
State Estimation
and

Optimal Control
for Racing Drones

In search of control algorithms for competing
against human pilots

Nilay Sheth

State Estimation
and

Optimal Control
for Racing Drones

by

Nilay Sheth
to obtain the degree of Master of Science

at the Delft University of Technology,
to be defended publicly on September 26, 2019.

Project duration: March 2019 – September 2019
Thesis committee: Dr. G.C.H.E. (Guido) de Croon Control and Simulation, LR, TU Delft, supervisor

Ir. C. de Wagter Control and Simulation, LR, TU Delft, supervisor
Prof. dr. K.G. Langendoen Embedded and Networked Systems, EWI, TU Delft, supervisor
Marco Zuniga, PhD Embedded and Networked Systems, EWI, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

ii

Acknowledgements
Blaine Lee quotes Hellen Keller - “There are red letter days in our lives when we meet people who thrill

us like a fine poem, people whose handshake is brimful of unspoken sympathy and whose sweet, rich nature
imparts to our eager impatient spirits a wonderful restfulness...”. This project is dedicated to everyone who
thrilled me and to everyone I look upto. Having this said, my amount of gratitude follows no specific order, is
equal and abundant towards everyone mentioned or not mentioned in the acknowledgements.

Being able to experience a couple of wonderful journeys of life, this inquisitive journey of a Master’s pro-
gramme in particular, was only possible by the encouragement and support of my Mom and Dad, my loving
cousins - Allauki and Shivani and my entire family.

A big “thank you!!” to the entire MAVLab and my friends Federico and Yingfu who have played a great
role in shaping this project. It has been a privilege to travel with Fede and to learn about his research interests!
Fede’s observant review on my work encourages and assures me of the assumptions I make. Yingfu’s algo-
rithms have encouraged me to write some of mine, after he kept telling us “You have an idea? Do it!”. Mario,
Diana and Shuo have always made me feel at home with their friendship. Erik’s mentorship has helped me
fix issues in no time! Anoosh and Jelle’s presence in the drone-race team has helped us all dream father.

With the fun loving nature of my supervisors Christophe and Guido I could start flying in no time and
make exciting experiments with their drones. This report is a product of Christophe’s ideas of flying fast at
the limits of saturation and Guido’s witty comments about looking beyond any usual levels of investigation!
Koen’s attention to detail, his critical remarks on every scientific statement of the report along with the chal-
lenging and intriguing courses taught by him at TU Delft have been the highlight of my masters program!!

A lot of my research aptitude was nurtured under the mentorship of my seniors - Saurabh, Parita, Nachiket,
Bavs and my batchmates Udit, Kewal, Rahul, Dhiraj, Anshuman from my undergraduate university, VJTI. I’d
like to extend this acknowledgement to my professors Shailesh Sansare, from whom I derive my passion for
engineering. Dr. Faruk Kazi and Akanksha Chauhan, from whom I derive the confidence to take up academic
pursuits.

I’d like to thank my friends Mihir, Neel, Husain, Sukanya, Aditi, Kaushal who have been of great support
during tough times, shared delicious food and have taken me for exciting trips with them. Maria’s sudden
invitations for a bike ride always gave me a good break from my mundane schedule! I thank my peers Hi-
manshu, Arvind, Erik, Jeoff, Alex and Joana from TU Delft - where I had the chance to study with everyone
who were equally determined to bring a change to the world. A special token of gratitude to my friend Kanvi,
whose opinions and feedback during the masters journey created a profound impact on my academic inter-
ests and whose company I truly enjoy!

I’d also like to thank Nikitas, Dr. Robert and Dr. Jyoti from the Space Systems group for their mentorship
and friendship since the PocketCube project!

Apart from this, I’d like to thank for the hours of playtime it gave me, unconsciously inculcating a
sense of creativity and sometimes even resourcefulness during shortage of crucial parts.

Contents

1 Introduction 3
1.1 A brief introduction to autonomous drone racing . 3

1.2 Scope . 4

1.3 Conditions inside a drone-race . 5

1.4 MAVLab’s drone-racing pipeline . 6

1.5 Requirements for the control module . 7

1.6 Problem statement . 8

1.7 Motivation . 9

1.8 Organization . 9

2 Introduction to Quadrotor Dynamics 11
2.1 A brief introduction to the area of state estimation . 11

2.2 Quadrotor dynamics . 13

2.3 The Newton-Euler modeling approach . 14

2.4 Frames of reference and Rotation matrices . 15

2.5 Difficulties in control and estimation for QRs . 16

2.5.1 Observability. 16

2.5.2 Reachability . 17

2.6 Discussion . 17

3 State estimators for Quadrotor Control 19
3.1 Positional state estimation . 20

3.2 Thrust. 20

3.2.1 Induced velocity method. 21

3.2.2 Hover-thrust/constant-altitude method . 22

3.2.3 Thrust model augmented with drag and effectiveness based terms 22

3.2.4 Discussion . 23

3.3 Drag forces . 25

3.3.1 Lift induced drag/rotor drag . 25

3.3.2 Blade flapping . 25

3.3.3 Parasitic drag . 26

3.3.4 Key take-away from the classification of drag forces . 26

3.3.5 Drag parameter estimation . 27

3.4 Modeling of QR dynamics. 29

3.4.1 Conventions and Symbols . 29

3.4.2 The GRASPLab, UPenn and ANU estimator . 29

3.4.3 The ETH-Zurich/CNRS France estimator . 30

3.4.4 The UZH estimator . 31

3.5 Summary of prior estimators . 31

3.6 Requirements for a better lateral-state estimator . 32

3.7 Proposed state estimator . 33

3.8 Evaluation of different state estimators . 34

3.8.1 Results: Maneuvers with high lateral velocities. 34

3.8.2 Results: Maneuvers with high angular velocities . 35

3.9 Analysis . 36

iii

iv Contents

4 Optimal control 39
4.1 Position control for QRs. 39
4.2 Existing QR control techniques . 40

4.2.1 PID. 40
4.2.2 Minimum snap trajectories and Differential flatness . 41
4.2.3 Model predictive control . 42
4.2.4 Requirements for a better QR position controller . 44

4.3 Proposed controller . 45
4.3.1 A brief introduction to optimal control. 45
4.3.2 Proposed algorithm for control of racing drones . 45

4.4 Results . 50
4.5 Profiling. 51
4.6 Discussion . 52

5 Conclusion and Recommendations 55
5.1 Conclusions. 55
5.2 Improved pipeline after this thesis . 56
5.3 Applications of this work . 57

5.3.1 Applications in the area of state estimation . 57
5.3.2 Applications in the area of optimal control. 57

5.4 Recommendations . 58
5.4.1 State estimation . 58
5.4.2 Optimal control . 58

5.5 Pontryagin’s principle . 59
5.5.1 Existence of a unique analytical solution. 60
5.5.2 Pontryagin’s minimum principle (PMP) . 60
5.5.3 The Boston University algorithm. 60

A Appendix 63
A.1 Scaling laws . 63
A.2 Modeling, Control and System Identification of the Moment models 63
A.3 Accelerometers for positional state estimation . 65
A.4 Brachistochrone problem . 65

Bibliography 67

Abstract

The e-sport of drone-racing involves human pilots to race against time. Recently, drone races have also
gone fully-autonomous. As a result, these agile robotic platforms not only pose challenges of flying fast to the
participating pilots but also create challenges for the flight control computers.

As a result, the concept of autonomous drone racing has gained significant attention from research
groups around the world. These races aim to push the boundaries of perception and control algorithms, while
simultaneously mitigating the real-world uncertainty of autonomous systems. While perception algorithms
face challenges due to limited feature detection, high motion blur and computational requirements, control
algorithms face challenges of convergence to the desired trajectories that are planned out in the race arena.

This thesis addresses the challenge of control for racing, which is responsible for guiding the drone to
design and track desired trajectories for fast flights. The control sub-modules of racing drones are respon-
sible for generating trajectories for fastest possible flights and also for obeying these generated commands.
Additionally, the requirement of limited algorithm complexity is added to match the philosophy of computa-
tionally efficient algorithms at the Micro Air Vehicle Laboratory.

However, to address the requirements of these control sub-modules, the prerequisite of accurate state
estimation always persists. Assigning control actions to a robot without information on the current state
of the robot is rather unwise. As a result, this thesis first aims to perform accurate state estimation before
designing controllers for time-optimal trajectory tracking. Again, another constraint of using only a single
sensor (i.e. the Inertial Measurement Unit) is added to make the drone race in GPS denied environments.

As a result, the goal of the thesis is two-fold i.e. making accurate state estimators while using limited
sensors and designing optimal controllers for taking the quickest trajectory through the arena. To achieve
the goal of accurate state estimation, existing techniques are studied. Several features from each of these
methods are selected to design a new estimator. To achieve the goal of time-optimal trajectory generation,
firstly, the flaws of traditional control methods are pointed out. A new optimal-control technique is proposed,
which makes use of fundamental principles dating back several decades. This principle is then fused along
with present-day optimization solvers.

Finally, the proposed state estimation and control algorithm are compared against prior (benchmarked)
techniques in the area. Compared to existing optimal control techniques, the proposed algorithm leads to
faster trajectories and consumes less computational power onboard.

1

1
Introduction

A decade back, strategy games were the most popular genre of computer games. Board games also
usually fall under a similar category of strategy games. Taking ‘optimal’ decisions to maximize the resources
owned by an agent while estimating opportunities to conquer more is the usual goal in most of these strategy
games. As a result, these games improved the decision making skills of a regular gamer. A similar genre of
gaming called ‘serious gaming’ is designed for a real-world purpose rather than for pure entertainment.

Similar to the idea of serious gaming, autonomous drone racing aims to solve a purpose rather than just
being present for entertainment. Interesting research questions are put forth when these agile robotic plat-
forms are made autonomous, in turn being more purposeful than just adding adrenaline elements for the
participating pilots. As a result, numerous research laboratories throughout the world have started partici-
pating in these races [9].

1.1. A brief introduction to autonomous drone racing
A typical drone race involves the challenge of flying through a series of checkpoints/gates, and finishing

the course within minimum time. Autonomous drone races are usually held in big indoor arenas with illu-
minated gates through which drones must localize themselves against, plan their trajectories and fly through
them in the minimum amount of time possible. These gates are usually horizontally placed on the x-y plane
and their rough locations are made available priori to the race. As a result, reconstruction of the map is not
fully required, and the objective of the race is more speed intensive and less exploratory. Also, racing drones
are guided to the arena at fixed intervals from each other, while the arena is usually obstacle free reducing the
chance of collisions with other drones or any structures of the arena. Figure 1.1 shows a typical drone racing
arena, although this picture is photo realistically rendered for a drone racing simulator [9].

Figure 1.1: Drone-racing in FlightGoggles [9], source: youtube channel of Sertac Karaman, MIT AeroAstro.

A couple of autonomous drone races have been organized in the past by the prominent International

3

4 1. Introduction

Conference on Intelligent Robots and Systems (IROS1). Drone Racing League and Lockheed Martin2 have
offered huge prizes for designing algorithms that can beat human pilots. Stanford university and Microsoft
Research have hosted their own "Game of Drones3" for offering challenges in perception and control algo-
rithms. The incentive for companies and universities collaborating at this level is to not only push research in
the area of quadrotors but also into many different areas. (In this text, the terms racing drones and quadrotors
imply the same meaning and will be called QRs in short).

Figure 1.2: Autonomous drone races are organized by IROS 2018 (left), Drone Racing League (center) and Stanford (right).

Autonomous drone races pose challenges in two major areas of research of perception and control. Per-
ception algorithms use computer vision or neural networks to perceive the surroundings, so as to gain more
information about the drone’s position, velocity and orientation in the arena. Control algorithms issue com-
mands to the propellers of the racing drone for making it track the correct trajectories. While doing so, these
autonomous drones face numerous challenges like motion blur while executing perception algorithms, tra-
jectory generation and tracking while executing control algorithms, non-linearities and aerodynamic effects
and so on.

Impact: Research on control and perception algorithms done in drone racing can be transferred to other
areas of research. Perception and control algorithms in case of QRs are based on Special Rotation group and
the 3D-Euclidean space group. These configuration spaces are widely followed in any satellite’s Attitude De-
termination and Control Systems (ADCS) and also widely used on factory assembly lines when industrial
robots carry out welding, pick and place or packaging operations. If a lower dimensional version of the QR is
considered, they can also replicate the dynamics of a self-driving car since QRs use similar control-perception
pipelines for navigation [15]. If only a single rotor is kept under consideration, rotor aerodynamics of a heli-
copter can also be studied (in fixed blade pitch cases).

Due to the applications of quadrotors mentioned above and because of having numerous degrees of
freedom in actuation, quadrotors can freely mimic many mechatronic systems. Algorithms running on such
systems like self-driving cars, robotic manipulators and spacecrafts can first be tested on a QR. This can al-
ready give predictions about the stability, robustness and efficiency of the algorithms before the real-life de-
ployment. Apart from the ability to serve as testing platforms, QRs have lately found direct applications in
the area of agricultural monitoring, videography in sports and most importantly in search, rescue and surveil-
lance operations.

On the basis of the points made above, it is apparent that research in the quadrotor area is not self-
absorbed and provides plenty of incentives for collaboration between industry and academia. This collabo-
ration also provides numerous commercial opportunities.

1.2. Scope
Autonomous quadrotors are agile robotic platforms on which sensors and actuators must be tightly

coupled through perception, filtering and control algorithms, which make complicated calculations at a rel-
atively high frequency. Due to this complexity a lot of scope for contribution arises. For narrowing down to a
scope with respect to this thesis, an opportunity of contribution is found in the control and estimation area of
QRs. The topic of control and estimation was chosen after observing the problems in flight trajectories from
MAVLab’s participation in earlier races.

The hierarchical diagram in Figure 1.3 enlists autonomous systems in general and then classifies them
based on their respective degrees of freedom. QRs belong to the class of 3-dimensional systems, since they

1Details about previous IROS drone races found at: https://www.iros2018.org/competitions
2More details about AlphaPilot found at: https://www.herox.com/alphapilot
3More details Game of drones hosted by NeurIPS: https://www.microsoft.com/en-us/research/academic-program/
game-of-drones-competition-at-neurips-2019/

https://www.iros2018.org/competitions
https://www.herox.com/alphapilot
https://www.microsoft.com/en-us/research/academic-program/game-of-drones-competition-at-neurips-2019/
https://www.microsoft.com/en-us/research/academic-program/game-of-drones-competition-at-neurips-2019/

1.3. Conditions inside a drone-race 5

can actuate or hold any state in the 3D space as we perceive it. Moreover, due to high versatility of this
robotic platform, it finds numerous applications in the field of autonomous systems, and hence deserves
further classification depending on the applications it is being used in. A few challenges associated with each
application are enlisted alongside each other in the purple block. The green block finally indicates that this
thesis focuses on the control sub-module within the framework of drone-racing.

autonomous systems

robotics, avionics, production lines
stock trading terminals, etc

1D space
trains
printers
production line

2D space
cars
bikes
warehouse
robots

3D space
quadrotors
satellites
planes
robotic arms
3d printers
cranes

task/application challenges

rescue SLAM (localization and mapping)

pick and place Path Planning

crop health vision

drone race perception and control

perception
training
inference
classification

control
state estimation - filtering, sensor fusion, modeling
feedback control
optimal control

Figure 1.3: Zoomed out view of autonomous systems in general with respect to the scope of this thesis (in green).

As mentioned before, due to high versatility of the platform, the scope of this project could be extended
to any control system, (e.g.: on self-driving cars, industrial robots and satellites), provided the control objec-
tives are similar. This project tries to be more than "All board the hype train!" and does not intend to focus
purely on tasks that QRs can do, but tries to make a contribution in the area of rigid body dynamics and
control in general.

1.3. Conditions inside a drone-race
Out of the numerous challenges, the scope of this thesis has already been narrowed down to the control

sub-module (Figure 1.3). The listing below describes the conditions at the drone-racing arena while address-
ing the associated control challenges:

1. Sensors: Most commonly, the frame of the QR is only allowed to carry a single camera and an inertial
measurement unit (IMU). These two sensors satisfy the necessary conditions for a stable flight. Very fre-
quently, the luxury of holding accurate localization data via GPS, Ultra Wide Band (UWB-localization)
or LiDAR is not possible due to restrictions in the problem statement. Only occasionally, a laser time-of-
flight sensor, barometric sensor or a SONAR sensor is mounted below the drone for height estimation.

2. Actuators: No additional actuators except the four propellers of the QR are present. If a QR must qualify
as a racing-drone, the thrust to weight ratio of the vehicle must be greater than three. [20] suggests
that the angular acceleration scales inversely to the length of the frame, while linear acceleration stays
almost constant with change in scale. Section A.1 restates the derivations from [20] for comparing
racing drone specifications. The Eachine Trashcan, the cover picture of the report, is the smallest drone
in length present in MAVLab and hence could be classified as a racing-drone4.

3. Conditions at the arena: Drone races are held in indoor environments and it can be assumed that there
are no wind disturbances that can disturb the trajectories of the QR. The velocities that the QR would
see with respect to air would only be due to its own movement in space. Gates are well illuminated
by spot lights for making perception less challenging, while they can be perturbed from their nominal
location in each lap.

4Recently, the Trashcan is also made autonomous by MAVLab [19] and is the smallest autonomous racing drone at the time of its publi-
cation.

6 1. Introduction

Sensors

Camera

IMU
AHRS

complementary
filter

Waypoint
generator and

Trajectory
planner

Perspective
and Point

Perception
Computer vision

(or) Neural Networks

Quadrotor
state

estimator
RANSAC

position
and

attitude
control

angular
rate

control

ξd
x, ξ

d
y, ξ

d
z, 𝜓

d

𝜙c, 𝜃c, 𝜓c

ξc
x, ξ

c
y, ξ

c
z

Figure 1.4: Individual sub-modules of MAVLab’s drone race pipeline.

1.4. MAVLab’s drone-racing pipeline
The closed-loop algorithm that is capable of facilitating drone-racing, is made up of several sub-modules

as shown in Figure 1.4. When run together, these sub-modules are referred to as a ‘pipeline’ of the au-
tonomous QR system. This is because the algorithms accept various inputs from sensors, perform a set of
calculations and finally generate output commands for the QRs. The block in blue indicates the inputs to the
pipeline while the one in purple indicates its output. The scope of this thesis is only limited to the blocks
in green. Since there is non-trivial coupling between different modules of the pipeline, some bridging in-
formation is provided in the appendix of this thesis mainly highlighting how the vision and control modules
are coupled. Since each module is critical to the functioning of the pipeline, some cross references might be
made towards other modules while describing them in the listing below:

1. Sensors: Most common race drone setups come with an IMU and a monocular camera. However, per-
forming control directly from the information provided by raw data from these sensors is not possible.
Accurate high frequency measurements cannot be expected from the vision module, since it requires
a lot of computational power. The IMU also usually does not give out the orientation or the position
of the QR, but only gives out noisy and biased measurements of accelerations and rotational speeds of
the body of the QR.

2. AHRS: The Attitude Heading and Reference system takes in noisy and biased readings from the ac-
celerometer and gyroscope of the IMU, and fuses it using a complementary filter yielding accurate
attitude estimates of the QR (later termed as φ,θ,ψ).

3. Quadrotor state estimator: The state estimator predicts the acceleration experienced by the QR de-
pending on its bank angles. It also compensates for any effects of drag forces on the QR, giving close
estimates of the actual accelerations that the vehicle experiences. It finally performs Euler integration
to yield the velocity and position of the QR in the arena. The design of this block is most critical to the
control module and is discussed in depth in this thesis. Meticulous design of this module also reduces
a QR’s dependence on the vision sub-modules for flying accurately.

4. Perception: The perception module is responsible for pre-processing, segmenting and finally post pro-
cessing the images using the real-time camera stream. Pre-processing performs some scaling and dis-
tortion based transforms before segmentation. The segmentation algorithm thresholds any gate-like
objects in the image frame. The post-processing algorithm runs a snake-gate algorithm [19] to return
the corners of the gate in the camera frame of reference.

5. Perspective and Point (PnP): The PnP algorithm takes in the corners that are detected in camera frame
and projects them to the world/inertial frame of reference. As a result, a QR can know its position in
the arena simply by looking at the gate from a finite distance.

1.5. Requirements for the control module 7

6. Random Sample Consensus (RANSAC): The output of PnP measurements follow a non-Gaussian model,
yielding biased measurements when subjected to motion blur, mirroring effects, incorrect gate assign-
ment, etc. The RANSAC module kicks out such biased outliers from the PnP measurement buffer.
Hence this module provides vision-based corrections to the model-based predictions earlier made by
the state estimator.

7. Waypoint generator and trajectory planner: This module holds a rough a priori map of the arena and
selects next set of desired states that the QR should track. The desired states are a function of current
position of the QR and the elapsed time of flight.

8. Position and attitude control: This module is responsible for generating appropriate commands to
make the current states of the QR (ξc) converge to desired states (ξd). This module is also described
in detail towards the end of the report since there are numerous techniques to make current states
converge to the desired states.

Figure 1.5: Top view of a drone-race flight trajectory highlighting the contribution of RANSAC to the state estimation module.

Figure 1.5 describes the nature of the outputs from the RANSAC and state estimation modules of a QR
mid-flight. As the QR navigates through a course, the quality of its positional states (ξc) reduces with time.
This can be seen in the figure by the drift between the current state (yellow) and the ground truth state (blue).
The drift in these positional state estimates is corrected by the RANSAC module (corrected ξc). As seen from
the red plot in Figure 1.5, the quality of current positional state estimates increases after the correction.

As seen in Figure 1.4, the control input u to the QR (purple block) is a function of the desired state (ξd)
and the current state (ξc). i.e. û = f (ξ̂c ,ξd). From this, it can be seen that the accuracy of control input
improves as soon as the accuracy of current state estimate improves (i.e. when ξ̂c = ξc).

1.5. Requirements for the control module
The requirements to be addressed by the control module of the drone-race framework are as follows:

1. Accurate: The control algorithm must be able to rely the least on corrections made by the vision mod-
ule. Relying on external sensors for control algorithms makes the control logic non-causal. After the
non-causal point, predictions cannot be made. The only way to achieve good control in the absence
of vision corrections is to have better state estimators that predict the state of the drone in future. This
requirement of accurate state estimation is converted to become the aim of the first part of this thesis.

2. Optimal: To finish the drone-race track earliest, another requirement is added to the list. Flights
through the desired states must take place in a time-optimal fashion. Also, while doing so, the control

8 1. Introduction

algorithms must be able to allocate control inputs that use the entire flight capability5. While utilizing
the entire flight capability, QR should reach the desired state in a time-optimal fashion while being very
close to actuator constraints.

3. Fast: Control inputs must be generated fast enough to command the QR to fly through the gates. The
time window for generating these commands when flying at high lateral velocities is very short. Failing
to meet these time constraints might cause the QR to crash at the corners of a gate or miss the gate in
fortunate circumstances.

A requirement also needs to be added to the above list because of the constraints coming from the test-
ing platform. Experiments related to this thesis are carried out on a Parrot Bebop 1 QR. This QR runs a
stripped down version of Linux (Busybox) on its ARM Cortex A9 processor. The Paparazzi toolchain6 is
used to cross-compile a real-time application that threads at almost 512 Hz on the processor. This ap-
plication is responsible for all the modules in the pipeline as shown in Figure 1.4. Starting from reading
the cameras and the IMU, to sending control signals to each propeller is handled by this application.
Since Paparazzi is thread-less and sequential in its execution, calculating control inputs for navigation
should not hamper critical functions like the internal hover controller. For instance, inverting a huge
non-sparse matrix can delay the integration of gyroscopes, which are responsible for calculating the
stabilizing commands of the QR. This takes place when the delay due to extra function calls is more
than the frequency of the periodic function of Paparazzi’s stabilizing loop (512 Hz/2 ms).

