
Challenge the future

Department of Precision and Microsystems Engineering

USING TOPOLOGY OPTIMIZATION FOR ACTUATOR
PLACEMENT WITHIN MOTION SYSTEMS

Stefan Broxterman

Report no : EM 2017.38
Coach : dr.ir. M. Langelaar
Professor : dr.ir. M. Langelaar
Specialisation : Engineering Mechanics
Type of report : MSc thesis
Date : August 30, 2017

Using Topology Optimization
for Actuator Placement
within Motion Systems

Master of Science Thesis

For the degree of Master of Science in Mechanical Engineering at Delft
University of Technology

Stefan Broxterman

August 30, 2017

Faculty of Mechanical, Maritime and Materials Engineering (3mE) · Delft University of
Technology

Copyright c© 2017 by Stefan Broxterman

All rights reserved.

IV

Stefan Broxterman Master of Science Thesis

“A person who never made a mistake never tried anything new.”
— A. Einstein

Abstract

Topology optimization is a strong approach for generating optimal designs which cannot be
obtained using conventional optimization methods. Improving structural characteristics by
changing the internal topology of a design domain has been fascinating scientists and engi-
neers for years. Topology optimization can be described as a distribution of a given amount
of material in a specified design domain, which is subjected to certain loading and boundary
conditions. This domain can then be optimized to minimize specified objectives, for example
compliance. For static problems, topology optimization is extensively used. The distribution
of material, void and solid regions, can be used to solve several problems within the mechan-
ical domain. However, this method of optimization is also used to optimize structures with
respect to their resonant dynamics.

Using topology optimization preliminaries, the research first focuses on the design of supports.
By taking a bridge as example, it is explained why design of supports can be helpful. When
supports are not prescribed, the process of design of supports can be used to determine where
these supports should be placed. The combination of topology optimization and design of
supports can also be very helpful in compliant mechanisms.

Design of supports is then exploited to design of actuator placement. This new approach of
optimizing focuses on design problems, where the placement of force is not prescribed. For a
given material in a static domain, the optimal actuator lay-out is determined. This optimal
placement of actuators can contribute to a better objective. A minimal force constraint is
implemented, to avoid trivial solutions.
Topology optimization is included and combined with design of actuator placement. The
simultaneous optimization process of topology and load placement is shown and explained.
It is shown that topology and load placement are influencing each other which leads to even
better objective results, while respecting given constraints.

Finally, a wafer stage is considered as case study. By implementing a harmonic force, dynam-
ics are introduced. Some basic phenomena of the dynamics are introduced and explained.
Then, design of actuator placement is used to ensure that certain mode shapes are not excited
whereas other are. It is shown that a larger actuator design domain typically results in better
dynamic performance.

Master of Science Thesis Stefan Broxterman

ii Abstract

After the process of design of actuators, topology optimization is included here. Topology
optimization will be used to determine the most ideal placement of the actuators to comply
with the requested (minimal) frequency response and lead to a better objective.
This placement of actuators can be used within certain motion systems, especially where
the placement of actuators is not pre-defined by manufacturing. However, the results of the
theoretical model could trigger users to reconsider their current manufacturing, in order to
apply the improved actuator placements to improve their current dynamic performance.

Stefan Broxterman Master of Science Thesis

Preface

This thesis is the result of my Master of Science graduation project. The opportunity was
given by the department of Precision and Microsystems Engineering at the Delft University
of Technology.

During this thesis I have been supervised by Gijs van der Veen and Matthijs Langelaar. I
would like to thank my supervisors for their advice, feedback and support during my research.

Unfortunately Gijs left the University during my thesis research. Matthijs replaced him
very well. Both are very supportive and their enthusiasm and knowledge of both gentlemen
inspired me a lot.

I also would like to thank my friends, family and my fellow students for their support, love
and patience during this project.

Stefan Broxterman
August 2017

Master of Science Thesis Stefan Broxterman

iv Preface

Stefan Broxterman Master of Science Thesis

Table of Contents

Abstract i

Preface iii

Nomenclature xvii

1 Introduction 1
1.1 Background . 1
1.2 Research goals . 3
1.3 Approach . 3
1.4 Outline . 4

I Topology Optimization Preliminaries 5

2 Topology Optimization 7
2.1 Topology optimization formulation . 7

2.1.1 Compliance example . 8
2.1.2 Mesh-refinement . 8
2.1.3 Volume fraction . 10

2.2 Solution methods . 10
2.2.1 SIMP method . 11
2.2.2 BESO method . 12
2.2.3 Sensitivity analysis . 13
2.2.4 Filtering . 15

2.3 Applications . 16
2.3.1 Statics . 16
2.3.2 Dynamics . 17

Master of Science Thesis Stefan Broxterman

vi Table of Contents

2.3.3 Other domains . 17
2.4 Design of supports . 17

2.4.1 Optimizing supports . 18
2.5 Conclusions . 19

3 Topology Optimization for Engineers 21
3.1 Solution method: MMA . 21

3.1.1 OC versus MMA . 22
3.2 Advanced applications . 23

3.2.1 Restrictive regions . 23
3.2.2 Multiple load cases . 24
3.2.3 Self-weight implementation . 25
3.2.4 Continuation method . 26
3.2.5 Different filter techniques . 27

3.3 Turning 2D into 3D . 29
3.3.1 Gray-scale filter . 29

3.4 Compliant mechanisms . 31
3.4.1 Inverter and amplifier . 31
3.4.2 Micro-gripper . 33

3.5 Conclusions . 34

II Topology Optimization Extensions: Design of Supports and Loads 35

4 Design of Supports 37
4.1 Support design formulation . 37
4.2 The bridge . 40

4.2.1 The optimal bridge . 40
4.3 Advanced bridge designs . 42

4.3.1 Hanging bridge . 43
4.3.2 Train tunnel . 44
4.3.3 Integration of layout design in supports 45

4.4 Design of compliant mechanisms . 46
4.4.1 The optimal amplifier . 46
4.4.2 The optimal micro-gripper . 47

4.5 Application of support design . 47
4.5.1 Actuator locations . 48

4.6 Conclusions . 49

Stefan Broxterman Master of Science Thesis

Table of Contents vii

5 Design of Actuator Placement 51
5.1 Actuator design formulation . 51

5.1.1 Sensitivity selection . 52
5.1.2 Arching continuation approach . 53
5.1.3 Finite difference method . 54

5.2 Simple cantilever beam . 54
5.2.1 Minimal displacement . 55

5.3 Advanced applications . 56
5.3.1 Maximal displacement . 56
5.3.2 Triple fixed beam . 57
5.3.3 Minimal area displacement . 57

5.4 Topology optimization for actuator placement 58
5.4.1 Displacement consideration . 60
5.4.2 Compliance constraint . 60
5.4.3 Objective refinement . 62

5.5 Application of actuator placement . 64
5.6 Conclusions . 64

III Dynamic Topology Optimization 65

6 Case Study: Wafer Stage 67
6.1 Case introduction . 67
6.2 Dynamics . 68

6.2.1 Single force actuator . 69
6.2.2 Eigenmodes . 70
6.2.3 Frequency response . 71
6.2.4 Dynamic mode dependency . 72
6.2.5 Double actuator . 73
6.2.6 Distributed actuators . 74

6.3 Design of actuators . 75
6.3.1 Design of negative forces . 77
6.3.2 Design of force at multiple sides . 77

6.4 Topology optimization for dynamic performance 79
6.4.1 Topology optimization for fixed force . 79
6.4.2 Topology optimization for double actuator 80
6.4.3 Side force and topology optimization . 81
6.4.4 Negative forces and topology optimization 82

6.5 Topology optimization for actuator placement 84
6.5.1 Improving gray regions . 85
6.5.2 Changing conditions . 85

6.6 3D extrusion . 87
6.7 Conclusions . 87

Master of Science Thesis Stefan Broxterman

viii Table of Contents

IV Closure 89

7 Conclusions and Recommendations 91
7.1 Conclusions . 91
7.2 Recommendations . 92

A Appendix 95
A.1 Computational setup . 96
A.2 Numerical results . 96

A.2.1 Chapter 2 results . 96
A.2.2 Chapter 3 results . 98
A.2.3 Chapter 4 results . 101
A.2.4 Chapter 5 results . 103
A.2.5 Chapter 6 results . 104

A.3 Convergence graph . 107
A.3.1 Chapter 3 graphs . 109
A.3.2 Chapter 4 graphs . 111

A.4 Computational graph . 112
A.5 Arching continuation . 113
A.6 Deformed geometry . 114

A.6.1 Deformed triple fixed beam . 114
A.6.2 Deformed cantilever beam . 115
A.6.3 Deformed cantilever beam with density dependency 116
A.6.4 Deformed cantilever beam topology . 117
A.6.5 Deformed cantilever beam topology with density dependency 118

A.7 Mode contribution . 119
A.7.1 Mode contribution tables . 119
A.7.2 Mode contribution graphics . 125
A.7.3 Mode contribution progress plots . 127

A.8 Additional stage examples . 128
A.8.1 Optimizing at eigenfrequency . 128
A.8.2 Overfitting design of actuators . 129
A.8.3 Overfitting design of actuators with topology optimization 131
A.8.4 Changing conditions representations . 132
A.8.5 3D Extrusion . 133

A.9 Flowcharts . 134

Stefan Broxterman Master of Science Thesis

Table of Contents ix

B Matlab Codes 135
B.1 Basic.m . 136
B.2 ADVANCED.m . 142
B.3 BASIC.m . 148
B.4 BASIC 3D.m . 156
B.5 ADVANCED 3D.m . 169
B.6 BASIC COMPLIANT MECHANISMS.m . 176
B.7 Design of Supports.m . 186
B.8 ADVANCED DOS.m . 201
B.9 Design of Actuator Placement.m . 208
B.10 Design of Actuator Placement Including Topology Optimization.m 223

C Add-in Codes 241
C.1 Basic MMA Add-in.m . 242
C.2 Basic Restrictions Add-in.m . 244
C.3 Basic Load Cases Add-in.m . 246
C.4 Basic Self-weight Add-in.m . 247
C.5 Basic Continuity Add-in.m . 248
C.6 Basic Filters Add-in.m . 249
C.7 3D Add-in.m . 251
C.8 Complaint Mechanisms Add-in.m . 262
C.9 Design of Supports Add-in.m . 266
C.10 Design of Actuator Placement Add-in.m . 276
C.11 Topology Add-in.m . 288

D Supplementary Codes 295
D.1 Mmasub.m . 296
D.2 Subsolv.m . 299
D.3 Arrowz.m . 304

Bibliography 307

Master of Science Thesis Stefan Broxterman

mlangelaar
Cross-Out

mlangelaar
Cross-Out

x Table of Contents

Stefan Broxterman Master of Science Thesis

List of Figures

1-1 Three categories of structural optimization . 2

2-1 Compliance example . 9
2-2 Mesh example . 10
2-3 Volume example . 11
2-4 Penalty example . 12
2-5 BESO compliance example . 13
2-6 Filter example . 15
2-7 Design of lightweight city bus . 16
2-8 Bridge example . 18

3-1 Compare solution methods . 23
3-2 Passive example . 24
3-3 Active example . 25
3-4 Multiple load cases . 26
3-5 Self-weight example . 27
3-6 Different filters example . 28
3-7 3D example . 29
3-8 3D lateral example . 30
3-9 Micro-gripper hand tool . 31
3-10 Compliant mechanism problem . 32
3-11 Inverter and amplifier examples . 32
3-12 Micro-gripper design problem . 33
3-13 Micro-gripper example 1 . 33
3-14 Micro-gripper example 2 . 34

Master of Science Thesis Stefan Broxterman

xii List of Figures

4-1 Bridge example . 38
4-2 Support springs . 39
4-3 Simple bridge example . 40
4-4 The optimal bridge . 41
4-5 The optimal bridge example 1 . 42
4-6 The optimal bridge example 2 . 43
4-7 Hanging bridge . 44
4-8 Train tunnel . 45
4-9 Micro-gripper design problem . 46
4-10 Optimal amplifier example . 47
4-11 Optimal micro-gripper example . 48

5-1 Actuator placement example . 55
5-2 Simple cantilever minimal displacement . 56
5-3 Advanced applications actuator placement . 57
5-4 Triple fixed beam . 58
5-5 Minimal displacement including topology . 60
5-6 Optimal cantilever beam with topology optimization 61
5-7 Minimal displacement including topology . 62
5-8 Optimal cantilever beam with topology optimization including density dependency 63

6-1 Wafer stage . 68
6-2 Design domain single force case . 69
6-3 Mode shape solid body . 70
6-4 Mode shape solid body . 71
6-5 Bode plot . 72
6-6 Design domain two forces case . 74
6-7 Design domain distributed force case . 74
6-8 Design of actuators case 1 . 75
6-9 Design of actuators case 2 . 75
6-10 Design of actuators case 3 . 77
6-11 Design of actuators case 4 . 78
6-12 Design of actuators case 5 . 79
6-13 Topology optimization for static force . 80
6-14 Topology optimization and actuator placement for two force design 81
6-15 Optimal actuator and topology case 2 . 82
6-16 Optimal actuator and topology case 3 . 83
6-17 Optimal actuator and topology case 5 . 84
6-18 Optimal actuator and topology case 4 . 85
6-19 Improving gray regions . 86

Stefan Broxterman Master of Science Thesis

List of Figures xiii

6-20 3D extrusion . 87

A-1 Convergence standard compliance example . 107
A-2 Convergence mesh refinement example . 107
A-3 Convergence volume example . 108
A-4 Convergence penalty example . 108
A-5 Convergence filter example . 109
A-6 Convergence OC vs MMA . 109
A-7 Different filters example . 110
A-8 3D mesh refinement example . 110
A-9 Optimal bridge example . 111
A-10 Hanging bridge example . 111
A-11 Computational comparison . 112
A-12 Arching continuation . 113
A-13 Triple fixed beam deformed geometry . 114
A-14 Triple fixed beam deformed geometry for area 114
A-15 Cantilever beam deformed geometry . 115
A-16 Cantilever beam deformed geometry with density dependency 116
A-17 Cantilever beam deformed topology geometry 117
A-18 Cantilever beam deformed topology geometry 118
A-19 Mode contribution single force case . 125
A-20 Mode contribution two forces case . 126
A-21 Mode contribution distributed force case . 126
A-22 Mode contribution progress plot . 127
A-23 Design of eigenmode case . 129
A-24 Overfitting design case . 130
A-25 Overfitting design case with topology . 131
A-26 Different volume restrictions . 132
A-27 Different actuating frequencies . 132
A-28 3D extrusion . 133
A-29 Flowchart of optimization methods . 134

Master of Science Thesis Stefan Broxterman

xiv List of Figures

Stefan Broxterman Master of Science Thesis

List of Tables

6-1 Mode contribution of single force case . 73

6-2 Results overview . 88

A-1 Computer resources . 96

A-2 Standard compliance example . 96

A-3 Mesh refinement example . 97

A-4 Volume fraction example . 97

A-5 Penalty example . 97

A-6 Filter example . 97

A-7 OC vs MMA . 98

A-8 Passive and active examples . 98

A-9 Multiple load cases . 98

A-10 Self-weight example . 99

A-11 Different filters example . 99

A-12 3D mesh refinement example . 99

A-13 Complaint mechanism example . 100

A-14 Optimal bridge . 101

A-15 Optimal bridge example 1 . 101

A-16 Optimal bridge example 2 . 101

A-17 Hanging bridge . 102

A-18 Train tunnel example . 102

Master of Science Thesis Stefan Broxterman

xvi List of Tables

A-19 Optimal compliant mechanisms . 102

A-20 Minimal compliance beam . 103

A-21 Simple cantilever beam . 103

A-22 Triple fixed beam . 103

A-23 Cantilever beam with topology optimization . 103

A-24 Dynamic solid beam . 104

A-25 Design of dynamic actuator placement . 104

A-26 Design of dynamic actuator placement . 104

A-27 Dynamic actuator placement and topology . 105

A-28 Dynamic actuator placement and topology . 105

A-29 Dynamic actuator placement and topology . 105

A-30 Dynamic actuator additional cases . 106

A-31 Dynamic actuator additional cases . 106

A-32 Dynamic actuator overfitting cases . 106

A-33 Mode contribution of single force case . 119

A-34 Mode contribution of two forces case . 120

A-35 Mode contribution distributed force case . 120

A-36 Mode contribution of case 1 . 121

A-37 Mode contribution of case 2 . 121

A-38 Mode contribution of case 3 . 122

A-39 Mode contribution of case 4 . 122

A-40 Mode contribution of case 5 . 123

A-41 Mode contribution of overfitting case . 123

A-42 Mode contribution of eigenmode case . 124

Stefan Broxterman Master of Science Thesis

Nomenclature

General meaning of often used symbols, unless mentioned otherwise in the context.

α Penalty slope
γ Support factor
β Heavi-side filter parameter
ηi Mode influence
λ Lagrange multiplier
ρ Density
ρ̃e Filtered element density
ρ̄e Projected element density
ρ0 Self-weight density
ρn Node density array
φi Eigenvector
ω Actuating frequency
ωi Eigenfrequency
A Support area
c Compliance
din Input displacement
dout Output displacement
E Young’s modulus
Ep Penalized Young’s modulus
e Element number
f Function value
f ′ Differentiated function value
fsw Self-weight force array
f Force array
fp Penalized force array
Gd Displacement gain

h Perturbation value
i Node number
K Stiffness matrix
Ke Element stiffness matrix
Ks Spring stiffness matrix
Kx Stiffness density displacement
Ks,0 Maximum stiffness
L Selection vector
m Mass
M Global mass matrix
Me Elemental mass matrix
N Number of elements
Ni Number of nodes
p Penalty
q Spring penalty
r Filter radius
u General displacement array
ü Acceleration array
ũ Adjoint displacement array
ua Displacement of selected area
ux Node density displacement
V Total volume
v Volume
W Weight factor
z Support design variable

xviii Nomenclature

Stefan Broxterman Master of Science Thesis

Chapter 1

Introduction

This report is a representation of my Master of Science thesis project. The aim of the research
is to investigate the use of topology optimization for the optimal placement of actuators, to
use within motion systems. At first, a background for this thesis is given in section 1.1,
followed by the main research goals in section 1.2. The methodology is depicted next in
section 1.3. This chapter is concluded by a quick outline of this thesis project in section 1.4.

1.1 Background

Nowadays, engineers are faced with structures of increasing complexity. These structures are
getting smaller, lighter and more detailed. This tendency should not conflict the objective of
the structure. A car, for example, would benefit from less weight for fuel cost reduction. The
chassis however, should remain stiff enough to counteract deformations and provide safety
for the driver. In the high-tech industry, and the equipment used there, like a wafer stage
or robots, complexity is increasing. Also, the design space is getting smaller, especially in
the semiconductor industry. The structure should, however, be stiff enough to not conflict
its reliability. A very promising approach for these type of problems is the use of topology
optimization.

Topology optimization is the process, which determines the optimal material placement within
a certain design domain, in order to obtain the best possible structural performance. The pro-
cess is widely used within the engineering domain, since the use of a homogenization method
in topology optimization (Bendsoe and Kikuchi, 1988). Topology optimization gives the con-
nectivity, shape and topology of elements in the design domain. The topology of elements
can be described as a distribution of void and solid regions within that design domain.
Topology optimization is the newest technique in the field of structural optimization. Struc-
tural optimization is divided in three main categories, the choice of optimization is mainly
based on the design variables. Three examples of this categories are depicted in Figure 1-1.
Structural optimization can be used in discrete and continuum structures, depending on the

Master of Science Thesis Stefan Broxterman

2 Introduction

Figure 1-1: Three categories of structural optimization. a) Sizing optimization of a truss struc-
ture, b) shape optimization and c) topology optimization. The initial problems are shown at the
left hand and the optimal solutions are shown at the right. (Bendsoe and Sigmund, 2003).

design properties and domain.

As can be seen in Figure 1-1a, sizing optimization is here used for a truss structure. The op-
timization objective is to maximize the vertical stiffness by changing the cross-sectional area
of each truss element. This cross-sectional area can thus be considered as a design variable.
The case depicted in Figure 1-1b is a shape optimization. Changing the geometry of the holes
can provide a higher stiffness. The area and number of holes remains fixed, which is called a
constraint. However, the shapes of the holes which are the design variables can be changed.
In most cases, structural optimization problems are not fixed at only sizing or only shape
problems. A mixture of the categories is needed, in order to achieve the most optimal result.
As can be seen in Figure 1-1c a continuum structure is optimized to achieve maximum stiff-
ness for a given amount of material. This is a typical topology optimization problem. The
term topology is derived from the Greek word topos (τ óπoζ), which is landscape or place.
The 2D-landscape is changed, so the topology of the material is changed (Sigmund, 2000).

Current topology optimization is focusing on structural design, but there are other aspects
designers have to make decisions for, like boundary conditions and load placement. These
type of design problems emerge for example in the field of high-precision positioning systems,
like a wafer stage. All these aspects are important in this case. In current research, there is a
lot missing in this particular field. There is no research available on actuator placement, nor
a combined with dynamics.

Stefan Broxterman Master of Science Thesis

1.2 Research goals 3

1.2 Research goals

The previous section depicts plenty of opportunity for research. The need for smaller, lighter
and more complex structures can be labeled as the main reason for this research project. The
first goal of this research project is to investigate the way to include the placement of supports
within static topology optimization. The next step is to investigate the usage of design of
supports for a variety of example problems.

The second goal of this thesis research project is to investigate the principles of actuator
placement and find a way to include the best placement of these actuators. If this actuator
placement is correct, topology optimization can also be included, to achieve even further im-
provements.

All previous investigations were in a static setting. A next step is to extend the work to a
dynamic setting. This can be formulated as the third research goal of this thesis. By using a
harmonic excitation the optimal actuator placement can be found. If this actuator placement
can be combined with dynamic excitations, topology optimization should be implemented
also in here. An interesting research goal is to optimize the actuation of a wafer stage by
using topology optimization and actuator placement.

1.3 Approach

This thesis will make use of the background of topology optimization. This basics are used
to achieve the research goals. In order to get familiar with topology optimization, an inves-
tigation on the process called topology optimization is done. The possibilities of this process
are investigated and a user-friendly code using Matlab1 is made, for further usage of my own
and other research. The implementation process in Matlab of several features discussed in
this thesis, can be found at the back of this thesis, by means of the used Matlab codes. These
codes are made user-friendly to make further research more accessible.
This research focuses mostly on two-dimensional examples, where discretization sizes are held
the same along the chapters, as much as possible. For consistency, the produced output pic-
tures are shown in the same manner along this report.
The main approach of this thesis can be reflected by the partition of three different parts.
First, general topology optimization preliminaries are explained. Using this gained knowl-
edge, extensions are made in the field of boundary conditions and load placement. At last,
dynamics are implemented. With these fundamentals established, a case study is used to
combine all this gained knowledge.

1Matrix Laboratory. A numerical computing environment, using a proprietary programming language.

Master of Science Thesis Stefan Broxterman

4 Introduction

1.4 Outline

In this section a outline of this research project can be found. This project is divided in four
parts.
Before starting this thesis an introduction to topology optimization is given in chapter 2.
For readers familiar with topology optimization this chapter is optional. Next, the level of
topology optimization is increased to investigate several options of topology optimization in
chapter 3.

The second part of this thesis consists multiple topology optimization extensions. Design
of supports, including topology optimization can be found in chapter 4. Next, in chapter 5
we translate the design of supports in the design of actuator placement.

In chapter 6, dynamics are introduced. This gives a new aspect to the method. Therefore,
a case study is described in the form of a wafer stage. By the implementation of dynamics,
this chapter can be seen as a complete summation and practical application of the gained
knowledge. The thesis project is ended by a conclusion and recommendations for future work
in chapter 7.

Appendix A contains detailed specifications of the hardware that is used. Since time is
important within the topology optimization process, all the calculation results can also be
found in this chapter. In Appendix B the used Matlab codes can be found. Also, for each
implementation a simple and user-friendly add-in can be found in Appendix C. Using this
add-in codes everyone can simply upgrade the basic code up to a desired code. Supplementary
codes can be found in Appendix D, followed by a list of references.

Stefan Broxterman Master of Science Thesis

Part I

Topology Optimization Preliminaries

Master of Science Thesis Stefan Broxterman

Chapter 2

Topology Optimization

This chapter is dedicated to obtaining general knowledge and options using topology opti-
mization. First it is explained what the formulation of topology optimization looks like in
section 2.1. Next, it is discussed how this formulation can be solved using solution methods
in 2.2. Practical applications of topology optimization can be found in section 2.3. Design
of supports is slightly touched in section 2.4. Section 2.5 contains an overview of topology
optimization and concludes this chapter.

2.1 Topology optimization formulation

Starting at a certain configuration the topology optimization process will optimize the struc-
ture to an objective, by varying the design variables. The structure is then optimized by
creating several void and solid regions within the design domain.
A typical optimization problem is to set up a minimum compliance design. This design aims
to optimize a simple mechanical structure to have a maximum stiffness, or minimum compli-
ance (c = k−1). Of course, the maximum stiffness will be achieved when the structure is thus
a solid structure. However, for several reasons, it could be interesting to reduce the weight
of the structure, while preserving its high stiffness properties. Reducing weight could reduce
the material costs, save fuel costs (for example in aerodynamics), and could change intended
dynamical behavior (for example in machinery).
To set up such an optimization problem, the intended volume is defined as a boundary con-
dition. The mechanical equations should hold during this optimization problem, which can
also be labeled as a boundary condition.
So now let’s set up a basic topology optimization. Here we want the structure to be as stiff
as possible, while it is subjected to (s.t.) a certain reduced weight value.

max Stiffness
s.t. m ≤ mmax

(2-1)

Master of Science Thesis Stefan Broxterman

8 Topology Optimization

Now assume linear elasticity, and replace stiffness by compliance to give a standard topology
compliance optimization problem (Langelaar, 2012).

Equilibrium: Ku = f
Compliance: c = fTu
min
design

fTu

s.t. Ku = f
m ≤ mmax

(2-2)

In this equation (2-2) the objective is to minimize the compliance. This objective can be
achieved by varying specified design parameters, in this case there are no parameters specified,
so the design parameters are free to choose. However, in most cases this does not apply. Due
to external circumstances or internal properties in most cases it is necessary to specify the
design variables. In many cases of topology optimization, the topology can be seen as a free
variable, so the density is a design variable.

2.1.1 Compliance example

In this section a very simple compliance problem will be used, just to show how the topology
optimization process is actually working. A picture is worth a thousand words give rise to
this section. The process which leads to the optimum results will be explained further in this
chapter, but for now let’s focus just on the evolution of the topology optimization solution.
In this particular example, the main objective is to maximize stiffness (minimize compliance),
while the maximum mass of the structure is enforced. Using the formulation as depicted
in (2-2), this topology optimization problem can be defined. The design parameter is the
material’s density.

min
ρ

fTu

s.t. Ku = f
m ≤ mmax

(2-3)

The maximum allowable weight is restricted to 50% of the solid weight. So the equation
mmax = msolid

2 holds. The structure in this case is a simple cantilever beam, where the left
side is clamped, while the right side is free. The height-to-width ratio is 1

3 , in order to give
a more clear representation of iterations. A vertical point load is attached to the right lower
node of the beam, as can be seen in Figure 2-1.

As can be seen, there is some evolutionary behavior showing up. The overall pattern is
somewhat the same, but the details are evolving during the iterations steps. How this iteration
scheme exactly looks like is depending on the solution, as well on the solution method that
is being used. In the upcoming chapters this will become more clear.

2.1.2 Mesh-refinement

To actually perform a topology optimization, the optimization solver uses this discretization
of elements. In order to achieve the optimum solution, the solver determines whether an

Stefan Broxterman Master of Science Thesis

2.1 Topology optimization formulation 9

c = 324.00

b)

c = 194.64

c)

c = 190.52

d)

c = 188.94

e)

a)

Figure 2-1: Evolution of iterations using the SIMP method. The beam is discretized by 90 x 30
elements. a) design problem, b) 5% of total iteration steps, c) 25% of total iteration steps, d)
50% of total iteration steps, e) final solution. The associated compliance values are shown below
each figure, which represents a ratio of strain to stress (Appendix A-2).

element is a void (0) or solid (1) region. A collection of all these discretized elements then
forms the topology of the complete structure.
Every topology optimization problems deals with the problem: How should the mesh be
refined?, which refinement is fine enough to approach the reality? Of course, every continuum
object needs to be discretized into a number of elements. This is basically a mesh-refinement.
An increasing amount of mesh elements results in a longer computational time, but if the
mesh-refinement is too rough, the solution does not represent the reality enough. In order to
achieve the most optimal mesh-field, the trade-off between precision and computational time
should be solved. It is very interesting to have a look at the manufacturing part of topology
optimization. For example the resolution of the additive manufacturing device can be seen as
the maximum amount of discretization elements, a finer mesh-refinement will from this point
not lead automatically to a finer end product.
An example of the influence of different mesh-refinements is made, to show the importance
of choosing a good mesh. The same configuration as defined in Figure 2-1 is used, this means
the height-to-width ratio remains constant, while the mesh-refinement is changed. As can be
seen in Figure 2-2 there are some notable changes in the optimization configurations. The
number of elements thus influences the structural optimization result.

Master of Science Thesis Stefan Broxterman

10 Topology Optimization

c = 219.66

b)

c = 195.01

c)

c = 188.94

d)

c = 185.48

e)

a)

Figure 2-2: Dependency of topology on the mesh refinement using the SIMP method. The beam
is discretized by b) 30 x 10, c) 60 x 20, d) 90 x 30, e) 120 x 400 elements (Appendix A-3).

2.1.3 Volume fraction

As already stated in (2.1.1) the volume fraction is restricted to 50% of the solid weight, up to
here. In this section the volume fraction is noticed. This volume fraction is derived from the
maximum allowable weight of the structure. As already considered before, a big advantage
of topology optimization is weight reduction. Although this volume fraction is most of the
time seen as the biggest restriction of the optimization, in Figure 2-3 an example of different
volume fraction is shown. This picture can be used to show the differences between certain
volume fraction levels. As can be seen, the structure is largely dependent on the volume
fraction, the layout is heavily changed when the volume fraction increases. The associated
compliances are increasing also. This is pretty clear, since more volume fraction means more
available material, which leads to increasing stiffness. The compliances in this example are
thus not that suitable for comparison.

2.2 Solution methods

As already mentioned before, the used method to produce the optimization is the SIMP
method. This method is just a way to transfer the original structure to the optimum structure
in topological perspective. A Finite Element Analysis is used for calculating the problem.
This method is very useful to calculate stiffness values. Since each element is described by
four nodes, shear locking can occur. Methods to overcome this problem are not within the
scope of this research, however. Although in section (2.1) the method is just used, without

Stefan Broxterman Master of Science Thesis

2.2 Solution methods 11

c = 505.38

b)

c = 266.94

c)

c = 188.94

d)

c = 152.72

e)

a)

Figure 2-3: Different topologies for different volume fraction. The volume fraction is given as
b) 20%, c) 35%, d) 50%, e) 65% (Appendix A-4).

any explanation; the method however, will get some more attention in this section. There are
some more optimization methods around, this literature survey will only focus on the main
two solution methods that are around and being used these days. Due to an overview and
an example of comparison, the best method will be chosen for further usage in the literature
survey.

2.2.1 SIMP method

As already can be deduced from Figure 2-2, an increasing amount of discretization elements
results in a more complicated, porous, structure. But at the other hand we want many
discretized elements, in order to mimic the reality. Now let’s have a closer look at the
Figure 2-2, it can be seen that Figure 2-2b consists of several gray regions, which is not
desirable. Topology optimization should preferably result in a solution with only void (0) or
solid (1) regions. These regions represent no or full material, respectively. Several regions in
Figure 2-2b however, represent a gray region, which could be physically defined as a material
with only a part of the element’s density. By stating this, it can be concluded that gray
regions are undesirable. To work around with this problem the Solid Isotropic Microstructure
with Penalization (SIMP) can be used to avoid this (Rozvany et al., 1992). Reminder: only
isotropic materials are considered. The SIMP approach is used to make intermediate densities
unattractive, we are looking either for no (void regions) or full (solid regions) densities. Now
recap (2-2), where the stiffness matrix K is mentioned. Suppose the discretization model to
hold. For each jth element in the structure, a maximum stiffness K0 can be derived, which
corresponds to a fully solid element. The stiffness of the optimized element Kj is derived

Master of Science Thesis Stefan Broxterman

12 Topology Optimization

c = 160.68

b)

c = 185.35

c)

c = 188.94

d)

c = 192.08

e)

a)

Figure 2-4: Different topologies for different penalization power. The penalty is defined by b)
p = 1, c) p = 2, d) p = 3, e) p = 5 (Appendix A-5).

using the maximum stiffness and the density of this jth element. The following equation is a
representation of the penalty-function of the SIMP method.

Kj = (ρj)pK0 (2-4)

As can be seen, this penalty p, also named penalization power is an exponential function of
the density. An example of the actual influence can be seen in Figure 2-4.

Usually, a penalty term of p ≥ 3 should result in a void-solid division, which is a target
in topology optimization. So a greater penalty results in a better result. However, the
computational time is increasing also. So again for this parameter a trade-off should be made
between precision and time.
In (A.9) the complete optimization scheme is shown. Each part of this scheme will be discussed
later on.

2.2.2 BESO method

Besides the SIMP Method, the BESO method sure needs some attention. Using the Evolu-
tionary Structural Optimization (ESO), an upgraded version of this method was found. The
Bi-directional Evolutionary Structural Optimization (BESO) can be used within structural
topology optimization (Querin et al., 2000), including compliance mechanisms (Huang and
Xie, 2007).

Stefan Broxterman Master of Science Thesis

2.2 Solution methods 13

c = 127.39, v = 0.96

b)

c = 137.11, v = 0.79

c)

c = 159.90, v = 0.62

d)

c = 183.58, v = 0.50

e)

a)

Figure 2-5: Evolution of iterations using the BESO method. The beam is discretized by 90 x 30
elements. a) design problem, b) 5% of total iteration steps, c) 25% of total iteration steps, d)
50% of total iteration steps, e) final solution.

The ESO concept can be seen as a process, whereby slowly inefficient material is removed, in
order to achieve an optimal result. Here inefficient means not efficient toward the objective
function. The BESO method uses this removal process, but also include, at the same time, an
addition of material step. This explains the bi-directional-term. Within each iteration step,
a Constrain-step is built in, to check whether or not the predefined constrained volume is
conflicted or satisfied. A simplified flowchart of the BESO method can be found in (A.9). As
already shown in (2.1.1), for this BESO method also, an evolutionary scheme can be made,
just to visualize the whole method. The BESO optimization can be seen in Figure 2-5.

In contrast to the SIMP method, the BESO method starts from a solid structure. Therefore,
the final solution can differ from another optimization method. This is mainly caused by
the difference in the convergence approach. However, both solutions show the same kind of
topology. And of course, both optimization methods can be fine-tuned, in order to achieve
equal solutions. But for this time, only the standard parameters are considered.

2.2.3 Sensitivity analysis

As already depicted in the flowcharts in (A.9), the Sensitivity Analysis plays an important
role in optimization processes. In this section the sensitivities of the compliance example will
be explained. As can be seen in (A.9), the loop of the topology optimization starts with a
sensitivity analysis. In this analysis the derivatives of the objective function are calculated,
with respect to the design variables. In case of the compliance example as defined in (2-2),

Master of Science Thesis Stefan Broxterman

14 Topology Optimization

the sensitivity can be seen as the derivative of the compliance over density.
In topology optimization is mainly worked with a moderate number of constraints, the adjoint
method is used. In this method, the derivatives are not explicitly calculated, but a back-
substitution is needed for each response and design variable. In order to get some more
insight in the actual analysis, let’s recap the formulation of (2-2), and combine it with (2-4).
The minimum compliance example can now be formulated as:

min
ρe

fTu

s.t.
(

n∑
e=1

ρe
pKe

)
u = f

n∑
e=1

νeρe ≤ V

0 ≤ ρe ≤ 1
e = 1, . . . , N

(2-5)

In this formulation a couple of tweaks are made, regarding the previous formulations. Sub-
stitution of (2-4) in (2-3) results in (2-5). The stiffness of the total structure is discretized by
a number of elements (1 to N), as showed in Figure 2-2. The summation of these elements e
results in the total stiffness. The summation of all these element volumes results in the total
volume V , while the density of each element should be within the range 0 to 1.
The objective function is minimize compliance, by varying the density. To compute this min-
imum, the derivative of the objective function should be computed, with respect to the design
variables. Using the equilibrium equation Ku = f, the derivative of the original objective
function c(ρ) can be computed:

∂c

∂ρe
= fT ∂u

∂ρe
(2-6)

Keep in mind, the stiffness matrix K is typically very large. The computation needs to be
done over each element e, which results in a very large computational time. In order to
work around with this problem, an effective method is to define a zero function, also adjoint
function, which will be added to the original compliance problem. Here, the adjoint vector ũ
represents a fixed, real vector and satisfies the following adjoint equation.

fT − ũTK = 0 (2-7)

Now adding this (2-7) to the original compliance example results in (2-8). This formulation
is valid for any choice of ũ, so we can basically take each expression we want. As long as this
vector is fixed and real.

c(ρ) = fTu− ũT (Ku-f) (2-8)

Now computing the derivative of (2-8) in a similar way of (2-6) results in
∂c

∂ρe
= (fT − ũTK) ∂u

∂ρe
− ũT ∂K

∂ρe
u (2-9)

Using the property of (2-7) result in the short, low-cost equation
∂c

∂ρe
= −ũT ∂K

∂ρe
u (2-10)

Stefan Broxterman Master of Science Thesis

2.2 Solution methods 15

c = 189.58

b)

c = 185.65

c)

c = 188.94

d)

c = 203.57

e)

a)

Figure 2-6: The filter radius r is here changed. The filter radius is given by b) r=1.0, c) r = 1.25,
d) r = 1.5, e) r = 3 (Appendix A-6).

Now replacing the regular stiffness matrix K with the penalty-termed stiffness as derived in
(2-5), results in:

∂c

∂ρe
= −p(ρep−1)uTKeu (2-11)

Which can be seen as the sensitivity of the optimization problem. Please keep in mind; the
derivatives depicted in (2-6) and the subsequently derived derivatives assuming that f is not
dependent on the element’s densities ρe, which is not very common.

2.2.4 Filtering

The next step in optimization, as can be seen in (A.9) is a filtering technique. The calculated
sensitivities are filtered, in order to prevent so-called checkerboard patterns (Sigmund and
Petersson, 1998). An increased number of elements will not automatically lead to a solution
that can actually be additive manufactured. The additive manufacturing has its own res-
olution, in order words, the minimum thickness it can produce. To work around with this
problem, a filter radius can be used in the topology optimization scheme. By modifying the
element sensitivities of the compliance, using a filter radius, a weighted average of the element
itself and its eight surrounded elements can be made.
Using this weighted average, the iteration scheme determines a solution, which fulfill the filter
radius specification. To get some more insight of this working principle, an example is made
and can be seen in Figure 2-6.

Master of Science Thesis Stefan Broxterman

16 Topology Optimization

Figure 2-7: Design of a lightweight city bus. a) Initial design, b) topology optimization, c) CAD
representation of the topology optimization, d) sizing optimization, e) final design (Thomas et al.,
2002).

As can be concluded, a filter radius too low results in a checkerboard problem, which may
be not manufacturable. By varying the filter radii this problem can be overcome. However,
picking a filter radius too high can result in a non-optimal solution, since this will lead to
thicker material trusses.

2.3 Applications

Topology optimization can be seen as a very effective way of creating optimum structures. As
already explained in (2.1), it can be used to maximize stiffness for a lighter structure. Now
let’s have a look at the actual practical examples of the topology optimization. And after,
the main focus of the literature survey will be explained.

2.3.1 Statics

A very interesting example is an optimization of a city bus. The main objective here is to
reduce the weight of the bus, by doing this the gasoline and thus fuel costs can be reduced.
Using different optimization programs the final bus design is modeled. The shape of the
windows was decided by the results of the structural topology optimization. A framework of
this process can be seen in Figure 2-7

Another example of the need of topology optimization is found in the MEMS industry, for
example micro-scale compliant mechanisms. A common challenge in MEMS is to produce
very little prescribed displacements. Using topology optimization can be very useful to fulfill
this need. So in this case, the topology optimization is not mainly used to reduce weight for

Stefan Broxterman Master of Science Thesis

2.4 Design of supports 17

example, but it is used to actually achieve a certain goal. By varying the associated objective
functions and constraints, a lot of possibilities can be defined in topology optimization.

