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Abstract

This thesis provides a theoretical framework for the arise of stop-and-go waves in platoons of
Human-driven Vehicles (HVs) on a ring road topology. Possibilities and limitations for traffic
control and suppression of such waves via a single Autonomous Vehicle (AV) are considered.
Being HVs prone to show string instability, i.e. a type of instability caused by a disturbance
acting on one of the vehicles and which is amplified throughout the platoon, the analysis
starts from the observation that the standard notion of string stability on a ring road is too
demanding for a mixed (human and automated) traffic scenario. Thus, after providing a
new definition of string stability on a ring roadway, two directions are pursued. First, only
HVs on a ring roadway are considered and their stability /instability analyzed. Second, a
mixed-platoon with a single AV and the remaining HVs is placed on the ring and the AV is
designed in order to ensure equilibrium stability. By means of this investigation, possibilities
and limitations of traffic control via a single AV are emphasized.
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“Just keep standing.”
— Rick Rigsby






Chapter 1

Introduction

A traffic jam on a highway is a very familiar phenomenon that has been experienced by all the
road users and which often occurs without apparent reason. It is commonly understood that
a "bottleneck”, like for instance on-ramps, tunnels and sags can trigger traffic jams because
of the sudden increase of vehicles density on the road. Commonly, bottlenecks can cause
traffic jam but they do not represent the essential origin of it. The precursor experiment of
Sugiyama in 2008 [1] shows how the emergence of traffic jams can be caused by the simple
interaction among vehicles, which is originated by drivers seeing other vehicles. Therefore,
considering a fixed value of vehicles density, human driving style can represent the principal
cause of fluctuations into traffic flow; or conversely, in congested situations, a cooperative
interaction among vehicles can actually improve these scenarios.

Concerning the relation between human drivers and traffic flow, the main purpose of the
aforementioned Sugiyama experiment is to provide an experimental evidence to the idea of
human-triggered stop-and-go waves. Figure 1-1 shows a snapshot of the setup used in [1], a
circular single-lane roadway, which can be easily interpreted as a model for an infinite road
in which the dynamics are repeated any N vehicles. In this specific case, 22 vehicles drive on
a ring road topology of 230m of circumference. Despite Sugiyama gives a first experimental
evidence, earlier works such as [2, 3] already endorsed the idea that human behavior can
originate traffic phases and eventually trigger stop-and-go waves with a remarkable impact
in terms of fuel consumption and time. To tackle or at least to mitigate this problem, the
development of traffic control systems and strategies has gained a central role in the past 20
years.

1-1 Prior research on traffic control

In the recent past, different traffic control infrastructures have been developed with the aim
to reduce traffic congestion and improve the drivers experience on the roadways. Examples of
these technologies are ramp metering systems, which prevent situations of critical density on
the highways, and variable speed limit systems, which are useful to prevent the exponential

Master of Science Thesis Vittorio Giammarino



2 Introduction

Figure 1-1: A snapshot of the experiment on a circular road [1]. In this case, the circumference
is 230m, and the number of vehicles is 22.

growth of queue and traffic jams [4, 5, 6]. Nowadays, the transportation system is undergoing
a major transition from full Human-driven Vehicle (HV) to Autonomous Vehicle (AV). As
automation increases, new opportunities are arising to use AVs to control traffic flow. At-
tempts have been done trying to explore adaptive cruise control [7, 8] and, when the mutual
vehicles communication is enabled, cooperative adaptive cruise control [9, 10] to influence the
vehicular traffic by smoothing the flow or increasing its rate. In these cases the traffic flow
is controlled by means of platoon control. In platooned traffic, all vehicles on the roadway
are considered equipped with control and communication technology, and they can be cen-
trally controlled to achieve stability. This ideal situation allows the vehicles to travel with
extremely short spacing while maintaining stable flow dynamics. Although AV-only systems
will be of great interest for the far future, before that, a long period of mixed HV-AV will
occur and in the near future a really small number of AVs will drive on our roadways. This
situation is more complicated in terms of theoretical stability analysis; however, it is more
interesting in order to obtain short-term achievements in traffic control. As a matter of fact,
this thesis focuses on this specific case where a small penetration rate of AVs is available for
traffic control purposes.

Concerning this mixed HV-AV scenario, quite recent field experiments [11] have shown how
a well designed single AV is in fact able to achieve stability for a finite number of HVs on a
ring. This endorses the idea that is in fact possible to obtain satisfying results also with a
very small penetration rate. Also in this case, the experiments have been performed on the
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1-2 Motivation of the research 3

ring road setup in Fig. 1-1. Fig. 1-2 shows a snapshot of the field experiment [11] in which the
red arrow points out the AV and the graph below depicts the evolution in time of the traffic
flow. Clearly, when the AV is active, the traffic flow appears remarkably smoother than in
the only HVs cases.

Interval Velocity st. dev Fuel consumption Braking Throughput
(m/s) (liters/100km) (events/vehicle/km) (vehicles/hour)
Experiment start 1.87 18.8 1.66 1809
Waves start Bl 24.6 8.58 1827
Autonomy 6.50m/s 1.69 18.0 3.45 1780
Autonomy 7.00m/s 0.67 15.0 0.21 1915
Autonomy 7.50m/s 0.64 14.1 0.12 2085

Autonomy 8.00m/s 1.56 17.7 2.50 1952

( and iati for E: d A
Autonomy IAutonomy IAutonomy |Autonomy Autonomy
6.50m/s 7.00m/s 7.50m/s 8.00m/s 7.50m/s
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Figure 1-2: This Figure is directly taken from [11] and shows the ring road setup with 21 HVs
and a single AV (red arrow). The AV is activated at about ¢ = 126s and it is able to remarkably
improve the traffic flow.

1-2 Motivation of the research

The main problems identified prior the development of this work, which motivate also the
thesis, are:

e An absence of a theoretical framework by means of systems theory for the two aforemen-
tioned experiments. Linear Time Invariant (LTI) systems theory is the first candidate
to consider, due to the possibility of getting analytic results both in time and frequency
domain. Generally, vehicles dynamics is modeled by means of non-linear models, this
in order to take into account the drivers’ rationality and avoid crashes between vehi-
cles. What is missing is the evaluation of the linearized version of these models at their
equilibrium and, moreover, the study of both [1, 11] using LTI systems theory in order
to understand better what kind of (in)stability is observed in the two experiments.

e For practical reasons, the two experiments have been performed on a ring road topology
which is somehow related to the more common string roadway. However, for the same
number of vehicles N, the two topologies have undeniably a different structure and
therefore, it seems reasonable investigating if the more common definitions adopted for
the stability on a string can actually be used on a ring.

Master of Science Thesis Vittorio Giammarino



4 Introduction

e Finally, from a practical point of view, although some AVs designs are available, most
of these have been formulated by means of an empirical analysis [11, 12]. These AVs
can accomplish good results in terms of traffic flow stabilization; however, the reasons
which lead to these results have to be identified. Consequentially, it is believed that with
a proper analysis, more performing designs and more awareness can be achieved.

1-3 Thesis contribution

This thesis work tries, first of all, to establish a theoretical framework for the analysis of
traffic flow via a single AV. Given the ring road setup in Fig. 1-1, stability analysis will be
performed first on a homogeneous HVs platoon and then on a mixed HVs-AV platoon. Thus,
new definitions of stability on a ring are introduced and finally, exploiting this theoretical
analysis, different AV controllers are designed and tested in order to understand to what
extent a single AV is able to stabilize an otherwise unstable platoon.

In summary, the thesis will provide the following contributions

e Give a theoretical framework of the experiments performed in [1] and [11] linearizing
the non-linear vehicle dynamics and then exploiting the LTI systems theory. The results
obtained in the linear world are eventually validated through non-linear simulation.

e Give a new stability definition which is also suitable for heterogeneous/mixed platoon
and that can be exploited in the analysis of the ring road topology.

e Propose new AV designs and strategies in order to accomplish stability for the platoon
on the ring road topology. Through this last section, possibilities and limitations of
traffic flow control via a single autonomous vehicle are explored.

1-4 Outline

This thesis work is divided in six main chapters. After the introduction, Chapter 2 focuses
on the Sugiyama’s experiment [1] and on how to model the HVs in order to recreate, in the
most realistic way, what is observed. The most common car following models in literature
are considered, analyzed and finally a model for the HV is determined.

Chapter 3 introduces the different notions of stability for a platoon of vehicles: namely,
Lyapunov stability, string stability and string stability on a ring (ring stability) both for a
homogeneous and mixed platoon.

In Chapter 4, the HV car following model chosen in Chapter 2 is considered in the ring setup
with N vehicles. A necessary and sufficient condition and an only sufficient condition for
Lyapunov stability are obtained. Then, after ensuring Lyapunov stability, ring stability is
investigated.

Finally, in Chapter 5 controllability and stabilizability of the system at the equilibrium are
inquired in order to determine what can be achieved via a single AV. Afterwards, two different
designs for the AV: a Proportional-Integral (PI) with saturation controller and a H, controller
are developed and different strategies to control an otherwise unstable platoon are introduced.
Moreover, the designs are validated through non-linear simulations of the platoon on a ring.
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1-4 Outline 5

As last, in the conclusive chapter a summary of all the work is drawn and possible future
works presented.

Master of Science Thesis Vittorio Giammarino
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Chapter 2

Modeling Human Drivers

The experiment of Sugiyama et al. [1] reports the first experimental verification of a traffic
jam generated in absence of a bottleneck and caused by humans’ driving behavior. The
human drivers, either braking too often or reacting slowly, enhance fluctuations in the traffic
flow which end up generating stop-and-go waves. Sugiyama’s test was important to validate
the mathematical model developed prior the experiment and to provide an evidence of traffic
jams as collective phenomenon.

As a matter of fact, during the 1990s, a new approach to study traffic flow was introduced: the
interaction among vehicles was for the first time investigated as a dynamical phenomenon of
a many-particle system. In other words, traffic flow evolution was considered similar to fluid
mechanics or other fields of physics, where the macroscopic aspect evolves due to the collective
motion of interactive particles [13, 14]. Hence, according to these studies, the microscopic
interactions among vehicles cause changes in the macroscopic traffic features making possible
a shift from a stable free flow state to a highly oscillatory jam state. Consequentially, models,
also known as Car-Following (CF) models, able to show the arise of traffic jams have been
developed.

Thus, the main topic of this chapter is the analysis of some of the CF models developed
before the Sugiyama’s experiment. Few of the most used in literature are here introduced
both mathematically and qualitatively and finally, one of them is selected in order to be used
in the aforementioned ring scenario simulation.

To summarize, in Section 2-1 a generic introduction to CF models and their linearization
is given; then, Sections 2-2, 2-3 and 2-4 consider respectively the Optimal Velocity model,
the Follow The Leader and the Intelligent Driver Model. Finally, Section 2-5 describes the
Optimal Velocity-Follow the Leader model which represents the actual model used in this
thesis for the Human-driven Vehicle (HV)s dynamics simulation.

2-1 An Introduction to Car-Following model framework

The starting point of this section is the standard situation depicted in Fig. 2-1. A single
lane of traffic is considered with the vehicles labelled 1,2, etc., in the downstream direction.

Master of Science Thesis Vittorio Giammarino



8 Modeling Human Drivers

Vi1,

q@:u-—i@l) *@:u_-r©v
(1]

h =X,1-Xi

Figure 2-1: General scheme and notation for car following models.

Positions and velocities are denoted as wx;(t) and v;(t) > 0, respectively, and this notation
involves front-to-front spacing h;(t) = x;4+1(t) — x;(t) > 0 of consecutive vehicles, commonly
referred to as the headway. Note that overtaking is neglected in our framework.

In their simplest form, CF models consist of a set of coupled differential equations, in gen-
eral non-linear, for the trajectory of each vehicle, which typically supplements the kinematic
relations &; = v; with a model

o = f(hi, his1, i) (2-1)

which describes how drivers accelerate/decelerate in response to the motion of the vehicle in
front, to their headway and their own velocity. The equilibrium of (2-1) is found computing

F(hy,0,0,) =0 forall h, > 0. (2-2)

At h, all the vehicles drive steadily with the same dynamics, this solution is known as uniform
flow. As mentioned, one of the purpose of the thesis work is to show how Linear Time Invariant
(LTT) systems theory can be used to analyze the non-linear traffic behavior and additionally,
try to exploit this analysis to stabilize the flow by means of an Autonomous Vehicle (AV).
Considering now small perturbations to the equilibrium, by setting h; = hy + ﬁl(t) and
v; = Vs +0;(t), where h; and @; are small. Assuming f is sufficiently smooth, the linearization
of the most common CF models yields

B = (Df)hi + (D, f)hi + (Do ), (2-3)

where the partial derivatives D f are evaluated at constant equilibrium arguments (h., 0, v4)
and necessary constraints for rational driver behavior are

Dyf,Djf >0 and D,f <0. (2-4)

Note that equation (2-3) can be re-expressed in the form

0 = (Dpf)(hi = he) + (D3 f) (hi = 0) + (Do f) (v = v.)
v; = (Dnf)hi — (Dj,f — Dy f)vi + Dj, fvivr — (Do fox + D fhe) (2-5)

0; = arh; — av; + azvip — oy.

A really broad class of CF models can be obtained and linearized as illustrated in (2-3).
Exploiting (2-3) and using the Laplace transform, frequency domain analysis can be used in
order to study linear stability of the traffic flow.

The next sections introduce some of the main CF models available in literature.

Vittorio Giammarino Master of Science Thesis



2-2 Optimal Velocity (OV) Model 9

2-2  Optimal Velocity (OV) Model

The Optimal Velocity model has been theorized for the first time in literature in 1995 by
Bando et al. [13]. Their purpose was to developed a model able to properly describe the
dynamical evolution of congestion. Afterwards, the model has been further improved with
the introduction of drivers delay response to the stimulus (cf. [17]).

The first assumption made for this model is that each vehicle has a legal velocity V and that
each driver responds to a stimulus from the vehicle ahead. Each human driver should control
the acceleration by putting on or getting off the accelerator and the brakes in such a way
that he can maintain the legal safe velocity according to the motion of the preceding vehicle.
Then, the dynamical equation of the system is obtained as,

0 = a(V(Az;) — v;). (2-6)

In eq. (2-6), Az; = h; = x;+1 —x; is the headway and a is a constant representing the driver’s
sensitivity, which for simplicity is always considered independent of i. The legal velocity
V(Ax;) is a non-linear function which is able to describe the drivers behavior on the roadway.
That is, when the headway becomes too short the velocity must be reduced and become small
enough to prevent crashing into the preceding vehicle. On the other hand, when the headway
becomes bigger the vehicle can move with higher velocity, although it does not exceed the
maximum velocity. Therefore, V' is a monotonically increasing function with an upper bound
Vinaz = V(Az; — 00). Examples of V used in [13] are

V(Az) = tanh(Ax) (2-7)
V(Az) = tanh(Az — 2) 4 tanh(2). (2-8)

1.8 .

