence and wall modelling
The correct modelling of turbulence is important in this context for two main reasons. First, the
correct prediction of the separation zone on the roof of the building is well known to be strongly
dependent on the turbulence closure model used (see Yu et al. [14] and Richards [15]). The
Reynold’s Averaged Navier Stokes (RANS) equations are used with the Realizable k− ε model.
The main reason for using this model is that k − ε models are known to be computationally
efficient since standard wall functions can be used, requiring less refinement close to walls. The
RNG k− ε model ([16]) was also considered since this is known to reproduce the separation zone
more accurately over the roof [17]. This attempt failed due to numerical instabilities after some
iterations.

In general, all k − ε models including the realizable k − ε used here are known (see Shao et
al.[18]) to over-estimate the turbulent kinetic energy in the separated region. Nonetheless, for
this study, the accurate prediction of the flow within this separation zone is not really important
since it is not of engineering interest to place the turbine within this zone. The separation zone
height is more important in this case but the literature is limited in this regard. Another fact
to consider is that the separation bubble above the roof can be periodic and while the RANS
equations provide mean flows, in reality the turbulent region above roof level shows fluctuations
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(a) side elevation

(b) front elevation showing actuator disc
positon

Figure 1: Meshed model for turbine height to building height ratio HT /H = 1.4.

which can only be captured by means of for instance Large Eddy Simulation (LES). Another
reason for the importance of the correct modelling of turbulence is due to the wake dissipation
from the turbine and how this interacts with the separated flow resulting from the building.
This might have important effects on the turbine performance itself.

The inflow condition to the domain has a prescribed shear. While the influence of shear is
barely noticeable for a small turbine(difference in wind velocity between the disc edges is less
than 0.1m/s), the flow separation on the building roof will be affected by this profile. No inlet
atmospheric boundary layer turbulence is assumed as otherwise the choice of turbulence model
becomes invalid due to the well known inability for the k − ε model to predict the rotor wake
under the influence of the much larger atmospheric turbulent length scales (see for example
Kasmi & Masson [19] and Cabezon et al. [20].

Walls are modelled using standard wall functions. The mesh was refined close to walls such
that the dimensionless wall distance y+ was maintained in the range 30 < y+ < 300 at the walls.

3.5. Wind profile model
A logarithmic wind profile is used following the best practice guidelines of Franke et al. [13]:

V0(z) =
u∗
κ
log

(
y + y0
y0

)
(3)

Where u∗ is the friction velocity, κ is the von karman constant (0.4187), y is the vertical
distance from ground level, y0 is the aerodynamic roughness length. The reference wind velocity
at a (reference) height of 14m above ground level is 6m/s.
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Both the turbulent wind kinetic energy k as well as the wind turbulent dissipation rate ε had
to be kept zero in order to maintain the validity of using a Realizable k − ε to model the wake
from the turbine correctly without causing quick dissipation due to the much larger turbulent
scales of the wind.

In order to ensure lack of horizontal wind homogeneity the guidelines by [21] are used by
modifying the ground roughness height. This is possible provided that standard wall functions
were used. An empty domain simulation was carried out to ensure that the wind profile is
maintained homogeneous from inlet to the building location.

3.6. Simulation cases
The case of an isolated turbine at the reference height of 14m is first simulated for comparison
purposes. This is performed with a wind speed profile corresponding to eqn. 3. Another five
cases were tested with turbine height to building height ratios of HT

H = 1.2, 1.3, 1.4, 1.5, 1.7.

4. Results
4.1. Flow characteristics
A comparison of the flow field between the different positions of the turbine is shown in fig.2.
The first figure shows the case of an isolated turbine under the same wind profile as used for the
simulations with the building included. At HT = 1.2H, the turbine is practically entirely within
the roof separation zone. The interaction between the wake from the turbine and the flow field
results from the roof separation zone is very complex but the resulting velocities experienced by
the turbine are very low, resulting in a low power extraction or even possibly in propeller mode
operation. For HT = 1.3H the rotor is only partially within the roof separation zone and still
the interaction between the turbine streamtube and the separated flow from the roof is clearly
visible. When the turbine height is increased to HT = 1.4H which corresponds to the reference
height, the turbine streamtube and the separation zone from the roof are clearly distinct but are
influenced by each other. This causes the turbine wake to be pushed upwards while the turbine
experiences a higher inflow at the upstream location. As the turbine height is increased further,
the interaction between the wake and the separated zone becomes less apparent but the turbine
experiences a slightly higher free stream velocity due to the atmospheric boundary layer profile.

