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Generalised Spin Structures in General
Relativity

Bas Janssens

Abstract. Generalised spin structures describe spinor fields that are cou-
pled to both general relativity and gauge theory. We classify those gener-
alised spin structures for which the corresponding fields admit an infini-
tesimal action of the space–time diffeomorphism group. This can be seen
as a refinement of the classification of generalised spin structures by Avis
and Isham (Commun Math Phys 72:103–118, 1980).

1. Introduction

In this paper, we study the space–time transformation behaviour of spinors
that are coupled to general relativity (GR) as well as gauge theory.

In the absence of gauge fields, space–time transformations of spinors cou-
pled to GR can be understood by considering pairs (g, ψ) of a metric g, together
with a compatible spinor field ψ. The transformation behaviour is then gov-
erned not by a spin structure Q → M , but rather by the principal ˜GL+(n, R)-
bundle ̂Q → M associated to Q along the inclusion of the spin group in
˜GL+(n, R). Since spinor fields acquire a minus sign upon a full rotation, the
action of the space–time diffeomorphism group Diff(M) does not lift from M

to ̂Q. It does, however, lift at the infinitesimal level, i.e. at the level of the
Lie algebra Vec(M) of vector fields. This implies that in the absence of gauge
fields, the spinor fields carry an action of the universal cover of the connected
component of unity of the space–time diffeomorphism group [8].

In the presence of gauge fields, the consistent description of spinors re-
quires a so-called generalised spin structure or SpinG-structure [4,16]. This is
a natural generalisation of a Spinc-structure and reduces to this in the case
G = U(1) of electrodynamics. Generalised spin structures were classified in [2].

The aim of the present paper is to study the transformation behaviour
of spinors in the presence of both gauge theory and GR. Just like in the case
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of spin structures, the transformation behaviour of the fields is governed by
the principal bundle ̂Q → M associated to a SpinG-structure Q → M along
the inclusion of the spin group in ˜GL+(n, R). However, quite unlike in the
case of spinors coupled to pure GR, the action of the Lie algebra Vec(M) of
infinitesimal space–time transformations does not always lift from M to ̂Q.
The aim of this paper is to determine which generalised spin structures allow
for such a lift, and which ones do not.

More precisely, a SpinG-structure is called infinitesimally natural [19] if
the Vec(M)-action can be lifted from M to ̂Q in such a way that the induced
transformation behaviour of the metric g is the usual one. The main result
of this paper, Theorem 3, is the classification of these infinitesimally natural
SpinG-structures.

Let M be an orientable space–time manifold of dimension n ≥ 3, and
let G be a compact gauge group. We show that M admits an infinitesimally
natural SpinG-structure if and only if its universal cover is spin. To classify
the infinitesimally natural SpinG-structures on such a manifold M , note that
the orbit map ι : GL(n, R) → F for the frame bundle F induces an injective
homomorphism ι∗ : Z2 ↪→ π1(F ). It is readily seen that every homomorphism
τ : π1(F ) → G that maps the image of Z2 to a central subroup of G gives rise to
an infinitesimally natural SpinG-structure. We prove that every infinitesimally
natural SpinG-structure is isomorphic to one of this form.

From a technical point of view, the key to proving this ‘flat’ behaviour is
showing that the lift of vector fields is a first-order differential operator. This
is done by adapting results [19,22] from the setting of principal bundles to the
specific setting of SpinG-structures, where Lie algebraic considerations allow
one to exclude the possibility of higher derivatives.

Determining whether or not a SpinG-structure is infinitesimally natural
is important for the construction of stress–energy–momentum (SEM) tensors.
The Lie algebra homomorphism σ : Vec(M) → aut( ̂Q), present only in the
infinitesimally natural case, is needed if one wants to construct a SEM-tensor
from Noether’s theorem [13,14]. Essentially, by separating the infinitesimal
space–time transformations from the infinitesimal gauge transformations, the
homomorphism σ also separates the SEM-tensor from the conserved currents.

Although ordinary spin structures (the case G = {±1}) are always in-
finitesimally natural, this is no longer true for more general SpinG-structures,
not even in the case G = U(1) of Spinc-structures. The requirement for a
SpinG-structure to be infinitesimally natural is quite restrictive and singles
out a preferred class of SpinG-structures.

For example, it was observed in the late 1970s that spinors on M = CP 2

are necessarily charged [16,31,38]. The reason for this is that CP 2 does not
admit ordinary spin structures, but it does admit nontrivial Spinc-structures.
These are used in a variety of applications that involve spinors on CP 2, such
as spontaneous compactification [7,37,39] and fuzzy geometry [1,6,17]. Since
Im(ι∗) = {1} for CP 2, our results show that none of the Spinc-structures on
CP 2 is infinitesimally natural. This means that in contrast to the case where
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M is a spin manifold, the space–time diffeomorphism group does not admit a
natural action on the spinor fields of M = CP 2, not even at the infinitesimal
level.

2. Spinors Coupled to GR and Gauge Fields

In view of the central role of this notion in the present paper, we give a more
detailed description of infinitesimally natural bundles in Sect. 2.1. In Sects. 2.2–
2.4, we then formulate the kinematics of spinors coupled to GR in terms of
fibre bundles over the space–time manifold M , the main point being that the
relevant bundles are infinitesimally natural. In Sect. 2.5, we describe spinors
coupled to both GR and gauge theory. In this setting, the relevant bundles
are associated to SpinG-structures rather than spin structures. In Sect. 2.6,
we focus on the space–time transformation behaviour of these generalised spin
structures and show that they are not necessarily infinitesimally natural.

2.1. Natural and Infinitesimally Natural Bundles

In a geometric setting, classical fields are sections of a fibre bundle π : Y → M
over the space–time manifold M . Such a bundle is called natural if (locally
defined) diffeomorphisms α of M lift to (locally defined) automorphisms Σ(α)
of Y → M , in such a way that composition and inversion are preserved. More
precisely, one requires that Σ(α)−1 = Σ(α−1) and Σ(α ◦ β) = Σ(α) ◦ Σ(β) for
all composable local diffeomorphisms α and β on M . The space–time diffeo-
morphism group then acts naturally on the space of fields: a diffeomorphism
α maps a field φ : M → Y to the field Σ(α) ◦ φ ◦ α−1.

Natural bundles are perfectly suited for GR, providing a geometric frame-
work not only for (mixed) tensor fields, but also for the more complicated
transformation behaviour of (Levi–Civita) connections. They first appeared
under the name ‘geometric objects’ [28,36,41], although the modern definition
is due to Nijenhuis [29,30]. Natural bundles were fully classified by Palais and
Terng [32], building on work of Salvioli [35] and Epstein and Thurston [12].

Unfortunately, the framework of natural bundles is quite unsuitable for
field theories involving spinors. The reason is that a (local) full rotation of the
space–time manifold M acts trivially on the (local) fields. Therefore, the minus
sign associated to spinor rotation cannot be reproduced within the setting of
natural bundles.

One way to deal with this is to give up on diffeomorphism invariance,
and instead ask for invariance under the automorphism group of an underlying
principal fibre bundle. This leads to the theory of gauge natural bundles [9,21].
Because the distinction between space–time symmetries and gauge symmetries
is lost, it is rather hard to recover the distinction between the SEM-tensor and
the gauge currents in this formalism [25,33].