1.6 .

1.4 .

1.2 .

V(Ax)

0.8 .

0.6 - .

04 .

0.2 ]

Figure 2-2: Non-linear function V(Az) in (2-8).
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10 Modeling Human Drivers

Both these functions describe approximately the desired driver behavior. For the Optimal
Velocity Model (OVM), the coefficients of eq. (2-5) are

g =aV(h)) as=a az3=0 (2-9)

and eq. (2-5) becomes .
T}i = aV(h*)hZ — av;. (2—10)

Despite the simplicity of the model, the OVM has been often used for numerical simulation
purposes. However, one of its drawbacks is the absence of the preceding vehicle velocity v;41,
which would bring advantages both from a mathematical point of view; allowing the use of
the Laplace transform transfer function to determine stability, and in terms of likelihood with
the reality. Neglecting the effect of the velocity difference Av = v;11 — v; leads to unrealistic
drivers’ behaviors [18].

2-3 Non-Linear Follow-The-Leader (FTL) Model

The Follow-The-Leader (FTL) model was for the first time formulated in 1960 [19] in order
to provide a mathematical description of a single-lane dense traffic with no overtakes, and, as
the other CF models, it is based on the assumption that each driver reacts in some specific
fashion to stimulus from the car (or cars) ahead of him and/or behind him. Therefore, the
basic differential equations of the FTL theory consider each driver responding to a stimulus
according to a certain sensitivity. Therefore

response = sensitivity x stimulus. (2-11)

The stimulus could be a functional of the positions of a number of cars and their velocities.
The response instead, has been taken as the acceleration of the vehicle, since a driver actually
has a direct control of this quantity through the gas and brake pedals.

In this case, the stimulus-response differential equation is taken as

i)i = A(Ui-i-l — U,‘) (2—12)

with the sensitivity A defined as
1

A a($i+1 ) (2-13)
With respect to the OVM, the FTL shows an acceleration that depends on both the relative
velocity Av = v;41 — v; and the headway h = x;41 — x;. However, a drawback is that the
acceleration becomes zero when the relative velocity is zero independently of h. This means
that extremely small headways are allowed despite traveling at very high speed.
The coefficients of eq. (2-5) for the FTL model become

a] = 0 a9 = 25\ a3 = A (2—14)

where we define for compactness A = (h‘j)Q. Eq. (2-5) becomes then

Vi = —2X\v; + Ay (2-15)

Vittorio Giammarino Master of Science Thesis



2-4 Intelligent Driver Model (IDM) 11

Taking the Laplace transform of the signals leads to

vi(s) A Qs

vir1(8) s+ 2\ T stay

(2-16)

Given the constraints for the rational driver behavior in (2-4), A turns always positive. Con-
sequentially, the equilibrium of (2-15) turns stable, being the poles of the transfer function
(2-16) always in the Left Half Plane (LHP).

2-4 Intelligent Driver Model (IDM)

The Intelligent Driver Model (IDM) belongs to the class of deterministic CF models as well
as the OVM and the FTL; however, with respect to the previous two, here the mathemat-
ical complexity increases. This is the price to pay in order to have a series of remarkable
advantages: the IDM (i) behaves as if accident-free because of the dependence on the rela-
tive velocity, this feature was absent in the OVM. Despite the complexity, (ii) all the model
parameters have a reasonable interpretation, are known to be relevant, are empirically mea-
surable, and have the expected order of magnitude [18], (iii) the fundamental diagram and the
stability properties of the model can be easily calibrated to empirical data, (iv) an equivalent
macroscopic version of the model is known [21].

Analogously to the previous models, the drivers’ response is given through the vehicle ac-
celeration which is a continuous function of its velocity v;, the headway h and the velocity

difference Av; = v;41 — v;:
4 X 2
. v; s (vz',sz‘)>
v=all—|— ) — | ——=| |. 2-17
' [ (Uo > ( hi } (2-17)
This expression is an interpolation between the tendency to accelerate on a free road

4
Vs
m@g:ap—<z)] (2-18)
and the tendency to brake with deceleration
s*(v;, Av;)\ 2
— bi(hi,vi,Avi) = —G(W) (2—19)
1
when vehicle ¢ gets too close to its vehicle in front ¢ + 1. The deceleration term depends on
the ratio between the "desired minimum gap"' s* and the actual headway h;. The desired gap
is expressed as
UiAUi
vda-b
and it varies dynamically with the vehicle velocity v; and the relative velocity with the vehicle
ahead Av;.
The coefficients that appear in the IDM not mentioned yet are: the desired velocity vg, the
safe time headway T, the maximum acceleration a, the desired deceleration b and the safe

s*(vs, Avy) = so + Tv; + (2-20)

Master of Science Thesis Vittorio Giammarino



12 Modeling Human Drivers

distance sg. Setting (2-17) equal to zero the equilibrium state equation for IDM can be

obtained

T,
h, = u' (2-21)

- (%)

Furthermore, the coefficients for the linearized model (2-5) are

o = 2a- W (2-22)
a V(s T, 20h)?  T(s T,

e [ (BT,

g = \/z - W (2-24)

So far, among the different CF models, the IDM is probably the most complete, being function
of the vehicle velocity v;, the headway h; and the relative velocity Awv; with the vehicle ahead.
Yet, from the mathematical point of view, the model is complicated. Hence, the purpose of
the next section is to find a simpler model with though the same amount of information.

2-5 Optimal Velocity-Follow-The-Leader (OV-FTL) Model

The OV-FTL model, as the name suggests, is essentially the interpolation between the Op-
timal Velocity model [13] and the Follow-The-Leader [19]. The idea is to elaborate a model
that, likewise the IDM, depends on the vehicle velocity v;, the headway h and the velocity
difference Av; = v;11 —v;. Although simpler from a mathematical point of view, the OV-FTL
model represents a good trade-off between richness and simplicity [12].

The non-linear differential equation describing the acceleration is

Ui+l — Vg
2
h;

’l')l' =a + b[V(hl) — Ui] (2—25)
with V' (h) the non-linear function determining the desired speed. With respect to the OVM,
V(h) is chosen as

tanh(h — I, — ds) + tanh(l, + ds)

V(h) = tmas 1+ tanh(ly + dy)

(2-26)

where [, is the vehicle length and ds > 0 is a safety distance between cars.

Fig 2-3 illustrates the V'(h) in (2-26). Note that the vehicle length [, and the safety distance
ds are embedded in V'(h), this allows more realistic simulations and avoids crashes between
vehicles.

The variables a and b in (2-25) are gains representing the drivers’ sensitivity, they will be
object of further investigation since certain coefficients combination leads to the unstable
behaviors observed in [1]. The linearized version of (2-25) at the equilibrium (h.,0,v) is

0 = a(hi) + bk - (hi) — ¢ = v;] (2-27)

Vittorio Giammarino Master of Science Thesis



2-5 Optimal Velocity-Follow-The-Leader (OV-FTL) Model 13

10

V(h)
wu

0 5 10 15 20
h

Figure 2-3: Non-linear function V(h) determining the desired speed for the OV-FTL model.
Note that for small headways the desired speed tends to zero, while for large it is equal to v,qx

with k, @, b and ¢ defined as follows:

L_OV(h) _ 1 (tanh(h, 1, —d,))?

~ T on UM 1 tanh(l, + dy)

_ a

a"’(h*)zv (2-28)
b=b,

c=—khy, + Vihy).
Consequentially, the coefficients of (2-5) become:
a1 =bk as=a+b as=a. (2-29)
Taking the Laplace transform of (2-27) leads to the following transfer function
vi(s) as + bk _ azs+o
vig1(s)  s2+(a+b)s+bk  s?+as+aoy

(2-30)

The OV-FTL model has been already used for analysis purposes in [12, 22]. In addition to
this, its coefficients have been calibrated with field data collected from a series of ring road
experiments conducted in 2016 in Urbana, Illinois [11]. The calibration leads to

a=20 b=0.5. (2-31)

As a result, the OV-FTL model with a and b as in (2-31) will be the reference model of this
thesis work and it will be used also in the further analysis.

In any case, as it has been illustrated, most of the models can be linearized by means of
eq. (2-5); which means that switching among models is possible by simply changing the
coefficients. Therefore, all the mathematical results can be easily generalized; conversely,
non-linear simulations and the AV designs are both done considering the OV-FTL specifically.
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14 Modeling Human Drivers

2-6 Discussion

To summarize, this chapter provides an overview of the CF models used to determine HVs
dynamics introducing the most common in literature. In this thesis work, the HVs dynamics
is modeled using the Optimal Velocity-Follow the Leader (OV-FTL) since it is a good trade-
off between simplicity and contained information. Additionally, a calibration of the model
through real measurements is available.
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Chapter 3

Stability Criteria

Stability theory plays a central role in the analysis of non-linear systems and in the evaluation
of a controller design. There are different kinds of stability problems that arise in the study
of multi-vehicles dynamical systems; namely, stability of an equilibrium point in the sense of
Lyapunov and string stability.

Stability of an equilibrium point in the sense of Lyapunov implies the existence of an equi-
librium for the vehicular platoon. If all the dynamics starting nearby the equilibrium stay
nearby, such point is stable. If the solutions not only stay nearby but for ¢ — oo they tend
to the equilibrium, the point is asymptotically stable.

On the other hand, string stability is a particular propriety of tight formations of vehicular
platoons: disturbances that act on the platoon are amplified along the string of vehicles [26].
This form of instability can represent the cause of stop-and-go waves without the presence of
bottlenecks on the roadway, generating therefore traffic congestion.

Hence, the purpose of this chapter is to introduce the main definitions stated in literature for
these two kinds of stability. This discussion will result useful for the further analysis about
the Human-driven Vehicle (HV) on a ring road and for the Autonomous Vehicle (AV) design.
In particular, Section 3-1 considers Lyapunov stability formulating definition and theorems
related to it. Section 3-2 gives first a qualitative definition of string stability and then it
focuses on the frequency domain definitions which are handy for analysis and design. Sec-
tion 3-3 deals with ring stability providing frequency domain definitions that can be used on
a ring road topology and finally, Section 3-4 compares a ring roadway with a string.

3-1 Lyapunov Stability

In order to provide a stability definition in Lyapunov sense, let us consider the autonomous
system:

X =/ (3-1)
where f : D — R™ is a locally Lipschitz map from a domain D C R"™ into R"™. Suppose
X+ € D is an equilibrium point of (3-1); that is, f(x«) = 0. The goal is to characterize and
study the stability of x..
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16 Stability Criteria

Definition 1 (Equilibrium stability in Lyapunov sense). The equilibrium point x = Xs« of
(3-1) is

o stable if, for each € there is § = §(e) > 0 such that

IxO)[] <6 =[xl <eVt=0.

o Unstable if it is not stable.

o Asymptotically stable if it is stable and § can be chosen such that
()] < 6= lim x(1) = x..

The € — § requirements of Definition 1 states that to determine stability of an equilibrium
X, for any value of € is possible to find a value of §(¢) such that a trajectory starting in a &
neighborhood of the origin will never leave the € neighborhood.

Considering that, in a small neighborhood of the equilibrium x = X, the non-linear system
(3-1) can be approximated by its linearization. A theorem that exploits the linearization to
determine the stability of the equilibrium in Lyapunov sense can be formulated.

Theorem 1 (Indirect method of Lyapunov). Considering (3-1) and its equilibrium x.. Where
f:D — R"™is a continuously differentiable and D is a neighborhood of the equilibrium. Let

of

A = a(X”X:Xeq'

Then,

o The equilibrium is asymptotically stable if Re(N;) < 0 for all eigenvalues of A.

o The equilibrium is unstable if Re(\;) > 0 for one or more of the eigenvalues of A.

Theorem 1 provides a method to determine the stability of an equilibrium of (3-1) in Lyapunov
sense; i.e., the system solutions goes to the equilibrium for ¢ — oco.

On the other hand, obtaining stability in Lyapunov sense is, in traffic control field, not
enough for a satisfying controller performance. Thus, the introduction of a new form of
stability, known as string stability, is defined in the next section. This, in order to address
the additional issues that might occur in vehicular platoon such as amplification of disturbance
with the arise of stop-and-go waves.
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3-2 String Stability 17

3-2 String Stability
3-2-1 Original definition of string stability and intuitive description

The phenomenon of string (in)stability can be intuitively illustrated by using Fig 3-1. (a)
in Fig 3-1 gives an example of platoon of vehicles on a road, (b-c) illustrate the response of
the platoon to a disturbance. x;(t) in (b-c) is the error of the position with respect to the
equilibrium, but it can be easily generalized to the vehicles velocity. In (b), it is clear how the
disturbance, acting on the first vehicle, is amplified along the platoon, denoting therefore a
situation of string instability. On the other hand, (c) shows a string stability situation where
the disturbance is dissipated over the platoon. In both the cases, after a certain transient,
x;(t) stabilizes back to the equilibrium for ¢ — oc.

i=4 i=3 i =
(a)
x,-(t) 160 . i=4 xi(t) eo—[=1

i=3

120 b=

i=1 ser i=2
80 a0 i=3
i=4
40 20
% 86 ) 240 20 ° p % 20 P
Time (s) Time (s)
(b (©)

Figure 3-1: lllustration of a platoon system (a) and the qualitative description of string stability
(b-c) [26], z;(t) denotes the state fluctuation (e.g., position error, velocity) of vehicle ¢ at any
time ¢. (b) denotes a string instability scenario, where an amplification along the platoon occurs.
Whilst, (c) shows string stability. In both the cases x;(t) stabilizes at the equilibrium for t — oo,
therefore, the platoon results stable in Lyapunov sense.

What intuitively illustrated in Fig. 3-1 is formalized in the original definition of string stability
(0SS) [22].

Definition 2 (Original definition of String Stability (OSS)). A string of vehicle is string

stable if, for any set of bounded disturbance, the position (or velocity) fluctuations remain
bounded and these fluctuations approach zero as t — oo.

The main properties of Definition 2 are:

e boundedness of fluctuations of all vehicles;

e convergence of fluctuations of all vehicles.
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18 Stability Criteria

To make the boundedness property non-trivial, it should hold for any number of vehicles in
the platoon, i.e.,

e the boundedness holds for any string length.

