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ABSTRACT

In the previous decade, Deep Learning (DL) has proven to

be one of the most effective machine learning methods to

tackle a wide range of Music Information Retrieval (MIR)

tasks. It offers highly expressive learning capacity that

can fit any music representation needed for MIR-relevant

downstream tasks. However, it has been criticized for sac-

rificing interpretability. On the other hand, the Bayesian

nonparametric (BN) approach promises similar positive

properties as DL, such as high flexibility, while being ro-

bust to overfitting and preserving interpretability. There-

fore, the primary motivation of this work is to explore the

potential of Bayesian nonparametric models in compari-

son to DL models for music representation learning. More

specifically, we assess the music representation learned

from the Hierarchical Dirichlet Process Gaussian Mixture

Model (HDPGMM), an infinite mixture model based on

the Bayesian nonparametric approach, to MIR tasks, in-

cluding classification, auto-tagging, and recommendation.

The experimental result suggests that the HDPGMM music

representation can outperform DL representations in cer-

tain scenarios, and overall comparable.

1. INTRODUCTION

Deep learning became one of the most popular and suc-

cessful methodologies to tackle a various range of MIR

tasks; music classification [1], music generation [2], rec-

ommendation [3] and more. Some of the known benefits

are 1) the high expressiveness towards any data structure,

2) effective ways to handle the overfitting, and finally, 3)

the rapidly improving infrastructural supports, including

both hardware (i.e., accelerators such as GPU) and soft-

ware (i.e., deep learning frameworks). Fuelled by these

benefits, DL models can learn useful representations of

diverse data, which is one of the key reasons for its suc-

cess [4]. On the other hand, DL models often are criticized

for their lack of interpretability [5], also for applications

within the MIR domain [6, 7].

© J. Kim and C. C. S. Liem. Licensed under a Creative

Commons Attribution 4.0 International License (CC BY 4.0). Attribu-

tion: J. Kim and C. C. S. Liem, ªThe power of deep without going

deep? A study of HDPGMM music representation learningº, in Proc. of

the 23rd Int. Society for Music Information Retrieval Conf., Bengaluru,

India, 2022.

According to [8, 9], interpretability of a machine learn-

ing model can be defined as the degree to which a user

can understand the underlying mechanism of its opera-

tion. In this regard, DL models would be substantially less

interpretable due to their complex internal structure than

simplerÐyet may be comparably expressiveÐalternatives

such as hierarchical probabilistic models.

The Bayesian Nonparametric (BN) approach is such an

alternative to achieving what DL does well in an inter-

pretable way. As a nonparametric method, it can overcome

underfitting by unlimited model capacity, while resisting

overfitting through its Bayesian nature [10]. At the same

time, the model can be interpretable, as the probabilistic

model structure hypothesizes the data generation process

in a relatively simple and humanly understandable manner.

In past decades, BN models have been applied in vari-

ous MIR tasks. For example, they were applied to a latent

representation of music audio in estimating music (self-)

similarity [11, 12]. They also were employed to conduct

harmonic and spectral analyses by decomposing the time-

frequency representation of the music audio into a mixture

of countable infinite latent components [13, 14]. These

analyses also have shown to be useful for downstream

tasks such as structural analysis [15] or music recommen-

dation [16]. Further, a discriminative model based on the

BN was developed for music emotion recognition [17].

While DL gained considerable popularity, it is strik-

ing BN models did not gain as much attention. As they

promise similar high-level properties and strengths to DL,

it will be worthwhile to explore to what extent they com-

pare to modern DL models for MIR-relevant tasks. There-

fore, in this work, we will assess music representations

learned from BN models, and compare them under simi-

lar experimental control with modern deep neural network

models. In particular, we consider the Hierarchical Dirich-

let Process Gaussian Mixture Model (HDPGMM) [16, 18,

19] as our model of interest. To concretize the compari-

son, we employ the transfer learning experimental frame-

work [20±22], which is commonly used for assessing the

potential of learned representations. The contributions of

this work can be listed as follows:

1. We explore and suggest insight into how ªgoodº and

transferable the HDPGMM representation is for a

range of MIR tasks.

2. We provide an implementation of an efficient, GPU-
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accelerated inference algorithm for HDPGMM,

which can handle large-scale music datasets.