1.6. Problem statement
To satisfy the requirements stated above, the problem statement for autonomous control of racing drones

in context of this thesis can now be drafted. Figure 1.6 shows a QR starting at initial position x0, y0, z0, tar-

x

y

t0

tN

attitude cmd 𝜙0 𝜙1 ... 𝜙N
attitude cmd 𝜃0 𝜃1 ... 𝜃N
attitude cmd 𝜓0 𝜓1 ... 𝜓N
thrust cmd Th0 Th1 ... ThN
time t0 t1 ... tN

𝜙0 𝜃0 𝜓0 Th0

𝜙N 𝜃N 𝜓N ThN

Figure 1.6: Objectives of the thesis - prediction and optimization.

geting a gate located at xd , yd , zd . The QR must fly through this gate, irrespective of its initial condition (ir-
respective of its initial positions or velocities in the arena). The QR must finish the entire track by making a
series of such gate crossing maneuvers.

The QR must accurately predict its states at each time instant and simultaneously optimize for the best
set of control inputs to make the QR reach the desired point in minimum time. The figure highlights two
sub-problems:

5flight capability can be determined by the thrust to weight ratio, described further in Section A.1
6An open source autopilot, widely used in MAVLab, located on https://github.com/paparazzi/paparazzi

1.7. Motivation 9

1. The state estimation problem. The path (denoted by black dotted lines) and the pose (denoted by gray
shadows) are the positional and attitude predictions of the QR. These predictions are generated using
the inputs from the Table in Figure 1.6 after they are given to the QR’s mathematical model. These
predictions must match the actual trajectory that is followed by the QR in real world.

2. The optimal control problem. Commands must be pre-calculated to not only make the QR at x0, y0, z0

reach the point xd , yd , zd , but also to make it do so in minimum-time. The table inside Figure 1.6 holds
attitude and thrust commands that need to be applied to fly through the gate per time instant.

Quadrotor flight must hold accurate state estimates of all of its dynamical states while the flight is guided
by time-optimal control maneuvers to reach its desired state. After doing so, the problem statement of the
thesis can be addressed as follows:

Can the control module of an autonomous quadrotor flight be designed in such a way that it can beat human
pilots by solving for unique time-optimal maneuvers?

OR

Develop a robust state-estimation framework that minimizes drift over time while reducing expectations of
frequent corrections from the vision sub-module, and design an optimal control method that allows a QR to
perform time-optimal maneuvers while being computationally inexpensive.

1.7. Motivation
The primary motivation of this thesis lies in bridging the theoretical field of linear algebra with the prac-

tical field of embedded systems. Pushing embedded systems to their limits while running rigorous real-time
mathematical optimizations to fly quadrotors efficiently could provide a sense of satisfaction to the frugal
community of embedded systems. It could disprove the axiom of demanding higher specifications of hard-
ware everytime the task seems computationally heavy.

Secondly, should the objectives of this thesis be well met, they could be a possible solution towards
yielding crash-free, minimum-time and energy efficient trajectories. These algorithms could be a possible
contribution to our drone race team. This team definitely deserves an introduction - originating from the
Micro Aerial Vehicle Lab (MAVLab7) of the Aerospace faculty, this team comprises of professors (also the
supervisors of this thesis), PhD students and Master students. This group participates in drone races held all
around the world and is currently participating in the famous AlphaPilot challenge hosted by Drone Racing
League and Lockheed Martin. The team has had consecutive podium finishes in previously hosted IMAV and
IROS drone race competitions. The philosophy followed by MAVLab is to fly fast using simple but robust
vision and control algorithms while trying to sketch out time-optimal trajectories. Similar to the MAVLab
team, numerous teams throughout the world participate in drone racing [9], revealing the recent interest in
the field.

1.8. Organization
Chapter 2 is a supplementary introduction chapter that explains the symbols and conventions used

throughout the report. It also gives a definition of state estimation and describes dynamics that are valid for
QRs. It concludes by listing out the difficulties associated with state estimation and control in QRs.

Chapter 3 begins by describing forces that act on the body of QRs. It later lists and compares different
types of state estimators that have been discussed prior in literature. After finding a scope of improvement,
a proposal for a new estimator is made. Convergence metrics of different estimators are derived by perform-
ing two distinct maneuvers on the QR. It is shown that the proposed estimator has better convergence as
compared to the prior ones in literature.

After deriving the tools for performing state estimation, Chapter 4 uses them for QR control. It follows
the same structure as that of Chapter 3. It first introduces existing control techniques for QR control and then
proposes a new optimal control technique. Chapter 4 compares the new candidate controller with existing
controllers under different flight conditions. It does so in three ways. Firstly, by checking if the trajectory
shape was met (enter the gate from the front panel with particular velocity), secondly by checking the time of

7More information about the lab can be found here: http://mavlab.tudelft.nl/

http://mavlab.tudelft.nl/

10 1. Introduction

completion and thirdly by benchmarking the computation time of different control methods. It is seen that
the proposed control method beats all the algorithms and finds its fit in the drone-race pipeline.

As a result, the prior work in state estimation and control is introduced in their own respective chap-
ters. This makes it easier to compare the existing and proposed methods for QR estimation and control. The
conclusion chapter verifies if the requirements stated in the introduction chapter are met. It gives recom-
mendations to carry forward some ideas that remain unexplored in this thesis. It also discusses that a few
ideas that are explored on QRs can also be transferred to other areas of research.

Various algorithms were explored and proposed during the thesis8. The workflow followed was to first
semantically draft the algorithm depending on the requirements of the control modules. These algorithms
were then typed out and plotted using MATLAB scripts. To prevent damaging drones at the lab, tests of these
developed algorithms were made on MIT Flight-Goggles [9] ROS simulator9. Finally, if the algorithm matched
the real-time constraints set by flight controllers of a real drone, they were ported to fly inside the CyberZoo
of TU Delft.

8Our algorithms are open sourced at: https://github.com/nilay994/superstate.git
and previewed at: https://www.youtube.com/watch?v=gK487JaIZvo

9FlightGoggles is sourced at: https://github.com/mit-fast/FlightGoggles

https://github.com/nilay994/superstate.git
https://www.youtube.com/watch?v=gK487JaIZvo
https://github.com/mit-fast/FlightGoggles

2
Introduction to Quadrotor Dynamics

After narrowing down the problem statement to the control module of racing-drones, this chapter takes
a step further to split the control module into its sub-modules of state-estimation and control. This chapter
also acts as a supplementary introduction chapter for presenting the symbols and conventions used along
the entire span of this report. These conventions are important for both sub-modules of state estimation and
control. After an introduction to QR conventions, the selection for a modeling technique for performing state
estimation is made. This modeling of QR dynamics forms the backbone of state estimation.

2.1. A brief introduction to the area of state estimation
State estimation is a vast area under the control theory domain. It is defined as a mechanism that is able

to provide an internal state of a given dynamical system. For the scope of this thesis report, state estimation
would aim to give information about the positional state of the QR system.

In general, the estimated states for different systems could range from something tangible, for instance -
the physical entities of positions, derivatives of positions, moments of inertia to something very abstract - the
drag co-efficients of a satellite orbiting Earth. In network theory, states of a server system could be indicative
of the traffic in the network or be information about the probability of packet drops. Shreve [29], well known
for his contributions in the area of Brownian motion, explains strategies on portfolio optimization in financial
market theory using stochastic theories. Shreve’s algorithms can hold the portfolio value and states of market-
risk that could be useful for making investment choices. Similarly, this thesis makes the QR hold information
about the dynamic states that are used for making control decisions. After the states are estimated, the QR
can make decisions about the control signals to follow trajectories. To expand more on the examples listed
above, the end of this section encloses a couple of interesting examples on state estimation. With regard to
the control systems based nature of this thesis, it is necessary to explain the area of state estimation further.
It can be broken into two parts of modeling and filtering. Figure 2.1 explains the bifurcation of the control
module from the place where the discussion of the scope of this thesis was concluded.

1. Modeling: The modeling phase involves listing down the forces in the free-body diagrams of the QR.
These models are then represented using differential equations. Differential variables and their deriva-
tives can be simply integrated in time to get the information about the state of a system. Control inputs
to the system if known can also be accounted for in these differential equations. It can be noted that
since the dynamical equations of the system are not an exact representation of the system, the esti-
mates of the internal states will be erroneous.

2. Filtering: The filtering phase of state estimation takes over in such circumstances, correcting the er-
roneous estimates propagated by the differential equations of the modeling phase. This phase can be
asynchronous, only seldom correcting the estimated states. This is also called as the measurement
phase since sensor measurements are required to facilitate the filtering stage of state estimation. How-
ever, this, not being the main aim of this thesis, is explained only later in Section 5.2.

3. Optimal state estimators: In some special cases, there exists a theoretical optimum that yields unbi-
ased and low variance estimates. This special case only exists in Linear Time Invariant systems with

11

12 2. Introduction to Quadrotor Dynamics

state
estimation planning and

control

attitude
𝜙, 𝜃, 𝜓

position
ξx, ξy, ξz

modeling filtering

attitude
𝜙, 𝜃, 𝜓

sensor fusion,
complementary
filter

position
ξx, ξy, ξz

GPS, PnP

optimal
control

feedback
control

differential
flatness

system dynamics
M = ⍵ x I⍵ + 𝜏
aE = ERB (TB + fd

B) + gzE

Figure 2.1: Control module of drone-race pipeline expanded.

linear measurement models. This type of state estimation is famously referred to as Kalman filtering in
theory. If either process models or measurement models are non-linear, Extended Kalman filters and
Unscented Kalman filters can be used for recursive parameter estimation.

Type of states to be estimated: Since race drones are supposed to fly through waypoints, a position
controller must be used to track these commands. The controller would expect two inputs (a) the trajectory
to be followed and (b) QR’s relative position and velocity with respect to it. Hence estimations techniques for
lateral positional states xE , yE , zE of the QR are discussed in detail in this thesis.

Examples of state estimation: Cars find it difficult to perform positional state estimation inside tunnels

Figure 2.2: Possible collision inside parking spaces due to incorrect
state estimation.

��ℎ���ℎ

�̂

Figure 2.3: Submarines must come closer to the surface for
correcting their drifting estimates.

and parking lots since GPS measurements are rather incorrect. In absence of accurate positional measure-
ments, the state estimators of the car must completely rely on its dynamical model. However, using these
coarse models it is difficult to drive the co-variance of the propagated states to lower values. Hence, in the
absence of measurements from sensors, an accurate model of the dynamics of the vehicle is the only way to
maintain accurate estimates of the states. A failure to match the requirement of an accurate model could im-

2.2. Quadrotor dynamics 13

ply that the state estimates have drifted from the real world, and the vehicle now possesses incorrect values
of its position. This is dangerous especially in a constrained configuration space like in Figure 2.2.

Submarines face a similar complication while spending long durations of time and distance underwa-
ter. Since GPS signals attenuate to a great extent at the depths of a submarine’s cruise level, GPS receivers
cannot be used to triangulate the position of a submarine. In absence of GPS measurements, there are other
methods to keep the state covariance low by using SONARs or by measuring underwater currents. Although
the measurements from these sensors are unable to drive the co-variance of the state estimates to as low
as a GPS measurement could have driven it. In such a case, the presence of precise dynamical models are
essential for ensuring that the estimates in states drift less with respect to time (Figure 2.3).

u

Observer/Estimator

(, �)� ′ �̂ u

Controller+
-

position
command

−���� �̂

�̂

�̂

Plant

�(�, �)

�0

�

�

guessed position

ground truth position

.

Figure 2.4: Observer or state estimator based feedback control.

When it comes to lateral positional states of autonomous QRs, it is essential to have low covariance
state estimates for generating appropriate control signals while performing navigation. The reason for main-
taining good state estimates for generating appropriate control signals can be explained by Figure 2.4. If the
observer (the model in red) is not representative of the real world model, the estimates (x̂) and outputs gen-
erated (ŷ) drift away with respect to x, y as time progresses. This drift leads to incorrect signals being sent to
the controller (yr e f − ŷ). Hence, it is critical for QRs to have accurate observers/state estimators for flying cor-
rectly. In this manner, this chapter aims to make the the concept of state estimation irrevocable/mandatory
for performing QR control.

2.2. Quadrotor dynamics

yE

zE
xE

yB

zB
xB

𝜙

𝜃

xB’

yB’

North-East-Down
Inertial/World reference frame

Body reference frame

h

rp|b

𝜓

p

q

r

Figure 2.5: Axes and frame of reference conventions used in this report

The convention followed in this thesis for axes representations and co-ordinate frames is given in Fig-
ure 2.5. The world frame ‘E’ (also referred to as the inertial frame of reference) follows a right handed North-

14 2. Introduction to Quadrotor Dynamics

East-Down convention. As a result, the higher a QR climbs, its position in the world frame becomes more
negative. The IMU and body frame ‘B’ also use a right hand reference system, zb facing downwards, usually
yielding negative values of gravitational acceleration on the z-axis of accelerometers when QR is in hover con-
ditions. The frame B’ is an intermediate frame, which is derived after yawing the world frame of reference.
This is done for purpose of alignment with the heading of the QR and for mapping correct control actions
while navigating.

• p, q,r : angular velocity of the body of the QR.

• φ,θ,ψ: roll, pitch and yaw of the QR.

• φ̇, θ̇,ψ̇: angular velocity of the QR with respect to the world frame.

Using these conventions, the QR must have a negative pitch to go forward. As the idea of "All ways lead to
Rome" suggests, [5] discusses various methods for modeling of a QR. Different set of dynamical equations
that are derived after following different modeling approaches, which are in the listing below, describe the
same model of the QR.

1. The Euler Lagrangian approach gives a QR model after using kinetic and potential energy that a QR’s
body is subjected to. For performing positional state estimation of a QR in the world frame, it is not
intuitive to estimate the energy acting on a QR. This model however, is widely used in outdoor flights
of fixed-wing aircrafts.

2. The Newton Euler approach uses free body diagrams to estimate the forces acting on the model. This
approach decouples the moment (rotational) and force (translational) model. It also provides an in-
tuitive way of augmenting external un-balanced and un-estimated forces acting on a rigid body. Fig-
ure 2.6 replaces a QR with a rigid body which experiences two significant forces of drag and thrust
(vectors in blue). The estimation of specific forces can give information about the instantaneous accel-
eration of the body. Specific force is a non-gravitational force acting on the body of a QR. In case of QRs,
specific forces are mainly composed of the thrust produced by the propellers of the QR and drag forces
faced by the body of the QR. Instantaneous accelerations can be used to infer the change in velocity and
hence also the displacement of the rigid body. This modeling approach is used in this thesis because of
two significant benefits: (a) Simplicity due to decoupled dynamics in the rotational and translational
space. (b) ability of performing positional state estimation by measuring specific forces on the body of
the QR.

3. The dual-quaternion approach for QR modeling is receiving some attention lately [17] [25]. The ap-
proach not only combines the rotational and translational model, but also represents the entire pose
of an object in 3D space (position and orientation) into a single entity. For example, the pose of the
head of a screw being drilled in, can now be represented as a single entity. Dual quaternions could
potentially find their direct applications in powered descents made by SpaceX’s FALCON rockets and
Martian/Lunar landers [17]. It could also find applications on satellite attitude control and orbit raising
algorithms. If QRs are modeled using this approach, they can mimic these satellites and landers by
serving as testing platforms.

2.3. The Newton-Euler modeling approach
The model describing the dynamics of a QR evolving in R3 and SO3 (special orthogonal group) space,

which is subjected to non conservative forces F ∈R3 and torques τ ∈R3 applied to its center of mass, is given
by:

ξ ∈R3 position of center of mass in E

V ∈R3 velocity of center of mass with respect to E

ERB ∈ SO3 rotation matrix to go from B to E

T B thrust in body frame

f B
d disturbance due to drag, etc.

ω angular velocity in the world frame

I inertia tensor

ξ̇E =V E

V̇ = aE

aE =E RB (T B + f B
d)+ g zE

Ṙ = Rω̂

I ω̇=−ω× Iω+τ

(2.1)

2.4. Frames of reference and Rotation matrices 15

The above equations are derived using the free body diagram given in Figure 2.6. The force and moments
originating from the rotors (red entities in Equation 2.1) can be described further:

T
Tcos𝜙
zE

Tsin𝜙
yE

g

fd

zE

yE

.pb
τ

Figure 2.6: Free body diagram of the quadrotor subject to
aerodynamic drag.

Blade element theory suggests that a blade rotating with a
particular RPM generates a force and torque on the body
of the QR. Summing up the forces produced by each pro-
peller yields the net thrust generated by the QR, while a
combined effect of moments generated by them provide
angular motion in the QR. For a rotor with angular veloc-
ity ω, and radius r ,

TB =
4∑

i=1
fi where, fi =CT iρAp r 2w2

i

τ=
4∑

i=1
τi where, τi =CQiρAp r 3w2

i

(2.2)

where CT i and CQi (dimensionless) are the thrust and
moment co-efficients of the rotor blade. fi is the steady-
state thrust generated by a propeller that is not translating
horizontally or vertically through space. When the pro-
peller moves through space, the thrust produced by them at the particular rotor speed changes with respect
to the thrust generated due to same rotor speed while hovering. The model that takes into account the dy-
namical factors of a blade in translation is explored in Section 3.2.

It is important to note that the conventions used in Equation 2.1 and Figure 2.6 are non trivial. They
require correct intuitions of source of drag, Coriolis and centrifugal forces. The forces estimated, must also
be compensated for in the correct frame of reference. Failing to take precautions while carrying out this math
has led to incorrect equations to be published. Some corrections are found in Appendix A of differential
flatness derivations in [21]. In our case, two allowable assumptions are made to avoid augmenting fictitious
forces on the frame of the body of the QR. (1) The QR is always considered as a point mass. All points on its
body are hence represented by a single point that is the center of mass. (2) The IMU is mounted exactly on
the center of mass, avoiding any pseudo forces that may act on the accelerometer sensor.

2.4. Frames of reference and Rotation matrices
As described earlier, there are two frames of reference, the inertial frame E and the body frame B . Rota-

tion matrices can convert entities like lateral positions, velocities, accelerations from one frame of reference
to the other. Note the two rotation matrices listed in Equation 2.6. Euler angles are used to denote the ori-
entation of one frame with respect to the other. Depending on the sequence of rotations between the frame
of reference, these representations are classified further. The ‘Proper Euler angles’ conventions involve se-
quential rotations, which means that the entities listed are the angles between each consecutive rotation.
They usually follow the (z-y-z) sequence of rotation. The Tait-Bryan representation (which is used in most
aerospace applications) is used in our case. In this case, angles indicate orientation with respect to the orig-
inal frame of reference and not with respect to each sequential rotation. The angles φ,θ,ψ in Figure 2.5 can
be referred to as the angles in Tait Bryan representation. The processed readings after filtering the IMU data,
return instantaneous angles with respect to the original frame of reference and not angles with respected to
an intermediate rotational frame of reference. Hence, the Tait Bryan representation is used throughout the
thesis to represent the orientation of the QR. Rotation matrices can hence be given as:

Rx (φ) =
 1 0 0

0 cosφ −sinφ
0 sinφ cosφ

 ,Ry (θ) =
 cosθ 0 sinθ

0 1 0
−sinθ 0 cosθ

 ,Rz (ψ) =
 cosψ −sinψ 0

sinψ cosψ 0
0 0 1

 (2.3)

Where φ,θ,ψ are the roll, pitch and yaw of the QR with respect to the world frame of reference. The rotation
matrix generated after following the r-p-y or x-y-z sequence can be given as:

R = Rz (ψ)Ry (θ)Rx (φ) (2.4)

16 2. Introduction to Quadrotor Dynamics

This gives the complete rotation matrix to go from body entities to world entities as:

R =
 cosθcosψ sinφsinθcosψ−cosφsinψ cosφsinθcosψ+ sinφsinψ

cosθ sinψ sinφsinθ sinθ+cosφcosψ cosφsinθ sinψ− sinφcosψ
−sinθ sinφcosθ cosφcosθ

 (2.5)

The transpose of this rotation matrix can perform transformations from world entities to body entities.

W RB =
cθcψ sφsθcψ− cφsψ cφsθcψ+ sφsψ

cθsψ sφsθsψ+ cφcψ cφsθsψ− sφcψ
−sθ sφcθ cφcθ

︸ ︷︷ ︸

body to world rotation matrix

B RW =
 cθcψ cθsψ −sθ

sφsθcψ− cφsψ sφsθsψ+ cφcψ sφcθ
cφsθcψ+ sφsψ cφsθsψ− sφcψ cφcθ

︸ ︷︷ ︸

world to body rotation matrix

(2.6)

The rotation matrix to go from angular velocities in the body frame to angular velocities in the world frame
can be given by: φ̇

θ̇

ψ̇

=
 1 sinφ tanθ cosφ tanθ

0 cosφ −sinφ

0 sinφ
cosθ

cosφ
cosθ

 p
q
r

 (2.7)

2.5. Difficulties in control and estimation for QRs
Six degrees of freedom of QRs allow them to hold any pose1 in the spatial R3 (x,y,z) and rotation S03

(R(φ,θ,ψ)) space. However, to autonomously maneuver towards a particular pose from a different starting
pose, two conditions from control systems should be met - (1) observability and (2) controllability of the
positional states. In this thesis, the explanation of these concepts is not done meticulously, however it helps
in illustrating the impending problems in the field of QR control.

Observability checks if the physical states of the QR can be read by the onboard computer. Reachability
or controllability checks if the desired pose configuration can be directly achieved by sending commands to
the actuators. In case of simple QRs that posses four propellers and a single IMU, the criteria for full rank of
controllability and observability matrices are not met. To explain why observability and controllability are
important for the scope of this thesis, a listing is made below explaining them briefly.

A continuous time linear system is considered while explaining the concepts below:

ẋ = Ax +Bu

y =C x +Du

• x: Continuous time states of the dynamical system. Positional and rotational states in this case.

• A: State propagation matrix. System dynamics make up the A matrix.

• B: Input matrix. The control inputs are fed into the system via this matrix.

• C: Output matrix. Selects states that are observable.

• D: Feedforward matrix: The outputs can also be a result of the inputs directly. The matrix D decides the
feedforward mapping to the outputs from the inputs.

2.5.1. Observability
1. For being able to observe all states in R3 and S03, the observability criteria of control systems should be

met. A system is said to be observable if the states x(t) can be fully determined (reconstructed) using
measurements z(t) and control inputs u(t) [15]. The observability criteria for a linear system is given

by the rank of the matrix O = [
C ,C A,C A2, . . .,C An−1]T

. If the rank of this matrix equals the order of
the dynamical system, then it implies that all states of the system can be directly observed. For more
details on observability analysis, the paper by Hanley et.al.[10] describes the nonlinear techniques for
observability analysis for states of a QR.

1Except the QR being upside down for a long time.

2.6. Discussion 17

2. Observability of the dynamic states implies whether or not the sensors (e.g. IMU) can read from the
dynamical pose information of the QR (both attitude and positional states). Partial observability of
only a couple of states could imply that estimators for the remaining states must be designed by the
user.

3. 6-DOF IMUs can only directly observe the banking angles (φ,θ) and angular velocity (p, q,r) of the
QR in the S03 plane 2. This is after assuming that the AHRS (Attitude Heading Reference System) has
already performed sensor fusion and filtering for estimation of angles in SO3.

4. For the remaining positional states in R3, observers must be manually designed. The design of these
observers is highlighted in Chapter 3.

5. As a result, it can be said that the observability of states in this thesis is limited by the capability of the
sensors. The process of observer design, can however be skipped if additional sensors like GPS, Visual
Inertial Odometry or Optical Flow sensors are used. Using these sensors could yield higher ranks of the
observability matrix, leading to better observability of states in R3.

2.5.2. Reachability
1. For being able to hold any of the states in R3 (x,y,z) and S03 (R(φ,θ,ψ)), the reachability criteria must

be met. A simple reachability analysis for linear systems is done by calculating the rank of the matrix
R = [

B AB A2B . . . An−1B
]
.