The invariance of the bounds under the string length is an important property, as it guarantees
that the notion of string stability is scalable for any number of vehicles.

In addition to this, the definition specifies that it has to be valid for any set of bounded
disturbance. In literature, the commonly used types of disturbances include:

Type I: Initial condition perturbations for the leading vehicles;

Type II: Initial condition perturbations for all vehicles;

Type III: External disturbances for leading vehicle;

Type 1V: External disturbances for all the vehicles;

Type V: a combination of the previous ones.

Note that, in time domain, for certain set of disturbance the system could not show string
instability while for others it could be. This is to say that is important to consider different
sets of bounded disturbance.

The next section introduces frequency domain definitions which represent sufficient conditions
for string stability and are convenient for theoretical analysis and design.

3-2-2 Frequency domain definition

L. . G -

h = xj.17%|

Figure 3-2: General scheme and notation for car following models. With respect to Fig. 2-1, this
figure shows also the inputs and outputs (u,, yit1, y;) of the vehicles dynamics.

Let us recall now the standard definition of string stability in frequency domain for intercon-
nected vehicles on a string road topology. Fig. 3-2 provides a graphical representation of the
interaction between two adjacent vehicles for a simple Predecessor Following (PF) information
flow topology (also known as look-ahead interconnection). Note that, different information
flow topologies might require different or modified versions of the definitions stated in this
section. Assuming now a linear vehicle model, such as (2-30), the response of each vehicle in
the platoon to an exogenous input can be formulated as follows

yi(s) = Pi(s)ur(s), (3-2)
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3-2 String Stability 19

where y;(s) and u,(s) are respectively the Laplace transforms of the vehicle output y;(¢) and
the exogenous input u,(t) in Fig. 3-2, with s € C. In (3-2), y;(s) and u,(s) are respectively
the output of the i-th vehicle and an exogenous input acting on the ¢ + 1-th vehicle (e.g. a
disturbance); P;(s) is the transfer function between these signals.

For simplicity, we will consider zero initial conditions. From (3-2) it directly follows that

Yi(s) = Li(s)yit1(s). (3-3)

In (3-3), I'i(s) is the transfer function between two adjacent vehicles output which is equivalent
to

Li(s) = P(s)P14 (s): (3-4)

Note that this definition requires the existence of Pljrll and for the HV models considered, P;ll
always exists. A platoon is said to be "homogeneous" if all vehicles have identical dynamics
[27], otherwise it is heterogeneous. Considering now for simplicity only Type III disturbance,
the block diagram representation for N-vehicles PF platoon depicted in Fig. 3-2 is given in
Fig 3-3.

Ur

¥z ¥YN-1 ¥N
r-l [ nam ] |_N_-| -+ PN

Figure 3-3: Block Diagram representation of a platoon of vehicles on a string.

The string interconnection in Fig 3-3 leads to the following transfer function:

N-1

yi(s) = Pn(s) T] Ti(s)ur(s). (3-5)

j=i

At this point, a definition of strong frequency domain string stability as given in [28] can be
provided.

Definition 3 (Strong frequency domain string stability (SFSS)). Let (3-5) represent a linear
one-vehicle look-ahead interconnected system whose input-output relation is described by (3-
2). Assume P;(s) invertible, for alli € {1,...,N}. Then the system (3-5) is said to be strong
string stable if

[|PN(jw)||eo s finite; (3-6)
[ITi(jw)|leo <1 Vie{l,...,N —1}, VN. (3-7)

This definition considers that the amplification of the disturbance never occurs between each
vehicle ¢ and its predecessor 7 4+ 1. If it happens, the platoon is string unstable.

A relaxed definition of Definition 3 is provided in [29] and it is also known as Eventual Stability
Definition (ESS).
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20 Stability Criteria

Definition 4 (Eventual Stability Definition (ESS)). Let (3-5) represent a linear one-vehicle
look-ahead interconnected system whose input-output relation is described by (3-2). Assume
Pi(s) with the poles in the Left Half Plane (LHP) for all i € {1,...,N}. Then the system
(3-5) is said to be eventual string stable if there exist m < N such that

|1Pn(jw)lloo s finite; (3-8)
1P;(jw)lloo < [Pit1(jw)lloc Vi <m <N, VN. (3-9)

The ESS definition states that if there exists a value m < N such that for i < m the
disturbance is no longer amplified, the platoon can be considered eventual string stable. This
definition allows amplification of the disturbance for ¢ > m and it is particularly suitable for
platoons of HV with a unique AV.

Although the frequency domain definitions are convenient for theoretical analysis, they present
few limitations that are briefly presented. First of all, the linear assumption on the platoon
system requires a perfect prior knowledge of the vehicular dynamics. Secondly, only type III
disturbance is considered, requiring therefore further analysis for the other types. Finally,
the Hoo-norm only captures the signals in a perspective energy (Lo norm), but not in their
maximal amplitude (i.e. Lo).

In order to handle all the types of disturbances and to provide a significant definition form
Ly and Lo norms, another form of string stability, known as L, string stability (LPSS) is
introduced as stated in [28]. The following cascaded state-space system is considered:

XN = fr(XN; Ur)a
Xi = filXi+1, Xi)s (3-10)
yi = h(xi),

where u, is the external input on the leading vehicle, y; the state for each vehicle ¢ €
{1,..., N} and y; is the output signal.

Definition 5. (L, string stability (LPSS)): Consider the interconnected system (3-10). Let
X be the state vector and x.« the constant equilibrium solution of (3-10) for w, = 0. The
system (3-10) is said string stable if there exist a class K functions o and B such that, for
any initial disturbance x(0), where x = (xo,.-.,XN) 1§ the state vector, and any exogenous
mnput uy.

lyi(t) = h(zs)l[L, < a(llur(t)l|z,) + BIX(0) = x«l]),
Vie{l,...,N} and VN € N. (3-11)
If, in addition, with x(0) = xx it also holds that

lyi(t) = hOx)llz, < llyira () — RO L,
Vie{l,...,N—1} and V(N —1) € N. (3-12)

The system 3-10 is strictly L, string stable with respect to the disturbance u,(t).

With this definition both Ly and Lo, norms and types I, I and III disturbances are addressed.
Providing, as a result, a rigorous and complete definition of string stability for linear-systems.
In [25], several other definitions are presented in order to make the notion of string stability
as much general as possible. However, for the sake of our analysis, those provided in this
section are enough to compare the string scenario with the ring road experiment in [11].
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3-3 Ring Stability

In this section, the concept of string stability on a ring road topology is considered; for brevity
it is defined as ring stability.

As already mentioned in the introduction, one of the main purpose of this thesis is to provide
a theoretical framework for the two experiments in [1, 11] which were both performed on a
ring road topology. Few of the questions that the thesis would like to address are:

e To what extent ring and string topology differ between each other?

e [s it possible to exploit definitions of string stability on a ring road?

In order to answer to these queries, an analysis of the ring topology with the formulation of
ring stability definitions is done in the following sections.

3-3-1 Strong Ring Stability

Assuming linear vehicle model, as it is done for the string, and considering type III distur-
bance; the block diagram representation for N-vehicles PF platoon on a ring road topology
is given in Fig 3-4.

Ur
Pn
y2 YN-1 YN + 7
r1 M sunm — rN 1 I-N

Figure 3-4: Block Diagram representation of a platoon of vehicles on a ring.

At first glance, Fig 3-4 is a closed loop version of the string block diagram in Fig. 3-3. As a
result, the transfer function from u, to the output y; is:

yi(s) = EM (s)up(s), (3-13)

1 . .
71—]_[;\]:11“]-(5) Py(s), if i=N
F(s) = H;\’:‘ilrj(s)

I_H;'V:l L'j(s)

(3-14)
Py (s), otherwise.

Clearly, considering the same number of vehicles N on both the topologies, ring and string
present different structures and the same definitions are not directly applicable on both. The
main difference between the two topologies is the poles distribution in the complex plane
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by varying the number N of vehicles. The transfer functions to be considered are (3-5) and
(3-14).

In the first case, the string in (3-5), the poles location does not vary in function of N. If the
single vehicles transfer functions in (3-4) has the poles in the LHP then can be easily proved
that also (3-5) has all the poles in the LHP.

Conversely, the poles distribution of (3-14) in the complex plane varies according to N.
Consequentially, the fact that the single vehicle transfer functions in (3-4) have the poles in
the LHP does not ensure that (3-14) has all the poles in the LHP. Therefore, the equilibrium
might become Lyapunov stable or unstable according to the number of vehicles N on the
ring. Thus, scaling stability results on the ring for different N is harder than on the string
road topology and it requires stronger assumptions.

In [30] a definition of Strong Ring Stability (SRS) for a homogeneous platoon is stated. For

a homogeneous platoon, Fi(N)(s) in (3-13) is

F™(s) FNi(S)) Py (s). (3-15)

T 1-TN(s
Definition 6 (Strong Ring Stability (SRS)). Consider a homogeneous platoon FZ-(N) (s) defined
in (3-15) for all i, N with i < N and assume ||T'||oc < 1. Then, the platoon is said to be

strong ring stable if there exists ¢ > 0 such that HFZ-(N)(S)HOO <c foralli,N,i < N.

The condition ||I'|| < 11is a sufficient condition to ensure that Fi(N)(s) has all its poles in the
open-left-half plane [30]. As a result, Definition 6 becomes scalable for all N € N. Assuming
[IT']ooc < 1 is quite a strong assumption, since it is equivalent to assume SFSS on a string
road.

Despite the scalability property assumes great relevance when platooned traffic design is the
final purpose, in order to explain the experiments in [1, 11] the scope of Definition 6 is too
narrow. It is important to remark that both in [1, 11] the HV driving style generates stop-
and-go waves in the platoon, which are related to ||I'|| > 1 for all the HVs. In addition to
this, even though ||T'||oc < 1 is sufficient to ensure asymptotic stability, it is not a necessary
condition. This means that, for certain N, there must be cases where, despite ||T'||oc >
1, Fi(N)(s) has all its poles in the open-left-half plane. These Lyapunov stable cases with
[IT'||oc > 1 are ignored by Definition 6. Clearly, Definition 6 cannot be used for the thesis
goals and therefore, a new original definition of ring stability is stated in order to deal with
heterogeneous and mixed platoons and for cases in which ||T'||oc > 1.

3-3-2 Weak Ring Stability

Being human vehicles naturally prone to exhibit ||I'||oc > 1, the assumption made in SRS of
[|IT'|oo < 1 cannot be done for mixed platoons, i.e. platoons with both HV and AV. This is the
reason why it becomes relevant to look for a weaker version of ring stability, where scalability
with respect to N cannot be ensured, thereby addressing all the cases not considered in
Definition 6.

Definition 7 (Weak Ring Stability (WRS)). Fiz N and consider .FZ-(N)(S) defined in (3-14)
for all i with i < N. Assume that Fi(N)(s) has all its poles in the open-left-half plane. Then,
the platoon is said to be weakly ring stable if \|Fi(N)HOo < ]|F;ﬁ)\|oo for all i, with i < N.
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Definition 7 states that, for a fixed IV, the peaks of the transfer functions (3-14), from the
exogenous disturbance to the output of each vehicle, should decrease in their magnitude
throughout the platoon. Physically, this means that the effect of the disturbance is not
amplified (in terms of its energy). Notably, as compared to Definition 6, we have that Def-
inition 7: can address heterogeneous platoons, covers those cases where the equilibrium is
Lyapunov stable, although ||I';||cc > 1, covers those cases where the effect of the distur-
bance is not amplified for platoons of fixed size, although a uniform bound over N cannot be
mathematically ensured.

3-4 Ring vs String Topology

Considering the same number of vehicles NV on both the ring and the string, the two topologies
show different properties and therefore they cannot be directly compared. However, being
the ring the closed loop version of the string, they are related. In summary,

e The ring corresponds to a string with number of vehicles N >> N where the N vehicles
are repeated a certain number of times according to the time span of the experiment.

o It is relevant to study the ring topology since the obtained results can be opportunely
translated into the more realistic scenario of the string roadway.

e However, for the same number of vehicles N the common string stability definitions of
Section 3-2 cannot be directly used and therefore new definitions have been formulated.

3-5 Discussion

To summarize, this chapter formulates the main definitions for Lyapunov, string and ring
stability. These are exploited in the next chapters for the sake of our analysis.

The novelty of the chapter, which is also a thesis contribution, is the new definition of Weak
Ring Stability which, since considers HVs strong frequency string unstable (Definition 3), has
to renounce to uniformity with respect to IV, the overall number of vehicles in the platoon.
Additionally, weak ring stability definition is also suitable for heterogeneous and mixed pla-
toons as opposed to the strong ring stability definition which was originally aimed to only
homogeneous platoons.
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Chapter 4

Human Drivers Traffic Scenario

This chapter goes into the merits of the Sugiyama’s experiment in [1], where a certain number
of Human-driven Vehicle (HV)s N are placed on a ring road topology. First of all, in Section 4-
1 the HVs are modeled by using the Optimal Velocity-Follow the Leader (OV-FTL) described
in Chapter 2; the model is briefly refreshed for sake of clarity.

In Section 4-2, the N vehicles are considered on the ring road and the properties of the overall
system are investigated. In particular, the properties and the theorems of the circulant
matrices (see Appendix A) are exploited in order to determine a necessary and sufficient
condition in Section 4-3 and an only sufficient condition in Section 4-4 for the Lyapunov
stability of the equilibrium. Furthermore, Section 4-5 investigates ring stability by means of
numerical analysis and finally, Section 4-6 draws conclusions on the Sugiyama’s experiment.

4-1 Human Vehicle Model

The model of the HVs is taken to be the OV-FTL. This choice is due to the fact that this model
has already been calibrated in [11] to match the macroscopic properties of the traffic observed
in [1]. The model seems therefore fitting quite well the purpose of this analysis. However,
other Car-Following (CF) models can be used without losing generality. The OV-FTL has
been introduced in Section 2-5 (Eq. (2-25)). Being the vehicles on a ring, the equilibrium of
the platoon is

Iy
Tip1 — T = he =

=

(4-1)
Ty = Bip1 = ve = V(ha),

where [, represents the circumference of the ring and N the overall number of vehicles. Thus,

linearizing the HVs dynamics around this equilibrium results in the following transfer function
vi(s) as + bk _ azstog

vit1(s) 2+ (@+0b)s+bk sPHas+ar

T(s) = (4-2)
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The transfer function in (4-2) is derived by taking y; in (3-3) equal to v; the vehicle velocity
and the definitions of the coefficients in (4-2) can be found in (2-28). It can be verified that
the same transfer function is obtained using y; = v; — v;—1 which is another typical way to
check string stability [28, 32].