2. HDPGMM

In this section, 1 we introduce the Hierarchical Dirichlet

Process Gaussian Mixture Model (HDPGMM) [12, 19].

We first discuss the Dirichlet Process Mixture Model

(DPMM) upon which the HDPGMM is extended.

2.1 Dirichlet Process Mixture Model

The Dirichlet Process (DP) is an well-known stochastic

process that draws random probability distributions, which

often is described as a distribution over distributions [10].

One of the most common applications of DP is the infinite

mixture model, thanks to the property of DP that one can

draw distributions of an arbitrary dimensionality. Thus, the

Dirichlet Process Mixture Model (DPMM) can find the ap-

propriate number of components K based on the set of ob-

servations as part of the learning process.

Among several ways to represent DP, we introduce the

stick-breaking construction [24] 2 . Stick-breaking con-

structs DP in a simple and general manner. Formally, it

is as follows:

β′
k ∼ Beta(1, γ)

βk = β′
k

k−1
∏

l=1

(1− β′
l)

ϕk ∼ H

G0 =
∞
∑

k=1

βkδφk

(1)

where the two equations in the left column represent the

draw of infinite dimensional weights βk which sums to

one. Notably, the distribution for β is also referred to

β ∼ GEM(γ) [25]. In the right column, H denotes the

base distribution from which variable ϕk ∈ Φ is drawn.

The right bottom equation defines the draw of the proba-

bility measure G0, where δφk
means the point mass cen-

tered at the component ϕk. Altogether, Eq. (1) constructs

the DP G0 ∼ DP(γ,H). Figure 1 depicts the process in a

graphical way.

Figure 1: Illustration of stick-breaking construction.

In the mixture model context, we want to infer mix-

ture components {ϕ1, ϕ2, · · · , ϕk, · · · } that fit to the data

observations {x1, x2, · · · , xn}, which are assumed to be

1 We adopted most of the notations from [18, 23].
2 Literature commonly chooses the Chinese Restaurant Process (CRP)

as an illustrative metaphor for DP, as it is intuitive and explains various
properties of DP well [10]. We discuss DP with the stick-breaking con-
struction, due to its further usage in the model inference within the work.
Other metaphorical descriptions of DP are given in [10, 12]

drawn from distributions F (ϕ) parameterized with vari-

able ϕ (i.e., for a multivariate Gaussian F , ϕ = {µ,Σ}).

We now can use DP for drawing the component ϕ that cor-

responds to xi by introducing the cluster assignment vari-

able yi ∼ Mult(β):

β|γ ∼ GEM(γ)

yi|β ∼ Mult(β)

ϕk|H ∼ H

xi|yi, {ϕk} ∼ F (ϕyi)
(2)

where ϕyi denotes the component parameter ϕ indexed by

the assignment variable yi corresponding to the ith obser-

vation xi.

2.2 Hierarchical DPMM

In many data structures, groupings of atomic data points

arise naturally (i.e., audio frames within a song, songs from

an artist, words of lyrics). Hierarchical DP (HDP) is an

extension of DP that models the ªgroupingsº by imposing

group-level DPs derived from the ªcorpus-levelº DP as the

global pool of components [19]. Following [18], the jth

group-level DP can be expressed as follows:

π′
jt ∼ Beta(1, α0)

πjt = π′
jt

t−1
∏

s=1

(1− π′
js)

ψjt ∼ G0

Gj =
∞
∑

t=1

πjtδψjt

(3)

As seen above, HDP appears as the recursion of multi-

ple levels of DPs 3 . Notably, the base distribution G0 of

each group-level DP is from the corpus-level DP. This re-

lationship allows mapping group-level atoms ψjt to the

corpus-level atoms ϕk. Wang et al. [18] introduce indi-

cator variables cjt ∼ Mult(β) which maps ψjt and ϕk by

ψjt = ϕcjt , where β is drawn from the corpus-level DP in

Eq. (1). It simplifies the model as we do not need to repre-

sent ψjt explicitly. Finally, we can represent HDPMM by

introducing another indicator variable zjn ∼ Mult(πj) for

the nth observation xjn within the jth group, similarly to

Eq. (2):

πj |α0 ∼ GEM(α0)

zjn|πj ∼ Mult(πj)

θjn = ψjzjn = ϕcjzjn

xjn|zjn, cjt, {ϕk} ∼ F (θjn)
(4)

where we use the indicator zjn to select ψjt, which eventu-

ally is mapped as ϕcjzjn that represents the parameter θjn
to draw the observation xjn. HDPGMM is then defined by

simply setting F as the (multivariate) Gaussian distribution

and setting H as one of the distributions from which we

can sample the mean and covariance (i.e., Gaussian-inverse

Wishart distribution). Figure 2 depicts the HDPGMM

graphically.