In this paper, we propose a different solution. Rather than abandoning
diffeomorphism invariance altogether, we require diffeomorphism invariance
only at the infinitesimal level. A fibre bundle π : Y → M is called infinitesi-
mally natural if it comes with a lift of infinitesimal diffeomorphisms [19].
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More precisely, an infinitesimally natural bundle is a smooth fibre bundle
π : Y → M , together with a Lie algebra homomorphism σ : Vec(M) → aut(Y ).
We require that the lift σ(v) of any vector field v ∈ Vec(M) projects down to
v again, π∗ ◦ σ(v) = v.

Remark 1. If π : Y → M is just a smooth fibre bundle, then aut(Y ) is the Lie
algebra of projectable vector fields on Y , and autV (Y ) denotes the Lie alge-
bra of vertical vector fields. However, if Y has additional structure, then we
will take aut(Y ) to be the corresponding subalgebra of infinitesimal automor-
phisms. For example, if Y is a principal H-bundle or a bundle of homogeneous
spaces, then aut(Y ) = Vec(Y )H is the Lie algebra of equivariant vector fields,
and autV (Y ) is the gauge algebra of vertical, equivariant vector fields.

Rephrasing the above definitions, one can say that a natural bundle has
a (local) splitting of the sequence

1 → AutV (Y ) → Aut(Y ) → Diff(M) → 1

of groups, whereas an infinitesimally natural bundle has a splitting of the cor-
responding exact sequence

0 → autV (Y ) → aut(Y ) → Vec(M) → 0

of Lie algebras.
Every natural bundle is of course infinitesimally natural, but the converse

is not true. It turns out that the extra leeway provided by infinitesimally
natural bundles is just enough to describe spin structures and certain types
of generalised spin structures, while at the same time providing the extra
structure needed to globally define a canonical SEM-tensor, cf. [13, p. 333],
[14].

Throughout the paper, we assume that M is a smooth, connected, ori-
entable manifold, and we fix a nondegenerate, bilinear form η : R

n × R
n → R.

Unless stated otherwise, M will be of dimension n ≥ 3. The adaptations needed
for the case n = 2 will be briefly discussed in Remark 6. We denote the group
of orientation preserving linear transformations of R

n by GL+(n, R), and we
denote by SO(η) ⊆ GL+(n, R) the subgroup of transformations that preserve
η. The principal GL+(n, R)-bundle of oriented frames is denoted by F+ → M ,
or by F+(M) → M if we need to emphasise the manifold. If g is a pseudo-
Riemannian metric on M of signature η, then the principal SO(η)-bundle of
oriented, g-orthonormal frames is denoted OF+

g → M . We assume that the
gauge group G is a compact Lie group and denote its Lie algebra by g.

2.2. General Relativity

The fundamental degrees of freedom in general relativity are a pseudo-Rie-
mannian metric g of signature η on space–time M , and a connection ∇ on
TM . It will be convenient to describe both g and ∇ as sections of a bundle of
homogeneous spaces. We identify the metric g with a section of the bundle

F+/SO(η) → M
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in the usual way, namely by associating to gx : TxM × TxM → R the coset of
all frames f : R

n → TxM such that f∗g = η. We view the connection ∇ on
TM as an equivariant connection on F+ → M . This in turn can be identified
with a section of

J1(F+)/GL+(n, R) → M.

Its value at x ∈ M is [j1
xφ], where φ : M ⊃ U → F+ is a local section with

∇xφ = 0.
These two, the metric g and the connection ∇, are conveniently combined

into a single section Φg,∇ of the fibre bundle

J1(F+)/SO(η) → M.

By concatenating the section Φg,∇ : M → J1(F+)/SO(η) with the projections
J1(F+)/SO(η) → F+/SO(η) and J1(F+)/SO(η) → J1(F+)/GL+(n, R), one
recovers the metric g and the connection ∇ from the section Φg,∇.

The fields Φg,∇ transform in a natural fashion under the group Diff+(M)
of orientation preserving diffeomorphisms. Indeed, any α ∈ Diff+(M) gives rise
to an automorphism Σ(α) of the bundle J1(F+)/SO(η) → M of homogeneous
spaces, defined by

Σ(α)([j1
m(φ)]) = [j1

α(m)(α∗ ◦ φ ◦ α−1)].

The diffeomorphism α then maps the field Φg,∇ to Σ(α) ◦ Φg,∇ ◦ α−1, which
is again a section of the bundle J1(F+)/SO(η) → M .

Note that the group homomorphism

Σ: Diff+(M) → Aut(J1(F+)/SO(η))

splits the exact sequence of groups

1 → AutV (J1(F+)/SO(η))) → Aut(J1(F+)/SO(η)) → Diff+(M) → 1. (1)

The derived Lie algebra homomorphism

σ : Vec(M) → aut(J1(F+)/SO(η))

therefore splits the corresponding exact sequence of Lie algebras

0 → autV (J1(F+)/SO(η)) → aut(J1(F+)/SO(η)) → Vec(M) → 0.

The bundle J1(F+)/SO(η) → M , whose sections Φg,∇ describe a metric g
together with a connection ∇, is therefore an infinitesimally natural bundle in
the sense of [19].

Needless to say, the lift Σ: Diff+(M) → Aut(J1(F+)/SO(η)) is of central
importance in GR, since diffeomorphism invariance

S(Σ(α) ◦ Φg,∇ ◦ α−1) = S(Φg,∇)

is one of the guiding principles for finding the Einstein–Hilbert action.
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2.3. Spin Structures

The description of spinors coupled to general relativity (GR) involves a twofold
cover of SO(η). In order to handle manifolds M that are oriented, but not nec-
essarily time-oriented, we define ˜SO(η) to be the twofold cover κ−1(SO(η))
of SO(η) that arises as the restriction of the universal covering map κ :
˜GL+(n, R) → GL+(n, R).

Remark 2. If η is positive definite, then ˜SO(η) is isomorphic to the spin group
Spin(n). Perhaps surprisingly, this is no longer the case if η is of indefinite
signature. Suppose, for example, that η is of signature (3, 1). Since SO(3, 1)
has 2 connected components, there is no straightforward way to define a uni-
versal cover. If T denotes the time inversion and P the inversion of 3 space
co-ordinates, then (PT )2 = 1 in ˜SO(3, 1). However, in1 Spin(3, 1), we have
(PT )2 = −1 (cf. e.g. [3]). It follows that the preimage of {±1} ⊆ SO(3, 1)
is isomorphic to Z2 × Z2 in ˜SO(3, 1), and to Z4 in Spin(3, 1). So although
the connected component of unity of ˜SO(3, 1) and that of Spin(3, 1) are both
isomorphic to SL(2, C), the groups ˜SO(3, 1) and Spin(3, 1) are not isomorphic.

Let M be an orientable manifold of dimension n ≥ 3 with a pseudo-Rie-
mannian metric g of signature η. Then a spin structure is by definition an
˜SO(η)-bundle Q over M , equipped with a twofold cover u : Q → OF+

g of the
oriented, orthogonal frame bundle, such that the following diagram commutes:

˜SO(η) SO(η)
��

Q OF+
g

M .