Note that (4-2) broadly appears in literature (cf. [31] and reference therein) for both analysis
and synthesis problems.

Despite in reality the HV traffic is heterogeneous, i.e. each vehicle has different dynamics, it
is common to consider a worst case scenario homogeneous traffic for the sake of the math-
ematical analysis. For the values of a and b in (2-31) for instance, the human behavior is
highly unstable and generates naturally stop-and-go waves. An Autonomous Vehicle (AV)
which stabilizes the worst case, even though for a homogeneous platoon, works also for a
heterogeneous platoon.

4-2 State-space formulation

Traffic Flow

A

Vehicle N

Vehicle N-1
Vehicle 1

Vehicle 2

Vehicle i+1

Vehicle i

Vehicle i-1

Figure 4-1: Schematic model of the ring road topology.

Fig 4-1 shows a schematic sketch of the N vehicles on the ring and therein the used notation.
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The state space formulation of Fig 4-1 for the linearized system (2-27) is

X1 A A @ X1 0
: S : 0
o = ' ' : + .| ue (4-3)
XN—-1 Ay As| |xn—1
XN Ay Aq XN B,
———
A B
where:
—01 —Q ap Qs 1

Where y; = [ml vl} T, x; is the position of the vehicle ¢ and v; is the corresponding velocity.
Note that, B in (4-3) is given, in this case, by the fact that type III disturbances are considered
as in most of the definitions provided in Chapter 3. For different kinds of disturbances, or
exogenous inputs, B changes accordingly.

Matrix A in (4-3) is clearly block circulant, some of the properties of this familiy of matrices
can be found in Appendix A and in [33]. A in (4-3) can be re-written in a more compact way
by using its generating matrix

A= CiI’C(Al, AQ, 02:,32, e 0212) (4—5)

. 0 1 0 0
A= cn"c( [ ] , [ ] y 0222, - - - OQ:EZ) (4-6)
-1 —Q9 a1 Qa3

where Ogy2 is a 2 X 2 matrix of zeros.

4-3 Necessary and Sufficient condition for Lyapunov Stability

In this section, a necessary and sufficient condition for asymptotic stability of the linearized
state-space (4-3) equilibrium is given in the following Theorem.

Theorem 2. Consider the linear state-space (4-3), its equilibrium (4-1) is asymptotically
stable if and only if

— =% + 9 (4'7)

1 (\/(%2 — @7 —ri)2 4+ (i + 2vii)? +7f — &7 —7“z'>1/2 “0
2 )
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with
i s - cos (WN‘”) (45)
¢i = —a - sin <27T(3V_1)) (4-9)
ri = day - (1 — cos (2”(3\[_1)» (4-10)
i = 4oy - sin <27r(3v_1)> (4-11)

forallie{l,...,N}. Where N is the number of vehicles driving on the ring roadway.

Proof. The platoon equilibrium (4-1) is asymptotically stable if and only if the eigenvalues
of (4-3) are located in the open Left Half Plane (LHP). Being (4-3) a block circulant matrix,
eq.(A-12) can be used to find an analytical expression of its eigenvalues. Therefore

A= Ar+ w1 Ay, (4-12)
0 1
A= lal(w(il) —1) —as+ w(il)OzJ ) (4-13)
A 1
Aj — Moo = lal(w(il) —1) —as+wiDag - )\1 ) (4-14)

Mt (ag —az - w ™A — g (wH —1) =0, (4-15)

with w = exp (2mj/N) and i € {1,..., N}. The eigenvalues of A; are

—ao + w1 . i 1/2
Nip = —2 23 + 5((a2 — gl 4 dag (D — 1)), (4-16)

where the square root of a complex number a + jb, with b #£ 0, is defined as

(a +jb)1/2 =\ ,|a+]2b|+a +jsgn(b)1 /|a+32b|—a‘ (4_17)

To ensure asymptotically stability we require that:

—ay + azwlY

Re 5

1 . A 1/2
+ Re§ ((ag — w2 4 daq (w1 — 1)) <0, (4-18)

which is equivalent to

— 3% B)

- (\/(%2—@522—Ti)2+(77i+27i¢i)2+'7i2_¢12_Ti
2

1/2
) <0, (4-19)
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with

2m(i — 1
Vi = Qg — Qi3 - COS (ME\T)), (4-20)

B . (27(i—1)
¢i = —ag - sin <N>’ (4-21)

ri = 4oy - (1 — cos <2W(i\f_ D)), (4-22)

n; = 4o - sin <27T(ZN_1)> (4-23)

O]

Remark 1. Few observations can be done based on this result. First of all, fori = 1, A in (4-3)
has one zero-eigenvalue (it can be easily seen in (4-16)). This zero-eigenvalue is due to the
ring structure itself and in particular by the fact that xy —21 = (ze —21)+- -+ (xy —2N-1).
It is easy to show that, by means of a change of basis in (4-3), the zero-eigenvalue disappears.
Moreover, as shown and discussed in [32] a (structural) zero-eigenvalue does not compromise
the stability of the system and therefore it can be neglected for the purpose of Lyapunov
analysis. Therefore, although the presence of one zero-eigenvalue, since it is structural, the
indirect method of Lyapunov (Theorem 1) and Theorem 2 can be applied to study Lyapunov
stability of the system for the remaining 2N — 1 eigenvalues of A.

Secondly, the necessary and sufficient condition obtained in (4-7) is fairly complicated to be
further developed and exploited for an eventual design. As a result, the next section will
formalize an analytical sufficient condition for Lyapunov stability on the ring. By means of
numerical examples, the limits of the sufficient condition are afterwards pointed out.

4-4 Sufficient condition for Lyapunov Stability

A sufficient condition to ensure asymptotic stability on the ring is given in the following
theorem. This theorem comes directly from analysis in [34].

Theorem 3. Consider the linear state space (4-3), its equilibrium (4-1) is asymptotically
stable if
a3 — a3 —2a1 > 0. (4-24)

That, considering the OV-FTL model by plugging (2-29) in (4-24), becomes
2a+b > 2k (4-25)

Proof. Considering eq.(4-15) to determine the eigenvalues of (4-3) and substituting the ex-
pression of w with its actual definition w = exp (27j/N) the following is obtained

o1 + agA (N=DG=1) o5
_— = e{l,....N 4-26
a1 + g\ 4 A2 " i€41,...,N}, (4-26)
WN=1)(i=1) 5 -
H)N)=e W 7 (4-27)
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30 Human Drivers Traffic Scenario

Note that wN—-D0-1) — ¢ B e is the i-th complex root of [wN=DE=1| = (wN=DE-D))N =

1, indicating that for all the eigenvalues A of A, the values of H()\) constitute N unit roots.
As N changes, H(\) corresponds to different unit roots. Hence, if all the roots of |[H(\)| =1
have negative real part, then the solutions of (4-26), i.e., the eigenvalues of matrix A (4-3)
have negative real part. The conclusion is that, by ensuring that all the roots of |[H(\)| =1
have negative real part is necessary and sufficient to guarantee an asymptotic stable equilib-
rium [34].

Let us now compute |H(\)| = 1. Consider A = a + jb

H\)| =1,
| (. )| (4-28)
|H(a+jb)| =1,
a*+ Da® 4+ Ed®> + Fa+ G =0, (4-29)

with

D = 2aqs,

E = —2b* +2a1 + a3 — a3,

F = —-20103 + 201000 + 20421)2,
G = —aj3b? +b* — 2010* + a3b*.

Eq. (4-29) has to be solved in order to find a condition on a such that a < 0 for all A, where
A is an eigenvalue of A in (4-3). Eq. (4-29) is complicated to be solved analytically; however,
by exploiting certain properties of H(\), the sufficient condition for the equilibrium stability
is found.

Indeed, H (M) is a meromorphic function, which in complex analysis [35] means that, given an
open subset D of the complex plane, the function is holomorphic on all D except for the poles
of the functions. Since a1 and gy are always positive because of the necessary constraints for
a rational driver behavior (2-4), (2-5), (2-29), the poles of H(\) are always in the left half
plane, indicating that H(A) is holomorphic in the Right Half Plane (RHP).

Holomorphic means that the function is complex differentiable at every point of the considered
subset. Exploiting the Maximum Modulus Principle [35], which states that the maximum
value of an holomorphic function is along the edge of its domain, i.e., the imaginary axis for
the open RHP, it is proved that if |H(jb)| < 1 for all b € R does not exist any A = a + jb
with @ > 0 such that |[H(\)| = 1.

Consequentially, all the eigenvalues of A in (4-3) are in the open LHP.

Thus, condition |H (jb)| < 1 becomes

H(b) < 1,
a3b® — bt + 2a,b? — a3b® <0, (4.34)
ag—62+2a1—a§§0,
—aj +b* 201 + a3 > 0.
In the worst case scenario b = 0, therefore
2 2
ay — a3 —2a1 > 0. (4-35)
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4-5 Numerical Evaluation of Lyapunov and Weak Ring Stability 31

Considering the OV-FTL model by plugging (2-29) in (4-24), the stability criterion becomes
2a + b > 2k. (4-36)
]

Remark 2. Note that, despite the used method is different, the conclusion in (4-34) is essen-
tially the same obtained in [30] to ensure Lyapunov stability in the Strong Ring Stability (SRS)
definition (Chapter 3). Analogously, the condition is also the same required to ensure Strong
frequency domain string stability (SFSS) (Definition 3, Chapter 3).

Although (4-24) provides a simple analytical result to check asymptotic stability of the pla-
toon solution, it is quite conservative and does not consider the number of vehicles on the
ring. In the coming section, by means of numerical analysis, the conservativeness of (4-24) is
determined.

4-5 Numerical Evaluation of Lyapunov and Weak Ring Stability

This section investigates, by means of numerical analysis, Lyapunov stability and Weak Ring
Stability (WRS) of the A’s equilibrium, with A as in (4-3), for different combinations of a
and b in (2-28) and by varying the number of vehicles N on the ring. In order to do this
numerically, few variables for the HV model in (2-25) and (2-26) have to be determined
beforehand. Tab. 4-1 shows these choices.

Table 4-1: Standard values used for the numerical analysis.

’ Variable name H Symbolic name H Value ‘
Vehicle Length Ly 4.5m
Maximum vehicle velocity Vrnaz 9.75m/s
Safety distance ds 6m

In addition to this, A in (4-3) is obtained by linearization of (2-25) at the equilibrium (4-1).
For the sake of coherence, varying the number of vehicles (N) on the ring requires also
changing the ring length (I,) proportionally, this in order to keep the same equilibrium and
the same linearization. By choosing a referential equilibrium also k in (2-28) is automatically
fixed. Tab. 4-2 shows the referential values by which the equilibrium is computed. Note that
all the variables introduces in Tab. 4-1 and Tab. 4-2 are in compliance with the Sugiyama
experiment in [1].

4-5-1 Lyapunov Stability

Lyapunov stability is checked by using the necessary and sufficient condition for Lyapunov
stability (Theorem 2) on (4-3) for different N vehicles. The main purpose of this analysis is
to show how the sufficient condition for Lyapunov stability in (4-25) (Theorem 3) is actually
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32 Human Drivers Traffic Scenario

Table 4-2: Referential values to compute the equilibrium (4-1).

Variable name H Symbolic name H Value ‘
Ring Length Iy 260m
Number of vehicle N 22
Linearization of V' in (2-26) at equilibrium k 1.2163
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Figure 4-2: The red line shows the bound computed using the sufficient condition of Lyapunov
stability (eq. (4-25)). The right-bottom area (where 2a + b > 2k) corresponds to ||T'||oc < 1 and
therefore where the equilibrium is always Lyapunov stable for all V.

very conservative.

Fig. 4-2 shows the bound obtained by using eq. (4-25) (Theorem 3) for the sufficient condition
of Lyapunov stability. The right-bottom area (where 2a + b > 2k) shows always a Lyapunov
stable equilibrium for all N on the ring and it corresponds to the area in which ||I'||occ < 1
with I" in (4-2). Note that Fig. 4-2 is expressed in terms of a and b as originally found in the
non-linear model (2-25), their relation with @ and b is stated in (2-28).

In the same (a,b)-plane, Fig. 4-3 illustrates instead, the number of vehicles N that makes
the equilibrium (4-1) Lyapunov unstable, which means that at least an eigenvalue of A has
positive real part.

The color-bar on the right side of Fig. 4-3 indicates a certain color associated with a number
N of vehicles. For instance, the blue area on the top-left is related to N = 3; therefore, for
this portion of the (a,b)-plane, A in (4-3) has an eigenvalue with positive real part for N = 3.
Increasing N = 5, not only the area already unstable for N = 3 keeps being unstable, but
also an additional area (light-blue) turns Lyapunov unstable. Thus, a greater portion of the
(a,b)-plane shows, for N = 5, a Lyapunov unstable equilibrium. It is possible to appreciate
how the unstable area in Fig. 4-3 increases proportionally to N and for N — oo it converges
to condition in (4-25).

For N << o0, eq. (4-25) does not take into account the several cases in which, despite
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Bound
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Figure 4-3: This Figure illustrates graphically what obtained applying the Indirect Lyapunov
method to determine Lyapunov stability of the equilibrium in the (a,b)-plane. The color-bar on
the right side associates a certain color with a number N of vehicles for which the aforementioned
equilibrium (4-1) is Lyapunov unstable. For N — oo the unstable (a,b)-space tends to eq. (4-25)
which is the bound in Fig. 4-2.

[I|co > 1, the equilibrium of (4-3) is in fact Lyapunov stable.

4-5-2 Ring Stability

This section investigates the definitions of SRS (Definition 6, Chapter 2) and WRS (Defini-
tion 7, Chapter 2) for the HVs homogeneous platoon on the ring roadway (Fig. 4-1).
Given the linear vehicle dynamics I', as in (4-2), and a type III disturbance acting on the
N-th vehicle (see Fig. 3-4 for the block diagram representation), the transfer function FZ-(N) (s)
from disturbance to i-th vehicle velocity is

FN 7z‘( S)

FM(s) = mPN(S)- (4-37)

Definition 6 of strong ring stability assumes ||T'||c < 1 which ensures Lyapunov stability.
From this assumption, it can actually be shown that the highest peak is always obtained for

F](VN) and, consequentially, this also allows a uniform bound ¢ such that ||Fi(N)(s)|\oo < ¢ for
all i, N,7 < N.