2. Reachability of states is closely related to the actuated-ness of vehicles under study. If an actuator is
absent in a particular degree of freedom of the vehicle, it can possibly make the state unreachable. This
can be observed from Figure 2.5, where there are missing actuators in the lateral ξx ,ξy axes. It is not
possible for QRs to move sideways unless they change their attitude by banking.

3. The ability of being able to reach states in the under-actuated degree of freedom while missing actua-
tors is answered by the study of non-holonomic underactuated3 systems. A a result, these systems can
still achieve the desired states without implicitly having an actuator in that particular direction.

4. The moment equations (defined in Equation 2.1), indicate that the change in actuator RPM can bring
about actuation in all the three axes of rotation.

5. The force equations (defined in Equation 2.1), indicate that there must be a rotation for a translation to
take place along ξE

x ,ξE
y .

6. sidenote: An interesting study by Romero et. al [26], uses a set of eight propellers to solve the underac-
tuated problem. Figure 2.7 illustrates a modified QR from their study, which now has actuators along
the under-actuated axis. Four additional actuators f5, f6, f7, f8 are introduced along the lateral under-
actuated axes (ξE

x ,ξE
y) that can work in tandem to produce the resultant vector in black.

2.6. Discussion
Due to the standard setup with the actuators (4 propellers) and sensors (one IMU), the axes of an au-

tonomous QR have the following propertiess:

1. Rotational actuation and estimation is possible about all three axes4.

2. Along the lateral z-axis, positional estimation is sometimes made possible if there are additional sen-
sors for height measurement. Also full actuation is possible about this axis by increasing or decreasing
the RPM of all the actuators simultaneously.

3. Along lateral positional axes of (ξx ,ξy) neither a direct actuation nor estimation is possible5.

Table 2.1 summarizes the difficulties in estimation and control with respect to each axis for a standard QR.

2Since accelerometers can not be of help in the yawing plane, drifts because of the integrated gyroscope measurements must be com-
pensated by visual techniques or by incorporating a compass.

3The study on underactuated systems is used in multiple areas nowadays. Differential flatness is one of the solutions exploited to alge-
braically assign control actions to underactuated systems depending on the output desired. This now finds its application in robotics,
self-driving cars, industrial robots and self-landing rocket booster stages.

4This is assuming that the IMU also has magnetometer/vision based corrections for avoiding drifts in yaw.
5This is assuming that there are no extra actuators and no GPS/SLAM sensors are present.

18 2. Introduction to Quadrotor Dynamics

Figure 2.7: The eight-rotor fully-actuated QR [26].

⇓Axes | Properties ⇒ Directly observable Directly controllable Solution for observability
φ 3 3 estimated by IMU sensor fusion
θ 3 3 estimated by IMU sensor fusion
ψ 7 3 requires magnetometers or visual aid
Lateral x 7 7 requires GPS/VIO/OF or state estimation
Lateral y 7 7 requires GPS/VIO/OF or state estimation
Lateral z 7 3 requires GPS/VIO/OF or state estimation

Table 2.1: Table of controllability and observability with respect to each axis.

Since QRs must fly through positional setpoints on the arena, estimation and control along lateral po-
sitional axes are most critical. However, from the above table it is clear that neither estimation or control is
directly possible about these axes. These difficulties are taken up as the problem statement of this thesis. The
chapters that follow this supplementary introduction hence discuss the last three rows of Table 2.1. The only
way to achieve these objectives in drone-race settings (only IMU is allowable) is by knowing the dynamics of
QRs as accurately as possible. The next chapter discusses state estimation using these QR dynamics to make
the lateral axes observable.

3
State estimators for Quadrotor Control

It was earlier established that possessing knowledge of the states can increase the quality of flight through
the gates. Aristotle’s saying "Knowing yourself is the beginning of all wisdom!", if extrapolated to our case, hints
on the importance of possessing the estimates of all the states of the QR as accurately as possible. This would
include estimation of the states of positions, orientations and their derivatives [(X = ξx ,ξy ,ξz ,φ,θ,ψ), Ẋ , Ẍ].
Table 2.1 establishes that the estimation and control of the rotational states φ,θ,ψ is not a pressing issue
anymore. As a result, this chapter focuses on the estimation of the positional states.

The prior chapter highlights that any state estimation techniques consists of two sub-modules (a) mod-
eling and (b) filtering1. Only the first sub-module of modeling is discussed in this chapter. The filtering
module is not a primary goal of this thesis and hence discussed only in the appendix within Section 5.2. Per-
forming accurate modeling also satisfies the first objective of this thesis (as stated earlier in Figure 1.6), which
is about accurate propagation of the estimated states. Precise models established by this chapter can later
be used to assign accurate control actions to the actuators for navigating through the gates of the drone race
arena (discussed in Chapter 4).

quadrotor
dynamics

translational
dynamics

rotational
dynamics

𝑥 𝑦 𝑧 𝜙 𝜓𝜃

controlestimation controlestimation

addressed in this
chapter

not an impending
problem

Legend

Figure 3.1: Chapter 3 only discusses translational dynamics along
xB , yB , zB (boxes in green).

Figure 3.1 clarifies the scope of this chapter. To
explain the figure further- QR dynamics can be split
into lateral and rotational dynamics. It has been
highlighted earlier in Table 2.1 that stable rotational
dynamics is already a solved problem in QR control
(indicated by purple boxes in the figure). The figure
indicates that the chapter focuses only on the esti-
mation of the lateral states of QR under the block of
translational dynamics (box in green).

Organization of the chapter: This chapter is
divided into three parts. The first part explains the
two significant forces of thrust produced by the pro-
pellers and drag effects that are induced in forward
flights. It concludes with the identification of drag
coefficients which are helpful for designing a state
estimator.

The second part of the chapter discusses prior
work in the area of modeling, where each paper has
included different terms in order to improve accuracy of the model. After discussing the pros and cons of
models currently in use, the requirements for a new estimator are discussed that could fit well in the frame-
work of drone-racing. After these requirements of a new state estimator are established, a proposal for a
new state estimator is made. Detailed models used by the new estimator can assist in accurate lateral-state
estimation of the QR.

The third part devises experiments that emulate different drone racing maneuvers to compare the new

1In control systems jargon, the steps performed for modeling and filtering are similar to the prediction propagation and measurement
update step of state estimation.

19

20 3. State estimators for Quadrotor Control

forces on the body of
the QR

= 𝑚𝑓 𝐵 𝑎𝐵

thrust

𝑇 𝐵

blade flapping lift induced drag parasitic drag
𝑥𝐵 𝑦𝐵

𝑧𝐵

𝑥𝐵 𝑦𝐵
𝑧𝐵

drag force

𝑓 𝐵
𝑑

weight/
gravity

Figure 3.2: classification of types of forces acting on the body of the QR.

drag

thrust

w
eight

Figure 3.3: forces on the body of the QR.

estimator with prior estimators proposed in literature using some key-metrics. The chapter concludes by
achieving the aim mentioned in the green box of Figure 3.1.

3.1. Positional state estimation
As Newton’s laws dictate, for the QR to change motion through space, external unbalanced forces must

act on the body of the QR. It is essential to find out these unbalanced forces acting on the body frame of
the QR for estimating positions of the QR. A change in the velocity of the vehicle can be inferred from the
integration of these unbalanced forces. Displacement of the vehicle can be observed after integrating these
obtained instantaneous velocities of the vehicle at each time instance. The displacement can be added to the
initial (known) position of the QR, to return its absolute position in the inertial frame of reference. As a result,
to perform positional state estimation, estimating the forces on the frame of the body of the QR is critical.

It is possible to use the accelerometer for reading the values of the above mentioned ‘external unbal-
anced forces’. However this is a rather incorrect method and cannot be used in the drone-race framework.
A detailed explanation for the reasons to this are listed in the appendix within Section A.3. To go back to
the rather correct method of positional state estimation, the forces on the body of the QR must be studied.
When flying indoors in the absence of wind, the QR’s body is subjected to two significant sources of external
unbalanced forces:

1. Thrust: generated by each propeller of the QR. For a normal configuration, thrust only acts along the
zB axis of the QR as shown by the leftmost green box in Figure 3.2.

2. Drag: an opposing force on the body of the QR as a result of motion of the QR. Drag forces originate due
to multiple reasons and the major contributors of these forces are classified in Figure 3.2. Drag forces
offer their contribution along all the axes of the body frame (green boxes in Figure 3.2).

The boxes in purple indicate that there is some cross coupling between drag and thrust forces. The cross
coupling arises due to changing direction of resultant thrust vector generated from the body of the QR. This
resultant vector is a due to the generated thrust and drag (combined) and will be explained in sections to
follow.

3.2. Thrust
Thrust is the most significant contributor of the forces that are induced on the body of the QR. In hover

positions, thrust is the only contributor of forces induced on the body of the QR (T =−m ×9.81m/s2). How-
ever, this is not the case in forward flight and other non-hover regimes. To study the thrust in these non-hover
regimes, different thrust models have been proposed, which give a close representation of the actual thrust
that might be produced at different angles of attacks and lateral velocities.

3.2. Thrust 21

Lift

Drag

Thrust

axis of rotation

Figure 3.4: Angle of Attack and Free-stream velocity [1]

thrust stand were used to compare measured data with
analytical results, and flight tests were conducted to verify
the presence and magnitude of these effects.

The work presented here takes the analysis of blade
flapping and thrust variation and applies them to the creation
of models and control techniques for operating a quadrotor
at high speeds and under aggressive maneuvers. Simulations
of a quadrotor are performed including these effects and
validated against actual flights on the STARMAC quadrotors.
A novel feedback linearization controller is presented which
successfully compensates for these aerodynamic effects. This
is the first time such control techniques have been applied
to quadrotor helicopters.

This paper is structured as follows. Section II describes the
STARMAC quadrotor helicopters used in the flight tests. The
aerodynamic effects investigated in these experiments are
described in Section III, and the existing STARMAC control
system and the augmented system to reject aerodynamic
disturbances are presented in Section IV. Simulation and
experimental results are presented in Section V, followed
by conclusions and future work.

II. THE STARMAC TESTBED

The STARMAC quadrotors are custom-built vehicles
0.75 m on each side, weighing 1.1 kg to 1.5 kg depending
on the computing configuration, with an additional payload
capacity of roughly 1 kg above the base weight. Each aircraft
is equipped with an onboard 6-axis inertial measurement unit
(IMU) and GPS receiver. Position and velocity are calculated
at 10 Hz using carrier-phase differential GPS relative to a
stationary base-station, giving accuracy of roughly 2 cm in
the horizontal plane. GPS position measurements are fused
with IMU attitude rate and accelerometer measurements
using an onboard Extended Kalman Filter (EKF). Local
altitude sensing and control is achieved using an ultrasonic
rangefinder.

Closed-loop attitude and altitude control are performed
at 76 Hz using an Atmel Atmega128 microprocessor. The
EKF and higher level planning and control are performed on
one of two possible processors. In the light configuration, a
Gumstix Verdex single board computer running embedded
Linux is used. For more complex sensor processing and on-
board optimization, the STARMAC quadrotor can be flown
with a Advanced Digital Logic PC104 running Fedora Linux.
The PC104 is a laptop-class Pentium-M 1.8 GHz processor
with 1 GB of RAM, capable of performing many high level
computing tasks.

The STARMAC quadrotors have proven to be a capable
and useful flight test platform for many different applications.
They are small and agile, yet capable of carrying a useful
computing and sensing payload. A Hokuyo laser range
finder, Videre stereo vision camera system, and Tracker DTS
digital avalanche rescue beacon have been successfully flown
on the aircraft [22], [23], [24].

III. AERODYNAMIC EFFECTS

The two main aerodynamic effects addressed here are
blade flapping and total thrust variation in translational flight.

v

h

Fig. 2. Effect of blade flapping in forward flight: the deflection of the
rotor plane due to flapping causes an effective deflection of the thrust vector,
generating moments about the center of gravity.

Flight Speed (m/s)

A
ng

le
 o

f A
tta

ck
 (d

eg
)

(T/Th)P=const for vh=6 m/s

1 2 3 4 5 6
−20

−15

−10

−5

0

5

10

15

20

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Fig. 3. Thrust dependence on angle of attack and vehicle speed for a
constant power input. [21]

Blade flapping has a substantial effect on attitude control,
while total thrust variation affects the thrust generated by
the vehicle’s rotors, thus having a large impact on altitude
control. Both effects will be discussed here in sufficient
detail as to understand their impact on the vehicle’s flight
characteristics.

A. Blade Flapping

A rotor in translational flight undergoes an effect known as
blade flapping. The advancing blade of the rotor has a higher
velocity relative to the free-stream, while the retreating blade
sees a lower effective airspeed. This causes an imbalance
in lift, inducing an up and down oscillation of the rotor
blades [25]. In steady state, this causes the effective rotor
plane to tilt at some angle off of vertical, causing a deflection
of the thrust vector (see Figure 2). If the rotor plane is not
aligned with the vehicle’s center of gravity, this will create
a moment about the center of gravity (c.g.) that can degrade
attitude controller performance [9]. For stiff rotors without
hinges at the hub, there is also a moment generated directly
at the rotor hub from the deflection of the blades.

The full analysis of blade flapping is beyond the scope of
this paper, but is presented in more detail in the helicopter
literature and in previous work [25], [26], [21]. Due to

Figure 3.5: The ratio of thrust generated with
respect to hover thrust at different resultant

relative wind and angle of attacks [14]

A coarse thrust model usually fails to capture the coupled dynamics that arise when the QR is in non-
hover regimes. A fine model requires a higher number of terms to represent the net thrust generated, requir-
ing rigorous system identification procedures to estimate them. In such a case, numerous parameters could
be possibly added, for e.g. density of air, pitch angles of the rotor and battery state of charge. Subsections
below list the three most commonly used thrust models that were proposed earlier in literature. The thrust
section concludes with a discussion on picking one of the three thrust models that could be suitable for the
drone-race framework.

Having accurate thrust models improves the lateral state estimates in the xE −yE plane, although having
accurate thrust models is most critical for the estimates in the zE axis. The zB and zE axes are usually aligned
(in near hover states) and the major component of forces in the body frame (thrust) is along zB . As a result,
thrust has the highest contribution of forces in the zE axis. As a result, having a good estimation of thrust can
provide the QR with good altitude estimates.

The assumption made while discussing different methods to model thrust is that the QR flight is always
ensured to be in normal flying regimes and no vortex ring states are induced. Vortex ring states are discussed
at the end of this section using Figure 3.9.

3.2.1. Induced velocity method
Blade element theory suggests that the force generated by a rotating airfoil can be given by the force-

rpm equation below. As earlier stated in Equation 2.2, summing the forces produced by each propeller yields
the net thrust generated by the QR:

T B =
4∑

i=1
fi where, fi =CT iρAp r 2w2

i

However, this expression for fi holds only when the QR is hovering. Blade element theory proposes
different equations to give an accurate thrust in non-hover regimes. During forward flight, an increase in the
incident free-stream velocity seen by the propellers increases the effective thrust produced by the blades. The
free-stream velocity is essentially the velocity of wind with respect to the body of the QR and is represented by
v∞. For finding accurate values of thrust generated by the propellers in the non-hover regime, [14] suggests
that the induced flow through each blade of a propeller must be analyzed. Relevant equations from the paper
are re-stated here and the pros and cons associated with the induced velocity method are highlighted here. A
few terms must be introduced before stating the equations used in [14].

• Vi nd : Induced velocity respect to the airfoil as shown in green.

• V∞: Free-stream air velocity given by
√

V E
x

2 +V E
y

2
(assuming wind velocity is zero).

• α: Angle of attack: Angle between the airfoil chord line and the resultant relative wind as indicated in
red.

• Th : Thrust required to maintain hover-state. For this case, Th =−mg

• Vh : Lateral velocity of the QR represented in body frame, is given by
√

V B
x

2 +V B
y

2
.

22 3. State estimators for Quadrotor Control

Vi nd = V 2
h√

(V∞ cosα)2 + (V∞ sinα+Vi nd)2
, Vh =

√
Th

2ρA
, and the thrust ratio is given by,

T

Th
= Vh

Vi nd +V∞ sinα

(3.1)
It can be noted that the above expression2 for Vi nd is quartic in nature. The sidebar in Figure 3.5 indicates
the ratio of increase in thrust observed at non-hover positions. This sidebar is generated using the quartic ex-
pression above. From Figure 3.5, an observation can be made that at higher lateral velocities, thrust becomes
highly sensitive to the angle of attack at the blades [14].

To be able to select appropriate thrust ratios at different induced flows, the above quartic polynomial
must be solved in real time at high-frequencies onboard the flight-controllers. Algebraic quartic solvers or
Netwon’s iterative methods are required to be ported for solving this equation. After the roots to the quartic
polynomials are found, the resulting induced flow can be used for selecting appropriate thrust ratios. Se-
lection of correct thrust ratios can help the QR maintain a constant altitude. Because of these complicated
root-finding methods, [14] recommends using a look-up table to match the required thrust to maintain alti-
tude at non-hover conditions. A look-up table can be setup by discretization of the 2-D space in Figure 3.5.
However, due to questionable real-time implementation of solving for induced velocities and thrust ratios,
another interesting approach can be explored.

3.2.2. Hover-thrust/constant-altitude method
Most models in literature exploit the hover-thrust method [19] when change in altitude is not desired/expected.

The thrust produced is almost enough for the QR to maintain stable altitude when flying through the arena.
Instead of induced free-stream air velocities and quartic polynomials, this model gives the net thrust gener-
ated by all the propellers to be given by:

T B = −g

cosθcosφ
(3.2)

Another advantage of using this model is that it does not require instantaneous rotor RPMs, angle of attacks
or vehicle velocity reported back from the flight controllers. The disadvantage of this model is significant.
The model enforces QR to maintain a constant altitude while off-loading the responsibility of controlling the
altitude via height based sensors. It also does not include effects of increased blade effectiveness at higher
lateral velocities, causing the QR to increase the altitude while banking. Dead-reckoning while using this
model is only acceptable in short-horizons depending on the frequency of altitude changing maneuvers.

3.2.3. Thrust model augmented with drag and effectiveness based terms
Given the bounds of the flight envelope and ignoring vortex states, [31] simplifies the thrust described

in blade-element theory under normal flight-regimes. After simplifying the equations established by blade
element theory, [31] simplifies the thrust equation from

Ti = c1ω
2
i

(
c2

(
1+ 3

2
µ2

i

)
−λi

)
, where,

advance ratio: µi = Vhi + vhi

rωi

inflow ratio: λi = Vzi + vzi

rωi

to

T B = kωω
2
s −kzVziωs +khV 2

hi

• vB
z - ascent/descent velocity along the zB axis of the QR.

• ωs =
∑4

i=1ωi

4 : average propeller speed in RPM returned by paparazzi’s telemetry modules.

• c1,c2: Dimensionless rpm to thrust co-efficients.

T B can be estimated from synchronized and timestamped data from OptiTrack and Paparazzi.

T B = [
0 0 1

] B RE︸︷︷︸
pprz attitude

[
aE

x aE
y −9.81+aE

z
]T︸ ︷︷ ︸

optiTrack

2It can be noted that lateral velocities and angle of attack information required by Equation 3.1 can be estimated with some accuracy
using state estimation.

3.2. Thrust 23

Entities in fuchsia are considered known and can be estimated from the OptiTrack and Paparazzi setup.
The hidden catch in the above model is that the thrust is represented as a linear combination of known and
unknown entities. Thrust can be written in a matrix-vector representation as the equation below:

T = [
ω2

s Vziωs V 2
hi

]kω
kz

kh

A flight identification experiment exciting the lateral velocities Vz and Vh observations over time, yields

the following observation matrix-vectors. Its pseudo-inverse can give the parameters to be estimated:
T |t0

T |t1
...

T |tn

=

ω2

s |t0 (Vzi ×ωs)|t0 V 2
hi |t0

ω2
s |t1 (Vzi ×ωs)|t1 V 2

hi |t1
...

...
...

ω2
s |tn (Vzi ×ωs)|tn V 2

hi |tn

kω

kz

kh

 ,

k̂ω
k̂z

k̂h

=

ω2

s |t0 (Vzi ×ωs)|t0 V 2
hi |t0

ω2
s |t1 (Vzi ×ωs)|t1 V 2

hi |t1
...

...
...

ω2
s |tn (Vzi ×ωs)|tn V 2

hi |tn

†

T |t0

T |t1
...

T |tn

T̂ B = k̂ωω

2
s − k̂zVzωs + k̂hV 2

hi (3.3)

The parameters that are identified by the experiment are tabulated in Table 3.1. These parameters are
used to estimate/predict the instantaneous thrust force produced at that instantaneous rotor speed and lat-
eral velocities. This prediction of thrust is illustrated in Figure 3.6.

parameter value
kω -0.00001438 m/s2RP M 2

kz 0.001514 (RP M(s))−1

kh -0.044797 m−1

Table 3.1: values after parameter identification of thrust co-efficients

The term −k̂zVzωs provides damping to the thrust acceleration produced. This can also be explained
using the angle of attack analogy from Figure 3.4. When the QR ascends, it sees a higher induced flow. This
results in a different ‘resultant relative wind’, which decreases the angle of attack of the blades with respect to
the rotational relative wind. Decrease in angle of attack directly reduces the thrust produced.

The difference between the estimated thrust T̂ B and the thrust recorded by ground truth T B gives the
residual. The residual is expected to follow a Gaussian distribution since the type of estimator exploited uses a
bias-less minimum variance least squares method. The pattern of residual is important since a non-Gaussian
fit signifies faults in the experiment performed or that an incomplete model was assumed (e.g. failing to
capture transients, missing terms etc.). In our kind of experiment, a non-Gaussian fit could be originating
from:

• The representation for thrust (Equation 3.3) is incorrect or misses significant terms.

• Or the experiment failed to excite the dynamics of thrust and its co-efficients/variables.

• Or the experiment performed was biased towards one particular maneuver.

After carefully performing the experiment, a Gaussian pattern of residual is obtained as illustrated in Fig-
ure 3.7.

3.2.4. Discussion
The following subsection includes some information about the extreme regimes that occur during ag-

gressive flights and warns about the states to be avoided while the trajectory generation step. To understand
these regimes better, the concept of angle of attack is introduced first.

During ascent, a reduction in the effective angle of attack (α) is observed due to change in the induced
flow as illustrated in Figure 3.4. This reduction is observed because of the addition of induced flow (Vzi =
V∞−Vbz) to the rotational relative wind (v∞). As a result, the effective thrust that is produced during ascent
is lower than expected.

During descent, an increase in effective angle of attack is observed due to the converse of the above ex-
plained phenomenon. As a result, the effective thrust that is produced while descent is higher than expected.

24 3. State estimators for Quadrotor Control

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

time

-30

-25

-20

-15

-10

-5

0

5

10

th
ru

s
t
(m

/s
2
)

thrust after parameter identification

actual thrust

predicted thrust

Figure 3.6: Predicted thrust T̂ after fitting.
Figure 3.7: residual (T − T̂) follows a Gaussian distribution,

signifying a good quality fit.

including angular rates ωB can be described as,

F = mẍ (9)
M = IBω̇B + ωB × IBωB (10)

where the total angular momentum of the rotors is assumed
to be near zero, as the momentum from the counter-rotating
pairs cancels when yaw is held steady.

B. Attitude and Altitude Control

Within the STARMAC vehicle’s operational range (atti-
tudes within ±30◦), the equations of motion are approxi-
mately decoupled about each attitude axis. STARMAC uses
a 3-2-1 Euler angle rotation of roll φ, pitch θ, and yaw ψ.
The control input thrusts about each axis, uφ, uθ, and uψ ,
are implemented independently as differential commands to
motor pairs. The inputs for each motor are added to the
total thrust control input uz to generate thrust commands u1
through u4, for motors 1 through 4,

u1 = −uθ + uψ + uz
u2 = uφ − uψ + uz
u3 = uθ + uψ + uz
u4 = −uφ − uψ + uz

(11)

Attitude control is implemented using a standard
Porportional-Integral-Derivative (PID) controller augmented
with feedback on angular acceleration, resulting in the
following control law for roll:

uφ = kdd(φ̈ref − φ̈) + kd(φ̇ref − φ̇) + kp(φref − φ)+
ki
∫ t
0
(φref − φ)dt

(12)
where kdd, kd, kp, and ki are the double derivative (angular
acceleration), derivative, proportional, and integral control
gains respectively. φref is the commanded reference roll.
Controls for pitch and yaw are implemented similarly.