κ

u

Recall that the twofold cover κ : ˜SO(η) → SO(η) is the restriction of the uni-
versal covering map of GL+(n, R). A manifold is called spin if it admits a spin
structure. We define the principal ˜GL+(n, R)-bundle

̂Q := Q×
˜SO(η)

˜GL+(n, R), (2)

and denote the induced map ̂Q → F+ by u as well. As any cover of F+ by a
˜GL+(n, R)-bundle can be obtained in this way, there is a 1:1 correspondence
between spin covers of OF+

g (M) and F+. In particular, whether or not M is
spin depends neither on the metric nor on the signature.

For n ≥ 3, we identify the fundamental group π1(GL+(n, R)) of
GL+(n, R) with Z2. The orbit map

ι : GL+(n, R) → F+ (3)

1 Here, Spin(3, 1) is the double cover of SO(3, 1) generated by products v1 · · · v2r of an even
number of elements vi ∈ R

4 ⊂ ClR(3, 1) with η(vi, vi) = ± 1.
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can be seen as fibre inclusion, so the Serre homotopy exact sequence gives rise
to the exact sequence of groups

1 → Z2/Ker(ι∗) → π1(F+) → π1(M) → 1. (4)

For orientable manifolds of dimension n ≥ 3, the following proposition is well
known.

Proposition 1. A spin structure exists if and only if ι∗ : Z2 → π1(F+) is
injective and (4) splits as a sequence of groups. If spin structures exist, then
equivalence classes of spin covers correspond to splittings of (4).

Proof. See e.g. [26]. Alternatively, this criterion for M to be spin is equivalent
to the vanishing of the second Stiefel–Whitney class [23]. �

Remark 3. In terms of group cohomology, one can consider the sequence (4)
as a cohomology class [ω] in H2(π1(M), Z2/Ker(ι∗)). Spin bundles exist if and
only if both Ker(ι∗) and [ω] are trivial, in which case they are indexed by
H1(π1(M), Z2).

In the same vein, we have the following criterion for the universal cover
of M to be spin.

Proposition 2. The universal cover of M is spin if and only if the map
ι∗ : Z2 → π1(F+(M)) is injective.

Proof. The universal covering map p : ˜M → M gives rise to the pushforward
map Dp : F+(˜M) → F+(M) of oriented frame bundles. If we denote by ιM and
ι

˜M the fibre inclusions for the oriented frame bundle of M and ˜M , respectively,
we find the following commutative diagram:

GL+(n, R)

F+(˜M) F+(M) .

ι
˜M ιM

Dp

On the level of homotopy groups, this yields the commutative diagram

Z2

π1(F+(˜M)) π1(F+(M)) .

ι
˜M
∗ ιM∗

Dp∗

Since Dp : F+(˜M) → F+(M) is a covering map, it induces an injective ho-
momorphism Dp∗ : π1(F+(˜M)) → π1(F+(M)) of homotopy groups. From the
above diagram, one then infers that ιM∗ is injective if and only if ι

˜M
∗ is injective.

By Proposition 1, this is the case if and only if ˜M is spin. �
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2.4. Spinors Coupled to GR

Spinor fields are usually described as sections of a spinor bundle Sg → M ,
associated to a spin structure Q → M along a unitary spinor representation2

V of ˜SO(η). This description is somewhat inconvenient to describe spinors
coupled to GR, because variations in the metric g would change the very
bundle Sg → M of which the spinors are sections.

Although it is possible to deal with this problem, we prefer to sidestep it
by using the composite bundle

̂Q ×
˜SO(η)

V → F+/SO(η) → M, (5)

associated to the twofold cover u : ̂Q → F+ of Sect. 2.3 along the spinor
representation V (cf. e.g. [18, p. 177] and [27]). From a section τ : M →
̂Q ×

˜SO(η)
V , one recovers both the metric g and the spinor field ψ. Indeed,

the concatenation of τ with the projection ̂Q ×
˜SO(η)

V → F+/SO(η) yields
a section of F+/SO(η) → M , encoding the metric g. Using this metric g,
one then defines the spin structure Qg = u−1(OF+

g ) inside ̂Q. From this, one
constructs the spinor bundle

Sg = u−1(OF+
g ) ×

˜SO(η)
V.

The section ψ of Sg → M is then obtained by simply restricting the image of
τ .

In the same vein, we will describe physical fields by sections of the fibre
bundle J1( ̂Q) ×

˜SO(η)
V . This is equivalent to providing three sections: one of

F+/SO(η), one of J1(F+)/GL+(n, R), and one of Sg = u−1(OF+
g ) ×

˜SO(η)
V .

These correspond to the metric gμν , the (Levi–Civita) connection Γα
μβ , and

the spinor field ψa, respectively.
We investigate the transformation behaviour of this bundle. Note that it

is not a natural bundle in the sense of [30] or [21]. As a spinor changes sign
under a 2π-rotation, there is no hope of finding an interesting group homo-
morphism Diff+(M) → Aut(J1( ̂Q) ×

˜SO(η)
V ). There is, however, a canonical

homomorphism at the level of Lie algebras, making it an infinitesimally natural
bundle in the sense of [19].

Because the twofold cover u : ̂Q → F+ has discrete fibres, it has a unique
flat, equivariant connection, yielding a Lie algebra homomorphism

∇can : aut(F+) → aut( ̂Q). (6)

This can be combined with the canonical Lie algebra homomorphism

D : Vec(M) → aut(F+) (7)

2 The indefinite article is appropriate since there is a choice involved here. The connected unit

component of ˜SO(3, 1) is Spin↑(3, 1) � SL(2,C). A spinor representation for the connected
component can then be unambiguously derived from a Clifford algebra representation [15].

But as ˜SO(3, 1) is not isomorphic to Spin(3, 1), the action of the order 2 central elements
covering PT will have to be specified ‘by hand’. This becomes relevant if M is orientable,
but not time-orientable.
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for the natural bundle F+ → M . At the point f ∈ F+, it is defined by the
first-order derivative of the pushforward map,

D(v)f = ∂/∂t|0 exp(tv)∗ ◦ f, (8)

where t 	→ exp(tv) is the flow on M generated by the vector field v. The
composition σ := ∇can ◦ D is a Lie algebra homomorphism σ : Vec(M) →
aut( ̂Q) that splits the exact sequence of Lie algebras

0 → autV ( ̂Q) → aut( ̂Q) → Vec(M) → 0. (9)

This induces a splitting for J1( ̂Q) by prolongation (see e.g. [13]), and conse-
quently also one for J1( ̂Q) ×

˜SO(η)
V .

Remark 4. We would like to emphasise that even if a splitting at the level
of groups does exist, it will not be physically relevant, since it cannot re-
produce the minus sign under a full rotation that one expects in spinors.
Take for example the spin structure Q = R

n × ˜SO(η) over R
n, and lift

α ∈ Diff+(M) to Aut(Q) by Σ(α)(m, q) = (α(m), q). Restricting attention to
SO(η) ⊆ Diff+(M), we see that sections of the spinor bundle S = Q ×

˜SO(η)
V

then transform under the trivial representation of the Lorentz group, produc-
ing Lorentz scalars rather than spin-1/2 particles. In general, using a different
splitting results in an incorrect energy–momentum tensor [14].

The above remark shows that it is not only the bundle Q and the covering
map u : Q → OFg that are relevant, but also the splitting

σ : Vec(M) → aut( ̂Q).