Remark 3. Assuming ||[I'||oc < 1 is reasonable in a platooned traffic scenario, where the
headway between vehicles can be arbitrarily influenced. However, being impossible to control
the human vehicles behavior, ||I'||c < 1 cannot be ensured in the Sugiyama experiment [1].
This motivates the formulation of Definition 7 of weak ring stability, which, by renouncing
to uniformity with respect to N, does not require ||I'||oc < 1. It is therefore interesting to
study what happens when the equilibrium is Lyapunov stable and ||T'||o > 1. Note that this
means studying the platoon in the top-left of Fig 4-2, where the sufficient condition (4-25) is
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34 Human Drivers Traffic Scenario

not met. As a result, Fig. 4-3 (which exploits Theorem 2) is used to determine if, fixed NV,
the equilibrium is Lyapunov stable and only afterwards, WRS is analyzed.

4-5-3 Weak Ring Stability analysis for N=3

Bound
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3-vehicles

asymp. stability

Figure 4-4: The x illustrates the position of a = 20, b = 0.5 in the (a,b)-plane. See also
figure 4-3 for the complete description.

In this section, N is fixed equal to 3, and, after ensuring Lyapunov stability at the equilibrium,
WRS is analyzed. The values of a and b are chosen

a=20 b=05. (4-38)

The x in Fig 4-4 shows the position of (4-38) in the (a,b)-plane and additionally Fig 4-5 the
poles distribution in the complex plane for (4-37) with N = 3. All the poles are in the LHP
denoting a Lyapunov stable equilibrium.

Once determined Lyapunov stability is possible to inquiry WRS. Let us recall Definition 7
for weak ring stability: given Fi(N)(s) in (4-37) with all the poles in the LHP for a fixed N,
the peaks of (4-37) for i € {1,..., N} should decrease in their magnitude moving throughout
the platoon from vehicle N to 1. Without knowledge on the structure of Fi(N)(s) in (4-37) is
difficult to provide a rigorous sufficient condition of WRS. However, fixing N and defining

Wpr={w st |I'(jw)| >1}, (4-39)
Wr={w st [FGw)|>1}, (4-40)
wr = arg max T (jw)|, (4-41)
wp = arg max ]F](VN) (Jw)], (4-42)
can be said, as a rule of thumb, that WRS is ensured if
Wi N W ~ 0. (4-43)
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Figure 4-5: Poles distribution in the complex plane for Fi(N)(s) in (4-37) with N =3, a = 20
and b= 0.5.

Fig 4-6 depicts |I'(jw)| and |FJ(VN) (jw)| for N = 3 and w € R. Clearly, in this case (4-43) is
met.

Singular Values

FN

Singular Values (dB)

102 10°" 10° 10"
Frequency (rad/s)

Figure 4-6: With N = 3, a = 20 and b = 0.5, the orange line is |I'(jw)| while the blue one is
|F1(\[N)(jw)|, w € R. From these magnitude bodes it is expected a weak ring stable equilibrium.

In addition, the critical number of vehicles N after which the platoon becomes weak ring
unstable can also be computed

= 1og(IFYY Gwp)l) — log(IFSY (ur)|)
N> log(|TGjer)]) ‘

(4-44)
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36 Human Drivers Traffic Scenario

Note that, at least for homogeneous HV platoons, most likely N > N and therefore weak
ring instability cannot actually occur in reality. Figures 4-8a shows \Fi(N) (jw)| with w € R
and i € {1,2,3}. Clearly, the peaks decrease while moving from veh-3, where the disturbance
acts, to veh-1. Furthermore, Fig. 4-8b shows how after the 6-th vehicle HFE‘?HOO > HFs(g)Hoo-
As already mentioned, this result is not feasible in reality.

Finally, Fig. 4-7 depicts the non-linear simulation for the N = 3 HVs homogeneous platoon
with an impulse disturbance acting on veh-3 at ¢ = 60s. The disturbance is not amplified
between vehicles and its effects are exacerbated in about 40s. Eventually, the platoon asymp-
totically stabilizes at the equilibrium. As a matter of fact, for N = 3 the platoon equilibrium
is both Lyapunov stable and Weak Ring stable.

9.2

veh 1

A/(\ %&O%O& o veh 2
9l veh 3

*®
[ee]
T
I

velocity [m/s]
oo
(2]

o
~

9.1 \%m \X/MWQQ%W)
9 - 4

8.9

8.2

60 70 80 90 100

8 1 1 1
0 50 100 150 200

time [s]

Figure 4-7: Non-linear simulation of the platoon with N = 3, a = 20 and b = 0.5. An impulse
disturbance acts at ¢ = 60s and it is not amplified denoting ring stability.
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Figure 4-8: WRS analysis for N = 3, ¢« = 20 and b = 0.5. Figure 4-8a shows
|F?f3)(jw)\,\F2(3)(jw)| and |F1(3)(jw)|, w € R. The purple bode in Fig. 4-8b is the |F£33)(]w)|
which represents an hypothetical 6th vehicle in the platoon which would actually amplify the
disturbance.
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38 Human Drivers Traffic Scenario

4-5-4 Weak Ring Stability analysis for N=22

It is important to highlight that WRS frequency domain analysis can be done only once
Lyapunov stability is ensured. This section provides another example for N = 22 and

a=140 b=0.1. (4-45)
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Figure 4-9: The x shows the position of a« = 140 and b = 0.1 in the (a,b)-plane. See also
Figure 4-3 for the complete description.

The x in Fig 4-9 shows the position of (4-45) in the (a,b)-plane and Fig 4-10 the poles
distribution in the complex plane of (4-37) for N = 22. All the poles are again in the LHP
denoting a Lyapunov stable equilibrium.
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Figure 4-10: Poles distribution in the complex plane for Fi(N)(s) in (4-37) with N = 22, a = 140
and b=0.1.

Vittorio Giammarino Master of Science Thesis
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Fig 4-11 depicts |I'(jw)| and \F](VN) (jw)| for N = 22 and w € R. In this case, |['(jw)| appears

remarkably flat with respect to |F ](VN) (jw)|. As a consequence, (4-43) is once again met.

Singular Values
10 T T T T T T T T T T T T

20 + 1

25 | 1

Singular Values (dB)
o

-30 + 4

35 + 1

_40 L L Il
1072 107" 10° 10" 102
Frequency (rad/s)

Figure 4-11: With N =22, a = 140 and b = 0.1, the orange line is |T'(jw)| while the blue one
is |F](\,N)(jw)|, w € R. From these magnitude bodes it is expected a weak ring stable equilibrium.

Figures 4-12 shows ]Fi(N) (jw)| with w € R and ¢ € {1,...,22}. For sake of clarity, only vehi-
cles 22, 21, 20 and 16 are plotted. As predicted, the peaks are decreasing moving throughout
the platoon.

Finally, Fig. 4-13 depicts the non-linear simulation with an impulse disturbance acting on veh-
22 at t = 60s. Also in this case the disturbance is not amplified and the platoon asymptotically
stabilizes at its equilibrium.

4-5-5 Conclusion on the Ring interconnection

The previous two examples are indicative since consider the Strong string unstable region in
Fig. 4-2, with ||I'||cc > 1, but they turn out both Lyapunov and weak ring stable. Based on
these examples, a first conclusion can be drawn. As also highlighted in [36], the cyclic/ring in-
terconnection with a Lyapunov stable equilibrium has few advantages in terms of disturbance
rejection with respect to a string interconnection with the same number of vehicles. This
because the perturbation is detected and compensated by every member of the formation. As
a result, despite ||T'||cc > 1, the same Type III disturbance has different effects on the ring
and on the string. Indeed, in Fig. 4-14, an impulse disturbance acting at ¢ = 60s on the ring
interconnection is not amplified throughout the platoon. Whilst, the same disturbance acting
on the string results in a braking increase throughout the platoon (Fig. 4-15). In conclusion,
strong string instability does not imply weak ring instability.
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Figure 4-12: WRS analysis for N = 22, ¢« = 140 and b = 0.1. Figure 4-8a shows
| F52C2) (jw)],| Fo12) (jw))|, |F202?) (jw)| and |F16(32) (jw)| w € R. The peaks decrease moving
throughout the platoon denoting weak ring stability.
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Figure 4-13: Non-linear simulation of the platoon with N = 22, a = 140 and b = 0.1. An
impulse disturbance acts at ¢t = 60s and it is not amplified denoting ring stability.
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Figure 4-14: Non-linear simulation for N = 22, ¢ = 140 and b = 0.1 for a ring roadway. An
impulse disturbance acts at ¢ = 60s and it is not amplified denoting ring stability.
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Figure 4-15: Non-linear simulation for N = 22, a = 140 and b = 0.1 for a string roadway. An

impulse disturbance acts at 60s and it is amplified denoting string stability.
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42 Human Drivers Traffic Scenario

4-6 Sugiyama Experiment

This last section explains the Sugiyama experiment [1] and, from a theoretical point of view,
what kind of instability is observed. Considering the calibration of the human model (2-25)
described in [11], a and b are chosen as in Fig. 4-4

a=20 b=0.5. (4-46)

For N = 22, the eigenvalues of A in (4-3) which correspond to the roots of 1 —T'?2(s) = 0 with
I'in (4-2) are illustrated in Fig. 4-16. Clearly, from this numerical analysis turns out that there
are poles in the RHP which means that the equilibrium is Lyapunov unstable. Therefore, the
stop-and-go waves observed in [1] arise because of a condition of instability in Lyapunov sense.
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Figure 4-16: Poles distribution in the complex plane for FZ-(N)(S) in (4-37) with N =22, ¢ = 20
and b= 0.5.

Fig. 4-17a and 4-17b illustrate the non-linear simulations obtained in this particular case. The
dynamics used for the HVs is in (2-25). As observable, a small impulse disturbance acting
at t = 60s is enough to generate perpetual oscillations in the velocity of the platoon. Such
fluctuations do not go to infinite because of the non-linearities which constraint the vehicles
velocity between 0 and vp,q,. In Fig. 4-17b, where the evolution in time of the positions is
illustrated, the slopes of the curves provides information on the vehicle velocities. It can be
observed how the waves propagate in the platoon with the opposite direction of the traffic
flow. This phenomenon is observed analogously in [1].
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Figure 4-17: Non-linear simulation of the platoon with N = 22, a = 20 and b = 0.5. An impulse
disturbance acts at t = 60s and it is enough to cause perpetual oscillations in the velocities (Fig. 4-
17a) that do not decay for t — oo denoting Lyapunov instability. This oscillations are bounded
only because of the non-linearities. Fig. 4-17b illustrates a plot position-time, a stop-and-go wave
proceeding in the opposite direction of the traffic flow occurs in the simulation as well as it is
observed in [1].
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Conclusion on the experiment

The conclusions that can be drawn by this analysis are:

e What observed in [1] is a typical case of Lyapunov unstable equilibrium. As a result,
an AV should be able to first stabilize the equilibrium in Lyapunov sense, i.e. place the
modes of the matrix A in (4-3) in the LHP and only afterwards dealing with WRS.

e The first point implies that in the field experiment [11] the AV stabilizes the system in
Lyapunov sense.

4-7 Discussion

The main problem addressed in this chapter is the analysis of [1] by means of Linear Time
Invariant (LTT) systems theory in order to provide a theoretical framework of what is observed
in the experiment. The original contributions of this chapter are the necessary and sufficient
condition to determine Lyapunov stability (Theorem 2) in Section 4-3 and the Weak Ring
stability evaluation in Section 4-5. At the end of the chapter, the ring interconnection distur-
bance rejection properties are compared with those of a string and finally, few observations
are made concerning the equilibrium of the Sugiyama’s experiment.

Vittorio Giammarino Master of Science Thesis



Chapter 5

Mixed Traffic Scenario

This chapter explores the experimental evidence in [11], where a Human-driven Vehicle (HV)
is replaced by a single Autonomous Vehicle (AV) and the platoon is stabilized. First of all,
in Section 5-1 the controllability of the linearized system (4-3) at the equilibrium (4-1) is
investigated. Once confirmed that the linearization is at least stabilizable, in Section 5-2 a
sufficient condition to determine Lyapunov stability for a mixed-platoon is formulated and
afterwards, different AVs are designed for a platoon with an otherwise Lyapunov unstable
equilibrium. Namely, a PI with saturation controller in Sections 5-3 and 5-4 and a full state
H controller in Section 5-5 have been developed and evaluated for both Lyapunov and weak
ring stability and eventually validated by means of non-linear simulations. Limitations and
possibilities of the different designs are eventually pointed out. Note that the performance
of the different designs in time domain will vary according to the disturbance applied to the
platoon. As mentioned, the disturbances more adopted in literature are:

e Type I: Initial condition perturbations for the leading vehicles;

Type II: Initial condition perturbations for all vehicles;

Type III: External disturbances for leading vehicle;

Type IV: External disturbances for all the vehicles;

Type V: a combination of the previous ones.

5-1 Controllability analysis

In this section the controllability analysis on a mixed HV-AV is done similarly to [25]. The
necessary modifications are made in order to make it suitable for the considered platoon.
First of all, the state space formulation for the linearized platoon with N — 1 HVs and a
single AV is

X = Ax + Bu,, (5-1)
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X1 A A @ X1 0
. 0
= + Uy, (5_2)
XN-1 A Ay | |xn-1
XN ) O Cav| | xn B,
——
A B
0 1 0 O 0 01
Al_l—bk —a—b] A2_lbk J BT—H CAV_[O 0]' (5-3)

Note that y; = [z, v;]7 with z; the front position of the i-th vehicle and v; its velocity.

Lemma 1. Consider the linear state space in (5-2), the system is controllable for all N € N.

Proof. Few lemmas stated in [37] are here introduced because useful for the proof. These are

Lemma 2 (Controllability). The linear system (A, B) is controllable if and only if
[B,AB, ..., A>""1B] = 2n.

Lemma 2 is the known Kalman’s controllability rank test in [37] which provides a necessary
and sufficient condition for controllability. Additionally, the controllability of a state space
is invariant both under state feedback and linear transformation. The following two lemmas
underline these properties:

Lemma 3 (Invariance under state feedback). The linear system (A,B) is controllable if and
only if (A — BK, B) is controllable. Given K with compatible dimension.

Lemma 4 (Invariance under linear transformation). The linear system (A,B) is controllable

if and only if (T~YAT,T~'B) is controllable for every nonsingular T.

