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Abstract 
 

A second order front tracking method is developed for solving the Euler equations of inviscid fluid 
dynamics numerically. Front tracking methods are usually limited to first order accuracy, since 
they are based on a piecewise constant approximation of the solution. Here the second order 
convergence is achieved by building a piecewise linear reconstruction of the piecewise constant 
front tracking solution in a post-processing step. The linearization is performed by decomposing 
the piecewise constant solution of the hyperbolic system into its wave components and by 
linearizing the wave solutions separately. In order to achieve a physically correct linearization, 
the front types of the previously developed improved front tracking method are employed. It is 
illustrated numerically for the one-dimensional unsteady interacting blast waves problem and a 
two-dimensional supersonic airfoil flow validation study that the proposed front tracking method 
can achieve second order convergence also in the presents of strong discontinuities. 
Key words: Front tracking, Second order, Meshless methods, Euler equations 

 
 
1 Introduction 
 
Front tracking is an effective tool for solving hyperbolic conservation laws in the presence of strong 
discontinuities. Often a type of front tracking method is used that models the discontinuities by 
separate degrees of freedom in addition to a fixed background mesh for capturing the continuous 
phenomena as introduced by Richtmyer and Morton [10].  
 Also meshless front tracking methods have been developed which resolve both the discontinuities 
and the continuous regions of the solution domain [6]. This type of methods initiated by Risebro and 
Tveito [12] do not require a background mesh by approximating continuous phenomena using a series 
of small discontinuities. The latter type of front tracking methods has been used as an analytical tool 
for studying scalar equations and systems of hyperbolic conservation laws in for example [1,2,4]. In 
this paper the class of meshless front tracking methods is considered as a numerical approach for 
solving the hyperbolic Euler equations of inviscid fluid mechanics. 
 Meshless front tracking methods are based on the piecewise constant approximation of the solution 
of local Riemann problems. The Riemann problems originate from discontinuities in a piecewise 
constant approximation of the initial conditions of an initial-boundary value problem. The piecewise 
constant solution of these local Riemann problems results in the introduction of new discontinuities. 
The location of these moving discontinuities in the space-time domain is tracked by fronts. At an 
intersection of two fronts, the front interaction is governed by the new local Riemann problem, and so 
on. 
 This front tracking method has been applied to one-dimensional problems in shallow water flows, 
gas dynamics, and polymer flooding in [3,7,11]. One-dimensional front tracking is of interest for, for 
example, pipe flows and shock tube problems. An equivalent algorithm can also be used to simulate 
two-dimensional supersonic flows [15]. The dimensional splitting techniques has been used to extend 
front tracking to higher dimensions by Holden, Lie, et al. [5,8]. 
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 Recently an improved front interaction model was proposed for a physically more accurate 
simulation of the Euler equations [15]. The model employs the wave phenomena of the intersecting 
fronts to better predict the wave pattern created at the front interaction based on gas dynamics theory. 
To that end, wave front types are used to track the physical phenomena that the fronts represent. 
 Due to the piecewise constant approximation of the solution, front tracking methods usually result 
in first order error convergence [12]. It is known that, although a piecewise constant approximation 
results locally in a first order error, integral quantities can be approximated with second order 
accuracy. This was numerically illustrated for the conservation of mass, momentum, and energy [15], 
and the location of the fronts [14]. A fully second order front tracking method for scalar conservation 
laws in one dimension has been developed by Lucier [9] based on a piecewise linear approximation. 
 In this paper, a second order front tracking method for the system of Euler equations is proposed 
based on the front types of the improved front tracking method [15]. The second order accurate 
solution is obtained by a a posteriori piecewise linear reconstruction of the piecewise constant front 
tracking solution. In contrast to scalar equations, systems of conservation laws allow for multiple wave 
families which can coexist in any location in space-time. The piecewise linear approximation is, 
therefore, constructed by decomposing the front tracking solution into a series of wave solutions and 
by linearizing these wave solutions separately. This approach is based on the observation that, 
although the nonlinear problem itself cannot be solved by summing wave solutions, the front tracking 
solution can nonetheless be decomposed into a summation of wave solutions. The front types of the 
improved front tracking method are employed in this linearization to obtain a physically accurate 
reconstruction. 
 The formulation of the developed piecewise linear front tracking method is presented in section 2. 
The two intersecting blast waves benchmark problem is considered in section 3 to illustrate the 
properties of the method in case of strong discontinuities. In section 4 results for a two-dimensional 
supersonic airfoil flow application are validated in comparison to experimental data. The main 
conclusions are summarized in section 5. 
 