It must satisfy u∗◦σ = D in order for the metric g ∈ Γ(F+/SO(η)) to transform
properly.

Although a canonical splitting σ is naturally associated to any ordinary
spin structure, this is no longer the case for the SpinG-structures used to
describe spinors coupled to gauge fields.

2.5. Generalised Spin Structures

In the presence of gauge fields, the topological conditions on M in order to
support a spin structure are more relaxed. Roughly speaking, this is because
the gauge group G can absorb some of the indeterminacy that stems from the
2:1 cover of the Lorentz group.

This is made more rigorous by the notion of a generalised spin structure
or SpinG-structure [2,4,16]. For n ≥ 3, we identify the centre of ˜SO(η) with
Z2 
 π1(GL(n, R)). If G is a Lie group with a central subgroup Z2 ⊆ G
isomorphic to Z2, then we define3

SpinG := ˜SO(η) ×Z2 G. (10)

We denote the map (x, g) 	→ κ(x) by κ : SpinG → SO(η).

3This notation is convenient but slightly misleading. Beware that if η is of signature +++−,

then SpinZ2 is isomorphic to ˜SO(η), not to Spin(3, 1).



1596 B. Janssens Ann. Henri Poincaré

Definition 1. A SpinG-structure is a SpinG-bundle Q over M , together with a
map u : Q → OF+

g that makes the following diagram commute:

SpinG SO(η)
��

Q OF+
g

M.

κ

u

An isomorphism of SpinG-structures is an isomorphism μ : Q → Q′ of principal
fibre bundles with u′ ◦ μ = u.

If G = Z2, we recover the spin structures of Sect. 2.4. Apart from spin
structures, the best known examples of SpinG-structures are Spinc-structures.
These are precisely the SpinG-structures for the group G = U(1), with central
subgroup Z2 = {±1}.

The SpinG-structure Q gives rise to the principal ˜GL(n, R)×Z2 G-bundle

̂Q := Q ×
˜SO(η)

˜GL(n, R). (11)

Let V be a representation of SpinG. The bundle of which the physical fields
are sections is then the fibre bundle

J1( ̂Q) ×SpinG V → M. (12)

A single section of J1( ̂Q) ×SpinG V represents a metric gμν , a Levi–Civita
connection Γα

μβ , a gauge field Aμ, and a spinor field ψa. The metric is the
induced section of the bundle

F+/SO(η) → M, (13)

and the Levi–Civita connection that of J1(F+)/GL+(n, R) → M . One con-
structs the principal G/Z2-bundle

P := ̂Q/ ˜GL+(n, R), (14)

and the gauge field is the induced equivariant connection on P , a section of
the bundle J1(P )/(G/Z2) → M . The spinor field is the induced section of the
spinor bundle Sg = π−1(OF+

g ) ×SpinG V .

2.6. Infinitesimally Natural Generalised Spin Structures

We now focus on the generalised spin structures that have an appropriate
transformation law under infinitesimal space–time diffeomorphisms. We will
call a SpinG-structure Q → M infinitesimally natural if the associated bundle
̂Q → M is infinitesimally natural in the sense of Sect. 2.1.

Definition 2. An infinitesimally natural SpinG-structure is a SpinG-structure
u : Q → OF+

g , for which there exists a Lie algebra homomorphism

σ : Vec(M) → aut( ̂Q)
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that splits the exact sequence

0 → autV ( ̂Q) → aut( ̂Q) → Vec(M) → 0, (15)

where aut( ̂Q) is the Lie algebra of SpinG-equivariant vector fields on ̂Q. More-
over, we require that the composition u∗ ◦ σ of σ with the pushforward u∗ is
equal to the canonical splitting D of Eq. (7).

The splitting of (15) comes from the physical requirement that fields
should have a well-defined transformation behaviour under infinitesimal co-
ordinate transformations. The requirement u∗ ◦σ = D corresponds to the fact
that we need to interpret a section of ̂Q/ ˜GL(n, R) ×Z2 G 
 F+/SO(η) as a
metric, and we know that its transformation behaviour is governed by D.

Remark 5. The usual boundary conditions at infinity (cf. [10,11]) will reduce
the algebra of symmetries from Vec(M) to some smaller Lie algebra L ⊆
Vec(M). This smaller algebra will still contain the Lie algebra Vecc(M) of
compactly supported vector fields as a subalgebra, Vecc(M) ⊆ L ⊆ Vec(M).
The natural requirement to impose on the SpinG-structure is the existence of a
lift of L. This directly implies existence of a lift of its subalgebra Vecc(M). By
[19, Proposition 4], however, every lift on Vecc(M) automatically extends to
Vec(M). It, therefore, does not matter whether one requires a lift of Vecc(M),
L or Vec(M).

The SpinG-structures thus appear as the underlying principal fibre bun-
dles in classical field theories combining gravity, spinors and gauge fields. If
they are infinitesimally natural, then these fields have a well-defined transfor-
mation behaviour under infinitesimal space–time transformations. In particu-
lar, a stress–energy–momentum tensor corresponding to space–time transfor-
mations is then well defined by [13,14].

3. Classification

This raises the question which of the SpinG-structures are infinitesimally nat-
ural, and which ones are not. This is answered by Theorem 3 in Sect. 3.1.
The proof proceeds by adapting the classification theorem for infinitesimally
natural principal bundles (Theorem 4.4 in [19]) to the specific case of SpinG-
structures. We review the necessary material in Sect. 3.2 and proceed with the
proof of Theorem 3 in Sect. 3.3.

3.1. The Classification Theorem

Let G be a Lie group with a central subgroup Z2 ⊆ G isomorphic to Z2.
If the Lie algebra g of G does not contain any subalgebra isomorphic to

sl(n, R)—a requirement that is automatically fulfilled if G is compact—then
we shall prove the following classification theorem for infinitesimally natural
SpinG-structures.
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Theorem 3. (Classification theorem) An oriented manifold M of dimension
n ≥ 3 admits infinitesimally natural SpinG-structures if and only if its uni-
versal cover is spin. For every infinitesimally natural SpinG-structure (Q,u),
there exists a homomorphism

τ : π1(F+) → G

such that (Q,u) is isomorphic to the SpinG-structure (Q′, u′), where

Q′ = ˜OF+
g ×τ G,

and u′ : Q′ → OF+
g is the canonical projection map. The composition τ ◦ι∗ of τ

with the map ι∗ : Z2 → π1(F+) induced by the orbit map (3) is an isomorphism
onto Z2 ⊆ G.

In other words, every infinitesimally natural SpinG-structure is associated
to the universal cover ˜OF g

+ of the oriented, orthogonal frame bundle, along
a homomorphism τ : π1(F+) → G that identifies ι∗(Z2) ⊆ π1(F+) with the
central subgroup Z2 ⊆ G.

Remark 6. For Riemannian manifolds of dimension n = 2, the classification
theorem 3 continues to hold if one makes the necessary adaptations to account
for the fact that π1(SO(2)) = Z. In this context, a SpinG-structure can be
defined as in Sect. 2.5 with SpinG := (R×G)/Z, where the action of Z on R =
˜SO(2) is by translation, and the action on G comes from the unique nontrivial
homomorphism Z → Z2 ⊆ G. The requirement is then that τ ◦ ι∗ : Z → G has
image Z2.