2.3.2 Dynamics

The benefits of topology optimization in statics is straightforward. However, the optimization
can also be of need in the dynamics.
Up to now, only statically loaded structures are considered. However, periodically loaded
structures can also be optimized using structural topology optimization. Dependency of the
optimum topology is shown for a structure with respect to different excitation frequencies
(Ma et al., 1995).
But one can also think of the need of topology optimization to achieve a certain target in
the dynamical domain. For example a structural topology optimization of vibrating struc-
tures, with specified eigenfrequencies and eigenmodes (Maeda et al., 2006). Here topology
optimization is used to achieve a high eigenfrequency for example. Here this eigenfrequency
can be seen as an objective function which should be maximized.

2.3.3 Other domains

Upcoming research is done in fluid design. For example the optimum structure of a channel
to achieve a certain velocity and Reynolds number. Or in the (micro)fluidics, for example in
micro mixers. Here topology optimization is used to optimize the mixing process of certain
fluids (Andreasen et al., 2009).
Work is done in multiphysics, although there is only one physics, this term is widely used
in engineering. Within this multiphysics multiple domains are coupled together to achieve
a realistic behavior. While designing a micro-actuator in MEMS, thermal and electrical
behavior interfere. The coupling of these domain results in a multiphysics actuator. Topology
optimization can be used for both domains, and both domains can be coupled together, in
order to achieve the overall optimal actuator (Sigmund, 2001b).

2.4 Design of supports

While designing compliant mechanisms we have considered a structure, with boundary con-
ditions and objective functions. Although the boundary conditions for the support are not
defined in (2-2), the compliant example does include a clamped end on the left hand, as
can be seen in Figure 2-1a. However, the main objective is to maximize stiffness, minimize
compliance. The position of the support can maybe changed in this example, while aiming
at minimizing compliance. If this support can be varied, the support should be placed right
under the load case. This results in a zero displacement and consequently infinite stiffness.
Different supports will lead to different optimum structures, which is pretty straightforward.
In this section, the design of supports will be discussed, which is also the main target in the
upcoming literature survey and sequential thesis project.

Master of Science Thesis Stefan Broxterman

18 Topology Optimization

Figure 2-8: Example of design of supports with different support cost functions rc a) Initial
design, b) rc = 1, c) rc = 10, d) rc = 20 (Buhl, 2002).

2.4.1 Optimizing supports

When optimizing the design of support, the prescribed support locations, as seen in Figure 2-
1a are not longer prescribed, but interpreted as a design variable. A well-known bridge
example is shown (Buhl, 2002). Here a bridge is designed and optimized to make a road in a
deep canyon. In this Bridge example three cases are considered, as depicted in Figure 2-8.
In this example a pavement is modeled as a solid, clamped, side at the top of the design
domain. The road experiences a distributed force as a representation of continuing traffic
over the bridge. The bridge is fixed to the upper left and upper right edges. The sides
and the bottom of the design domain are considered as possible support areas. A volume
constraint of 20% is applied, the number of support constraint should yield maximum 20%
of the total number of supports.
In Figure 2-8b, the cost of support is equally distributed for the sides and bottom. This
ratio of cost rc = 1, so without any other constraints, this optimization should be the perfect
bridge structure with this constraints, and will result in the minimal compliance.
The pillars however, could be very expensive, or hard to place under this bridge. The second
optimization Figure 2-8c is award a ratio of cost rc = 10, this means a linear support cost
function from 1 to 10 (top edge to bottom edge). Therefore, material at the bottom is
undesirable, as can be seen only one support remains. In the third case Figure 2-8d a cost
function of rc = 20 is applied. By doing this, the support material at the bottom is very
unlikely, and no pillar exists anymore. An application example could be a very deep canyon,
where pillars are unwanted, but a maximum stiffness is wanted.
Design of supports is a promising optimization technique and can be used in a wide range of
applications. This literature survey will continue in the next chapter onto this optimization

Stefan Broxterman Master of Science Thesis

2.5 Conclusions 19

domain. A concrete working direction will be defined and further investigation will continue
on this subject.

2.5 Conclusions

Structural topology optimization is a very promising way of achieving several benefits. These
benefits can vary from active money saving, using less structural material (2.1), to passive
money saving, the bus example (2.3.1), where removal of material results in a lighter bus and
less fuel costs. Topology optimization can also be used to achieve specific targets, for example
in the MEMS industry (2.3.1) and within the dynamics domain. Vibrating structures can be
optimized (2.3.2) to achieve desired eigenfrequencies or eigenmodes.
We consider three different categories of optimization (1.1), namely: sizing, shape and topol-
ogy optimization. Sizing optimization only changes for example cross-sections of a truss
structure. Shape optimization changes the shape of the material, without removing or adding
material. Topology optimization defines an optimal topology solution for a given problem,
this is the main target of this literature survey.
Topology optimization can be done with several solution methods (2.2). In this survey two
main methods are considered. The SIMP method (2.2.1) uses a penalization method, to
prevent so-called grey regions in the optimal solution, since the material should be void or
solid, and not partially present. The SIMP method optimizes with respect to the constraint,
the best objective function. The BESO method (2.2.2) combines addition and removal of
material until it reaches the volume constraint. An overview of both optimization processes
can be found in (A.9).
There are however some considerations with topology optimization. A sensitivity analysis
(2.2.3) is made, followed by associated filtering, to prevent checker-boarding (2.2.4) patterns.
To remove this non-realistic solution, in terms of manufacturing, the filter radius can be
tuned. Setting the radius too low results in checker-boarding, but setting the radius too high
can skip other optimal solutions by not allowing fine features to emerge.
The design of supports will play a big role in the upcoming literature survey and sequential
thesis project. Varying support locations results in other optimization results (2.4). This de-
sign of supports can also be used to actively achieve an optimal solution regarding the actual
number and placement of supports. The bridge example (2.4.1) showed a way to improve
a structure, with respect to external factors. A deep canyon could be very unlikely to sup-
port using pillars, although this will result in a stiffer construction. Using a ratio of support
cost can give a mathematical insight in the relation between cost of supports and stiffness.
Especially in compliance problems the exact support location may not be fixed, and some
relaxation of this support location can lead to actual really good optimization results. In the
upcoming chapter some deeper investigation will be done regarding this subject. Although
not explicitly documented, there are some numerical results available of all the executed op-
timizations can be found in (A.1). These values can be used for upcoming study, in order to
make a decision regarding the choice of optimization parameters.

Master of Science Thesis Stefan Broxterman

20 Topology Optimization

Stefan Broxterman Master of Science Thesis

Chapter 3

Topology Optimization for Engineers

In chapter 2 some simple cases and basic properties of topology optimization are described. In
this chapter the philosophy and possibilities of topology optimization is taken a step further.
Topology optimization for engineers can be used to solve a variety of mechanical problems.
The simple solution method, the Optimality Criteria, can be used for simple compliance
problems. When dealing with more complex problems, there is a need for a different solution
method. The Method of Moving Asymptotes, as described in section 3.1 can be used to
overcome this.
When solving mechanical problems, some advanced applications can be helpful, to reflect
the actual design problem. In section 3.2 a number of applications are implemented and de-
scribed. The main advantage of topology optimization is within the additive manufacturing
domain, an example to 3D cases is given in section 3.3. In section 3.4 the use of topology
optimization within compliant mechanisms is explained. Section 3.5 concludes this chapter.

Using the attached MATLAB codes (B.3 up to B.6 and C.1 up to C.8) the problems in
this chapter can be solved.

3.1 Solution method: MMA

Besides the described solution method in (2.2) and up-following (2.2.3), there are some other
solution methods around. For simple compliance problems, like the cantilever problems, the
Optimality Criteria method from (2.2) can be used. This method is easy, fast and very cost-
efficient. The Optimality Criteria method is very useful for compliance problems, since this
method always wants to add material, in order to achieve a high stiffness. However, in more
complex problems, this method is insufficient.
The Method of Moving Asymptotes (Svanberg, 1987), also known as MMA, is a mathematical
programming algorithm which is very suitable for topology optimization. This method can
be used to restrict the optimization problem to multiple constraints, and multiple design
variables. In the upcoming chapter a number of applications, with the use of MMA will be

Master of Science Thesis Stefan Broxterman

22 Topology Optimization for Engineers

shown. The MMA program solves the following optimization problem:

min
x,y,z

f0(x) + a0 · z +
m∑
i=1

(ciyi + 1
2diyi

2)

s.t. fi(x)− ai · z − yi ≤ 0, i = 1, . . . ,m
xj
min ≤ xj ≤ xjmax, j = 1, . . . , n

yi ≥ 0, i = 1, . . . ,m
z ≥ 0

(3-1)

In this formulation, f0 is the objective function, while fi represents the constraint functions,
defined by the number of constraints m. A vector of design variables x will be updated, using
y and z as positive optimization variables. This vector should be in-line with the number n of
defined constraints. The programming parameters a0, ai, ci, d are so-called magic numbers
of MMA and can be used to determine the type of optimization problem.
In order to use this method for a compliance problem, the author of (Svanberg, 1987) suggested
some MMA constants: a0 = 1, ai = 0, ci = 1000, d = 0. Using these constants and at the
same time writing the function in terms of a compliance problem, results in:

min
x

c(x)

s.t. fi(x) ≤ 0, i = 1, . . . ,m
0 ≤ xj ≤ 1, j = 1, . . . , n

(3-2)

Here, the optimization variables y and z should be zero at the optimum. The vector of design
variables x is in this example just the density of each element.
This routine is implemented using the available MMA-code, which can be found in (D.1) and
(D.2)

3.1.1 OC versus MMA

In this section a comparison between the Optimality Criteria (with density filter) and the
MMA routines is made. As already stated before, the MMA-routine is very useful, dealing
with multiple constraints, while the OC-routine is not handy for these types of problems. In
order to make a good comparison, the simple compliance problem from (2.1.1) will be opti-
mized using these two routines. A comparison will be made regarding the final compliance,
as well as the number of iterations and total optimization time. An evolutionary scheme,
related to Figure 2-1 is produced. In this problem, the Optimality Criteria is applied, using
sensitivity filtering. Although this method is usable in practice, it is mathematically incon-
sistent. Density filtering is a solution to overcome this. As can be seen in Figure 3-1, both
methods will produce a somewhat same result, but there are some differences notable. When
looking at the process, it seems like Figure 3-1a goes slightly faster towards its final state,
while the MMA (Figure 3-1c) needs some more time to get a slightly better result, in contrast
to Figure 3-1a. The number of iterations displays some interesting results: the Optimality
Criteria needed 40% more iterations to get the final result, with respect to the MMA. The
computational time however, is in favor of the Optimality Criteria. The OC method is ap-
proximately four times faster than the MMA.

Stefan Broxterman Master of Science Thesis

3.2 Advanced applications 23

Figure 3-1: Evolution of iterations using the SIMP method. The beam is discretized by 90 x
30 elements. a) design problem, b) 5% of total iteration steps of Optimality Criteria, c) final
solution of Optimality Criteria, d) 5% of total iteration steps of MMA approach, e) final solution
of MMA approach (Appendix A-7).

So for this particular example, the MMA results in a better, stiffer result with less iterations
with respect to the OC. However, the calculation time for each iteration step is a lot longer
with respect to the OC. As a reference, all the calculated data can be found in (Appendix
A-7).

3.2 Advanced applications

Using the now defined code, a lot of tweaks and application can be made. In this section a
small amount of useful applications will be depicted. First, some words will be stated about
restrictive regions, i.e. active or passive area’s in the design domain. Second, an example of
multiple load cases will be discussed. The next subsection results in some thoughts about
self-weight of a structure. An example of a compliant mechanism synthesis will be made.
And at last, but not at least, an example of a 3D problem will be displayed, just to give some
more insight in topology optimization.

3.2.1 Restrictive regions

Topology optimization in general, can be used for a variety of open problems, in some cases,
however, some restrictions should be implemented in the optimization problem. A particular
example is to implement a so-called passive region. In this region, there should be zero

Master of Science Thesis Stefan Broxterman

24 Topology Optimization for Engineers

c = 332.75

b)

c = 295.52

c)

c = 288.57

d)

c = 288.33

e)

a)

Figure 3-2: Evolution of iterations using the SIMP method and the application of a passive
region. The beam is discretized by 90 x 30 elements. a) design problem, b) 5% of total iteration
steps, c) 25% of total iteration steps, d) 50% of total iteration steps, e) final solution (Appendix
A-8).

material, for example because a certain space needs to be free from material to apply a screw.
As can be seen in Figure 3-2, a passive region is implemented by a circular area, which always
should remain free from any material. The evolution of iteration steps give a nice view in this
process.
The same procedure can be applied for active regions. In certain cases it could be very helpful
to pinch material on certain places, for example for adhesive purposes. In this case, depicted
in Figure 3-3 the evolutionary scheme gives a very clear view on the process.

3.2.2 Multiple load cases

Some problems can occur when defining multiple loads. A choice can be made whether to
choose one or multiple load cases. Each choice will result in a different solution. When
applying simultaneous load cases, the optimization solution will act as if it is an optimization
of the equilibrium of the two loads. When using separated load cases, the structure will be
more resistant to buckling and much stiffer when one of the loads is removed, with respect to
the single load case. Of course, this will result in a longer computational time.
A small example of this load case dilemma can be found in Figure 3-4. Clearly, Figure 3-4
only make sense when both loads act simultaneously.

Stefan Broxterman Master of Science Thesis

3.2 Advanced applications 25

c = 349.17

b)

c = 236.62

c)

c = 230.65

d)

c = 227.21

e)

a)

Figure 3-3: Evolution of iterations using the SIMP method and the application of an active
region. The beam is discretized by 90 x 30 elements. a) design problem, b) 5% of total iteration
steps, c) 25% of total iteration steps, d) 50% of total iteration steps, e) final solution (Appendix
A-8).

3.2.3 Self-weight implementation

Up to here, the influence of gravity is not taken into account. However, when optimizing
towards an optimal solution in reality, gravitational force should be implemented. By im-
plementing this self-weight, some density ρ0 should be used, to give each element a natural
density, when the element is a complete solid region. This ρ0 can be used to reflect the ma-
terial properties of the optimization material.
When this ρ0 is set to zero, the influence of self-weight is completely removed. The total
resultant self-weight can be calculated by a summation of all the weights of the elements, as
a combination of gravitational force g, the optimization density, and the material density ρ0.
This total resultant self-weight force can be compared to the external force. A weight factor
W is introduced, as a ratio of the resultant gravitational force to external force. When this
ratio is zero, no self-weight is taken into account. When this ratio is high, the optimization
routine tends to neglect the external force, as this becomes only a fraction of the total force.
In each iteration, a calculation of the current self-weight is made. Each element, combined
with an element density, is divided to its four nodes. These four nodes then experiences a
gravitational force of one fourth of the element density times the material density ρ0.
This extra term of force needs an adjustment on the sensitivity analysis, as derived in (2-11).
The self-weight acts like an external force, the derivative of the compliance of this force needs
to be added to the original sensitivity analysis, to account for this. The updated sensitivity
can be seen in (3-3).

∂c

∂ρe
= 2uT ∂fsw

∂ρe
− p(ρep−1)uTKeu (3-3)

Master of Science Thesis Stefan Broxterman

26 Topology Optimization for Engineers

c = 121.34

b)

c = 227.15

c)

a)

Figure 3-4: Solution regarding different load cases. a) One load case: vertical, horizontal, b)
Two separated load cases (Appendix A-9).

Using the same SIMP method as before, a problem comes up. When optimizing in the lower
density area, the ratio of the first and the second term in (3-3) becomes crucial and tends to
prevent a complete solid/void pattern for the solution. An alternative interpolation scheme
could overcome this problem. A linear profile is selected, under a certain pseudo-density
ρc. Above this pseudo-density, a penalized Ep is calculated, just like before (Bruyneel and
Duysinx, 2005). The interpolation scheme can be seen in (3-4). An example of self-weight
implementation can be seen in Figure 3-5. Here, a penalty factor of p = 5 is used, in order to
force a black-white solution.

Ep =
{
ρpE0 ρc < ρ ≤ 1
ρ(ρcp−1)E0 0 < ρ ≤ ρc

(3-4)

3.2.4 Continuation method

With the introduction of the self-weight, as explained in (3.2.3) some serious problem regard-
ing the optimal solution comes up. Since the introduction of additional (self-weight) forces,
the chance of getting close to the global optimum has decreased. One way to overcome this
problem is by implementing a so-called continuation strategy (Groenwold and Etman, 2010).
While using this continuation method, an unpenalized material distribution is used, for the
first number of computational cycles. After a certain number of iterations, the penalty is
increased with each iteration, up to a predefined maximum penalty. When this maximum
penalty is achieved, this penalty is used along the iteration scheme; up until the convergence
criterion is met.

pi =
{

1 i ≤ 20
min

{
pmax, 1.02 · pi−1} i > 20

(3-5)

Stefan Broxterman Master of Science Thesis

3.2 Advanced applications 27

c = 193.39

b)

c = 318.52

c)

c = 440.86

d)

c = 844.20

e)

a)

Figure 3-5: Influence of self-weight of the structure. A weight factor W can be defined as the
ratio of the resultant gravitational force to external force. a) design problem, b) no self-weight
(W = 0), c) W = 1, d) W = 2, e) W = 5 (Appendix A-10).

In (3-5) the increasing factor of 1.02 can be varied in the code, this value, however, seems to
be a decent value for the compliance problems. The threshold value of the penalization (20)
can also be varied.

3.2.5 Different filter techniques

Up until now, sensitivity filtering is used. Although this method is usable in practice, it is
mathematically inconsistent. Density filtering is a solution to overcome this (Bourdin, 2001).
The density filter transforms the original densities ρe to filtered densities ρ̃e.

ρ̃e = 1∑
i∈Ne

Hei

∑
i∈Ne

Hei · xi (3-6)

In this equation (3-6) the filtered density is computed by taking a weight factor Hei over the
set of elements Ne. This weight factor Hei is zero outside the filter radius, while the operator
∆(e, i) is defined as the distance between the center of element e and the center of element i.
The weight factor Hei is defined as:

Hei = max {0, r −∆(e, i)} (3-7)

The sensitivities with respect to the design variables ρe can be calculated accordingly:

∂c

∂ρe
=
∑
i∈Ne

∂f

∂ρ̃e

∂ρ̃e
∂xi

(3-8)

Master of Science Thesis Stefan Broxterman

28 Topology Optimization for Engineers

c = 190.17

b)

c = 198.12

c)

c = 179.31

d)

a)

Figure 3-6: Influence of different filter techniques, using a OC solution method and continuation
method. a) design problem, b) sensitivity filter, c) density filter, d) heaviside projection filter
(Appendix A-11).

Another problem that could come up, when using self-weight, is the existence of gray patterns.
As already discussed before, we prefer to produce a black-to-white pattern, to be able to
actually produce the optimum result using additive manufacturing.
One way to obtain a black-and-white solution is using the Heaviside projection filter (Guest
et al., 2004). The Heaviside filter can be seen as an upgrade of the density filter. This step
function projects the filtered density ρ̃e to a projected filtered density ρ̄e. This ρ̄e is defined
as:

ρ̄e =
{

1 if ρ̃e > 0
0 if ρ̃e = 0

(3-9)

Since a gradient-based optimization is used, a smooth formulation for this Heaviside projection
can be defined

ρ̄e = 1− e−βρ̃e + ρ̃ee
−β (3-10)

In this equation (3-10) the parameter β can be used to make a smooth approximation. This
β is gradually increased from 1 to 512 by multiplying this value by 2 at every 50 iterations.
Of course, this can be varied, but literature study suggests this approach. Also, this method
should adjust the sensitivities of the function f(ρ̄e), with respect to the filtered densities ρ̃e
accordingly, as can be seen in (3-11).

∂f

∂ρ̃e
= ∂f

∂ρ̄e

∂ρ̄e
∂xi

(3-11)

A comparison of the three used filter methods can be seen in Figure 3-6.

Stefan Broxterman Master of Science Thesis

3.3 Turning 2D into 3D 29

Figure 3-7: Compliance example of 3D. The design problem: clamped on all degree of freedoms
on the left hand side of the beam, one downward load, attached at the right-hand side, at the
bottom node in the y-direction, at the middle node in the added z-direction.

3.3 Turning 2D into 3D

While most topology optimization problems are displayed as 2D-results, the main advantage
of topology optimization is found in relation to additive manufacturing. Having a 3D imple-
mentation is thus crucial. In order to work around with this additional dimension, a tweaked
code is produced, which is able to calculate a 3D optimization problem.
Another dimension will add also an additional computational load. For now, only one exam-
ple is depicted, just to show a working code. As can be seen in Figure 3-7, the same loads
and constraints are applied. However, the third added dimension z, is now also implemented
in this problem. The clamped left-hand side is fixed for all its degree of freedom, including
the z-direction. A simple point load is applied to the right, in the middle of the z-direction.
Because of the small number of elements in this z-direction, no difference can be found in the
distribution of the elements in this z-direction. However, when discretizing in more elements,
an expected discrepancy can be seen. While the example shown in Figure 3-7 is pretty clear
and easy, the code actually has some more options. All the previous advanced applications are
now available. An additional restrictive region is implemented, in the sense of a sphere, which
can be either active or passive. The solution method can be varied, as well as the filter method.

3.3.1 Gray-scale filter

A new filter is introduced, namely a gray-scale filter. This gray-scale filter is a very powerful
filter overlay to enable white-black regions (Groenwold and Etman, 2009). Because of its
easy implementation and proven effectiveness for 3D applications (Liu and Tovar, 2014), this
new filter is introduced. Gray-scale filter is used to further achieve black-white regions, by

Master of Science Thesis Stefan Broxterman

30 Topology Optimization for Engineers

Figure 3-8: Influence of lateral elements of the structure. The number of lateral elements in the
z-direction are varied. A continuation method is used, as well as a sensitivity filter with gray-scale
filtering. The beam is discretized by b) 30 x 10 x 1, c) 30 x 10 x 3, d) 30 x 10 x 5, e) 30 x 10 x
10 elements (Appendix A-12).

introducing an exponent q. The working principle of gray-scale filtering can be seen in (3-12).
The standard Optimality Criteria is a special case of gray-scale filtering with q = 1.

xi
new =

max(0, xi −m) xiBi

n ≤ max(0, xi −m)
min(1, xi +m) xiBi

n ≥ min(1, xi −m)
(xiBin)q otherwise

(3-12)

The main advantage of the three dimensional optimization is of course the third dimension.
This number of lateral elements can be varied, to see some interesting results. In Figure 3-8
this variation of lateral elements can be found. The force is pointed downwards, just like the
simple 2D cases. This force however, is kept at the same spot each variation, in order to
actually see some really nice results.

Stefan Broxterman Master of Science Thesis

3.4 Compliant mechanisms 31

Figure 3-9: Interpretation and realization of a hand tool (Sigmund, 1997)

3.4 Compliant mechanisms

Compliant mechanisms are very popular nowadays. Besides to the compliance examples,
which mainly rely on their stiffnesses; compliant mechanisms are used for their mobility. This
mobility comes mainly from the flexibility of the mechanisms. These mechanisms can be
manufactured easily with 3D printing, so the need for topology optimization is quite big.
Especially within the MEMS-domain, these compliant mechanisms can be helpful. Using
topology optimization, the optimal structure of very small compliant mechanisms can be
designed. A typical example of the use of compliant mechanism design can be seen in Figure 3-
9.

3.4.1 Inverter and amplifier

As can be seen in Figure 3-9 an inverter can be useful within the domain of small compliant
mechanisms. This inverter can be used to invert an input displacement to a reversed output
displacement, while maintaining almost the same amount of movement.
While designing these compliant mechanisms, it is very common to have an in- and output
displacement, in stead of an in- and output force load. Therefore, a small spring is introduced
to the in- and output nodes. These springs will convert the force into a direct displacement.
By varying these spring stiffness, one can achieve different inputs and consequentially designs.
In order to solve some compliance problems, a design problem is formulated in Figure 3-10. As

Master of Science Thesis Stefan Broxterman

32 Topology Optimization for Engineers

Figure 3-10: Compliant mechanism design problem

(a) Optimal lay-out of an inverter (b) Optimal lay-out of an amplifier

Figure 3-11: Two compliant mechanisms. The inverter inverts a input of din = 891 into an
output of dout = −899, which results in a displacement gain of Gd = −1.01. The amplifier
converts an input of din = 18.42 into an output of dout = −40.89, which results in a mechanical
displacement gain of Gd = −2.22 (Appendix A-13).

can be seen in Figure 3-10, these input and output forces are attached to predefined springs,
in order to describe a displacement field. Using the boundary conditions at the upper and
lower left corners, and using the prescribed input displacement; the optimal topology can be
determined for maximizing the output displacement. In Figure 3-11a the optimal topology
can be seen for an inverter mechanism. Here, the main objective is to convert a positive input
into a negative output, while maintaining the same absolute displacement. In Figure 3-11b
an example of an amplifier can be found. This mechanism also converts a positive input
into a negative input, but also doubles the amount of displacement at the output side. Keep
in mind that these compliant mechanisms are flexible and only can be used for very small
displacements. The displacement patterns of both the inverter and amplifier are correct,
however, not included in this report. Due to the geometry of the structures, as well as using
small displacements, the deformed shape of the structure looks almost the same as the optimal
topology lay-out. In this section there is no need to display the deformed shapes. In the next
section however, some displacements are plotted for a gripper problem.

Stefan Broxterman Master of Science Thesis

3.4 Compliant mechanisms 33

(a) Output force at the right of the design do-
main

(b) Output force in the middle of the empty
gripper domain

Figure 3-12: Design problem for micro-gripper

(a) Optimal gripper topology (b) Deformed shape

Figure 3-13: Optimal topology and displacement pattern for design problem Figure 3-12a, a
horizontal input on the left, a vertical output on the outer right. The gripper inverts a input of
din = 76.48 into an output of dout = 28.06, which results in a displacement gain of Gd = 0.73.

3.4.2 Micro-gripper

In (3.4.1) only horizontal displacements are taken into account. However, when taking a look
at Figure 3-9 there is also a conversion step needed to translate horizontal action into vertical
output. Two simple design cases are depicted in Figure 3-12. For this particular design
problem, the white area can be seen as a restricted area, where no material is allowed, a void
region. In Figure 3-12a an output force at the right is requested, in example for gripping a
small sphere. In Figure 3-12b the same void region is considered. However, an output force
is requested in the middle of the area, for example grabbing a small cube.
The optimal topology for design problem Figure 3-12a can be seen in Figure 3-13a. Here, a
maximum volume of 20% is allowed, while respecting the fixtures as described in the problem
statement. A displacement field is plotted in Figure 3-13b, where a small displacement input
is given. As can be seen, the jaws are slightly pulled together, just enough to grab a sphere.
The same solutions, but now for design problem Figure 3-12b, can be found in Figure 3-14a
and the subsequent displacement field in Figure 3-14b.

Master of Science Thesis Stefan Broxterman

34 Topology Optimization for Engineers

(a) Optimal gripper topology (b) Deformed shape

Figure 3-14: Optimal topology and displacement pattern for design problem Figure 3-12b, a
horizontal input on the left, a vertical output on the middle of the void region. The gripper
inverts a input of din = 75.21 into an output of dout = 30.48, which results in a displacement
gain of Gd = 0.81.

3.5 Conclusions

In chapter 3, a variety of engineering problems are described. The Method of Moving Asymp-
totes (3.1) seems to be a very effective solution pattern. The computational time is usually
somewhat longer, but the final result is more accurate and more importantly, this method
is able to solve a wider range of problems, as the OC method is restricted to simple compli-
ance problems. When dealing with predefined regions within the design domain, an option
to implement restrictive region (3.2.1) can be very helpful. When solving a physical design
problem, the existence of gravity needs to be taken into account, a self-weight implementation
(3.2.3) can be used to deal with this.
On the computational side, the continuation method (3.2.4) can be used to gain some speed
and accuracy. Varying with different filter techniques (3.2.5) can be helpful to force the op-
timal solution into a strict black-and-white solution.
Adding a third dimension (3.3) can be used to mimic actual design problems, the computa-
tional time however will increase exponentially.
Small compliant mechanisms can be optimized for different objectives. Using different in- and
output requirements results in different optimal topology designs. For small displacements
only, the displacement field for this elastic material can be plotted on the go, in order to check
whether or not the optimal result is working.
All of these described features need to be used for creating an optimal bridge (2.4), which
will be the main focus for the next chapter and further research.

Stefan Broxterman Master of Science Thesis

Part II

Topology Optimization Extensions:
Design of Supports and Loads

Master of Science Thesis Stefan Broxterman

Chapter 4

Design of Supports

Design of supports has already been touched in subsection 2.4.1, which will be recalled in Fig-
ure 4-1. Support design can be used in a variety of domains, especially when the placement
of the support is not prescribed. Also, when a part of the support should be fixed, topology
optimization can be used to create additional supports within the design domain, in order to
optimize towards the prescribed objective.

In section 4.1 the basic fundamentals of support design are described. The bridge exam-
ple as shown in Figure 4-1 is solved in section 4.2, including a variety of adaptions and
possibilities. The integration of supports in existing layouts is described in subsection 4.3.3.

Compliant mechanisms as described before are also in big interest for design of supports,
as discussed in section 4.4. Practical applications of support design are shown in section 4.5.
The topic design of supports is concluded in section 4.6.

All the described problems in this chapter can be solved using the attached MATLAB codes
(B.7, B.8 and C.9).

4.1 Support design formulation

In order to work with this method of support design, a new set of design variables can be
introduced. For all the possible support area, springs are attached on the four nodes of
the elements within that area, in vertical and horizontal direction. So each element is now
supported by eight springs as depicted in Figure 4-2 This new set of support design variables
z can now be used to calculate a new stiffness. Just like the SIMP-method (2.2.1), the spring
stiffness matrix Ks can be deduced from the maximum stiffness Ks,0:

Ks = (zj)qKs,0 (4-1)

Where q can be seen as a penalization factor of the new design variables, corresponding to the

Master of Science Thesis Stefan Broxterman

38 Design of Supports

Figure 4-1: Example of design of supports with different support cost functions γ a) Initial
design, b) γ = 1, c) γ = 10, d) γ = 20 (Buhl, 2002).

penalty factor p, from the SIMP method. To actually get the total stiffness, the mechanical
stiffness and the spring stiffness should be added, which results in a global stiffness matrix
K.

K =
n∑
e=1

ρe
pKe +

n∑
e=1

ze
qKs,e (4-2)

While dealing with support design, a large risk of obtaining local optima can be labeled as a
significant issue. A lower bound of the spring design variable z can be used to overcome this
problem. In order to prevent extreme structures, for example creating supports only in one
direction, it might be helpful to combine each spring of the element to each other, and thus
creating one spring design variable for one element. To work with the support cost function,
as depicted in Figure 4-1 a support factor γ can be imposed to the spring design variables,
attaching a certain cost to the support of an element. The total amount of weighted support
area, should be attached to a certain constraint A. This can be seen and formulated as the
material distribution. Just like in (2-5) a simple compliance minimization problem can be

Stefan Broxterman Master of Science Thesis

4.1 Support design formulation 39

Figure 4-2: Example of support springs, each elements is supported by eight springs (Buhl,
2002).

formulated.
min
ρe

fTu

s.t. Ku = f

K =
n∑
e=1

ρe
pKe +

n∑
e=1

ze
qKs,e

n∑
e=1

νeρe ≤ V

n∑
e=1

γeze ≤ A

0 ≤ ρe ≤ 1
e = 1, . . . , N

(4-3)

The associated sensitivity, with respect to the spring design variables can be calculated ac-
cordingly:

∂c

∂ze
= −q(zeq−1)uTKs,eu (4-4)

Master of Science Thesis Stefan Broxterman

40 Design of Supports

(a) Design problem of simple bridge (b) Optimal lay-out of simple bridge

Figure 4-3: A simple bridge example. The bridge is discretized by 80 x 40 elements. a) design
problem, b) Optimal solution.

4.2 The bridge

Consider a simple bridge example, as depicted in Figure 4-3a. For now, let’s ignore the design
of supports. So in this simple example a discretized bridge of 80 by 40 elements is optimized.
A distributed force is exerted on the top of the bridge, which can be seen as a total self-weight
of the upper road of the bridge. For this optimization, the upper elements are described as a
restrictive region, being fully solid elements. The bridge is fixed at the upper left and upper
right node. A volume fraction of 20% is given as constraint. The objective is to minimize
the total compliance. The design problem with the associated optimal solution can be found
in Figure 4-3b. Since this case represents a practical problem, some notes on the load case
should be made. Since the road is dominant among the external loads, the distributed load
can be designed as 1 loadcase. In this section, and the following chapters this consideration
is implemented. For certain simple cases, there is no need for design of supports. Especially
in straightforward theoretical cases this result will be sufficient.
However, when imposing restrictions or variations of costs within the support design domain,
it could be a good idea to implement support design. A practical example of the need of
support design is described in 4.2.1.

4.2.1 The optimal bridge

A simple bridge design is already described in Figure 4-3. Let’s consider a practical example.
The bridge in this example is used to make a pavement road across a deep valley. The valley
can be seen as two parallel vertical walls, which can be used to create supports. Big and long
pillars will be very expensive, especially when the valley becomes deeper. This is a very good
example where design of support can be very useful. A volume fraction of 20% of the design
domain is a constraint. Only 20% of the support design area (ie. the wall and floor of the
valley) can be used to create support. In Figure 4-4b these constraints are built in. As can be
seen, the supports are created at the sides and at the bottom; almost the same result as the
simple bridge example in Figure 4-3. Now a cost distribution is imposed on the same design.
A linear cost distribution is created along the y-axis, this variation is varying linearly from 1
at the top edge, to a certain γ at the bottom edge. In Figure 4-4 some variations of this γ is
made. As can be seen, when increasing the upper limit of the support cost γ, the structure
tends to support itself towards the pavement road. This is pretty straightforward, since the

Stefan Broxterman Master of Science Thesis

4.2 The bridge 41

c = 25921.61

b)

c = 45186.01

c)

c = 76166.31

d)

c = 83838.47

e)

Figure 4-4: The bridge including design of supports with a varying cost of support design. The
cost is linearly varying in the vertical direction from 1 (top edge) to γ (bottom edge). The bridge
is discretized by 80 x 40 elements. a) design problem, b) γ = 1, c) γ = 5, d) γ = 10, e) γ = 50
(Appendix A-14).

cost of placing supports is increasing at the bottom of the design domain. In Figure 4-4e the
cost of placing supports became to high to even place supports. The optimal structure in this
case is of course less stiff than the original one. As can be seen in Figure 4-4, the result is in
line with the result as depicted in Figure 4-1.

Master of Science Thesis Stefan Broxterman

42 Design of Supports

c = 25921.61

b)

c = 48837.19

c)

c = 77233.79

d)

c = 81539.85

e)

Figure 4-5: The bridge including design of supports with a varying cost of support design. The
cost is linearly varying in the horizontal direction from 1 (left) to γ (right), from . The bridge is
discretized by 80 x 40 elements. a) design problem, b) γ = 1, c) γ = 5, d) γ = 10, e) γ = 20
(Appendix A-15).

4.3 Advanced bridge designs

A variation of cost distribution in the vertical support domain is described in 4.2.1. However,
there are some more variations possible. Think about the same bridge example as before.
Now, a lake exists in the bottom right edge of the design domain. Creating pillars within
the lake is expensive and unwanted. To overcome this design problem, a horizontal cost
distribution is imposed on the bridge. Designing a support on the left hand side will cost
1, while the right hand side costs γ. This ratio of costs is varying linearly and results in
Figure 4-5. The result is kind of similar to the results of Figure 4-4, which means in this case
that the supports are forced to the left side of the design domain. As depicted in Figure 4-6,
let’s move this lake problem into the middle of the bottom of the valley. By doing this, a cost
variation can be introduced varying from 1 to γ to 1, which corresponds from left to middle
to right. As can be seen in Figure 4-6, a higher value of γ results in a greater tendency of
the structure to move the support to the outer regions. Which in this case means a greater
tendency to avoid placing supports within the lake.

Stefan Broxterman Master of Science Thesis

4.3 Advanced bridge designs 43

c = 25921.61

b)

c = 38810.99

c)

c = 52214.63

d)

c = 47032.67

e)

Figure 4-6: The bridge including design of supports with a varying cost of support design. The
cost is varying in the horizontal direction from 1 (left) to γ (center) to 1 (right), from . The
bridge is discretized by 80 x 40 elements. a) design problem, b) γ = 1, c) γ = 3, d) γ = 5, e)
γ = 10 (Appendix A-16).

4.3.1 Hanging bridge

In this the design domain of Figure 4-4 is doubled. The force application and the fixed support
locations remains the same. By the expansion of the design domain however, the support
area is expanded also. As can be seen in Figure 4-7a, the sides can be used for support
location, as well as the ground. Since the design domain is doubled, the volume constraint is
scaled twice also. In order to compare this result with Figure 4-4, the volume constraint is
divided by two. The upper limit of the total weight of the hanging bridge is now the same as
the optimal (normal) bridge. The support area is almost doubled as well, compared to the
optimal bridge, the support constraint is, however, kept at 20% of the total support area.
As can be seen in Figure 4-7, the support cost ratio γ is varying linearly from the road edge
to the bottom edge. The cost from the top edge to the road edge remains 1 in each case. The
support cost of the upper half of the design domain is thus very cheap, while the support
cost of the lower half can be varied, which can be helpful in case of deep valleys, as already
explained in 4.2.1.
An increasing support cost function γ results in a tendency to lift the bridge up. In the
same time, the supports at the bottom of the design domain are reduced. As can be seen in
Figure 4-7d, the two pillars of Figure 4-7b are replaced with only one pillar. In Figure 4-7e
the pillars are completely vanished. The "upper" supports are increased at the same time, in

Master of Science Thesis Stefan Broxterman

44 Design of Supports

order to remain a low compliance.

c = 28373.24

b)

c = 41730.50

c)

c = 34946.02

d)

c = 44885.86

e)

Figure 4-7: The hanging bridge including design of supports with a varying cost of support
design. The cost is varying in the vertical direction from 1 (top road edge) to γ (bottom edge).
The cost from the top edge to road edge remains 1 in each case. The bridge is discretized by 80
x 80 elements. a) design problem, b) γ = 1, c) γ = 2, d) γ = 4, e) γ = 6 (Appendix A-17).

4.3.2 Train tunnel

In 4.2.1 an example of a lake in the middle of the design domain is already explained and used
to demonstrate the need of implementing ratio of support cost design. In this case the lake
is exchanged by a train tunnel, since trains are also a starting point of bridge design. The
main difference between the lake and the train is the possibility of placing supports within
that particular area. The train tunnel is designed in Figure 4-8a. In this figure two cases are
considered. In case 1 the space for the train can be seen as an open space. This space needs

Stefan Broxterman Master of Science Thesis

4.3 Advanced bridge designs 45

Figure 4-8: The train tunnel shows four different examples of train tunnel designs. The cost is
varying in the vertical direction from 1 (top road edge) to γ (bottom edge). The cost from the
top edge to road edge remains 1 in each case. The bridge is discretized by 80 x 40 elements.
a) design problem, b) open space, small gap, c) tunnel, small gap , d) open space, big gap, e)
tunnel, big gap (Appendix A-18).

to be avoided by the bridge design (Figure 4-8b and Figure 4-8d). In the second case the
train space is covered by a train tunnel. Space within the tunnel needs to be void, the outside
of the tunnel is solid region and can be used to place supports (Figure 4-8c and Figure 4-8e).
Also, the radius of the train tunnel/space is varied. Figure 4-8b and Figure 4-8c shows
an example of a small train crossing, while Figure 4-8d and Figure 4-8e demonstrate the
optimization process of a big train crossing. As can be seen, the open air train bridge design
is slightly weaker compared to the tunnel train bridge design, which is expected before. A
bigger open air train space results in a higher compliance, since the topology is forced to
the outwards of the design domain. However, a bigger tunnel results in a lower compliance,
compared to the small tunnel, since this tunnel on itself provide a lot of additional stiffness
to the bridge.

4.3.3 Integration of layout design in supports

In 4.2 the optimal layout of a variety of bridge designs is depicted. The supports are designed
by using the expressions as shown in 4.1. These supports can be seen as topology, which
is attached to the support area. A practical support however, should be a variation of the
topology, since the shape and size of the support is very important, to use the support location
of the topology as actual real support. Some research is already done within this field (Zhu

Master of Science Thesis Stefan Broxterman

46 Design of Supports

(a) Compliant mechanism amplifier design prob-
lem

(b) Output force at the right of the design do-
main

Figure 4-9: Design problem for micro-gripper

and Zhang, 2010), where complex shapes of supports are implemented within the topology
optimization problem. In this report this subject is only slightly touched in this section, since
the practical implementation of the supports is outside the scope of this research project.