Altitude control is also implemented using a PID controller
augmented with feedback on acceleration, with feedback
linearization to compensate for the force of gravity when
rolling and pitching. The resulting control law is:

uz =
1

cosφ cos θ (kdd,alt(z̈ref − z̈) + kd,alt(żref − ż)
+kp,alt(zref − z) + Tnom)

(13)
where z is the altitude and zref is the reference command.
Tnom is the nominal offset thrust required to overcome the
force of gravity.

These controllers, hence referred to as the default con-
troller scheme, have been demonstrated to have very good
tracking performance near hover and when subjected to
suddenly varying attitude commands at low velocities [21].
Typical RMS errors at speeds on the order of 3 m/s or less
are approximately 0.65◦ in attitude and 0.02 m in altitude.

C. Compensating for Aerodynamics

The default controller is able to successfully reject small
disturbances, steady-state larger disturbances, and some
model error, but not the type of disturbances associated with
the aerodynamic effects discussed above. To compensate for

Nominal Thrust

Actual Thrust

Standard Turn

Adjusted Turn

Fig. 5. The standard stall turn maneuver uses the extra thrust generated
by a sudden increase in angle of attack to quickly reverse the aircraft’s
direction. Decreasing commanded thrust to compensate results in a flatter
trajectory.

these, the disturbance forces and moments are calculated
using the vehicle state and feedback linearization is used
to cancel out both flapping moments and translational thrust
effects. The flap angle is modeled using a linear approxima-
tion, where compensating moments are calculated assuming
decoupling of the body axes. The flap angle in each body
axis calculated as

a1s,x = kfvb,x (14)

where vb,x is the velocity in the body x axis and a1s,x is the
flap angle along the x axis. The corresponding moment Mθ

about the pitch axis required to compensate is then

Mθ = −4(kβa1s,x + Th sin a1s,x) ≈ −4(kβ + Th)a1s,x
(15)

and a similar compensating moment is calculated for the roll
axis.

Thrust compensation is achieved using Equations (4) and
(5). Due to the need to find roots of a quartic equation
to solve for vi in Equation (4), a lookup table is used for
computational efficiency where the actual thrust T produced
at a given AOA and velocity is calculated for a range
of nominal thrusts, AOAs, and translational velocities. The
desired thrust at hover Th is calculated by the altitude and
attitude controllers normally and the ratio T/Th is then found
using the table and used to cancel out the variations in thrust
due to translational flight and angle of attack.

V. EXPERIMENTAL RESULTS

To validate the analysis and controller design presented
above, a series of flights were conducted on the STARMAC
quadrotor demonstrating both the influence of the aerody-
namics and the success of the controller design at rejecting
those disturbances. The influence of blade flapping and total
thrust variation were explored using a maneuver known as
the stall turn. This is the first time these effects have been
demonstrated and compensated for in a quadrotor testbed.

A. The Stall Turn

The stall turn is an aerobatic maneuver first developed by
fighter pilots as a means of rapidly changing direction [28].

Figure 3.8: reduce thrust upfront for predicted change in angle of
attack, figure from [14]

Figure 3.9: different regimes of QR flight, extreme left: desired
regime, middle: low thrust VRS regime to be avoided, source: Tim

Tucker rotorandwing.com

However, descents need to be carefully dealt with. Performing a descent at higher velocities beyond a thresh-
old can break the assumptions made by blade momentum theory due to the induction of vortex ring states.
In these states, there is a significant loss of effective thrust, in turn increasing the rate of descent while also
causing significant turbulence. This can be avoided by performing a translation while descent. As a result,
the QR does not fall under its own turbulent wake.

Another example of increase in thrust due to increase in angle of attack is illustrated by Figure 3.8. The
figure illustrates that thrust models must reduce generated thrust abruptly upfront, in case a sudden change
in angle of attack is expected during forward flight. If the generated thrust is not reduced upfront, change in
angle of attack augments additional thrust, changing the altitude of the vehicle even if there is no command
to do so (green path in Figure 3.8). Since there is no stopping in drone-racing, these states are rarely encoun-
tered. A QR performing laps in a drone race, usually generates trajectories that do not decelerate to such an
extent.

The evasive method of filtering: To evade the tenuous modeling process for accurate thrust/altitude
estimation, filtering methods complemented with coarse dynamic models can be used for improving the ac-
curacy of estimation. Nowadays, time of flight sensors (ToF) are available in small packages, which can be
mounted below the QR. ToFs have a short range for making measurements, however the expected trajectory
in indoor drone-racing is not higher than a couple of meters. As a result, the above models can be fused using
a complementary filter or Exponential Moving Average (EMA) filters to yield bias-less altitude measurements.
The bias of the thrust measured by the accelerometer or by the dynamic QR model can hence be made ob-
servable by the presence of these sensors. This can yield bias-less thrust estimates.

rotorandwing.com

3.3. Drag forces 25

3.3. Drag forces
In the very first part of the chapter, thrust coefficients and thrust models were discussed. Similarly in

the second part, drag coefficients and drag models must be discussed.
In the absence of external wind or other disturbance forces, the QR only experiences forces due to its

own movement through air. As a result, the only significant unestimated force except the thrust generated
by the propellers is the drag force on the body of the QR. This drag force is augmented in both the force and
moment models as described by the fd term of Equation 2.1. Different types of drag forces and their effects
are explained in the following subsections, since these forces and effects are fundamental for lateral state
estimation. As explained in Table 2.1, this report does not investigate the induced drag in moment models,
since they can be compensated by high gains in the closed loop control of the attitude loops [24].

3.3.1. Lift induced drag/rotor drag
The forces generated as highlighted earlier in Equation 3.3 can be classified into lift force, drag force and

real collective thrust. When the resultant vector of lift and drag force is observed, there occurs a backward
inclination of the net aerodynamic force of thrust with respect to the airfoil motion. Lift induced drag is un-
avoidable since it originates due to the inherent profile of the blades. Figure 3.4 indicates the contribution
of this type of drag force with the dotted line. According to [20], induced drag is proportional to the lift gen-
erated by the airfoil. As a result, in case of higher RPMs during agile maneuvers, a higher damping due to
lift induced drag is observed in the accelerations. The significance of some of the terms in state estimators
discussed below are explained by lift induced drag. (T in Equation 3.11 and ωs in Subsection 3.4.2).

3.3.2. Blade flapping

𝑣∞

𝜔 ⋅ 𝑟

𝜔 ⋅ 𝑟

,𝐿1 𝐷1

,𝐿2 𝐷2

Figure 3.10: Relative relative wind seen
with respect to the leading and trailing

blade.

The concept of blade flapping is well explained by blade-momentum
theory and flying handbooks of helicopters [1]. During forward flight of
a rotating blade, higher lift is generated by the advancing rotor blade as
compared to the trailing rotor blade due to the difference in their respec-
tive tip velocities with respect to the free-stream air. Flexible rotors can
cause the advancing blade to rise with respect to the trailing blade of the
translating propeller.

When the QR attains a constant velocity in forward flight, a steady
state flapping angle is observed (α in Figure 3.11).This flapping angle cre-
ates a difference between the direction of actual thrust (T f l ap) produced
and the direction of the normal to the body of the QR (Ti deal) 3. If the
body of the QR is banking with a certain angle, the direction of thrust ap-
plied by the propellers does not always remain normal to the bank angle
of the body. As a result, due to the effect of blade flapping, the direction of
thrust which is guessed by the IMU mounted on a body of the QR is rather
coarse.

In Figure 3.10, v∞ denotes the free stream air velocity induced due to QR’s own velocity of vE
x . Due to

these above effects, in forward flight, blade flapping introduces additional forces and moments on the body
of the QR. The additional force can be given by the term T A f l ap RT ξ̇, and is derived as follows:

Similar to Equation 2.2, the lift and drag generated by a blade can be given by:

L = 1

2
ρCL AV 2, L ∝V 2, D = 1

2
ρCD AV 2, D ∝V 2

For blade 1, V = v∞+ωr while for blade 2, V = v∞−ωr .
The total lift generated by both blades can be given by L1 +L2 and the total drag produced by them can be
given by D1 −D2. Substituting for the relative rotation velocity for each blade,

L1 +L2 = K [(v∞−ωr)2 + (v∞+ωr)2], D1 +D2 = K [(v∞−ωr)2 − (v∞+ωr)2]

Lift = k1v2
∞+k2ω

2r 2, Drag = k3ωv∞

QRs that use rigid propellers do not bend easily when subjected to aerodynamic forces. This does not
have a big impact on the direction of thrust produced and it is rather parallel to the Ti deal vector in Figure 3.11.

3In hover conditions, the direction of thrust and the direction of the normal to the body are parallel and flapping angle is zero.

26 3. State estimators for Quadrotor Control

As a result, when transitioning to forward flight from hover positions, QRs that use rigid propellers directly
transmit these aerodynamic forces to the frame of the body of the pitching QR. Forces that are imparted on
the motor hub of a pitching QR can be modeled as moments acting on the CoM of the QR. As a result, small
QRs that use rigid propellers must account for these terms in its moment model as well. Since Table 2.1
highlights that high gain controllers can eliminate disturbances caused in the moment model, this thesis
only discusses the consequences of blade flapping on the translational force models which is important for
position-tracking of QRs.

�∞

��
�

�

������

�����

�

��
���� � �

�˙

Figure 3.11: Rotation of ideal thrust vector (from red to green) due
to blade flapping.

motor
hub

ai

bi

v∞

xB

yB

Thrust

Figure 3.12: Plane of area swept by blade is now both pitching and
rolling with respect to the original plane of blade rotation due to

blade flapping.

sidenote: Blade flapping creates an offset of thrust in more than one plane. The offset of thrust is not
only in the backward direction, but is also observed in the sideways direction. To explain this further, some-
thing called ‘gyroscopic torque’ needs to be introduced first. Gyroscopic torques occur when two moments
acting on mutually perpendicular axes cause a resultant moment about the third axis. Considering indepen-
dent rotors, a moment is induced as a result of the rotation of the blade about zB and another moment is
induced by the blade flapping component about the yB axis. As a result there is a resultant moment or gyro-
scopic torque induced about the xB axis. Figure 3.12 illustrates the effect of these moments on the blade of
the QR. The moments generated modify the entire plane of rotation of the blade of the QR. Due to the original
blade flapping moment, an offset of ai is created and due to the gyroscopic torque an offset of bi is created
with respect to the original plane of the blade.

3.3.3. Parasitic drag
This type of drag force is due to the components of the body that are not capable of generating lift. This

includes non-lifting components like the motors, the frame of the QR, the battery and the flight controller.
Parasitic drag of the QR in forward flight can be given by:

f B
D par = Kpar |V B|V B (3.4)

When flying faster, more frontal area of the body of the QR along the respective axis of movement is exposed
to the incoming stream of air. As a result, the incoming air-stream creates a force that is proportional to
the square of the velocity of the QR in a direction opposite to the QR’s movement. As concluded in [2], for
flight envelopes of QRs flying at moderate speeds up to 10m/s, parasitic drag may often be ignored. If these
second order aerodynamic effects were pre-dominant in the flight, the tail of the plots in Figure 3.13 would
look different. The tail of the plots correspond to high velocity segments recorded during the flight.

3.3.4. Key take-away from the classification of drag forces
1. The drag force arises due to blade flapping and is described by the black vector in Figure 3.11 as T A f l ap RT ξ̇.

As a result, the drag force (f B
D) generated due to blade flapping is proportional to lateral velocity of the

QR (ξ̇).

2. Due to the inherent profile of the blade, the faster a blade rotates, it is subjected to higher induced drag.
In the earlier section, the lift induced drag force arising has been shown to be proportional to the blade

3.3. Drag forces 27

RPM. After tracking the blade RPM of the Bebop, it was observed that the blade RPM of the respective
rotor significantly increases in forward flight. As a result, even lift induced drag can be considered pro-
portional to the free stream velocity v∞. The free stream velocity in our case, is completely a function
of vehicle’s own velocity through space. Hence, the drag forces arising due to above effects are directly
proportional to vehicle’s own velocity (ξ̇). As a result, drag forces on the body (f B

D) generated due to the
lift induced drag is proportional to lateral velocity of the QR (ξ̇).

3. Since all types of drag forces on the body (f B
D) are proportional to the lateral velocity of the QR (ξ̇), they

can all be lumped into one parameter.

4. If the proportionality co-efficient of this lumped parameter can be identified, it can help estimate the
forces on the body frame of the drone.

The next section performs system identification of the lumped drag parameter described above. Identifying
this parameter will help conclude the sections on thrust and drag identification, which are the two main
contributing forces in QR flight. As these forces act on the body frame of the QR, the forces can be rotated
back to the world frame using the orientation information from the IMU. These forces (now expressed in the
world frame) are simply subtracted with the gravitational acceleration. These compensated accelerations can
now be dead-reckoned using kinematic equations to finally obtain the positional state estimates of the QR.

3.3.5. Drag parameter estimation
As noted from the earlier section describing drag forces, the forces experienced by the QR on the body

frame are proportional to the vehicle velocity. Determining this proportionality constant is relatively trivial
since only the first order effects of aerodynamic drag (effects proportional to vehicle velocity) need to be
estimated. It can be later observed that the second order aerodynamic effects due to parasitic drag are not
visible at these lateral velocities. This is because the bank angles required to achieve those high velocities
are usually not in the flight envelope. When bank angles increase significantly, they expose more non-lifting
surface area to the incoming flow of air, making the forces become proportional to the square of velocity.

The experiment for finding out the linear proportionality constants can be done in the following steps.
The first step for estimating the drag co-efficients is to make a dataset. It involves making symmetric maneu-
vers for equal time duration while exciting lateral accelerations on the frame of the QR and having monotonic
increasing time while making these observations.

1. Symmetric maneuvers: this is essential for unbiased samples in the dataset (equally bounded roll and
pitch banking),

2. (of) equal time durations: essential for almost equal number of datapoints generating unbiased sam-
ples (equal time intervals for rolling and pitching maneuvers),

3. (while) exciting the lateral acceleration: essential for exciting the dynamics responsible for the drag
parameter,

4. (having) monotonically increasing time: time stamps from the dataset must monotonically increase
and are also preferred to have equal intervals.

The pre-processing step calculates various entities that can be calculated from the OptiTrack4 observa-
tions. It includes the following steps:

1. Pre-processing positional OptiTrack information to yield positions, velocities and accelerations in the
inertial frame of reference.

2. Matching the IMU time stamps of orientations (φ,θ) with OptiTrack information.

3. Extracting body frame velocities and accelerations after using IMU and OptiTrack data.

After these entities are calculated, the equations for drag parameter estimation can finally be formu-
lated. The onboard IMU measures the body’s specific force and angular velocities. When the IMU is placed
on the body of the QR, it becomes a non-inertial frame of reference with respect to the Earth frame. As a
result, the IMU is now subjected to gravitational forces, centripetal forces and Coriolis forces. However, if it is

4OptiTrack is a visual tracking system that uses time of flight calculations to point out the ground truth pose of an object inside the lab

28 3. State estimators for Quadrotor Control

assumed that the IMU is mounted along the CoM of the QR, the centripetal force becomes zero. As suggested
by the drag force estimators in [31], [10] and the key-take ways mentioned above, the acceleration on the body
of the QR can be written as a function of rotor speed and lateral speed of the QR:

v̇b
x =−g sinθ−2ωz vb

y +2ωy vb
z︸ ︷︷ ︸

Coriolis force

+kd xωs vb
x︸ ︷︷ ︸

drag force

, v̇b
y = g cosθ sinφ−2ωx vb

z +2ωz vb
x︸ ︷︷ ︸

Coriolis force

+kd yωs vb
y︸ ︷︷ ︸

drag force

(3.5)

Accelerations from the IMU can be read out and the above equation can be rearranged as:

v̇b
x + g sinθ−2ωz vb

y −2ωy vb
z = kd xωs vb

x

v̇b
y − g cosθ sinφ+2ωx vb

z −2ωz vb
x = kd yωs vb

y

(3.6)

After reaching steady state bank angle i.e. ω= 0, there is no Coriolis force acting on the accelerometer.

aB
x = kd xωs vB

x , aB
y = kd yωs vB

y

formulating it as a least squares problem,
aB

x|t=0
aB

x|t=1
...

aB
x|t=N

=

1 ωs|t=0vB

x|t=0
1 ωs|t=1vB

x|t=1
...

...
1 ωs|t=N vB

x|t=N

[

bx

kd x

]
, ∴

[
b̂x

k̂d x

]
=

1 ωs|t=0vB

x|t=0
1 ωs|t=1vB

x|t=1
...

...
1 ωs|t=N vB

x|t=N

†

aB
x|t=0

aB
x|t=1

...
aB

x|t=N

(3.7)

Performing this pseudo-inverse yields the unbiased, minimum variance estimate of the drag parameter. The

Figure 3.13: drag co-efficient identification for xB . Figure 3.14: drag co-efficient identification for yB .

same identification can be repeated for the lateral yB axis for kd y yielding Figure 3.13 and Figure 3.14. The
following observations can be made from this experiment:

1. The red line in the figures indicate the drag parameter, which reprojects the body frame accelerations
on the red line given an estimated body frame velocity. From now on, if either of the entities (acceler-
ation of the body or the velocity of the body) is known, the other can be estimated using the identified
drag co-efficient.

2. Few papers perform drag estimation using similar techniques. Parameter estimation is performed us-
ing each of their estimators presented in [31], [21] and [24] for the sake of comparison. This yields the
following table with fit values. The R2 values indicate the quality of the fit, higher R2 implies a better fit.

The kd x ,kd y that are estimated from the dataset are stored for later use on different set of flights. If the
estimated parameters are used for performing state estimation on the same dataset, the experiment can give
excellent results. However, these metrics are not relevant since the experiment qualifies under a over-fitted
dataset. For recursive estimation recursive method for drag estimation mid-flight can be made using EKF
(Extended Kalman fiters).

3.4. Modeling of QR dynamics 29

Drag fit quality GRASPLab, UPenn[31] UZH[21][20][19] ETH-CNRS [24]
kd x 0.000619r ad−1 0.5395s−1 −0.051(sr ad)−1

kd y 0.000667r ad−1 0.5822s−1 −0.567(sr ad)−1

R2 of kd x 0.6466 0.4096 0.6505
R2 of kd y 0.8395 0.8336 0.8424

Table 3.2: R2 and drag values of fit of drag parameter using different state estimators

3.4. Modeling of QR dynamics
Having estimated the drag parameters, they can now be used in the design of accurate lateral-positional

state estimators. Moving to the second part of the chapter, sections below describe different models proposed
prior to this thesis. It later moves on to propose and test a new model that could be useful in the drone-race
framework.

There have been quite a few papers that explore the area of lateral state estimation on Newton-Euler
force models while using only the IMU information [10] [19] [20] [24] [31]. In the subsections below, each
of their proposed models alongwith their derivations have been re-introduced, so they can be compared
against one another. At the end of this section, the R2 based convergence metric compares these methods
with respect to the ground truth.

Free-body diagrams and Newton-Euler models have already been introduced in the earlier chapter.
Newton’s method is used to estimate the lateral accelerations on the body frame by making use of the free
body diagrams. Knowing the rotation matrices described in the earlier chapter, the body accelerations can
be converted to Earth/inertial frame accelerations. Performing Euler integration on these world frame ac-
celerations can yield the displacement of the QR in the inertial frame of reference. To revise again, these
lateral-positional state estimates (ξx ,ξy ,ξz) are critical to drone racing and indoor navigation, since control
modules depend on them for planning accurate flights through the gates. The states to be estimated are
hence the lateral positions, accelerations and the velocity of the QR in the inertial frame of reference.

3.4.1. Conventions and Symbols
• In the sections below, matrix R is the rotation matrix converting body frame entities to the world frame.

R =E RB and RT =B RE

• ξ̇ : velocity in the inertial frame of reference.

• ξ̈ : acceleration in the inertial frame of reference.

• zE - the z-axis of the inertial frame of reference, gravity acts on this axis.

• g - gravity (9.81 m/s2)

• T B : thrust generated by all the propellers on the body of the QR, thrust is expressed in the body frame
of reference.

• f B
d : drag forces experienced by the QR in the body frame of reference.

• vB
h : lateral velocity in the xB − yB plane of the body frame of the QR.

• vB
z : ascent/descent velocity along the zB axis of the QR.

• ωs =
∑4

i=1ωi

4 : instantaneous rotor speed (averaged for 4 propellers).

3.4.2. The GRASPLab, UPenn and ANU estimator
The state estimators presented in [20] and [31] use the idea of lift-induced drag to scale the drag co-

efficient with the propeller speeds. Let P be a projection matrix which obscures the zE estimates and let the
average propeller speed in RPM be given by ωs . The lateral (x-y) velocity of the QR represented in the body
frame can be given by:

vB
h = PRT ξ̇, where P =

1 0 0
0 1 0
0 0 0

30 3. State estimators for Quadrotor Control

The linear drag model in [20] gives the acceleration in body frame by:

f B
d = kdωs vB

h

from the dynamical equations stated in Equation 2.1 it is known that,

ξ̈= T BRzE − g zE −R f B
d

substituting for f B
d yields,

ξ̈= T BRzE − g zE −R(kdωs vB
h), ∴ ξ̈= T BRzE − g zE −kdωs RPRT ξ̇

The models in [31] simplifies the fundamental thrust equation given by blade momentum theory. As a
result, the thrust equation:

Ti = c1ω
2
i

[
c2

(
1+ 3

2
µ2

i

)
−λi

]
,which is simplified to, Ti = kωω

2
i −kzVziωi +khV 2

hi (3.8)

where kω is the thrust co-efficient mapping the angular velocity of the propellers to the thrust, kz is the drag
co-efficient in the zB axis. Vzi is the induced velocity of the air through the propellers. A simplification made
assumes the induced velocity through the propellers to be the same as Vbz . kh is called the ‘collective’ term
in the thrust. This term is adopted from helicopter dynamics, indicating that there is an increase in effective
thrust produced with increase in lateral body velocities along the horizontal plane. In other words, when the
vehicle is translating fast along the horizontal axes, the thrust generated by the blades at "x" RPM, is higher
than the thrust that would have been generated at the same "x" RPM while hovering.

Thrust estimates from the above equations could be used to yield better z-positional estimates. How-
ever, this paper uses a projection matrix "P" to remove the influence of thrust based acceleration on the
altitude estimation of the QR.

3.4.3. The ETH-Zurich/CNRS France estimator
Another state estimation technique by [24] is proposed, which scales the drag co-efficients with the

instantaneous thrust being produced by the QR. Applying the Newton Euler formulation for the translational
model,

mξ̈= R
4∑

i=1
Fi +mg e3 +Faer o (3.9)

The translational velocity of each propeller is now estimated. This helps in estimating the advance ratio of
the blades, which later helps in constructing the flapping matrix. (Advance ratio of a blade is defined as the
ratio of the freestream air speed to the propeller speed). The velocity of each propeller can be given by:

vr i = RT (ξ̇)+ω×di

where ω is the angular velocity of the body. di is the distance of the rotor hub from the CoM of the QR.

d3,i 𝄔

d⟂

IMU

Figure 3.15: distance from centre of mass of each propeller.