The classification theorem rather simplifies the data needed to construct
the bundle of fields (12) in the infinitesimally natural case. Indeed, it suffices
to have:

– An orientable manifold M whose universal cover is spin. The homomor-
phism ι∗ : Z2 → π1(F ) is then injective, and its image ι∗(Z2) ⊆ π1(F ) is
a central subgroup.

– A representation (ρ, V ) of ˜SO(η) ×Z2 π1(F ), which is unitary when re-
stricted to π1(F ), and faithful on Z2.

– A subgroup G ⊆ U(V ) that commutes with the image of ˜SO(η) under ρ
and contains the image of π1(F (M)).

One can then construct the SpinG-structure ̂Q = ˜F+ ×π1(F ) G, from which
one recovers the bundle of fields

J1( ̂Q) ×SpinG V → M.

As discussed in Sect. 2.5, a single section of this bundle provides the metric,
Levi–Civita connection, gauge fields and spinors.

In particular, the bundle (5) describing spinors and metric is simply
˜F+ ×R V → M,

where R is the group R := ˜SO(η) ×Z2 π1(F ). The principal G/Z2-bundle (14)
describing the gauge fields is necessarily the trivial bundle P = M × G/Z2.
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According to Theorem 3, the above setting exhausts the possibilities in
the infinitesimally natural case—at least under the natural assumption that V
is a faithful, unitary representation for the group G, which is then automati-
cally compact.

3.2. Infinitesimally Natural Principal Fibre Bundles

The proof of Theorem 3 relies on the result [19,22] that every infinitesimally
natural principal fibre bundle is associated to the universal cover of a kth order
frame bundle. The essential new ingredient in the proof of Theorem 3 is that
in the particular case of SpinG-structures, the order k must be equal to one.
Before proceeding with this proof, we therefore briefly recall some results on
infinitesimally natural principal bundles.

3.2.1. The kth Order Frame Bundle and its Universal Cover. A kth order
frame fk

x at a point x ∈ M is by definition the k-jet fk
x = jk

0 φ at zero of an
orientation preserving local diffeomorphism φ : R

n → M with φ(0) = x. The
oriented kth order frame bundle π : F k+ → M is defined by

F k+ :=
{

jk
0 φ ; φ ∈ Diff+

loc(R
n,M)

}

,

with projection π : F k+ → M given by π(jk
0 φ) = φ(0). It is a principal bundle

with structure group

G(k, n) :=
{

jk
0 φ ; φ ∈ Diff+

loc(R
n, Rn), φ(0) = 0

}

.

In the trivial case k = 0, we have F 0+ = M , and G(0, n) = {1}. The first
interesting example is k = 1, in which case the principal fibre bundle F 1+ → M
is the oriented frame bundle F+, with structure group G(1, n) = GL+(n, R).
For k ≥ 2, the natural projections F k+ → F+ and G(k, n) → GL+(n, R) have
contractible fibres, so that π1(F k+) 
 π1(F+), and

π1(G(k, n)) 
 π1(GL+(n, R)) 
 Z2. (16)

The universal cover ˜F k+ of the oriented k-frame bundle is, therefore,
essentially determined by the universal cover ˜F+ of the ordinary frame bundle.
To determine the structure group of the principal fibre bundle ˜F k+ → M , note
that the orbit map ι : G(k, n) → F k+, defined by ι(g) = fk

x g, gives rise to a
group homomorphism

ι∗ : Z2 → π1(F k+). (17)

The structure group of the principal fibre bundle ˜F k+ → M is, therefore,

G(k,M) =
(

˜G(k, n) × π1(F k+)
)

/Z2, (18)

where Z2 is identified with the central subgroup {(z, ι∗(z−1)) ; z ∈ Z2}.
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3.2.2. Classification Results for Principal Bundles. Every principal fibre bun-
dle P → M gives rise to an exact sequence of Lie algebras

0 → autV (P ) → aut(P ) → Vec(M) → 0, (19)

where aut(P ) is the Lie algebra of equivariant vector fields on P , and autV (P ) is
the Lie algebra of vertical equivariant vector fields. The latter is isomorphic to
Γ(Ad(P )), the Lie algebra of infinitesimal gauge transformations. A principal
fibre bundle P → M is called infinitesimally natural if it comes with a Lie
algebra homomorphism

σ : Vec(M) → aut(P )

that splits the exact sequence (19).
The kth order frame bundle F k+ is an infinitesimally natural principal

fibre bundle, with section Dk : Vec(M) → aut(F k+) defined by

Dk(v)
∣

∣

∣

∣
jk
0 φ =

d

dt

∣

∣

∣

∣

0

jk
0 (exp(tv) ◦ φ),

where t 	→ exp(tv) is the flow on M generated by the vector field v.

Remark 7. A SpinG-structure (Q,u) is infinitesimally natural if ̂Q → M is
infinitesimally natural as a principal fibre bundle, and if u∗ ◦ σ = D1. This
additional compatibility condition expresses that the covering map u : ̂Q → F+

is a morphism of infinitesimally natural principal fibre bundles.

Since ˜F k+ → F k+ is a discrete cover, it has a canonical flat equivari-
ant connection ∇can : Vec(F k+)G(k,n) → Vec( ˜F k+)G(k,M). It follows that also
˜F k+ → M is an infinitesimally natural bundle, with splitting ˜Dk = ∇can ◦Dk.

Theorem 4. For every infinitesimally natural principal fibre bundle P → M

with structure group H, there exists a homomorphism ρ : ˜G(k,M) → H such
that P is associated to ˜F k+ along ρ, i.e.

P 
 ˜F k+ ×ρ H.

The splitting σ is induced by the canonical splitting for ˜F k+.

Proof. This is Theorem 4.4 in [19]. A version of this result was proven earlier
by Lecomte in [22]. �
3.3. Proof of the Classification Theorem

By Theorem 4, we may assume that an infinitesimally natural SpinG-structure
takes the form

̂Q = ˜F k+ ×ρ H, (20)

where the group H is defined as

H := ˜GL(n, R) ×Z2 G. (21)

Accordingly, we denote elements of ̂Q by an equivalence class [f̃k, h] of an
element f̃k ∈ ˜F k+ and h ∈ H. The Lie algebra homomorphism σ : Vec(M) →
aut( ̂Q) is induced by the canonical splitting D̃k : Vec(M) → aut( ˜F k+) of the
infinitesimally natural bundle ˜F k+ → M .
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3.3.1. Standard Form of the Covering Map. It remains to determine the Lie
algebra homomorphism ρ : G(k,M) → H and the covering map u : ̂Q → F+.
From the requirement that u∗◦σ = D, we obtain the following characterisation
of the map u.

Lemma 5. There exists an element c ∈ GL+(n, R) such that u(q̂) = fcκ(h)
for all q̂ = [f̃k, h] in ̂Q. If the group element ỹ ∈ G(k,M) projects to y ∈
GL+(n, R), then κρ(ỹ) = c−1yc.