2.3 Inference Algorithm

We employ the online Variational Inference (VI) [18],

which is a common and significantly faster choice than the

Markov Chain Monte Carlo (MCMC) method to infer fully

Bayesian models. VI approximates the true posterior by

3 It implies naturally that multiple levels are possible (i.e., corpus -
author - document) if it suits the data structure.
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Figure 2: Illustration of 2-level HDPMM within corpus-

song context. The top row depicts the corpus-level DP.

The second row describes the draw of second-level (song-

level) DPs per song from the corpus-level DP. Frame-level

features are drawn from each song-level DPs, as depicted

in the third row of the image.

minimizing the Kullback-Leibler (KL) divergence between

the approximation q(Z) and the true posterior p(Z|X),
where Z denotes the set of latent variables and parame-

ters that we want to find, and X refers a set of observa-

tions [23]. One of the popular simplifications is the full

factorization of the distribution q(Z) =
∏|Z|
i=1 qi(Zi). In

the context of HDPGMM, we have the following:

q(β′, π′, c, z, ϕ) = q(β′)q(π′)q(c)q(z)q(ϕ) (5)

where β′, π′, c, z denote the corpus-level and group-level

stick proportions, group-level component selection vari-

able, and finally the observation-level component selection

variable, respectively. ϕ refers to the parameter(s) for the

F which draws the atomic observation, set as (multivari-

ate) Gaussian in our context. Thus, ϕ includes the means

µ and precision matrices Λ of each Gaussian component.

We adopt the result from [23], where the Gaussian-Wishart

distribution is used for the prior.

Each variational distribution further factorizes into:

q(β′) =
∏K−1
k Beta(β′

k|uk, vk)

q(π′) =
∏T−1
t Beta(π′

t|at, bt)

q(c) =
∏

j

∏

t Mult(cjt|φjt)

q(z) =
∏

j

∏

n Mult(zjn|ζjn)

(6)

where uk, vk, at, bt denote the variational parameters for

the Beta distributions for corpus-level and group-level

stick proportions, respectively. φjt ∈ R
K , ζjn ∈ R

T are

the variational parameters for the Multinomial distribution

to draw the selector c and z. Also, we truncate the infinite

Beta distributions by K and T , which is a common way to

avoid actually computing the infinite dimension [18]. With

a sufficiently large number for the truncation, the model

will still not be limited to the truncation and will only use

the number of components optimal for the dataset. The

final variational distribution is the Gaussian-Wishart dis-

tribution which draws the Gaussian parameters ϕ for F :

q(ϕ) =
∏K

k N (µk|mk, (λkΛk)
−1)W(Λk|Wk, νk) (7)

where we draw the precision Λk ∈ R
d×d from the Wishart

distribution with the variational parameterWk ∈ R
d×d and

νk ∈ R, and the mean µk ∈ R
d is drawn by the precision

weighted by λk ∈ R and mean mk ∈ R
d.

We then can obtain the optimal model by maxi-

mizing the lower bound of the marginal log likelihood

log p(X|Z) [23, 26, 27]:

log p(X|Z) ≥ Eq[log p(X, β′, π′, c, z, ϕ)] +H(q)

=
∑

j

{

Eq[log (p(Xj |cj , zj , ϕ)p(cj |β
′)p(zj |π

′
j)p(π

′
j |α0))]

+H(q(cj)) +H(q(zj)) +H(q(π′
j))

}

+Eq[log p(β′)p(ϕ)] +H(q(β′)) +H(q(ϕ))
(8)

where H(·) denotes the entropy of given distribution, and

Xj = {xj1, xj2, · · · , xjNj
} is a set of observations within

the jth group. 4

Using the standard result of VI [18, 23, 27], the update

rules for group-level parameters are derived as follows:

ajt = 1 +
∑

n ζjnt (9)

bjt = α0 +
∑

n

∑T

s=t+1 ζjns (10)