4.4 Design of compliant mechanisms

In 3.4 compliant mechanisms are already described. The topology of the compliant mecha-
nisms is optimized in order to maximize outputs. In Figure 3-11b an example of topology
optimization for an amplifier is shown. In Figure 3-13a the optimal topology of a micro-
gripper example is shown. For these two compliant mechanisms the support locations are
fixed, while the topology is the free variable. In this chapter, design of supports is explained.
In this section an example of the use of support design within compliant mechanisms is made
and compared to the previous results.
As a recap, the amplifier and micro-gripper design problems are depicted in Figure 4-9, the
main difference with the previous design problem is the implementation of the support design
area. The support design domain is modeled as an upper and lower band with a total area
of one third of the whole design domain. This support design domain can be used to place
supports of the structure, with an upper limit of 20 % of the total support design domain.

4.4.1 The optimal amplifier

In Figure 4-9a a positive amplifier is topologically optimized. The result of this optimization
is already shown and explained in 3.4.1. The result can be seen in Figure 4-10a. As already
explained before, design of support is now included in the design domain, to achieve an
even better amplifier, by means of a higher amplification gain (Gd). The design of support
formulation as described in 4.1 is used here and implemented in the compliant mechanism
code. The result can be found in Figure 4-10b. As can be seen, the design is slightly different,
the supports are design within the support design domain. The supports are represented by
the blue dots. The input displacement is within the same range, while the output displacement
of Figure 4-10b is two times higher, which eventually results in a amplification gain of almost

Stefan Broxterman Master of Science Thesis

4.5 Application of support design 47

(a) Optimal lay-out of an amplifier (b) Optimal lay-out with DoS

Figure 4-10: Optimal topology and displacement pattern for design problem Figure 4-9a, a
horizontal input on the left is amplified to the right. a) the original amplifier converts an input of
din = 18.42 into an output of dout = −40.89, which results in a mechanical displacement gain of
Gd = −2.22. b) the amplifier including design of supports converts an input of din = 14.15 into
an output of dout = −83.40, which results in a mechanical displacement gain of Gd = −5.89
(Appendix A-19).

six times the input displacement. From this can be concluded, that implementing design of
supports within the design domain results in a higher amplification factor and thus a better
result.

4.4.2 The optimal micro-gripper

In 3.4.2 two different micro-grippers are shown. In this section the first one is chosen to
optimize with the use of design of supports. The design problem can be found in Figure 4-9b.
Again, the upper and lower band represents support area, which can be used for support
placement, with an upper limit of 20 %. In Figure 4-11a the optimal gripper is depicted, with
fixed supports. In Figure 4-11b this gripper is optimized with the use of design of supports,
and can be seen as the solution of the design problem Figure 4-9b. As can be seen, the optimal
topology is still a small pliers. The supports however, are pushed from the outer edges from
the design domain. This topology results in a total displacement gain of Gd = 1.97, which is
almost three times higher as the original topology result.

4.5 Application of support design

As can be seen, application of support design can be used for a variety of application, big
structures like bridges 4.2, as well as very small structures like micro-grippers 4.4. In this
section some words about the application of support design will be said.
Design of supports can be easily used to connect components of a multi-component structure
to each other (Chickermane and Gea, 1997). Also, when using the connection locations as
joints, the optimal support lay-out can be used to achieve the optimal result (Qian and
Ananthasuresh, 2004). Within the assembly of aircraft structures, not only the structure

Master of Science Thesis Stefan Broxterman

48 Design of Supports

(a) Optimal gripper topology (b) Optimal lay-out with DoS

Figure 4-11: Optimal topology and displacement pattern for design problem Figure 4-9b, a
horizontal input on the left, a vertical output on the outer right. a) the original gripper inverts
a input of din = 76.48 into an output of dout = 28.06, which results in a displacement gain
of Gd = 0.73. b) the gripper including design of supports inverts input of din = 52.23 into an
output of dout = 51.40, which results in a displacement gain of Gd = 1.97 (Appendix A-19).

is optimized for minimizing compliance, but also the shear loads on the fastener joints are
controlled. By using design of supports the optimal locations of the fastener joints can be
found to achieve maximum overall strength (Zhu et al., 2014).
In the domain of dynamics, maximization of natural frequency can be used to maximize the
bandwidth of the structure. Design of supports can be used to achieve the optimal support
lay-out to tune dynamic behavior (Jihong and Weihong, 2006). This same technique can be
used to achieve certain dynamic behavior, like changing eigenmodes and eigenfrequencies, or
maximizing transmission. Another promising development lays within the thermodynamic
domain. In this field, heating can be seen as force application, while isolation prevents
heating. This prevention is a counteract of the applied force, so a support location. So design
of supports can be seen as design of isolation location.

4.5.1 Actuator locations

As already mentioned in 4.5, design of supports can be used in dynamics to tune and tweak
frequency response. Support locations are fixed, with no external loads. However, it could be
interesting to apply a force on these support locations, which will make the supports act as
actuators. By applying this, the optimal placement of actuators can be found, to achieve a
certain frequency response. A very promising application within the manufacturing of micro-
chips, where frequency response is very important. The main concern will be to reformulate
the support location into an actuator location. Since a support is a fixed location, with no
external loads applied, while an actuator location does apply a load to the structure.
In the next section these concerns will be explained even further.

Stefan Broxterman Master of Science Thesis

4.6 Conclusions 49

4.6 Conclusions

In chapter 3, a variety of complex problems are described and solved using topology opti-
mization. In this chapter the optimization process is taken a step further and is used to solve
problems using variable support designs.
When determining the optimal place of supports, a new set of variables needs to be defined
and optimized (4.1). By using this additional set of variables the program determines the
optimal solution for both the topology, as well as the support lay-out.
An example of a simple bridge is shown (4.2), this bridge is optimized by using variable
supports (4.2.1). This bridge example is extended for some advanced bridge design problems
(4.3), where ratio of support cost is varied in different ways. Some more examples of bridge
problems are explained, for example a hanging bridge (4.3.1), where supports can be placed
on the upper sides of the design domain. Also, when placing a bridge with restricted areas,
design of supports can be used to calculate the most ideal configuration (4.3.2).
Some compliant mechanism examples, as already described in this report (3.4) are optimized
including design of supports, by placing the support domain within the original, topology
design domain. Usage of design of supports is very promising in this area, since the displace-
ment gains can be improved (4.4).
Design of supports can be helpful in a lot of different fields, some practical examples are given
(4.5) and the idea of changing fixed supports to actuator locations is slightly touched (4.5.1).
The optimal way of actuator placement will be the focus for the next chapter and will be
used further on this research.

Master of Science Thesis Stefan Broxterman

50 Design of Supports

Stefan Broxterman Master of Science Thesis

Chapter 5

Design of Actuator Placement

In chapter 4 several cases of design of supports are explained. In this chapter the philosophy
of extending the optimization problems is taken a step further. Instead of designing the best
support locations, this chapter aims to design the optimal force locations. Design of actuator
placement can also be used in combination with topology optimization, for example when
volume constraints are involved.

In section 5.1 the basics of actuator placement are described. The need of sensitivity checking
is explained in subsection 5.1.3. A simple cantilever beam is used to show the design of force
distribution in section 5.2. Some advanced applications for actuator placement are shown in
section 5.3.

Up to here, the topology of the previous examples remained fixed. An implementation of
topology optimization is explained in section 5.4. Practical applications of actuator design
are shown in section 5.5. Section 5.6 concludes this chapter.

The implementation and working MATLAB codes are attached (B.9, B.10, C.10 and C.11)
and can be used to reproduce the problems of this chapter.

5.1 Actuator design formulation

This chapter has some similarities with respect to 4, where supports can be placed within a
certain support design area, in order to achieve the best objective. In chapter 4 the support
design is thus considered as design variable. In this chapter however, the support area remains
fixed. The applied force is now considered as a free design variable.

Master of Science Thesis Stefan Broxterman

52 Design of Actuator Placement

There are some similarities between design of support and design of actuator placement.
However, the behavior of both design variables are quite different, a fixed support cannot
generate force, while an actuator does generate an active force.
This chapter will mainly focus on minimizing vertical displacement. In order to compare these
results, in section 5.2 a simple cantilever beam will be optimized towards minimal compliance.
Since the previous chapters mostly rely on compliance minimization, this knowledge can be
used to create and solve a simple cantilever beam problem.
The minimal compliance problem is solved the same way using the SIMP method, as de-
scribed in 2.2.1. This method is solved with a different continuation method for the penalty
than described before in 3.2.4. More on this new approach can be found in subsection 5.1.2.
The same approach will be used further in this chapter.
Another big difference, with respect to chapter 4 is the constraint function. When topology
is not included, the constraint on the volume can be dropped. The supports remains fixed, so
this constraint will also drop out. There is however, a new constraint function introduced on
the force. Since in all cases the compliance and displacement will be minimized, the optimizer
will tend to use as little force as possible. A minimum force should be introduced, in order
to force the optimizer to use this minimum of actuator force (fmin). This is opposed to the
previously used constraints on the volume and supports, where the optimizer wants to use as
much volume and/or supports as possible.

In order to minimize the compliance by varying the actuator placement fi, a minimization
problem can be formulated.

min
fi

fTu

s.t. Ku = f

K =
n∑
e=1

ρe
pKe

n∑
i=1

fi ≤ fmin

− 1 ≤ fi ≤ 0
i = 1, . . . , Ni

(5-1)

Where Ni reflects the number of nodes. The associated sensitivities can then be calculated,
by differentiating the objective to the design variables. In this chapter, the force can be varied
from fi = −1 to fi = 0, since the actuators are pointed downwards. In the upcoming figures,
the mean absolute displacement is depicted in each figure.

5.1.1 Sensitivity selection

The same adjoint approach, as described in 2.2.3 will be used to evaluate the associated
sensitivities. In this section, the sensitivity approach is used to calculate the sensitivity of
the compliance problem, towards the actuator placement. This is done to make a good
comparison with the previously calculated sensitivities.

Stefan Broxterman Master of Science Thesis

5.1 Actuator design formulation 53

Again, to prevent the calculation of the derivatives of the displacement explicitly, an adjoint
method is used to achieve the correct sensitivity.
The minimum compliance problem can be rewritten by adding a zero function, including the
Lagrange multiplier λ.

c(fi) = fTu + λT (Ku - f) (5-2)

Now the corresponding sensitivity can be calculated by derivating to the design variable fi.

∂c

∂fi
= (fT + λTK) ∂u

∂fi
+ (uT − λT) ∂f

∂fi
(5-3)

Where λ = −Kf, which on his turn is equal to λ = -u, due to the equilibrium Ku = f. This
will eventually lead to the sensitivity

∂c

∂fi
= 2uT ∂f

∂fi
(5-4)

Where ∂f
∂fi

can be seen as a selection vector of the participating force. This can be simply
calculated by a column vector which yields a zero for non-participating force, which corre-
sponds to a node that cannot design a force; and a value one for the nodes that corresponds
to the actuator design area.

5.1.2 Arching continuation approach

The continuation method is a very powerful approach to prevent the optimizer getting local
optima (3.2.4). There is however a big consideration for applying this continuation method in
the force design domain. Since density can typically vary from zero to one, either void or solid
a power factor will result in a tendency to create void or solid regimes. Since the optimizer
wants to create a lot of density, a positive penalty factor p > 1 can be used to prevent the
optimizer from creating gray regions.
When dealing with this force design variable in combination with minimizing compliance or
displacements, the best result will be no force, the optimizer will thus remove as much force
as possible. A penalty factor p > 1 will help the optimizer with this process, which is not
desirable. A positive penalty factor p < 1 will send the optimizer towards the biggest value
of the design variable.
When applying a power factor in this case, where force can vary from −1 to 0, there is a
problem to overcome. When factorizing a negative value of f with a power factor p < 1, it will
result in imaginary values, which is not desirable in this case. A simple way to overcome this
would be to penalize the absolute value, this absolute values however, cannot be differentiated.
A solution is using a new way of continuation, which is labeled as Arching continuation
approach. This approach can deal with negative and positive input values and will give real
penalized outputs. This Arching continuation approach can produce a penalized value by

fp = arctan(αf)
arctan(α) (5-5)

The numerator will penalize the function, while the denominator creates a normalization.
The variable α can be chosen, to increase or decrease the slope of the arches. A visual
representation of this new continuation method can be seen in Figure A-12. As can be seen,

Master of Science Thesis Stefan Broxterman

54 Design of Actuator Placement

an increase of α will result in a higher slope, so a more aggressive penalization. The best
way to use this Arching continuation is to exponentially increase α. The optimizations in this
chapter are made using a starting value of α = 0.5, which is then exponentially increased by
a factor 1.06 each iteration, until the final value of α is achieved. α = 5 seems to be a good
number for force penalization. These values are found to somewhat mimic the continuation
method as described before (3.2.4). This approach can also be used, when a design variable
can vary from positive to negative, for example in compliant mechanisms. Also, the differential
of this Arching continuation approach can be easily derived and used in further sensitivity
analysis.

5.1.3 Finite difference method

Up to the design of actuator placement, sensitivities seem to be pretty straight-forward. In
this section however, the sensitivity analysis becomes a bit more challenging. In order to
deal with sensitivities with respect to different physical quantities, it is a good idea to check
whether or not the applied sensitivities are well calculated and derived. One way to check
this is using the Finite difference method. This is done by introducing a small perturbation
h, which can typically vary between h = 10−2 to h = 10−6.
The function value f is used as starting point. The sensitivity can now be calculated. At the
design variable point a, where the sensitivity yields the maximum value, a small perturbation
h is added to this design variable point a. The function value f is then calculated again.
The difference between these function values f are now subtracted and divided by h, which
is basically the slope of the function. This slope can then be compared to the calculated
sensitivities. This difference should be very small to confirm a correct sensitivity function.
This finite difference method can be found in (5-6).

f ′(a) ≈ f(a+ h)− f(a)
h

(5-6)

Where h = 10−6 seems to be a good value. This finite difference can thus easily be used
to check the sensitivities of the objective. But it can also be used to check the constraint
sensitivity.

5.2 Simple cantilever beam

A simple cantilever beam is used to show the working principle of the design of optimal loading.
Recap: the topology remains fixed. By introducing a force design domain and a minimum
force value the MMA optimizer (3.1) can now solve the optimal actuator placement. Consider
a simple cantilever beam as used before. The force design domain is in this example chosen
to be from the down right point to the down middle point, as can be seen in Figure 5-1a.
By using the optimization problem as explained in (5-1) and the corresponding sensitivities
as described in (5-3) the optimal actuator placement can be found, as shown in Figure 5-
1b. This results is in line with the preliminary thoughts. The most optimal place of force
placement will be at the nearest point from the fixed support (left-hand side), to minimize
the generated moment. The minimum force constraint is active, so the total force equals the
minimum force, which is also expected. A minimum amount of force will result in a minimal
compliance, or maximal stiffness.

Stefan Broxterman Master of Science Thesis

5.2 Simple cantilever beam 55

(a) Design problem of simple cantilever beam
c = 44.31

(b) Optimal actuator placement

Figure 5-1: A simple cantilever beam example for actuator placement. The red dots indicated
the fixed supports, the blue arrow corresponds to the force. The mean vertical displacement in
the direction of the force is displayed below each solution. The beam is discretized by 90 x 30
elements. a) design problem, b) optimal solution.

5.2.1 Minimal displacement

In contrast to a minimal compliance problem, as described in 5.2, the focus will from now on
changed to a minimum of vertical displacement. The optimal results should not differ much,
with respect to the minimal compliance problem, since the displacement and compliance are
correlated to each other. The minimization problem can be formulated again, but now for
minimum displacement.

min
fi

ua

s.t. ua = LTu
Ku = f

K =
n∑
e=1

ρe
pKe

n∑
i=1

fi ≤ fmin −1 ≤ fi ≤ 0

i = 1, . . . , Ni

(5-7)

Where L is the selection vector of the displacement. If only the vertical displacement is
involved, which is the case in this section, the selection vector will have the form L =
[0 1 0 . . . 1 0 1]T . The minimum vertical displacement can be rewritten including an adjoint
function.

ua(fi) = LTu + λT (Ku - f) (5-8)

The sensitivity analysis of this minimization function is in line with the previously analysis
(5-3), but is a bit more complicated.

∂ua
∂fi

= (LT + λTK) ∂u
∂fi
− λT ∂f

∂fi
(5-9)

Where λ = −K−1L. In contrast to (5-4) this λ will not vanish and need to be calculated
each iteration. Therefore the total running time for solving minimal displacement typically

Master of Science Thesis Stefan Broxterman

56 Design of Actuator Placement

U = 8.91

Figure 5-2: Example of minimal vertical displacement including actuator placement.

will be longer than that of solving minimal compliance problems. The final sensitivity can
thus be rewritten as

∂ua
∂fi

= −λT ∂f
∂fi

(5-10)

As can be seen, the result of the actuator placement for minimal displacement (Figure 5-2)
does not differ from the result for minimal compliance (Figure 5-1b). The displayed U reflects
the mean displacement in the direction of the force.

5.3 Advanced applications

Design of actuator placement can be used to minimize a simple cantilever beam, while re-
specting a minimum force. This minimum force should be provided by an actuator. However,
what would happen when the minimum applied force cannot provided by a single actuator,
due to its limit of power? An additional constraint should be included in the optimization, to
deal with this problem. In Figure 5-3a a result of this problem statement is provided. In this
problem, the same objective and design variables are provided, as described in 5.2.1, but a
single actuator can only provide one fifth of the total minimal force. As can be seen, the best
way to place the actuators is place them five in line, at the most left point of the actuator
design area. This should be okay, since the actuators together want to minimize the moment
exerted on the cantilever.

5.3.1 Maximal displacement

Up to here, only minimal compliance and displacement was considered. Most of the time a
minimization is the best way to optimize, and most of the time we are looking for a minimum,
think of minimum cost, minimal weight, minimal displacement etc. There are some cases
arguable where a maximum of displacement is desirable. A simple actuator system within
the manufacturing domain is a good example. There we want to maximize displacement with

Stefan Broxterman Master of Science Thesis

5.3 Advanced applications 57

U = 9.49

(a) Constraint on force per actuator

U = 22.48

(b) Maximal displacement

Figure 5-3: Optimal actuator placement of advanced applications for a) minimal displacement,
with a constraint on the force per actuator, b) maximal displacement.

a minimum force, additional stiffness demands can be included as constraints. In Figure 5-
3b a schematic of maximum displacement of a beam can be found. The force is pointed at
the most right point of the design domain. This is in line with the preliminary thoughts,
since a large distance between force and fixtures results in a maximum moment acting on the
cantilever beam, which on his turn will result in maximum displacement.

5.3.2 Triple fixed beam

Design of Actuator placement is pretty straightforward for a simple cantilever beam, especially
when the topology remains fixed. Therefore, a new design problem is considered and solved.
Let’s consider a triple fixed beam, which can be seen as a bridge structure, which is also
completely fixed on the left and right sides. A schematic of this design problem can be seen
in Figure 5-4a. As can be seen, the actuator design domain consist one third of the bottom
row. The optimal solution for force placement will now be calculated. This is done by using
the same objective as used before (5-7) and the same sensitivity analysis (5-10). A minimum
force constraint is implemented with a minimum value of f = 1. The result of the optimization
can be found in Figure 5-4b. As can be seen, the most optimal solution is two distributed
forces (each consist of f = 0.5). This is a correct result, since the force needs to be placed as
close as possible to the supports, which is in this case two points.

5.3.3 Minimal area displacement

Up to here, the main focus was to minimize the overall vertical displacement. In this section
some words are spend on the ability of optimizing the actuator placement towards minimal
displacement in a certain area. This is very useful in manufacturing technology, since most of
the time engineers are interested in local effects. To demonstrate the working principle, the
same optimization as in 5.3.3 is done, but now with a different selection vector L, which will
only select the vertical displacement of the striped area in Figure 5-4a. This selection vector
is also used in the sensitivity analysis. The optimal actuator placement for this solution is
depicted in Figure 5-4c. As can be seen, the force is placed at the center of the actuator design
domain, which would be probably the worst solution of the regular minimal displacement

Master of Science Thesis Stefan Broxterman

58 Design of Actuator Placement

(a) Design domain

U = 0.12

(b) Minimal overall displacement

U = 0.08

(c) Minimal displacement striped area

Figure 5-4: Triple Fixed beam, clamped at three sides. Optimal actuator placement of advanced
applications for a) design domain, b) minimal displacement all grey area, c) minimal displacement
of striped area only. The associated deformed geometry can be found in (Appendix A.6.1).

problem (5.3.2). Of course, the average displacement is somewhat lower (U = 0.08 vs U =
0.12), which can be explained by the fact that in the overall displacement, the displacements
above the actuator application also contribute to the average, while in Figure 5-4c only the
striped area is used to calculate the mean value.

5.4 Topology optimization for actuator placement

Up to here, the topology of the beam remains constant, namely completely solid. This was
done to verify and demonstrate the working principle of design of actuator placement. It will
become much more interesting if the topology is included in the design problem, while the
placement of actuators can be optimized at the same time. The same objective holds, but an
additional set of design variables is added to the problem. Also, an additional constraint is
added to the problem, to limit the volume V that can be used. The optimization problem

Stefan Broxterman Master of Science Thesis

5.4 Topology optimization for actuator placement 59

can now be described as

min
fi,ρe

ua

s.t. ua = LTu
Ku = f

K =
n∑
e=1

ρe
pKe e = 1, . . . , N

n∑
i=1

fi ≤ fmin i = 1, . . . , Ni

n∑
e=1

νeρe ≤ V

− 1 ≤ fi ≤ 0

(5-11)

Where i still denotes the node numbers, and e denotes the number of elements. For optimizing
this problem, the arching continuation method (5.1.2) is used to penalize the forces, the regular
continuation method (3.2.4) is used to penalize the density.
The sensitivities of this problem will not change for the force design variables, but will change
for the density design variable. By using the adjoint method again, the sensitivity from the
displacement ua (5-8) to the density variable can be calculated now

∂ua
∂ρe

= (LT + λTK) ∂u
∂ρe

+ λT ∂K
∂ρe

(5-12)

By choosing again λ = −K−1L, the ∂ua
∂ρe

does not have to be calculated explicitly

∂ua
∂ρe

= λT
∂K
∂ρe

u (5-13)

Now formulate ∂K
∂ρe

as the derivative of the penalty-termed stiffness as derived in (2-5)the final
sensitivity can be made as

∂ua
∂ρe

= p(ρep−1)λTKeu (5-14)

The tolerance is updated to a summation of the difference of the force and density, with
respect to the last iteration. Due to this tolerance update, and the addition of another set of
design variables, the computational time will rise exponential.
The optimal result for a minimization of the overall displacement, so the selection vector will
have the form L = [1 1 1 . . . 1 1 1]T , can be seen in Figure 5-5a. The result can be labeled
as quite remarkable. A deeper investigation can explain this weird behavior. By minimizing
the displacement in the direction of the force, the optimizer also wants to maximize in the
opposite direction. That’s exactly what happens in this problem. The optimizer discovers
a maximization of the opposite direction can be achieved by adding force. However, since
the force is pointed downwards, displacement in the opposite direction is not expected. This
result is probably caused by a numerical issue of the optimizer linked by the FEM method.

Master of Science Thesis Stefan Broxterman

60 Design of Actuator Placement

U = 536682573.12

(a) Minimal displacement including topology

U = 0.13

(b) Minimal squared displacement

Figure 5-5: Optimal actuator placement including topology optimization for a) minimal dis-
placement, b) minimal squared displacement. The associated displacement plots can be found in
(Appendix A.6.2) and (Appendix A.6.4).

5.4.1 Displacement consideration

One way to overcome the problem of 5.4 is by simply minimizing the squared displacement.
This will skip the tendency to maximize the opposite direction . It will change the minimiza-
tion problem from (5-8) into a new formulation:

ua(fi, ρe) = (LTu)2 + λT (Ku - f) (5-15)

With the corresponding sensitivities:

∂ua
∂fi

= (2LTuLT + λTK) ∂u
∂fi
− λT ∂f

∂fi
(5-16)

∂ua
∂ρe

= (2LTuLT + λTK) ∂u
∂ρe

+ λT ∂K
∂ρe

u (5-17)

Where λ = −2K−1LuTL to remove the ∂u terms.
The corresponding result of this optimization can be seen in Figure 5-5b. The result is
obviously a lot better then Figure 5-5a. We see an expected behavior, namely, the force is
placed most left of the force design domain. The topology is then be used to counteract this
force and make a stiff structure. Even after a maximum number of iterations, still a gray
pattern remains for the topology. It seems like the optimizer simply does not want to create a
black-and-white pattern. This behavior is in collaboration with the distribution of the force.
A trade-off between counteracting the force by placing material and minimizing the moment
exerted on the beam is made. This trade-off seems to be difficult to solve. However, as little
force as possible is used, which makes the force constraint fmin an active constraint, which
is in line with the theory. The figures does not converge to black and white regimes, in the
next section a possible solution is explained.

5.4.2 Compliance constraint

The result in Figure 5-5b is quite good, but not perfect at all. It seems like the optimizer
creates little material near to the force, and the structure is a little leaned over. Perhaps the

Stefan Broxterman Master of Science Thesis

5.4 Topology optimization for actuator placement 61

U = 22.99

b)

U = 108.79

c)

U = 89.70

d)

U = 45.73

e)

a)

Figure 5-6: Design evolution history of the optimization process for minimal displacement using
actuator placement and topology optimization. The beam is discretized by 90 x 30 elements. a)
design problem, b) 5% of total iteration steps, c) 25% of total iteration steps, d) 50% of total
iteration steps, e) final solution. The associated mean displacements are shown under each figure.
The associated displacement plots can be found in (Appendix A.6.2) and (Appendix A.6.4).

FEM method could transport the external force through void regions to the structure. This
results that a certain area, very close to the force, is displaced very much. This force however,
is absorbed by the void regions, so the other solid regions are little effected by displacements
due to the external force. The objective isn’t determined as a minimal displacement for a
local area near the force, but the objective is to minimize the overall displacement. When
little elements are displaced very much, while the rest of the element displaces only a little,
the overall displacement could be labeled as relatively low.
One way to overcome this problem is by adding another constraint function. It would be nice
to implement within the optimization problem a compliance constraint (c = fTu) , which
should not be too high. By using an arbitrary upper limit value of total compliance, we can
prevent the optimization process to let the force pass through less dense regions.

During optimization it seems like the force and density constraints need to be upscaled, to
make these two constraints more important than the compliance constraint. This is done due
to the fact that the main constraints for this problem are the force and density constraints,
while the compliance constraint is just added to prevent the optimizer creating non-physical
solutions.
A design evolution history of this optimization process is depicted in Figure 5-6. As can be
seen, the optimization process seems very nice and decent. The force is gradually placed
to the left hand side of the actuator design domain, the topology is gradually optimized in
a black-and-white structure, which is in line with the previous compliance problems. The
additional constraint does result in a longer computational time, however.

Master of Science Thesis Stefan Broxterman

62 Design of Actuator Placement

U = 374463345.98

(a) Minimal displacement including topology
and density dependency

U = 106.46

(b) Minimal squared displacement including den-
sity dependency

Figure 5-7: Optimal actuator placement including topology optimization with density dependency
for a) minimal displacement, b) minimal squared displacement The associated displacement plots
can be found in (Appendix A.6.3) and (Appendix A.6.5).

5.4.3 Objective refinement

A pretty nice result of the design evolution history can be found in Figure 5-6. It seems
like the result is very optimal. There is however one issue that can be improved. The
calculation time takes very long. This can probably be ascribed to the formulation of the
objective. In (5-15) the objective is described as minimizing the absolute displacement for
the whole design domain. However, since the topology is included, the main point of interest
is not the displacements of the design domain, but mostly the displacement field of the
constructed structure itself. To refine the prescribed objective, it can be very interesting to
include the density distribution in the objective. A simple multiplication of the topology
distribution by the associated displacement field will result in a new objective. This objective
will tend to minimize the displacement of the solid regions. So basically, it will minimize the
actual displacements of constructed area. By applying this refinement, a speed improvement
can be made. Since the optimizer is no longer interested in minimization of void regions,
the computational load can be used for solid regions, which eventually will lead to shorter
computation time. The updated minimization problem can now be re-formulated as:

ua(fi, ρe) = (LTux)2 + λT (Ku - f) (5-18)

Where ux can be seen as a Hadamard product of the node displacement and the node density.
Since density is always element based (ρe), and node density does not have any physical
interpretation, a transformation from the element density should be made into the virtual
node density value ρn. This Hadamard product can be written as:

ux = u� ρn (5-19)

By using this formulation, the corresponding sensitivities can be calculated as:

∂ua
∂fi

= (2LTuxLT + λTKx)∂ux
∂fi
− λT ∂f

∂fi
(5-20)

∂ua
∂ρe

= (2LTuxLT + λTKx)∂ux
∂ρe

+ λT ∂K
∂ρe

u (5-21)

Stefan Broxterman Master of Science Thesis

5.4 Topology optimization for actuator placement 63

U = 21.07

b)

U = 1610.83

c)

U = 316.48

d)

U = 41.20

e)

a)

Figure 5-8: Design evolution history of the optimization process for minimal displacement using
actuator placement, topology optimization and density dependency. The beam is discretized by
90 x 30 elements. a) design problem, b) 5% of total iteration steps, c) 25% of total iteration
steps, d) 50% of total iteration steps, e) final solution. The associated mean displacements are
shown under each figure. The associated displacement plots can be found in (Appendix A.6.3)
and (Appendix A.6.5).

Where λ = −2K−1LuxTL � ρn to remove the ∂ux terms, and Kx = K � 1
ρn

. The optimal
results are depicted in Figure 5-7. The previous optimal results of Figure 5-7 are now up-
dated, including the new objective from (5-18). In order to compare the difference between
both formulations, the same lay-out is used in Figure 5-7, as in Figure 5-5.

As can be seen, the results have different solutions. There is less gray area and the cal-
culation time is improved. Because of the implementation of the density dependency, the
optimizer neglects void regions, which eventually leads to shorter computational time and
better design of actuator placement. However, both results are still not optimal. One way
to overcome this problem is to implement the compliance constraint, as explained in 5.4.2.
The optimal result of this optimization problem, including this compliance constraint and in-
cluding density dependency is depicted in Figure 5-8. As can be seen, the optimizer seems to
reach its final stage much faster, than without using density dependency (Figure 5-6). Also,
when looking at the deformed geometry, it can be concluded that the optimizer priorities
minimal displacement of the solid regions. Therefore, the solution of Figure 5-8 differs from
the previous solution and is better physically interpretable. The overall mean displacement
is also improved by 10%.

Master of Science Thesis Stefan Broxterman

64 Design of Actuator Placement

5.5 Application of actuator placement

Design of actuator placement can be used in a variety of domains. Simple cantilever problems
can be optimized using the combination of actuator design (Begg et al., 1997) and topology
optimization. Especially within the manufacturing domain, actuator placement can be very
promising. An optimal actuator layout can be used to minimize internal deformations, which
contributes to a more reliable system. Besides to minimizing displacements and minimizing
compliance, it can also be used to achieve dynamic performance using a harmonic response
(Barboni et al., 2000). For example the frequency spectrum can be tuned using an actuator
optimization model as mechanical filter, to ensure that certain mode shapes are not excited
whereas other are. Altering eigenmodes can also be done by using actuator placement, in
combination with topology optimization, for example to extend the bandwidth. These op-
timizations can be taken a step further by including control of these actuators (Alves da
Silveira et al., 2015). By including this control functionality, it could be very promising to
use optimal actuator placement in combination with piezoelectric materials (Foutsitzi et al.,
2013). In this field, it should be possible to tune certain dynamic behavior of the material by
optimizing the applied voltage to the piezoelectric elements.
Also in the thermal domain actuator placement can be used. In this field, heating can be seen
as force application. The perfect heat locations can be found by using actuator placement, in
order to maximize the thermal performance of a certain model (Sheng and Kapania, 2001).
In the next chapter a complete case study will be made, which could be very promising in
the nearby future. A wafer stage will be optimized to enhance its dynamical performance

5.6 Conclusions

In chapter 4, some words are spend on the design of supports. In this chapter the focus is
changed to variable force applications. Optimization can be used to find the perfect actuator
placement, in order to achieve an objective.
When determining the optimal place of actuators, the force is used as a set of design variables
(5.1). A penalization problem comes up when using negative forces, or forces that are pointing
downwards. A way to overcome this, is by using the new introduced Arching Continuation
Method (5.1.2), for penalizing negative and positive forces.
A simple solid cantilever beam can be optimized for actuator placement, by minimizing com-
pliance (5.2) or minimizing displacement (5.2.1). Also, design of actuator placement can be
used to optimize a variety of advanced applications (5.3), by tweaking the objective and as-
sociated sensitivities.
Topology optimization can also be added to the problem. The placement of actuators will co-
operate with the topology in order to achieve the best objective (5.4). Some changes should be
made to the objective, however (5.4.1), to prevent the optimizer from searching for unwanted
optima. A third constraint is sometimes needed, to force the structure being physically in-
terpretable (5.4.2). It can also be helpful to include density dependency into the objective
(5.4.3) for even better interpretable results.
Design of actuator locations can be promising in a lot of different fields, from mechanical to
thermal problems (5.5). In the next chapter a case study is dedicated to this current chapter,
where a wafer stage will be optimized, in order to maximize its dynamical behavior.

Stefan Broxterman Master of Science Thesis

Part III

Dynamic Topology Optimization

Master of Science Thesis Stefan Broxterman

Chapter 6

Case Study: Wafer Stage

In chapter 5 the design of actuator placement is studied for static problems. In this chapter
this approach is taken further by considering dynamics. This placement of dynamic actuator
force can also be used in combination with topology optimization, for example to reduce the
applied dynamic load.

In section 6.1 an introduction of a wafer stage is made. Dynamics are introduced in section
6.2, where several dynamical aspects are investigated. These phenomena are demonstrated
using three different examples. In section 6.3 the design of actuators is investigated to achieve
better (dynamical) performance.

Up to here, the design domain is considered as a complete solid region. In section 6.4 topology
optimization is included besides the design of actuators in a dynamical spectrum. The solid
case examples are now all solved with topology optimization introduced. In section 6.5 a
final, optimal solution is given, by making multiple sides of the domain available for actuator
design.

In section 6.6 a nice lateral 2D case is made, with a nice 3D graphical representation. Section
6.7 concludes this chapter.

6.1 Case introduction

This section is dedicated to a dynamic actuation of a structure. For example a wafer stage.
This stage is used as a driver for a wafer. This wafer is a thin slice of a semiconductor,
for example a thin plate of high pure crystalline silicon, which is used in electronics for the

Master of Science Thesis Stefan Broxterman

68 Case Study: Wafer Stage

Figure 6-1: A wafer stage and its surrounding complexity (Reliant Systems Inc., 2017)

manufacturing of integrated circuits, as seen in electronic chips. A picture of a wafer stage
and its corresponding complexity can be found in Figure 6-1
This wafer stage is actuated and accelerated in order to create a certain motion pattern.
This motion pattern can then be used with highly precision positioning to expose the wafer
to ultra-violet light, in order to create a certain etching pattern. Extreme precision is re-
quired, and any unwanted displacement can result in errors that deteriorate the performance
of the electronic circuits. Displacements can arise from small deformations within the wafer
stage or from the heat production by the actuator, which results in thermal expansion of the
wafer stage. Due to the small size of the integrated circuits, very small deformations in the
material can have a big impact. The aim is therefore on a reliable system. The bandwidth
and speed of the wafer stage is also a big challenge these days. Time is money, so a faster
system will result in more cashflow.

This chapter investigates a new approach to make an improvement on the current wafer
stages, by making use of actuator design and topology optimization.

6.2 Dynamics

To understand the way placement of actuators is working in combination with dynamics,
let us first have a closer look at the dynamics of this system. The stage should move from
left to right, by using an actuator. In this research, we assume the stage to be actuated
harmonically, as a model for a cyclic production process. The general dynamic equilibrium
equation is given by:

Ku + Mü = f sin(ωt) (6-1)

Stefan Broxterman Master of Science Thesis

6.2 Dynamics 69

Figure 6-2: Design domain of single force case example. The striped area indicated the objective
area. The associated (absolute) vertical displacement of the objective area U is depicted below
the figure.

Where M is the global mass matrix, which is a combination of all elemental mass matrices
Me. In the model we use a lumped mass matrix. This is an easy and fast way of building
up a mass matrix, by simply placing a quarter of the element mass along the eight degrees of
freedom of that element.
This dynamic equation of motion is only correct when neglecting damping, which is the case
in the considered application. The harmonic excitation will result in a harmonic response.
By choosing a harmonic oscillation for the displacement vector u, the second derivative can
be calculated accordingly:

u = u sin(ωt)
u̇ = ωu cos(ωt)
ü = − ω2u sin(ωt)

(6-2)

Substituting these expressions in (6-1) and removing the sin(ωt) terms yields:

Ku + M(−ω2u) = f
(K− ω2M)u = f

(6-3)

6.2.1 Single force actuator

For a given desired acceleration of the stage mass, the minimum applied force can be calculated
accordingly. By making use of Newton’s second law (f = m · a), where m indicates the
total mass of the body, the minimum force which should be applied to the body is found. We
add this as a constraint to force optimization problem, which will prevent the optimizer from
creating a zero force. Without this constraint, the zero force solution is an attractive solution
for the optimizer, as it results in minimal (zero) displacements.
To understand the behavior of the dynamic force optimization problem, we deliberately start
with a solid stage, so the topology cannot change here. Additionally, a force can be attached
to the middle of the right hand side of the body, to let the body move harmonically. A
schematic of the first investigation is drawn in Figure 6-2. As can be seen, the stage consist
of a solid body and is actuated with one force on the side. The striped area on the top of
the design domain represents the area of the objective. In the simplified stage example the
objective is to minimize vertical displacement on the top of the wafer stage, where the thin
plate of silicon lays. To be able to minimize this value further on in this thesis research, the
displacement is squared, as also described in 5.4.1. However, to compare the several cases

Master of Science Thesis Stefan Broxterman

70 Case Study: Wafer Stage

Figure 6-3: Eigenmodes for the first twelve eigenvectors. The upper three eigenmodes are rigid
body modes, where zero or very little deformations are involved. The mode shapes in this figure
should be combined with Figure 6-4 to get the correct insight in the behavior of each eigenmode.

in this chapter, the sum of the absolute displacements of the top layer, U , is depicted below
each figure.

Starting with (6-3), the stiffness matrix K and mass matrix M remain constant, since the
density, and thus the stiffness and mass distribution, will not change. This means the dis-
placement solution can only be solved using the actuation frequency ω.

6.2.2 Eigenmodes

For a set of frequencies ω the expression (K − ω2M) can result in zero. In this case the
displacement solution for a nonzero excitation does not exist. This corresponding frequencies
are called eigenvalues, or in this particular case, eigenfrequencies. Each eigenfrequency has
its own characteristic displacement field, called its eigenmode. This eigenmode can be seen
as a natural vibration of the system, where all parts move together at the same frequency,
the eigenfrequency. The corresponding shape of the behavior can be depicted by a so-called
mode shape. Additionally, the following equation (6-4) can be solved:

(K− ω2
i M)ui = 0 (6-4)

This equation will result in a set of eigenvectors ui and corresponding eigenvalues where this
equation holds. This set of solved displacement vectors u are called eigenvectors and will be
displayed as φ in the remainder of this thesis.
The mode-shapes can be divided in rigid body modes and structural modes. Rigid body modes

Stefan Broxterman Master of Science Thesis

6.2 Dynamics 71

Figure 6-4: Eigenmodes for the first twelve eigenfrequencies. The upper three eigenmodes are
rigid body modes, where zero deformations are involved. The mode shapes in this figure should
be combined with Figure 6-3 to get the correct insight in the behavior of each eigenmode.

seem to show deformations, but in fact this is rigid rotation. In this case three rigid body
modes are involved. When tuning the frequency up, at certain levels, the frequency equals
an of eigenfrequency. The associated eigenmodes, the natural vibrations can be described by
the modeshapes as depicted in Figure 6-3 and Figure 6-4. Since the rigid body modes do
not involve structural deformations, it is very common to start counting eigenfrequencies and
eigenmodes from the first structural eigenfrequencies.

Some of the eigenmodes, described in Figure 6-3 and Figure 6-4 are typical bending modes;
these eigenmodes exist in beam examples. For example mode number 1, 3, 4 and 5.

6.2.3 Frequency response

A frequency response can be seen as quantitative measure of the output spectrum in response
to a certain input. This frequency response is very helpful to characterize the dynamics. In
this case, the input is the exerted force. The output of interest is the displacement field. A
characteristic way of displaying a frequency response is by using a Bode plot. A Bode plot
of this case is depicted in Figure 6-5. In this figure the horizontal output displacement of
a point, just above the force application point, is plotted to a certain frequency spectrum.
This point, just above the force is chosen, since this point is most of the time displaced. The
bottom of the bode plot describes the phase behavior of the system. Zero degree phase means
the system is in-phase, the body moves in the same direction as the force. −180◦ phase means

Master of Science Thesis Stefan Broxterman

72 Case Study: Wafer Stage

0

10

20

30

40

50

M
ag

ni
tu

de
 (

ab
s)

1 2 3 4 5 6 7
-180

-135

-90

-45

0

P
ha

se
 (

de
g)

Bode Diagram

Frequency (rad/s)

Figure 6-5: Frequency response of a solid body, excited by one harmonic force. The output point
is chosen just above the point the force attaches.

the system is completely out of phase and the body moves in the opposite direction of the
applied force.