Proof. Define the covering map u0 : ̂Q → F+ by u0([ ˜fk, h]) = fκ(h), where
f ∈ F+ is the image of f̃k under the canonical projection ˜F k+ → F+. Since
both u0 and u satisfy the equivariance equation u(q̂h) = u(q̂)κ(h) for h ∈ H,
the two maps differ by a gauge transformation of F+. We have u(q̂) = u0(q̂)g(q̂)
for a smooth map g : ̂Q → GL+(n, R) that satisfies g(q̂h) = κ(h)−1g(q̂)κ(h).

Since u∗σ(v) = u0∗σ(v) = D(v) for every v ∈ Vec(M), we find that the
logarithmic derivative g−1Lσ(v)g of g along any lift σ(v) vanishes, and g is
constant along σ(v). The lift σ(v) of v ∈ Vec(M) is induced by the canonical
lift ˜Dk(v) of v from M to ˜F k+. If v ranges over Vec(M) and f̃k over ˜F k+,
then ˜Dk(v)|f̃k ranges over the full tangent bundle T ˜F k+. It follows that g is
constant on the image of ˜F k+ in ̂Q, that is, g([f̃k,1]) = c for all f̃k ∈ ˜F k+.

By H-equivariance, one sees that g([f̃k, h]) = κ(h−1)cκ(h) for all [f̃k, h]
in ̂Q. Since u(q̂) = u0(q̂)g(q̂), it thus follows that u([f̃k, h]) = fcκ(h). If the
group element ỹ ∈ G(k,M) projects to y ∈ GL+(n, R), then u([f̃kỹ,1]) = fyc

equals u([f̃k, ρ(ỹ)]) = fcκρ(ỹ). From this, we deduce that κρ(ỹ) = c−1yc. �
Using this, we can bring the infinitesimally natural SpinG-structures in

the following standard form.

Lemma 6. (Standard form) The homomorphism ρ : G(k,M) → H of Eq. (20)
can be chosen in such a way that κ◦ρ : G(k,M) → GL+(n, R) is the canonical
projection, and the covering map u : ̂Q → F+ satisfies u([f̃k, h]) = fκ(h),
where f̃k ∈ ˜F k+ projects to f ∈ F+.

Proof. Suppose that a SpinG-structure is isomorphic to ̂Qρ := ˜F k+ ×ρ H with
u and ρ as in Lemma 5. Choose c̃ ∈ ˜GL(n, R) ⊆ H such that κ(c̃) = c,
and define ρ′ = c̃ρc̃−1. Then κ ◦ ρ′(ỹ) = y for all ỹ ∈ G(k,M) that project
to y ∈ ˜GL+(n, R). Define the SpinG-structure ̂Qρ′ := ˜F k+ ×ρ′ H with the
standard covering map u0 : ̂Q → F+ given by u0([f̃k, h]) = fκ(h). Then the
isomorphism ̂Qρ → ̂Qρ′ defined by [f̃k, h]ρ 	→ [f̃k, c̃h]ρ′ intertwines u with u0.

�
3.3.2. Standard Form of the Homomorphism. From Lemma 6, it follows that
not only the principal bundle ̂Q → M , but also the covering map u : ̂Q → F+

is entirely determined by the homomorphism ρ : G(k,M) → H. We proceed
by deriving a standard form for ρ.

Recall from (18) that G(k,M) 
 G(k, n) ×Z2 π1(F+). Further, we have
G(k, n) 
 ˜GL+(n, R) � GL>1, where GL>1 denotes the subgroup of k-jets
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that are the identity to first order. Decomposing ˜GL(n, R) 
 ˜SL(n, R) × R
+,

we may thus consider ρ as a map

˜SL(n, R) × R
+

� GL>1 ×Z2 π1(F+) → ˜SL(n, R) × R
+ ×Z2 G.

If the infinitesimal SpinG-structure is in the standard form of Lemma 6, then
ρ takes the following form.

Lemma 7. If sl(Rn) � g, then ̂Q is associated to a bundle ˜F k+ with order k =
1. Furthermore, ρ is completely determined by a homomorphism τ : π1(F+) →
G that identifies Z2 ⊆ π1(F+) with Z2 ⊆ G, a homomorphism γ : π1(F+) →
R

+, and a scaling element Λ ∈ g such that exp(RΛ) ⊆ G commutes with Im(τ).
We have

ρ(x̃, et, g, [p]) = (x̃, etγ([p]), etΛτ([p])).

Proof. Consider the derived Lie algebra homomorphism

ρ̇ : sl(n, R) × R � gl>1 → sl(n, R) × R × g,

and let ρ̇ij be its (i, j) component for i, j ∈ {1, 2, 3}. From Lemma 6, we find
that ρ̇12 and ρ̇21 are zero, whereas ρ̇11 = Idsl(n,R) and ρ̇22 = IdR. Since sl(n, R)
is a simple Lie algebra which is not contained in g, we have ρ̇13 = 0.

We now show that ρ̇(gl>1) = 0, so that ρ̇31 = ρ̇32 = ρ̇33 = 0. First of
all, as [sl(n, R), sl(n, R) + gl>1] equals sl(n, R) + gl>1 if n is at least 2 (cf. [19,
Lemma 8]), we have

ρ̇(gl>1) ⊂ [ρ̇(sl(n, R)), ρ̇(sl(n, R) + gl>1)] ⊂ sl(n, R) ⊕ 0 ⊕ 0.

But on the other hand, we have [R, gl>1] = gl>1, since R represents the mul-
tiples of the Euler vector field. This yields

ρ̇(gl>1) = [ρ̇(R), ρ̇(gl>1)] ⊂ 0 ⊕ 0 ⊕ g.

As the intersection is zero, we have ρ̇(gl>1) = {0}.
It follows that the only nonzero components of ρ̇ are ρ̇11 = Idsl(n), ρ̇22 =

IdR and the map ρ̇23 : R → g defined by the scaling element Λ := ρ̇23(1). Since
the groups ˜SL(n, R), R

+ and GL>1 are simply connected, we have

ρ(x̃, et, g, 1) = (x̃, et, etΛ).

As the image ρ(π1(F+)) commutes with (x̃, et, etΛ), it is a subgroup of R
+ ×

G commuting with exp(RΛ) ⊆ G. The restriction of ρ to π1(F+) is thus
determined by two homomorphisms γ : π1(F+) → R

+ and τ : π1(F+) → G,
where the image of the latter commutes with the scaling group exp(RΛ). �

Remark 8. Let z̃ be a generator of the centre of ˜SL(n, R). Since ˜SL(n, R) is
simply connected, we have ρ(z̃, 1, 1, 1) = (z̃, 1, 1). Using the equivalence re-
lations on both sides, we find ρ(1, 1, 1, ι∗(z̃)) = (1, 1, z), where z ∈ G is a
generator of Z2 ⊆ G. This shows that τ ◦ ι∗ is an isomorphism between Z2 and
Z2 ⊆ G, as required by Theorem 3. Moreover, we find that γ ◦ ι∗ is trivial, so
that γ factors through a homomorphism γ : π1(M) → R

+. Since ι∗ is injective,
the universal cover of M is spin by Proposition 2.
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3.3.3. Conclusion of the Proof of Theorem 3. The proof of the classification
theorem is completed by combining the standard form of ̂Q (Lemma 6) with
that of the homomorphism ρ (Lemma 7).

Proof of Theorem 3. Since ρ is trivial on the group GL>1 of k-frames that
agree with the identity to order 1, one deduces from Lemma 6 that

̂Q 
 ˜F+ ×ρ ( ˜GL+(n, R) ×Z2 G).