φjtk ∝ exp(
∑

n ζjntEq[log p(xjn|ϕk)] + Eq[logβk])
(11)

ζjnt ∝ exp(
∑K

k=1 φjtkEq[log p(xjn|ϕk)] + Eq[logπjt])
(12)

Similarly, the update rules for the corpus-level parameters

are as follows [23]:

uk = 1 +
∑

j

∑T

t=1 φjtk (13)

vk = γ +
∑

j

∑T

t

∑K

l=k+1 φjtl (14)

λk = λ0 +Nk (15)

mk = λ−1
k (λ0m0 +Nkx̄k) (16)

W−1
k =W−1

0 +NkSk +
λ0Nk

λ0 +Nk
(x̄k −m0)(x̄k −m0)

⊺

(17)

νk = ν0 +Nk (18)

where λ0 ∈ R,m0 ∈ R
d, ν0 ∈ R,W0 ∈ R

d×d are the hy-

perparameters corresponding to the weight, location, de-

grees of freedom, and scale of Gaussian-Wishart distribu-

tion. The ªsufficient statisticsº and expectations in the up-

date rules are defined as follows:

Eq[logβk] = Eq[logβ′
k] +

∑k−1
l=1 Eq[log (1− β′

l)]

Eq[logβ′
k] = Ψ(uk)−Ψ(uk + vk)

Eq[log (1− β′
k)] = Ψ(vk)−Ψ(uk + vk)

Eq[logπjt] = Eq[logπ′
jt] +

∑t−1
s=1 Eq[log (1− π′

s)]

Eq[logπ′
jt] = Ψ(ajt)−Ψ(ajt + bjt)

Eq[log (1− π′
jt)] = Ψ(bjt)−Ψ(ajt + bjt)

Nk =
∑

j

∑

n rjnk

x̄k =
1

Nk

∑

j

∑

n rjnkxjn

Sk =
1

Nk

∑

j

∑

n rjnk(xjn − x̄k)(xjn − x̄k)
⊺

4 Thus, the terms inside the sum over the group would further factor-
ize into sums of per-group observations. We do not write these out for
legibility and space considerations.
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where Ψ(·) refers to the digamma function, and rjnk =
∑T

t=1 ζjntφjtk is the inferred ªresponsibilityº of the nth

observation of the jth group on the kth component. A stan-

dard batch update would compute statistics across the en-

tire corpus, and update the corpus-level parameters. How-

ever, it may be slow or may suffer from too large or small

numbers accumulated from a large-scale corpus.

We therefore employ the online VI, where corpus-level

parameters are updated per mini-batch of groups passed.

In this way, the early phase of model inference can be

accelerated substantially compared to the full-batch up-

date [18, 28]. The corpus-level update is then controlled

by the learning rate ρt = (τ0 + t)−κ, which is decayed

over iterations parameterized by the offset τ0 > 0 and the

rate κ ∈ (0.5, 1]:

Zt = (1− ρt)Zt−1 + ρtZ̃t (19)

where Z̃t denotes one of the corpus-level parameters from

Eq. (13) to (18), which is updated by the given mini-batch

at tth iteration, while Zt−1 is the current parameter. To

scale the update with respect to the mini-batch size, we

weight Z̃ by the factor of w = |X̃|
|X| , where |X|, |X̃| denote

the number of groups within the entire observation set X

and the mini-batch of groups X̃ . The overall inference al-

gorithm is described in Algorithm 1.

Algorithm 1: Online VI for HDPGMM

Initialize ϕ = (ϕk)
K
k=1, u = (uk)

K
k=1, v = (vk)

K
k=1

randomly and set t = 1.
while Stopping criterion is not met do

Fetch a random mini-batch of groups X̃
repeat

Update aj , bj , ζj and φj using Eq. (9) to (12)
until mini-batch likelihood stops improving;
Compute uk, vk, λk,mk,Wk, and νk using Eq. (13)

to (18)
Set ρt = (τ0 + t)−κ, t← t+ 1
Update uk, vk, λk,mk,Wk, and νk using Eq. (19)

end

Inspired by the implementation of [18, 27], we ap-

ply further regularization to the model. Specifically, we

ªsplashº the uniform noise to the inferred responsibility

rjn as it can be biased if the groups are corrupted or in-

complete, such as the preview audio of the entire song:

r̃jn = (1− ηt)rjn + ηte (20)

where ηt is the regularization coefficient that determines

the extent uniform noise e = (ek)
K
k=1 is mixed into rjn.