Thus, is possible to introduce the following state feedback, keeping the same controllability
properties of (5-2) (lemma 3). The state feedback is

Uy = up — A1x1 — A2X N, (5-4)
the linear system (5-1) becomes
X1 A1 A 0O X1 0
. _— . 0
= S Sl e (5-5)
XN-1 Ay As XN-1 :
XN AQ . O A1 XN Br

State-space (5-5) can be rewritten as follows without losing generality for lemma 4

XN AQ O . Al XN B,«
X1 A A @) X1 0|
. — . . . + . u’r‘a (5_6)
XN-1 O A As| | xn-1 0
——
i B
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X = Ax + Ba,. (5-7)

A is a block circulant matrix and Theorem 5 (Appendix A) on the diagonalization of a block
circulant matrix can be used to diagonalize it

A= (El @ L)A(Ey ® I) = diag(A1, Ag, ..., Ay), (5-5)
B = (EN ®L)B,
_I2 1 IQ e IQ ]
I, wnIp w3 1o . wN T, l?)r gr
5 1 - _o(N-1 1 .
B=(EEgL)B = = L wiL, wiL ... w2V - =]
. : ‘. : 0 Br
_.[2 121%_1[2 @%N71)12 . m](\][\ffl)(Nfl)IQ_
(5-9)
Ay B,
v A D, A 1 BT’
X = A+ Bu= o X+—=|.|% (5-10)
. VN |
AN B,
where
N _ '
Ai = Gt DU = Ay + AV DD, (5-11)
k=1
0 0 0 w(Nfl)(ifl)
A= lal ag] + l_alw(N—l)(i—l) — N1 (1) (5-12)
0 wN-D(-1)
- lal(l — wWN=DEDY g — V-1 (5-13)

System (5-10) can be decoupled in N independent sub-systems (i = 1,2,...,N), with the

new states variables defined as ¥ = [X11, X12, X21, X22 - - - 7)~(n1,)~(n2}Ti
d |v; o 0
i [a] =M )t | ) (5-14)
dt | Xiz Xi2 TN
0 w(Nfl)(i*I) Xil 0 .
- la1(1_w(1\f—1)(i—1)) as — apwN-DED | |54 + ﬁ a. (5-15)

Applying lemma 2, the controllability matrix for each sub-system becomes

0 w06 L
Qc,i = 1) (i— . 5-16
[\;ﬁ (a3 . Ozgw(N 1)( 1))\/1N‘| ( )

Clearly, det(Qc;) = (%)(w(N_l)(i_l)) #0 Vied{l,...,N} and VN € N. As a result, the
system in (5-1) is controllable. O
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Remark 4. Ensuring that the linear system (5-1) is controllable for all N means that through
a single AV is possible to stabilize the equilibrium of whichever platoon of N vehicles, N € N,
in Lyapunov sense. However, as underlined in [22], Lyapunov stability implies that each
single perturbation will decay for ¢ — oo which in reality does not constitute a desirable
result. Hence, although is always possible to find a stabilizing AV design, the performance of
the controllers is evaluated also considering the time required for the complete decay of the
perturbations.

5-2 Sufficient Condition for Lyapunov stability

This section illustrates a sufficient condition for the mixed-platoon in order to ensure Lya-
punov stability [22], as well as Theorem 3 in Section 4-4 does for the HVs homogeneous
platoon. Eq. (5-17) is then exploited for the different AVs designs.

Proposition 1. Consider I'(s) as in (4-2) and T 4y (s) the transfer function of the AV dy-
namics at the equilibrium. The mized HV-AV platoon is Lyapunov stable if

D) Y7 - [Tay (o)) <1 for veR. (5-17)
With v in (5-17) the AV penetration rate, i.e. the ratio between HVs and AVs.

Proof. Condition (4-26) for a homogeneous platoon asserts that the eigenvalues position of
matrix A in (5-6) depends on the number of vehicles N in the ring. However, although the
actual modes position on the complex plane changes, it has been observed that, regardless
the number of vehicles NV, all the modes lie dense in a curve C C C which is independent from
N. A graphical representation of this for a homogeneous platoon is given in Fig 5-1.

Moreover, from (4-26) analysis is known that the eigenvalues of (5-5) are by definition defined
as the roots of |H(z)| = 1 with |H(z)| in (4-27). As a result, the curve C in Fig. 5-1 is defined
as

C={zeC : |H(z)|=1}. (5-18)

If for all z satisfying (5-18), fRe(z) < 0 the equilibrium is Lyapunov stable. As a matter of
fact, the stability criterion can be rewritten

The equilibrium is stable if C C C™~ (5-19)
C ={zeC : fRe(z) <0} (5-20)

For a homogeneous platoon, condition in (5-19) is ensured if

|H(iv)| <1 for veR (5-21)

Whereas, for a mixed-platoon, C in (5-18) becomes

C={zeC : |H|"|Tav(z)] =1} (5-22)

Therefore, (5-19) becomes
|H(iv)|*™7 - [Ty (iv)[" <1 for veR. (5-23)

The variable 7 in (5-23) is called the AV penetration rate and it defines the ratio between
HVs and AVs. O
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Figure 5-1: Poles distribution of a homogeneous platoon in the complex plane for different N
vehicles. The modes are obtained as roots of 1 — I'N = 0 where T is the HV transfer function at
the equilibrium in 4-2.

Remark 5. Being in this case the AV unique, v = 1/N with N the overall number of vehicles
driving on the ring. H(z) is the HVs transfer function obtained at the defined equilibrium,
in this specific case H(iv) = I'(4v) with I" in (4-2). Similarly, T4y (iv) is the AV transfer
function obtained at the equilibrium. Just to recall, the equilibrium is defined in (4-1).

At this point is possible to redefine the problem to solve: in real scenarios the HVs are prone to
show string instability that, considering the Strong frequency domain string stability (SFSS)
definition, means ||H (iv)|]oc > 1.

Given therefore ||H(iv)||s > 1 for all the N —1 HVs on the ring,

e which is a design for T 41/ (s) such that the condition (5-17) is met?

In addition to this, in Section 4-5, the conservativeness of the sufficient condition for Lyapunov
stability in a homogeneous platoon is pointed out. Hence, another relevant question becomes:

e to what extent is (5-17) conservative?

5-3 AV design: Pl with saturation

The first controller considered in our analysis is the PI with saturation AV introduced in [12].
A note on the notation, as already specified in the controllability analysis, the AV is the N-th
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vehicle (see also the state-space notation in (5-2)). Since the platoon is on a ring, the AV
follows the 1st vehicle and precedes the N — 1-th. The non-linear dynamics of the AV is

IN = UN

. (5-24)
VN = Kveh(a * Vtarget + (1 - 05)2)1 - UN);
where vigrget and o are
_ — havs
Vtarget = Vg + min (max (wl wNé AV ,O), 1)
UN + U
Vd _ ( N ; 1)

(5-25)

Az, = max (2 (v — UN),4)

T1— TN _Axs,()),l).
v

Remark 6 (AV linearization constraints). A remark on the linearization, as for the HV model,

the linearization is performed at the equilibrium (hy,0,v,) with h, and v, defined in (4-1).

Furthermore, also (5-24) is a Car-Following (CF) model and then its linearization can be

generalized as

a = min (max(

oy = (Dpf)(hy = ha) + (D f) iy = 0) + (Do f) vy — vs)
on = (Dnf)hn — (Dj,f — Dy f)on + Dj fv1 — (Dy fvs + Dy fhy) (5-26)
On = Prhy — Baon + B3v1 — Ba.
Also for the AV the necessary constraints for rational driver behavior are
Dnf,Dyf >0 and D,f <0, (5-27)

where Dy, f, D; f and D, f are the partial derivatives to respectively the headway, the difference
in velocity with the vehicle ahead and the AV velocity. Finally, is required that the AV does
not trigger string instability itself, which means it complies with the SFSS definition. In other
words, given I 41 the transfer function obtained from (5-24) linearization, it is expected that
[T av||loo < 1. Condition met if and only if

B3 — B3 — 261 > 0. (5-28)

Condition (5-28) is obtained for a HV in Section 4-4 (Theorem 3) and it is also valid for the
AV as long as it has a CF model dynamics.

Considering (5-24) and (5-25), according to the value of ¢ two linearizations are possible: a
first order and a second order.

5-3-1 AV first order (P Controller)
Considering a § < x1 — xy — 7 the controller (5-24) can be linearized as
TN = UN
N = Kveh((l —a)v; + a( - UN) (5-29)

= veh(l — %)(m —vN) = B3v1 — Baun.

UN—}-Ul)
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Leading to the following first order transfer function:

_ vN(S) o Kyen(1 — %) _ Ko _ B3
Lav(s) = v1(s) 5+ Kyen(l — 5) s+ K, s+pPo (5-30)

Given o ~ 1 and K, > 0, (5-29) meets both the requirements in (5-27) and (5-28).
At this point, a condition on I' 41y such that (5-17) is assured can be computed.

Result 1. Condition (5-17) of Lyapunov stability, for the AV in (5-30) and the HVs in (4-2)
with ||T|co > 1 is met if:

1
K, <or . (5-31)
J PeakI%(N_l) -1

Proof. The HV transfer function in (4-2) is here recalled

as + bk
I(s) = _ —. 5-32
(5) s2 4+ (a+0b)s+ bk (5-32)

Considering condition (5-17), the most critical point is given by ||T'||c that is the peak of
(5-32) and it occurs at the frequency vp. Therefore, (5-17) can be rewritten as:

=\ N
o (N-1)/N

( M) . Peak‘F S 1, (5-33)
K? 2(N-1

(M) . Peak‘r( ) S 1, (5-34)

as K, > 0 lead to the following condition:

1
K, <wvr . (5-35)
J Peakl%(N_l) —1

O]

Remark 7. For certain HV configurations, (4-2) has a zero at really higher frequencies with
respect to its poles. Because of this, in many cases (4-2) can be considered a second order
system with complex poles

T(s) = as + bk N bk _ aq
S 24 (a+b)s+bk 2+ (a+b)s+bk  s2tass+ar

(5-36)

Thus, the resonance peak Peakr and its frequency vr can be computed as

vr = wpy/1 — 262, (5-37)
1
Peak:p = |P(j1)p)| = (5—38)

21— &
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with

= (5-39)

wn = /a1 (5-40)

5-3-2 AV second order (Pl controller)

Commonly in [12] § > z; —xy — 7. Given the referential values to compute the equilibrium
in tab. 4-2, this second order linearization is obtained

IN = UN
. vy + v T1 — TN — havs
UN:Kveh((l_a)U1+a< N2 1)+a( ! Né AV)—UN> (5-41)
9-41
Kyena a a Kyena
= Ugh (1:1 - xN) - Kveh(l - §)UN + Kveh(l - 5)7)1 - vgh hAV*
= pihn — Bavn + Bsv1 — Ba.
From (5-41) the following second order transfer function is obtained:
Kpenl(1 — 9)s + @
FAV(S) _ UN(S) — veh[( 2)3 5] _ = 2/333 + 51 ' (5_42)
UI(S> S +Kveh(1 - 5)3+Kveh§ S +623+53
Condition (5-28), which ensures ||T'av||oc < 1 states that
By —B3—2B >0 (5-43)
and unfortunately this is not the case. Taken (31,82 and (3 in (5-41), (5-43) becomes
— 28, <0 (5-44)

which means that ||I'4y||cc > 1 and that this linearization is strong frequency domain unsta-
ble (cf. SFSS definition in Chapter 2).

Under these conditions, ||[I'4y || > 1 might have a detrimental effect on the controller per-
formance. This does not mean that the AV is not able to stabilize the platoon equilibrium.
Making 31 very small for instance, would allow to approximately meet condition (5-43); how-
ever, it is intuitive to understand why this condition is not ideal. Hypothetically, a platoon
with only AVs in (5-41) would most likely result string unstable which is clearly not ideal.
Therefore, a modification in the non-linear controller in (5-24) is introduced in order to face
this issue.

5-4 Modified non-linear Pl with saturation AV

In order to improve the second order linearization of the PI with saturation AV in [12], a
small modification in (5-24) is introduced. The non-linear dynamics of the AV becomes

TN = UN

. (5-45)
VN = Kveh(a * Vtarget + (1 - 04)1)1 - UN) + C(UAV* - UN)
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with

— N — havs
I $N(S AV ’0)71)

Vtarget = Vg + min (max (
UN + vl)

de( 5

4
Azs = max (2 (v — vN),4> (40

1 — TN — Ax
s 0), 1).
v
As in the previous section, d > 1 — xy — 7 lead to the following second order linearization

a = min (max(

TN = UN
. + v 1 — TN — havs
vN:KUeh((l—a)Ul—i—a(vN 1) —i—a( L= N = havs) —UN) + c(vav« — vN)
2 )
o Kyepa « « Kyeno
=—% (@ -2n) = (Kveh(l - 5) + C)UN + Kveh(l - 5)% - ( 5 have = CUAV*)
= Brhn — Bavn + Bav1 — Ba.
(5-47)
From (5-47) the following second order transfer function is obtained:
Koen[(1— 2)s + ¢
Pav(s) = 2N0) _ vehl(1 = 5)s + § = 2ﬁ33 A (5-48)
vils) g2y (Kveh(l—%)+c>s+Kveh% s? + Pas + B3
Condition (5-28), which ensures ||T'4v||c < 1, becomes
o 2 9 o2 o
(K’Ueh(l — 5) + C) - Kveh(l - 5) - 2K’Ueh5 2 0
9 « «
¢+ 26K (1= 5) = 2Koan's 20 (5-49)
o o2 o
c> —Kveh(l - 5) + \/ngh@ - 5) + 2Koen

(5-49) provides a condition on ¢ in order to ensure SF'SS of the AV. At this point, a condition
on I'yy such that the sufficient condition for Lyapunov stability (5-17) is assured can be
computed.