Fig. 3 shows a comparison of the velocities along the wind direction between the case where
there is no turbine and the velocity profile when it is included at different heights above roof
level. These velocity profiles are important to establish the influence of the turbine on the roof
separation mechanism. The velocity profiles are plotted at the center of the roof at the turbine
location. The plots show the vertical distance above roof level normalized with the building
height Y

H against the normalized velocity Vz
V0

. The turbine actuator disc location is indicated in
each case with red dotted lines.

The height of the separation zone from the roof is 3m above roof level. When the turbine is
centred at Y

H = 1.2, there is a substantial interference on the velocity profile just above the roof
and above the turbine. Also, the difference in velocity between the undisturbed separation zone
and the case with the turbine included at such a close distance to the roof is around Vz

V0
= 0.5.

When the turbine height is Y
H = 1.3, the velocity along the rotor disc is rather uniform but

reduces dramatically in the region where it interacts with the roof separation zone. It is also
clear that the influence of the separation zone is at a slightly lower height than undisturbed
separation zone from the building.

At a turbine height of Y
H = 1.4 and above, the turbine does not influence the separation zone

height appreciably and the velocity profiles below the turbine position agree with those of the
undisturbed building case.
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(a) no building (b) HT /H = 1.2

(c) HT /H = 1.3 (d) HT /H = 1.4

(e) HT /H = 1.5 (f) HT /H = 1.7

Figure 2: Velocity Vz (in the wind direction) normalized with the reference free stream velocity
of 6m/s. The wind direction is from right to left. Results are shown for the isolated turbine at a
reference height of 1.4 times the building height and also for the turbine-building configurations
with the turbine being at different heights from the roof.

4.2. Power, thrust and sensitivity analysis
In order to assess the performance of the turbine with increasing height from the roof level, the
power extracted from each turbine element is defined as:

dP (r, θ) = CP (r, θ)
1

2
ρV 3

0 (r, θ)dA (4)

where dA is the element area. The average power is thus

P =
1

A

∫ ∫
CP (r, θ)

1

2
ρV 3

0 (r, θ)dA (5)

A variable RP is defined to compare between the average power of the turbine-building
configuration and the average power from an isolated turbine P free. This is therefore defined
as follows:
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(a) HT /H = 1.2 (b) HT /H = 1.3

(c) HT /H = 1.4 (d) HT /H = 1.5

(e) HT /H = 1.7

Figure 3: Plot of the y position normalized with the building height H against velocity Vz
normalized with the reference free stream velocity(6m/s). The profiles are shown at the rotor
position. Each result is compared with the case of no turbine. The turbine location is indicated
by the dotted red lines. The location of the turbine along the free stream direction is at the
centre of the building.
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RP =
P

P free
(6)

Similarly for the thrust we can write:

T =
1

A

∫ ∫
CT (r, θ)

1

2
ρV 2

0 (r, θ)dA (7)

The ratio of the averaged turbine thrust (T ) when the building is present and that when the
turbine is not exposed to the building influence (T free) is given by

RT =
T

T free
(8)

The results for RP and RT with turbine height are given in fig. 4 and fig. 5 respectively.
Two cases are shown, the first where the reference upstream position of the wind profile V0 is
chosen at 6m and the second when it is chosen close to the inlet of the domain at 20m, far
from the influence of both the building and turbine. At 6m upstream, the wind velocity V0 is
uninfluenced by the turbine but influenced by the building. From the results it is clear that the
influence of the choice of upstream position starts only to be appreciable at HT

H = 1.3 or below,
when the separation zone from the roof starts influencing the wind speed profile. At turbine
heights higher than this, the definition of the velocity V0 is uninfluenced by the separation zone
and hence the choice of upstream position becomes less important for the actuator disc model
employed here.