By Lemma 7 and Remark 8, the homomorphism ρ : G(1,M) → H depends only
on the homomorphism τ : π1(F+) → G, the homomorphism γ : π1(M)→ R

+,
and the element Λ of g. Recall that Q ⊆ ̂Q is the preimage under u : ̂Q → F+

of the bundle OF+
g of oriented, orthonormal frames for the metric g. Since

u([f̃ , (x̃, y)]) = fx, one can fix the representatives f̃ ∈ ˜F+, x̃ ∈ ˜GL+(n, R),
and y ∈ G of the class [f̃ , (x̃, y)] ∈ u−1(OF+

g ) so that x̃ = 1 and f ∈ OF+
g . We

thus find Q = {[f̃ , (1, y)] ; f̃ ∈ ˜OF+
g , y ∈ G}, and hence Q 
 ˜OF+

g ×τ G. �

3.3.4. Classification of the Splittings. The classification theorem ensures that
every infinitesimally natural SpinG-structure is isomorphic to a SpinG-structure
of the form Qτ := ˜OF+

g ×τ G. Note that Qτ is itself an infinitesimally natural
SpinG-structure. Indeed, the principal H-bundle ̂Qτ = ˜F+ ×τ G comes with a
canonical splitting σ : Vec(M) → aut( ̂Qτ ), induced by the splitting ˜D for ˜F+.

This splitting, however, is not necessarily identical to the one induced by
̂Q. To obtain a model for ̂Q that yields the correct natural splitting σ as well as
the correct covering map u, one proceeds as follows. The metric g on M gives
rise to a volume form λ. Denote by Fλ ⊆ F+ the principal SL(n, R)-bundle
of frames with volume 1. Identifying Fλ with the quotient of F+ by R

+, we
obtain a principal R

+ × π1(F )-bundle ˜F+ → Fλ.
Given a homomorphism τ : π1(F+) → G that identifies Z2 ⊆ π1(F+)

with Z2 ⊆ G, a homomorphism γ : π1(F+) → R
+, and an element Λ of g

such that exp(RΛ) commutes with Im(τ), one constructs the homomorphism
ρ : R

+ × π1(F ) → R
+ × G by

ρ(et, [p]) = (etγ(π∗[p]), etΛτ([p])).

Since γ maps into an abelian group, it factors through the quotient H1(M, Z)
= π1(M)/[π1(M), π1(M)] of π1(M) by its commutator subgroup.

The desired bundle ̂Qρ is then obtained by associating R
+ × G to ˜F+ →

Fλ along the homomorphism ρ, that is,

̂Qρ := ˜F+ ×ρ (R+ × G). (22)

From the proof of Theorem 3, we then obtain the following corollary.

Corollary 8. Under the assumptions of Theorem 3, the bundle ̂Q is isomorphic
to ̂Qρ, with covering map u : ̂Qρ → F+ given by u([f̃ , (et, g)]) = fet, and
splitting σ : Vec(M) → aut( ̂Qρ) induced by the splitting D̃ for ˜F+.
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In short, an infinitesimally natural SpinG-structure (Q,u) is determined
by a homomorphism τ : π1(F ) → G that that identifies Z2 ⊆ π1(F ) with
Z2 ⊆ G. For a given SpinG-structure (Q,u), the splittings are determined by
an element Λ ∈ gIm(τ) and a class log(γ) ∈ H1(M, R).

4. Applications

It was already recognised by Hawking and Pope [16] that the existence of gen-
eralised spin structures may place restrictions on the space–time manifold M .
When generalised spin structures were classified by Avis and Isham [2], it was
found that if the Lie group G contains SU(2), then ‘universal spin structures’
in the sense of [4] exist, irrespective of the topology of M . In particular, there
are no topological obstructions to the existence of a SpinG-structure as soon
as SU(2) ⊆ G.

This is no longer the case for infinitesimally natural generalised spin
structures. In this setting, universal spin structures exist only for certain non-
compact groups. For compact G, the requirement that there exist a homo-
morphism π1(F+) → G that maps Z2 ⊆ π1(F+) onto Z2 ⊆ G provides an
obstruction on the space–time manifold M in terms of the group G of internal
symmetries.

In this section, we work out these obstructions for a number of spe-
cific gauge theories. For concreteness, we assume that M is an oriented, time-
oriented, Lorentzian manifold of dimension 4. The time-orientability allows us
to replace ˜SO(η) by SL(2, C).

4.1. Weyl and Dirac Spinors

Consider a single, massless, charged Weyl spinor coupled to a U(1) gauge
field. In this setting, the gauge group G is U(1), and V = C

2 ⊗ Cq is the
two-dimensional defining representation of SL(2, C) tensored with the one-
dimensional defining representation of U(1). This representation descends to
Spinc = SL(2, C)×Z2 U(1). Given a Spinc-structure Q, the configuration space
consists of sections of the bundle J1( ̂Q) ×Spinc V → M .

If Q is infinitesimally natural, then Theorem 3 yields a homomorphism
τ : π1(F+) → U(1) that sends the image of π1(GL+(n, R)) in π1(F+) to {±1}.
If π1(M) is finitely generated, then Im(τ) ⊆ U(1) is a finitely generated sub-
group containing {±1}, hence Im(τ) 
 Z

n × (Z/2mZ) for certain n,m ∈ N.
In particular, there exists a homomorphism π1(F+) → Z/2mZ ⊆ U(1) that
maps the image of π1(GL+(n, R)) in π1(F+) to {±1}. Since every such homo-
morphism yields an infinitesimally natural Spinc-structure by the procedure
outlined in Sect. 3.1, we arrive at the following conclusion.

Corollary 9. Suppose that π1(M) is finitely generated. Then M admits in-
finitesimally natural Spinc-structures if and only if there exists a homomor-
phism π1(F+) → Z/2mZ ⊆ U(1) that identifies the image of π1(GL+(n, R))
in π1(F+) with {±1}.
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The topological requirements on M for admitting infinitesimally natural
Spinc-structures are more restrictive than those for admitting ordinary Spinc-
structures. However, they are less restrictive than those for admitting spin
structures. Indeed, if m is odd, then the sequence

1 → Z/2Z → Z/2mZ → Z/mZ → 1

of groups is split. Every homomorphism π1(F+) → Z/2mZ then induced a ho-
momorphism π1(F+) → Z/2Z, and hence a spin structure on M . If m is even,
then this sequence does not split. In that case, M may admit infinitesimally
natural Spinc-structures without admitting ordinary spin structures.

4.1.1. Dirac Spinors. For Dirac spinors, V is the 4-dimensional representa-
tion C

4 ⊗ Cq, where the Clifford representation C
4 splits into two identical

irreducible representations C
2 ⊕ C

2 under SL(2, C), the left-handed and right-
handed spinors.

Note that the unitary commutant of SL(2, C) in V is U(2) rather than
U(1). For a discrete subgroup H ⊆ U(2), we can, therefore, form the group
U(1)H generated by H and the gauge group U(1) and consider SpinG-structures
Q with structure group G = U(1)H . The generic fibre of the bundle J1( ̂Q)×SpinG

V is the same for G = U(1) as it is for G = U(1)H , so adding H will not change
the space of local sections.