2 Second order front tracking for the Euler equations 
 
Standard front tracking for the Euler equations is briefly reviewed in section 2.1. In section 2.2 the 
formulation of the improved front tracking method is revisited. The second order extension based on 
piecewise linear reconstruction is introduced in section 2.3. 
 
2.1 Meshless front tracking 
 
The Euler equations for one-dimensional unsteady inviscid flow without heat conduction are given in 
the conservation formulation by  
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with state vector U(x,t), flux vector F(x,t), and initial condition U0(x) in terms of density ρ(x,t), 
velocity u(x,t), static pressure p(x,t), total energy E(x,t), and enthalpy H(x,t) as function of spatial 
coordinate x∈ℜ and time t∈ℜ+. A perfect gas is considered for which holds E=(1/(γ-1))p/ρ+u2/2 and 
H=E+p/ρ, with ratio of specific heats γ=cp/cv. 
 A front tracking method approximates the solution of (1) in the space-time plane by a piecewise 
constant function based on uniform flow conditions Ui in ncells cells Ai with i=1,..,ncells. The cell 
boundaries are composed of nfronts linear front paths fi with i=1,..,nfronts, where the fronts constitute 
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physical wave phenomena, such as shock waves, contact waves, and characteristics. The starting and 
end points of the front paths fi form a set of nnodes nodes pi=(xp,i,tp,i) in space-time with i=1,..,nnodes. 
Pointers are used to establish the relation between cells Ai and fronts fi, and fronts fi and nodes pi. 
 The first step in a meshless front tracking algorithm is the piecewise constant discretization of the 
initial conditions U0(x). The discontinuities at the nodes pi in these discretized flow conditions 
resemble locally the initial conditions of a Riemann problem given by 
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with U- and U+ the constant left and right states, respectively. The simulation is then initiated by 
solving the local Riemann problems at the nodes pi in the discretized initial conditions. The piecewise 
constant approximation of the solutions of the Riemann problems leads to the creation of cells Ai and 
fronts fi with front velocities uf,i, which are constant in time. In nonlinear problems the front velocities 
uf,i are in general different for different fronts. At the location of the intersection of fronts in space-
time, a new node pi is created and a local Riemann problem is again solved, and so on until a certain 
time t=tstop is reached. The accuracy of the simulation is mainly governed by the number of fronts nf 
that is used to discretize the rarefaction fans. The number of fronts can also be chosen adaptively based 
on the strength of the rarefaction fan using a discretization parameter δ. The resulting piecewise 
constant approximation converges with first order accuracy [6]. Usually only interactions of two fronts 
are considered without loss of generality. 
 
2.2 Formulation of the improved front tracking algorithm 
 
In the improved front tracking method for the Euler equations [15] a better physical modeling of the 
front interactions is obtained by explicitly taking into account the wave phenomena that the fronts 
represent. The following front types ftype,i are used to track the wave phenomena of the fronts 
 
  (4) { ,,,,,,,,, rcwicwlcwcdrchichlchswf itype ∈ }
 
for i=1,..,nfronts. The front types distinguish between shock waves (sw), left/internal/right 
characteristics of a fan of characteristics (lch/ich/rch), contact discontinuities (cd), and 
left/internal/right contact waves of a region of continuous change of entropy (lcw/icw/rcw). Also front 
families 
 
 { },1,0,1, −∈ifamilyf  (5) 
 
for i=1,..,nfronts, are assigned to the fronts to denote left running -1, right running 1, and convective 0 
fronts. The front type ftype,i and front family ffamily,i govern both the relation for the front velocity uf,i and 
the interaction with other fronts in the improved front interaction model. The front interaction model 
prescribes the wave types  
 
  (6) { ,,,,,,,,,, crwrcwicwlcwcdrchichlchsww ktype ∈ }
 
with k∈{left, middle, right}, of the created left, middle, and right waves at a front interaction as 
function of the front types ftype,i and wave families ffamily,i of the two intersecting fronts, ileft and iright. 
Wave types wtype,k differ from front types ftype,i in the sense that the former include centered rarefaction 
waves (crw). A centered rarefaction wave (crw) is discretized by a series of fronts representing 
characteristics (lch/ich/rch). The model consists of three tabulated functions gk, for which holds 
 