ηt =
η0∗10

3

(t+103) also is defined as decaying function similar

to the learning rate ρt.

3. EXPERIMENTAL SETUP

The overall experimental design is adopted from the recent

music representation learning studies [20, 21, 29], where

multiple downstream MIR tasks are tested with the feature

set learned from the representation models. 5

5 The source code can be found at https://github.com/

eldrin/hdpgmm-music-experiments.

3.1 Datasets, Features & Evaluation

We use a subset of Million Song Dataset (MSD) [30] as the

dataset for the representation learning; more specifically,

the audio preview excerpts from the MSD ªtrainº subset

introduced by [31, 32] 6 . For the evaluation of the repre-

sentation, we employ three downstream tasks encompass-

ing music genre classification, music auto-tagging, and

music recommendation. For each target task, we chose

the GTZAN dataset [33] with the fault-filtered split [34],

the MagnaTagATune (MTAT) dataset [35] with the split

from [36], and finally the Echo Nest taste profile subset

as part of MSD (Echonest) [30] filtered by user and item

frequency [37].

We evaluate the modeling using the cross-validation of

task-specific prediction models. We fit the logistic re-

gression models for GTZAN and MTAT datasets, taking

the learned music representation as input and predicting

the genre or music tags. We find the hyper-parameters

of the logistic regression model by a randomized param-

eter search [38] for each run. As for the recommenda-

tion, we apply the item K Nearest Neighbor (item-kNN)

method [39] where the song-song similarity is measured

by the cosine similarity of the learned music representa-

tion. We adopt the data split introduced in [37]. For every

trial, disjoint validation and test users are uniformly sam-

pled, which includes 1142 users for each. Then 30% of lis-

tening records of these users are held out as testing records.

We find the best K by conducting a grid search on the range

K ∈ {24, 25, 26, 27, 28, 29} by measuring the accuracy on

the validation users. Using the best K, we compute the fi-

nal score on the held out test records of testing users. We

take the average score over 5 repetitions for each run to

incorporate the random split effect.

We repeat 5 evaluation runs for each learning trial to

consider the various random effects (i.e., initialization, ran-

domized search). We employ the commonly used accuracy

measures in each task to assess them, which are further

elaborated in Table 1.

Id # Samples # Classes/# Users Acc. Measure

MSD 213, 354 N/A N/A

Echonest 40, 980 571, 355 7 nDCG [40]
GTZAN 1, 000 10 F1 [41]
MTAT 25, 863 50 AUROC [42]

Table 1: Details on the datasets. We use the macro av-

erage strategy for F1 and Area Under Receiver Operating

Characteristic curve (AUROC) measure, and we consider

the top 500 recommended songs for computing the nor-

malized Discounted Cumulative Gain (nDCG).

We select a set of audio features to infer the HDPGMM

and non-DL baseline models inspired by [17]. The further

details of the features can be found in Table 2. We use the

implementation of librosa [43] with the default param-

eters for all the features.

6 Length of preview audio differs per clip, where about 70% of samples
are approximately 30 seconds and the rest are 1 minute, with a small
subset longer than 1 minute.

7 This refers the number of users in the dataset.
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Feature Aspect Dim. Transform

MFCC Timbre 13 -
∆MFCC Timbre 13 -
∆∆MFCC Timbre 13 -

Onset Strength [44] Rhythm 1 log
Chroma [45] Tonal 12 log

Table 2: Details on the base audio features we employed

for the experiment.

3.2 Comparisons

We evaluate 4 comparisons against HDPGMM, including

DL-based and non-DL-based models.

• G1 is the simplest model among the comparisons. The

song-wise feature is represented by the concatenated pa-

rameters ϕ = {µ,Σ} of the single multivariate Gaus-

sian fitted on the frame-level base audio feature vectors

within a song. We chose the square root of the diagonal

in covariance, which means the feature is the concatena-

tion of mean µ ∈ R52 and standard deviation σ ∈ R52

of features.