The advance ratio for each propeller can now
be given as:

µr i =
|vr i ,1,2|

wi r

where r is the radius of propeller. It was earlier ob-
served that flapping occurs along both xB , yB axes
creating a flapping angle between the body of the
QR and the tip path plane. The flapping angles ai ,bi

as earlier illustrated in Figure 3.12 are given by:

[
ai

bi

]
=

ca

1− µ2
r i
2

−cb

1+ µ2
r i
2cb

1+ µ2
r i
2

ca

1− µ2
r i
2

vr i ,1,2,

[
ai

bi

]
≈

[
ca −cb

cb ca

]
vr i ,1,2

3.5. Summary of prior estimators 31

[ai ,bi] given above are the lateral and longitudinal flapping angles which disturb the thrust produced as
described in Figure 3.11. ai ,bi are also directly proportional to the lateral velocity of the vehicle in the body
frame. These flapping angles can now be substituted in the prior Equation 3.9:

4∑
i=1

Fi =−TzE − cT A f l ap

4∑
i=1

ωi vr i where, A f l ap =
ca −cb 0

cb ca 0
0 0 0

substituting forvr i ,

4∑
i=1

Fi =−TzE − cT A f l ap

4∑
i=1

ωi RT (ξ̇)+ω×di

splitting lateral dynamics,

4∑
i=1

Fi =−TzE −T A f l ap (RT ξ̇−ω×d3,i zE︸ ︷︷ ︸
0

)+ A f l apω×∑
i

Ti di︸ ︷︷ ︸
0

(3.10)

There are two assumptions made by [24] at this point. The first assumption is that d3,i << 1, which could
hold true for most QR designs as in Figure 3.15. The second assumption is that the drag models are validated
after reaching a state state bank angle, with ωu 0. This removes the last two terms from the above equation,
yielding:

4∑
i=1

Fi =−TzE −T A f l ap RT ξ̇

subsitituting in Equation 3.9,

mξ̈= R(−TzE −T A f l ap RT ξ̇)+mg zE +Far eo

where, Faer o = kpar asi t i c |vx,y |2

(3.11)

It can be noted by A f l ap ’s last row that z-estimates have been obscured out.

3.4.4. The UZH estimator
Unlike the above models, the estimators in [21] do not eliminate the z-estimates via projection matrices.

czB − [
xB yB zB

] dx 0 0
0 dy 0
0 0 dz

 x>B
y>B
zT

B

 ·v = a+ g zw (3.12)

which if translated to conventions and symbols used in this report can be written as:

ξ̈= g zE −T RT zB −RT DR ξ̇ (3.13)

The term dz stems from Equation 3.3 although not explicitly mentioned. Although, this model misses out
on the lift-induced drag term, which imparts higher damping to the forces on the body of the QR when the
propellers are spinning at a higher RPM.

3.5. Summary of prior estimators
This section re-states the state estimators derived above, and re-writes them using the conventions used

in this report.

1. GRASPLab, UPenn and Australian National University [31] [20]v̇B
x

v̇B
y

v̇B
z

= ws

−kd x 0 0
0 −kd y 0
0 0 0

[B RW
]v̇E

x
v̇E

y

v̇E
z

 ,

v̇E
x

v̇E
y

v̇E
z

=
0

0
g

+ [W RB
]v̇B

x
v̇B

y

Th

where ws is the average prop speed

32 3. State estimators for Quadrotor Control

2. ETH-Zurich/CNRS France [24]v̇B
x

v̇B
y

v̇B
z

= Th

−kd x 0 0
0 −kd y 0
0 0 0

[B RW
]vE

x
vE

y

vE
z

 ,

v̇E
x

v̇E
y

v̇E
z

=
0

0
g

+ [W RB
]v̇B

x
v̇B

y

Th

where Th is the thrust produced by the QR along the zB axis

3. UZH [21] v̇E
x

v̇E
y

v̇E
z

=
0

0
g

+ [B RW
] 0

0
Th

−
−kd x 0 0

0 −kd y 0
0 0 −kd z

vE
x

vE
y

vE
z

3.6. Requirements for a better lateral-state estimator
The systems of dynamical equations obtained must make the model causal, nonlinear and time invari-

ant.

1. Quality of estimates: It is important to select a drag model that gives better convergence, lower R2

epsilons and drift less from the ground truth.

2. Limited system identification steps: The model must be representative of the actual drone by account-
ing for as many external forces and torques that the designer is aware of. However, parameters in this
model should be able to be identified within a few flights that excite the relevant dynamics. Models
should also be resistant to over-fitting towards a particular drone, for e.g. the radius of the blade must
not be accumulated in the identified constants, the distance of the motor hub from the centre of mass
must not be accumulated. In [30], the QR is exposed to high speed wind tunnel tests while stepwise
regressors fit the model for accurate state estimation. This thesis can not use these methods, since they
are QR specific.

3. Willingness to look in the future/causality: The final requirement for the estimator is that the QR’s

�0

�0

�0

�0

�0

�0

thrust

, ,�� �� ��

, , , , ,�̂
� �̂

�
�̂

� �̂
�

�̂
� �̂

�

Quadrotor's
dynamical model

, , , , ,�� �� �� �� �� ��

�(�)

�(�)

IMU/
laser

sensor

control module

estimation module

Figure 3.16: red cross indicating prevention of non-causal systems by not considering measurements from the future.

dynamical model should be free from expectations of measurements that would be made in the future.
An example of a measurement dependent state estimator uses an accelerometer for performing sensor-
fusion between the acceleration predictions from the drag models and the sensor. In this manner, the
bias of the accelerometer, which gives a huge drift when dead-reckoned, will not be used and only the
high frequency changes of these estimates would be. Equation 21 from [20] is restated here, which
suggests usage of accelerometers in a complementary observer system.

vh ≈− 1

g

[
PhR̂DR̂>P>

h

]−1 (A ah + gPhR̂−→z)
(3.14)

3.7. Proposed state estimator 33

The terms in the equation are explained in Subsection 3.4.1. The additional term A ah in the above
equation is the accelerometer measurement. The measurement update rule after receiving accelerom-
eter updates was then given as:

˙̂vh =−gP>
h

(
R̂−→z + R̂DR̂>P>

h v̂h
)−kw (v̂h − vh)

However, the model that is required for in our framework of drone-race, should only be a function of the
current pose of the QR and the inputs given to the QR by the controller. Augmenting sensor information
in the model can give convergent estimates, however it has two disadvantages.

(a) Accelerometer measurements must be carefully filtered. They must be compensated and cali-
brated correctly before performing sensor-fusion. The reasons for these extra precautions are
listed in Section A.3.

(b) Secondly, performing sensor-fusion in order to bypass the design of robust state estimators re-
duces the chance of making long horizon estimates while performing optimal control. Since sen-
sors would not be active in the feed-forward region while performing optimal control, the QR
would only be relying on the design of state estimators for prediction of trajectories.

A ‘causal’ model in control systems implies something similar. It prevents expectations of having mea-
surements from the sensors in the future. If the future measurements are included in the dynamical
model of the QR as in Equation 3.14, it would make the model immediately non-causal. Figure 3.16
highlights the recommended structure of the observer/estimator. The causal estimator in the green
box can predict the states of a QR, which only is a function of the inputs to the system u(t) and the
current states (x0, y0, z0,ψ0).

4. Time invariant systems: If the goal of designing state estimators is for performing optimal control,
then a requirement of time in-variance should be introduced. For each time that the optimal control
algorithm is invoked, the state space representation of the dynamic QR must be fixed, until the control
horizons have been reached. This is because an optimal control sequence would have been generated
at t0 using a fixed representation of the QR model. If this assumption is not made, complicated adaptive
algorithms or MPC with multi-objective parameter estimation should be used for being able to deal
with changing parameters in the model.

5. Speed: In drone racing, reaching highest possible lateral velocities is crucial for finishing the course in
minimum time. This creates some advantages and disadvantages for the state estimators. The advan-
tage being that there is a lesser drift in the state estimates over time, since the time span of covering the
course while flying at higher velocities is considerably reduced. Another advantage of flying fast is that
it facilitates more observations and corrections offered by the vision pipeline, since the gates, which
act as localization markers for the drones, are visible early-on in the trajectory. The dis-advantage to
flying fast is that it could invite some unexpected forces to act on the body of the QR. It is suspected that
second order aerodynamic effects and vortex states are the most common phenomena that can occur
when flying fast. Second order aerodynamic effects can not be neglected when the QR banks to ex-
treme angles, while exposing a huge cross section of its non-lifting surface to the incoming free stream
wind velocity. Banking to agile angles against the direction of motion for stopping or descending with
high lateral velocities can invite vortex states, leading to sudden decrease in effective thrust that is be-
ing produced. These trade-offs must be taken into account while designing the state estimation and
control framework.

3.7. Proposed state estimator
The proposed method includes the increased damping due to increase in rotor speed by scaling drag

coefficients, while also not obscuring out the zB frame estimates. It takes the good features of scaled drag
coefficients from [24] and [20] and lateral z-axes from [31] and [21].

ξ̈= T RzE − g zE −Rωs

kd x 0 0
0 kd y 0
0 0 kd z

RT ξ̇ (3.15)

34 3. State estimators for Quadrotor Control

It can be assumed that there is a second-order transfer function/fitted polynomial between ωs and ωcmd

depending on the battery SoC [21]. This thesis assumes thatωs =ωcmd , since the Bebop has a closed loop for
RPM control. As a result, the above equation can still remain causal.

Ti = kωω
2
i −kzVziωi +khV 2

hi (3.16)

Features GRASPLab, UPenn[31] UZH[21] ETH-Z/CNRS[24] Proposed
xest 3 3 3 3

yest 3 3 3 3

zest 7 3 7 3

variable drag5 3 7 3 3

Table 3.3: features of the state estimators

3.8. Evaluation of different state estimators
State estimation was usually performed at slower lateral velocities when the above models were tested.

As put by the famous statistician W. Edwards Deming on experimental bias- “Your system is perfectly designed
to give you the results that you get.”, this section devices experiments to stray away from conducive results.
Testing the robustness of the proposed estimator in harsh drone-race conditions also assists in generating
and comparing the key-metrics between different methods while exciting the relevant dynamics. In these
conditions, there are high changes of performing high-velocity maneuvers with high-angular body rates for
tracking abrupt attitude commands. Hence, two separate tests are devised for testing the performance of dis-
cussed estimators in both of these scenarios of: (a) high lateral velocity and (b) high angular rate maneuvers.

3.8.1. Results: Maneuvers with high lateral velocities
During high speed flights, it is likely that the governing dynamics explained by the linear drag models

do not hold. It might be possible that second order aerodynamic effects become significant and sometimes
also vortex states occur when the QR stops in its own wake. For this reason, the QR is excited to relatively high
lateral velocities, characterizing the accuracy of different state estimators in such conditions. The trajectory
used for exciting high lateral velocities is given as follows:

1. An L-shape trajectory is commanded.

2. Yaw setpoint is always zero, the QR does not change heading mid-flight.

3. Pitches forward for a couple of seconds, rolls right for the rest of the flight.

4. A sinusoidal altitude is commanded throughout the maneuver as seen from the third subplot of Fig-
ure 3.19.

⇓ RMS eξ | estimator ⇒ UZH/Delft Proposed CNRS
e(ξx) 0.2814 0.0431 0.1078
e(ξy) 1.2341 0.1098 0.2693
e(ξz) 1.5437 0.1773 0.7979

Table 3.4: RMSE from the ground truth positions in the L shaped maneuver *units in meters

The height of the flight was constantly changed to show the effect of improvement in trajectories after the
z-estimation is accurate. Figure 3.18 illustrates the differences between different position estimators which
were described earlier. Table 3.4 gives the comparison for the key-metric of positional accuracy of each esti-
mator. Tracking errors are the Root Mean Square values of the absolute errors between positional estimates
with respect to the ground truth.

3.8. Evaluation of different state estimators 35

-5 -4 -3 -2 -1 0 1 2

x (m)

-2

-1

0

1

2

3

y
 (

m
)

start

end

UZH/TUD

proposed

CNRS

gt

Figure 3.17: Top view: L-shape maneuver- comparison between
different state estimators.

Figure 3.18: Isometric view: L-shape maneuver

3.8.2. Results: Maneuvers with high angular velocities
When rigid bodies are subjected to higher angular velocities, pseudo-forces like centrifugal and Coriolis

force act on the body frame, leading to unexplained dynamics apparent to an observer on a non-inertial frame
of reference (in our case the B frame). Maneuvers exciting these higher angular velocities are performed to
check the robustness of the proposed estimator.

The most frequent maneuver in drone racing is rolling to correct the lateral offset from the gate, while
having a constant pitch angle (earlier depicted in Figure 1.6). In this case, the QR has already acquired enough
velocity in vB

x to fly towards the gate. However, it must now roll at high angular velocities about the xB axis,
to cancel out the lateral positional offset so to fly through the center of the gate. Due to initial lateral velocity
and a high commanded angular velocity (roll axis), a potential Coriolis force can be induced on the frame of
the QR given by:

f B
C =ω× v =

ωx

0
0

×
vx

0
0

≈ 0

As a result, there is no pseudo force acting on the body of the QR when rolling during a forward flight. To
check the robustness of the above proposed estimator in rotationally excited flight, the QR is now subjected
to high yaw-rates while maintaining a constant bank angle. This creates circular trajectories.

f B
C =ω× v =

 0
0
ωz

×
vx

0
0

≈
 0

f B
C y

0

1. Circular shaped maneuver, relatively high yaw rates.

2. Commanded a constant pitch angle, roll angle and yaw-rate.

3. Constant altitude, thrust generated almost constant throughout the maneuver.

4. Tried to excite high lateral velocities in the body frame.

⇓ RMS eξ | estimator ⇒ UZH Proposed University of Côte d’Azur (CNRS)
e(ξx) 0.3523 0.3668 0.3551
e(ξy) 0.3205 0.2498 0.2103
e(ξz) 0.8857 0.3242 0.7422

Table 3.5: RMSE from the ground truth positions during the circular maneuver *units in meters.

36 3. State estimators for Quadrotor Control

position

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

time (s)

-4

-2

0

2

x
 (

m
)

UZH/TUD

proposed

CNRS

ground truth

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

time (s)

-4

-2

0

2

4

y
 (

m
)

UZH/TUD

proposed

CNRS

ground truth

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

time (s)

-3

-2

-1

0

1

z
 (

m
)

UZH/TUD

proposed

CNRS

ground truth

Figure 3.19: comparison of estimated position with time

3.9. Analysis
After performing several experiments (these two in specific), the RMSE values indicate that the proposed

estimator performs better than the ones presented earlier in literature. These RMSE values can also be used
for making a good guess about the process noise co-variance before running an Extended Kalman filter.

The proposed estimator also meets the requirements of time in-variance, causality and requires only a
single system identification experiment for drag estimation.

Rigorous system identification steps must be performed to obtain accurate state estimates as is the case
in [30]. Also, [21] runs system identification between battery power and produced thrust, which must be done
if the speed controllers do not have a closed loop in the angular RPM setpoints. System identification helps
to generate the same thrust at any time instant through the flight, even if the battery discharges with time.

In case of poor estimation along the zB axis, rotation matrices could transfer the drifts to x, y estimations
as well. It is very likely that the thrust being generated has poor estimation because of poor R2 values earlier
found from Equation 3.3. The transfer of poor estimation from one estimate to another is a function of bank
angle of the QR. When the QR banks to higher angles for fast flights, the estimates between different axes are
even more coupled. As a result, coarse estimation of thrust can decrease the quality of estimates in other axes.
On the upside, accurate state estimates in one axis could also lead to good estimations along other axes.

3.9. Analysis 37

-3 -2 -1 0 1 2 3

x (m)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

y
 (

m
)

start
end

TUD/UZH

proposed

ground truth

Figure 3.20: Top view: Circular maneuvers- comparison between different state estimators.

position

1 2 3 4 5 6 7 8

time (s)

-4

-2

0

2

4

x
 (

m
)

TUD/UZH

proposed

ground truth

1 2 3 4 5 6 7 8

time (s)

-2

0

2

4

y
 (

m
)

TUD/UZH

proposed

ground truth

1 2 3 4 5 6 7 8

time (s)

-3

-2

-1

0

1

z
 (

m
)

TUD/UZH

proposed

ground truth

Figure 3.21: Comparison of the estimated position with time using different estimators.

4
Optimal control

quadrotor
dynamics

translational
dynamics

rotational
dynamics

𝑥 𝑦 𝑧 𝜙 𝜓𝜃

controlestimation controlestimation

addressed in this
chapter

not an impending
problem

Legend

Figure 4.1: Scope of this chapter is limited to control along the
lateral positional axes.

In the earlier chapter, the application of state
estimation was limited to improving the accuracy of
the positional states of a QR. This chapter illustrates
that the application of state estimation can also be
extended to the control of QRs. Since the QR states,
which were earlier un-observable are now observ-
able via state estimation, QR control along all the
axes is now possible (Table 2.1 lists controllability,
observability and the axes associated).

As a result, after possessing accurate knowl-
edge of all the positional and rotational states, a QR
can control itself autonomously, as soon as a con-
trol law is established. The QR that was barely self-
aware till the last chapter can now transition into
an autonomous vehicle that can be commanded to
track trajectories around the drone-racing arena.

This chapter firstly introduces traditional QR
control techniques and illustrates potential prob-
lems that can arise while using them. After this introduction, requirements are established for designing a
controller that can fit well in the drone-race pipeline. The chapter concludes by plotting different trajectories
that are generated while using different controllers alongside a table of key metrics.

4.1. Position control for QRs
With a working position control loop, a QR can navigate to any point in the inertial frame of reference of

the drone race arena. Positional control loops usually run at lower frequencies of around 30Hz, finally sending
their commands to the attitude and thrust control loops. However, the manner in which this position control
is achieved can vary significantly. The QR can reach the destination using one of the several ways:

• The time optimal way: The trajectory followed makes the QR reach its desired position in minimum
time. For the drone-racing scenario, the first type of maneuver is important. Flying through the as-
signed gates in minimum-time irrespective of QR’s initial position or velocity is critical for finishing
first.

• The snap/jerk optimal way: The trajectory followed makes the QR reach the desired position without
any jerks or snaps (higher order derivatives of acceleration). This simply implies that the trajectories are
smooth splines that guide the QR to the desired state. This method is generally used to guide vehicles
through obstacles or generate circular trajectories.

• The energy optimal way: The trajectory followed makes the QR reach the desired position using mini-
mum energy delivered from the battery. For flying through certain waypoints in time optimal fashion,

39

40 4. Optimal control

QRs increase their altitude and later make descent through the waypoint with higher velocities. Such
maneuvers are not energy optimal. Energy optimal maneuvers take into account the actuator effort
and battery state of charge.

However, the techniques described above are rather advanced control techniques. These type of techniques
require some knowledge of the dynamical models of the system, a complicated software environment setup
and fast processors to solve the optimization problems in real time.

As a result, optimal control techniques have not been a very attractive solution to users and the tra-
ditional techniques of PID control have found their way to the position control of QRs. These techniques,
unlike optimal control techniques, do not require a lot of prior theoretical knowledge, complicated softwares
or fast processors. Although, they do require the user to understand the tuning intricacies associated with
PID control.

4.2. Existing QR control techniques
For supporting a brief introduction on control of an autonomous QR, the sub-sections below discuss

existing methods for control of QR before picking and proposing a technique that could be a candidate in the
drone-race framework.

4.2.1. PID
As stated earlier, Proportional Integral Derivative techniques which are most commonly used in the

control systems area, find its application in QR control as well. To coin the working of this controller in simple
terms: Proportional gains map control actions to the actuators depending on the distance from the setpoint.
Derivative gains change the speed of the mapped actions. Integrator gains make sure that small convergence
errors to the setpoint disappear over time.

Small convergence errors called as steady state tracking errors in the context of control systems, are not
of specific interest in fast flights. Pilots rarely care about trajectory tracking errors and aim to fly through the
gates as quickly as possible. For the same reason, an integral term is absent in the control modules of racing
drones.

𝑘𝑝

𝑘𝑑

𝑘𝑝

𝑘𝑑

𝜉˙𝑑
𝜉𝑑

𝜉 ̂

𝑐

𝜉˙
̂

𝑐

𝜉¨𝑑

[]
𝑐𝜓

−𝑠𝜓

𝑠𝜓

𝑐𝜓

[]
𝑐𝜓

−𝑠𝜓

𝑠𝜓

𝑐𝜓

𝐾𝑓𝑓

flightplan

position control loop

velocity control loop

𝜙𝑑

𝜃𝑑

𝜓𝑑

𝑇𝑑

velocity saturation

yawed frame
 of reference

𝐵′

bank angle saturation

.

Figure 4.2: inputs and outputs of the traditional cascaded PD control algorithm

Figure 4.2 explains the cascaded PD controller used in the QR control area. Blocks in purple indicate
the parameters to be tuned to make the controller track errors robustly. The saturation blocks also need
to be tuned and are present right after the gain blocks. Most of the times setpoints are so far away, that a
direct control action can command the QR to perform maneuvers that exceed their flight envelopes. The
saturation blocks prevent this excess demand, mapping adequate control inputs according to flight envelope
and actuator constraints. The green boxes perform transformations to map the entities from the world frame
of reference (E) to a yawed frame of reference (B ′).

A benefit of something called ‘feedforward control’ comes alongside state estimation. If the drag forces
that prevent the vehicle from reaching the setpoint velocity can be estimated, then the setpoint bank angles

4.2. Existing QR control techniques 41

are simply augmented with the drag forces that are expected to arrive at the next time step. This drag compen-
sation demands the introduction of a feedforward term in the outer loop control to acknowledge the contri-
bution of lateral accelerations during the lateral position control (K f f). A similar feed-forward compensation
term is also suitable for controlling the inner loops or the moments of the QR. However, full-actuation around
these axes is possible, and the effect of drag on moments can be directly compensated by high feedback gain
controllers [24].

As mentioned earlier this technique of PID is a simple tool that brings a lot of power in the hands of an
amateur user. Although when it comes to the framework of drone-racing, PID control poses certain disad-
vantages:

1. Strenuous tuning procedures must be performed to find a decent control behavior. An individual tun-
ing procedure must be performed for each decoupled loop of the cascaded controller in the above fig-
ure. This tuning procedure also includes the feedforward terms and saturation blocks. Having incorrect
gains can induce oscillations in the attitude of the QR, potentially causing crashes.

2. PD controlled QRs tend to slow down near the positional setpoints (gates) and sometimes even com-
pletely stop at the gates. However there is no stopping in drone racing!. To prevent this abrupt stopping
throughout the arena, some lateral velocity is augmented in the controller’s velocity setpoints. This has
deteriorating effects on the performance of the control loops.

3. There is no information about the expected time of completion of any maneuver. The guarantee of
convergence to the reference velocity and positional setpoints is also not directly made possible.

4.2.2. Minimum snap trajectories and Differential flatness
Minimum snap trajectories minimize the higher order derivatives of acceleration, for generation of

smooth trajectories through the arena. The cost function minimized here is:

x?(t) = argmin
x(t)

∫ T

0
L (

...
x , ẍ, ẋ, x, t)d t = argmin

x(t)

∫ T

0
ẍ2d t

The Euler Lagrange representation of the above optimization function can be written as:

∂L

∂x
− d

d t

(
∂L

∂ẋ

)
+ d 2

d t 2

(
∂L

∂ẍ

)
− d 3

d t 3

(
∂L

∂x(3)

)
= 0

The polynomial based trajectory that is generated after solving the Euler-Lagrange optimization yields:

x(t) = c5t 5 + c4t 4 + c3t 3 + c2t 2 + c1t + c0

Boundary values can be substituted for these polynomials and its derivatives by knowing proiri conditions of
the arena . They can help estimate the co-efficients of the above trajectory polynomial. After the co-efficients
are forward-substituted back to the polynomial, a minimum snap trajectory throughout the arena can be
found out (see Figure 4.3).

Differential flatness is usually coupled with minimum snap algorithms for mapping the reference states
generated by the trajectory polynomial to the input commands at each time instance (φd (t),θd (t),ψd (t)).
This technique, despite being able to make a lot of contributions in this area of planning, control and differ-
ential flatness, introduce some problems if used in the current drone-race pipeline:

1. Path planning can be performed accurately in stationary scenarios (e.g. from the take-off point). Al-
though, these trajectories need to be re-planned mid-flight when the QR moves away from its desired
trajectories. In the dynamic re-planning scenario, if the QR is subjected to different distances and ter-
minal time (referred to as segment times for time intervals between gates), co-efficient identification
becomes very sensitive, yielding unstable solutions. Unstable polynomial solutions generated after
differential flatness can command the QR to perform incorrect maneuvers. This makes re-planing
mid-flight almost impossible using the standard constrained solvers that are frequently presented in
literature.