6.2.4 Dynamic mode dependency

Another point of interest in optimization with dynamics, is the influence per mode on the final
result. This mode influence can be calculated. By taking the dot product for each eigenvector
φi, as described in (6-4) and the applied force vector f , the degree to which each mode is
excited the force placement can be calculated.
Now, by implementing a weight factor, the influence per mode ηi for the applied excitation
frequency ωi can be calculated accordingly (Rixen, 2008).

ηi = φi
T f

(ω2
i − ω2)

(6-5)

In this equation (6-5) can be seen, that modes (actuated at their corresponding eigenfrequency
ωi) far away from the excitation frequency ω, will result in a larger denominator and thus in
a smaller contribution ηi of this mode. On the other hand, the closer the excitation frequency
ω approaches an eigenfrequency ωi, the smaller the denominator get and thus the influence
on this corresponding mode will be larger. In this section an excitation frequency of ω2 = 8
is used. This frequency lies just between the first and second eigenmode of the solid stage
and thus can give us a good view on the dynamic behavior.
The mode contribution for the case depicted in Figure 6-2 is displayed in Table 6-1. In this first

Stefan Broxterman Master of Science Thesis

6.2 Dynamics 73

column the mode number can be seen, the second column holds the associated eigenfrequency.
In the third column the mode contribution φiT f , followed by the scaled contribution ηi, as
described in (6-5). This is done, so the difference between φiT f and the scaling of the mode
contribution can be seen very clearly. In the last column the relative contribution of this
mode influence can be found. This contribution is normalized by taking the sum of these first
twelve eigenmodes.
As can be seen, the central force placement, is mostly affecting the second (structural) mode,
and the second rigid body mode. This means, that the current placement of the single force
will result in a displacement field which largely consists of these two modes. A corresponding
mode contribution for the six most important modes, over a spectrum of frequencies can be
found in Figure A-19. In this schematic it can perfectly be seen which mode contributes
how much on every frequency. When the excitation frequency approaches an eigenfrequency,
the corresponding mode will be actuated the most and will thus take the largest relative
contribution of the total modes. When using this graph and take for example ω2 = 8, which
is used for producing the objective function and also for producing Table 6-1, this frequency
can be chosen and the relative contribution values can be seen accordingly, these are in line
with Table 6-1.

6.2.5 Double actuator

In the previous example Figure 6-2 only one force is considered. In this subsection however,
the force is divided by two and placed at the lower-right and upper-right corner of the objective
area (striped area). The distance from the top to the upper force application point is the
same as the distance between the bottom and the lower force application point. attachment
Since the force is divided by two, the total force remains the same. A schematic of this case
is depicted in Figure 6-6. Keep in mind, since the design domain is still solid, the stiffness
and mass matrices will not change. The modeshapes in this case are thus the same as in the
single force problem (Figure 6-2). As can be seen in Figure 6-6, the objective is improved by
almost 30%, with respect to Figure 6-2. The associated mode contribution can be found in

Mode Eigenfrequency φi
Tf Mode contribution ηi Contribution (%)

Rigid #1 1.24e-07 0.20 -0.03 0.82
Rigid #2 1.34e-07 5.05 -0.63 20.40
Rigid #3 2.63e-07 0.07 -0.01 0.30

#1 2.29 0 0 0
#2 3.47 -7.36 -1.82 58.89
#3 3.83 0 0 0
#4 5.53 0 0 0
#5 5.60 0 0 0
#6 6.07 3.89 0.13 4.36
#7 6.15 7.44 0.25 8.07
#8 6.26 -3.82 -0.12 3.96
#9 7.19 4.33 0.10 3.20

Table 6-1: Mode contribution of single force case as described in (Figure 6-2) and taking a
frequency of ω2 = 8

Master of Science Thesis Stefan Broxterman

74 Case Study: Wafer Stage

Figure 6-6: Design domain of two forces case example. The striped area indicates the objective
area.

Figure 6-7: Design domain of distributed force case example. The striped area indicates the
objective area.

Table A-34. By compare this table with the Table 6-1 conclusions on the mode actuation can
be made. By placing the force away from the middle, the second mode is less actuated (ηi).
Since this mode is close to the actuation frequency, the total displacement will be lower. The
associated mode contribution plot can be found in Figure A-20.

6.2.6 Distributed actuators

In this section the actuation force is distributed on the right side of the domain. Since this
distributed load is placed on the elements, the upper and lower nodes only have only one
contribution from the elements.

As can be seen, the depicted objective in Figure 6-7 is somewhat worse than using two
actuators (6.2.5), but better than only using one force (6.2.2). The corresponding mode
contribution can be found in Table A-35. By turning the two force case to a distributed
force case, the second mode is actuated more, and since this mode is dominant for this
excitation frequency ω2 = 8, which can be the cause for the larger objective value. The mode
contribution graph can be found in Figure A-21.
Now using the information of these three force cases, perhaps an even better solution is
possible, by making a mixture of the two force and distributed force cases. In the next
section design of actuators will be used to optimize the case.

Stefan Broxterman Master of Science Thesis

6.3 Design of actuators 75

(a) Design domain

U = 53.68

(b) Optimal actuator layout

Figure 6-8: Design domain and optimal actuator layout. The gray striped area indicates the
objective area. The white striped area indicates the (positive) actuator design domain. The size
and placement of the arrows represent the location and magnitude of the optimized force layout.
The associated mode contribution can be found in Table A-36.

(a) Design domain
U = 53.52

(b) Optimal actuator layout

Figure 6-9: Design domain and optimal actuator layout. The gray striped area indicates the
objective area. The white striped area indicates the (positive) actuator design domain. The size
and placement of the arrows represent the location and magnitude of the optimized force layout.
The associated mode contribution can be found in Table A-37.

6.3 Design of actuators

Up to here, the force is applied at a certain location(s). This section is dedicated to the design
of actuator placement, which is already explained in Chapter 5. By making a combination of
this design of actuator placement with the described dynamics in 6.2 a solution of the best
placement of actuators can be determined, while respecting the dynamics.
The design domain looks like before (Figure 6-2), but now it includes a design domain for
actuators on the right hand side. This new design case is depicted in Figure 6-8a. Of course,
the main target will be to improve the previous objective. In line with the previous chapters,
a new optimization formulation (6-6)can be made, including the design of actuators. As
already described in 5-15, the objective is minimizing the squared displacement. The total
mass of the structure can be calculated by making a summation of elemental mass. This
elemental mass is made of the element’s density ρe and the material density ρ0. The total
applied force should be enough to move the body with a pre-defined acceleration vector a, in
this case it would be a horizontal acceleration of ω2 = 8, in order to compare the results with
the previous examples. The force that can be used to meet this constraint can vary between
0 and 10 for each actuator location (depicted by the white striped area in Figure 6-8a).

Master of Science Thesis Stefan Broxterman

76 Case Study: Wafer Stage

min
fi,ρe

ua

s.t. ua = (LTu)2

(K− ω2M)u = f

K =
n∑
e=1

ρe
pKe

M =
n∑
e=1

Me

n∑
e=1

νeρe ≤ V

m · a ≤
n∑
i=1

fi i = 1, . . . , Ni a = ω2

m =
n∑
e=1

νeρeρ0 e = 1, . . . , N

0 ≤ fi ≤ 10

(6-6)

This optimization problem is then solved using the MMA-solver, which is used along this
report. The minimum vertical displacement of the top layer can now be rewritten including
an adjoint function.

ua(fi) = (LTu)2 + λT
[
(K− ω2M)u− f

]
(6-7)

Where L is the selection vector of the displacement, in this case the top layer of the design
domain.
The corresponding objective sensitivities can now be calculated accordingly.

∂ua
∂fi

=
[
2LTuLT + λT (K− ω2M)

] ∂u
∂fi
− λT ∂f

∂fi
(6-8)

Where λ = −2(K− ω2M)−1LuTL to remove the ∂u terms.
The optimization result is depicted in Figure 6-8b. The blue arrows indicates the force
applications, where the magnitude of the force is proportional to the size of the arrowhead
and the total length of the arrow. A threshold value of 0.05 is chosen. This means that a force
arrow is only displayed when its value represents a minimum of five percent of the maximum
force applied.

As can be seen in Figure 6-8b, a big force is attached at the bottom right, and some cluster of
forces at the top right. The objective is slightly better than the two forces case, as described
in Figure 6-6. The total designed force equals the m · a term, which means the optimizer
does not use more force than strictly needed to meet the constraint. This is in line with
the preliminary thoughts, since additional force will result in additional stresses and thus
additional deformations.
The improvement on the objective is made, but some more improvement should be possible.
By extending the actuator design domain to include the bottom right corner as actuator
design domain this improvement could be possible. The updated design domain is depicted
in Figure 6-9a. The optimal actuator layout can be seen in Figure 6-9b. As can be seen, the

Stefan Broxterman Master of Science Thesis

6.3 Design of actuators 77

(a) Design domain

U = 52.96

(b) Optimal actuator layout

Figure 6-10: Design domain and optimal actuator layout, while enabling negative forces design.
The gray striped area indicates the objective area. The white striped area indicates the actuator
design domain. The size, placement and direction of the arrows represent the location, magnitude
and orientation of the optimized force layout. The associated mode contribution can be found in
Table A-38.

extension of the actuator design domain leads to force attachment at that additional area and
thus a very different force layout. Thanks to this extension, an improvement to the objective
can be made. A very small improvement, but an improvement.

6.3.1 Design of negative forces

In 6-9 an improvement for the objective value is made available. An even further improvement
should be possible. By enabling the possibility to create negative forces (forces in the opposite
direction of the acceleration) an improvement can be made, which may seem counterintuitive
at first. The same design domain as depicted in Figure 6-9a and almost the same formulation
as 6-6. Only one adjustment should be made here, by changing the magnitude of the actuator
design domain to −10 ≤ fi ≤ 10. The updated optimization result can be found in Figure 6-
10b. As can be seen, there is a big negative force at the mid-half. In general, it seems a bit
unexpected the optimal result would even use negative forces. Since the total force should
still at least equal the (f = m ·a) term, a negative force will thus also lead to larger positive
forces. The reason to create negative forces is to counteract the dynamic eigenmodes. A
negative force can be used to counteract or reduce the dynamical effects, although a larger
amount of forces should be used.
It can be concluded that improvements in the objective can be made by placing forces in

other direction than the acceleration force. In the next section this approach is taken a step
further.

6.3.2 Design of force at multiple sides

Up to here, the force application could only be attached at the right-half side of the design
body. However, improvements can be made by making multiple sides of the body available
for actuator placement. In this section, bottom force can be applied at the bottom-side of the
design domain. These forces can be upwards (positive) or downwards (negative). Of course,
these vertical forces are not contributing to the (f = m · a) expression. But these forces can
be used to reduce mode excitations. An updated design domain can be found in Figure 6-11a,

Master of Science Thesis Stefan Broxterman

78 Case Study: Wafer Stage

(a) Design domain
U = 6.22

(b) Optimal actuator layout

Figure 6-11: Design domain and optimal actuator layout, while enabling negative forces design.
The gray striped area indicates the objective area. The white striped area indicates the actuator
design domain. The size, placement and direction of the arrows represent the location, magnitude
and orientation of the optimized force layout. The associated mode contribution can be found in
Table A-39.

the corresponding optimal actuator location layout can be found in Figure 6-11b. As can be
seen, a huge improvement can be made to the objective value. The extension of the actuator
design domain indeed leads to a very big improvement of this optimization problem.
Another possibility could be to include the left-half side of the body in the actuator design
domain. An even larger improvement of the objective value U can be made. The updated
design domain can be seen in Figure 6-12a. The optimal actuator layout is depicted next to
it in Figure 6-12b. As can be seen, a variety of forces are applied to the body. The total
applied force is almost exactly the minimal force needed, to accelerate the body with an
acceleration of w2 = 8. Some big forces at the mid-half of both sides are pointing left, which
is in opposite direction of the acceleration, to reduce the excitations caused by the dynamic
behavior. Another two big forces are needed to actually achieve the minimal total horizontal
force. Another point of interest is the steadily decreasing of the contribution of the second
mode, which can be seen in Table A-40. For the design result depicted in Figure 6-11b this
contribution is almost zero. This means the optimizer want to make a design which has very
little impact from this second mode. The fact it almost hit zero means the optimizer did a
very good job at this one.
By enabling the left-half side of the body for actuator design domain, a very nice objective
improvement can thus be achieved.
An even better solution could be to combine Figure 6-11 and Figure 6-12. The result is

depicted in Figure A-24. Here, a big problem when optimizing this type of design problem,
is the possibly overfitting of the model. The optimizer has just too many variables and the
optimizer is more likely to approach a (high) local optimum. The result depicted in Figure A-
24 shows a distribution along all sides of the design domain. The horizontal force is almost
twice the minimum needed force to achieve the prescribed acceleration. This could also be
a symptom of the overfitting of the model. It can be concluded that, in order to achieve a
maximal optimization result, the design domain should not be too vague or too big.
Another option to optimize, is actuating at the natural frequency. Of course, it is not common
to actuate at or near an eigenfrequency. But in some cases, when the material and frequency
are given, it could be possible we need to optimize the actuator layout in order to trigger the
modes as little as possible.

Stefan Broxterman Master of Science Thesis

6.4 Topology optimization for dynamic performance 79

(a) Design domain

U = 3.18

(b) Optimal actuator layout

Figure 6-12: Design domain and optimal actuator layout, while enabling negative forces design.
The gray striped area indicates the objective area. The white striped area indicates the actuator
design domain. The size, placement and direction of the arrows represent the location, magnitude
and orientation of the optimized force layout. The associated mode contribution can be found in
Table A-40.

6.4 Topology optimization for dynamic performance

Up to here, the stage consisted of a completely solid stage. This thesis research is based on
topology optimization, however. By enabling the possibility of changing the topology in the
design domain, even better results can probably be achieved. The combination of actuator
placement and topology optimization is already touched in 5.4 for static problems. By en-
abling dynamics (6.2), a more advanced optimization problem can be set up.
The objective in this section remains the same, namely minimizing vertical displacement of
the top layer. This top layer should be a solid area. Since in this section the topology can be
changed, a restrictive area (3.2.1) is introduced at the top of the design domain.
The main focus will be to look for a better performing wafer stage example, in terms of
the vertical displacements of the top layer. Eigenmodes and frequency response are already
described in 6.2.2 and 6.2.3. These dynamic properties depend on the stiffness and mass
distribution. Since the topology can now be changed, the eigenfrequencies, eigenmodes and
frequency response will also change during the optimization process.

6.4.1 Topology optimization for fixed force

To understand the behavior of topology optimization, in this section a topology optimization
example for a fixed force case is considered. Since the two force example (6.2.5) seems to be
a good starting point, we will use this example for topology optimization. In this example
the force remains the same, the magnitude is based on moving a solid stage (f = m · a).
This means the optimizer could make a complete solid stage. On the other hand, removing
material does not contribute to a lower force application in this example. This example is
created to see whether or not the optimizer wants to remove material and what regions should
be void. The design domain can be found in Figure 6-6. As can be seen, two problems seem to
come up. At first, the lower force is not directly connected to the structure by solid regions.
This means the force attachment has no physical interpretation. This problem is already
seen in Figure 5-5b, with a possible solution as described in 5.4.2, to overcome this problem.

Master of Science Thesis Stefan Broxterman

80 Case Study: Wafer Stage

U = 19.14

Figure 6-13: Optimal topology for minimal displacement using static forces. The associated
total vertical displacement of the top layer is depicted under the figure. The total horizontal force
used is f = 3.20.

A compliance constraint should be implemented, in order to ensure the force is attached to
the structure. By implementing a compliance constraint, the optimizer is prohibited from
creating very large displacements at the point of force attachment.
Another topology phenomenon comes up in Figure 6-13, namely gray regions. Gray regions
also have no physical interpretation. A penalty-term of p = 3 is already implemented, but
still a lot of gray regions exist. Since the optimization problem depends on the topology and
subsequently on the frequency response, it could be possible the optimizer only wants part of
the stiffness (and mass) of certain elements, in order to reduce certain mode excitations.

6.4.2 Topology optimization for double actuator

Enabling topology optimization can indeed enhance the result and could contribute to a
smaller objective value, hence less displacements. In Figure 6-13 an example of this topology
optimization result is depicted. Here, the force remained fixed. Note that the applied force
here, does not change, while the weight is reduced. Smaller mass means less force required
(f = m · a).
It could therefore be helpful, to implement this equation in the optimization routine. A weight
reduction could therefore result in a force reduction. This force reduction could lead to less
deformation in the material and therefore in a smaller displacement field of the top layer.
Design of actuators (6.3) could be very helpful also, to calculate the optimal actuator layout.
As already described in 6.4.1, two problems should be overcome. In this section a compliance
constraint is implemented, the same way as introduced before in 5.4.2. As can be seen in
Figure 6-14, the force seems to be attached to the structure. Since the minimum force needed
is from now on coupled to the mass, a mass reduction could thus lead to a force reduction.
Note that the minimum force to accelerate the solid body is f = 3.20. To get an insight in the
force reduction that can be achieved, the associated applied total horizontal force is depicted
in the legend of each optimization case.
The second problem, gray regions, is also investigated in Figure 6-14. Here, the top layer is
still solid material and the displacements of this top layer should be reduced. The topology
can be varied in the design domain and actuators can be designed at the two points as
depicted in Figure 6-6. Although the density distribution is different for the cases as depicted
in Figure 6-14, the volume fraction is around the same value. This also holds for the minimum
horizontal applied force. Typically, it can be concluded, that weight reduction results in force
reduction.

Stefan Broxterman Master of Science Thesis

6.4 Topology optimization for dynamic performance 81

Figure 6-14: Optimal actuator placement including topology optimization for minimal displace-
ment using two forces, including a compliance constraint. The penalty is defined by a) p = 3, b)
p = 4, c) p = 5, d) p = 6. The associated total vertical displacements of the top layer are shown
under each figure. The total horizontal force used is a) f = 2.16, b) f = 2.16, c) f = 2.17, d)
f = 2.13.

The same optimization problem as stated in 6-6 holds, with the notation that ρe can now
be varied. This means the same vertical displacement of the top layer is considered. The
objective thus remain the same.

ua(fi, ρe) = (LTu)2 + λT
[
(K− ω2M)u− f

]
(6-9)

This equation should also be differentiated to the density variable ρe. This sensitivity can
be calculated as:

∂ua
∂ρe

=
[
2LTuLT + λT (K− ω2M)

] ∂u
∂ρe

+ λT ∂K
∂ρe

u− ω2λT
∂M
∂ρe

u (6-10)

Where λ = −2(K− ω2M)−1LuTL to remove the ∂u terms.
By varying the SIMP penalty-term, some insight in the behavior of the structure can be
achieved. While increasing the penalty-term from p = 3 (Figure 6-14a), to p = 6 (Figure 6-
14d), it can be clearly seen that the behavior tend to optimize towards a black-and-white
solution, which is better physically interpretable. Although a high penalty is implemented at
Figure 6-14d, the structure still wants to create gray regions. This means the optimizer want
some stiffness in that particular region, even when this will have a big trade-off. It can be
concluded, the total vertical displacement of the top layer is decreasing by the implementation
of topology optimization, when compared to the massive stage from Figure 6-6.

6.4.3 Side force and topology optimization

As already concluded in 6.3, design of actuators along the side can be helpful in achieving lower
displacements. In this section the complete righthand side of the design domain can be used

Master of Science Thesis Stefan Broxterman

82 Case Study: Wafer Stage

(a) Design domain
U = 2.06

(b) Optimal solution

Figure 6-15: Design domain and optimal actuator layout, including topology optimization. The
gray striped area indicates the objective area. The white striped area indicates the (positive) actu-
ator design domain. The size and placement of the arrows represent the location and magnitude
of the optimized force layout. The total horizontal force used is f = 2.51.

for force actuation. By enabling this option in combination with topology optimization, it
allows the optimizer to avoiding low eigenmodes and actuating at points where less excitation
is experienced. The topology can be used to avoid certain modes, the force can be used to avoid
excitations of certain modes. The combination can be used to create an efficient frequency
response for the particular case. An example of this problem is depicted in Figure 6-15. In
the design domain (Figure 6-15a) the design domain for actuators can be found. The optimal
topology and actuator distribution is depicted in Figure 6-15b. As can be seen from this
solution, enabling topology optimization can enhance performance, compared to the massive
stage example without topology optimization (Figure 6-9b). Also, by creating a bigger force
design domain, reducing displacements of the top layer can be achieved, compared to the
double actuator design case (Figure 6-14).

6.4.4 Negative forces and topology optimization

Up to here, this section (6.4) only includes (design of) positive forces. However, as can be
seen in 6.3.1, enabling the possibility for creating negative forces could counteract or reduce
certain mode excitations.
A problem comes up here, when implementing the compliance constraint (5.4.2). This com-
pliance constraint is defined as:

c = fTu (6-11)

This formula is pretty straightforward, but a problem comes up when creating negative forces.
The point of negative force attachment, could have a positive displacement at that particular
point. This is especially true in this case, since the body needs to move to the right. The
negative contribution could make it easier to meet the compliance constraint, and allow again
forces that act on gray/void elements. To overcome this problem, we want to calculate the
compliance as the absolute values of f and u. A simple multiplication of these absolute values
gives a problem, since this function is not differentiable. Note the definition of an absolute
value:

|x| =
√
x2 (6-12)

Stefan Broxterman Master of Science Thesis

6.4 Topology optimization for dynamic performance 83

(a) Design domain
U = 1.95

(b) Optimal solution

Figure 6-16: Design domain and optimal actuator layout, while enabling negative forces design
and using topology optimization. The gray striped area indicates the objective area. The white
striped area indicates the actuator design domain. The size, placement and direction of the
arrows represent the location, magnitude and orientation of the optimized force layout. The total
horizontal force used is f = 2.35.

A possible solution is to introduce a very small value ε to the value that needs to become
absolute. This ε can be implemented in 6-12 and subsequently in 6-11:

c = |f|T |u|

=
(√

f 2 + ε

)T(√
u2 + ε

) (6-13)

When choosing the value ε small enough, the influence will become very small and can be
neglected. The main problem is here the multiplication of vectors f and u. These vectors
should be squared element-wise, by making use of the Hadamard product, which was already
introduced in 5-19. The compliance in correct vector notation can now be rewritten as:

c =
(√

f� f + ε

)T(√
u� u + ε

)
(6-14)

This compliance constraint is differentiable to the force and density variable. By adding again
an adjoint vector, the sensitivities can be calculated.

c(fi, ρe) =
(√

f� f + ε

)T (√
u� u + ε

)
+ λT

[
(K− ω2M)u− f

]
(6-15)

with the corresponding sensitivities:

∂c

∂ρe
=
[
u
√
f� f + ε√

u� u + ε
+ λT (K− ω2M)

]
∂u
∂ρe

+ λT ∂K
∂ρe

u− ω2λT
∂M
∂ρe

u (6-16)

∂c

∂fi
=
[
u
√
f� f + ε√

u� u + ε
+ λT (K− ω2M)

]
∂u
∂fi

+
[
f
√
u� u + ε√
f� f + ε

− λT
]
∂f
∂fi

(6-17)

Where λ = −
(

K− ω2M
)−1(

u
√
f� f + ε√

u� u + ε

)
to remove the ∂u terms.

This compliance constraint is now used to optimize the case depicted in Figure 6-16a. As

Master of Science Thesis Stefan Broxterman

84 Case Study: Wafer Stage

(a) Design domain
U = 1.04

(b) Optimal solution

Figure 6-17: Design domain and optimal actuator layout, while enabling negative forces design
and using topology optimization. The gray striped area indicates the objective area. The white
striped area indicates the actuator design domain. The size, placement and direction of the
arrows represent the location, magnitude and orientation of the optimized force layout. The total
horizontal force used is f = 2.89.

already stated, the force design can vary from positive to negative values. The optimal
actuator layout and corresponding topology can be found in Figure 6-16b. As can be seen
here, the total vertical displacement of the top layer is again decreased, when compare to the
previous case in Figure 6-15b where only positive forces can be created along the right side of
the design domain. Also, an big improvement with respect to the massive case Figure 6-12b
can be achieved.

6.5 Topology optimization for actuator placement

In this section a combination of all previously described knowledge, examples and case studies
will come together. The main focus is still improving the objective value by minimizing
vertical displacements of the top layer. We have already seen an example of using multiple
sides for actuator placement in 6.3.2. By adding the design of density, by terms of topology
optimization (6.4) and using the compliance constraint described in 6-15 some promising
improvements are already shown. In this section, design of forces at multiple sides is combined
with topology optimization. Preliminary thoughts tells us that a combination of these options
can improve the objective even further.
In Figure 6-12 an example of using both sides of the design domain for actuator placement is
shown. This same actuator design domain is used, but now enabling topology optimization.
The result is depicted in Figure 6-17b. The force distribution is somewhat different from
the massive case (Figure 6-12). The objective improvement is made, however. The volume
fraction used to achieve this can be labeled as large, compared to the previous topology
examples in 6.4.

Another option could be to design at the right side of the domain and the bottomside of
the domain. This example for a massive stage is already depicted in Figure 6-11. Now by
implementing topology optimization perhaps even better results can be achieved. The de-
sign domain is depicted in Figure 6-17a, with the corresponding optimized result depicted
in Figure 6-17b. As can be seen here, the design of actuators differs from the massive stage
example with the same actuator design domain (Figure 6-11). Also, the objective value, the
vertical displacement of the top layer is reduced even further, compared to Figure 6-11 and

Stefan Broxterman Master of Science Thesis

6.5 Topology optimization for actuator placement 85

(a) Design domain
U = 0.19

(b) Optimal solution

Figure 6-18: Design domain and optimal actuator layout, while enabling negative forces design
and using topology optimization. The gray striped area indicates the objective area. The white
striped area indicates the actuator design domain. The size, placement and direction of the
arrows represent the location, magnitude and orientation of the optimized force layout. The total
horizontal force used is f = 2.52.

Figure 6-16. Although the penalty term is set to a high value (p = 6), the optimal result still
shows some gray regions, even after a high number of iterations, the gray regions still have
the preference.

The overall vertical displacement of the top layer is reduced to U = 0.19, as can be seen
in Figure 6-18b. When a comparison is made to the original model, a massive stage with two
point forces (U = 54.07), the change is substantial. The total reduction of the displacements
is −99.6%. So it can be stated, using topology optimization and actuator placement can have
a huge impact on reducing displacements. An overview of all the produced examples in this
chapter can be found in Table 6-2.

6.5.1 Improving gray regions

As already stated before, the best solution as depicted in Figure 6-18 includes gray regions.
One way to improve this result for manufacturing, it could be a good idea to increase the
penalty term even further. In Figure 6-19a an example of an increasing penalty (p = 11)
is given. As can be seen, there is some improvement in terms of black-and-white solutions.
This results however, in a larger displacement field, since the optimizer is even more forced
to create black-and-white solution.
The results as achieved in this chapter are filtered during the optimization process using a
density filter (3.2.5), using another filter, in this case the Heaviside filter (3.2.5) is used to
force the optimizer towards black-and-white solutions. The result of using this Heaviside filter
is depicted in Figure 6-19b. As can be seen, the solution is improved even more, in terms of
black-and-white regions. This also results in a larger displacement field of the top layer, but
it is better physically interpretable.

6.5.2 Changing conditions

Up to here, we let the optimizer choose the best solution, with no maximum weight restrictions
(Although the solution is limited to use 100% of the material). In some case however, it could

Master of Science Thesis Stefan Broxterman

86 Case Study: Wafer Stage

U = 1.02

(a) High penalty example

U = 52.96

(b) Heaviside filter example

Figure 6-19: Design domain and optimal actuator layout, while enabling negative forces design
and using topology optimization for two different solving situations: a) high penalty example
(p = 11), b) Heaviside filter example. The size, placement and direction of the arrows represent
the location, magnitude and orientation of the optimized force layout.

be possible that weight reductions are required. In Figure A-26 some examples with these
restrictions are solved. As can be seen, a weight reduction as constraint results in larger
displacement fields. This is in line with the preliminary thoughts, since these additional
restrictions causes less stiffness properties.
Another changing condition could be changing actuation frequency. When the actuation
frequency is pre-required, the optimal solution will be different. In Figure A-27 two examples
for different actuation frequencies can be found. The examples consists of taking the half
of the original actuation frequency (ω2 = 4) and taking the double of the original actuation
frequency (ω2 = 16). The behavior of the optimizer will be the same, namely placing as
much as eigenfrequencies in front of the actuation frequency, in order to reduce the mode
excitations. The optimal result is, however, heavily dependent on the mass and the applied
force of the structure. As can be seen, the volume fraction that is used by the optimizer is
around the same. Changing actuation frequency however can thus result in more or less force
needed to achieve the desired acceleration (ω2 = a). This same approach can also be used to
optimize the problem sketched in A.8.1.
It can be concluded that the optimizer can handle multiple restrictions, for example a weight
restriction, or a desired actuation frequency. Both can be implemented and the algorithm
can calculate the optimal solution for each particular case.

Stefan Broxterman Master of Science Thesis

6.6 3D extrusion 87

Figure 6-20: A 2D lateral extrusion of the optimal wafer stage as depicted in Figure 6-18b.

6.6 3D extrusion

Up to here, only 2D situations are considered. There is no step taken towards a three dimen-
sional case. The main reason for this is the computational time. In this section however, a 3D
extrusion is made. This extrusion is just a 2D lateral case in another dimension. A threshold
value of 0.5 is chosen. This means all densities below this threshold value are displayed as
void regions, for a better visual representation. A same threshold method is implemented for
the force distribution. Note that the lateral extrusion contains one half of the width of the
wafer stage. This is only done for a better view to the user. As already explained in 6.1 this
wafer stage should be used to produce circular wafers. The width and depth of the wafer
should thus be the same size. A full representation of this lateral extrusion can be found in
A.8.5.

6.7 Conclusions

In chapter 5, some words are spent on the design of actuator placement. A simple cantilever
beam was optimized using design of actuators. Later on, topology optimization was included
also.
In this chapter a wafer stage, as described in 6.1 is introduced. This wafer stage is simplified
in a 2D example, which is used as design domain. This wafer stage is harmonically actu-
ated by the implementation of dynamics (6.2). By investigating dynamical phenomena like
eigenmodes (6.2.2) and frequency responses (6.2.3) these dynamics are investigated for three

Master of Science Thesis Stefan Broxterman

88 Case Study: Wafer Stage

simple cases. The double actuator case (6.2.5) seems to be the best solution of these three
considered cases.
An interesting field is the design of actuators in this dynamic spectrum. By taking several
design cases (6.3), a distributed force on the left- and righthand side of the design domain
(Figure 6-12) seems to be very promising.
Since dynamics are involved in this wafer stage, the design is heavily dependent on its fre-
quency response. This frequency response is determined by its stiffness and mass properties.
It could therefore be very helpful to have a look at the volume distribution this material by
the implementation of topology optimization (6.5). Several cases are considered and the best
solution to this dynamic wafer stage design problem is by designing actuators on the right-
hand side and the bottomside of the spectrum (Figure 6-18). A problem that could come up
is the translation to additive manufacturing. For example the existence of gray regions should
be solved (6.5.1). A translation to this additive process also needs to be made by introducing
a third dimension (6.6), although this is not explicitly solved in this chapter.
Using topology optimization in combination with actuator placement can be very promising
in dynamic problems. In this chapter a displacement reduction of 99.6% is made. Although
a translation to the real world and additive manufacturing needs to be made, still a lot of
benefits can be achieved by the combination of these optimizations.

Design problem Displacement top Applied force Relative improvement
Figure 6-2 61.92 3.20 +14.5%
Figure 6-6 54.07 3.20 0
Figure 6-7 56.30 3.20 -4.1%
Figure 6-8 53.68 3.20 -0.1%
Figure 6-9 53.52 3.20 -0.1%
Figure 6-10 52.96 3.20 -0.2%
Figure 6-11 6.22 3.20 -88.5%
Figure 6-12 3.18 3.20 -94.1%
Figure 6-13 19.14 3.20 -64.6%
Figure 6-14d 2.54 2.13 -95.3%
Figure 6-15 2.06 2.51 -96.2%
Figure 6-16 1.95 2.35 -96.4%
Figure 6-17 1.04 2.89 -98.1%
Figure 6-18 0.19 2.52 -99.6%

Table 6-2: Displacement overview for all considered cases from Chapter 6. The first column
states the design result, the second column states the total absolute vertical displacement of
the top layer. The third column states the used force (note that the solid stages all used the
minimum required force f to achieve the desired acceleration ω2). The last column shows the
relative change, as compared to the massive case, with two forces (Figure 6-6), since this seems
to be a good starting solution in prior.

Stefan Broxterman Master of Science Thesis

Part IV

Closure

Master of Science Thesis Stefan Broxterman

Chapter 7

Conclusions and Recommendations

This chapter concludes this Master of Science graduation project. All the chapters are con-
cluded in 7.1. Next, some recommendation for future research are made in 7.2.

7.1 Conclusions

In this thesis, topology optimization is used for a variety of design problems. At first, design of
supports is considered. When the placement of supports is not prescribed, design of supports
tells us the best support layout. By making the combination with topology optimization, the
design of supports cooperates with the topology to create a structure which optimizes static
behavior.
The classical approach of constructing a bridge does not include support design. By the
implementation of a support cost function, the best support layout can be determined, while
respecting the surroundings. Design of supports can for example be used to minimize envi-
ronmental damage, without conflicting the objective of a bridge.

Design of actuator placement can be used to determine the best actuator layout for a given
objective. When optimizing towards minimal displacement or compliance problems, a min-
imum force constraint should be introduced. This minimum introduction is necessary, to
prevent the optimizer creating trivial solutions by placing zero force, which can be the best
solution (in a static domain), for the minimization of displacements.
The combination with topology optimization has shown cooperation between both design
variables. When optimizing in a certain design domain, it can be helpful to introduce density
dependency. It has shown that density dependency is very effective in minimizing displace-
ments of the constructed area only.

In chapter 6, dynamics are considered by introducing a harmonic excitation. Design of actu-
ators is shown to be very effective in reduction of a certain displacement field. The frequency
response, caused by the harmonic excitation at a certain frequency, can be used to place forces

Master of Science Thesis Stefan Broxterman

92 Conclusions and Recommendations

in a smart way, in order to reduce the objective. The actuator placement can be placed in
a such a manner, that modes are exerted in a way that contributes to improving an objec-
tive. Implementation of Newton’s second law is necessary, to ensure the applied force is large
enough to excite the body with the desired frequency. This is done by introducing an addi-
tional acceleration constraint. In general, more design space for actuator placement results in
better objectives. There are some situations however, where overfitting occurs. When giving
the optimizer too much freedom, the result is more likely stuck at a local minimum.

The combination of design of actuator placement with topology optimization is performed in
a dynamic domain. Since the topology can change, the frequency response can change. This
change of frequency response is combined with actuator placement, to get even better results,
with respect to the objective. The optimizer can efficiently place and remove material on
places which contributes to the objective, while the force excitations at the same time help
reducing unwanted behavior. The combination of optimizing both design variables was shown
to be very effective in reducing a certain displacement field.

7.2 Recommendations

Although this thesis contributes to reduction of a certain displacement field, there are numer-
ous of challenges to consider for future research. The implementation of design of supports
is demonstrated in a static domain. It will be interesting to expand this implementation to
a dynamic setting. The shown examples of bridge challenges are all based on static loads.
If there is some traffic crossing this bridge however, some additional dynamic forces will be
exerted on the road. This dynamic force should be included here. Another example of design
of supports is shown for compliant mechanisms, also here, dynamics should be included to
represent the physics better.

Design of force in a static domain is investigated. In these examples the supports remain
at the same locations. It could be interesting to investigate the optimization process of both
design of supports and design of actuators simultaneously. This could be helpful regarding
design of compliant mechanism.

This thesis has shown reduction of a certain displacement field, some challenges need to
be investigated, before this approach can be implemented for the design of accurate wafer
stages. The model does not contain any damping, which should be implemented accordingly,
in order to represent a physical example. The implementation of damping could lead to phase
differences and additional behavior. This should be investigated also.

The case study in chapter 6 is made using a 2D element which is discretized by 40x20 ele-
ments. This discretization could be made much bigger. By enhancing this mesh, more details
can be displayed, since the resolution becomes larger. This will lead unfortunately to a larger
computational time, in order to solve the desired problem. Also the introduction of a third
dimension should be helpful. Not only for better visual insight in the behavior, but also to
make the model physically better interpretable. However, as we have already shown in A.4,
this introduction will lead to an even larger computational time.
The existence of gray regions should be investigated even further, for example by taking a

Stefan Broxterman Master of Science Thesis

7.2 Recommendations 93

bigger resolution. Also, looking for different filter techniques could be helpful towards this
problem. Note that both solutions could lead to larger need of computational sources. Al-
though the MMA solver seemed to help me quite well with my design problems, investigation
of other solving techniques should be considered also.
A different interpolation scheme, for example the RAMP approach, could be investigated
to achieve better black and white regions. Although the SIMP approach is a very effective
interpolation scheme for solving static topology optimization problems, for dynamic cases the
RAMP method results possibly in a better black and white solution.

There are some challenge regarding the actuator layout. Instead of creating a distributed
force, it can be interesting to investigate the possibility to cluster forces (gradually) into a
few points, in order to give a more realistic actuator placement.
The overfitting case as shown in A.8.2 and A.8.3 can maybe be solved by taking the optimal
result from 6.5 and then gradually add different locations of actuator placement to this design.
By using this different approach of solving, even better dynamic behavior could be achieved.

The dynamic force is implemented using a harmonic excitation. It can be interesting to
investigate the optimal actuator placement for a transient response. This transient response
could also lead to an investigation of a dynamic actuator pattern. Forces are turned on and
off at a certain time. This will lead to an even larger computational load, but could be really
helpful in the high-precision industry. Finally, Instead of looking for minimal displacements,
it could be interesting to solve different objectives. For example using actuator placement
and topology optimization to achieve a certain displacement field at a certain frequency, with
a given weight.

Master of Science Thesis Stefan Broxterman

94 Conclusions and Recommendations

Stefan Broxterman Master of Science Thesis

Appendix A

Appendix

In this chapter all additional information for this research project can be found. First, the
computer configuration is shown in (A.1).
This configuration is used to produce the wanted optimizations, which are represented by
figures during this report. The numerical results of all these figures can be found in (A.2). For
the first chapters convergence is shown, in order to get more insight in different optimization
methods, which can be found in (A.3). A graphical representation of the implementation of
a third dimension can be seen in (A.4).
The introduced arching continuation method is graphically represented by (A.5). Deformed
geometry for some interesting examples are depicted in (A.6).
Wen dynamics are introduced, mode contributions can be found in (A.7). Additional examples
of the wafer stage are described in (A.8).
A graphical representation of the difference between a SIMP and BESO method can be found
in (A.9).

Master of Science Thesis Stefan Broxterman

96 Appendix

A.1 Computational setup

Although not explicitly documented, there are some numerical results available of all the
executed optimizations.
These calculation results are derived from my personal computer. The associated computer
and program specification can be found in A-1. For these numerical results, the draw and
output options are set to disabled, to increase speed.

Program MATLAB R2016b 64-bit (9.1)
Operating System Windows 10 Pro 64-bit
CPU Intel Core i7 @ 2.30GHz
RAM 16.0 GB DDR3 @ 1600MHz
Hard-Disc Samsung 840 EVO 250GB SSD

Table A-1: Computer resources

A.2 Numerical results

First, let’s have a look at the evolutionary example, and focus on the final result, as depicted
in Figure 2-1e. The following parameters are here used, and will for this section considered
as standard.
The chosen penalty p = 3, the mesh is discretized by 90 x 30 elements, the filter radius rmin =
1.5. The volume constraint is kept at 50% of the original design. Using this parameters, the
following table can be made, just to get a clear vision on the numerical results. In A-2 the
parameters from the associated example are depicted. Followed by the number of iterations,
the optimization time (in seconds) and the final compliance. In the upcoming tables, some
numerical results of the depicted examples in the report can be seen.

A.2.1 Chapter 2 results

Numerical results for chapter 2.