• VQ Codebook can be deemed as the approximation of

HDPGMM models [12]. First, a corpus-wise K-means

clustering is fitted on the frame level features. Then,

song-level feature is represented by the normalized fre-

quency of cluster assignment of each frame-level feature

within the song. 8 We set K = 256.

• KIM is a DL-based music representation trained in a

simple self-supervised learning framework with a VGG-

like [46] architecture [20]. We use the original im-

plementation of the work, which takes the stereo mel-

spectrogram of a 2.5 second-length clip as input. The

representation is extracted from the last hidden layer be-

fore the prediction and summarized with global average

and standard deviation pooling through the entire song.

• CLMR [29] is a recent DL-based music representa-

tion employing self-supervised learning through the con-

trastive learning method [47]. We employ the original

implementation of [29] that uses the 2.67 second-length

raw audio samples as input feature. 9 The representation

is drawn from the last hidden layer and pooled with the

global average over the entire song excerpt.

• HDPGMM uses the base audio feature with the

whitening following [48]. As for song-level rep-

resentation yj , we employ the exponentiation of

ỹjk = exp(Eq[log p(Xj |cj , zj , ϕk)]) and normalize it

over components and the length of the clip yjk =

N−1
j

ỹjk∑
K
k′=1

ỹjk′

. We adopt many hyper-parameter se-

tups from the result of [18]; we set the truncation

of components on the corpus level K and the song

level T as 256 and 32 respectively, mini-batch size to

8 It can be interpreted similarly to the inferred cluster assignment vari-
able πj in Eq. (4).

9 Unlike the original work, we reduce the dimensionality of the hid-
den layer, from which we extract the representation, from 512 to 256 to
control the representation dimensionality with other comparisons. Also,
we do not apply the data augmentation for a fair comparison and also as
it is beyond the main scope of the work. However, as it is reported that
it can meaningfully improve the representation, we assume that applying
the method would benefit other models similarly.

1024, learning rate parameters κ = 0.6 and τ0 =
64. We, however, explore the regularization rate η0 ∈
{10−4, 10−3, 10−2, 10−1} and total corpus size |X| ∈
{2 × 103, 2 × 104, 213354} to examine their effect on

the representation. 10

For all the comparisons except G1, we repeat 3 learn-

ing trials in consideration of random effects. Within a trial,

we iterated the update for 100 epochs for KIM, CLMR,

and HDPGMM. Further, we set the representation’s di-

mensionality to 256, homogeneous across all comparisons

except G1. Finally, we take the logarithm of the represen-

tation ŷj = log(max(yj , 10
−8)) if it is given as the proba-

bility simplex (i.e., VQCodebook, HDPGMM).

4. RESULT AND DISCUSSION

4.1 Effect of Learning Factors

Overall, we observe that the learning factors of HDPGMM

can make a substantial difference. As Figure 3 shows,

the result suggests that the additional regularization in Eq.

(20) generally affects positively the performance of all the

downstream tasks we tested. It implies that the entire song

inputs would likely improve the representation further, as

the regularization crudely masks the effect of the missing

data due to the preview clipping to some extent.

Further, we find that the number of training samples

positively affects the performances in general. We mea-

sured the effect by repeatedly sub-sampling the training

data 5 times in two different sizes mentioned in Sec-

tion 3.2, and conducted the same evaluation applied for the

full training set. The result shows that the positive effect

is logarithmic, suggesting that the model should be learned

with an exponentially larger dataset to get a linear improve-

ment in the performance. The recommendation task, on the

other hand, indicates the effect may not be linear, as we ob-

serve that the learning with 2 × 103 samples outperforms

the 2× 104 samples. However, the largest dataset leads to

a better representation than the smallest datasets.

4.2 Model Comparison

Dataset Measure Model Mean (±SD)

Echonest nDCG

G1 0.0237 (± 0.0011)
VQCodebook 0.0155 (± 0.0003)
KIM 0.0257 (± 0.0015)
CLMR 0.0362 (± 0.0012)
HDPGMM 0.0221 (± 0.0006)

GTZAN F1

G1 0.5396 (± 0.0049)
VQCodebook 0.5777 (± 0.0022)
KIM 0.5420 (± 0.0290)
CLMR 0.6375 (± 0.0368)
HDPGMM 0.6467 (± 0.0069)

MTAT AUROC

G1 0.8441 (± 0.0006)
VQCodebook 0.8386 (± 0.0013)
KIM 0.8014 (± 0.0045)
CLMR 0.8262 (± 0.0026)
HDPGMM 0.8482 (± 0.0020)

Table 3: Evaluation results on downstream tasks.