If H is a discrete group of global symmetries of the Lagrangian, then the
action is well defined for sections of this bundle. Indeed, the action is invariant
under constant H-valued transformations because H is a global symmetry
group, and the part of the transition functions involving H will be constant
since H is discrete.

For a massive Dirac spinor, where the Lagrangian contains a term of
the form mψψ, the subgroup of U(2) which preserves the Lagrangian is pre-
cisely the diagonal U(1). This means that the infinitesimally natural SpinG-
structures are precisely the infinitesimally natural Spinc-structures classified
above, and there is no possibility to add a discrete subgroup H.

For massless Dirac spinors, where the term mψψ is absent, the left and
right Weyl spinors decouple, so that the relevant symmetry group is UL(1) ×
UR(1). Although the requirement on a manifold to carry a SpinG-structure
does not change, this does give us more SpinG-structures for the same manifold.

More generally, we may enlarge the gauge group G by any group H of
discrete symmetries of the Lagrangian in order to obtain infinitesimally natural
SpinG-structures.

4.2. The Standard Model

In the standard model, the gauge group G is (SU(3) × SU(2)L × U(1)Y )/N ,
with N the cyclic subgroup of order 6 generated by (e2πi/31,−1, e2πi/6). It
is isomorphic to S(U(3) × U(2)), a subgroup of SU(5), and it has a unique
central subgroup of order 2 generated by diag (1, 1, 1,− 1,− 1).
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The fermion representation V for a single generation can be conveniently
described (see e.g. [5]) by C

2 ⊗∧•
C

5, the tensor product of the defining repre-
sentation of SL(2, C) and the exterior algebra of the defining representation of
SU(5). Under SL(2, C)×S(U(3)×U(2)), this decomposes into 12 irreps corre-
sponding to left- and right-handed electrons, neutrinos, up and down quarks
and their antiparticles.

Unfortunately, diag (1, 1, 1,−1,−1) ∈ G acts by +1 on right-handed fermions,
whereas −1 ∈ SL(2, C) acts by −1. This means that V does not define a rep-
resentation of SL(2, C) ×Z2 S(U(3) × U(2)) if one were to identify the central
order 2 elements on both sides.

As the gauge group alone is of no use when trying to find a SpinG-
structure, one has to involve the group of global symmetries of the standard
model Lagrangian. It contains the gauge group G, but also (at least on the
classical level) the global U(1)B × U(1)L-symmetries that rotate quarks and
leptons independently (these are connected to baryon and lepton number).

We conclude that the only infinitesimally natural SpinG-structures rele-
vant to the standard model are the ones associated to homomorphisms

π1(F+) → Ĝ (23)

that preserve Z2, the subgroup of U(1)B × U(1)L generated by (− 1,− 1). In
this expression, Ĝ is the group of global symmetries of the standard model
Lagrangian, which at least contains S(U(3) × U(2)) × U(1)B × U(1)L.

Remark 9. For three generations of fermions, there is some additional freedom.
The relevant representation V ⊕V ⊕V then admits for an extra U(3)-symmetry
commuting with both space–time and gauge transformations.

4.2.1. Spherical Space Forms. For G = S(U(3)×U(2))×U(1)B ×U(1)L, any
manifold which possesses an infinitesimally natural SpinG-structure automat-
ically permits an infinitesimally natural Spinc-structure. On the other hand,
there do exist SpinG-structures for the standard model which are not Spinc.
We construct an example.

Consider de Sitter space H = {�x ∈ R
5| − x2

0 + x2
1 + x2

2 + x2
3 + x2

4 = 1},
which has a pseudo-Riemannian metric g with constant curvature induced by
the Minkowski metric in the ambient R

5. Its group of orientation preserving
isometries is SO(1, 4), and H 
 SO(1, 4)/SO(1, 3). Denote by OF+↑

g (H) the
bundle of orthogonal frames with positive orientation and time orientation.
By viewing OF+↑

g (H) as a submanifold of R
5 × SO(1, 4)0, one can see that

SO(1, 4)0 acts freely and transitively by x : f 	→ x∗f . Therefore, OF+↑
g (H) is

diffeomorphic to SO(1, 4)0.
Now let Γ ⊆ SO(4) be a discrete group which acts freely, isometrically

and properly discontinuously on S3. Manifolds of the type Γ\S3 are called
spherical space forms (see [40] for a complete classification). As Γ includes
into SO(1, 4)0, it acts on H, making M = Γ\H into a pseudo-Riemannian
manifold with constant curvature.

As H is simply connected, we see that π1(M) = Γ. We calculate the
homotopy group of the frame bundle. Because OF+↑

g (M) is just Γ\OF+↑
g (H),
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it is isomorphic to Γ\SO(1, 4)0. Going to the universal cover, we see that
OF+

g (M) = ˜Γ\ ˜SO(1, 4)0. As Γ ⊆ SO(4), we may consider ˜Γ to be the preimage
of Γ in Spin(4). As the universal cover is simply connected, it is now clear
that π1(OF+↑

g (M)) = ˜Γ. We get for free a homomorphism Γ̃ → Spin(4) 

SU(2)l×SU(2)r, which maps the noncontractible loop in the fibre to (−1,−1).

Triggered by the WMAP-data on cosmic background radiation, it has
been proposed that space may carry the topology of I∗\S3, where Γ = I∗ is
the binary icosahedral group [24,34]. Although these views are far from univer-
sally accepted [20], it is nonetheless interesting in this connection to note that
M = I∗\H, which has spacelike hypersurfaces I∗\S3, allows for infinitesimally
natural SpinG-structures which do not stem from Spinc-structures.

Under the identification Spin(4) 
 SU(2)l×SU(2)r, we see that Γ = I∗×1
lives only in SU(2)l, so that Γ̃ is the direct product of I∗ × 1 and the Z2

generated by (−1,−1). One can, therefore, define a homomorphism (23) by
identifying SU(2)l with SU(2)L ⊆ G, and mapping (−1,−1) to (−1,−1) ∈
U(1)B × U(1)L. This yields an infinitesimally natural SpinG-structure which
uses the noncommutativity of the gauge group in an essential fashion. This
means that M = I∗\H carries more infinitesimally natural SpinG-structures
than just the ‘ordinary’ Spinc-structures.

4.3. Extensions of the Standard Model

The fact that S(U(3)×U(2)) does not contribute to the obstruction of finding
infinitesimally natural SpinG-structures on M is due to the fact that it never
acts by −1 on V . This is not true for some GUT-type extensions of the standard
model, such as the Pati–Salam SU(2)L ×SU(2)R ×SU(4) model and anything
which extends it, for example Spin(10).

If N is the group of order 2 generated by (−1,−1,−1), then infinitesi-
mally natural SpinG-structures in the Pati–Salam model correspond, neglect-
ing global symmetries, to homomorphisms

π1(F+) → SU(2)L × SU(2)R × SU(4)/N

which take Z2 to 〈(−1,−1,1)〉. It is therefore possible that a space–time
manifold M admits infinitesimally natural SpinG-structures for the Pati–Salam
model, but not for the standard model. Indeed, M has this property if the
smallest quotient of π1(F (M)) containing ι∗(Z2) is a nonabelian subgroup of
SU(2)L × SU(2)R × SU(4) containing (−1,−1,1).
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