Parameter Figure 2-1e
mesh 90 x 30
vol 0.5
p 3
rmin 1.5
iter 87
time 8.0
comp 188.9

Table A-2: Standard compliance example

Stefan Broxterman Master of Science Thesis

A.2 Numerical results 97

Parameter Figure 2-2b Figure 2-2c Figure 2-2d Figure 2-2e
mesh 30 x 10 60 x 20 90 x 30 120 x 40
vol 0.5 0.5 0.5 0.5
p 3 3 3 3
rmin 1.5 1.5 1.5 1.5
iter 104 61 87 118
time 0.8 1.0 3.3 8.3
comp 219.7 195.0 188.9 185.5

Table A-3: Mesh refinement example

Parameter Figure 2-3b Figure 2-3c Figure 2-3d Figure 2-3e
mesh 90 x 30 90 x 30 90 x 30 90 x 30
vol 0.5 0.5 0.5 0.5
p 3 3 3 3
rmin 1.5 1.5 1.5 1.5
iter 187 106 87 179
time 7.3 4.1 3.3 7.0
comp 505.4 266.9 188.9 152.7

Table A-4: Volume fraction example

Parameter Figure 2-4b Figure 2-4c Figure 2-4d Figure 2-4e
mesh 90 x 30 90 x 30 90 x 30 90 x 30
vol 0.5 0.5 0.5 0.5
p 1 2 3 5
rmin 1.5 1.5 1.5 1.5
iter 15 158 87 187
time 0.9 6.0 3.3 7.3
comp 160.7 185.3 188.9 192.1

Table A-5: Penalty example

Parameter Figure 2-6b Figure 2-6c Figure 2-6d Figure 2-6e
mesh 90 x 30 90 x 30 90 x 30 90 x 30
vol 0.5 0.5 0.5 0.5
p 3 3 3 3
rmin 1.0 1.25 1.5 3.0
iter 54 158 87 66
time 2.4 6.2 3.3 2.5
comp 189.6 185.7 188.9 203.6

Table A-6: Filter example

Master of Science Thesis Stefan Broxterman

98 Appendix

A.2.2 Chapter 3 results

Numerical results for chapter 3.

Parameter Figure 3-1c Figure 3-1e
mesh 90 x 30 90 x 30
vol 0.5 0.5
p 3 3
rmin 1.5 1.5
iter 205 118
time 8.6 34.6
comp 196.0 195.0

Table A-7: OC vs MMA

Parameter Figure 3-2 Figure 3-3
mesh 90 x 30 90 x 30
vol 0.5 0.5
p 3 3
rmin 1.0 1.25
iter 155 305
time 83.1 190.3
comp 288.3 227.2

Table A-8: Passive and active examples

Parameter Figure 3-4b Figure 3-4c
mesh 90 x 30 90 x 30
vol 0.5 0.5
p 3 3
rmin 1.5 1.5
iter 167 134
time 97.9 52.1
comp 121.3 227.2

Table A-9: Multiple load cases

Stefan Broxterman Master of Science Thesis

A.2 Numerical results 99

Parameter Figure 3-5b Figure 3-5c Figure 3-5d Figure 3-5e
mesh 90 x 30 90 x 30 90 x 30 90 x 30
vol 0.5 0.5 0.5 0.5
p 5 5 5 5
rmin 1.5 1.5 1.5 1.5
ρ 0 7.6 · 10−5 1.5 · 10−4 3.8 · 10−4

iter 190 166 256 238
time 140.7 141.0 193.3 202.7
comp 193.4 318.5 440.9 844.2

Table A-10: Self-weight example

Parameter Figure 3-6b Figure 3-6c Figure 3-6d
mesh 90 x 30 90 x 30 90 x 30
vol 0.5 0.5 0.5
pmax 3 3 3
rmin 1.5 1.5 1.5
iter 80 109 500
time 5.7 15.0 85.5
comp 190.2 18.1 179.3

Table A-11: Different filters example

Parameter Figure 3-8b Figure 3-8c Figure 3-8d Figure 3-8e
mesh 30 x 10 x 1 30 x 10 x 3 30 x 10 x 5 30 x 10 x 10
vol 0.5 0.5 0.5 0.5
p 3 3 3 3
rmin 1.5 1.5 1.5 1.5
iter 106 95 115 75
time 15.6 32.7 77.9 117.1
comp 124.0 49.6 25.0 13.6

Table A-12: 3D mesh refinement example

Master of Science Thesis Stefan Broxterman

100 Appendix

Parameter Figure 3-11a Figure 3-11b Figure 3-13a Figure 3-14a
mesh 80 x 80 80 x 80 120 x 120 120 x 120
vol 0.5 0.5 0.5 0.5
p 4 4 4 4
rmin 1.5 1.5 1.4 1.4
iter 1000 316 147 1000
time 114.42 31.93 342.1 253.2
din 891.35 18.42 76.48 75.21
dout -898.99 -40.89 -28.06 -30.48
Gd -1.01 -2.22 -0.73 -0.81

Table A-13: Complaint mechanism example

Stefan Broxterman Master of Science Thesis

A.2 Numerical results 101

A.2.3 Chapter 4 results

Numerical results for chapter 4.

Parameter Figure 4-4b Figure 4-4c Figure 4-4d Figure 4-4e
mesh 80 x 40 80 x 40 80 x 40 80 x 40
vol 0.2 0.2 0.2 0.2
p 3 3 3 3
rmin 1.5 1.5 1.5 1.5
volz 0.2 0.2 0.2 0.2
q 5 5 5 5
rc 1 5 10 50
iter 157 211 200 192
time 43.8 58.2 68.8 79.2
comp 25921.6 45186.0 76166.3 83838.5

Table A-14: Optimal bridge

Parameter Figure 4-5b Figure 4-5c Figure 4-5d Figure 4-5e
mesh 80 x 40 80 x 40 80 x 40 80 x 40
vol 0.2 0.2 0.2 0.2
p 3 3 3 3
rmin 1.5 1.5 1.5 1.5
volz 0.2 0.2 0.2 0.2
q 5 5 5 5
rc 1 5 10 20
iter 157 206 249 268
time 43.8 64.4 90.4 99.0
comp 25921.6 48837.2 77233.8 81539.9

Table A-15: Optimal bridge example 1

Parameter Figure 4-6b Figure 4-6c Figure 4-6d Figure 4-6e
mesh 80 x 40 80 x 40 80 x 40 80 x 40
vol 0.2 0.2 0.2 0.2
p 3 3 3 3
rmin 1.5 1.5 1.5 1.5
volz 0.2 0.2 0.2 0.2
q 5 5 5 5
rc 1 3 5 10
iter 157 233 238 200
time 43.8 60.0 65.8 56.1
comp 25921.6 38811.0 52214.6 47032.7

Table A-16: Optimal bridge example 2

Master of Science Thesis Stefan Broxterman

102 Appendix

Parameter Figure 4-7b Figure 4-7c Figure 4-7d Figure 4-7e
mesh 80 x 80 80 x 80 80 x 80 80 x 80
vol 0.1 0.1 0.1 0.1
p 3 3 3 3
rmin 1.5 1.5 1.5 1.5
volz 0.2 0.2 0.2 0.2
q 5 5 5 5
rc 1 2 4 6
iter 226 244 199 250
time 137.1 148.7 121.7 160.2
comp 28373.2 41730.5 34946.0 44885.9

Table A-17: Hanging bridge

Parameter Figure 4-8b Figure 4-8c Figure 4-8d Figure 4-8e
mesh 80 x 40 80 x 40 80 x 40 80 x 40
vol 0.2 0.2 0.2 0.2
p 3 3 3 3
rmin 1.5 1.5 1.5 1.5
volz 0.2 0.2 0.2 0.2
q 5 5 5 5
dtunnel 32 32 53.3 53.3
iter 299 278 283 173
time 88.1 71.9 85.7 45.8
comp 31379.7 26120.6 36911.1 19059.3

Table A-18: Train tunnel example

Parameter Figure 4-10b Figure 4-11b
mesh 120 x 120 120 x 120
vol 0.2 0.2
p 3 3
rmin 1.5 1.5
volz 0.2 0.2
q 3 3
iter 135 145
time 327.5 262.5
din 14.15 52.23
dout -83.40 51.40
Gd -5.89 1.97

Table A-19: Optimal compliant mechanisms

Stefan Broxterman Master of Science Thesis

A.2 Numerical results 103

A.2.4 Chapter 5 results

Numerical results for chapter 5.

Parameter Figure 5-1b
mesh 90 x 30
vol 1.0
p 3
rmin 1.5
F -1.0
comp 44.3

Table A-20: Minimal compliance beam

Parameter Figure 5-2 Figure 5-3a Figure 5-3b
mesh 90 x 30 90 x 30 90 x 30
vol 1.0 1.0 1.0
p 3 3 3
rmin 1.5 1.5 1.5
F -1.0 -1.0 -1.0
U 8.9 9.5 22.5

Table A-21: Simple cantilever beam

Parameter Figure 5-4b Figure 5-4c
mesh 90 x 30 90 x 30
vol 1.0 1.0
p 3 3
rmin 1.5 1.5
F -1.0 -1.0
U 0.12 0.08

Table A-22: Triple fixed beam

Parameter Figure 5-5b Figure 5-6e Figure 5-7b Figure 5-8e
mesh 90 x 30 90 x 30 90 x 30 90 x 30
vol 0.25 0.30 0.24 0.30
p 3 3 3 3
rmin 1.5 1.5 1.5 1.5
F -1.06 -1.05 -1.04 -1.01
U 0.13 45.73 106.46 41.20

Table A-23: Cantilever beam with topology optimization

Master of Science Thesis Stefan Broxterman

104 Appendix

A.2.5 Chapter 6 results

Numerical results for chapter 6.

Parameter Figure 6-2 Figure 6-6 Figure 6-7
mesh 40 x 20 40 x 20 40 x 20
vol 1.0 1.0 1.0
p 3 3 3
rmin 1.5 1.5 1.5
ω2 8 8 8
Ftot 3.20 3.20 3.20
Fhor 3.20 3.20 3.20
U 61.92 54.07 56.30

Table A-24: Dynamic solid beam

Parameter Figure 6-8b Figure 6-9b
mesh 40 x 20 40 x 20
vol 1.0 1.0
p 3 3
rmin 1.5 1.5
ω2 8 8
Ftot 3.20 3.20
Fhor 3.20 3.20
U 53.68 53.52

Table A-25: Design of dynamic actuator placement

Parameter Figure 6-10b Figure 6-11b Figure 6-12b
mesh 40 x 20 40 x 20 40 x 20
vol 1.0 1.0 1.0
p 3 3 3
rmin 1.5 1.5 1.5
ω2 8 8 8
Ftot 3.20 2.41 3.20
Fhor 3.20 3.20 3.20
U 52.96 6.22 3.18

Table A-26: Design of dynamic actuator placement

Stefan Broxterman Master of Science Thesis

A.2 Numerical results 105

Parameter Figure 6-13 Figure 6-14a Figure 6-14b
mesh 40 x 20 40 x 20 40 x 20
vol 0.72 0.66 0.68
p 3 3 4
rmin 1.5 1.5 1.5
ω2 8 8 8
Ftot 3.20 2.16 2.16
Fhor 3.20 2.16 2.16
U 19.14 3.05 12.85

Table A-27: Dynamic actuator placement and topology

Parameter Figure 6-14c Figure 6-14d Figure 6-15b
mesh 40 x 20 40 x 20 40 x 20
vol 0.67 0.65 0.78
p 5 6 6
rmin 1.5 1.5 1.5
ω2 8 8 8
Ftot 2.17 2.13 2.51
Fhor 2.17 2.13 2.51
U 2.60 2.54 2.06

Table A-28: Dynamic actuator placement and topology

Parameter Figure 6-16b Figure 6-17b Figure 6-18b
mesh 40 x 20 40 x 20 40 x 20
vol 0.73 0.90 0.74
p 6 6 6
rmin 1.5 1.5 1.5
ω2 8 8 8
Ftot 2.35 2.89 2.89
Fhor 2.35 2.89 2.52
U 1.95 1.04 0.19

Table A-29: Dynamic actuator placement and topology

Master of Science Thesis Stefan Broxterman

106 Appendix

Parameter Figure 6-19a Figure 6-19b Figure A-26a
mesh 40 x 20 40 x 20 40 x 20
vol 0.82 0.93 0.77
p 11 6 6
rmin 1.5 1.5 1.5
ω2 8 8 8
Ftot 5.03 2.04 3.53
Fhor 2.68 3.01 2.51
U 1.02 1.37 1.59

Table A-30: Dynamic actuator additional cases

Parameter Figure A-26b Figure A-27a Figure A-27b
mesh 40 x 20 40 x 20 40 x 20
vol 0.49 0.87 0.80
p 6 6 6
rmin 1.5 1.5 1.5
ω2 8 4 16
Ftot 1.83 1.31 4.60
Fhor 1.51 1.49 5.23
U 15.28 0.98 3.19

Table A-31: Dynamic actuator additional cases

Parameter Figure A-24 Figure A-25
mesh 40 x 20 40 x 20
vol 1.0 0.94
p 3 6
rmin 1.5 1.5
ω2 8 8
Ftot 5.33 4.25
Fhor 4.19 3.00
U 13.71 1.95

Table A-32: Dynamic actuator overfitting cases

Stefan Broxterman Master of Science Thesis

A.3 Convergence graph 107

A.3 Convergence graph

To achieve more insight in the convergence process, for a number of examples, convergence
graphs are plotted. The associated examples can be found in the legend of each picture. Using
these graphs, some conclusions can be made regarding the need of using many iterations, which
results into only a very minor benefit, with respect to the compliance.

Figure A-1: Convergence plot of Figure 2-1

0 10 20 30 40 50 60 70 80 90

Number of iterations

200

250

300

350

400

450

C
om

pl
ia

nc
e

mesh = 30 x 10
mesh = 60 x 20
mesh = 90 x 30
mesh = 120 x 40

Figure A-2: Convergence plot of Figure 2-2

Master of Science Thesis Stefan Broxterman

108 Appendix

0 20 40 60 80 100 120

Number of iterations

200

300

400

500

600

700

800

900

1000

C
om

pl
ia

nc
e

vol = 0.2
vol = 0.35
vol = 0.5
vol = 0.65

Figure A-3: Convergence plot of Figure 2-3

0 20 40 60 80 100

Number of iterations

200

300

400

500

600

700

C
om

pl
ia

nc
e

pen = 1
pen = 2
pen = 3
pen = 5

Figure A-4: Convergence plot of Figure 2-4

Stefan Broxterman Master of Science Thesis

A.3 Convergence graph 109

0 10 20 30 40 50 60 70 80 90

Number of iterations

200

250

300

350

400

450

C
om

pl
ia

nc
e

Rmin = 1
Rmin = 1.25
Rmin = 1.5
Rmin = 3

Figure A-5: Convergence plot of Figure 2-6

A.3.1 Chapter 3 graphs

Figure A-6: Convergence plot of Figure 3-1c vs Figure 3-1e

Master of Science Thesis Stefan Broxterman

110 Appendix

0 50 100 150 200 250 300 350 400
Number of iterations

200

300

400

500

600

700

800

900

1000

C
om

pl
ia

nc
e

filter = Sensitivity
filter = Density
filter = Heaviside

Figure A-7: Convergence plot of Figure 3-6

0 10 20 30 40 50 60 70 80 90

Number of iterations

20

40

60

80

100

120

140

C
om

pl
ia

nc
e

mesh = 30 x 10 x 1
mesh = 30 x 10 x 3
mesh = 30 x 10 x 5
mesh = 30 x 10 x 10

Figure A-8: Convergence plot of Figure 3-8

Stefan Broxterman Master of Science Thesis

A.3 Convergence graph 111

A.3.2 Chapter 4 graphs

0 20 40 60 80 100 120 140 160 180

Number of iterations

2

4

6

8

10

12

14

16
C

om
pl

ia
nc

e

104

cost = 1
cost = 5
cost = 10
cost = 50

Figure A-9: Convergence plot of Figure 4-4

0 50 100 150 200

Number of iterations

2

3

4

5

6

7

8

C
om

pl
ia

nc
e

104

cost = 1
cost = 2
cost = 4
cost = 6

Figure A-10: Convergence plot of Figure 4-7

Master of Science Thesis Stefan Broxterman

112 Appendix

A.4 Computational graph

The third dimension is pretty shiny, but the computational time seems to increase expo-
nentially, in this section a graph is shown, which includes a computational time comparison
of a simple compliance problem, discretized by 30x10xnz elements. This number of lateral
elements nz is varied, to see the differences in computational time.
This timing example is done with two different types of outputs, namely, the No Output
option (draw = 0, dis = 0) and the newly introduced Partial Output option (draw = 2, dis
= 2).
After, an exponential fit seems to fit the best results. This is created using the Curve Fitting
tool in MATLAB, after which this graph is made using the outputted parameters.

0 5 10 15

Discretization of lateral elements

0

50

100

150

200

250

300

C
om

pu
ta

tio
na

l t
im

e
[s

]

No output
Partial output
Fit no output
Fit partial output

Figure A-11: Computational Example by variation of lateral elements.

Stefan Broxterman Master of Science Thesis

A.5 Arching continuation 113

A.5 Arching continuation

Figure A-12: Example of the arching continuation method. Equation 5-5 is displayed for different
values of α.

Master of Science Thesis Stefan Broxterman

114 Appendix

A.6 Deformed geometry

This section displays the deformed geometry of calculated structures. The colors represent
the associated displacements. The displacement of each element is calculated by taking an
average of its eight surrounding node displacements.

A.6.1 Deformed triple fixed beam

Figure A-13: Deformed geometry of Figure 5-4b. Displacements are normalized by taking the
maximum absolute displacement as 1.

Figure A-14: Deformed geometry of Figure 5-4c. Displacements are normalized by taking the
maximum absolute displacement of Figure A-13 as 1. The displacement in this figure are above 1,
which means more displacement in the exerted area; however, the overall displacement is smaller
than displayed in Figure A-13.

Stefan Broxterman Master of Science Thesis

A.6 Deformed geometry 115

A.6.2 Deformed cantilever beam

(a) Deformed geometry of Figure 5-5a.

(b) Deformed geometry of Figure 5-5b.

(c) Deformed geometry of Figure 5-6e.

Figure A-15: Deformed geometry of cantilever beam examples from Chapter 5. Displacements
are normalized for each plot, by taking the maximum displacement of each structure as 1.

Master of Science Thesis Stefan Broxterman

116 Appendix

A.6.3 Deformed cantilever beam with density dependency

(a) Deformed geometry of Figure 5-7a.

(b) Deformed geometry of Figure 5-7b.

(c) Deformed geometry of Figure 5-8e.

Figure A-16: Deformed geometry of cantilever beam examples from Chapter 5. The optimal
result is achieved using the object refinement from 5.4.3. Displacements are normalized for each
plot, by taking the maximum displacement of each structure as 1.

Stefan Broxterman Master of Science Thesis

A.6 Deformed geometry 117

A.6.4 Deformed cantilever beam topology

(a) Deformed geometry of Figure 5-5a.

(b) Deformed geometry of Figure 5-5b.

(c) Deformed geometry of Figure 5-6e.

Figure A-17: Deformed geometry of cantilever beam examples from Chapter 5. In these figures
the topology is used as color reference, while the displacements represent deformed geometry of
the design domain.

Master of Science Thesis Stefan Broxterman

118 Appendix

A.6.5 Deformed cantilever beam topology with density dependency

(a) Deformed geometry of Figure 5-7a.

(b) Deformed geometry of Figure 5-7b.

(c) Deformed geometry of Figure 5-8e.

Figure A-18: Deformed geometry of cantilever beam examples from Chapter 5. The optimal
result is achieved using the object refinement from 5.4.3. In these figures the topology is used as
color reference, while the displacements represent deformed geometry of the design domain.

Stefan Broxterman Master of Science Thesis

A.7 Mode contribution 119

A.7 Mode contribution

This section gives a tabular and graphical representation of the contribution of modes. The
tables shows the mode contribution and some additional values, while the graphics display
the mode dependency of a frequency spectrum.

A.7.1 Mode contribution tables

The mode contribution for several cases is displayed over here. In this first column the mode
number can be seen, the second column holds the associated eigenfrequency. In the third
column the mode contribution φiT f , followed by the scaled contribution ηi, as described in
(6-5). This is done, so the difference between scaling and the scaling of the mode can be seen
very clearly. In the last column a weight factor of this mode influence can be found. This
weight factor is normalized by taking the sum of these first twelve eigenmodes.

Mode Eigenfrequency φi
Tf Mode contribution ηi Contribution (%)

Rigid #1 1.24e-07 0.20 -0.03 0.82
Rigid #2 1.34e-07 5.05 -0.63 20.40
Rigid #3 2.63e-07 0.07 -0.01 0.30

#1 2.29 0 0 0
#2 3.47 -7.36 -1.82 58.89
#3 3.83 0 0 0
#4 5.53 0 0 0
#5 5.60 0 0 0
#6 6.07 3.89 0.13 4.36
#7 6.15 7.44 0.25 8.07
#8 6.26 -3.82 -0.12 3.96
#9 7.19 4.33 0.10 3.20

Table A-33: Mode contribution of single force case as described in (Figure 6-2) and taking a
frequency of ω2 = 8

Master of Science Thesis Stefan Broxterman

120 Appendix

Mode Eigenfrequency φi
Tf Mode contribution ηi Contribution (%)

Rigid #1 1.24e-07 0.18 -0.02 0.78
Rigid #2 1.34e-07 5.06 -0.63 21.50
Rigid #3 2.63e-07 0.08 -0.01 0.32

#1 2.29 0 0 0
#2 3.47 -6.74 -1.67 56.87
#3 3.83 0 0 0
#4 5.53 0 0 0
#5 5.60 0 0 0
#6 6.07 7.21 0.25 8.50
#7 6.15 1.64 0.06 1.88
#8 6.26 -7.63 -0.25 8.34
#9 7.19 -2.32 -0.05 1.80

Table A-34: Mode contribution of two forces case as described in (Figure 6-6) and taking a
frequency of ω2 = 8

Mode Eigenfrequency φi
Tf Mode contribution ηi Contribution (%)

Rigid #1 1.24e-07 0.18 -0.02 0.85
Rigid #2 1.34e-07 5.06 -0.63 23.55
Rigid #3 2.63e-07 0.07 -0.01 0.35

#1 2.29 0 0 0
#2 3.47 7.15 1.77 66.01
#3 3.83 0 0 0
#4 5.53 0 0 0
#5 5.60 0 0 0
#6 6.07 -0.27 -0.01 0.34
#7 6.15 -5.38 -0.18 6.72
#8 6.26 -0.46 -0.01 0.55
#9 7.19 1.90 0.04 1.62

Table A-35: Mode contribution of distributed force case as described in (Figure 6-7) and taking
a frequency of ω2 = 8

Stefan Broxterman Master of Science Thesis

A.7 Mode contribution 121

Mode Eigenfrequency φi
Tf Mode contribution ηi Contribution (%)

Rigid #1 1.24e-07 4.97 -0.62 20.68
Rigid #2 1.34e-07 0.68 -0.08 2.83
Rigid #3 2.63e-07 63 -0.08 2.63

#1 2.29 -0.05 0.02 0.55
#2 3.47 6.87 1.7 56.65
#3 3.83 0.01 0 0.03
#4 5.53 -0.39 -0.02 0.57
#5 5.60 -0.18 -0.01 0.25
#6 6.07 -5.19 -0.18 5.98
#7 6.15 2.79 0.09 3.11
#8 6.26 5.54 0.18 5.92
#9 7.19 -1.05 -0.02 0.8

Table A-36: Mode contribution of distributed force case as described in (Figure 6-8) and taking
a frequency of ω2 = 8

Mode Eigenfrequency φi
Tf Mode contribution ηi Contribution (%)

Rigid #1 1.24e-07 0.18 -0.02 0.76
Rigid #2 1.34e-07 5.06 -0.63 21.25
Rigid #3 2.63e-07 .04 -0.01 0.19

#1 2.29 -0.05 0.02 0.6
#2 3.47 -6.8 -1.69 56.67
#3 3.83 0.1 0.01 0.49
#4 5.53 -0.99 -0.04 1.47
#5 5.60 0.53 0.02 0.76
#6 6.07 -6.06 -0.21 7.07
#7 6.15 -2.21 -0.07 2.5
#8 6.26 -6.45 -0.21 6.97
#9 7.19 -1.66 -0.04 1.27

Table A-37: Mode contribution of distributed force case as described in (Figure 6-9) and taking
a frequency of ω2 = 8

Master of Science Thesis Stefan Broxterman

122 Appendix

Mode Eigenfrequency φi
Tf Mode contribution ηi Contribution (%)

Rigid #1 1.24e-07 5.04 -0.63 15.39
Rigid #2 1.34e-07 0.46 -0.06 1.4
Rigid #3 2.63e-07 37 -0.05 1.14

#1 2.29 0.03 -0.01 0.31
#2 3.47 6.27 1.55 38.02
#3 3.83 0.92 0.14 3.41
#4 5.53 -5 -0.22 5.41
#5 5.60 -3.27 -0.14 3.42
#6 6.07 -15.17 -0.53 12.86
#7 6.15 -2.66 -0.09 2.18
#8 6.26 15.86 0.51 12.45
#9 7.19 -7.18 -0.16 4.02

Table A-38: Mode contribution of distributed force case as described in (Figure 6-10) and taking
a frequency of ω2 = 8

Mode Eigenfrequency φi
Tf Mode contribution ηi Contribution (%)

Rigid #1 1.24e-07 -0.99 0.12 1.5
Rigid #2 1.34e-07 5.13 -0.64 7.74
Rigid #3 2.63e-07 -2.99 0.37 4.52

#1 2.29 -1.35 0.49 5.89
#2 3.47 -6.62 -1.64 19.84
#3 3.83 6.59 0.99 12
#4 5.53 -12.09 -0.53 6.46
#5 5.60 -29.86 -1.28 15.44
#6 6.07 -22.62 -0.78 9.47
#7 6.15 6.36 -0.21 2.58
#8 6.26 14.08 0.45 5.46
#9 7.19 32.96 0.75 9.11

Table A-39: Mode contribution of distributed force case as described in (Figure 6-11) and taking
a frequency of ω2 = 8

Stefan Broxterman Master of Science Thesis

A.7 Mode contribution 123

Mode Eigenfrequency φi
Tf Mode contribution ηi Contribution (%)

Rigid #1 1.24e-07 5.05 -0.63 45.42
Rigid #2 1.34e-07 0.42 -0.05 3.78
Rigid #3 2.63e-07 33 -0.04 2.96

#1 2.29 -0.03 0.01 0.89
#2 3.47 0.06 0.01 1.03
#3 3.83 1.04 0.16 11.28
#4 5.53 -2.71 -0.12 8.61
#5 5.60 0.57 0.02 1.74
#6 6.07 1.7 0.06 4.25
#7 6.15 2.91 0.1 7.02
#8 6.26 4.9 0.16 11.32
#9 7.19 1.03 0.02 1.69

Table A-40: Mode contribution of distributed force case as described in (Figure 6-12) and taking
a frequency of ω2 = 8

Mode Eigenfrequency φi
Tf Mode contribution ηi Contribution (%)

Rigid #1 1.24e-07 6.62 -0.83 8.08
Rigid #2 1.34e-07 6.44 -0.81 7.86
Rigid #3 2.63e-07 .13 0.77 7.48

#1 2.29 2.14 -0.77 7.55
#2 3.47 -19.06 -4.72 46.13
#3 3.83 -2.03 -0.31 2.99
#4 5.53 6.23 0.28 2.69
#5 5.60 26.74 1.14 11.17
#6 6.07 0.45 0.02 0.15
#7 6.15 0.14 0 0.05
#8 6.26 9.58 0.31 3
#9 7.19 -12.74 -0.29 2.85

Table A-41: Mode contribution of distributed force case as described in (Figure A-24) and taking
a frequency of ω2 = 8

Master of Science Thesis Stefan Broxterman

124 Appendix

Mode Eigenfrequency φi
Tf Mode contribution ηi Contribution (%)

Rigid #1 1.24e-07 5.14 -0.43 20.26
Rigid #2 1.34e-07 1.39 -0.12 5.47
Rigid #3 2.63e-07 1.45 -0.12 5.72

#1 2.29 -0.05 0.01 0.34
#2 3.47 0 0.08 3.99
#3 3.83 -2.49 -0.96 45.66
#4 5.53 0.91 0.05 2.33
#5 5.60 0.12 0.01 0.29
#6 6.07 -0.24 -0.01 0.46
#7 6.15 3.11 0.12 5.74
#8 6.26 5.46 0.2 9.57
#9 7.19 -0.15 0 0.17

Table A-42: Mode contribution of distributed force case as described in (Figure A-23) and taking
a actuation frequency very close to the second eigenfrequency, ω = 3.47

Stefan Broxterman Master of Science Thesis

A.7 Mode contribution 125

A.7.2 Mode contribution graphics

A corresponding mode contribution for the six most important modes, over a spectrum of fre-
quencies can be found here. In this schematic it can perfectly be seen which mode contributes
how much on every frequency. When the excitation frequency approaches an eigenfrequency,
the corresponding mode will be actuated the most and will thus take the most relative con-
tribution of the total modes.

0 1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

80

90

100

R
el

at
iv

e
m

od
e

co
nt

rib
ut

io
n

(%
)

Mode contribution

Rigid Body Mode #2
Mode #2
Mode #6
Mode #7
Mode #8
Mode #9

Figure A-19: Mode contribution for the six most important modes, using a single force case as
depicted in (Figure 6-2) for a frequency spectrum.

Master of Science Thesis Stefan Broxterman

126 Appendix

0 1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

80

90

100

R
el

at
iv

e
m

od
e

co
nt

rib
ut

io
n

(%
)

Mode contribution

Rigid Body Mode #2
Mode #2
Mode #6
Mode #7
Mode #8
Mode #9

Figure A-20: Mode contribution for the six most important modes, using a two forces case as
depicted in (Figure 6-6) for a frequency spectrum.

0 1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

80

90

100

R
el

at
iv

e
m

od
e

co
nt

rib
ut

io
n

(%
)

Mode contribution

Rigid Body Mode #2
Mode #2
Mode #6
Mode #7
Mode #8
Mode #9

Figure A-21: Mode contribution for the six most important modes, using a distributed force
case as depicted in (Figure 6-7) for a frequency spectrum.

Stefan Broxterman Master of Science Thesis

A.7 Mode contribution 127

A.7.3 Mode contribution progress plots

In this section a mode contribution progress plot can be found. This is basically a progress
plot from the optimization problem depicted in Figure A-23a towards the optimal solution as
depicted in Figure A-23b.
In this figure (Figure A-22) the (absolute) mode contribution φi

Tf is plotted over time.
The mode contribution is plotted on a log-scale, for better visual reasons. As can be seen, the
sum of the five most important modes is decreasing over time, although the second mode is
increasing. This means, when iterations increasing, the total mode contribution is decreasing,
which could benefit the objective value to minimize.
To help the optimizer a little bit, to win some time, after 20 iterations, the total placed force
is scaled down to its minimum force value (f = m · a). This manipulation process is only
performed once during the optimization. The manipulation leads to a faster optimization
result.

0 100 200 300 400 500 600 700 800 900 1000
Iterations

0.01

0.1

1

10

100

1000

10000

100000

M
od

e
co

nt
rib

ut
io

n

Rigid Body Mode #1
Rigid Body Mode #3
Mode #2
Mode #3
Mode #4
Sum

Figure A-22: Mode contribution of the five most important modes. The black line indicates
the sum of the mode contribution φi

Tf of these five mode contributions values. These mode
contributions are made using the optimal actuator layout as depicted in (Figure A-23).

Master of Science Thesis Stefan Broxterman

128 Appendix

A.8 Additional stage examples

In this section some additional variations of the stage examples from 6 are given. For references
please review 6 to gain some knowledge on the background of these examples and problems.

A.8.1 Optimizing at eigenfrequency

Up to here, the actuation frequency ω was taken at a value ω2 = 8, which is just between the
first and second eigenfrequencies. It is most of the time a good thing to refrain from actuat-
ing near or at a particular eigenfrequency. However, in some cases, it could be necessary to
actuate near a certain eigenfrequency. For example, when the target frequency is close to an
eigenfrequency. A change of the material distribution can be made, to change the dynamic
response. If this change is not allowable, the only way to deal with this problem, is by chang-
ing the force actuation. This change of force layout can reduce or suppress certain dynamic
behavior, to counteract that particular mode shape. This type of situation is investigated in
this section.
In the example depicted in Figure A-23a the body is actuated at the second eigenfrequency.
This second eigenfrequency seems to have a big influence on the total dynamic spectrum, so
it is the most interesting frequency to investigate. The actuation frequency is very close to
this eigenfrequency, because actuation exactly at the eigenfrequency is not solvable.
The same force design domain as explained in Figure 6-12 is used, so on the both sides, positive
and negative forces are allowed. The optimal actuator layout can be found in Figure A-23b.
Note that this particular eigenmode example has a big objective value. This is caused by the
fact we are actuating almost at an eigenmode itself, which has very large displacements at
that particular frequency. Additionally, the actuation frequency is increased, so more force
is needed to fulfill this constraint. This is another reason why it is not a fair comparison to
Figure 6-12b.
The left-hand side and right-hand side depicted in Figure A-23b show almost the same be-
havior, but some very little change in the values can be found. This is possibly caused by the
very small interval between the eigenfrequency and the actuation frequency.
The optimization process starts with an initial distributed force on the left- and right-hand
side of the design domain. The sum of this distributed force equals the minimum required
force (f = m · a). The optimizer then looking for an optimal force application. A schematic
of this process can be found in Figure A-22.

Stefan Broxterman Master of Science Thesis

A.8 Additional stage examples 129

(a) Design domain
U = 1996.99

(b) Optimal actuator layout

Figure A-23: Design domain and optimal actuator layout, while enabling negative forces design.
The gray striped area indicates the objective area. The white striped area indicates the actuator
design domain. The size, placement and direction of the arrows represent the location, magnitude
and orientation of the optimized force layout. The actuation frequency is very close to the second
eigenfrequency ω = 3.47. The associated mode contribution can be found in Table A-42.

A.8.2 Overfitting design of actuators

The result of the optimization for the design domain as depicted in Figure 6-12a, while
also enabling actuator design at the bottom of the body, in positive (upward) and negative
(downward) direction is depicted in Figure A-24. Here, a big problem when optimizing this
type of design problem, is the possibly overfitting of the model. The optimizer has just too
much variables and the optimizer is more likely to approach a (high) local optimum. The
result depicted in Figure A-24 shows a distribution along all sides of the design domain.
The horizontal force is almost twice the minimum needed force to achieve the prescribed
acceleration. This could also be a symptom of the overfitting of the model. It can be concluded
that, in order to achieve a maximal optimization result, the design domain should not be too
vaguely or too big.

Master of Science Thesis Stefan Broxterman

130 Appendix

U = 13.71

Figure A-24: Optimal actuator layout as depicted in Figure 6-12a, while also enabling actuator
design at the bottom of the body, in positive (upward) and negative (downward) direction. The
size and placement of the arrows represent the location and magnitude of the optimized force
layout. The associated mode contribution can be found in Table A-41.

Stefan Broxterman Master of Science Thesis

A.8 Additional stage examples 131

A.8.3 Overfitting design of actuators with topology optimization

The result of the optimization for the design domain as depicted in Figure 6-12a, while
also enabling actuator design at the bottom of the body, in positive (upward) and negative
(downward) direction and enabling topology optimization. The result is depicted in Figure A-
25. Here, a big problem when optimizing this type of design problem, is the possibly overfitting
of the model. The optimizer has just too much variables and the optimizer is more likely to
approach a (high) local optimum. The result depicted in Figure A-25 shows a distribution
along all sides of the design domain.
Some better results can be achieved, for example only using the left- and righthand side of the
domain (Figure 6-17b). The result depicted over there is even better than the result depicted
in Figure A-25.

U = 1.95

Figure A-25: Optimal actuator layout as depicted in Figure 6-12a, while also enabling actuator
design at the bottom of the body, in positive (upward) and negative (downward) direction. The
size and placement of the arrows represent the location and magnitude of the optimized force
layout. The total horizontal force used is f = 3.00.

Master of Science Thesis Stefan Broxterman

132 Appendix

A.8.4 Changing conditions representations

In this section some examples of changing conditions on the solved problems from 6 are given.
These cases are described in 6.
For example changing the maximum volume:

U = 1.59

(a) Optimal solution

U = 15.28

(b) Optimal solution

Figure A-26: Design domain and optimal actuator layout, while enabling negative forces design
and using topology optimization with two different volume constraints, with a maximum volume
of: a) 80%, b) 50%. The size, placement and direction of the arrows represent the location,
magnitude and orientation of the optimized force layout.

And the solution for different actuation frequencies:

U = 0.98

(a) Optimal solution

U = 3.19

(b) Optimal solution

Figure A-27: Design domain and optimal actuator layout, while enabling negative forces design
and using topology optimization for two different actuation frequencies: a) ω2 = 4, b) ω2 = 16.
The size, placement and direction of the arrows represent the location, magnitude and orientation
of the optimized force layout.

Stefan Broxterman Master of Science Thesis

A.8 Additional stage examples 133

A.8.5 3D Extrusion

In this subsection however, a 3D extrusion is made. This extrusion is just a 2D lateral case
in another dimension. A threshold value of 0.5 is chosen. This means all densities below this
threshold value are displayed as void regions, for a better visual representation. As already
explained in 6.1 this wafer stage should be used to produce circular wafers. The width and
depth of the wafer should thus be the same size.

Figure A-28: A 2D lateral extrusion of the optimal wafer stage as depicted in Figure 6-18b.

Master of Science Thesis Stefan Broxterman

134 Appendix

A.9 Flowcharts

Initial design

Finite Element
Analysis (FEM)

Sensitivity
Analysis (SA)

Filtering

Update de-
sign variables

Converged?

stop

No

Yes

(a) SIMP approach

Initial design

Finite Element
Analysis (FEM)

Sensitivity
Analysis (SA)

Filtering

Construct design

Constrained?

Converged?

stop

No
Yes

No

Yes

(b) BESO approach

Figure A-29: Flowchart of topology optimization methods

Stefan Broxterman Master of Science Thesis

Appendix B

Matlab Codes

In this and upcoming sections the created and used MATLAB codes are provided. In this
Appendix the complete codes can be found. In Appendix C add-ins can be found. These
add-ins can be used to create certain functionality. In Appendix D supplementary codes can
be found.
In this section Basic.m (B.1) can be found. Using Basic.m a typical problem can be solved
easily. All lines consists of helpful comments. The Advanced.m can be used to plot progression
pictures, as shown in Chapter 1 of the Literature Survey. A big reference should be made to
(Sigmund, 2001a) and (Andreassen et al., 2011) for providing a kick-start of the codes in this
appendix.
By implementing the add-ins from (C.1) to (C.6), the final M-codes BASIC.m (B.3) and
ADVANCED.m (B.2) can be made.
A third dimension could be added and so the matlab code also need some extensions. A
simple add-in to extend 2D to 3D is made available in (C.7), with a reference to (Liu and
Tovar, 2014). The final code of using the BASIC-code for three dimensional cases can be
found in (B.4), and also, the ADVANCED version of this 3D code can be found in (B.5).
When dealing with compliant mechanisms. The BASIC-code needs to be updated using the
simple add-in (C.8) for an inverter case. When producing a micro-gripper, one can also grab
the final code immediately (B.6).
By making use of (C.9) a complete code of the implementation of design of supports can be
made (B.7), with the associated advanced code for design of supports (B.8).
The implementation of design of actuator placement can be made (B.9) using the provided
code. When also introducing topology optimization, one can grab the final code right away
(B.10).

Master of Science Thesis Stefan Broxterman

136 Matlab Codes

B.1 Basic.m

The working principle of the Basic-code will be explained in this section.
At first, it can be specified whether or not the Advanced.m code is used [line 15]. When
this value is zero, the Basic-code continue as just one optimization problem, without any
comparison calculations and plots. When this value equals zero, a number of design variables
can be defined [line 16-23]. Some basic options for the calculation can be defined also [line
24-27].The output options can be defined in [line 28-30], which can be used to gain some speed
on the optimization process, as outputting and plotting can take a lot of time. The element
properties can be defined [line 31-34]. The force and supports needs to be defined next [line
35-40].
From this line on, the user input is not necessary anymore, the elemental stiffness matrix is
build up in [line 41-49], followed by the building of the nodes matrix [line 50-54]. To gain
optimization speed a preparation scheme for the filter is made up [line 55-75]. After building
up the load vector and some initialization [line 76-90] the main optimization loop starts at
[line 91].
While the convergence of the optimization loop is above the minimum convergence, and the
maximum number of iterations is not exceeded, the loop keeps running and assign a new
loop number [line 92-93]. Each loop consists of a finite element analysis, where the stiffness
matrix is built up and updated according to each node number, followed by an update of the
element’s displacements and associated compliance values [line 94-104]. Now, a sensitivity
analysis is performed for each element and filtered accordingly. [line 105-107].
The design variables are updated using the Optimality Criteria method, where the Lagranian
multipliers for the volume constraint are calculated. Eventually, the design variable x is
updated [line 108-122]. Each element value of x is stored in a massive matrix X, which
contains each value of x for every iteration; the same holds for the compliance c [line 123-
127]. The final results are displayed in the MATLAB command window, and the iterations
and final result is plotted, if this is specified in the pre-amble [line 128-175]. For speed
improvements, an additional option is made, to just optimize without iteration output and
drawings [line 176-225]. The tic-toc commands displaying the total run time of the code [line
226].