10 The implementation can be found at https://github.com/
eldrin/pytorch-hdpgmm.
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Table 4: Top tags for a few mostly ªloadedº components (column-wise). The last row is the normalized total responsibility

Ñk = Nk∑
K
k′ Nk′

, meaning the proportional amount of songs having the component.
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Figure 3: Effect of the learning factors on HDPGMM. Er-

ror bars indicate the standard deviations, and the grey dots

are the raw data points.

Model comparison suggests that the HDPGMM model

is comparable to the DL representation on average and can

outperform it in a few specific scenarios. For the com-

parison, we chose the best HDPGMM model according

to the result in Section 4.1 by setting η0 = 10−1 and

using the entire dataset. As reported in Table 3, KIM

achieves worse performance than HDPGMM on GTZAN

and MTAT while performing better at recommendation

(Echonest). On the other hand, CLMR, which adopts a

more sophisticated learning strategy, achieves the best per-

formance in Echonest, but performs worse than HDPGMM

on MTAT and comparable on GTZAN. It is notable that the

mixture model variants (VQCodebook, HDPGMM) per-

form particularly worse on the recommendation task. We

hypothesize that the cosine similarity might not be an op-

timal choice for the probability simplex representation, or

the feature set we consider may lack aspects that are crucial

for the recommendation; this requires further study.

Except for this case, HDPGMM outperforms the other

non-DL comparisons in general. It especially achieves sig-

nificant improvement over its simplified version (VQCode-

book) for all tasks, and mostly outperforms G1.

4.3 Component Interpretability

Finally, we explore the interpretability aspect of the

HDPGMM model. To achieve it, we employ the Lastfm-

MSD music tag dataset [30] where we find the mapping

between the MSD songs and the social music tags. All

our MSD training samples have mappings to the social

tags, whose vocabulary size reaches roughly half a mil-

lion. We compute the most relevant music tags for each

corpus-level component found by the HDPGMM model.

We estimate the relevance by a proxy measure αtk =
∑

j∈X:t∈j N
−1
j

∑

n rjnk, where t denotes the tag index

and rjnk refers the responsibility computed in Eq. ( 20).

To improve the clarity, we filter the most popular tags

by weighting the measure by the Inverse Document Fre-

quency (IDF) for each tag.

Table 4 shows an example from one of the HDPGMM

with high regularization (η0 = 10−1). It suggests that the

most frequent component (the first column) can be inter-

preted as the corpus-wide, universal topic. From second

to the rest it represents a few other topics of music, such

as country-rock (column 1), pop-female vocalist (column

2, 3, 5), and electronic-dance (column 4). Notably, sev-

eral compatible topics (i.e., columns 2, 3, and 5) exist,

which can be interpreted as the collection of slightly dif-

ferent sub-clusters of an umbrella topic. It suggests that

the advanced BN methods such as the hierarchical latent

component models using the nested HDP [49] would fur-

ther improve the representation.

5. CONCLUSION AND FUTURE WORK

In this work, we explore the potential of a BN model in the

MIR task space. The results suggest that the HDPGMM

representation achieves comparable effectiveness over the

DL equivalents and outperforms a few scenarios. It im-

plies that the method can be as effective as DL models

when used in the supervised learning setup as well, by, for

instance, jointly maximizing the variational lower bound

both for the data generation and the prediction tasks. It has

already been shown that such a joint objective approach

can outperform the separated feature learning and transfer

strategy that we demonstrate in this work [17].

Notably, HDPGMM is one of the more simple models

in the BN approach. As mentioned above, there are mod-

els that are ªdeeperº such as nested DP models, which al-

low for a hierarchical structure of latent components [49].

The model also can be improved by introducing a sequen-

tial model such as Hidden Markov Models (HMM) as a

base distribution [11], as the HDPGMM model assumes

the exchangeability of tokens (feature frames), which is

not ideal for a music signal. We left these possibilities to

future work.
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