Result 2. Condition (5-17) of Lyapunov stability, for the AV in (5-30) and the HVs in (4-2)
with ||T|ec > 1 is met if:

(1 — %)cvz — %v%

Kveh < 2
[+ (1= 8) o peaii™™ )

vr\/<1 - %)2(—v1‘£) -2 {2(1 - %)cv% + %c} + (vE +¢?) [‘g‘—; + (1 - %)zv%}Peakﬁ(Nfl)

[+ (1-8) ] (Peak™ Y - )

(5-50)
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Proof. The proof on this theorem is substantially identical to Theorem 1. Indeed, condi-
tion (5-17) of Lyapunov stability for I' 41, in (5-47) leads to the following inequality to solve

2
< Koonl(1 — §)%0f + §5]
(Kveha - Ulz“)2 + U%[Kveh(l - %) + C]

2) . Peaki™ ™ < 1. (5-51)

By developing (5-51), the following second order inequality is obtained

o2

2
K2, 57+(1—%) v%] (Peak?V ™V _1) 42K, (‘;vg—(1—§)cv%>—(u§+v%c) <0, (5-52)

which yields

Kveh <

(1 - %)cv% — Sk + \/(‘g‘v% - (1 - %)CU%)Q + (vi + v3c?) [‘g—; + (1 - %)21)%} (Peaklg(N_l) - 1)
. :

(5-53)
Simplifying (5-53) leads to (5-50). O

Remark 8. For practical applications with a number of vehicles N which is higher then 5 and
by considering 6 > 1 — xny — 7, the value of § ~ 0. By means of this approximation, (5-50)
turns

c+ \/(02 + v3) - Peaklg(N_l) —

Kveh <
(1-9)(Peaky™ Y 1)

(5-54)

Condition (5-54) is easier to handle and approximates quite well the result in Theorem 2.

Remark 9. Given ||[T'||cc > 1 and therefore Peakr > 1, from (5-53) is clear that the root
square in (5-50) is always greater than zero.

To summarize, a modified version of the PI with saturation controller in [12] has been proposed
and motivated by the issues that its second order linearization has shown. Additionally, given
the second order linearization of this modified PI, a sufficient condition on its gains in order
to ensure Lyapunov stability on a platoon of IV vehicles on a ring has been developed. The
following sections investigate numerically the conservativeness of Result 2 and to what extent
this design is able to deal with Weak Ring Stability (WRS).

5-4-1 Conservativeness of the sufficient condition of Lyapunov stability

For the homogeneous platoon with only HVs, Section 4-5 and in particular 4-5-1 illustrates
numerically how the sufficient condition for Lyapunov stability on the ring, i.e. |||l < 1,
is conservative. Similarly, this section investigates the conservativeness of condition (5-50)
in Result 2 for a mixed platoon with a single AV. In coherence with the homogeneous case,
tab. 4-1 reports the values used for this numerical analysis and tab. 4-2 provides the referential
values to compute the equilibrium in (4-1). In addition to this, the HVs dynamics in (2-25)
is considered with

a=20 b=0.5, (5-55)
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which are the values used in [11] to validate the Optimal Velocity-Follow the Leader (OV-FTL)
model for the Sugiyama’s experiment [1]. These values are in the ||I'||cc > 1 region (see
Fig. 4-4). In this scenario, in order to determine the discrepancy between the gain Kyep
in (5-47) obtained with an only sufficient condition and a necessary and sufficient condition
for Lyapunov stability; condition (5-50) (sufficient) is checked together with the indirect
Lyapunov method (Theorem 1, sufficient and necessary) for A in (5-56) which contains the
AV linearized dynamics as N-th row. As previously, x; = [xi,vi]T with xz; vehicle ¢ front
position and v; its velocity.

X1 A Ay O X1 0
: e : 0
= - S I I RS (5-56)
XN—1 A Ay XN—1 :
XN Aavi ... 0 Aave| | xnv B,
——
A B

Ay, Ay and B, are in (5-3), while A4y1 and Agyo are

0 0 0 1
A =1, o A = o o 5-57
AV1 I%veh K'Ueh(]- - 2)] AV?2 l_ ngeh _(Kveh(l _ j) + c) ( )
The fixed variables for the AV are
60=23 a=09 c=0.5. (5-58)

The numerical analysis returns the results in Fig. 5-2.

Clearly, for N around 20, which is the scope of interest of both [1, 11], eq. (5-50) and the
indirect Lyapunov method applied to (5-56) provide really close conditions for K,.; in order
to ensure Lyapunov stability of the equilibrium.

5-4-2 Ring Stability and non-linear simulations

This section investigates WRS (Definition 7, Chapter 2) for the mixed platoon with a single
AV. The block diagram representation of the linearized mixed platoon is given in Fig. 5-3.
The capacity of preventing both Lyapunov and ring stability is evaluated for an AV designed
by using Result 2. Fig. 5-3 depicts a type III disturbance acting on the AV, the transfer

function EAV(N)(S) for a general vehicle ¢ from disturbance to velocity is
N—i
AV(N) Y (s)
F = P _

Lyapunov stability is ensured by Result 2. For N = 22, K., in Fig. 5-2 is
Kyen, = 0.0029. (5-60)

The rest of the numerical values are provided in tabs. 4-1, 4-2 and eq. (5-55) for the HVs and
in (5-58) for the AV. For the sake of transparency Fig. 5-4 illustrates how the poles location

of the linearized ring change with the AV (FAV(N) in (5-59)) and without (Fi(N) in (4-37)).

2
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T T T T T T T T T [ T T T T [ T
Indirect Lyapunov Method
Sufficient Condition for Lyapunov Stability
107 F 1
<
[}
>
x
1072} 1
1073 1
1 1 1 1

10 15 20 25
Number of vehicles

Figure 5-2: This figure compares the K., obtained in condition (5-50) with the maximum
K,cp, obtained using the Indirect Lyapunov method (Theorem 1), able to keep the modes of A
in (5-56) in the LHP.

Ur
v
P4
y2 YN-1 YN + Y1
r ‘— [N ‘_ r rAV

Figure 5-3: Block Diagram representation of a mixed-platoon with a single AV and the remaining
HVs. With respect to Fig. 3-4, in this figure the AV transfer function I" 4y (s) is present; while,
the rest of the transfer functions for the HVs is I'(s).

Similarly to the homogeneous platoon in Chapter 4, a rule of thumb to determine WRS is

Wr N Weavy = 0, (5-61)

with
Wr={w st. |[I(jw)|>1} (5-62)
Weavy = {w st |[Fy' ™ Gw)| > 1}. (5-63)
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Figure 5-4: Poles distribution of F{) in (4-37) and F*Y ™) in (5-59) for N = 22, a = 20 and
b =0.5. Clearly the presence of the AV stabilizes the equilibrium in Lyapunov sense.

As Fig. 5-ba shows, this is in fact not the case and consequentially, Fig. 5-5b depicts the typical
increase of the frequency peaks moving throughout the platoon. The weak ring instability
result is confirmed by the non linear simulations. As Fig. 5-6b illustrates, the transient from
initial condition to the vy, in (5-45), which in this case is exactly the same as the v, in (4-1),
is well damped and the effects of an initial velocity vg = 0 are almost null. This is mainly
because of the choice of ¢ = 0.5 which is motivated by the study of the linearized human
vehicle dynamics (2-27). Indeed, a reasonable value of ¢ is ¢ = b which is also in compliance
with (5-49). On the other hand, a small impulse disturbance on the AV acceleration acting
at t = 100s for 1s is enough to have a remarkable amplification over the vehicles (Fig. 5-6b).
The propagation of the wave is also visible in Fig. 5-6a.
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Singular Values
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Figure 5-5: WRS analysis. Fig. 5-5b shows |F2gv(22)(jw)|, |F;}V(22) (Jw)|, |F2’?]V(22)(jw)| and
|F$V(22)(jw)| with FiAV(N)(jw) in (5-59), w € R. The peaks are amplified from vehicle 22 to

19 denoting a ring unstable scenario. Weak ring stability is predicted looking at Fig. 5-5a where
|| oo and ||F]€V(N)(jw)||oo (N = 22) occur roughly at the same frequencies.
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(a) Positions of the N vehicles for N = 22, a = 20 and b = 0.5 for a mixed traffic
scenario with a single Pl with saturation modified AV in (5-45). The red position is

the AV's.
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(b) Velocities of the N vehicles for N = 22, a = 20 and b = 0.5 for a mixed traffic
scenario with a single Pl with saturation modified AV in (5-45). The red velocity is
the AV's.

Figure 5-6: Non-linear simulations for N = 22, a = 20 and b = 0.5 for a mixed traffic scenario
with a single Pl with saturation modified AV in (5-45). Lyapunov stability and rejection of initial
conditions perturbations is achieved. An impulse disturbance acts at ¢ = 60s and is amplified
throughout the platoon denoting ring instability.
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5-4-3 Change the equilibrium of the system

At parity of disturbance a possible way to decrease the ring instability effect is to increase the
velocity equilibrium of the overall platoon [25]. The natural equilibrium of the homogeneous
platoon is obtained in (4-1) and for the specific case in tabs 4-1 and 4-2, v, = 9.09m/s.
Increasing vay . at 9.3m/s for instance, makes the AV reach a smaller equilibrium headway
(havs« < hy) and, in this way, makes the ring "bigger" for the HVs which translates in higher
hs. The linearization obtained for this new equilibrium point shows a decrease in ||I'||o as
illustrated in Fig 5-7.
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Figure 5-7: Evolution of the HV transfer function |T'(jw)| with a = 20 and b = 0.5 for different
equilibrium points.

This decrease reflects remarkably in the amplification of the disturbance. As in the case of
Fig. 5-6b, a small impulse disturbance acts on the AV acceleration at ¢ = 100s for 1s; however,
Fig. 5-8b shows how the amplification is really negligible with respect to what happens in the
previous section. However, steering the system to a higher equilibrium velocity pays a price
in the transient which in Fig. 5-8b is not as smooth as in Fig. 5-6b.
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(a) Positions of the N vehicles for N = 22, a = 20 and b = 0.5 for a mixed traffic
scenario with a single Pl with saturation modified AV in (5-45) and vy = 9.3m/s.
The red position is the AV's.
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(b) Velocities of the N vehicles for N = 22, a = 20 and b = 0.5 for a mixed traffic
scenario with a single Pl with saturation modified AV in (5-45) and vay. = 9.3m/s.
The red velocity is the AV's.

Figure 5-8: Enabling the AV reaching a new equilibrium velocity vy« > v, reduces the headway
between the AV and its preceding vehicle. As a result, the ring becomes bigger for the HV's which
become "less string unstable" and the same disturbance acting in Fig. 5-6 is better attenuated.
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5-4-4 How to accomplish both Lyapunov and Ring stability

In the previous sections, for N = 22, and HVs’dynamics (2-25) with a = 20 and b = 0.5, an
AV able to achieve Lyapunov stability have been designed. However, although few strategies
to improve the disturbance rejection have been illustrated, Weak Ring stability has not been
accomplished. The reasons why the platoon equilibrium ends up weak ring unstable are
hereby explained.

In particular, Fig. 5-2 shows the values of K., in (5-45) able to guarantee Lyapunov stability
for a = 20, b = 0.5 and N > 6. Regardless the method, K., < 0.5. With such a small
value of Kyep, is not possible to accomplish Wr N W4y ~ () with Wr and Wr(avy defined
respectively in (5-62) and (5-63) resulting impossible to achieve weak ring stability. This
is because the only way to move HFﬁV(N) (Jw)||eo at higher frequency (FZ-AV(N) in (5-59))
is to increase the value of K,.p, which however is constrained to ensure Lyapunov stability.
Consequentially, it has been observed that this AV cannot accomplish weak ring stability for
N > 5,a =20 and b= 0.5.

Weak ring stability is instead achievable for N =4, ¢ = 20 and b = 0.5.

The poles of the homogeneous HVs platoon for this scenario are illustrated in Fig. 5-9
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Figure 5-9: Poles distribution in the complex plane for the homogeneous-platoon with NV = 4
HVs with ¢ = 20 and b = 0.5.

Clearly, the equilibrium results Lyapunov unstable since Fig. 5-9 shows poles in the Right
Half Plane (RHP). At this point, a HV is replaced with a modified PI with saturation AV
(5-45); the K, obtained by using condition (5-51) in Result 2 returns

Ky, = 0.8723. (5-64)

However, applying the indirect Lyapunov method to (5-56) shows that also for K., = 15 all
the poles are in the LHP. Fig. 5-10 shows the poles distribution in the complex plane for the
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Figure 5-10: Poles distribution in the complex plane for the mixed-platoon with an AV in (5-45)
with K., = 15 and the remaining 3 HVs with a = 20 and b = 0.5.

mixed-platoon with an AV in (5-45) with K., = 15 and the remaining 3 HVs with a = 20
and b= 0.5.

With Kyep, = 15, W N Weayy = 0 (Fig. 5-11b) is accomplished, which means that the
equilibrium is weak ring stable. Indeed, Fig. 5-11d depicts a decrease of the frequency peaks
moving throughout the platoon. On the other hand, Fig. 5-11a shows that |F4AV(4) (jw)| in
(5-59), w € R, for K., = 0.8723 has a peak which approaches the same frequencies of ||T'||oo
leading to weak ring instability of the mixed-platoon equilibrium. Weak ring instability for
Kyen = 0.8723 can be visualized in Fig. 5-11c where the peaks increase moving throughout
the platoon.

Finally, Fig. 5-12 shows the non-linear simulation for the weak ring stable case, an impulse
disturbance occurring at ¢ = 100s is well attenuated and not amplified.
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(a) The figure illustrates |Ffv(4)(jw)\ for (b) The figure illustrates |Ffv(4)(jw)| for
Kyep, = 0.8723 and Kyep, = 15 and |[T'(jw)|, Kyep, = 15 and [T(jw)|, w € R. In this case
w € R. Clearly, with Koo, = 15, ||F1V®||oo W 0 Wray) = 0.

can be moved at higher frequency leading to

weak ring stability.
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(c) Weak ring unstable case with K,., =

(d) Weak ring stable case with K., = 15.
0.8723.

Figure 5-11: WRS analysis. Fig. 5-11d shows |F4AV(4)(jw)|, |F§4V(4)(jw)|, |F2AV(4)(jw)| and
|F1AV(4)(jw)| with FiAV(N)(jw) in (5-59), w € R. The peaks decrease from vehicle 4 to 1
denoting a ring stable scenario. Weak ring stability is predicted looking at Fig. 5-11b where

[IT']|os and ||F]’3V(N) (jw)]loo (N = 4) occur at different frequencies. Fig 5-11c shows instead
the weak ring unstable scenario for K., = 0.8723.
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Figure 5-12: Non-linear simulation for the weak ring stable case. An impulse disturbance occurs
at ¢ = 100s and it is not amplified throughout the platoon. The red velocity is the AV.

In conclusion, this numerical analysis shows that weak ring stability can be obtained for the
modified PI with saturation AV only with a higher penetration rate. For small penetration
rates, such as v = 1/22 as in [11], only Lyapunov stability can be accomplished.

5-5 Full state H controller

The second controller developed is a full state Ho, AV [34, 38, 39]. This controller assumes
the knowledge of all the states of the vehicles in the platoon, which means knowing position
x; and velocity v; for each vehicle ¢ driving on the ring. This can be made possible only by
means of communications among the HVs and the AV; as a result, this controller is harder
to be practically implemented with respect to a PI with saturation controller that requires
only information about its preceding vehicle. The main focus of this section is to understand
to what extent eventual communications can improve the controller performance.