 ( ),,,, ,,,,, rightleftrightleft ifamilyifamilyitypeitypekktype ffffgw =  (7) 
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with k∈{left, middle, right}. The functions gk are derived from theoretical gas dynamics and are given 
in tabulated form in [15]. The front types ftype,i of the fronts created at the intersection point are then 
derived from the created wave types wtype,k as follows 
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The front families ffamily,i are determined by whether a front is created as part of a left, middle, or right 
wave at a front interaction 
 

  (9) 
⎪
⎩

⎪
⎨

⎧

=
=
=−

=
.,1

,,0
,,1

,

rightk
middlek
leftk

f ifamily

 
A non-standard Riemann solver, which takes into account whether the created wave types wtype,k are 
isentropic or possibly non-isentropic, is used to determine the velocity of the created fronts ufront,i and 
the flow conditions in the created cells Ui. If the created wave type is a shock wave wtype,k=sw but the 
Riemann solver predicts an expansion, then the created wave is represented by a centered rarefaction 
wave, wtype,k=crw. 
 
2.3 Second order piecewise linear reconstruction 
 
A second order accurate front tracking solution is obtained by using a piecewise linear reconstruction 
of the original piecewise constant front tracking approximation in a post-processing step. The 
piecewise linear solution is constructed by decomposing the front tracking approximation into a 
summation of wave components and by linearizing each wave solution separately. In order to 
decompose the piecewise constant approximation into its nwave wave solutions, the waves present in the 
flow are numbered by wave numbers wavenumber,m, with m=1,..,nwaves. A wave can in this context be a 
shock wave, a fan of characteristics, a contact discontinuity, or a region of continuous change of 
entropy. In order to track which fronts belong to which wave, the wave numbers wavenumber,m are 
assigned to the fronts in the form of front numbers fnumber,i, with i=1,..,nfronts, for which holds 
 
 ,,, mnumberinumber wavef =  (10) 
 
if front i is part of wave m. Based on the numbering of the fronts by the wave numbers, the solution 
U(x) at t=tstop is decomposed into a series of wave solutions Vm(x), for m=1,..,nwaves, 
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where for the reference value holds Uref=U(xref) with xref the left most point of the spatial domain. The 
individual wave solutions Vm(x) are then linearized to obtain the linear wave solutions Wm(x) while 
taking into account the front types ftype,i for fnumber,i=wavenumber,m and m=1,..,nwaves to obtain a physically 
correct linearization. The piecewise linear solution Ulin(x) at t=tstop is finally obtained by summing the 
linearized wave solutions Wm(x) 
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3 Two interacting blast waves problem 
 
A classical test problem for assessing the performance of numerical methods in the presents of strong 
discontinuities is the two interacting blast waves problem introduced by Woodward [16]. The blast 
waves shock tube problem on the domain x=[0,1] is defined by the initial condition consisting of three 
uniform regions for the pressure 
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and constant velocity u=0 and density ρ=1 between reflecting walls at x=0 and x=1. The solution until 
t=0.04 involves the interaction of the strong shock waves and contact discontinuities with the 
reflections of the rarefaction waves created at the jumps in the initial condition. This results in a highly 
complex interaction in the collision region as illustrated by the space-time front tracking solution for a 
discretization of the rarefaction waves with δ=0.1 in Figure 1a. The piecewise linear front tracking 
solution of the density ρ, velocity u, and pressure p at t=0.038 for δ=0.05 of Figures 1b to 1d gives a 
smooth approximation of the continuous regions and a sharp resolution of the discontinuities. The 
predicted flow field shows excellent agreement to the benchmark results presented in [17]. 
 

 
(a) Space-time 

 

 
(b) Density 

 

 
(c) Velocity 

 

 
(d) Pressure 

 
Figure 1   Solution of the two interacting blast waves problem up to t=0.04 for δ=0.1 and at t=0.038 for δ=0.05. 
 