1 %%
2 % %
3 % Topology Optimization Using Matlab %
4 % BasicRep.m %
5 % %
6 % Delft University of Technology , Department PME %
7 % Master of Science Thesis Project %
8 % %
9 % Stefan Broxterman %

10 % %
11 %%
12 %
13 tic % start timer
14 %% DEFINE PARAMETERS
15 adv = 1 ; % use advanced function [0 = off, 1 = on]
16 if adv == 0 % define parameters at behalf of the advanced

function

Stefan Broxterman Master of Science Thesis

B.1 Basic.m 137

17 nx = 90 ; % numer of elements horizontal
18 ny = 30 ; % number of elements vertical
19 vol = 0 . 5 ; % volume fraction [0-1]
20 pen = 3 ; % penalty
21 rmin = 1 . 5 ; % filter size
22 clc ; clf ; close all ;
23 end
24 %% DEFINE CALCULATION
25 tol = 0 . 0 1 ; % tolerance for convergence criterion [0.01]
26 move = 0 . 2 ; % move limit for lagrange [0.2]
27 miter = 1000 ; % maximum number of iterations [1000]
28 %% DEFINE OUTPUT
29 draw = 1 ; % plot iterations [0 = off, 1 = on]
30 dis = 1 ; % display iterations [0 = off, 1 = on]
31 %% DEFINE MATERIAL
32 E = 1 ; % young ’s modulus of solid [1]
33 Emin = 1e−9; % young ’s modulus of void [1e-9]
34 nu = 0 . 3 ; % poisson ratio [0.3]
35 %% DEFINE FORCE
36 Fe = 2∗(nx+1)∗(ny+1) ; % element of force application [2*(nx+1)*(ny+1)]
37 Fn = 1 ; % number of applied force locations [1]
38 Fv = −1; % value of applied force [-1]
39 %% DEFINE SUPPORTS
40 fix = 1 :2∗ (ny+1) ; % fixed elements [1:2*(ny+1)]
41 %% PREPARE FINITE ELEMENT
42 N = 2∗(nx+1)∗(ny+1) ; % total element nodes
43 all = 1 :2∗ (nx+1)∗(ny+1) ; % all degrees of freedom
44 free = setdiff (all , fix) ; % free degrees of freedom
45 A11 = [12 3 −6 −3; 3 12 3 0 ; −6 3 12 −3; −3 0 −3 1 2] ; % fem
46 A12 = [−6 −3 0 3 ; −3 −6 −3 −6; 0 −3 −6 3 ; 3 −6 3 −6]; % fem
47 B11 = [−4 3 −2 9 ; 3 −4 −9 4 ; −2 −9 −4 −3; 9 4 −3 −4]; % fem
48 B12 = [2 −3 4 −9; −3 2 9 −2; 4 9 2 3 ; −9 −2 3 2] ; % fem
49 Ke = 1/(1−nu^2) /24∗ ([A11 A12 ; A12 ’ A11]+nu ∗ [B11 B12 ; B12 ’ B11]) ; % element

stiffness matrix
50 nodes = reshape (1 : (nx+1)∗(ny+1) ,1+ny ,1+nx) ; % create node numer matrix
51 dofvec = reshape (2∗ nodes (1 : end−1 ,1:end−1)+1,nx∗ny , 1) ; % create dof vector
52 dofmat = repmat (dofvec , 1 , 8)+repmat ([0 1 2∗ny+[2 3 0 1] −2 −1] ,nx∗ny , 1) ; %

create dof matrix
53 iK = reshape (kron (dofmat , ones (8 , 1)) ’ ,64∗ nx∗ny , 1) ; % build sparse i
54 jK = reshape (kron (dofmat , ones (1 , 8)) ’ ,64∗ nx∗ny , 1) ; % build sparse j
55 %% PREPARE FILTER
56 iH = ones (nx∗ny ∗ (2∗ (ceil (rmin)−1)+1)^2 ,1) ; % build sparse i
57 jH = ones (size (iH)) ; % create sparse vector of ones
58 kH = zeros (size (iH)) ; % create sparse vector of zeros
59 m = 0 ; % index for filtering
60 for i = 1 : nx % for each element calculate distance between ...
61 for j = 1 : ny % elements ’ center for filtering
62 r1 = (i−1)∗ny+j ; % sparse value i
63 for k = max (i−(ceil (rmin)−1) ,1) : min (i+(ceil (rmin)−1) , nx) %

center of element
64 for l = max (j−(ceil (rmin)−1) ,1) : min (j+(ceil (rmin)−1) , ny) %

center of element
65 r2 = (k−1)∗ny+l ; % sparse value 2

Master of Science Thesis Stefan Broxterman

138 Matlab Codes

66 m = m+1; % update index for filtering
67 iH (m) = r1 ; % sparse vector for filtering
68 jH (m) = r2 ; % sparse vector for filtering
69 kH (m) = max (0 , rmin−sqrt ((i−k)^2+(j−l) ^2)) ; % weight

factor
70 end
71 end
72 end
73 end
74 H = sparse (iH , jH , kH) ; % build filter
75 Hs = sum (H , 2) ; % summation of filter
76 %% DEFINE STRUCTURAL
77 x = repmat (vol , ny , nx) ; % initial material distribution
78 xF = x ; % set filtered design variables
79 Fsiz = size (Fe , 2) ; % size of load vector
80 F = sparse (Fe , Fn , Fv , N , Fsiz) ; % define load vector
81 %% PRE-ALLOCATE SPACE
82 npx = zeros (length (fix) , 1) ’ ; % pre-allocate constraint dots
83 npy = zeros (length (fix) , 1) ’ ; % pre-allocate constraint dots
84 npfx = zeros (length (Fe) , 1) ’ ; % pre-allocate force dots
85 npfy = zeros (length (Fe) , 1) ’ ; % pre-allocate force dots
86 U = zeros (size (F)) ; % pre-allocate space displacement
87 c = zeros (miter , 1) ; % pre-allocate objective vector
88 %% INITIALIZE LOOP
89 iter = 0 ; % initialize loop
90 diff = 1 ; % initialize convergence criterion
91 %% START LOOP
92 while (diff > tol) && iter < miter % convergence criterion not met
93 iter = iter+1; % define iteration
94 p = pen ; % set penalty
95 %% Finite element analysis
96 kK = reshape (Ke (:) ∗(Emin+xF (:) ’ . ^ pen ∗(E−Emin)) ,64∗nx∗ny , 1) ; % create

sparse vector k
97 K = sparse (iK , jK , kK) ; % combine sparse vectors
98 K = (K+K ’) /2 ; % build stiffness matrix
99 U (free , :) = K (free , free) \F (free , :) ; % displacement solving

100 c (iter) = 0 ; % set compliance to zero
101 Sens = 0 ; % set sensitivity to zero
102 %% Calculate compliance and sensitivity
103 c0 = reshape (sum ((U (dofmat) ∗Ke) .∗ U (dofmat) , 2) ,ny , nx) ; % initial

compliance
104 c (iter) = c (iter) + sum (sum ((Emin+xF .^ p∗(E−Emin)) .∗ c0)) ; % calculate

compliance
105 Sens = Sens −p∗(E−Emin) ∗xF . ^ (p−1) .∗ c0 ; % sensitivity
106 Senc = ones (ny , nx) ; % set constraint sensitivity
107 Sens (:) = H∗(x (:) .∗ Sens (:)) . / Hs . / max (1e−3,x (:)) ; % update filtered

sensitivity
108 %% Update design variables Optimality Criterion
109 l1 = 0 ; % initial lower bound for lagranian mulitplier
110 l2 = 1e9 ; % initial upper bound for lagranian multiplier
111 while (l2−l1) /(l1+l2) > 1e−3; % start loop
112 lag = 0 .5∗ (l1+l2) ; % average of lagranian interval

Stefan Broxterman Master of Science Thesis

B.1 Basic.m 139

113 xnew = max (0 , max (x−move , min (1 , min (x+move , x .∗ sqrt(−Sens . / Senc/lag)
)))) ; % update element densities

114 xF = xnew ; % updated result
115 if sum (xF (:)) > vol∗nx∗ny ; % check for optimum
116 l1 = lag ; % update lower bound to average
117 else
118 l2 = lag ; % update upper bound to average
119 end
120 end
121 diff = max (abs (xnew (:)−x (:))) ; % difference of maximum element change
122 x = xnew ; % update design variable
123 %% Store results into database X
124 X (: , : , iter) = xF ; % each element value x is stored for each

iteration
125 C (iter) = c (iter) ; % each compliance is stored for each iteration
126 assignin (’base’ , ’X’ , X) ; % each iteration (3rd dimension)
127 assignin (’base’ , ’C’ , C) ; % each iteration (3rd dimension)
128 %% Results
129 if dis == 1 % display iterations
130 disp ([’ Iter:’ sprintf (’%4i’ , iter) ’ Obj:’ sprintf (’%10.4f’ ,c (

iter)) . . .
131 ’ Vol:’ sprintf (’%6.3f’ , mean (xF (:))) ’ Diff:’ sprintf (’%6.3f’

, diff)]) ;
132 end
133 if draw == 1 % plot iterations
134 figure (1)
135 subplot (2 , 1 , 1)
136 colormap (gray) ; imagesc(1−xF) ;
137 set (gca , ’XTick’ , [] , ’YTick’ , [] , ’XTicklabel’ , [] , . . .
138 ’YTicklabel’ , [] , ’xcolor’ ,’w’ ,’ycolor’ ,’w’)
139 xlabel (sprintf (’c = %.2f’ ,c (iter)) ,’Color’ ,’k’)
140 drawnow ;
141 hold on
142 if iter == 1
143 axis equal ; axis tight ;
144 % Plot coloured dots for constraints
145 for i = 1 : length (fix)
146 npx (i) = ceil (fix (i) /(2∗ (ny+1))) −0.5;
147 nplot = ceil (fix (i) /2) ;
148 while nplot > (ny+1)
149 nplot = nplot−(ny+1) ;
150 end
151 npy (i) = nplot−0.5 ;
152 end
153 plot (npx , npy , ’r.’ ,’MarkerSize’ , 20)
154 % Plot coloured dots for force application
155 for i = 1 : length (Fe)
156 npfx (i) = ceil (Fe (i) /(2∗ (ny+1))) −0.5;
157 nplot = ceil (Fe (i) /2) ;
158 while nplot > (ny+1)
159 nplot = nplot−(ny+1) ;
160 end
161 npfy (i) = nplot−0.5 ;

Master of Science Thesis Stefan Broxterman

140 Matlab Codes

162 end
163 plot (npfx , npfy , ’g.’ ,’MarkerSize’ , 20)
164 end
165 % Plot compliance plot
166 figure (1)
167 subplot (2 , 1 , 2)
168 plot (c (1 : iter))
169 xaxmax = c (iter) ;
170 yaxmax = max (c) ;
171 yaxmin = min (c (1 : iter)) ;
172 ylim ([0 . 9 5 ∗ yaxmin yaxmax])
173 xlim ([0 iter+10])
174 end
175 end
176 %% ONLY DISPLAY FINAL RESULT
177 if dis == 0 % display final result
178 disp ([’ Iter:’ sprintf (’%4i’ , iter) ’ Obj:’ sprintf (’%10.4f’ ,c) . . .
179 ’ Con:’ sprintf (’%6.3f’ , diff)]) ;
180 end
181 if draw == 0 % plot final result
182 figure (1)
183 subplot (2 , 1 , 1)
184 colormap (gray) ; imagesc(1−xF) ;
185 axis equal ; axis tight ;
186 set (gca , ’XTick’ , [] , ’YTick’ , [] , ’XTicklabel’ , [] , . . .
187 ’YTicklabel’ , [] , ’xcolor’ ,’w’ ,’ycolor’ ,’w’)
188 xlabel (sprintf (’c = %.2f’ ,c (iter)) , ’Color’ ,’k’)
189 drawnow ;
190 hold on
191 %% Plot coloured dots for constraints
192 for i = 1 : length (fix)
193 npx (i) = ceil (fix (i) /(2∗ (ny+1))) −0.5;
194 nplot = ceil (fix (i) /2) ;
195 while nplot > (ny+1)
196 nplot = nplot−(ny+1) ;
197 end
198 npy (i) = nplot−0.5 ;
199 end
200 plot (npx , npy , ’r.’ ,’MarkerSize’ , 20)
201 %% Plot coloured dots for force application
202 for i = 1 : length (Fe)
203 npfx (i) = ceil (Fe (i) /(2∗ (ny+1))) −0.5;
204 nplot = ceil (Fe (i) /2) ;
205 while nplot > (ny+1)
206 nplot = nplot−(ny+1) ;
207 end
208 npfy (i) = nplot−0.5 ;
209 end
210 plot (npfx , npfy , ’g.’ ,’MarkerSize’ , 20)
211 %% Plot compliance plot
212 if adv == 0
213 figure (1)
214 subplot (2 , 1 , 2)

Stefan Broxterman Master of Science Thesis

B.1 Basic.m 141

215 plot (c (1 : iter))
216 xaxmax = c (iter) ;
217 yaxmax = max (c) ;
218 yaxmin = min (c (1 : iter)) ;
219 ylim ([0 . 9 5 ∗ yaxmin yaxmax])
220 xlim ([0 iter+10])
221 end
222 end
223 toc % stop timer

Master of Science Thesis Stefan Broxterman

142 Matlab Codes

B.2 ADVANCED.m

As an addition to (B.1), this advanced code can be used to plot progression pictures for multi-
ple situations. In this Advanced code the optimization variables can be varied automatically.
First, change the value of adv in Basic.m to one, in order to enable the program to vary the
design variables. For upcoming add-ins the same Advanced function could be used at any
time.
In the Advanced.m code the variation of the design variable needs to be chosen [line 13-14].
The next lines can be used to make vectors, which consist the values of the design variables,
which are willing to be compared [line 15-21]. As up to now, it can only hold a maximum
of four values per run. Only one variable can be varied per run, in order to hold the order
variables constant, a default value can be defined in [line 22-28]. The program now write
some values and pre-allocate spaces, user input is not needed from this line on [line 29-40].
The loop is starting, and makes a call to Basic.m for each design configuration, the programs
determines whether or not the users made a design variation, or just want to plot an evo-
lutionary scheme, as defined by var = 6 [line 41-69]. The figures and progression plots are
made in the coming lines [line 70-97]. Each calculation run time is collected and stored. After
completion of each variation of the design, a matrix Y is displayed in the command windows.
Which consist the number of run, the design variation vector, the number of loops needed for
that configuration, and the associated objective and run time [line 98-124]. Compliance values
are stored and plotted in one graph [line 125-211]. Next, values of the variations are stored
into the workspace for further usage and finally the design problem is drawn [line 212-238].

1 %%
2 % %
3 % Topology Optimization Using Matlab %
4 % ADVANCED.m %
5 % %
6 % Delft University of Technology , Department PME %
7 % Master of Science Thesis Project %
8 % %
9 % Stefan Broxterman %

10 % %
11 %%
12 clc ; clf ; close all ; clear X ;
13 %% DEFINE OPTIMIZATION VARIABLES
14 var = 4 ; % [1 = mesh, 2 = penalty , 3 = filter radius , 4 =

volume fraction , 5 = filter method , 6 = evolution]
15 nxvec = [30 , 6 0 , 9 0 , 1 2 0] ; % horizontal elements vector
16 nyvec = [10 , 2 0 , 3 0 , 4 0] ; % vertical elements vector
17 volvec = [0 . 2 0 .35 0 .5 0 . 6 5] ; % volume fraction vector
18 rminvec = [1 , 1 . 2 5 , 1 . 5 , 3] ; % filter size vector
19 penvec = [1 , 2 , 3 , 5] ; % penalty vector
20 filvec = [0 , 1 , 2] ; % filter vector
21 evolvec = [0 . 0 5 , 0 . 25 , 0 . 5 , 1] ; % evolution fraction vector
22 %% SET DEFAULT VALUES
23 nx = nxvec (3) ; % default number of horizontal elements
24 ny = nyvec (3) ; % default number of vertical elements
25 vol = volvec (3) ; % default number of volume fraction

Stefan Broxterman Master of Science Thesis

B.2 ADVANCED.m 143

26 pen = penvec (3) ; % default penalty
27 rmin = rminvec (3) ; % default filter radius
28 fil = filvec (1) ; % default filter method
29 %% SET OPTIMIZATION VALUES
30 ex = [30 , 6 0 , 9 0 , 1 2 0] ; % vector size for pre-allocating space
31 figend = 4 ; % set total of varying values
32 label = [’a’ ,’b’ ,’c’ ,’d’ ,’e’] ; % graphic label
33 %% PRE-ALLOCATE SPACE
34 loops = zeros (1 , size (ex , 2)) ; % initial loops matrix
35 obj = zeros (1 , size (ex , 2)) ; % initial ojective matrix
36 t = zeros (1 , size (ex , 2)) ; % initial time matrix
37 Y = zeros (size (ex , 2) , 5) ; % initial results matrix
38 if var == 6 % for evolution scheme , BasicK.m only needs to

...
39 BASIC % run one time only
40 end
41 %% START LOOP
42 for fig = 1 : figend % start itertation loop
43 tic ; % start timer
44 if var ~= 6 % for non-evolution scheme , run below
45 clear X ; clear C ; % clear results matrix for each run
46 if var == 1 % differentiation on number of elements
47 nx = nxvec (fig) ; % pick each horizontal value
48 ny = nyvec (fig) ; % pick each vertical value
49 elseif var == 2 % differentiation on penalty
50 pen = penvec (fig) ; % pick each penalty
51 elseif var == 3 % differentiation on filter radius
52 rmin = rminvec (fig) ; % pick each rmin
53 elseif var == 4 % differentiation on filter method
54 vol = volvec (fig) ; % pick each filter method
55 elseif var == 5 % differentiation on filter method
56 fil = filvec (fig) ; % pick each filter method
57 end
58 BASIC % run Basic.m
59 loops (fig) = size (X , 3) ; % number of iterations used
60 obj (fig) = c (iter) ; % store objective function
61 prog = X (: , : , loops (fig)) ; % store densities for progression

drawing
62 elseif var == 6 % store compliance for evolution vector
63 loops = size (X , 3) ; % for evolutionary scheme , calculate rounded

...
64 loop (1) = round (evolvec (1) ∗loops) ; % values of loops and store

...
65 loop (2) = round (evolvec (2) ∗loops) ; % this loop number
66 loop (3) = round (evolvec (3) ∗loops) ;
67 loop (4) = round (evolvec (4) ∗loops) ;
68 prog = X (: , : , loop) ; % progression picture for each evolution

fraction
69 end
70 %% Set graphics
71 if draw == 1 % check for drawing
72 H = get (gcf , ’Position’) ; % get position of figure
73 else

Master of Science Thesis Stefan Broxterman

144 Matlab Codes

74 H = [680 , 5 58 , 5 60 , 4 20] ; % set size of figure(2) plot windows
75 end
76 H2 = figure (2) ; % plot window for progression pictures
77 set (H2 , ’position’ , [H (1)+H (3) H (2) H (3) H (4)]) ; % place figure(2) next

to (1)
78 %% Draw progression plots
79 subplot (3 , 2 , fig+2) % plot each differentiation
80 colormap (gray) ; % grayscale
81 if var == 6 % evolution needs different plotting
82 imagesc(1−prog (: , : , fig)) ; % plot progression picture
83 xlabel (sprintf (’c = %.2f’ ,C (loop (fig))) ,’color’ ,’k’)
84 else
85 imagesc(1−prog) ; % plot progression picture
86 xlabel (sprintf (’c = %.2f’ , obj (fig)) , ’color’ ,’k’)
87 end
88 set (gca , ’XTick’ , [] , ’YTick’ , [] , ’XTicklabel’ , [] , . . .
89 ’YTicklabel’ , [] , ’xcolor’ ,’w’ ,’ycolor’ ,’w’)
90 axis equal ; axis tight ; % set additional options
91 if var == 6 % evolution needs different plotting
92 xlabel (sprintf (’c = %.2f’ ,C (loop (fig))) ,’color’ ,’k’)
93 else
94 xlabel (sprintf (’c = %.2f’ , obj (fig)) , ’color’ ,’k’)
95 end
96 ylabel (sprintf (’%s) ’ , (label (fig+1))) , . . .
97 ’rot’ , 0 , ’color’ ,’k’ ,’FontSize’ , 11)
98 %% Store compliance
99 if var ~= 6 % store compliance for further plotting

100 if fig == 1
101 C1 = C ;
102 elseif fig == 2
103 C2 = C ;
104 elseif fig == 3
105 C3 = C ;
106 elseif fig == 4
107 C4 = C ;
108 end
109 end
110 %% Draw graphics
111 xbox = get (gca , ’XLim’) ;
112 ybox = get (gca , ’YLim’) ;
113 xwidth = xbox (2)−xbox (1) ;
114 ywidth = ybox (2)−ybox (1) ;
115 rectangle (’Position’ , [xbox (1) , ybox (1) , xwidth , ywidth] , . . .
116 ’EdgeColor’ , [0 . 5 0 . 5 0 . 5] , ’LineStyle’ ,’:’) ; drawnow ;
117 t (fig) = toc ;
118 %% Output
119 if var ~= 6 % output results for non-evolutionary schemes
120 Y (fig , :) = [fig ex (fig) loops (fig) obj (fig) t (fig)] ;
121 if fig == figend
122 Y
123 end ;
124 end
125 %% Compliance graphs

Stefan Broxterman Master of Science Thesis

B.2 ADVANCED.m 145

126 if var ~= 6
127 H3 = figure (3) ;
128 set (H3 , ’position’ , [H (1)−H (3) H (2) H (3) H (4)]) ; % place figure(2)

next to (1)
129 hold on
130 switch fig
131 case 1 % first variable
132 plot (1 : length (C1) ,C1 , ’b:’ ,’LineWidth’ , 2)
133 xaxmax = mean (length (C1)) ;
134 yaxmax = max (max (C1)) ;
135 yaxmin = min (C1) ;
136 if var == 1
137 legend (sprintf (’mesh = %g x %g ’ , nxvec (1) , nyvec (1)))
138 elseif var == 2
139 legend (sprintf (’pen = %g’ , penvec (1)))
140 elseif var == 3
141 legend (sprintf (’Rmin = %g’ , rminvec (1)))
142 elseif var == 4
143 legend (sprintf (’vol = %g’ , volvec (1)))
144 elseif var == 5
145 legend (sprintf (’filter = Sensitivity’))
146 end
147 case 2 % second variable
148 plot (1 : length (C2) ,C2 , ’r--’ ,’LineWidth’ , 2)
149 xaxmax = mean ([length (C1) length (C2)]) ;
150 yaxmax = max ([max (C1) max (C2)]) ;
151 yaxmin = min (min ([C1 C2])) ;
152 if var == 1
153 legend (sprintf (’mesh = %g x %g’ , nxvec (1) , nyvec (2)) ,

sprintf (’mesh = %g x %g’ , nxvec (2) , nyvec (2)))
154 elseif var == 2
155 legend (sprintf (’pen = %g ’ , penvec (1)) , sprintf (’pen =

%g’ , penvec (2)))
156 elseif var == 3
157 legend (sprintf (’Rmin = %g ’ , rminvec (1)) , sprintf (’Rmin

= %g’ , rminvec (2)))
158 elseif var == 4
159 legend (sprintf (’vol = %g ’ , volvec (1)) , sprintf (’vol =

%g’ , volvec (2)))
160 elseif var == 5
161 legend (sprintf (’filter = Sensitivity’) , sprintf (’

filter = Density’))
162 end
163 case 3 % third variable
164 plot (1 : length (C3) ,C3 , ’k’ ,’LineWidth’ , 2)
165 xaxmax = mean ([length (C1) length (C2) length (C3)]) ;
166 yaxmax = max ([max (C1) max (C2) max (C3)]) ;
167 yaxmin = min (min ([C1 C2 C3])) ;
168 if var == 1
169 legend (sprintf (’mesh = %g x %g’ , nxvec (1) , nyvec (2)) ,

sprintf (’mesh = %g x %g’ , nxvec (2) , nyvec (2)) ,
sprintf (’mesh = %g x %g’ , nxvec (3) , nyvec (3)))

170 elseif var == 2

Master of Science Thesis Stefan Broxterman

146 Matlab Codes

171 legend (sprintf (’pen = %g ’ , penvec (1)) , sprintf (’pen =
%g’ , penvec (2)) , sprintf (’pen = %g’ , penvec (3)))

172 elseif var == 3
173 legend (sprintf (’Rmin = %g ’ , rminvec (1)) , sprintf (’Rmin

= %g’ , rminvec (2)) , sprintf (’Rmin = %g’ , rminvec (3))
)

174 elseif var == 4
175 legend (sprintf (’vol = %g ’ , volvec (1)) , sprintf (’vol =

%g’ , volvec (2)) , sprintf (’vol = %g’ , volvec (3)))
176 elseif var == 5
177 legend (sprintf (’filter = Sensitivity’) , sprintf (’

filter = Density’) , sprintf (’filter = Heaviside’))
178 end
179 case 4 % fourth variable
180 plot (1 : length (C4) ,C4 , ’g-.’ ,’LineWidth’ , 2)
181 xaxmax = mean ([length (C1) length (C2) length (C3) length (C4

)]) ;
182 yaxmax = max ([max (C1) max (C2) max (C3) max (C4)]) ;
183 yaxmin = min (min ([C1 C2 C3 C4])) ;
184 if var == 1
185 legend (sprintf (’mesh = %g x %g’ , nxvec (1) , nyvec (2)) ,

sprintf (’mesh = %g x %g’ , nxvec (2) , nyvec (2)) ,
sprintf (’mesh = %g x %g’ , nxvec (3) , nyvec (3)) ,
sprintf (’mesh = %g x %g’ , nxvec (4) , nyvec (4)))

186 elseif var == 2
187 legend (sprintf (’pen = %g ’ , penvec (1)) , sprintf (’pen =

%g’ , penvec (2)) , sprintf (’pen = %g’ , penvec (3)) ,
sprintf (’pen = %g’ , penvec (4)))

188 elseif var == 3
189 legend (sprintf (’Rmin = %g ’ , rminvec (1)) , sprintf (’Rmin

= %g’ , rminvec (2)) , sprintf (’Rmin = %g’ , rminvec (3))
, sprintf (’Rmin = %g’ , rminvec (4)))

190 elseif var == 4
191 legend (sprintf (’vol = %g ’ , volvec (1)) , sprintf (’vol =

%g’ , volvec (2)) , sprintf (’vol = %g’ , volvec (3)) ,
sprintf (’vol = %g’ , volvec (4)))

192 end
193 end
194 xlabel (’Number of iterations’)
195 ylabel (’Compliance’)
196 if exist (’pcon’ ,’var’) == 0
197 yaxmax = mean ([yaxmin yaxmax]) ;
198 elseif pcon == 0
199 yaxmax = mean ([yaxmin yaxmax]) ;
200 end
201 axis ([0 xaxmax 0 .95∗ yaxmin yaxmax])
202 elseif var == 6
203 H3 = figure (3) ;
204 set (H3 , ’position’ , [H (1)−H (3) H (2) H (3) H (4)]) ; % place figure(2)

next to (1)
205 hold on
206 plot (C)
207 xlabel (’Number of iterations’)

Stefan Broxterman Master of Science Thesis

B.2 ADVANCED.m 147

208 ylabel (’Compliance’)
209 axis ([0 length (C) 0 .9∗ min (C) max (C)])
210 end
211 end
212 %% STORE RESULTS
213 disp (’Y = i, penalty , loops , objective , time’)
214 if var == 1 % mesh refinement
215 Ymesh = Y ; % store result matrix
216 save (’MeshRefinementY.mat’ ,’Y’) ;
217 elseif var == 2 % penalty
218 Ypenal = Y ; % store result matrix
219 save (’PenaltyY.mat’ ,’Y’) ;
220 elseif var == 3 % filter radius
221 Yfilter = Y ; % store result matrix
222 save (’FilterY.mat’ ,’Y’) ;
223 elseif var == 4 % volume fraction
224 Yvolume = Y ; % store result matrix
225 save (’VolumeY.mat’ ,’Y’) ;
226 end
227 %% DRAW DESIGN PROBLEM
228 figure (2)
229 subplot (3 , 2 , (1 : 2)) % plot the initial mechanical problem
230 rectangle (’Position’ , [xbox (1) , ybox (1) , xwidth , ywidth] , . . .
231 ’FaceColor’ , [0 . 5 0 . 5 0 . 5])
232 axis equal ; axis tight ;
233 set (gca , ’XTick’ , [] , ’YTick’ , [] , ’XTicklabel’ , [] , . . .
234 ’YTicklabel’ , [] , ’xcolor’ ,’w’ ,’ycolor’ ,’w’)
235 ylabel (sprintf (’%s) ’ , (label (1))) ,’rot’ , 0 , ’color’ ,’k’ ,’FontSize’ , 11)
236 draw_arrow ([xbox (2) ybox (1)] , [xbox (2) −0.25∗ywidth] , 1)
237 rectangle (’Position’ , [−0.1∗ xwidth , ybox (1) −0.1∗ywidth , . . .
238 0 .1∗ xwidth , 1 . 2 ∗ ywidth] , ’FaceColor’ , [0 0 0] , ’LineWidth’ , 3)

Master of Science Thesis Stefan Broxterman

148 Matlab Codes

B.3 BASIC.m

The final M-code, including all previous described functionality can be found here
1 %%
2 % %
3 % Topology Optimization Using Matlab %
4 % BASIC.m %
5 % %
6 % Delft University of Technology , Department PME %
7 % Master of Science Thesis Project %
8 % %
9 % Stefan Broxterman %

10 % %
11 %%
12 %
13 tic % start timer
14 %% DEFINE PARAMETERS
15 adv = 1 ; % use advanced function [0 = off, 1 = on]
16 if adv == 0 % define parameters at behalf of the advanced

function
17 nx = 90 ; % numer of elements horizontal
18 ny = 30 ; % number of elements vertical
19 vol = 0 . 5 ; % volume fraction [0-1]
20 pen = 3 ; % penalty
21 rmin = 1 . 5 ; % filter size
22 fil = 0 ; % filter method [0 = sensitivity filtering , 1 =

density filtering , 2 = heaviside filtering]
23 clc ; clf ; close all ;
24 end
25 %% DEFINE SOLUTION METHOD
26 sol = 0 ; % solution method [0 = oc(sens), 1 = mma]
27 pcon = 0 ; % use continuation method [0 = off, 1 = on]
28 %% DEFINE CALCULATION
29 tol = 0 . 0 1 ; % tolerance for convergence criterion [0.01]
30 move = 0 . 2 ; % move limit for lagrange [0.2]
31 pcinc = 1 . 0 3 ; % penalty continuation increasing factor [1.03]
32 piter = 20 ; % number of iteration for starting penalty [20]
33 miter = 1000 ; % maximum number of iterations [1000]
34 %% DEFINE OUTPUT
35 draw = 1 ; % plot iterations [0 = off, 1 = on]
36 dis = 1 ; % display iterations [0 = off, 1 = on]
37 %% DEFINE MATERIAL
38 E = 1 ; % young ’s modulus of solid [1]
39 Emin = 1e−9; % young ’s modulus of void [1e-9]
40 nu = 0 . 3 ; % poisson ratio [0.3]
41 rho = 0e−3; % density [0e-3]
42 g = 9 . 8 1 ; % gravitational acceleration [9.81]
43 %% DEFINE FORCE
44 Fe = 2∗(nx+1)∗(ny+1) ; % element of force application [2*(nx+1)*(ny+1)]
45 Fn = 1 ; % number of applied force locations [1]
46 Fv = −1; % value of applied force [-1]
47 %% DEFINE SUPPORTS

Stefan Broxterman Master of Science Thesis

B.3 BASIC.m 149

48 fix = 1 :2∗ (ny+1) ; % fixed elements [1:2*(ny+1)]
49 %% DEFINE ELEMENT RESTRICTIONS
50 shap = 0 ; % [0 = no restrictions , 1 = circle , 2 = custom]
51 area = 0 ; % [0 = no material (passive), 1 = material (

active)]
52 nodr = (round (ny /2) +(0:ny : (nx−1)∗ny)) ; % custom restricted nodes
53 %% PREPARE FINITE ELEMENT
54 N = 2∗(nx+1)∗(ny+1) ; % total element nodes
55 all = 1 :2∗ (nx+1)∗(ny+1) ; % all degrees of freedom
56 free = setdiff (all , fix) ; % free degrees of freedom
57 A11 = [12 3 −6 −3; 3 12 3 0 ; −6 3 12 −3; −3 0 −3 1 2] ; % fem
58 A12 = [−6 −3 0 3 ; −3 −6 −3 −6; 0 −3 −6 3 ; 3 −6 3 −6]; % fem
59 B11 = [−4 3 −2 9 ; 3 −4 −9 4 ; −2 −9 −4 −3; 9 4 −3 −4]; % fem
60 B12 = [2 −3 4 −9; −3 2 9 −2; 4 9 2 3 ; −9 −2 3 2] ; % fem
61 Ke = 1/(1−nu^2) /24∗ ([A11 A12 ; A12 ’ A11]+nu ∗ [B11 B12 ; B12 ’ B11]) ; % element

stiffness matrix
62 nodes = reshape (1 : (nx+1)∗(ny+1) ,1+ny ,1+nx) ; % create node numer matrix
63 dofvec = reshape (2∗ nodes (1 : end−1 ,1:end−1)+1,nx∗ny , 1) ; % create dof vector
64 dofmat = repmat (dofvec , 1 , 8)+repmat ([0 1 2∗ny+[2 3 0 1] −2 −1] ,nx∗ny , 1) ; %

create dof matrix
65 iK = reshape (kron (dofmat , ones (8 , 1)) ’ ,64∗ nx∗ny , 1) ; % build sparse i
66 jK = reshape (kron (dofmat , ones (1 , 8)) ’ ,64∗ nx∗ny , 1) ; % build sparse j
67 %% PREPARE FILTER
68 iH = ones (nx∗ny ∗ (2∗ (ceil (rmin)−1)+1)^2 ,1) ; % build sparse i
69 jH = ones (size (iH)) ; % create sparse vector of ones
70 kH = zeros (size (iH)) ; % create sparse vector of zeros
71 m = 0 ; % index for filtering
72 for i = 1 : nx % for each element calculate distance between ...
73 for j = 1 : ny % elements ’ center for filtering
74 r1 = (i−1)∗ny+j ; % sparse value i
75 for k = max (i−(ceil (rmin)−1) ,1) : min (i+(ceil (rmin)−1) , nx) %

center of element
76 for l = max (j−(ceil (rmin)−1) ,1) : min (j+(ceil (rmin)−1) , ny) %

center of element
77 r2 = (k−1)∗ny+l ; % sparse value 2
78 m = m+1; % update index for filtering
79 iH (m) = r1 ; % sparse vector for filtering
80 jH (m) = r2 ; % sparse vector for filtering
81 kH (m) = max (0 , rmin−sqrt ((i−k)^2+(j−l) ^2)) ; % weight

factor
82 end
83 end
84 end
85 end
86 H = sparse (iH , jH , kH) ; % build filter
87 Hs = sum (H , 2) ; % summation of filter
88 %% DEFINE ELEMENT RESTRICTIONS
89 x = repmat (vol , ny , nx) ; % initial material distribution
90 if shap == 0 % no restrictions
91 efree = (1 : nx∗ny) ’ ; % all elements are free
92 eres= [] ; % no restricted elements
93 elseif shap == 1 % restrictions
94 rest = zeros (ny , nx) ; % pre-allocate space

Master of Science Thesis Stefan Broxterman

150 Matlab Codes

95 for i = 1 : nx % start loop
96 for j = 1 : ny % for each element
97 if sqrt ((j−ny /2)^2+(i−nx /4) ^2) < ny /2 .5 % circular

restriction
98 rest (j , i) = 1 ; % write restriction
99 if rest (j , i) == area % check for restriction

100 x (j , i) = area ; % store restrictions in material
distribution

101 end
102 end
103 end
104 end
105 efree = find (rest ~= 1) ; % set free elements
106 eres = find (rest == 1) ; % set restricted ellements
107 end
108 if fil == 0 | | fil == 1 % sensitivity , density filter
109 xF = x ; % set filtered design variables
110 elseif fil == 2 % heaviside filter
111 beta = 1 ; % hs filter
112 xTilde = x ; % hs filter
113 xF = 1−exp(−beta∗xTilde)+xTilde∗exp(−beta) ; % set filtered design

space
114 end
115 xFree = xF (efree) ; % define free design matrix
116 %% DEFINE STRUCTURAL
117 Fsiz = size (Fe , 2) ; % size of load vector
118 F = sparse (Fe , Fn , Fv , N , Fsiz) ; % define load vector
119 %% DEFINE MMA PARAMETERS
120 m = 1 ; % number of constraint functions
121 n = size (xFree (:) , 1) ; % number of variables
122 xmin = zeros (n , 1) ; % minimum values of x
123 xmax = ones (n , 1) ; % maximum values of x
124 xold1 = zeros (n , 1) ; % previous x, to monitor convergence
125 xold2 = xold1 ; % used by mma to monitor convergence
126 df0dx2 = zeros (n , 1) ; % second derivative of the objective function
127 dfdx2 = zeros (1 , n) ; % second derivative of the constraint function
128 low = xmin ; % lower asymptotes from the previous iteration
129 upp = xmax ; % upper asymptotes from the previous iteration
130 a0 = 1 ; % constant a_0 in mma formulation
131 a = zeros (m , 1) ; % constant a_i in mma formulation
132 cmma = 1e3∗ones (m , 1) ; % constant c_i in mma formulation
133 d = zeros (m , 1) ; % constant d_i in mma formulation
134 subs = 200 ; % maximum number of subsolv iterations
135 %% PRE-ALLOCATE SPACE
136 npx = zeros (length (fix) , 1) ’ ; % pre-allocate constraint dots
137 npy = zeros (length (fix) , 1) ’ ; % pre-allocate constraint dots
138 npfx = zeros (length (Fe) , 1) ’ ; % pre-allocate force dots
139 npfy = zeros (length (Fe) , 1) ’ ; % pre-allocate force dots
140 U = zeros (size (F)) ; % pre-allocate space displacement
141 c = zeros (miter , 1) ; % pre-allocate objective vector
142 %% INITIALIZE LOOP
143 iter = 0 ; % initialize loop
144 diff = 1 ; % initialize convergence criterion

Stefan Broxterman Master of Science Thesis

B.3 BASIC.m 151

145 loopbeta = 1 ; % initialize beta-loop
146 %% START LOOP
147 while ((diff > tol) | | (iter < piter+1)) && iter < miter % convergence

criterion not met
148 loopbeta = loopbeta +1; % iteration loop for hs filter
149 iter = iter+1; % define iteration
150 if pcon == 1 % use continuation method
151 if iter <= piter % first number of iterations...
152 p = 1 ; %... set penalty 1
153 elseif iter > piter % after a number of iterations...
154 p = min (pen , pcinc∗p) ; % ... set continuation penalty
155 end
156 elseif pcon == 0 % not using continuation method
157 p = pen ; % set penalty
158 end
159 %% Selfweight
160 if rho ~= 0 % gravity is involved
161 xP=zeros (ny , nx) ; % pre-allocate space
162 xP (xF>0.25) = xF (xF>0.25) .^ p ; % normal penalization
163 xP (xF<=0.25) = xF (xF<=0.25) . ∗ (0 . 2 5^ (p−1)) ; % below pseudo -density
164 Fsw = zeros (N , 1) ; % pre-allocate self-weight
165 for i=1:nx∗ny % for each element , set gravitational...
166 Fsw (dofmat (i , 2 : 2 : end))=Fsw (dofmat (i , 2 : 2 : end))−xF (i) ∗rho