For the Hy, problem, the linearized state-space model at the equilibrium (4-1) for the N-HVs
(2-27) on the ring is

X = Ax + Biu, + Bad, (5-65)
z=QCYx, (5-66)
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X1 A A 0 X1 0 B, dq
) . . 0 )
= - S I I . (5-67)
XN—1 Ar Ag| | xnv—1 : B, dn—1
Xy | A2 Ar] | XN B, B.| | dn
——
A B Bs
21 ] (1 Cy X1
_ : ’ (5-68)
ZN-1 qN-1 C1 XN—1
N | I qn Ci| | xn
Q C

with x; = [z;,v;]T and
0 1 0 0 0
A= [ i b] Ay = [bk a] B, = H ci=o 1]. (5-69)

@ denotes the matrix of the states weights (¢; > 0). It is assumed that there exists a
disturbance signal d(t) in each vehicle acceleration signal

V; = —i)l;:xl — (EL + B)Ul + BZJQZZ'_H + aviy1 + d;. (5—70)

Whereas, the control input u,, which is the AV controller, acts only on the last vehicle N as
in the previous section.

N = —bkxy — (a4 b)uy + bkxy + avy + u, + dy. (5-71)

An optimal control input v = — Ky which stabilizes the equilibrium and minimizes the
disturbance influence d; is the goal of the H,, design. Mathematically it becomes

min| G| (5-72)

subject to u, = —KY, (5-73)
where Gy, is the transfer function from disturbance signal d = [dy,ds,...,dy]? to the ve-
hicles velocities z = [q1v1, qava, . . ., quN]T; the vehicles velocities are considered as traffic

performance indexes. For this design, the weights applied to the traffic performance indexes
are monotonically decreasing going from 1 to V. This in order penalize more what is far from
the AV and try in this way to achieve weak ring stability, which means that the disturbances
do not amplify throughout the platoon. On the other hand, no specific weights are applied
to the control action.

5-5-1 Numerical evaluation

In order to compare the H., controller with the PI with saturation AV the same case scenario
depicted in Section 5-4-2 is also taken here. Hence

N=22 a=20 b=05. (5-74)
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For the sake of clarity, given the linear vehicle dynamics I', as in (4-2), and a type III
disturbance acting on the N-th vehicle (see Fig. 3-4 for the block diagram representation),
the transfer function Fi(N)(s) from disturbance to i-th vehicle velocity for the only HVs
homogeneous platoon on the ring is

FN*i(s)

FM(s) = FN(S)PN(S)' (5-75)

While, considering the AV as well, the transfer function FiAV(N)(s) for a general vehicle ¢
from disturbance to velocity is

V-i(s
FY e = = rAv<s>(rf)V—1<s>

Py (s), (5-76)

with T' 4y (s) the AV transfer function resulting from the H., optimization problem. Fig.5-13

shows |FZ-(N)(jw)] in (5-75) for the vehicles i € {17,...,22}, w € R. Whereas, Fig. 5-14
shows |FZ~AV(N) (jw)] in (5-76) for the same vehicles i € {17,...,22}; clearly the effects of the
H-AV are evident and the peaks related to the disturbance effect (visible in Fig.5-13) are
remarkably smoothed. In Fig. 5-14 the frequency range is the same as Fig.5-13 in order to
ease the comparison before and after the AV action. Fig 5-15 instead depicts ||Z*1-‘LW(N)||OO
for i € {17,...,22} which in this case occurs at lower frequencies; the peaks have the same
magnitude and therefore moving throughout the platoon no amplification or really marginal
is expected denoting therefore a weak ring stability scenario.
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Figure 5-13: |F\™) (jw)| in (5-75) for the vehicles i € {17,...,22}, w € R.

This AV achieves remarkable performance in terms of both tracking and disturbance rejection
and weak ring stability is indeed observed.

Fig. 5-16 shows an impulse disturbance acting on the 21st HV at ¢ = 10s, while Fig. 5-17
shows an impulse disturbance acting on the AV again at ¢ = 10s. As the figures show the AV
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Figure 5-14: |F*Y™)(jw)| in (5-76) for vehicles i € {17,...,22}. The AV is designed by
solving the H, optimization problem in (5-72) and (5-73).
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Figure 5-15: This figure is the same as Fig. 5-14 just for a bigger frequency range which allows
to see || F*V M| for i € {17,...,22}.

is able to quickly compensate for the perturbations accomplishing good rejection and avoiding
the amplification of the disturbances throughout the vehicles in the platoon.

In conclusion, the strong assumption of full communication AV-HVs and a H, controller

properly designed are able to guarantee weak ring stability for this HVs dynamics and with
a penetration rate of 1/22.
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Figure 5-16: Non-linear simulations velocities for the N = 22 mixed-platoon with a full state
H,, AV and HVs with a = 20 and b = 0.5. An impulse disturbance acts on the HVs at t = 10s
and is slightly amplified throughout the platoon. The red velocity is the AV.
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Figure 5-17: Non-linear simulations velocities for the N = 22 mixed-platoon with a full state

Hy, AV and HVs with @ = 20 and b = 0.5. An impulse disturbance acts on the AV at ¢t = 10s
and is slightly amplified throughout the platoon. The red velocity is the AV.
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5-6 Discussion

To summarize, this chapter contains the highest number of contributions and, inspired by the
experimental evidence in [11], this chapter provides a theoretical support for the design of an
AV able to stabilize the ring.

First of all, a controllability analysis is performed on the linearized state-space (5-2), in a
similar fashion to [34] and endorsing the result obtained in [22] which states that a single AV
is always able to stabilize the platoon for ¢ — oo and for any arbitrary number N of HVs.
Secondly, the chapter provides a sufficient condition for stability in Lyapunov sense for the
mixed AV-HV platoon (Proposition 1), such condition is then exploited in the AV design.
Afterwards, the PI with saturation controller developed in [12] is analyzed and the need for
a new modified version is theoretically supported.

By means of numerical analysis, conservativeness of the sufficient condition for Lyapunov
stability and weak ring stability for the realistic scenario in [11] are estimated. In addition
to this, two sides results are presented: how to improve the disturbance rejection properties
of the platoon by changing the AV equilibrium and how to achieve weak ring stability by
increasing the AV penetration rate.

Finally, in order to determine to what extent enabling communications among vehicles would
improve the AV performance, a full-state H,, is designed. Note that the H,, is not a ca-
sual choice, since it is able to asymptotically stabilize the equilibrium while minimizing the
disturbance effects. Conversely, other full-state feedback controllers would have only ensured
asymptotic stability. The conclusion of this analysis is that, enabling communications of the
AV with the HVs improve the performance and also for a small penetration rate such as those
in [11], it is able to guarantee weak ring stability.
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Chapter 6

Conclusion

This thesis proposed to address the following open problems:

e An absence of a theoretical framework by means of Linear Time Invariant (LTI) systems
theory for the two experiments [1, 11].

e To what extent the more common definitions adopted for the stability on a string can
be actually used on a ring road topology.

e Identify the stability problems that an Autonomous Vehicle (AV) has to face on a ring
roadway and propose methods for a stabilizing design also for a really small penetration
rate.

In order to do so, the work has been divided in two main macro-sections: a first theoretical
analysis of the relevant field experiments [1, 11] and a second which discusses how to design
an AV that, with a small penetration rate, is able to stabilize the traffic flow on a ring road
setup for any number N of vehicles.

During the literature study, it has been realized that a theoretical analysis by means of LTI
systems theory of the mentioned field experiments was missing, with the exception of [34] that
was published at survey almost finished. As a result, such analysis was considered relevant in
order to determine and motivate a method to design a stabilizing AV which can be exploited
for traffic control.

e In the first macro-section, the instability observed in [1] has been determined to be in
Lyapunov sense; since, for the given Human-driven Vehicle (HV)s dynamics, the ring
road state-space at the equilibrium was showing modes in the Right Half Plane (RHP).

e Furthermore, it has been discovered that Strong frequency domain string stability
(SFSS), which means amplification of disturbances throughout the platoon on a string,
does not imply asymptotic instability of the ring roadway equilibrium. From this study
arose that, for certain number N of string unstable HVs, the equilibrium of the ring was
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though appearing asymptotically stable. In order to deal with this unpublished cases,
the definition of Weak Ring Stability (WRS) has been formulated and introduced in
the experiments analysis providing new insights on the ring road scenario.

e The goal of the second macro-section was to determine, with the help of analytical re-
sults, a design for an AV useful to stabilize a platoon which would have been otherwise
unstable. As first controller, a PI with saturation, already adopted in [11, 12] and empir-
ically designed and tested, was in first instance considered. By analyzing the controller
at the equilibrium, the need for a modified version has been theoretically supported.
Based on this new version, an analytical result (Result 2) has been formulated in order
to ensure Lyapunov stability for an arbitrary number N of vehicles. Concerning WRS,
it was not accomplished by means of the modified PI with saturation AV for a small
penetration rate such as the v = 1/22 depicted in [11]. However, for higher penetration
rate (y = 1/4) it has been shown how both asymptotic and weak ring stability can be
obtained.

e Finally, in order to determine the eventual positive effects of communications between
AV and HVs, an H,-AV has been designed and tested on the same setup of the previous
controller and for a penetration rate of 1/22. With this AV the performance improved
and weak ring stability was accomplished for v = 1/22.

In conclusion, the WRS requirement appeared too demanding for small penetration rates and
for controllers with a limited amount of information. On the other hand, communications
AV-HVs and a proper Hy-AV design were able to mitigate the disturbances effects and ac-
complish both Lyapunov and Weak ring stability on the ring roadway.

Future works could consider testing the different controllers on a real field experiment, this in
order to validate the obtained results. Additionally, algorithm for real time estimation of the
HVs dynamics can be developed and an AV, able to adaptively change its behavior, designed.
Eventually, the implementation of traffic control strategies by means of AV in a more complex
scenarios, such as multi-lane highways, could represent eventual future research topics.
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Appendix A

Circulant Matrices

Definition 8 (Circulant Matrix.). [33/ A NxN circulant matriz is generated from the

N-vector {cy,ca,...,cn} by cyclically permuting its entries, and is of the form:
1 C2 CN
CN Co ... CN—-1
C=1|. . . |- (A-1)
Cy C3 C1

Definition 9 (Block Circulant Matrix.). Let C; be a MxM matriz for eachi=1,2,...N.
Then a NMxNM block circulant matriz is generated from the ordered set {C1,Ca,...,Cp}
and is of the form:

0, Cy ... Cy
Cy Cp ... Cn_—

= . (A-2)
Gy C3 ... &

Definition 10 (Generating Matrices.). Let the NMxzNM block circulant C' be given by
definition 9 then the elements of the ordered set

{C1,C4,...,Cn} (A-3)
are said to be generating matrices of C.

A block circulant is therefore defined completely by its generating matrices. The matrix
array given by Definition 9 is said to be a block circulant of type (M, N). The set of all such
matrices is denoted by BCys.n-

A-1 Diagonalization of a Circulant matrix

A unitary transformation involving the Fourier matrix is used to diagonalize general block
circulant matrices.
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Nth roots of Unity.

A root of unity is any complex number that results in 1 when raised to some integer N € Z,.
More generally, the Nth roots of a complex number zg = r9e?% are given by a nonzero number
z = rel% such that

N =0 or VeIV = pyeit (A-4)

where j = v/—1. Eq. (A-4) holds if and only if rV = ry and N0 = 0y + 27k with k € Z.
Therefore,

r= Y/ro

0o + 27k (A'5)
= 7
0 N ke
and the Nth roots are
0 2k
z = N/rgexp (j%) ke Z. (A-6)

Eq. (A-6) shows that the roots all lie on a circle of radius 4/ry centered at the origin in the
complex plane, and that they are equally distributed every 2w /N radians. Thus, all of the
distinct roots correspond to k =0,1,2,..., N — 1.

Definition 11 (Distinct Nth Roots of Unity). The distinct Nth roots of unity follow
from Eq.(A-6) by setting ro = 1 and 6y = 0 and are denoted by

w) = wh = T (A7)

for integers k =0,1,2,..., N — 1.

A-1-1 The Fourier Matrix

This section introduces the complex Fourier matrix and its relevant proprieties, including the
symmetric structure of the N—vectors that compose its columns. A key result is that the
Fourier matrix is unitary, which is systematically developed and proved.

Definition 12 (Fourier Matrix.). The NN Fourier matriz is defined as

1 1 1 .. 1
. 1 wy w]2V e w%N_ll
EN_\/iﬁ 1wk Wi wN( b (A-8)
11 w]]\\;fl w%Nﬁl) . w](\jfvfl)(Nfl)_ NaeN

where wy s the primitive Nth root of unity and N € Z.
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Theorem 4 (Diagonalization of a Circulant.). Let C € Cy have generating elements

c1,¢9,...,cN. Then if En is the NxN Fourier matriz,
A1 0
Ao 0
EXCEN = _ : (A-9)
0 AN
is a diagonal matriz. ()7 = (T)T is the conjugate transpose. Fori=1,2,..., N, the diagonal
elements are
N .
A= gD, (A-10)
k=1

where wy s the primitive Nth root of unity.

Theorem 5 (Block Diagonalization of a Block Circulant.). Let C € BCys n and denote
its MxM generating matrices by C,Co, ..., Cn. Then if En is the NxN Fourier matrix and
Iy is the identity matriz of dimension M,

Aq 0

= Ao 0
(En ® In)C(En @ In) = . (A-11)

0 Ay

is a NMxNM block diagonal matriz. Fori=1,2,...,N, the MxzM diagonal blocks are

N .
AZ' = Z Ck’w,(gk_l)(z_l) (A—12)
k=1

where wy s the primitive Nth root of unity.
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List of Acronyms

AV
HV
LTI
PI
LHP
RHP
CF
OVM
FTL
IDM
OSS
PF
SFSS
ESS
LPSS
SRS
WRS
OV-FTL

Autonomous Vehicle

Human-driven Vehicle

Linear Time Invariant
Proportional-Integral

Left Half Plane

Right Half Plane

Car-Following

Optimal Velocity Model
Follow-The-Leader

Intelligent Driver Model

Original definition of String Stability
Predecessor Following

Strong frequency domain string stability
Eventual Stability Definition

L, string stability

Strong Ring Stability

Weak Ring Stability

Optimal Velocity-Follow the Leader
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