 The time evolution of the density ρ between t=0 and t=0.038 at times also considered in [17] is 
given in Figure 2. Initially for t≤0.026 the density shows two separated left and right wave patterns 
with strong discontinuities emanating from the left and right discontinuity in the initial conditions 
resulting in a maximum density of ρ=6.0. After the intersection of the two shock waves the density 
peaks at ρ=28.52 for t=0.028 and decreases with increasing time. The error convergence for u, p, and 
ρ of piecewise linear front tracking is compared in Figure 3 to that of piecewise constant front tracking 
as function of δ. The results for t≤0.026 before the collision of the shock waves clearly illustrate that 
the piecewise linear approximation can achieve second order convergence also in this problem with 
strong discontinuities. After the shock wave collision for t≥0.028 lower values of discretization 
parameter δ are required to start to reach second order convergence due to the higher detail in the 
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complex solution at these times. The piecewise linear front tracking method consistently achieves 
higher convergence rates and lower errors than the first order piecewise constant front tracking 
method. 
 

 
(a) t=0.01 

 

 
(b) t=0.016 

 

 
(c) t=0.026 

 

 
(d) t=0.028 

 

 
(e) t=0.03 

 

 
(f) t=0.034 

 
Figure 2   Density of the two interaction blast waves problem at t=0.038 for δ=0.05. 

 
4 Two-dimensional supersonic airfoil flow 
 
The meshless front tracking method is also an effective approach for simulating two-dimensional 
supersonic steady Euler flows. In that case the free stream flow direction instead of the time axis is 
treated as the hyperbolic coordinate. This approach is applicable if the velocity component in the 
direction of the undisturbed flow streamlines is supersonic throughout the whole flow field. This 
implies, for example, an airfoil flow with attached shock waves at the sharp leading and trailing edges 
of the airfoil with sufficiently small thickness and angle of attack. In [15] a two-dimensional front 
tracking algorithm was considered previously in a piecewise constant formulation and only for zero 
angle of attack. Here the piecewise linear front tracking method is applied to predict the lift-drag curve 
of a supersonic airfoil over a range of angles of attack. 
 In the Euler equations for two-dimensional supersonic flow an additional variable for the velocity 
component v in the y-direction perpendicular to the free stream flow direction coordinate x is 
introduced. The resulting equations are in a similar notation as the one-dimensional Euler equations (1) 
given by 
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(a) t=0.01 

 

 
(b) t=0.016 

 

 
(c) t=0.026 

 

 
(d) t=0.028 

 

 
(e) t=0.03 

 

 
(f) t=0.034 

 
Figure 3   Error convergence of the piecewise linear (FT2) and piecewise constant (FT1) front tracking method 
for the two interacting blast waves problem. 
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The front tracking algorithm requires only minor modifications to be able to solve these two-
dimensional Euler equations. The value of the additional unknown v has to be stored for every cell and 
the one-dimensional Riemann solvers have to be replaced by their two-dimensional supersonic 
counterparts. The wave types and the front interaction tables remain unchanged. 
 The considered geometry is a symmetrical circular-arc airfoil with chord length c=0.1m and 12% 
thickness. The constant curvature of the airfoil defined by a radius of curvature of R=0.21133m results 
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in a leading and trailing edge semi-opening angle of θ0=13.69deg. In order to solve the airfoil flow 
problem for non-zero angle of attack the flow domain is divided into the three subdomains shown in 
Figure 4. The three domains are separated by a horizontal line from the leading edge pointing in the 
upstream direction and a vertical line through the trailing edge. The flow in the resulting domains I and 
II can be resolved independently from each other and potentially in parallel due to the hyperbolicity of 
the problem. The solutions of I and II at the x-coordinate of the trailing edge are used as boundary 
condition for domain III, which contains the trailing edge shocks and the inviscid entropy wake behind 
the airfoil. For computing the aerodynamic forces on the airfoil using surface pressure integration it is 
sufficient to consider domains I and II only. 
 

 
Figure 4   Spatial domain decomposition for the two-dimensional supersonic airfoil flow. 

 
 The flow solutions for two cases with different free stream Mach numbers M∞=2 and M∞=2.5 and 
angle of attack α=5deg are given in Figure 5 in terms of the Mach number field and the computational 
grid for a discretization of the airfoil with 40 points at each side. The piecewise linear front tracking 
results show a sharp resolution of the curved leading and trailing edge shock waves. The case for 
M∞=2.5 results in sharper shock wave angles with respect to the free stream flow direction and a larger 
range of Mach numbers in the flow field. Figures 5c and 5d illustrate the highly efficient discretization 
of the spatial flow domain with only two cells for representing the undisturbed flow upstream of the 
leading edge shock waves. The curvature of the shock waves is resolved by the interaction of the 
shock waves with the rarefaction characteristics emanating from the airfoil surface. This results in the 
creation of reflected characteristics and contact waves. These secondary phenomena also result in the 
prediction of the non-uniform flow conditions downstream of the trailing edge shock waves. 
 