There is a positive effect on power as the turbine height is HT
H > 1.3 this is despite the fact

that (as mentioned earlier) the separation zone from the roof without a turbine has a height of
3m which would correspond to the disc centre. When an upstream position of 20m is chosen,
a slight improvement over the free turbine performance is also observed. As the height of the
turbine is increased, the performance becomes superior due to the effect of the increased wind
velocity with height. The effect of the building beyond the separation zone is also to provide
some flow augmentation and therefore the reason for the increased performance is twofold.

As regards the rotor thrust, since the actuator disc model was implemented with a fixed CT

of 0.89, the thrust will be simply a quadratic function of the wind velocity. Since the definition
of the free turbine is at HT

H = 1.4, for all turbine heights below this, the thrust will be lower than

the free turbine case. For the HT
H = 1.5 case, RT ≈ 1 and increases beyond 1 as the height is

increased.T his is an indication of how much you need to increase the heigh with the building to
have the same thrust of the isolated turbine. In this case, the choice of the reference upstream
position becomes even more important due to this quadratic relationship between the thrust
and the wind velocity V0.

5. Discussion
It is interesting to note, particularly from the results presented earlier (see figure 2), that the
turbine and building flows are highly coupled. The separation zone behind the building can be
seen to be influenced by this. When the turbine-to-building height is 1.2, it was observed that
the rotor acts as a propeller and a larger wake region is observed. When HT /H = 1.3 the wake
region from the building is somewhat more suppressed and higher velocities can be observed. As
the turbine height increases above the building roof, more negative velocities can be observed
in the building wake. This is due to the lower blockage (localised in that region) caused by the
building and turbine configuration.

A sensitivity analysis on the wind profile chosen is reserved for future work since this might
have important implications on the separation zone on the roof which could lead to different
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Figure 4: Variation of RP with turbine height.

Figure 5: Variation of RT with turbine height.

conclusions regarding the turbine height which can be considered acceptable for improved
performance. In addition this may have an impact on power.

While the actuator disc approach can be rather simplistic for such complex scenarios found
in urban environments, a full rotor CFD approach could be an interesting point of investigation
in order to validate and compare results. In addition the use of Blade Element Momentum
Methods (BEM) with the inflows found in this work could be also useful in order to compare
how different approaches can be utilized. This is however reserved as additional future work.

6. Conclusion
Small wind turbines for urban wind energy exploitation have been developed by industry in
order to address the energy challenges of cities and urbanised zones. The efficiency of such
turbines is in many cases hampered due to the wind condition present at the turbine site. The
aerodynamic design of such turbines usually attempts to address this issue but aerodynamic
knowledge of the wind turbine to building interaction is lacking. From this paper the following
conclusions may be drawn:

• While it is well known that increasing turbine height above roof level will exploit the
higher wind speeds found at higher altitudes to the atmospheric boundary layer, this
paper provides an indication of the lower height limit below which turbine performance
deteriorates dramatically.

• This height does not simply correspond to the height of the separation zone above roof level
for a building without a turbine. In the case presented, while the separation zone height
for an isolated building is 3m above roof level, the turbine was still predicted by the CFD
AD model to perform similarly.
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• As turbine height increases above roof level, there is a combined effect of increased wind
velocity due to the atmospheric boundary layer as well as due to the building presence.

There are a number of issues which this approach fails to take into account including for
instance: (i) the effect of atmospheric turbulence, (ii) the influence of other structures/buildings
(iii) the influence of varying wind directions.

While all of the above can have significant repercussions on the results presented in this work,
the approach used here is based on a methodical consideration of the influence of the building
on turbine performance. The effect of atmospheric turbulence can be treated by the use of more
advanced turbulence models such as Large Eddy Simulation (LES).

The paper explores a ’back to basics’ and integrated approach in urban wind energy where
urban and turbine aerodynamics are not treated separately as with most of the studies found
in literature.
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