∗9 . 81/4 ;
167 end % force to the attached nodes
168 Fsw=repmat (Fsw , 1 , size (F , 2)) ; % set self-weight for load cases
169 elseif rho == 0 % no gravity
170 xP = xF .^ p ; % penalized design variable
171 Fsw = 0 ; % no selfweight
172 end
173 Ftot = F + Fsw ; % total force
174 %% Finite element analysis
175 kK = reshape (Ke (:) ∗(Emin+xP (:) ’∗ (E−Emin)) ,64∗nx∗ny , 1) ; % create

sparse vector k
176 K = sparse (iK , jK , kK) ; % combine sparse vectors
177 K = (K+K ’) /2 ; % build stiffness matrix
178 U (free , :) = K (free , free) \Ftot (free , :) ; % displacement solving
179 c (iter) = 0 ; % set compliance to zero
180 Sens = 0 ; % set sensitivity to zero
181 %% Calculate compliance and sensitivity
182 for i = 1 : size (F , 2) % for number of load cases
183 Ui = U (: , i) ; % displacement per load case
184 c0 = reshape (sum ((Ui (dofmat) ∗Ke) .∗ Ui (dofmat) , 2) ,ny , nx) ; % initial

compliance
185 c (iter) = c (iter) + sum (sum ((Emin+xF .^ p∗(E−Emin)) .∗ c0)) ; %

calculate compliance
186 Sens = Sens + reshape (2∗Ui (dofmat) ∗repmat ([0 ; −9 .81∗ rho /4] , 4 , 1) ,ny

, nx) −p∗(E−Emin) ∗xF . ^ (p−1) .∗ c0 ; % sensitivity
187 end
188 Senc = ones (ny , nx) ; % set constraint sensitivity
189 if fil == 0 % optimality criterion with sensitivity filter
190 Sens (:) = H∗(x (:) .∗ Sens (:)) . / Hs . / max (1e−3,x (:)) ; % update

filtered sensitivity

Master of Science Thesis Stefan Broxterman

152 Matlab Codes

191 elseif fil == 1 % optimality criterion with density filter
192 Sens (:) = H∗(Sens (:) . / Hs) ; % update filtered sensitivity
193 Senc (:) = H∗(Senc (:) . / Hs) ; % update filtered sensitivity of

constraint
194 elseif fil == 2 % optimality criterion with heaviside filter
195 dx = beta∗exp(−beta∗xTilde)+exp(−beta) ; % update hs parameter
196 Sens (:) = H∗(Sens (:) .∗ dx (:) . / Hs) ; % update filtered sensitivity
197 Senc (:) = H∗(Senc (:) .∗ dx (:) . / Hs) ; % update filtered sensitivity

of constraint
198 end
199 %% Update design variables Optimality Criterion
200 if sol == 0 % use optimality criterion method
201 l1 = 0 ; % initial lower bound for lagranian mulitplier
202 l2 = 1e9 ; % initial upper bound for lagranian multiplier
203 while (l2−l1) /(l1+l2) > 1e−3; % start loop
204 lag = 0 .5∗ (l1+l2) ; % average of lagranian interval
205 xnew = max (0 , max (x−move , min (1 , min (x+move , x .∗ sqrt(−Sens . / Senc/

lag))))) ; % update element densities
206 if fil == 0 % sensitivity filter
207 xF = xnew ; % updated result
208 elseif fil == 1 % density filter
209 xF (:) = (H∗xnew (:)) . / Hs ; % updated filtered density

result
210 elseif fil == 2 % heaviside filter
211 xTilde (:)= (H∗xnew (:)) . / Hs ; % set filtered density
212 xF (:) =1−exp(−beta∗xTilde)+xTilde∗exp(−beta) ; % updated

result
213 end
214 if shap == 1 % restriction is on
215 xF (rest==1) = area ; % set restricted area
216 end
217 if sum (xF (:)) > vol∗nx∗ny ; % check for optimum
218 l1 = lag ; % update lower bound to average
219 else
220 l2 = lag ; % update upper bound to average
221 end
222 end
223 %% Method of moving asymptotes
224 elseif sol == 1 % use mma solver
225 xval = xFree (:) ; % store current design variable for mma
226 if iter == 1 % for the first iteration...
227 cscale = 1/c (iter) ; % ...set scaling factor for mma solver
228 end
229 f0 = c (iter) ∗cscale ; % objective at current design variable for

mma
230 df0dx = Sens (efree) ∗cscale ; % store sensitivity for mma
231 f = (sum (xF (:)) /(vol∗nx∗ny)−1) ; % normalized constraint function
232 dfdx = Senc (efree) ’ / (vol∗ny∗nx) ; % derivative of the constraint

function
233 [xmma , ~ ,~ ,~ ,~ ,~ ,~ ,~ ,~ , low , upp] = . . .
234 mmasub (m , n , iter , xval , xmin , xmax , xold1 , xold2 , . . .
235 f0 , df0dx , df0dx2 , f , dfdx , dfdx2 , low , upp , a0 , a , cmma , d , subs) ; % mma

solver

Stefan Broxterman Master of Science Thesis

B.3 BASIC.m 153

236 xold2 = xold1 ; % used by mma to monitor convergence
237 xold1 = xFree (:) ; % previous x, to monitor convergence
238 xnew = xF ; % update result
239 xnew (efree) = xmma ; % include restricted elements
240 xnew = reshape (xnew , ny , nx) ; % reshape xmma vector to original

size
241 if fil == 0 % sensitivity filter
242 xF = xnew ; % update design variables
243 elseif fil == 1 % density filter
244 xF (:) = (H∗xnew (:)) . / Hs ; % update filtered densities result
245 elseif fil == 2 % heaviside filter
246 xTilde (:)= (H∗xnew (:)) . / Hs ; % filtered result
247 xF (:)=1−exp(−beta∗xTilde)+xTilde∗exp(−beta) ; % update design

variable
248 end
249 if shap == 1 % if restrictions enableed
250 xF (rest==1) = area ; % set restricted area
251 end
252
253 end
254 xFree = xnew (efree) ; % set non-restricted area
255 diff = max (abs (xnew (:)−x (:))) ; % difference of maximum element change
256 x = xnew ; % update design variable
257 if fil == 2 && beta < 512 && pen == p (end) && (loopbeta >= 50 | | diff

<= tol) % hs filter
258 beta = 2∗beta ; % increase beta-factor
259 fprintf (’beta now is %3.0f\n’ , beta) % display increase of b-

factor
260 loopbeta = 0 ; % set hs filter loop to zero
261 diff = 1 ; % set convergence to initial value
262 end
263 %% Store results into database X
264 X (: , : , iter) = xF ; % each element value x is stored for each

iteration
265 C (iter) = c (iter) ; % each compliance is stored for each iteration
266 assignin (’base’ , ’X’ , X) ; % each iteration (3rd dimension)
267 assignin (’base’ , ’C’ , C) ; % each iteration (3rd dimension)
268 %% Results
269 if dis == 1 % display iterations
270 disp ([’ Iter:’ sprintf (’%4i’ , iter) ’ Obj:’ sprintf (’%10.4f’ ,c (

iter)) . . .
271 ’ Vol:’ sprintf (’%6.3f’ , mean (xF (:))) ’ Diff:’ sprintf (’%6.3f’

, diff)]) ;
272 end
273 if draw == 1 % plot iterations
274 figure (1)
275 subplot (2 , 1 , 1)
276 colormap (gray) ; imagesc(1−xF) ;
277 set (gca , ’XTick’ , [] , ’YTick’ , [] , ’XTicklabel’ , [] , . . .
278 ’YTicklabel’ , [] , ’xcolor’ ,’w’ ,’ycolor’ ,’w’)
279 xlabel (sprintf (’c = %.2f’ ,c (iter)) ,’Color’ ,’k’)
280 drawnow ;
281 hold on

Master of Science Thesis Stefan Broxterman

154 Matlab Codes

282 if iter == 1
283 axis equal ; axis tight ;
284 % Plot coloured dots for constraints
285 for i = 1 : length (fix)
286 npx (i) = ceil (fix (i) /(2∗ (ny+1))) −0.5;
287 nplot = ceil (fix (i) /2) ;
288 while nplot > (ny+1)
289 nplot = nplot−(ny+1) ;
290 end
291 npy (i) = nplot−0.5 ;
292 end
293 plot (npx , npy , ’r.’ ,’MarkerSize’ , 20)
294 % Plot coloured dots for force application
295 for i = 1 : length (Fe)
296 npfx (i) = ceil (Fe (i) /(2∗ (ny+1))) −0.5;
297 nplot = ceil (Fe (i) /2) ;
298 while nplot > (ny+1)
299 nplot = nplot−(ny+1) ;
300 end
301 npfy (i) = nplot−0.5 ;
302 end
303 plot (npfx , npfy , ’g.’ ,’MarkerSize’ , 20)
304 end
305 % Plot compliance plot
306 figure (1)
307 subplot (2 , 1 , 2)
308 plot (c (1 : iter))
309 xaxmax = c (iter) ;
310 yaxmax = max (c) ;
311 yaxmin = min (c (1 : iter)) ;
312 if pcon == 0
313 yaxmax = mean ([yaxmin yaxmax]) ;
314 end
315 ylim ([0 . 9 5 ∗ yaxmin yaxmax])
316 xlim ([0 iter+10])
317 end
318 end
319 %% ONLY DISPLAY FINAL RESULT
320 if dis == 0 % display final result
321 disp ([’ Iter:’ sprintf (’%4i’ , iter) ’ Obj:’ sprintf (’%10.4f’ ,c) . . .
322 ’ Con:’ sprintf (’%6.3f’ , diff)]) ;
323 end
324 if draw == 0 % plot final result
325 figure (1)
326 subplot (2 , 1 , 1)
327 colormap (gray) ; imagesc(1−xF) ;
328 axis equal ; axis tight ;
329 set (gca , ’XTick’ , [] , ’YTick’ , [] , ’XTicklabel’ , [] , . . .
330 ’YTicklabel’ , [] , ’xcolor’ ,’w’ ,’ycolor’ ,’w’)
331 xlabel (sprintf (’c = %.2f’ ,c (iter)) , ’Color’ ,’k’)
332 drawnow ;
333 hold on
334 %% Plot coloured dots for constraints

Stefan Broxterman Master of Science Thesis

B.3 BASIC.m 155

335 for i = 1 : length (fix)
336 npx (i) = ceil (fix (i) /(2∗ (ny+1))) −0.5;
337 nplot = ceil (fix (i) /2) ;
338 while nplot > (ny+1)
339 nplot = nplot−(ny+1) ;
340 end
341 npy (i) = nplot−0.5 ;
342 end
343 plot (npx , npy , ’r.’ ,’MarkerSize’ , 20)
344 %% Plot coloured dots for force application
345 for i = 1 : length (Fe)
346 npfx (i) = ceil (Fe (i) /(2∗ (ny+1))) −0.5;
347 nplot = ceil (Fe (i) /2) ;
348 while nplot > (ny+1)
349 nplot = nplot−(ny+1) ;
350 end
351 npfy (i) = nplot−0.5 ;
352 end
353 plot (npfx , npfy , ’g.’ ,’MarkerSize’ , 20)
354 %% Plot compliance plot
355 if adv == 0
356 figure (1)
357 subplot (2 , 1 , 2)
358 plot (c (1 : iter))
359 xaxmax = c (iter) ;
360 yaxmax = max (c) ;
361 yaxmin = min (c (1 : iter)) ;
362 if pcon == 0
363 yaxmax = mean ([yaxmin yaxmax]) ;
364 end
365 ylim ([0 . 9 5 ∗ yaxmin yaxmax])
366 xlim ([0 iter+10])
367 end
368 end
369 toc % stop timer

Master of Science Thesis Stefan Broxterman

156 Matlab Codes

B.4 BASIC 3D.m

In the previous section, an add-in is given to produce a simple 3D optimization. However,
for certain cases, it could be helpful to have the same different options as described in the
add-in sections. The following code includes the same functionality as the BASIC code (B.3),
but now for three dimensions. This code is tested and working. A small reminder should be
made regarding the restrictions option. In the 2D optimization code a simple circle could be
made, to describe circular restricted area. In this 3D code however, this circular restricted
area is replaced by two options. Shape option 1 describes a cylindrical restrictive regions,
shape option 2 describes a spherical restrictive region.

1 %%
2 % %
3 % Topology Optimization Using Matlab %
4 % BASIC3D.m %
5 % %
6 % Delft University of Technology , Department PME %
7 % Master of Science Thesis Project %
8 % %
9 % Stefan Broxterman %

10 % %
11 %%
12 %
13 tic % start timer
14 %% DEFINE PARAMETERS
15 adv = 1 ; % use advanced function [0 = off, 1 = on]
16 if adv == 0 % define parameters at behalf of the advanced

function
17 nx = 30 ; % numer of elements horizontal
18 ny = 10 ; % number of elements vertical
19 nz = 4 ; % number of elements lateral
20 vol = 0 . 5 ; % volume fraction [0-1]
21 pen = 3 ; % penalty
22 rmin = 1 . 5 ; % filter size
23 fil = 0 ; % filter method [0 = sensitivity filtering , 1 =

density filtering , 2 = heaviside filtering]
24 clear X ;
25 clc ; clf ; close all ;
26 end
27 %% DEFINE SOLUTION METHOD
28 sol = 1 ; % solution method [0 = oc(sens), 1 = mma]
29 pcon = 1 ; % use continuation method [0 = off, 1 = on]
30 %% DEFINE CALCULATION
31 tol = 0 . 0 1 ; % tolerance for convergence criterion [0.01]
32 move = 0 . 2 ; % move limit for lagrange [0.2]
33 pcinc = 1 . 0 3 ; % penalty continuation increasing factor [1.03]
34 piter = 20 ; % number of iteration for starting penalty [20]
35 miter = 1000 ; % maximum number of iterations [1000]
36 graysc = 1 ; % use gray-scale filter [0 = off, 1 = on]
37 q = 1 ; % gray-scale parameter
38 qmax = 2 ; % maximum gray-scale parameter

Stefan Broxterman Master of Science Thesis

B.4 BASIC 3D.m 157

39 plotiter = 5 ; % gap of iterations used to plot or draw
iterations

40 %% DEFINE OUTPUT
41 draw = 1 ; % plot iterations [0 = off, 1 = on, 2 = partial]
42 dis = 1 ; % display iterations [0 = off, 1 = on, 2 =

partial]
43 %% DEFINE MATERIAL
44 E = 1 ; % young ’s modulus of solid [1]
45 Emin = 1e−9; % young ’s modulus of void [1e-9]
46 nu = 0 . 3 ; % poisson ratio [0.3]
47 rho = 0e−3; % density [0e-3]
48 g = 9 . 8 1 ; % gravitational acceleration [9.81]
49 %% DEFINE FORCE
50 Fe = (3∗ (nx+1)∗(ny+1)−1)+(3∗(nx+1)∗(ny+1)) ∗ (0 : nz) ’ ; % element of force

application
51 Fn = 1 ; % number of applied force locations [1]
52 Fv = −1; % value of applied force [-1]
53 %% DEFINE SUPPORTS
54 fix = repmat ((1 : 3 ∗ (ny+1)) ’ , 1 , nz+1)+repmat ((0 : nz) ∗3∗(nx+1)∗(ny+1) , length

((1 : 3 ∗ (ny+1))) ,1) ; % fixed elements
55 fix = fix (:) ;
56 %% DEFINE ELEMENT RESTRICTIONS
57 shap = 2 ; % [0 = no restrictions , 1 = cylinder , 2 = sphere]
58 area = 0 ; % [0 = no material (passive), 1 = material (

active)]
59 nodr = (round (ny /2) +(0:ny : (nx−1)∗ny)) ; % custom restricted nodes
60 %% PREPARE FINITE ELEMENT
61 N = 3∗(nx+1)∗(ny+1)∗(nz+1) ; % total elements nodes
62 all = 1 :3∗ (nx+1)∗(ny+1)∗(nz+1) ; % all degrees of freedom
63 free = setdiff (all , fix) ; % free degrees of freedom
64 A = [32 6 −8 6 −6 4 3 −6 −10 3 −3 −3 −4 −8;
65 −48 0 0 −24 24 0 0 0 12 −12 0 12 12 1 2] ; % fem
66 k = 1/72∗A ’ ∗ [1 ; nu] ; % simple stiffness matrix
67 %% GENERATE SIX SUB-MATRICES AND THEN GET KE MATRIX
68 K1 = [k (1) k (2) k (2) k (3) k (5) k (5) ;
69 k (2) k (1) k (2) k (4) k (6) k (7) ;
70 k (2) k (2) k (1) k (4) k (7) k (6) ;
71 k (3) k (4) k (4) k (1) k (8) k (8) ;
72 k (5) k (6) k (7) k (8) k (1) k (2) ;
73 k (5) k (7) k (6) k (8) k (2) k (1)] ; % stiffness matrix
74 K2 = [k (9) k (8) k (12) k (6) k (4) k (7) ;
75 k (8) k (9) k (12) k (5) k (3) k (5) ;
76 k (10) k (10) k (13) k (7) k (4) k (6) ;
77 k (6) k (5) k (11) k (9) k (2) k (10) ;
78 k (4) k (3) k (5) k (2) k (9) k (12)
79 k (11) k (4) k (6) k (12) k (10) k (13)] ; % stiffness matrix
80 K3 = [k (6) k (7) k (4) k (9) k (12) k (8) ;
81 k (7) k (6) k (4) k (10) k (13) k (10) ;
82 k (5) k (5) k (3) k (8) k (12) k (9) ;
83 k (9) k (10) k (2) k (6) k (11) k (5) ;
84 k (12) k (13) k (10) k (11) k (6) k (4) ;
85 k (2) k (12) k (9) k (4) k (5) k (3)] ; % stiffness matrix
86 K4 = [k (14) k (11) k (11) k (13) k (10) k (10) ;

Master of Science Thesis Stefan Broxterman

158 Matlab Codes

87 k (11) k (14) k (11) k (12) k (9) k (8) ;
88 k (11) k (11) k (14) k (12) k (8) k (9) ;
89 k (13) k (12) k (12) k (14) k (7) k (7) ;
90 k (10) k (9) k (8) k (7) k (14) k (11) ;
91 k (10) k (8) k (9) k (7) k (11) k (14)] ; % stiffness matrix
92 K5 = [k (1) k (2) k (8) k (3) k (5) k (4) ;
93 k (2) k (1) k (8) k (4) k (6) k (11) ;
94 k (8) k (8) k (1) k (5) k (11) k (6) ;
95 k (3) k (4) k (5) k (1) k (8) k (2) ;
96 k (5) k (6) k (11) k (8) k (1) k (8) ;
97 k (4) k (11) k (6) k (2) k (8) k (1)] ; % stiffness matrix
98 K6 = [k (14) k (11) k (7) k (13) k (10) k (12) ;
99 k (11) k (14) k (7) k (12) k (9) k (2) ;

100 k (7) k (7) k (14) k (10) k (2) k (9) ;
101 k (13) k (12) k (10) k (14) k (7) k (11) ;
102 k (10) k (9) k (2) k (7) k (14) k (7) ;
103 k (12) k (2) k (9) k (11) k (7) k (14)] ; % stiffness matrix
104 Ke = 1/((nu+1)∗(1−2∗nu)) ∗ . . .
105 [K1 K2 K3 K4 ;
106 K2 ’ K5 K6 K3 ’ ;
107 K3 ’ K6 K5 ’ K2 ’ ;
108 K4 K3 K2 K1 ’] ; % element stiffness matrix
109 nodes = reshape (1 : (nx+1)∗(ny+1) ,1+ny ,1+nx) ; % create node number matrix
110 nodes2 = reshape (nodes (1 : end−1 ,1:end−1) , ny∗nx , 1) ; % create node number

matrix
111 nodes3 = 0 : (ny+1)∗(nx+1) : (nz−1)∗(ny+1)∗(nx+1) ; % create node number

matrix
112 nodes4 = repmat (nodes2 , size (nodes3))+repmat (nodes3 , size (nodes2)) ; %

create node number matrix
113 dofvec = 3∗nodes4 (:) +1; % create dof vector
114 dofmat = repmat (dofvec , 1 , 2 4)+repmat ([0 1 2 3∗ny+[3 4 5 0 1 2] −3 −2 −1

3∗(ny+1)∗(nx+1) + [0 1 2 3∗ny + [3 4 5 0 1 2] −3 −2 −1]] , nx∗ny∗nz , 1) ;
% create dof matrix

115 iK = kron (dofmat , ones (24 ,1)) ’ ; % build sparse i
116 jK = kron (dofmat , ones (1 , 24)) ’ ; % build sparse j
117 %% PREPARE FILTER
118 iH = ones (nx∗ny∗nz ∗ (2∗ (ceil (rmin)−1)+1)^2 ,1) ; % build sparse i
119 jH = ones (size (iH)) ; % create sparse vector of ones
120 kH = zeros (size (iH)) ; % create sparse vector of zeros
121 m = 0 ; % index for filtering
122 for h = 1 : nz % for each element calculate...
123 for i = 1 : nx % distance between elements ’...
124 for j = 1 : ny % centre for filtering
125 r1 = (h−1)∗nx∗ny + (i−1)∗ny+j ; % sparse value 1
126 for k2 = max (h−(ceil (rmin)−1) ,1) : min (h+(ceil (rmin)−1) , nz) %

centre of element
127 for k = max (i−(ceil (rmin)−1) ,1) : min (i+(ceil (rmin)−1) , nx)

% centre of element
128 for l = max (j−(ceil (rmin)−1) ,1) : min (j+(ceil (rmin)−1) ,

ny) % centre of element
129 r2 = (k2−1)∗nx∗ny + (k−1)∗ny+l ; % sparse value 2
130 m = m+1; % update index for filtering
131 iH (m) = r1 ; % sparse vector for filtering

Stefan Broxterman Master of Science Thesis

B.4 BASIC 3D.m 159

132 jH (m) = r2 ; % sparse vector for filtering
133 kH (m) = max (0 , rmin−sqrt ((i−k)^2+(j−l) ^2)+(h−k2)

^2) ; % weight factor
134 end
135 end
136 end
137 end
138 end
139 end
140 H = sparse (iH , jH , kH) ; % build filter
141 Hs = sum (H , 2) ; % summation of filter
142 %% DEFINE STRUCTURAL
143 x = repmat (vol , ny , nx , nz) ; % initial material distribution
144 if shap == 0 % no restrictions
145 efree = (1 : nx∗ny∗nz) ’ ; % all elements are free
146 eres= [] ; % no restricted elements
147 elseif shap == 1 | | shap == 2 % restrictions
148 rest = zeros (ny , nx , nz) ; % pre-allocate space
149 for i = 1 : nx % start loop
150 for j = 1 : ny % for each element
151 for k = 1 : nz % for lateral element
152 if sqrt ((j−ny /2)^2+(i−nx /3) ^2) < ny /2 .5 % circular

restriction
153 if shap == 1 % cyilindrical restriction
154 rest (j , i , k) = 1 ; % write restriction
155 if rest (j , i , k) == area % check for restriction
156 x (j , i , k) = area ; % store restrictions in

material distribution
157 end
158 elseif shap == 2 % spherical restriction
159 if sqrt ((j−ny /2)^2+(k−nz /2) ^2) < nz /2 .5 %

spherical restriction
160 if sqrt ((k−nz /2)^2+(i−nx /3) ^2) < nz /2 .5 %

spherical restriction
161 rest (j , i , k) = 1 ; % write restriction
162 if rest (j , i , k) == area % check for

restriction
163 x (j , i , k) = area ; % store restrictions

in material distribution
164 end
165 end
166 end
167 end
168 end
169 end
170 end
171 end
172 efree = find (rest ~= 1) ; % set free elements
173 eres = find (rest == 1) ; % set restricted ellements
174 end
175 if fil == 0 | | fil == 1 % sensitivity , density filter
176 xF = x ; % set filtered design variables
177 elseif fil == 2 % heaviside filter

Master of Science Thesis Stefan Broxterman

160 Matlab Codes

178 beta = 1 ; % hs filter
179 xTilde = x ; % hs filter
180 xF = 1−exp(−beta∗xTilde)+xTilde∗exp(−beta) ; % set filtered design

space
181 end
182 xFree = xF (efree) ; % define free design matrix
183 %% DEFINE STRUCTURAL
184 Fsiz = size (Fe , 2) ; % size of load vector
185 F = sparse (Fe , Fn , Fv , N , Fsiz) ; % define load vector
186 %% DEFINE MMA PARAMETERS
187 m = 1 ; % number of constraint functions
188 n = size (xFree (:) , 1) ; % number of variables
189 xmin = zeros (n , 1) ; % minimum values of x
190 xmax = ones (n , 1) ; % maximum values of x
191 xold1 = zeros (n , 1) ; % previous x, to monitor convergence
192 xold2 = xold1 ; % used by mma to monitor convergence
193 df0dx2 = zeros (n , 1) ; % second derivative of the objective function
194 dfdx2 = zeros (1 , n) ; % second derivative of the constraint function
195 low = xmin ; % lower asymptotes from the previous iteration
196 upp = xmax ; % upper asymptotes from the previous iteration
197 a0 = 1 ; % constant a_0 in mma formulation
198 a = zeros (m , 1) ; % constant a_i in mma formulation
199 cmma = 1e3∗ones (m , 1) ; % constant c_i in mma formulation
200 d = zeros (m , 1) ; % constant d_i in mma formulation
201 subs = 200 ; % maximum number of subsolv iterations
202 %% PRE-ALLOCATE SPACE
203 npx = zeros (length (fix) , 1) ’ ; % pre-allocate constraint dots
204 npy = zeros (length (fix) , 1) ’ ; % pre-allocate constraint dots
205 npz = zeros (length (fix) , 1) ’ ; % pre-allocate constraint dots
206 npfx = zeros (length (Fe) , 1) ’ ; % pre-allocate force dots
207 npfy = zeros (length (Fe) , 1) ’ ; % pre-allocate force dots
208 npfz = zeros (length (Fe) , 1) ’ ; % pre-allocate force dots
209 U = zeros (size (F)) ; % pre-allocate space displacement
210 c = zeros (miter , 1) ; % pre-allocate objective vector
211 %% INITIALIZE LOOP
212 iter = 0 ; % initialize loop
213 diff = 1 ; % initialize convergence criterion
214 loopbeta = 1 ; % initialize beta-loop
215 %% START LOOP
216 while ((diff > tol) | | (iter < piter+1)) && iter < miter % convergence

criterion not met
217 loopbeta = loopbeta +1; % iteration loop for hs filter
218 iter = iter+1; % define iteration
219 if pcon == 1 % use continuation method
220 if iter <= piter % first number of iterations...
221 p = 1 ; %... set penalty 1
222 elseif iter > piter % after a number of iterations...
223 p = min (pen , pcinc∗p) ; % ... set continuation penalty
224 end
225 elseif pcon == 0 % not using continuation method
226 p = pen ; % set penalty
227 end
228 if graysc == 1 % if grayscale is enabled

Stefan Broxterman Master of Science Thesis

B.4 BASIC 3D.m 161

229 if iter <= 15 % within 15 iterations
230 q = 1 ; % don’t use grayscale
231 else % after 15 iterations
232 q = min (qmax , 1 . 0 1∗ q) ; % use continuation method to pick a

gray-scale factor
233 end
234 end
235 %% Selfweight
236 if rho ~= 0 % gravity is involved
237 xP=zeros (ny , nx , nz) ; % pre-allocate space
238 xP (xF>0.25) = xF (xF>0.25) .^ p ; % normal penalization
239 xP (xF<=0.25) = xF (xF<=0.25) . ∗ (0 . 2 5^ (p−1)) ; % below pseudo -density
240 Fsw = zeros (N , 1) ; % pre-allocate self-weight
241 for i=1:nx∗ny∗nz % for each element , set gravitational...
242 Fsw (dofmat (i , 2 : 3 : end))=Fsw (dofmat (i , 2 : 3 : end))−xF (i) ∗rho

∗9 . 81/4 ;
243 end % force to the attached nodes
244 Fsw=repmat (Fsw , 1 , size (F , 2)) ; % set self-weight for load cases
245 elseif rho == 0 % no gravity
246 xP = xF .^ p ; % penalized design variable
247 Fsw = 0 ; % no selfweight
248 end
249 Ftot = F + Fsw ; % total force
250 %% Finite element analysis
251 kK = Ke (:) ∗(Emin+xP (:) ’∗ (E−Emin)) ; % create sparse vector k
252 K = sparse (iK , jK , kK) ; % combine sparse vectors
253 K = (K+K ’) /2 ; % build stiffness matrix
254 U (free , :) = K (free , free) \Ftot (free , :) ; % displacement solving
255 c (iter) = 0 ; % set compliance to zero
256 Sens = 0 ; % set sensitivity to zero
257 %% Calculate compliance and sensitivity
258 for i = 1 : size (F , 2) % for number of load cases
259 Ui = U (: , i) ; % displacement per load case
260 c0 = reshape (sum ((Ui (dofmat) ∗Ke) .∗ Ui (dofmat) , 2) ,ny , nx , nz) ; %

initial compliance
261 c (iter) = c (iter) + sum (sum (sum ((Emin+xF .^ p∗(E−Emin)) .∗ c0))) ; %

calculate compliance
262 Sens = Sens + reshape (2∗Ui (dofmat) ∗repmat ([0 ; −9 .81∗ rho /4 ; 0] , 8 , 1)

,ny , nx , nz) −p∗(E−Emin) ∗xF . ^ (p−1) .∗ c0 ; % sensitivity
263 end
264 Senc = ones (ny , nx , nz) ; % set constraint sensitivity
265 if fil == 0 % optimality criterion with sensitivity filter
266 Sens (:) = H∗(x (:) .∗ Sens (:)) . / Hs . / max (1e−3,x (:)) ; % update

filtered sensitivity
267 elseif fil == 1 % optimality criterion with density filter
268 Sens (:) = H∗(Sens (:) . / Hs) ; % update filtered sensitivity
269 Senc (:) = H∗(Senc (:) . / Hs) ; % update filtered sensitivity of

constraint
270 elseif fil == 2 % optimality criterion with heaviside filter
271 dx = beta∗exp(−beta∗xTilde)+exp(−beta) ; % update hs parameter
272 Sens (:) = H∗(Sens (:) .∗ dx (:) . / Hs) ; % update filtered sensitivity
273 Senc (:) = H∗(Senc (:) .∗ dx (:) . / Hs) ; % update filtered sensitivity

of constraint

Master of Science Thesis Stefan Broxterman

162 Matlab Codes

274 end
275 %% Update design variables Optimality Criterion
276 if sol == 0 % use optimality criterion method
277 l1 = 0 ; % initial lower bound for lagranian mulitplier
278 l2 = 1e9 ; % initial upper bound for lagranian multiplier
279 while (l2−l1) /(l1+l2) > 1e−3; % start loop
280 lag = 0 .5∗ (l1+l2) ; % average of lagranian interval
281 if graysc == 0 % don’t use grayscale
282 xnew = max (0 , max (x−move , min (1 , min (x+move , x .∗ sqrt(−Sens . /

Senc/lag))))) ; % update element densities
283 elseif graysc == 1 % use grayscale
284 xnew = max (0 , max (x−move , min (1 , min (x+move , x .∗ sqrt(−Sens . /

Senc/lag)) .^ q))) ; % update element densities
285 end
286 if fil == 0 % sensitivity filter
287 xF = xnew ; % updated result
288 elseif fil == 1 % density filter
289 xF (:) = (H∗xnew (:)) . / Hs ; % updated filtered density

result
290 elseif fil == 2 % heaviside filter
291 xTilde (:)= (H∗xnew (:)) . / Hs ; % set filtered density
292 xF (:) =1−exp(−beta∗xTilde)+xTilde∗exp(−beta) ; % updated

result
293 end
294 if shap == 1 | | shap == 2% restriction is on
295 xF (rest==1) = area ; % set restricted area
296 end
297 if sum (xF (:)) > vol∗nx∗ny∗nz ; % check for optimum
298 l1 = lag ; % update lower bound to average
299 else
300 l2 = lag ; % update upper bound to average
301 end
302 end
303 %% Method of moving asymptotes
304 elseif sol == 1 % use mma solver
305 xval = xFree (:) ; % store current design variable for mma
306 if iter == 1 % for the first iteration...
307 cscale = 1/c (iter) ; % ...set scaling factor for mma solver
308 end
309 f0 = c (iter) ∗cscale ; % objective at current design variable for

mma
310 df0dx = Sens (efree) ∗cscale ; % store sensitivity for mma
311 f = (sum (xF (:)) /(vol∗nx∗ny∗nz)−1) ; % normalized constraint

function
312 dfdx = Senc (efree) ’ / (vol∗ny∗nx∗nz) ; % derivative of the

constraint function
313 [xmma , ~ ,~ ,~ ,~ ,~ ,~ ,~ ,~ , low , upp] = . . .
314 mmasub (m , n , iter , xval , xmin , xmax , xold1 , xold2 , . . .
315 f0 , df0dx , df0dx2 , f , dfdx , dfdx2 , low , upp , a0 , a , cmma , d , subs) ; % mma

solver
316 xold2 = xold1 ; % used by mma to monitor convergence
317 xold1 = xFree (:) ; % previous x, to monitor convergence
318 xnew = xF ; % update result

Stefan Broxterman Master of Science Thesis

B.4 BASIC 3D.m 163

319 xnew (efree) = xmma ; % include restricted elements
320 xnew = reshape (xnew , ny , nx , nz) ; % reshape xmma vector to original

size
321 if fil == 0 % sensitivity filter
322 xF = xnew ; % update design variables
323 elseif fil == 1 % density filter
324 xF (:) = (H∗xnew (:)) . / Hs ; % update filtered densities result
325 elseif fil == 2 % heaviside filter
326 xTilde (:)= (H∗xnew (:)) . / Hs ; % filtered result
327 xF (:)=1−exp(−beta∗xTilde)+xTilde∗exp(−beta) ; % update design

variable
328 end
329 if shap == 1 | | shap == 2 % if restrictions enableed
330 xF (rest==1) = area ; % set restricted area
331 end
332
333 end
334 xFree = xnew (efree) ; % set non-restricted area
335 diff = max (abs (xnew (:)−x (:))) ; % difference of maximum element change
336 x = xnew ; % update design variable
337 if fil == 2 && beta < 512 && pen == p (end) && (loopbeta >= 50 | | diff

<= tol) % hs filter
338 beta = 2∗beta ; % increase beta-factor
339 fprintf (’beta now is %3.0f\n’ , beta) % display increase of b-

factor
340 loopbeta = 0 ; % set hs filter loop to zero
341 diff = 1 ; % set convergence to initial value
342 end
343 %% Store results into database X
344 X (: , : , : , iter) = xF ; % each element value x is stored for each

iteration
345 C (iter) = c (iter) ; % each compliance is stored for each iteration
346 assignin (’base’ , ’X’ , X) ; % each iteration (3rd dimension)
347 assignin (’base’ , ’C’ , C) ; % each iteration (3rd dimension)
348 %% Results
349 if dis == 1 % display iterations
350 disp ([’ Iter:’ sprintf (’%4i’ , iter) ’ Obj:’ sprintf (’%10.4f’ ,c (

iter)) . . .
351 ’ Vol:’ sprintf (’%6.3f’ , mean (xF (:))) ’ Diff:’ sprintf (’%6.3f’

, diff)]) ;
352 elseif dis == 2 % display parts of iterations
353 if iter == 1 | | iter == disiter
354 if iter == 1
355 disiter = plotiter ;
356 elseif iter == disiter
357 disiter = disiter + plotiter ;
358 end
359 disp ([’ Iter:’ sprintf (’%4i’ , iter) ’ Obj:’ sprintf (’%10.4f’ ,c

(iter)) . . .
360 ’ Vol:’ sprintf (’%6.3f’ , mean (xF (:))) ’ Diff:’ sprintf (’%6.3f’

, diff)]) ;
361 end
362

Master of Science Thesis Stefan Broxterman

164 Matlab Codes

363 end
364 if draw == 1 % plot iterations
365 figure (1)
366 subplot (2 , 1 , 1)
367 [nely , nelx , nelz] = size (xF) ;
368 hx = 1 ; hy = 1 ; hz = 1 ; % User-defined unit element

size
369 face = [1 2 3 4 ; 2 6 7 3 ; 4 3 7 8 ; 1 5 8 4 ; 1 2 6 5 ; 5 6 7 8] ;
370 for k = 1 : nelz
371 z = (k−1)∗hz ;
372 for i = 1 : nelx
373 xplot = (i−1)∗hx ;
374 for j = 1 : nely
375 y = nely∗hy − (j−1)∗hy ;
376 if (xF (j , i , k) > 0 . 5) % User-defined display density

threshold
377 vert = [xplot y z ; xplot y−hx z ; xplot+hx y−hx z ;

xplot+hx y z ; xplot y z+hx ; xplot y−hx z+hx ;
xplot+hx y−hx z+hx ; xplot+hx y z+hx] ;

378 vert (: , [2 3]) = vert (: , [3 2]) ; vert (: , 2 , :) = −
vert (: , 2 , :) ;

379 patch (’Faces’ ,face , ’Vertices’ ,vert , ’FaceColor’
, [0 .2+0.8∗(1− xF (j , i , k)) ,0.2+0.8∗(1−xF (j , i , k))
,0.2+0.8∗(1−xF (j , i , k))]) ;

380 hold on ;
381 end
382 end
383 end
384 end
385 axis equal ; axis tight ;
386 set (gca , ’XTick’ , [] , ’YTick’ , [] , ’ZTick’ , [] , ’XTicklabel’ , [] , . . .
387 ’YTicklabel’ , [] , ’ZTicklabel’ , [] , ’xcolor’ ,’w’ ,’ycolor’ ,’w’ ,’

zcolor’ ,’w’)
388 view ([3 0 , 3 0]) ;
389 xlabel (sprintf (’c = %.2f’ ,c (iter)) ,’Color’ ,’k’)
390 drawnow ;
391 hold on
392 if iter == 1
393 % Plot coloured dots for constraints
394 for i = 1 : length (fix)
395 nplotx = ceil (fix (i) /(3∗ (ny+1))) ;
396 while nplotx > (nx+1)
397 nplotx = nplotx −(nx+1) ;
398 end
399 npx (i) = nplotx−1;
400 nplot = ceil (fix (i) /3) ;
401 while nplot > (ny+1)
402 nplot = nplot−(ny+1) ;
403 end
404 npy (i) = nplot−1;
405 npz (i) = 1−ceil (fix (i) /(3∗ (nx+1)∗(ny+1))) ;
406 end
407 plot3 (npx , npz , npy , ’r.’ ,’MarkerSize’ , 20)

Stefan Broxterman Master of Science Thesis

B.4 BASIC 3D.m 165

408 % Plot coloured dots for force application
409 for i = 1 : length (Fe)
410 nplotx = ceil (Fe (i) /(3∗ (ny+1))) ;
411 while nplotx > (nx+1)
412 nplotx = nplotx −(nx+1) ;
413 end
414 npfx (i) = nplotx−1;
415 nplot = ceil (Fe (i) /3) ;
416 while nplot > (ny)
417 nplot = nplot−(ny+1) ;
418 end
419 npfy (i) = nplot ;
420 npfz (i) = 1−ceil (Fe (i) /(3∗ (nx+1)∗(ny+1))) ;
421 end
422 plot3 (npfx , npfz , npfy , ’g.’ ,’MarkerSize’ , 20)
423 drawnow ;
424 end
425 % Plot compliance plot
426 figure (1)
427 subplot (2 , 1 , 2)
428 plot (c (1 : iter))
429 xaxmax = c (iter) ;
430 yaxmax = max (c) ;
431 yaxmin = min (c (1 : iter)) ;
432 ylim ([0 . 9 5 ∗ yaxmin yaxmax])
433 xlim ([0 iter+10])
434 elseif draw == 2 % plot parts of iterations
435 if iter == 1 | | iter == drawiter
436 if iter == 1
437 drawiter = plotiter ;
438 elseif iter == drawiter
439 drawiter = drawiter + plotiter ;
440 end
441 figure (1)
442 subplot (2 , 1 , 1)
443 [nely , nelx , nelz] = size (xF) ;
444 hx = 1 ; hy = 1 ; hz = 1 ; % User-defined unit element

size
445 face = [1 2 3 4 ; 2 6 7 3 ; 4 3 7 8 ; 1 5 8 4 ; 1 2 6 5 ; 5 6 7 8] ;
446 for k = 1 : nelz
447 z = (k−1)∗hz ;
448 for i = 1 : nelx
449 xplot = (i−1)∗hx ;
450 for j = 1 : nely
451 y = nely∗hy − (j−1)∗hy ;
452 if (xF (j , i , k) > 0 . 5) % User-defined display density

threshold
453 vert = [xplot y z ; xplot y−hx z ; xplot+hx y−hx z ;

xplot+hx y z ; xplot y z+hx ; xplot y−hx z+hx ;
xplot+hx y−hx z+hx ; xplot+hx y z+hx] ;

454 vert (: , [2 3]) = vert (: , [3 2]) ; vert (: , 2 , :) = −
vert (: , 2 , :) ;

Master of Science Thesis Stefan Broxterman

166 Matlab Codes

455 patch (’Faces’ ,face , ’Vertices’ ,vert , ’FaceColor’
, [0 .2+0.8∗(1− xF (j , i , k)) ,0.2+0.8∗(1−xF (j , i , k))
,0.2+0.8∗(1−xF (j , i , k))]) ;