2. The path planning algorithms mentioned in literature minimize jerk, snap or higher orders of deriva-
tives of acceleration. The primary objective, however in case of drone-racing, is to minimize the total
time of the maneuver.

42 4. Optimal control

Figure 4.3: Minimum snap trajectory generated by Anoosh Hedge, MAVLab AlphaPilot team.

3. This method does not always make use of the entire flight envelope, it instead caps the maximum com-
manded velocities, while etching out a non time-optimal (but snap-optimal) trajectory. According to
Pontryagin’s principle, the current method of minimum snap and differential flatness does not qualify
for time optimality. (Pontryagin’s principles widely discussed in [23] give the necessary and sufficient
conditions for ensuring time-optimality, further discussed in the recommendations section of this the-
sis).

The only possible solution to reduce the problems caused due to dynamic re-planning is to have a static
polynomial based trajectory fixed beforehand. Instead of using feedforward based differential-flatness, the
QR must track static trajectories using PD control algorithms mentioned in the above section. Although, the
problem of time-optimality still remains unsolved.

4.2.3. Model predictive control

Model predictive control (MPC) has been an attractive solution for dynamical systems for achieving
control objectives. Optimal solutions returned from MPC controllers can be used as control inputs for the
upcoming time steps, gradually leading to the completion of the control objective. In MPC controllers, the
number of quadratic optimizations performed per second are proportional to the non-linearity involved in
the process model and the number of disturbances and measurements that arrive. Every time a control action
is applied, MPC controllers rerun optimizations to predict the optimal control action that can be applied in
the next discretized step.

The relevance of MPC in the field of QR control, especially for racing drones is established by a recently
published paper that ranks the control strategies used by the best drone-race teams around the world [9].
However a couple of shortcomings are associated with their simulator-based MPC approach, especially its
implementation on a computationally lite processor.

The type of optimal control problem the drone-race framework needs to solve is non-linear in nature,
with both equality and inequality constraints. The equality constraints come from the dynamics of the QR
that are worked out in detail in the earlier chapter, while the inequality constraints come from the actuator

4.2. Existing QR control techniques 43

constraints and flight envelopes.

minimize
ξ(.),ξ̇(.),u(.)

T

subject to:

∀t ∈ [0,T] : ξ̇(t) = v(t)

∀t ∈ [0,T] : ξ̈(t) =E RB(F B
T + fD)− g zE

t = 0 : ξ(0) = ξ|t=0

t = T : ξ(T) = ξd |t=T (desired states)

∀t ∈ [0,T) : lb ≤ u(t) ≤ ub

(4.1)

The symbols used in the equations are described in the earlier chapter. The cost function ‘T’ is a free-variable
of terminal time and is called a Mayer term in the optimization context. The constraints are simply the dy-
namics of the QR. The other constraints are the initial and terminal states of the maneuver. In dynamic
conditions, the terminal state constraint can be replaced by a user’s reference input.

Figure 4.4: AMZ Racing’s driverless car runs the FORCES optimizer by embotech
[15]

Many different solvers can be used
to obtain an optimal control sequence
for the above problem. The most
commonly used is the ACADO toolkit
(open source algorithm collection for
Automatic Control and Dynamic Op-
timization) [12], which uses qpOASES
solvers from the ABB research group [7].
Apart from ACADO’s open source toolkit,
FORCES takes up the challenge of run-
ning optimal controllers on real-time
embedded systems[15].

Coming back to optimal controllers
for QRs, ACADO toolkit’s cpp version is tested using the equations stated in Equation 4.1. A quick run of QR
dynamics on it yields Figure 4.5. The velocity plot in the second row of Figure 4.5 resembles a familiar satu-
rated acceleration-deceleration duo, which satisfies Pontryagin’s minimum principle. The principle suggests
that every time optimal maneuver includes saturated input sequences and an optimal switching time when
the input should be banged between its lower and upper bounds. It can be seen from the velocity ‘y’ plot of

Figure 4.5: Bang-bang input sequence on φ to reach desired states in minimum time

Figure 4.5, that the QR accelerates longer than it decelerates in the given maneuver. This is because of the

44 4. Optimal control

presence of drag forces on the body of the QR, which demands the QR to accelerate for higher durations than
decelerate in order to reach the target with zero-velocity. Inspite of these results, MPC controllers miss out on
the following:

1. The implementation of an optimal-time cost function using ACADO on real-time embedded processors
is not currently supported.

2. The MPC controller accounts for costs even in intermediate states along the trajectory, whereas drone-
race poses only two objectives. (a) of reaching the center of the gate with zero sideways velocity and (b)
doing so in minimum time. Hence only the terminal cost of a maneuver is important in the optimiza-
tion. Including intermediate states helps improve the quality of trajectory tracking, but at the cost of
increased computational effort.

3. The above equations stated in Equation 4.1 fall under the non-linear MPC class. Non-linear MPC in-
creases tracking accuracy, but adds more to the computational complexity by having to perform lin-
earizations and sequential optimizations at every time step.

4. MPC methods in ACADO’s QR equations do not take advantage of the linear drag model’s dynamical
equations established in the earlier chapter and hence can only be used in short time horizons.

4.2.4. Requirements for a better QR position controller
To propose a set of requirements for a better controller that fits well in the framework of drone racing, a

few shortcomings of the aforementioned control techniques if used for drone racing, are listed below:

1. The gains inside cascaded PD control become tiresome to tune and bound. The ideal controller must
be intuitive to tune and at the same time must respect the actuator bounds.

2. PD control misses out on indicating the possibility of meeting the control objectives. There is no means
for indicating if PD control can help converge to the desired states within a given time interval. The
ideal controller must be able to indicate if the desired state is reachable after respecting the actuator
bounds, dynamic constraints and terminating time.

3. Minimum snap and PD methods both fail to guarantee time optimality. The ideal controller should
perform time-optimal maneuvers, while (ideally) saturating the QR’s input bounds.

4. MPC methods introduce complexity by introducing intermediate states, discretization and sequential
quadratic programming techniques to deal with non-linearities. The current codegen from ACADO
also does not support optimizing for terminal time. The proposed controller must not take the luxury
of directly using the MPC framework, but instead propose its own method of reducing computations
and run on a real-time system.

5. The ideal controller cannot keep the CPU busy for too long, as instructed by the single threaded Pa-
parazzi autopilot. As a result, the hard real-time deadline for yielding an optimal solution must not
exceed 10ms.

6. The ideal controller should be able to converge to the control objectives and terminal states irrespective
of different starting conditions of different lateral velocities, heading and QR position. To make the
case more specific, the ideal controller must enter only from the front-panel of the gate maintaining a
particular desired velocity.

It can be observed that optimal controllers are the way to go, and suit well within the framework of drone-
racing. They can guarantee time-optimal maneuvers and convergence to desired positions and velocities at
the respective gate location. However for being able to execute them on a real-time embedded system of a
QR, the optimization needs to be computationally efficient. The next section discusses how a rudimentary
MPC that fits well in MAVLab’s drone-race pipeline can be executed on a real-time system.

4.3. Proposed controller 45

4.3. Proposed controller
The following paragraph helps revise concepts from the prior chapter while bridging the gap between

control and estimation. Differential equations established in Equation 3.15 help propagating the model in
time and predicting the states held at any point in the future. Free body diagrams (Figure 2.6) help in ac-
counting the forces and torques on the body. The forces can be scaled to give the accelerations. Simply dead
reckoning the accelerations (performing first order Euler integration), to obtain lateral positional information
has yielded reasonable results over a short time-span (see Figure 3.19).

Robust state estimation performed in the earlier chapter can help define the system dynamics with
higher accuracy leading to less drift in the predictions from the ground truth. As a result due to less drift,
the re-planing or re-scheduling of the control inputs can be done sparsely. It is also now possible that a single
quadratic optimization function call can schedule accurate control inputs for a longer time horizon.

Predicting trajectories and possibilities of meeting control objectives is only made possible by good state
estimators, which was exactly the purpose of the last chapter. As famously put by John Wooden, "Without
proper self-evaluation, failure is inevitable". which in this context could translate to: without state estimators,
the objective of meeting control objectives is far fetched.

It can be observed that optimal controllers are the way to go, and suit well within the framework of
drone-racing. They can guarantee time-optimal maneuvers and convergence to desired positions and ve-
locities at the respective gate location. However for being able to execute them on a real-time embedded
system of a QR, the optimization needs to be computationally efficient. The next section discusses how a
rudimentary MPC that fits well in MAVLab’s drone-race pipeline can be executed on a real-time system.

4.3.1. A brief introduction to optimal control

Figure 4.6: Time optimal ascent to
height of 5m [11].

Quadratic optimization forms the base of MPC and is used in vari-
ous areas, starting from portfolio optimization for maximizing returns in
the finance market to the area of control systems [4]. Having no inten-
tion to jump into details of this vast field of optimization and stochastic
systems, this section mentions an example of an optimal control bench-
marking performed at ETH-Zürich. Also, an interesting account from his-
tory is added to the appendix of this report (see Section A.4) to support the
motivation behind pursuing optimal control.

A non-trivial example of optimal control in the area of QRs is given
by [11], in which they send commands for displacement along the zE axis
in a time-optimal manner. A trivial solution to this problem would be to
simply increase the thrust optimally and slow down close to the setpoint
while the commanded angular velocities are zero. However, their research
finds that the time optimal solution was to pick up a lot of ascent speed by
enormous increase in thrust, except when it reaches close to the setpoint,
it must flip upside down by commanding some angular velocity. Facing
upside down, it now uses the force of gravity and the thrust generated by
its propellers (which are also facing downwards) to decelerate from the
enormous acceleration it gained in the initial stage. It finally flips upside
up near the setpoint and reaches the desired setpoint in a time-optimal
fashion. However, in case of this thesis, the maneuvers are limited to the x-
y plane since there are limited altitude changes in the drone-racing arena.
Also, the maneuvers are limited by the flight envelope of not banking more
than 35deg.

4.3.2. Proposed algorithm for control of racing drones
MPC problems are only a subset of optimal control problems that have a fixed time horizon [12]. As a

result, the goal of making time-optimal trajectories is difficult to realize with an MPC controller. A different
subset of optimal control problems that minimize time should hence be explored. A new technique that
can have the benefits of optimal control, but still be computationally lite, is in search. This section puts
forth a proposal for such a controller. Since the controller can be explained mathematically and graphically,
equations and derivations alongwith a flowchart (see Figure 4.8) is made. An interesting intermezzo included
in the paper from Magicc Lab at BYU [18] models the effect of drag on acceleration as a mass damper system.

46 4. Optimal control

• u̇/v̇ : acceleration of the QR in the inertial frame along the xE /yE direction respectively.

• u/v : velocity of the QR in the inertial frame along the xE /yE direction respectively.

• µ: drag co-efficient along the body xB axis.

[
u̇
v̇

]
=

[−g sinθ− µ
m u

g sinφcosθ− µ
m v

]
taking the Laplace transform yields, u(s) =

−g m
µ

m
µ s +1

θ(s) (4.2)

The representation of linear drag equations as transfer functions in Equation 4.2, provides the motivation to
also find the state space representation to it. Let lateral velocity be given as the derivative of position ẋ = u,
lateral acceleration for our case can be written as ẍ =−g sinθ−kd ẋ[

ẍ
ẋ

]
=

[−kd 0
1 0

][
ẋ
x

]
+

[
g
0

]
sinθ

This is similar to the model that was discussed in the earlier chapter, under MAVLab’s method for state es-
timation, but this model is represented in a state space form. It also directly compensates for drag forces in
the world frame. This can be extended in both the lateral positional axes, i.e. along xE and yE . Also, another
simplification can be made since the control input is bounded due to actuator constraints. The control com-
mands sent in case of a Bebop1 or the simulated drone on ROS2 - does not bank more than ±35deg. Hence
the approximate linearization of sinθ = θ and sinφcosθ = φ can be made around this linearization point.
The combined state-space model after linearization can hence be given as:

ẋ = Ax +Bu (4.3)
ẍ
ẋ
ÿ
ẏ

=

−kdx 0 0 0

1 0 0 0
0 0 −kdy 0
0 0 1 0

ẋ
x
ẏ
y

+

9.81 0

0 0
0 9.81
0 0

[
θ

φ

]
(4.4)

The following section focuses on formulating a basic optimal control problem using the state space
formulation above. First, the above state-space is discretized using zero order hold (ZOH), with a sampling
time of h = 0.1 seconds.

ẋk+1

xk+1

ẏk+1

yk+1

=Φ

ẋk

xk

ẏk

yk

︸ ︷︷ ︸

X

+Γ
[
θk

φk

]
︸ ︷︷ ︸

U

(4.5)

After obtaining the solutions from this discretized state-space, the control inputs are supposed to be sent
over to the QR at the same rate, i.e. at 10 Hz. For simplicity in symbol conventions, the discretized state-
propagation matrixΦ and Γ are represented as A and B respectively.

Estimating time horizons: The time horizon is initially guessed using the expression:

T0 = 2× ∆pos

velav g
= 2×

√
(ξc −ξd)2

(ξ̇c − ξ̇d)2
, and propagation steps: N = T /h

Bang-bang control makes a system reach its desired states in a time-optimal manner. (Detailed explanation
of bang-bang control in the recommendation section of this thesis). Applying bang-bang means sending
control signals that are (almost) always saturated. The %bang can be estimated using the following formula:

%bang = ΣU

N ·ub
×100, where, U ∈ {lb,ub}

where lb,ub are the lower and upper bounds of each element in the input sequence respectively. Instead
of doing this manually, Lagrange multipliers at the solution of the quadratic program (λ) can be used to

1Implementation of this controller on Bebop is pushed here: https://github.com/tudelft/paparazzi/tree/drone_race_opt/
2Implementation of this controller on MIT-FlightGoggles is pushed here: https://github.com/nilay994/superstate/tree/
master/mpcROS

https://github.com/tudelft/paparazzi/tree/drone_race_opt/
https://github.com/nilay994/superstate/tree/master/mpcROS
https://github.com/nilay994/superstate/tree/master/mpcROS

4.3. Proposed controller 47

optimize using

ℂ = 𝕌 + 𝕌2(𝑍 − 𝑄𝑅𝑋𝐹)𝑇

𝑓 𝑇

1

2
𝕌

𝑇 2 𝑄𝑅𝑅𝑇

𝐻

𝚚𝚞𝚊𝚍𝚙𝚛𝚘𝚐

𝜉˙𝑐

^

𝜉𝑐

𝜉˙𝑑

𝜉𝑑

penalty weight

𝑄

RANSAC
pipeline

flightplan

(𝑡)𝜙𝑑

(𝑡)𝜃𝑑

(𝑡)𝜓𝑑

(𝑡)𝑇𝑑

Figure 4.7: Inputs and outputs of the optimal control algorithm, symbols explained in Equation 4.6

keep a watch on closeness to constraints. However, they don’t provide a good metric of % of banging. The
next candidate time horizon is divided by an exponentially rising iterate given by: i ter ate = i ter ate ×
1.2, i ter ate(t0) = 1. This iterative scaling provides a good candidate N for time horizon selection and usu-
ally can converge to minimum time horizon within a maximum of 3 iterations. The quadratic optimization
adapts automatically to the new time horizon while not exceeding reasonable λ.

Ti ter ate = T0

i ter ate

Propagate states to prepare for quadratic optimization: The terminal state (XN) must be parameter-
ized in terms of the initial state (X0) and the input sequence U. This can be done by:

X1 = AX0 +BU0

similarly, at the consecutive time step,
X2 = AX1 +BU1

substituting X1 in the RHS of X2,
X2 = A2X0 + ABU0 +BU1

generalizing for N time steps,

XN = AN X0 + AN−1BU0 + AN−2BU1 + . . .+BUN−1

regrouping the terms and separating the input vector Ui ,

∴ XN = AN X0︸ ︷︷ ︸
Z

+[
AN−1B AN−2B . . . B

]︸ ︷︷ ︸
R

U0

U1
...

UN−1

︸ ︷︷ ︸

to find

∴ XN = Z +RU (4.6)

where U is the input sequence to be optimized, XN is the terminal state reached using optimal input se-
quence. XD is the desired state or the reference state instructed by the user.

Cost function: Unlike the traditional MPC methods, the cost function (see Equation 4.6) is only subject
to the terminal penalty of going through the gates. A penalty matrix of MPC methods usually also holds
an "integral cost", which is minimized mid-flight by penalizing the deviation of intermediate states. If the
optimizer can not promise lower values of the cost function after minimization, then it symbolizes that the
maneuver would not be possible given the input bounds of the actuators (U) and the initial conditions (X0).
The proposed approach skips the idea of integral costs and only focuses on achieving the desired state at the
end of the trajectory, without worrying about the trajectory taken in the middle before reaching the desired
state. As a result, the cost function can be re-written as:

C= (
XN −XD

)T
P

(
XN −XD

)
(4.7)

48 4. Optimal control

trigger optimal control
PnP measurement/10 Hz

Yes

No% of bang-bang < 50%?

read , , , ,𝜉𝑐 𝜉𝑐
˙ 𝜉𝑑 𝜉𝑑

˙

actuator constraints (maxbank)

select time horizon

𝑇 = 2 × , 𝑇 = , 𝑁 =
Δ𝑝𝑜𝑠

6𝑚/𝑠

𝑇

𝑖𝑡𝑒𝑟𝑎𝑡𝑟𝑒

𝑇

ℎ

populate sampling time ℎ,

discretized state space Φ, Γ,

penalty weight 𝑃

calculate Hessian and linear term 𝐻, 𝑓

from Φ, Γ, 𝑁, 𝑃 , 𝑅

Yes

 (interior point)
constraint and optimaility

tolerance
met?

𝚚𝚞𝚊𝚍𝚙𝚛𝚘𝚐

extract

sequence

𝜙(𝑘), 𝜃(𝑘)

calculate % of bang-bang

,
Σ𝜃(𝑘)

𝑁

Σ𝜙(𝑘)

𝑁

Completed! flush
optimal sequence to
controller commands

No

,𝜙𝑐 𝜃𝑐

[]cos 𝜓

sin 𝜓

− sin 𝜓

cos 𝜓

Figure 4.8: Flowchart for the implementation of the proposed controller

4.3. Proposed controller 49

where deviations in position are reprimanded more than deviations in velocity, by using the penalty weighting
matrix:

P =

1 0 0 0
0 10 0 0
0 0 1 0
0 0 0 10

Populating the matrices for starting quadprog can be done by substituting Equation 4.6 in Equation 4.7,

C= (
Z +RU−XD

)T
P

(
Z +RU−XD

)
C= X T

D P XD︸ ︷︷ ︸
constant

−X T
D P XF −X T

F P XD +X T
F P XF

Constants in a quadratic program optimization can be ignored,

C=−2X T
D P XF +X T

F P XF

Substituting back XF = Z +RU,
C= [

(Z +RU)T −2X T
D)

]
P (Z +RU)

C= Z T P Z︸ ︷︷ ︸
constant

+Z T PRU+UT RT P Z +UT RT PRU−2X T
D P Z︸ ︷︷ ︸

constant

−2X T
D PRU

Ignoring the constants, the Hessian and linear term for quadratic optimization can be formulated as:

C= 2(Z −XF)T PR︸ ︷︷ ︸
f T

U+ 1

2
UT 2RT PR︸ ︷︷ ︸

H

U

These terms can be programmed into an interior point based quadratic optimizer in tools like quadprog
(MATLAB)/qpOASES ocp (C++) which follow the structure:

min
x

1

2
xT H x + f T x subject to:

A · x ≤ b

Aeq · x = beq
l b ≤ x ≤ ub

Hessian conditioning: The Hessian term (H) inside the quadratic cost function should be positive semi-
definite as stated by the requirement of standard quadratic program solvers. A direction for the next step in
the optimization becomes immediately possible for positive semi-definite Hessians. To ensure this, a scaled
identity matrix is added to the Hessian term via the process of ‘ridge regression’ [8]. On our case, it is ob-
served that adding an un-scaled identity matrix to the Hessian, has an impact on the rate of roll and pitch
commands in the input sequence generated. However, since it is desired to have bang-bang inputs, a slow
rate of commands is not desirable. Hence, the diagonal matrix to be added is scaled to bang-bang quickly
between saturation limits.

H = H ′+H ′T

2
+0.15I2N×2N

These modifications to the Hessian possibly lead to fewer KKT optimality iterations. Uniqueness: It is ob-
served that the Hessians are always positive-definite and have positive eigen-values irrespective of the initial
and desired states of the QR. Because of these properties, the quadratic program optimization gives a solu-
tion which is the global minimum of the objective function given these constraints. As a result, the %bang
optimal control sequence and the trajectories generated are unique, and no other solution exists, which can
make the QR follow the same time-optimal trajectory.

Control input assignment After the quadratic program is solved after reaching KKT optimality condi-
tions, control input vectorU can be parsed for the pitch (θ) and roll (φ) commands. However, it happens that
all the calculations that were performed earlier, are in the B ′ reference frame (see Figure 2.5). To be able to
assign correct control inputs to the QR, the commands must be provided in the Earth reference frame. This
can be done using a simple yaw-rotation transformation:[

φk

θk

]
=

[
cosψ −sinψ
sinψ cosψ

][
φ′

k
θ′k

]

50 4. Optimal control

Using this transformation, the control sequences generated by quadprog would guide the QR through the
correct trajectories, irrespective of the heading of the QR.

It can also be noted that this method not only generates the command inputs at 10Hz, but it also gen-
erates state trajectories, or the reference path to be followed by the QR. This additional information about
the reference path is directly discarded at the moment. In case the feed-forward command inputs are not
sufficient to ensure a safe trajectory through a gate, the reference path can be used to augment some feed-
back information. This is well explained in [21] which uses differential flatness to combine feedback based
trajectory offset information and feedforward control input.

4.4. Results
Since a few methods were described above, a comparison of the proposed controller must be made with

respect to the traditional control methods. The first comparison compares the PD control methods with the
proposed method for trajectory tracking. Figure 4.9, Figure 4.10 and Figure 4.11 are generated after a typical
drone-race maneuver. The maneuver is performed on MIT’s FlightGoggles drone-race simulator. A couple

v
v

Figure 4.9: Achieving desired gate velocity of vE
x = 4m/s.

position

0 2 4 6 8 10 12

t

-4

-2

0

2

4

6

x

PD

proposed

gate reference

0 2 4 6 8 10 12

t

-20

-10

0

10

y

PD

proposed

gate reference

Figure 4.10: QR position with time.

top view, position

-15 -10 -5 0 5 10 15

x

-10

-5

0

5

10

y

PD

proposed

gate

Figure 4.11: QR position from the top view of the arena.

of observations can be made after this experiment:

1. PID control methods are not able to meet the requirement of forward velocities at the gate. The pro-
posed optimal method performs the required maneuver along the x-y plane and make the QR converge
to the desired gate velocity of vE

x = 4m/s. It can also be observed in Figure 4.11, that the optimal control
method meets the requirement of passing through the front panel of the gate with forward velocity.

4.5. Profiling 51

2. It can be seen from Figure 4.10 and Figure 4.9 that the proposed controller reaches the reference within
a shorter time interval (almost half the amount of time) as compared to the PD control methods.

3. (not seen in the plots) PD controllers introduce a very oscillatory behavior when the QR arrives closer to
the gate. This can be solved by frequently switching the setpoints and making the QR move throughout
the arena for all times.

Another set of maneuvers are made to compare the proposed method with the minimum-snap method.

Figure 4.12: Proposed method makes the QR reach the end state
with a maximum velocity of 7.8 m/s.

0 1 2 3 4 5 6 7 8 9

time

-20

-10

0

10

20
roll (proposed)

roll (min snap)

saturation

0 1 2 3 4 5 6 7 8 9

time

-20

-10

0

10

20

pitch (proposed)

pitch (min snap)

saturation

Figure 4.13: Commands sent to the QR when using (a) proposed
method (b) minimum snap method.