 
(a) Mach field M∞=2 

 
(b) Mach field M∞=2.5 

 

 
(c) Grid M∞=2 

 
(d) Grid M∞=2.5 

 
Figure 5   Mach field and grid for the two-dimensional supersonic airfoil flow. 
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 The rectangular contour in Figures 5a and 5b denotes the integration contour used in an 
experimental campaign for PIV based load determination of the same configuration by Souverein et al. 
[13]. The PIV velocity measurements are based on illumination of 50nm TiO2 seeding particles in a 
1.5mm thick light sheet produced by a Big Sky Laser CFR PIV-200 Nd:YAG with a 532nm 
wavelength, 200mJ/pulse energy, and 6ns pulse duration. The 146.5mm×80.1mm field of view is 
imaged with a 1280×1024 pixel CCD camera where the vertical size is cropped to 800 pixels. 
 The validation comparison of the computed flow conditions and the measured velocities along the 
contour is given in Figure 6. The flow conditions along the contour are displayed in clockwise 
direction starting at the top left corner as function of the curvilinear abscissa normalized by the airfoil 
chord s/c. The dotted vertical lines indicate the location of the corners of the integration contour. The 
velocity components predicted by the front tracking solution of the Euler equations closely agree with 
the experimental data which indicates that viscous effects are generally small in this flow problem. 
The numerical and experimental results also show the same trends for the velocity components as 
function of the Mach number. The numerical solution shows clearly the inviscid entropy wake behind 
the airfoil for the streamwise velocity component u. The entropy wake is largest behind the upper 
surface due to the high pre-shock Mach number in combination with the relatively high curvature of 
this trailing edge shock wave. The slip line emanating from the trailing edge of the airfoil is also 
resolved as a true discontinuity. In the experimental results the local effect of the viscous wake can be 
recognized. 
 

 
(a) Velocity components M∞=2 

 

 
(b) Velocity components M∞=2.5 

 

 
(c) Pressure, density, temperature M∞=2 

 

 
(d) Pressure, density, temperature M∞=2.5 

 
Figure 6   Computed flow conditions and measured velocity components (dashed lines) on the integration 
contour for the two-dimensional supersonic airfoil flow. 
 
 Finally the lift-drag curve of the airfoil for angles of attack between α=0deg and α=6deg is 
considered in Figure 7 based on pressure integration over the airfoil surface in terms of the lift and 
drag coefficients 
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with lift and drag forces L and D. As an illustration the second order convergence of Cl and Cd for 
M∞=2 and α=5deg is given in Figure 7a for an increasing number of airfoil surface discretization 
points with respect to a finer reference solution. The lift-drag curve of Figure 7b shows the typical 
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parabolic trend with lower lift and drag coefficients for the higher Mach number of M∞=2.5 in the 
considered range of angles of attack. 
 

 
(a) Error convergence 

 

 
(b) Lift-drag curve 

 
Figure 7   Lift and drag coefficients for the two-dimensional supersonic airfoil flow. 

 
5 Conclusions 
 
A second order front tracking method is presented for the numerical treatment of the Euler equations. 
The second order convergence is obtained by linearizing the piecewise constant front tracking solution 
in a post-processing step. The piecewise linear solution is obtained by first decomposing the front 
tracking approximation in wave solutions. The wave solutions are then linearized separately based on 
the physical phenomena that the fronts represent as tracked by the front types of the improved front 
tracking method. 
 The piecewise linear front tracking method is applied to two-dimensional hyperbolic Euler flow 
problems. The error convergence study for the two interacting blast waves problem shows a second 
order accuracy also for the interaction of strong discontinuities. The flow solutions illustrate the sharp 
resolution of discontinuities and the smooth approximation of continuous flow phenomena. 
 The validation study for a two-dimensional supersonic airfoil flow over the range of angles of 
attack up to α=6deg and for Mach numbers M∞=2 and M∞=2.5 shows a good agreement with the 
experimental data. The resulting computational grids illustrate the highly efficient discretization of the 
spatial flow domain by the front tracking method. The predicted lift and drag coefficients in the lift-
drag diagram also show a second order convergence rate. 
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