A couple of observations can be made after this experiment:

1. The proposed method converges to the setpoints (reaches the gate) earlier than the minimum-snap
method. This can be seen in Figure 4.13, where the plots in blue already converge at 6 seconds while
the plots in red (minimum snap) are still generating commands till 8.5 seconds through the flight.

2. The proposed method uses entire flight capability by giving inputs that are almost close to the satura-
tion of the actuators. It can be seen from Figure 4.13 that minimum snap methods do not use the entire
flight capability, since there is unfilled area between the pitch commands (blue plot) and the saturation
limits in red.

4.5. Profiling
ACADO toolkit’s .cpp version comes with an interesting feature of codegen, which can generate the

calculations for discretization, linearization and Runge-Kutta integration as a standalone code that can be
flashed onto an MCU. With this feature, the real-time embedded system can perform some hard-coded cal-
culations before invoking the qpOASES solvers. Even after these efforts to minimize the time taken for prior
calculations, discretization, linearization and Runge-Kutta integration take considerable CPU time [13] out
of the total time of that iteration. However, codegen currently does not support optimizations when Mayer
terms are included in the dynamic optimization. As a result, the trajectories and control inputs generated in
Figure 4.5 can not be generated on a real-time platform.

As discussed in the requirements section for the proposed estimator, the execution time of the optimal
control algorithm is critical. The optimal control sequence must be generated within strict time bounds
while calling the subroutine in Figure 4.8. The proposed solution makes some assumptions for simplifying
and making the trajectory generation problem faster by:

1. Reducing external overhead: Avoiding use of any external libraries for Model Predictive Control. The
C code of the proposed controller uses only a single library of qpOASES [7] to perform quadratic opti-
mization.

2. Linearization and Discretization: Both these steps are executed upfront at the initialization of the pro-
posed solution. Discretization is only done when the drag parameters of the proposed state estimators

52 4. Optimal control

have changed. Linearization at every time-step is not required, since the process model is already lin-
earized while drafting the algorithm.

3. Allocation for system matrices: Only the Hessian and linear term that are required for qpOASES are
stored in the memory. While they store single precision floating point elements, Their size is 2N ×2N
and 2N × 1 respectively. If the target is 20 metres away, the time horizon is almost set to 4 seconds,
assuming the average velocity of 5 m/s. This leads to N = 4.0/0.1 = 40 samples. The hessian and linear
term would hence have a size of 80×80 and 80×1 respectively. These sizes are acceptable while running
on ARM Cortex A9.

4. Zero Order Hold: System dynamics are discretized with the maximum possible sampling time to reduce
the size of the matrices above. System identification of attitude commands (see Section A.2) gives a rise
time of around 0.1 seconds and a settling time of 0.4 seconds. The sampling period should have been
h = 0.4 seconds, however it lead to a very coarse set of commands being sent out to the QR. To generate
ample number of commands to the QR, h = 0.1 seconds is chosen. However, if sampled at such higher
frequencies, the state space must be made cognizant of the transient responses of the attitude of the
QR. This is added to the list of recommendations for taking this work ahead.

ACADO with Mayer Proposed
0

10

20

30 28.3

4.5

9.69

E
xe

cu
ti

o
n

ti
m

e
(m

il
lis

ec
)

Inteli7 ARM-CortexA9

Figure 4.14: Profiling the time-optimal ACADO algorithm (left) and the proposed optimal control algorithm (right)

4.6. Discussion
PD control requires a constant inflow of measurements for assigning control inputs. Optimal control on

the other hand, would have already scheduled control inputs at the arrival of the previous measurement. As
a result, optimal control decouples itself from the high frequency feedback loop of Figure 4.2. It also reduces
the expectations from the vision pipeline of delivering high frequency measurements and state estimates.
This decoupling hence frees up computational resources to perform other calculations.

Comparison between different control techniques:
After proposing a new optimal control technique, it would be nice to compare all the techniques in the ear-
lier sections with the new proposed technique. The comparison could highlight the importance of the new
optimal controller in the drone-race pipeline.

⇓ features, control method ⇒ PD Minimum Snap ACADO Proposed Optimal
Perception aware (ψ only) 3 3 3 3

Change in model parameters 3 3 3multi-objective optimize 3re-discretize
Time optimal guarantee 7 7 7not available in codegen 3closeness to constraints
Convergence guarantee 7not default, but possible 7 3 3residual of optimization
No hectic tuning required 7 3 3 3only heuristic
Saturation aware control 7 7 3 3

Computational time taken low high high medium
Trajectory generation 7 3 3 3

Table 4.1: Comparision between different control techniques

4.6. Discussion 53

All control techniques can be made perception aware to some extent. Perception awareness implies
augmenting vision based objectives of field of view, inside the optimization of the trajectories. It must be
noted that when it comes to optimal control, perception awareness comes at a cost of optimization of other
objectives as well [6]. For instance, it might not be ideal to pitch to saturation limits, if the gate is not visible
in the image frame of the monocular camera. If max-bank cannot be achieved in order to keep the gate in
view, time-optimality can not be guaranteed (Pontryagin’s principle - explained in the recommendations).
Keeping the gate in view is critical since being unable to see the gates for long can cause state estimators to
drift, increasing the chance of crashing at the boundaries of the gate.

All the control techniques can adapt to change in model parameters. The parameters that can vary
include the drag and thrust parameters in the force model along all the three translational axes.

• Since PD control has only one term in its feed-forward that is drag dependent and the rest of PD control
is not model based, it can adapt well to change in model parameter kd .

• Since ACADO comes with multi-objective optimization, a recursive least squares based estimator can be
augmented into the optimal control cost functions. This enables ACADO to estimate the change in kd

after a considerable number of measurements are made. The new estimated kd is used from then on
to perform MPC.

• Minimum snap methods are not constrained by the model of the QR, but only by the snap in the tra-
jectory. Hence they remain unaffected to change in model parameters. However, the drag parameter in
the differential flatness mappings must be updated.

• While using the proposed method as the control module, Equation 4.5 must be re-discretized everytime
the estimated drag parameter changes.

However, it can be concluded that the presence of optimal control is critical in the drone-race scenario
for meeting control objectives of time-optimality and high forward velocity through the gates. Compared to a
state-of-the-art optimal control technique, the proposed algorithm leads to faster trajectories and consumes
less computational power onboard.

However, the following limitations still remain with the current approach:

1. Non-linearities are not addressed. When flying at near saturation angles, the banking of the QR is well
outside the linear region θ ≥ 20deg,φ≥ 20deg. As a result, linearization about the point θ = 0 and φ= 0
do not hold correct. The consequences of still using the state space in Equation 4.4 can only make
the QR track the trajectory in a coarse manner. However, this issue can be solved by asynchronously
re-planning for the same desired states mid-way through the flight.

2. This process is iterative, and performs a iterative descent to find the candidate time horizon. However,
this could directly be done by switching to Sequential Quadratic Programming (SQP) based algorithms
instead of the current interior point algorithm. It also requires addition of the ‘Bolza’ term of the free-
variable of time horizon in the cost function.

3. This method assumes that the altitude of the QR is the same as the altitude of the desired waypoint.
The proposed method currently can only make near time optimal trajectories in a 2D space. However,
since autonomous drone-racing rarely requires frequent change of altitude, this can be allowed.

4. If the state space is discretized at smaller time intervals than the settling time of attitude commands,
then it must be made aware of slow attitude dynamics by augmenting attitude based states in the state-
space of Equation 4.6.

5. The qpOASES library was not built with architecture specific flags turned on. If extra efforts are taken
with the Makefile, the results in the profiling section can definitely improve.

5
Conclusion and Recommendations

5.1. Conclusions
Three requirements of an ideal control sub-module were stated in the introduction of this thesis. The

first requirement was to be able to possess accurate state estimates of the QR position over long time hori-
zons. The second requirement was to be able to design time-optimal trajectories for QRs to be able to fly the
track in minimum time. The third requirement expected these state estimators and optimal controllers to run
within milliseconds on a real-time embedded system platform. Each of these requirements are re-assessed
in the subsections below. The problem statement of this thesis is restated here for evaluation:

Develop a robust state-estimation framework that minimizes drift︸ ︷︷ ︸
(a)

over time while reducing expectations of

frequent corrections from the vision sub-module, and design an optimal control method︸ ︷︷ ︸
(b)

that allows a QR to

perform time-optimal maneuvers︸ ︷︷ ︸
(c)

while being computationally inexpensive︸ ︷︷ ︸
(d)

.

(a) Accuracy
The accuracy of various estimators were discussed in Chapter 3. Apart from the requirement of being

most accurate, Chapter 3 also added additional requirements of causality and time invariance to the state
estimators. Causality prevents sensor-fusion techniques of state estimation, while time invariance prevents
the QR models from changing while optimal control horizons are active. These requirements make the state
estimators of QRs compatible for optimal-control.

Chapter 3 concluded that the proposed estimator’s position error metrics with root mean square error
of 0.22 m over 4 seconds (along the x-y plane), are good enough for its use in the drone-race pipeline. These
predictions were made by only using the information about initial states and the future inputs to the QR. The
requirement of causality and time-invariance were also met, since there is no presence of sensor measure-
ments in the representation of Equation 3.15.

(b,c) Optimality
The requirement of generating and tracking time-optimal trajectories while using saturated control in-

puts was made in the introduction. Time-optimal maneuvers can make the QR complete the course of the
arena within minimum time. Another set of requirements were added in chapter 4, which include intuitive
tuning of gains, information about convergence to setpoints and finally a requirement of entering gates from
the correct direction.

As seen from Table 4.1, these requirements are successfully satisfied by the proposed algorithm. A QR
can fly through designated gates from the correct direction, irrespective of its starting conditions. It can also
indicate how far the generated trajectories are from the desired states from the residual cost after minimiza-
tion. It is intuitive to tune the penalty matrix of the proposed controller, since the user can directly select the
penalty on position violation or velocity violation at terminal state.

55

56 5. Conclusion and Recommendations

The proposed algorithm in Figure 4.8 is only able to generate semi time-optimal trajectories at the mo-
ment. The iterations for time-optimality are stopped if the control sequence of the current iterate are saturat-
ing more than 55% of the time. Asking the controller to saturate for a long time has an impact on the terminal
cost and also cause higher trajectory tracking errors. These cause of these errors is suspected to be because of
using QR models which are always linearizated aboutφ= 0,θ = 0, while the QR is flying in non-linear regimes.

(d) Speed
The introduction section lists a hard real-time constraint for solving the trajectory generation problem

on a computationally lite processor of a QR. This was already considered while writing the algorithms in
Figure 4.8. The proposed solution reduces external overhead, skips onboard linearization and discretization,
uses limited memory and performs output-hold operations to buffer the low frequency commands that are
sent to the QR.

Chapter 4 also gives a proof by profiling the proposed algorithm on a processor of the Bebop QR (see
Figure 4.14). It can be concluded that the proposed algorithm is a good candidate for becoming the new
control sub-module of MAVLab’s drone racing pipeline.

5.2. Improved pipeline after this thesis

Figure 5.1: Being able to perform robust state estimation and optimal control can lead to a parameter adaptive closed-loop system.

A slightly modified pipeline can be suggested for use after various suggestions in this thesis that are
made to improve the state estimators and control algorithms of MAVLab’s drone racing pipeline. There is one
additional contribution made by the introduction of the new pipeline. The drag parameters can now also be
identified mid-flight, improving the quality of the model as we fly.

While the QR flies around using the proposed optimal controller, the vision sub-module corrects the
position and velocity estimation which was made by the model of the QR. If a sufficient number of such mea-
surements are available, the QR can update the drag parameters used inside the QR model. As a result, the
tedious system identification process suggested in Section 3.3 can be skipped. The drag co-efficient update
law comes with three assumptions:

1. The accelerometers have been calibrated and the readings available to the autopilot are bias-less ac-
celeration measurements along xB and yB .

5.3. Applications of this work 57

2. The PnP measurements must be arranged chronologically, having monotonically increasing time stamps.

3. The initially assumed drag coefficients are within realistic bounds of 0.2 < kd (0) < 0.9.

This new pipeline is currently under test on MIT’s FlightGoggles racing-drone simulator. As a result, this the-
sis concludes that given the scenario of drone-racing using computationally lite autopilots, accurate state
estimators and coarse optimal control algorithms are the way to go. By following this approach, state esti-
mation is as accurate as it can be and the optimal control algorithm is not computationally intensive. Every
sub-module in the control pipeline is able to meet the hard real-time deadline of the autopilot. The autopilot
can safely send high frequency PWM signals to the ESC, read the IMU at high-frequencies, perform attitude
control and still run these state estimation and optimal control sub-modules listed in the previous chapters.

5.3. Applications of this work
The introduction of this thesis stated that research on QRs can be extrapolated to different areas of

research. This section lists them below:

5.3.1. Applications in the area of state estimation

Figure 5.2: GRACE gravimetry
mission, source:

gracefo.jpl.nasa.gov Two
satellites, amusingly named Tom

and Jerry chase each other in
orbit to model the gravitational

potential of the Earth using their
precision lasers. Gravitational

potential of Earth represented in
a colored mask behind the

satellites.

State estimators explored in this thesis can be extended to various fields
of research. This subsection presents setup of state estimation in GRACE and
GRACE-FollowOn missions launched by NASA.

The primary purpose of this mission is to map the local gravitational po-
tential of the surface of Earth. Performing state estimation on these satellites
not only include the positional states of the satellite in orbit but also the grav-
itational field underneath. Infact, possessing accurate information of the po-
sitional states is only a secondary objective of the mission and these states are
only the by-product of accurate gravitational field estimation.

Obtained gravitational estimates are used in the dynamical equations of
the satellites to propagate the positional states which are essentially the orbital
positions. The highlight here is, that the gravitational potential could also be an
augmented state to be estimated, whose accuracy improves everytime GRACE
makes a successful measurement using its lasers. This reduces the covariance
in the belief of the gravitational potential states, which in turn also helps in im-
proving the quality of the positional estimates due to a better dynamical model.
This reduction in covariance and increase in quality of the estimated gravita-
tional field goes on recursively till the resolutions and epsilons of the mission’s
objective are met.

This thesis aimed to carry out similar techniques of state estimation when
it came to QRs. The effects of drag forces that are discussed in Section 3.3 are
non-negligible while propagating the dynamics of the drone. As a result, the
drag coefficients are parameterized similar to how GRACE missions parameter-
ize the gravitational potential fields, with the objective of having better lateral
positional estimates.

5.3.2. Applications in the area of optimal control
Optimal control explored in this thesis can have various applications starting from portfolio manage-

ment in financial markets to power division in hybrid vehicles.
Portfolio optimization: As seen in [29], dynamic programming and optimal control can be used in the

field of finance. Billions of euros are pushed daily through international markets while brokers try to optimize
position and portfolios in the market while mitigating their risk and maximizing returns. Usually each action
of buying, holding or shorting can be modeled as an input to the market, while the market itself can be mod-
eled as an MDP (Markov Decision Process). Usually the MDPs do not lead to straight-forward quadratic cost
functions as indicated in case of drone-racing, but they definitely have an optimal policy to reach the optimal
value (maximizing returns) without getting reprimanded frequently (mitigating risk). However, it might be
possible to maximize returns very early on, in a short-time horizon by using similar time-optimal algorithms
as proposed in this thesis.

58 5. Conclusion and Recommendations

It was observed in this thesis, that the positional states of the QR drift away from the ground truth with
time. As a result, the accuracy of states deteriorate with time, increasing the uncertainty of control behavior.
To avoid this, measurements must update the states frequently to be able to take accurate control actions.
In Fin-tech, a similar approach of High-Frequency trading (HFT) is used for making decisions in the market
with a short time model. The algorithms must make an investment decision before the short term model
diverges from the behavior of the actual market. As a result, HFT creates small trades within short intervals
of time to optimize the returns from the market without having a long term accurate model.

5.4. Recommendations
This section provides ideas for extending this work. This section is divided similar to the divisions in

chapters. Recommendations in the area of state estimation are followed by recommendations in optimal
control.

5.4.1. State estimation
It was concluded that the proposed state estimator can not predict for long time horizons. However, if

the requirement of optimal control is removed, the state estimators can be allowed to be non-causal. In other
words, various sensor-fusion techniques can now be used, which usually give accurate estimates than the
proposed method. The red cross in Figure 3.16 can hence be removed, giving way for sensor fusion in almost
every time step of model propagation.

If state estimation has to be extended using these classical methods, following a dual quaternion mod-
eling technique can be recommended. These have multiple benefits and are described below:

Figure 5.3: Powered descent on a lander with line of sight and glide
slope constraints [17].

Dual Quaternion State Estimation: Dual
quaternions which were earlier described in Chap-
ter 2, combine the representation of translational
vectors and orientation data into a single entity and
hence coupled control objective becomes easier to
define. A couple of papers have explored pow-
ered descent on Lunar/Martian surfaces (which also
lack GPS like our case) using the concept of dual
quaternions [17]. Dual quaternion Multiplicative
Extended filter (DQ-MEKF) in [5] also states that
DQs are not only beneficial for control, but also lead
to more accurate estimations of pose. DQs make it
relatively easy to enforce the terminal constraints of zero lateral velocity and standing nose-up 90deg during
touchdown in a coupled sense. This is similar to the case for QR control for going through the gate with zero
side-ways velocity while pitching to saturation. Perception Aware based MPC in [6] performs a similar task of
adding intermediate state constraints to the dynamics of the QR flight for keeping feature rich objects in the
field of view of cameras. This directly improves the quality of state estimates, consequently also improving
the quality of control inputs. DQs can also be useful in this case.

Deep reinforcement learning
An interesting study on hexapod robots [22] was done by the BAIR group at UC-Berkeley on model-based
deep-reinforcement learning for performing navigation. The difference in this approach is that the robot
switches between (a) providing learning to a parameterized neural network and (b) using this learnt model
for performing MPC based navigation. Abundant information (close to ground-truth) is given by onboard
sensors on the hexapod for this approach to work.

A similar approach could be followed in QR parameter estimation. If a few additional sensors are allowed
on the drone-race arena, these can generate enough information for parameter estimation using deep rein-
forcement learning. While Unscented Kalman Filtering based approaches are sensitive to initial conditions
and require some heuristic while tuning it, deep-reinforcement learning can learn the parameters of these
highly nonlinear models with ease. On similar lines, symbolic regression methods for identifying dynamic
models have also started gaining popularity.

5.4.2. Optimal control
1. It was observed that ACADO’s codegen did not support the drone-race objective of time optimization.

Performing time optimal control using Equation 4.1 without codegen takes 28.3 ms to be completed

5.5. Pontryagin’s principle 59

on a desktop computer (i7-8750H CPU @ 2.20GHz × 12). A shorter execution time can be expected
after codegen can support this time-optimization objective, which could make Equation 4.1 a good
candidate for execution on QR’s computationally lite processor.

2. The Eigen libraries that are being used on the autopilot for hessian computations can be optimized if
the autopilot is cross-compiled using the NEON flag. NEON is the optimized SIMD instruction set for
ARM Cortex A8/A9 processors on which the Bebop currently runs.

3. Another recommendation would be to also include information about the various delays involved in
the pipeline after the optimal control sequence is generated. This can be done by system identification
of the attitude control loops. The identified state-space can be augmented to the state space model of
the QR in Equation 4.4.

4. It was observed that the optimal control sequence generated by Figure 4.8 was not enough for accurate
trajectory tracking. To abate tracking problems, [21] suggests using feedforward control inputs from
the optimal control algorithm and feedback corrections from differential flatness. As a result, the com-
bined controller can not only track the attitude commands, but also the positional commands of the
trajectory. This feedback/feedforward duo is restated here: To match the accelerations required by the
trajectory,

ades = afb +aref −ard + g zW

To match the position and velocity commands required by the trajectory,

afb =−Kpos
(
p−pref

)−Kvel (v−vref)

These errors are mapped to the thrust force being produced by the QR. Meanwhile, the required attitude
can be tracked using:

ωdes =ωfb +ωref

5.5. Pontryagin’s principle
Another recommendation would be to try the bang-bang based optimal control strategy originating

from Pontryagin’s maximum principle. Bang-bang control, as the name suggests, saturates the input to the
plant as much as the actuator constraints can allow. This type of control can also theoretically make the initial
state of a plant converge to a certain terminal state in a time-optimal fashion. In bang-singular systems, the
input to actuators can also be a ‘zero’ value for non singular period of time-interval.

Bang-bang control could be an extension or simplification of the proposed controller in chapter 4. For
second-order state-space models, a couple of conditions must hold for being eligible for bang-bang control.

• The second order system must be controllable, i.e. the matrix G = [
B AB

]
must be full rank.

• Second order systems with full rank on controllability imply that the switching between the minimum
allowable input to maximum allowable input can only happen once. For systems with lower ranks on
their controllability matrix, bang-singular approach must be followed.

• A unique switching time solution is also a property of second order systems with full controllability.

These type of systems are classified in literature as normal-time-optimal-control (NTOC) systems.
In case of the models described above, the controllability matrix can be given by

G =
[

1 kd

1 0

]
where, kd 6= 0 and, r ank(G) = 2

Considering a linear system with actuator constraints, where u =φ is the roll angle of the QR in radians.

ẋ = Ax +Bu, |u| ≤ 1[
ẋ1

ẋ2

]
=

[−0.5 0
1 0

][
x1

x2

]
+

[
1
0

]
u

(5.1)

Solving the differential equations for the above state-space representation,

x1(t) = e−0.5t x1(0)+2u(1−e−0.5t)

x2(t) = x2(0)+x1(t)t

60 5. Conclusion and Recommendations

5.5.1. Existence of a unique analytical solution
Let the initial time be given by t0 = 0, switching time given by ts and terminal time of reaching the

desired state given by t f . An analytical solution can calculated from the solved differential equations to find
out values for u between t0 and ts and between ts to t f . A simple assumption to be made for simplicity of the
proof can be that the input bangs to umax from t0 to ts and then later bangs to umi n from ts to t f . However,
the states of the system can not be inferred during the switching time, i.e. there is no knowledge of x1(ts)
and x2(ts). Hence, boundary conditions (states at ts and terminal time t f) cannot be found out using these
differential equations, making it difficult to find an analytical solution for switching time and terminal time.
For the same reason, another method using Pontryagin’s Maximization Principle can be tried out to find out
the solution to this problem.

5.5.2. Pontryagin’s minimum principle (PMP)
From the above derivations for the controllability of the system, the state space described in Equation 5.1

fits under the NTOC category. Hence, a single unique switching-time solution that takes the QR from one
position and velocity in the arena to another reference position and velocity can be found out using the PMP
principle. Hamiltonian Jacobi Bellman (HJB) equations along with PMP can be evaluated to find out the
analytical solution for the optimal switching time. Without loss of generality, it can be assumed that for a
terminal state x f = 0 and initial state x(0) = x0, the cost function for time-optimality can be given by:

J =
∫ T

0
1d t

The Hamiltonian for this cost function can be given by:

H = 1+λT (Ax +Bu) = 1+ (
λT A

)
x + (

λT B
)

u

Applying the conditions for optimality, yields the evolution of the cost function with respect to varying co-
state vectors:

ẋ = ∂H

∂λ
= Ax +Bu

− λ̇= ∂H

∂x
= ATλ,

[
λ̇1

λ̇2

]
=

[−0.5 1
0 0

][
λ1

λ2

]
(5.2)

The input u which minimizes the cost function H can be given as,

u = argmin H =−sgn
(
λT B

)
The optimal solution always satisfies the above equations since Pontryagin’s principle provides a necessary
condition. It follows that the input is always either +1 or -1, depending on λT B (in this case only the first term
‘1’ of cost function H can be minimized by selecting the scalar control input as u =−λT B).

u =−sgn
[
λ1 λ2

][
1
0

]
=−sgnλ1

From Equation 5.2, the evolution of costates can be given as:

λ̇1 =−0.5λ1 +λ2, ∴λ1(t) = e−0.5λ1(t) +2λ2(1−e−0.5t)

λ̇2 = 0, ∴λ2(t) =λ2(0)

However the initial conditions of λ1,λ2 are unknown, and assuming a priori on them to find the u that min-
imizes H is heuristic or rather search based. Also, looking at the equations above, an analytical solution for
switching time, terminal time or optimal control sequence is not possible.

5.5.3. The Boston University algorithm

5.5. Pontryagin’s principle 61

-1 -0.5 0 0.5 1 1.5 2
-1.5

-1

-0.5

0

0.5

1

X

Y

O
N

M

D

EF

Fig. 1. A typical phase plane plot of a rest-to-rest bang-bang control.
The spiral curve defined by (29) is separated by the unit circle into two
segments. One segment is the switching-time curve ED inside the circle
and the other is the final-time curve EM outside the circle. The switching-
time curve is mapped to the curve FM by an affine mapping and crosses
with the final-time curve EM at point M. The switching and final time can
be calculated from the coordinates of the point M.

also on the initial state and input bounds of the system. FM
is the image of the switching-time curve ED under the affine
mapping. The parameter value t = 0, corresponds to the point
E = (1,0). As the parameter is increased, the vector

−→
OE

rotates anticlockwise along ED and its image
−→
NF rotates

anticlockwise along FM until it crosses the final-time curve
EM at point M. Under the mapping, this point corresponds
to the point D. By finding the coordinates of point D and
point M, the switching time and final time of the bang-bang
control can be calculated from (25) and (29).

Unfortunately, there is no analytic solution for the coordi-
nates of the points D and M. However, as illustrated in Fig.
2, they can be solved efficiently using using the following
numerical algorithm.

Step 0: Defining a stopping criterion ε > 0 and give an
initial guess of ∠EOD as ∠EOD1.

Step 1: Calculate the coordinates of points D1 and its
image point M1 under the affine mapping.

Step 2: Calculate the coordinates of points M2 and
∠M1NM2.

Step 3: Let ∠EOD1 = ∠EOD1− γ∠M1NM2, where γ is
a gain factor.

Step 4: Repeat step 1 to 3 until ‖M1−M2‖< ε .

IV. SIMULATION AND EXPERIMENTAL RESULTS

We ran both simulation and experiments to demonstrate
the feasibility of our scheme. We applied the above method
to calculate the bang-bang control to drive a single axis
of a 3-D piezoelectric nanopositioning stage (Nano-PDQ,
Mad City Labs) from one set point to another. The stage
is equipped with a position sensor with accuracy on the
order of picometers as reported by manufacturer. It was
operated in closed-loop mode with a proportional-integral
(PI) feedback controller provided by manufacturer. A data

-1 -0.5 0 0.5 1 1.5 2
-1.5

-1

-0.5

0

0.5

1

X

Y

O
N

M

D

EF

M1

M2

D1

Fig. 2. Numerical calculation procedure of the coordinates of the point M.
Given an initial guess ∠EOD1, ∠DOD1 can be estimated by calculating
∠M1NM2. Points M1, M2 will converge to point M and point D1 will
converge to point D quickly by adapting ∠EOD1.

Fig. 3. Experimental step response of the nano-positioning stage. A 5 volts
to 6 volts step signal was inputted to the nano-positioning stage controller.
Both the step input signal and output signal from stage position sensor were
sampled with a sampling frequency of 500 KHz.

acquisition card (NI-6259, National Instrument) was used to
output the command signal to the stage controller and to
sample stage position from its position sensor. Both the input
and output signals of the data acquisition card range were
limited to [0,10] volts. The stage position was represented
by the output voltage of the position sensor. We considered
a simple step from the set point 5 volts to the set point 6
volts.

A. Bang-bang Control Design

The transfer function of the stage was estimated by driving
the stage in close-loop mode with a step signal from 5 volts
to 6 volts. The step signal and the stage response are shown
in Fig. 3. The stage transfer function identified from the step
response was

G(s) =
−261.82s+1.8143×106

s2 +1983.3s+1.8118×106 . (36)

Figure 5.4: A phase plane plot can yield the
optimal switching time and terminal time of

the bang-bang maneuver[28] (given by
coordinates of M).

Another method for finding the optimal control sequence had
to be investigated since no analytical solution for the inputs was
available using the above methods. This method also tends to follow
a search fashion, although it does so within a very minuscule search
space [28]. The method propagates system dynamics from the ini-
tial conditions x0 to reach the states at switching time x(ts). It later
propagates the states in a backward fashion from x(t f) to x(ts).

The method proposed in [28] is exactly suitable for the linear
drag model, since their paper specifically discusses second order
systems that use a similar canonical form. After substituting the drag
coefficients in their second order state space, state trajectories for
the QR case can be solved. These trajectories which are propagated
from different ends of the maneuver, finally intersect in the phase
plane plot at one unique point, which yields the state of the system at
the switching time (x(ts)). After x(ts) is found, the values for ts , t f ,u
can be analytically solved for.

A
Appendix

A.1. Scaling laws
A section from IEEE’s magazine article [20], gives an interesting peak into why tiny quadrotors could

be more agile and useful in the drone race scenario. In drone racing, agility is key. Unlike the drones used
in search and rescue operation which need to perform SLAM at slow speeds of 1m/s, racing drones must be
configured to push the flight envelope by being able to accelerate quickly. In such cases, the racing drone
must be able to produce high linear and angular accelerations.

To study which type of drone would be ideal for drone-racing, the Parrot Bebop is compared against the
Eachine Trashcan. The average angular velocity of Bebop1’s propeller while flying is approximately n = 8000
rpm. In SI units the angular velocity of the blade hence approximately is ωi ≈ 700 rad/s. The tip speed of the
7cm propeller is almost Vb = rω≈ (0.07×700) ≈ 50 m/s. The Mach number ratio is M = (50/343) = 0.15 which
is well within the subsonic regime. Hence the assumptions made by the Mach scaling for compressible flows
can be applied. (If Mach scaling isn’t applicable, Froude scaling laws for in-compressible flows are assumed).

The ability to produce thrust is given by:

T = cTρAr 2ω2, T ∝ω2r 4

where T is the thrust produced, ρ is the density of air, A is the area swept by the blade, ω is the angular
velocity of the blade. We assume that the radius of the propeller r decides the length of the quadrotor’s frame
and hence the mass. As a result the mass of the quadrotor scales as m ∝ r 3.

The linear acceleration hence scales by a ∝ω2 r 4

r 3 .

Similarly, the angular acceleration scales as α∝ω2 r 5

r 5 .

Mach scaling quotes ω~(1/r) assuming that the blade tip speed (Vb) is constant while scaling up/down
the size of the quadrotor. Substituting the scaling law in the above relations,

a~
1

r
α~

1

r 2

This goes to say that smaller the size of the quadrotor frame, (which is linearly related to radius of the pro-
peller) leads to higher angular and lateral acceleration capability. Hence a tiny TODO:

A.2. Modeling, Control and System Identification of the Moment models
Table 2.1 metioned that the moment and attitude control is a solved problem. However they require

some introduction and are appended in the appendix. Modeling: This subsection restates the Netwon-Euler
based moment models mentioned in [5].

IΩ̇=−Ω× IΩ+
4∑

i=1

(
τMi +τri

)+τd (A.1)

where,
τri = kβasi + ri × fi (A.2)

63

64 A. Appendix

Figure A.1: The Eachine Trashcan has the same size as a propeller of the Parrot Bebop.

Figure A.2: System identification of the roll maneuver.

τMi =CQi ρAp r 3ωi |ωi | k̂ (A.3)

and τd represents the drag moment vector.
Control: However, as stated in [24], the moment models can simply be dealt with high gain feedback

controllers. Commonly autopilots (like BetaFlight and Paparazzi) have very well tuned PD control loops for
controlling the rate of the QR. As a result, a simple ‘inner-loop’ is enough to stabilize the attitude of the QR.
However, after plugging in the gains and making this PD based inner-loop, system identification for these
models must be done.

System Identification: Doing the system identification step is critical for the models described in the
optimal controllers above. The proposed controller has assumed that there is instantaneous convergence
to the commanded angles. The consequences of directly flushing the optimal control commands to the PD
controller must be studied.

A second order system identification is done for identifying the parameters of the inner loop. The trans-
fer function found, has a good fit of 98.63% to the ground truth roll angles of the QR. Figure A.2 shows the
transient angles generated by the transfer function with respect to the ground truth angles.

φ(s) = 508.3

s2 +57.9s +507.6
φcmd

It is found that the settling time of the roll angles exceeds the discretization intervals of the state space

A.3. Accelerometers for positional state estimation 65

in Equation 4.5. The settling time when a step input of 35deg is commanded is almost 0.4 seconds. As a
result, the commands flushed from the optimal controller would take longer to converge as compared to
the assumed discretization interval of 0.1 seconds. This information must be augmented in the state space
of Equation 3.15 as described in [3]. As a result, the optimal control sequence generated would already be
cognizant of the settling time of the innerloop of the tuned attitude controller.

A.3. Accelerometers for positional state estimation

IMU(QFN-package)

Motherboard

aBy

aBz

Figure A.3: Bias due to the accelerometer’s misaligned axes.

Most frequently QRs use an MPU6050 (QFN package) soldered to the motherboard as their inertial mea-
surement unit. These accelerometers are usually mis-aligned with the body axes of the QR, due to two rea-
sons. (a) The motherboard of QRs commonly sit on dampers for avoiding transmission of vibrations from
the motors to sensitive electronics soldered on the motherboard. These dampers deform over time, creating
an offset between the QR’s body frame axes and the IMU’s sensing axes. (b) Some amount of heat produced
by the BLDC motor controllers can transfer to IMU’s solder points, disturbing the levels of mount points of
the IMU on the motherboard1. This creates mis-alignment of the axes dynamically over time. Ignoring these
mis-alignment errors can cause significant drift if the accelerations measured are directly dead-reckoned.

Secondly, if the position of the IMU is very different from the center of mass of the QR, then the ac-
celerometer is subjected to additional centrifugal and Coriolis forces which must be compensated for. Un-
derestimating the consequences of offset of IMU’s position from the CoM can cause significant drifts if the
measured accelerations are directly dead-reckoned. These pseudo-forces are illustrated by an IMU company
called ‘x-sens’ in one of their publications [16].

an
ii = an

nn + 2ωn
ie × vn

n︸ ︷︷ ︸
Cor i ol i s f or ce

+ ωn
ie ×ωn

ie ×pn︸ ︷︷ ︸
Centr i f ug al f or ce

Even if the errors due to mis-alignment and placement on the motherboard are taken care of by carefully
designing the motherboard of the QR, the IMU brings with itself its own inherent manufacturing errors. These
errors include non-zero cross-sensitivity and non-identity scaling factors between different axes.

TODO: Add estimate accelerometer bias and fuse it with existing model compare Rsq values.

A.4. Brachistochrone problem

Figure A.4: the problem presented by Bernoulli in 1696 [27]

Figure A.5: the locus of optimal trajectory sketched by a
cycloid [27]

1The temperature sensitivities are also very critical in magnetometers or compasses. They come with special temperature corrections
since hysteresis in magnetic elements is sensitive to temperature.

66 A. Appendix

An interesting account of problem was presented in the year 1696, which forms the basis of the moti-
vation behind trajectory optimization problems [27]. Johann Bernoulli (1667-1748) posted a problem about
sketching a time-optimal trajectory when traveling from point A to B, under the influence of gravity. Along
with a figure alike the Figure A.4, he quoted "I hope to gain the gratitude of the whole scientific community by
placing before the finest mathematicians of our time a problem which will test their methods and the strength
of their intellect. If someone communicates to me the solution of the proposed problem, I shall publicly declare
him worthy of praise".

During the time of publication, a lot of mathematicians were actively vying in the area of calculus and
it did not take long for solutions to come in from Galileo, Netwon, l’Hôpital, Johann’s own brother Jacob and
Tschirnhaus. The solution to the optimization problem is non-trivial (a straight line joining points A to B
is not the solution). If the slope of the trajectory is comparatively higher in the beginning, body picks up a
higher velocity early on and total time can be reduced! However the correct solution is a bit far from just
having higher slopes during the start.
Proof: conservation of energy would give us the relation between the kinetic and potential energy: K .E . = P.E .
and hence 1

2 mv2 −mg y = 0. The instantaneous velocity at any point on the trajectory is given by v = d s
d t =√

2g y where s is the arc length of the distance traveled on the trajectory. δs = (
(δx)2 + (δy)2

) 1
2 .

Total time is found by integrating the segment of time traveled:

T =
∫

curve

d s√
2g y

= 1√
2g

∫ y0

0

√√√√√1+
(

d x
d y

)2

y
d y (A.4)

The value of T must be a global minimum, making the object reach from point A to B in the minimum time
possible. Fortunately, a very elegant solution (as in Figure A.5) emerges from the optimization of the cost
function described above. The solution is the locus of points described by a cycloid given by:

x = rθ− r sinθ, y = r − r cosθ (A.5)

where r is the radius of the circle rotating on the horizontal plane. If any object travels from point A to
point B, ie (0,0) to (x0, y0) in Figure A.5, it reaches the destination with minimum time. The optimal control
problem for drone racing in this section comes with a similar objective - of generating appropriate commands
to travel from point A to point B in minimum time, while not violating the constraints and dynamics of QRs.

Bibliography

[1] Federal Aviation Administration. Helicopter flying handbook, 2017. URL https://www.faa.gov/
regulations_policies/handbooks_manuals/aviation/helicopter_flying_handbook/.

[2] Moses Bangura, Robert Mahony, et al. Nonlinear dynamic modeling for high performance control of a
quadrotor. Australian Robotics and Automation Association, 2012.

[3] P. Bouffard. On-board Model Predictive Control of a Quadrotor Helicopter: Design, Implementation,
and Experiments. Ucb/Eecs-2012-241, page 67, 2012. URL http://www.eecs.berkeley.edu/Pubs/
TechRpts/2012/EECS-2012-241.html.

[4] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.

[5] Pedro Castillo-García, Laura Elena Muñoz Hernandez, and Pedro García Gil. In Indoor Navigation
Strategies for Aerial Autonomous Systems, pages 31 – 50. 2017. ISBN 978-0-12-805189-4. URL http:
//www.sciencedirect.com/science/article/pii/B9780128051894000032.

[6] Davide Falanga, Philipp Foehn, Peng Lu, and Davide Scaramuzza. PAMPC: Perception-Aware Model
Predictive Control for Quadrotors. 2018. doi: 10.1109/IROS.2018.8593739. URL http://arxiv.org/
abs/1804.04811.

[7] Hans Joachim Ferreau, Christian Kirches, Andreas Potschka, Hans Georg Bock, and Moritz Diehl.
qpoases: A parametric active-set algorithm for quadratic programming. Mathematical Programming
Computation, 6(4):327–363, 2014.

[8] Jeff Gill and Gary King. What to do when your hessian is not invertible: Alternatives to model respecifi-
cation in nonlinear estimation. Sociological methods & research, 33(1):54–87, 2004.

[9] Winter Guerra, Ezra Tal, Varun Murali, Gilhyun Ryou, and Sertac Karaman. FlightGoggles: Photorealistic
Sensor Simulation for Perception-driven Robotics using Photogrammetry and Virtual Reality. 2019. URL
http://arxiv.org/abs/1905.11377.

[10] David J. Hanley and Timothy W. Bretl. An Improved Model-Based Observer for Inertial Navigation for
Quadrotors with Low Cost IMUs. (January), 2016. doi: 10.2514/6.2016-0105.

[11] Markus Hehn, Robin Ritz, · Raffaello D’andrea, M Hehn, · R Ritz, and · R D’andrea. Performance
benchmarking of quadrotor systems using time-optimal control. 33:69–88, 2012. doi: 10.1007/
s10514-012-9282-3.

[12] Boris Houska, Hans Joachim Ferreau, and Moritz Diehl. Acado toolkit—an open-source framework for
automatic control and dynamic optimization. Optimal Control Applications and Methods, 32(3):298–
312, 2011.

[13] Boris Houska, Hans Joachim Ferreau, and Moritz Diehl. An auto-generated real-time iteration algorithm
for nonlinear MPC in the microsecond range. Automatica, 47(10):2279–2285, 2011. ISSN 00051098.
doi: 10.1016/j.automatica.2011.08.020. URL http://dx.doi.org/10.1016/j.automatica.2011.
08.020.

[14] Haomiao Huang, Gabriel M. Hoffmann, Steven L. Waslander, and Claire J. Tomlin. Aerodynamics
and control of autonomous quadrotor helicopters in aggressive maneuvering. Proceedings - IEEE In-
ternational Conference on Robotics and Automation, pages 3277–3282, 2009. ISSN 10504729. doi:
10.1109/ROBOT.2009.5152561.

[15] Juraj Kabzan, Miguel de la Iglesia Valls, Victor Reijgwart, Hubertus Franciscus Cornelis Hendrikx, Claas
Ehmke, Manish Prajapat, Andreas Bühler, Nikhil Gosala, Mehak Gupta, Ramya Sivanesan, et al. Amz
driverless: The full autonomous racing system. arXiv preprint arXiv:1905.05150, 2019.

67

https://www.faa.gov/regulations_policies/handbooks_manuals/aviation/helicopter_flying_handbook/
https://www.faa.gov/regulations_policies/handbooks_manuals/aviation/helicopter_flying_handbook/
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-241.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-241.html
http://www.sciencedirect.com/science/article/pii/B9780128051894000032
http://www.sciencedirect.com/science/article/pii/B9780128051894000032
http://arxiv.org/abs/1804.04811
http://arxiv.org/abs/1804.04811
http://arxiv.org/abs/1905.11377
http://dx.doi.org/10.1016/j.automatica.2011.08.020
http://dx.doi.org/10.1016/j.automatica.2011.08.020

68 Bibliography

[16] Manon Kok, Jeroen D Hol, and Thomas B Schön. Using inertial sensors for position and orientation
estimation. arXiv preprint arXiv:1704.06053, 2017.

[17] Unsik Lee and Mehran Mesbahi. Optimal Power Descent Guidance with 6-DoF Line of Sight Constraints
via Unit Dual Quaternions. AIAA Guidance, Navigation, and Control Conference, pages 1–21, 2015. doi:
10.2514/6.2015-0319. URL http://arc.aiaa.org/doi/10.2514/6.2015-0319.

[18] Robert C Leishman, John Macdonald, Robert C ; Leishman, John ; Macdonald, Randal W ; Beard, and
Timothy W Mclain. Quadrotors and Accelerometers: State Estimation with an Improved Dynamic Model
BYU ScholarsArchive Citation. Original Publication Citation, 34(1):28–41, 2013. ISSN 1066-033X. doi:
10.1109/MCS.2013.2287362. URL https://scholarsarchive.byu.edu/facpub.

[19] Shuo Li, Erik van der Horst, Philipp Duernay, Christophe De Wagter, and Guido CHE de Croon. Vi-
sual model-predictive localization for computationally efficient autonomous racing of a 72-gram drone.
arXiv preprint arXiv:1905.10110, 2019.

[20] Robert Mahony, Vijay Kumar, and Peter Corke. Multirotor aerial vehicles: Modeling, estimation, and
control of quadrotor. IEEE Robotics and Automation Magazine, 19(3):20–32, 2012. ISSN 10709932. doi:
10.1109/MRA.2012.2206474.

[21] Antonio Franchi Matthias Faessler and Davide Scaramuzza. Differential flatness of quadrotor dynamics
subject to rotor drag for accurate tracking of high-speed trajectories. CoRR, abs/1712.02402, 2017. URL
http://arxiv.org/abs/1712.02402.

[22] Anusha Nagabandi, Gregory Kahn, Ronald S Fearing, and Sergey Levine. Neural network dynamics for
model-based deep reinforcement learning with model-free fine-tuning. In 2018 IEEE International Con-
ference on Robotics and Automation (ICRA), pages 7559–7566. IEEE, 2018.

[23] D Subbaram Naidu. Optimal control systems. CRC press, 2002.

[24] Sammy Omari, Minh Duc Hua, Guillaume Ducard, and Tarek Hamel. Nonlinear control of VTOL UAVs
incorporating flapping dynamics. IEEE International Conference on Intelligent Robots and Systems,
pages 2419–2425, 2013. ISSN 21530858. doi: 10.1109/IROS.2013.6696696.

[25] B Razgus, E Mooij, and D Choukroun. Relative navigation in asteroid missions using dual quaternion
filtering. Journal of Guidance, Control, and Dynamics, 40(9):2151–2166, 2017.

[26] Hugo Romero, Sergio Salazar, and José Gómez. Real-Time Stabilization of an Eight-Rotor UAV Using
Stereo Vision and Optical Flow. Unmanned Aerial Vehicles: Embedded Control, 25(4):237–263, 2013. doi:
10.1002/9781118599938.ch12.

[27] Amol Sasane. Optimization in Function Spaces. Courier Dover Publications, 2016.

[28] Zhaolong Shen and Sean B Andersson. Minimum time control of a second-order system. In 49th IEEE
Conference on Decision and Control (CDC), pages 4819–4824. IEEE, 2010.

[29] Steven E Shreve. Stochastic calculus for finance II: Continuous-time models, volume 11. Springer Science
& Business Media, 2004.

[30] Sihao Sun, Rudi Schilder, and Coen C. de Visser. Identification of Quadrotor Aerodynamic Model from
High Speed Flight Data. (January), 2018. doi: 10.2514/6.2018-0523.

[31] James Svacha, Kartik Mohta, and Vijay Kumar. Improving quadrotor trajectory tracking by compensating
for aerodynamic effects. 2017 International Conference on Unmanned Aircraft Systems, ICUAS 2017,
pages 860–866, 2017. doi: 10.1109/ICUAS.2017.7991501.

http://arc.aiaa.org/doi/10.2514/6.2015-0319
https://scholarsarchive.byu.edu/facpub
http://arxiv.org/abs/1712.02402

	Introduction
	A brief introduction to autonomous drone racing
	Scope
	Conditions inside a drone-race
	MAVLab's drone-racing pipeline
	Requirements for the control module
	Problem statement
	Motivation
	Organization

	Introduction to Quadrotor Dynamics
	A brief introduction to the area of state estimation
	Quadrotor dynamics
	The Newton-Euler modeling approach
	Frames of reference and Rotation matrices
	Difficulties in control and estimation for QRs
	Observability
	Reachability

	Discussion

	State estimators for Quadrotor Control
	Positional state estimation
	Thrust
	Induced velocity method
	Hover-thrust/constant-altitude method
	Thrust model augmented with drag and effectiveness based terms
	Discussion

	Drag forces
	Lift induced drag/rotor drag
	Blade flapping
	Parasitic drag
	Key take-away from the classification of drag forces
	Drag parameter estimation

	Modeling of QR dynamics
	Conventions and Symbols
	The GRASPLab, UPenn and ANU estimator
	The ETH-Zurich/CNRS France estimator
	The UZH estimator

	Summary of prior estimators
	Requirements for a better lateral-state estimator
	Proposed state estimator
	Evaluation of different state estimators
	Results: Maneuvers with high lateral velocities
	Results: Maneuvers with high angular velocities

	Analysis

	Optimal control
	Position control for QRs
	Existing QR control techniques
	PID
	Minimum snap trajectories and Differential flatness
	Model predictive control
	Requirements for a better QR position controller

	Proposed controller
	A brief introduction to optimal control
	Proposed algorithm for control of racing drones

	Results
	Profiling
	Discussion

	Conclusion and Recommendations
	Conclusions
	Improved pipeline after this thesis
	Applications of this work
	Applications in the area of state estimation
	Applications in the area of optimal control

	Recommendations
	State estimation
	Optimal control

	Pontryagin's principle
	Existence of a unique analytical solution
	Pontryagin's minimum principle (PMP)
	The Boston University algorithm

	Appendix
	Scaling laws
	Modeling, Control and System Identification of the Moment models
	Accelerometers for positional state estimation
	Brachistochrone problem

	Bibliography