456 hold on ;
457 end
458 end
459 end
460 end
461 axis equal ; axis tight ;
462 set (gca , ’XTick’ , [] , ’YTick’ , [] , ’ZTick’ , [] , ’XTicklabel’ , [] , . . .
463 ’YTicklabel’ , [] , ’ZTicklabel’ , [] , ’xcolor’ ,’w’ ,’ycolor’ ,’w’ ,’

zcolor’ ,’w’)
464 view ([3 0 , 3 0]) ;
465 xlabel (sprintf (’c = %.2f’ ,c (iter)) ,’Color’ ,’k’)
466 drawnow ;
467 hold on
468 if iter == 1
469 % Plot coloured dots for constraints
470 for i = 1 : length (fix)
471 nplotx = ceil (fix (i) /(3∗ (ny+1))) ;
472 while nplotx > (nx+1)
473 nplotx = nplotx −(nx+1) ;
474 end
475 npx (i) = nplotx−1;
476 nplot = ceil (fix (i) /3) ;
477 while nplot > (ny+1)
478 nplot = nplot−(ny+1) ;
479 end
480 npy (i) = nplot−1;
481 npz (i) = 1−ceil (fix (i) /(3∗ (nx+1)∗(ny+1))) ;
482 end
483 plot3 (npx , npz , npy , ’r.’ ,’MarkerSize’ , 20)
484 % Plot coloured dots for force application
485 for i = 1 : length (Fe)
486 nplotx = ceil (Fe (i) /(3∗ (ny+1))) ;
487 while nplotx > (nx+1)
488 nplotx = nplotx −(nx+1) ;
489 end
490 npfx (i) = nplotx−1;
491 nplot = ceil (Fe (i) /3) ;
492 while nplot > (ny)
493 nplot = nplot−(ny+1) ;
494 end
495 npfy (i) = nplot ;
496 npfz (i) = 1−ceil (Fe (i) /(3∗ (nx+1)∗(ny+1))) ;
497 end
498 plot3 (npfx , npfz , npfy , ’g.’ ,’MarkerSize’ , 20)
499 drawnow ;
500 end
501 % Plot compliance plot
502 figure (1)
503 subplot (2 , 1 , 2)
504 plot (c (1 : iter))

Stefan Broxterman Master of Science Thesis

B.4 BASIC 3D.m 167

505 xaxmax = c (iter) ;
506 yaxmax = max (c) ;
507 yaxmin = min (c (1 : iter)) ;
508 ylim ([0 . 9 5 ∗ yaxmin yaxmax])
509 xlim ([0 iter+10])
510 end
511 end
512 end
513 %% ONLY DISPLAY FINAL RESULT
514 if dis == 0 | | dis == 2 % display final result
515 disp ([’ Iter:’ sprintf (’%4i’ , iter) ’ Obj:’ sprintf (’%10.4f’ ,c (iter))

. . .
516 ’ Vol:’ sprintf (’%6.3f’ , mean (xF (:))) ’ Diff:’ sprintf (’%6.3f’

, diff)]) ;
517 end
518 if draw == 0 | | draw == 2 % plot final result
519 figure (1)
520 subplot (2 , 1 , 1)
521 [nely , nelx , nelz] = size (xF) ;
522 hx = 1 ; hy = 1 ; hz = 1 ; % User-defined unit element size
523 face = [1 2 3 4 ; 2 6 7 3 ; 4 3 7 8 ; 1 5 8 4 ; 1 2 6 5 ; 5 6 7 8] ;
524 for k = 1 : nelz
525 z = (k−1)∗hz ;
526 for i = 1 : nelx
527 xplot = (i−1)∗hx ;
528 for j = 1 : nely
529 y = nely∗hy − (j−1)∗hy ;
530 if (xF (j , i , k) > 0 . 5) % User-defined display density

threshold
531 vert = [xplot y z ; xplot y−hx z ; xplot+hx y−hx z ;

xplot+hx y z ; xplot y z+hx ; xplot y−hx z+hx ; xplot+
hx y−hx z+hx ; xplot+hx y z+hx] ;

532 vert (: , [2 3]) = vert (: , [3 2]) ; vert (: , 2 , :) = −vert
(: , 2 , :) ;

533 patch (’Faces’ ,face , ’Vertices’ ,vert , ’FaceColor’
, [0 .2+0.8∗(1− xF (j , i , k)) ,0.2+0.8∗(1−xF (j , i , k))
,0.2+0.8∗(1−xF (j , i , k))]) ;

534 hold on ;
535 end
536 end
537 end
538 end
539 axis equal ; axis tight ;
540 set (gca , ’XTick’ , [] , ’YTick’ , [] , ’ZTick’ , [] , ’XTicklabel’ , [] , . . .
541 ’YTicklabel’ , [] , ’ZTicklabel’ , [] , ’xcolor’ ,’w’ ,’ycolor’ ,’w’ ,’zcolor

’ ,’w’)
542 view ([3 0 , 3 0]) ;
543 xlabel (sprintf (’c = %.2f’ ,c (iter)) , ’Color’ ,’k’)
544 drawnow ;
545 hold on
546 % Plot coloured dots for constraints
547 for i = 1 : length (fix)
548 nplotx = ceil (fix (i) /(3∗ (ny+1))) ;

Master of Science Thesis Stefan Broxterman

168 Matlab Codes

549 while nplotx > (nx+1)
550 nplotx = nplotx −(nx+1) ;
551 end
552 npx (i) = nplotx−1;
553 nplot = ceil (fix (i) /3) ;
554 while nplot > (ny+1)
555 nplot = nplot−(ny+1) ;
556 end
557 npy (i) = nplot−1;
558 npz (i) = 1−ceil (fix (i) /(3∗ (nx+1)∗(ny+1))) ;
559 end
560 plot3 (npx , npz , npy , ’r.’ ,’MarkerSize’ , 20)
561 % Plot coloured dots for force application
562 for i = 1 : length (Fe)
563 nplotx = ceil (Fe (i) /(3∗ (ny+1))) ;
564 while nplotx > (nx+1)
565 nplotx = nplotx −(nx+1) ;
566 end
567 npfx (i) = nplotx−1;
568 nplot = ceil (Fe (i) /3) ;
569 while nplot > (ny)
570 nplot = nplot−(ny+1) ;
571 end
572 npfy (i) = nplot ;
573 npfz (i) = 1−ceil (Fe (i) /(3∗ (nx+1)∗(ny+1))) ;
574 end
575 plot3 (npfx , npfz , npfy , ’g.’ ,’MarkerSize’ , 20)
576 % Plot compliance plot
577 figure (1)
578 subplot (2 , 1 , 2)
579 plot (c (1 : iter))
580 xaxmax = c (iter) ;
581 yaxmax = max (c) ;
582 yaxmin = min (c (1 : iter)) ;
583 ylim ([0 . 9 5 ∗ yaxmin yaxmax])
584 xlim ([0 iter+10])
585 end
586 toc % stop timer

Stefan Broxterman Master of Science Thesis

B.5 ADVANCED 3D.m 169

B.5 ADVANCED 3D.m

By the inspiration of the ADVANCED (B.2) for 2D-problems, an 3D-adapted code is made
available. The changes are quite big, so it’s recommended to just run this new file, instead of
writing an add-in code.
By the introduction of this code, it can be very interesting to vary the number of discretization
of the lateral elements and see how it behaves.

1 %%
2 % %
3 % Topology Optimization Using Matlab %
4 % ADVANCED3D.m %
5 % %
6 % Delft University of Technology , Department PME %
7 % Master of Science Thesis Project %
8 % %
9 % Stefan Broxterman %

10 % %
11 %%
12 clc ; clf ; close all ; clear X ; clear prog ;
13 %% DEFINE OPTIMIZATION VARIABLES
14 var = 6 ; % [1 = mesh, 2 = penalty , 3 = filter radius , 4 =

volume fraction , 5 = filter method , 6 = evolution]
15 nxvec = [30 , 6 0 , 9 0 , 1 2 0] ; % horizontal elements vector
16 nyvec = [10 , 2 0 , 3 0 , 4 0] ; % vertical elements vector
17 nzvec = [1 , 2 , 3 , 5] ; % lateral elements vector
18 volvec = [0 . 2 0 .35 0 .5 0 . 6 5] ; % volume fraction vector
19 rminvec = [1 , 1 . 2 5 , 1 . 5 , 3] ; % filter size vector
20 penvec = [1 , 2 , 3 , 5] ; % penalty vector
21 filvec = [0 , 1 , 2] ; % filter vector
22 evolvec = [0 . 0 5 , 0 . 25 , 0 . 5 , 1] ; % evolution fraction vector
23 %% SET DEFAULT VALUES
24 nx = nxvec (1) ; % default number of horizontal elements
25 ny = nyvec (1) ; % default number of vertical elements
26 nz = nzvec (3) ; % default number of lateral elements
27 vol = volvec (3) ; % default number of volume fraction
28 pen = penvec (3) ; % default penalty
29 rmin = rminvec (3) ; % default filter radius
30 fil = filvec (1) ; % default filter method
31 q = 1 ; % gray-scale parameter
32 qmax = 2 ; % maximum gray-scale parameter
33 %% SET OPTIMIZATION VALUES
34 ex = [30 , 6 0 , 9 0 , 1 2 0] ; % vector size for pre-allocating space
35 figend = 4 ; % set total of varying values
36 label = [’a’ ,’b’ ,’c’ ,’d’ ,’e’] ; % graphic label
37 %% PRE-ALLOCATE SPACE
38 loops = zeros (1 , size (ex , 2)) ; % initial loops matrix
39 obj = zeros (1 , size (ex , 2)) ; % initial ojective matrix
40 t = zeros (1 , size (ex , 2)) ; % initial time matrix
41 Y = zeros (size (ex , 2) , 5) ; % initial results matrix
42 if var == 6 % for evolution scheme , BasicK.m only needs to

...

Master of Science Thesis Stefan Broxterman

170 Matlab Codes

43 BASIC3D % run one time only
44 end
45 %% START LOOP
46 for fig = 1 : figend % start itertation loop
47 tic ; % start timer
48 if var ~= 6 % for non-evolution scheme , run below
49 clear X ; clear C ; % clear results matrix for each run
50 if var == 1 % differentiation on number of elements
51 nx = nxvec (fig) ; % pick each horizontal value
52 ny = nyvec (fig) ; % pick each vertical value
53 nz = nzvec (fig) ;
54 elseif var == 2 % differentiation on penalty
55 pen = penvec (fig) ; % pick each penalty
56 elseif var == 3 % differentiation on filter radius
57 rmin = rminvec (fig) ; % pick each rmin
58 elseif var == 4 % differentiation on filter method
59 vol = volvec (fig) ; % pick each filter method
60 elseif var == 5 % differentiation on filter method
61 fil = filvec (fig) ; % pick each filter method
62 end
63 BASIC3D % run Basic.m
64 loops (fig) = size (X , 4) ; % number of iterations used
65 obj (fig) = c (iter) ; % store objective function
66 prog = X (: , : , : , loops (fig)) ; % store densities for progression

drawing
67 elseif var == 6 % store compliance for evolution vector
68 loops = size (X , 4) ; % for evolutionary scheme , calculate rounded

...
69 loop (1) = round (evolvec (1) ∗loops) ; % values of loops and store

...
70 loop (2) = round (evolvec (2) ∗loops) ; % this loop number
71 loop (3) = round (evolvec (3) ∗loops) ;
72 loop (4) = round (evolvec (4) ∗loops) ;
73 prog = X (: , : , : , loop) ; % progression picture for each evolution

fraction
74 end
75 %% Set graphics
76 if draw == 1 | | draw == 2 % check for drawing
77 H = get (gcf , ’Position’) ; % get position of figure
78 else
79 H = [680 , 5 58 , 5 60 , 4 20] ; % set size of figure(2) plot windows
80 end
81 H2 = figure (2) ; % plot window for progression pictures
82 set (H2 , ’position’ , [H (1)+H (3) H (2) H (3) H (4)]) ; % place figure(2) next

to (1)
83 %% Draw progression plots
84 subplot (3 , 2 , fig+2) % plot each differentiation
85 if var == 6 % evolution needs different plotting
86 [nely , nelx , nelz] = size (prog (: , : , : , fig)) ;
87 hx = 1 ; hy = 1 ; hz = 1 ; % User-defined unit element

size
88 face = [1 2 3 4 ; 2 6 7 3 ; 4 3 7 8 ; 1 5 8 4 ; 1 2 6 5 ; 5 6 7 8] ;
89 for k = 1 : nelz

Stefan Broxterman Master of Science Thesis

B.5 ADVANCED 3D.m 171

90 z = (k−1)∗hz ;
91 for i = 1 : nelx
92 xplot = (i−1)∗hx ;
93 for j = 1 : nely
94 y = nely∗hy − (j−1)∗hy ;
95 if (prog (j , i , k , fig) > 0 . 5) % User-defined display

density threshold
96 vert = [xplot y z ; xplot y−hx z ; xplot+hx y−hx z ;

xplot+hx y z ; xplot y z+hx ; xplot y−hx z+hx ;
xplot+hx y−hx z+hx ; xplot+hx y z+hx] ;

97 vert (: , [2 3]) = vert (: , [3 2]) ; vert (: , 2 , :) = −
vert (: , 2 , :) ;

98 patch (’Faces’ ,face , ’Vertices’ ,vert , ’FaceColor’
, [0 .2+0.8∗(1− prog (j , i , k , fig)) ,0.2+0.8∗(1−prog (
j , i , k , fig)) ,0.2+0.8∗(1−prog (j , i , k , fig))]) ;

99 hold on ;
100 end
101 end
102 end
103 end
104 else % plot advanced graphs
105 [nely , nelx , nelz] = size (prog) ;
106 hx = 1 ; hy = 1 ; hz = 1 ; % User-defined unit element size
107 face = [1 2 3 4 ; 2 6 7 3 ; 4 3 7 8 ; 1 5 8 4 ; 1 2 6 5 ; 5 6 7 8] ;
108 for k = 1 : nelz
109 z = (k−1)∗hz ;
110 for i = 1 : nelx
111 xplot = (i−1)∗hx ;
112 for j = 1 : nely
113 y = nely∗hy − (j−1)∗hy ;
114 if (prog (j , i , k) > 0 . 5) % User-defined display

density threshold
115 vert = [xplot y z ; xplot y−hx z ; xplot+hx y−hx z ;

xplot+hx y z ; xplot y z+hx ; xplot y−hx z+hx ;
xplot+hx y−hx z+hx ; xplot+hx y z+hx] ;

116 vert (: , [2 3]) = vert (: , [3 2]) ; vert (: , 2 , :) = −
vert (: , 2 , :) ;

117 patch (’Faces’ ,face , ’Vertices’ ,vert , ’FaceColor’
, [0 .2+0.8∗(1− prog (j , i , k)) ,0.2+0.8∗(1−prog (j , i ,
k)) ,0.2+0.8∗(1−prog (j , i , k))]) ;

118 hold on ;
119 end
120 end
121 end
122 end
123 end
124 axis equal ; axis tight ;
125 set (gca , ’XTick’ , [] , ’YTick’ , [] , ’ZTick’ , [] , ’XTicklabel’ , [] , . . .
126 ’YTicklabel’ , [] , ’ZTicklabel’ , [] , ’xcolor’ ,’w’ ,’ycolor’ ,’w’ ,’zcolor

’ ,’w’)
127 view ([3 0 , 3 0]) ;
128 xlabel (sprintf (’c = %.2f’ ,c (iter)) , ’Color’ ,’k’)
129 drawnow ;

Master of Science Thesis Stefan Broxterman

172 Matlab Codes

130 hold on
131 if var == 6 % evolution needs different plotting
132 xlabel (sprintf (’c = %.2f’ ,C (loop (fig))) ,’color’ ,’k’)
133 else
134 xlabel (sprintf (’c = %.2f’ , obj (fig)) , ’color’ ,’k’)
135 end
136 zlabel (sprintf (’%s) ’ , (label (fig+1))) , . . .
137 ’rot’ , 0 , ’color’ ,’k’ ,’FontSize’ , 11)
138 %% Store compliance
139 if var ~= 6 % store compliance for further plotting
140 if fig == 1
141 C1 = C ;
142 elseif fig == 2
143 C2 = C ;
144 elseif fig == 3
145 C3 = C ;
146 elseif fig == 4
147 C4 = C ;
148 end
149 end
150 %% Draw graphics
151 xbox = [0 . 5 nx+0 .5] ;
152 ybox = [0 . 5 ny+0 .5] ;
153 xwidth = xbox (2)−xbox (1) ;
154 ywidth = ybox (2)−ybox (1) ;
155 t (fig) = toc ;
156 %% Output
157 if var ~= 6 % output results for non-evolutionary schemes
158 Y (fig , :) = [fig ex (fig) loops (fig) obj (fig) t (fig)] ;
159 if fig == figend
160 Y
161 end ;
162 end
163 %% Compliance graphs
164 if var ~= 6
165 H3 = figure (3) ;
166 set (H3 , ’position’ , [H (1)−H (3) H (2) H (3) H (4)]) ; % place figure(2)

next to (1)
167 hold on
168 switch fig
169 case 1 % first variable
170 plot (1 : length (C1) ,C1 , ’b:’ ,’LineWidth’ , 2)
171 xaxmax = mean (length (C1)) ;
172 yaxmax = max (max (C1)) ;
173 yaxmin = min (C1) ;
174 if var == 1
175 legend (sprintf (’mesh = %g x %g ’ , nxvec (1) , nyvec (1)))
176 elseif var == 2
177 legend (sprintf (’pen = %g’ , penvec (1)))
178 elseif var == 3
179 legend (sprintf (’Rmin = %g’ , rminvec (1)))
180 elseif var == 4
181 legend (sprintf (’vol = %g’ , volvec (1)))

Stefan Broxterman Master of Science Thesis

B.5 ADVANCED 3D.m 173

182 elseif var == 5
183 legend (sprintf (’filter = Sensitivity’))
184 end
185 case 2 % second variable
186 plot (1 : length (C2) ,C2 , ’r--’ ,’LineWidth’ , 2)
187 xaxmax = mean ([length (C1) length (C2)]) ;
188 yaxmax = max ([max (C1) max (C2)]) ;
189 yaxmin = min (min ([C1 C2])) ;
190 if var == 1
191 legend (sprintf (’mesh = %g x %g’ , nxvec (1) , nyvec (2)) ,

sprintf (’mesh = %g x %g’ , nxvec (2) , nyvec (2)))
192 elseif var == 2
193 legend (sprintf (’pen = %g ’ , penvec (1)) , sprintf (’pen =

%g’ , penvec (2)))
194 elseif var == 3
195 legend (sprintf (’Rmin = %g ’ , rminvec (1)) , sprintf (’Rmin

= %g’ , rminvec (2)))
196 elseif var == 4
197 legend (sprintf (’vol = %g ’ , volvec (1)) , sprintf (’vol =

%g’ , volvec (2)))
198 elseif var == 5
199 legend (sprintf (’filter = Sensitivity’) , sprintf (’

filter = Density’))
200 end
201 case 3 % third variable
202 plot (1 : length (C3) ,C3 , ’k’ ,’LineWidth’ , 2)
203 xaxmax = mean ([length (C1) length (C2) length (C3)]) ;
204 yaxmax = max ([max (C1) max (C2) max (C3)]) ;
205 yaxmin = min (min ([C1 C2 C3])) ;
206 if var == 1
207 legend (sprintf (’mesh = %g x %g’ , nxvec (1) , nyvec (2)) ,

sprintf (’mesh = %g x %g’ , nxvec (2) , nyvec (2)) ,
sprintf (’mesh = %g x %g’ , nxvec (3) , nyvec (3)))

208 elseif var == 2
209 legend (sprintf (’pen = %g ’ , penvec (1)) , sprintf (’pen =

%g’ , penvec (2)) , sprintf (’pen = %g’ , penvec (3)))
210 elseif var == 3
211 legend (sprintf (’Rmin = %g ’ , rminvec (1)) , sprintf (’Rmin

= %g’ , rminvec (2)) , sprintf (’Rmin = %g’ , rminvec (3))
)

212 elseif var == 4
213 legend (sprintf (’vol = %g ’ , volvec (1)) , sprintf (’vol =

%g’ , volvec (2)) , sprintf (’vol = %g’ , volvec (3)))
214 elseif var == 5
215 legend (sprintf (’filter = Sensitivity’) , sprintf (’

filter = Density’) , sprintf (’filter = Heaviside’))
216 end
217 case 4 % fourth variable
218 plot (1 : length (C4) ,C4 , ’g-.’ ,’LineWidth’ , 2)
219 xaxmax = mean ([length (C1) length (C2) length (C3) length (C4

)]) ;
220 yaxmax = max ([max (C1) max (C2) max (C3) max (C4)]) ;
221 yaxmin = min (min ([C1 C2 C3 C4])) ;

Master of Science Thesis Stefan Broxterman

174 Matlab Codes

222 if var == 1
223 legend (sprintf (’mesh = %g x %g’ , nxvec (1) , nyvec (2)) ,

sprintf (’mesh = %g x %g’ , nxvec (2) , nyvec (2)) ,
sprintf (’mesh = %g x %g’ , nxvec (3) , nyvec (3)) ,
sprintf (’mesh = %g x %g’ , nxvec (4) , nyvec (4)))

224 elseif var == 2
225 legend (sprintf (’pen = %g ’ , penvec (1)) , sprintf (’pen =

%g’ , penvec (2)) , sprintf (’pen = %g’ , penvec (3)) ,
sprintf (’pen = %g’ , penvec (4)))

226 elseif var == 3
227 legend (sprintf (’Rmin = %g ’ , rminvec (1)) , sprintf (’Rmin

= %g’ , rminvec (2)) , sprintf (’Rmin = %g’ , rminvec (3))
, sprintf (’Rmin = %g’ , rminvec (4)))

228 elseif var == 4
229 legend (sprintf (’vol = %g ’ , volvec (1)) , sprintf (’vol =

%g’ , volvec (2)) , sprintf (’vol = %g’ , volvec (3)) ,
sprintf (’vol = %g’ , volvec (4)))

230 end
231 end
232 xlabel (’Number of iterations’)
233 ylabel (’Compliance’)
234 if exist (’pcon’ ,’var’) == 0 ,
235 yaxmax = mean ([yaxmin yaxmax]) ;
236 elseif pcon == 0
237 yaxmax = mean ([yaxmin yaxmax]) ;
238 end
239 axis ([0 xaxmax 0 .95∗ yaxmin yaxmax])
240 elseif var == 6
241 H3 = figure (3) ;
242 set (H3 , ’position’ , [H (1)−H (3) H (2) H (3) H (4)]) ; % place figure(2)

next to (1)
243 hold on
244 plot (C)
245 xlabel (’Number of iterations’)
246 ylabel (’Compliance’)
247 axis ([0 length (C) 0 .9∗ min (C) max (C)])
248 end
249 end
250 %% STORE RESULTS
251 disp (’Y = i, penalty , loops , objective , time’)
252 if var == 1 % mesh refinement
253 Ymesh = Y ; % store result matrix
254 save (’MeshRefinementY.mat’ ,’Y’) ;
255 elseif var == 2 % penalty
256 Ypenal = Y ; % store result matrix
257 save (’PenaltyY.mat’ ,’Y’) ;
258 elseif var == 3 % filter radius
259 Yfilter = Y ; % store result matrix
260 save (’FilterY.mat’ ,’Y’) ;
261 elseif var == 4 % volume fraction
262 Yvolume = Y ; % store result matrix
263 save (’VolumeY.mat’ ,’Y’) ;
264 end

Stefan Broxterman Master of Science Thesis

B.5 ADVANCED 3D.m 175

265 %% DRAW DESIGN PROBLEM
266 figure (2)
267 subplot (3 , 2 , (1 : 2)) % plot the initial mechanical problem
268 rectangle (’Position’ , [xbox (1) , ybox (1) , xwidth , ywidth] , . . .
269 ’FaceColor’ , [0 . 5 0 . 5 0 . 5])
270 axis equal ; axis tight ;
271 set (gca , ’XTick’ , [] , ’YTick’ , [] , ’XTicklabel’ , [] , . . .
272 ’YTicklabel’ , [] , ’xcolor’ ,’w’ ,’ycolor’ ,’w’)
273 ylabel (sprintf (’%s) ’ , (label (1))) ,’rot’ , 0 , ’color’ ,’k’ ,’FontSize’ , 11)
274 draw_arrow ([xbox (2) ybox (1)] , [xbox (2) −0.25∗ywidth] , 1)
275 rectangle (’Position’ , [−0.1∗ xwidth , ybox (1) −0.1∗ywidth , . . .
276 0 .1∗ xwidth , 1 . 2 ∗ ywidth] , ’FaceColor’ , [0 0 0] , ’LineWidth’ , 3)

Master of Science Thesis Stefan Broxterman

176 Matlab Codes

B.6 BASIC COMPLIANT MECHANISMS.m

In this section, the complete code of producing a micro-gripper is made available. Using the
predefined discretization, a void region is declared as restrictive region, to allow a gripper
mechanism. Using this boundary condition, the design problem of Figure 3-12a can be cal-
culated. Displacement field is plotted on the go.

1 %%
2 % %
3 % Topology Optimization Using Matlab %
4 % BASIC_COMPLIANCE.m %
5 % %
6 % Delft University of Technology , Department PME %
7 % Master of Science Thesis Project %
8 % %
9 % Stefan Broxterman %

10 % %
11 %%
12 %
13 tic % start timer
14 %% DEFINE PARAMETERS
15 adv = 0 ; % use advanced function [0 = off, 1 = on]
16 if adv == 0 % define parameters at behalf of the advanced

function
17 nx = 120 ; % numer of elements horizontal
18 ny = 60 ; % number of elements vertical
19 vol = 0 . 2 ; % volume fraction [0-1]
20 pen = 4 ; % penalty
21 rmin = 1 . 4 ; % filter size
22 fil = 1 ; % filter method [0 = sensitivity filtering , 1 =

density filtering , 2 = heaviside filtering]
23 clc ; clf ; close all ; clear X ;
24 end
25 %% DEFINE SOLUTION METHOD
26 sol = 0 ; % solution method [0 = oc(sens), 1 = mma]
27 pcon = 1 ; % use continuation method [0 = off, 1 = on]
28 %% DEFINE CALCULATION
29 tol = 0 . 0 1 ; % tolerance for convergence criterion [0.01]
30 move = 0 . 1 ; % move limit for lagrange [0.2]
31 pcinc = 1 . 0 3 ; % penalty continuation increasing factor [1.03]
32 piter = 20 ; % number of iteration for starting penalty [20]
33 miter = 1000 ; % maximum number of iterations [1000]
34 sym = 2 ; % symmetry [0 = off, 1 = x-axis, 2 = y-axis]
35 def = 1 ; % plot deformations [0 = off, 1 = on]
36 %% DEFINE OUTPUT
37 draw = 1 ; % plot iterations [0 = off, 1 = on]
38 dis = 1 ; % display iterations [0 = off, 1 = on]
39 %% DEFINE MATERIAL
40 E = 1 ; % young ’s modulus of solid [1]
41 Emin = 1e−9; % young ’s modulus of void [1e-9]
42 nu = 0 . 3 ; % poisson ratio [0.3]

Stefan Broxterman Master of Science Thesis

B.6 BASIC COMPLIANT MECHANISMS.m 177

43 rho = 0e−3; % density [0e-3]
44 g = 9 . 8 1 ; % gravitational acceleration [9.81]
45 Kin = 0.01 ; % spring stiffness at input force [5e-4]
46 Kout = 0 . 0 1 ; % spring stiffness at output force [5e-4]
47 %% DEFINE FORCE
48 Uin = 2∗(ny+1)−1; % input force node
49 Uout = 2∗(nx+1)∗(ny+1)−round ((2/6) ∗ny)−2; % output force
50 Fe = [Uin Uout] ; % element of force application [Uin Uout]
51 Fn = [1 2] ; % number of applied force locations [1 2]
52 Fv = [1 −1]; % value of applied force [1 -1]
53 %% DEFINE SUPPORTS
54 fix = [1 : 4 (Uin+1) : 2∗ (ny+1) : round ((5/6) ∗(Uout+1))] ; % create symmetry
55 %% DEFINE ELEMENT RESTRICTIONS
56 shap = 1 ; % [0 = no restrictions , 1 = circle , 2 = custom]
57 area = 0 ; % [0 = no material (passive), 1 = material (

active)]
58 nodr = (round (ny /2) +(0:ny : (nx−1)∗ny)) ; % custom restricted nodes
59 %% PREPARE FINITE ELEMENT
60 N = 2∗(nx+1)∗(ny+1) ; % total element nodes
61 all = 1 :2∗ (nx+1)∗(ny+1) ; % all degrees of freedom
62 free = setdiff (all , fix) ; % free degrees of freedom
63 A11 = [12 3 −6 −3; 3 12 3 0 ; −6 3 12 −3; −3 0 −3 1 2] ; % fem
64 A12 = [−6 −3 0 3 ; −3 −6 −3 −6; 0 −3 −6 3 ; 3 −6 3 −6]; % fem
65 B11 = [−4 3 −2 9 ; 3 −4 −9 4 ; −2 −9 −4 −3; 9 4 −3 −4]; % fem
66 B12 = [2 −3 4 −9; −3 2 9 −2; 4 9 2 3 ; −9 −2 3 2] ; % fem
67 Ke = 1/(1−nu^2) /24∗ ([A11 A12 ; A12 ’ A11]+nu ∗ [B11 B12 ; B12 ’ B11]) ; % element

stiffness matrix
68 nodes = reshape (1 : (nx+1)∗(ny+1) ,1+ny ,1+nx) ; % create node numer matrix
69 dofvec = reshape (2∗ nodes (1 : end−1 ,1:end−1)+1,nx∗ny , 1) ; % create dof vector
70 dofmat = repmat (dofvec , 1 , 8)+repmat ([0 1 2∗ny+[2 3 0 1] −2 −1] ,nx∗ny , 1) ; %

create dof matrix
71 iK = reshape (kron (dofmat , ones (8 , 1)) ’ ,64∗ nx∗ny , 1) ; % build sparse i
72 jK = reshape (kron (dofmat , ones (1 , 8)) ’ ,64∗ nx∗ny , 1) ; % build sparse j
73 %% PREPARE FILTER
74 iH = ones (nx∗ny ∗ (2∗ (ceil (rmin)−1)+1)^2 ,1) ; % build sparse i
75 jH = ones (size (iH)) ; % create sparse vector of ones
76 kH = zeros (size (iH)) ; % create sparse vector of zeros
77 m = 0 ; % index for filtering
78 for i = 1 : nx % for each element calculate distance between ...
79 for j = 1 : ny % elements ’ center for filtering
80 r1 = (i−1)∗ny+j ; % sparse value i
81 for k = max (i−(ceil (rmin)−1) ,1) : min (i+(ceil (rmin)−1) , nx) %

center of element
82 for l = max (j−(ceil (rmin)−1) ,1) : min (j+(ceil (rmin)−1) , ny) %

center of element
83 r2 = (k−1)∗ny+l ; % sparse value 2
84 m = m+1; % update index for filtering
85 iH (m) = r1 ; % sparse vector for filtering
86 jH (m) = r2 ; % sparse vector for filtering
87 kH (m) = max (0 , rmin−sqrt ((i−k)^2+(j−l) ^2)) ; % weight

factor
88 end
89 end

Master of Science Thesis Stefan Broxterman

178 Matlab Codes

90 end
91 end
92 H = sparse (iH , jH , kH) ; % build filter
93 Hs = sum (H , 2) ; % summation of filter
94 %% DEFINE ELEMENT RESTRICTIONS
95 x = repmat (vol , ny , nx) ; % initial material distribution
96 if shap == 0 % no restrictions
97 efree = (1 : nx∗ny) ’ ; % all elements are free
98 eres= [] ; % no restricted elements
99 elseif shap == 1 % restrictions

100 rest = zeros (ny , nx) ; % pre-allocate space
101 % for i = 1:nx % start loop
102 % for j = 1:ny % for each element
103 % if sqrt((j-ny/2)^2+(i-nx/4)^2) < ny/2.5 % circular

restriction
104 % rest(j,i) = 1; % write restriction
105 % if rest(j,i) == area % check for restriction
106 % x(j,i) = area; % store restrictions in material

distribution
107 % end
108 % end
109 % end
110 % end
111 for i = round ((5/6) ∗nx) : nx
112 for j = round ((5/6) ∗ny) : ny
113 rest (j , i) = area ;
114 x (j , i) = area ;
115 end
116 end
117 efree = find (rest ~= 1) ; % set free elements
118 eres = find (rest == 1) ; % set restricted ellements
119 end
120 if fil == 0 | | fil == 1 % sensitivity , density filter
121 xF = x ; % set filtered design variables
122 elseif fil == 2 % heaviside filter
123 beta = 1 ; % hs filter
124 xTilde = x ; % hs filter
125 xF = 1−exp(−beta∗xTilde)+xTilde∗exp(−beta) ; % set filtered design

space
126 end
127 xFree = xF (efree) ; % define free design matrix
128 %% DEFINE STRUCTURAL
129 Fsiz = size (Fe , 2) ; % size of load vector
130 F = sparse (Fe , Fn , Fv , N , Fsiz) ; % define load vector
131 %% DEFINE MMA PARAMETERS
132 m = 1 ; % number of constraint functions
133 n = size (xFree (:) , 1) ; % number of variables
134 xmin = zeros (n , 1) ; % minimum values of x
135 xmax = ones (n , 1) ; % maximum values of x
136 xold1 = zeros (n , 1) ; % previous x, to monitor convergence
137 xold2 = xold1 ; % used by mma to monitor convergence
138 df0dx2 = zeros (n , 1) ; % second derivative of the objective function
139 dfdx2 = zeros (1 , n) ; % second derivative of the constraint function

Stefan Broxterman Master of Science Thesis

B.6 BASIC COMPLIANT MECHANISMS.m 179

140 low = xmin ; % lower asymptotes from the previous iteration
141 upp = xmax ; % upper asymptotes from the previous iteration
142 a0 = 1 ; % constant a_0 in mma formulation
143 a = zeros (m , 1) ; % constant a_i in mma formulation
144 cmma = 1e3∗ones (m , 1) ; % constant c_i in mma formulation
145 d = zeros (m , 1) ; % constant d_i in mma formulation
146 subs = 200 ; % maximum number of subsolv iterations
147 %% PRE-ALLOCATE SPACE
148 npx = zeros (length (fix) , 1) ’ ; % pre-allocate constraint dots
149 npy = zeros (length (fix) , 1) ’ ; % pre-allocate constraint dots
150 npfx = zeros (length (Fe) , 1) ’ ; % pre-allocate force dots
151 npfy = zeros (length (Fe) , 1) ’ ; % pre-allocate force dots
152 U = zeros (size (F)) ; % pre-allocate space displacement
153 c = zeros (miter , 1) ; % pre-allocate objective vector
154 %% INITIALIZE LOOP
155 iter = 0 ; % initialize loop
156 diff = 1 ; % initialize convergence criterion
157 loopbeta = 1 ; % initialize beta-loop
158 %% START LOOP
159 while ((diff > tol) | | (iter < piter+1)) && iter < miter % convergence

criterion not met
160 loopbeta = loopbeta +1; % iteration loop for hs filter
161 iter = iter+1; % define iteration
162 if pcon == 1 % use continuation method
163 if iter <= piter % first number of iterations...
164 p = 1 ; %... set penalty 1
165 elseif iter > piter % after a number of iterations...
166 p = min (pen , pcinc∗p) ; % ... set continuation penalty
167 end
168 elseif pcon == 0 % not using continuation method
169 p = pen ; % set penalty
170 end
171 %% Selfweight
172 if rho ~= 0 % gravity is involved
173 xP=zeros (ny , nx) ; % pre-allocate space
174 xP (xF>0.25) = xF (xF>0.25) .^ p ; % normal penalization
175 xP (xF<=0.25) = xF (xF<=0.25) . ∗ (0 . 2 5^ (p−1)) ; % below pseudo -density
176 Fsw = zeros (N , 1) ; % pre-allocate self-weight
177 for i=1:nx∗ny % for each element , set gravitational...
178 Fsw (dofmat (i , 2 : 2 : end))=Fsw (dofmat (i , 2 : 2 : end))−xF (i) ∗rho

∗9 . 81/4 ;
179 end % force to the attached nodes
180 Fsw=repmat (Fsw , 1 , size (F , 2)) ; % set self-weight for load cases
181 elseif rho == 0 % no gravity
182 xP = xF .^ p ; % penalized design variable
183 Fsw = 0 ; % no selfweight
184 end
185 Ftot = F + Fsw ; % total force
186 %% Finite element analysis
187 kK = reshape (Ke (:) ∗(Emin+xP (:) ’∗ (E−Emin)) ,64∗nx∗ny , 1) ; % create

sparse vector k
188 K = sparse (iK , jK , kK) ; % combine sparse vectors
189 K = (K+K ’) /2 ; % build stiffness matrix

Master of Science Thesis Stefan Broxterman

180 Matlab Codes

190 K (Uin , Uin) = K (Uin , Uin) + Kin ; % add input spring stiffness
191 K (Uout , Uout) = K (Uout , Uout) + Kout ; % add output spring stiffness
192 U (free , :) = K (free , free) \Ftot (free , :) ; % displacement solving
193 c (iter) = 0 ; % set compliance to zero
194 %% Calculate compliance and sensitivity
195 U1 = U (: , 1) ; U2 = U (: , 2) ;
196 c0 = reshape (sum ((U1 (dofmat) ∗Ke) .∗ U2 (dofmat) , 2) ,ny , nx) ;
197 c (iter) = U (Uout , 1) ;
198 Sens = p∗(E−Emin) ∗xF . ^ (p−1) .∗ c0 ;
199 Senc = ones (ny , nx) ; % set constraint sensitivity
200 if fil == 0 % optimality criterion with sensitivity filter
201 Sens (:) = H∗(x (:) .∗ Sens (:)) . / Hs . / max (1e−3,x (:)) ; % update

filtered sensitivity
202 elseif fil == 1 % optimality criterion with density filter
203 Sens (:) = H∗(Sens (:) . / Hs) ; % update filtered sensitivity
204 Senc (:) = H∗(Senc (:) . / Hs) ; % update filtered sensitivity of

constraint
205 elseif fil == 2 % optimality criterion with heaviside filter
206 dx = beta∗exp(−beta∗xTilde)+exp(−beta) ; % update hs parameter
207 Sens (:) = H∗(Sens (:) .∗ dx (:) . / Hs) ; % update filtered sensitivity
208 Senc (:) = H∗(Senc (:) .∗ dx (:) . / Hs) ; % update filtered sensitivity

of constraint
209 end
210 %% Update design variables Optimality Criterion
211 if sol == 0 % use optimality criterion method
212 l1 = 0 ; % initial lower bound for lagranian mulitplier
213 l2 = 1e9 ; % initial upper bound for lagranian multiplier
214 while (l2−l1) /(l1+l2) > 1e−4 && l2 > 1e−40; % start loop
215 lag = 0 .5∗ (l1+l2) ; % average of lagranian interval
216 xnew = max (0 , max (x−move , min (1 , min (x+move , x . ∗ (max (1e−10,−Sens

. / lag)) . ^ 0 . 3)))) ; % update element densities
217 if fil == 0 % sensitivity filter
218 xF = xnew ; % updated result
219 elseif fil == 1 % density filter
220 xF (:) = (H∗xnew (:)) . / Hs ; % updated filtered density

result
221 elseif fil == 2 % heaviside filter
222 xTilde (:)= (H∗xnew (:)) . / Hs ; % set filtered density
223 xF (:) =1−exp(−beta∗xTilde)+xTilde∗exp(−beta) ; % updated

result
224 end
225 if shap == 1 % restriction is on
226 xF (rest==1) = area ; % set restricted area
227 end
228 if sum (xF (:)) > vol∗nx∗ny ; % check for optimum
229 l1 = lag ; % update lower bound to average
230 else
231 l2 = lag ; % update upper bound to average
232 end
233 end
234 %% Method of moving asymptotes
235 elseif sol == 1 % use mma solver
236 xval = xFree (:) ; % store current design variable for mma

Stefan Broxterman Master of Science Thesis

B.6 BASIC COMPLIANT MECHANISMS.m 181

237 if iter == 1 % for the first iteration...
238 cscale = 1/c (iter) ; % ...set scaling factor for mma solver
239 end
240 f0 = c (iter) ∗cscale ; % objective at current design variable for

mma
241 df0dx = Sens (efree) ∗cscale ; % store sensitivity for mma
242 f = (sum (xF (:)) /(vol∗nx∗ny)−1) ; % normalized constraint function
243 dfdx = Senc (efree) ’ / (vol∗ny∗nx) ; % derivative of the constraint

function
244 [xmma , ~ ,~ ,~ ,~ ,~ ,~ ,~ ,~ , low , upp] = . . .
245 mmasub (m , n , iter , xval , xmin , xmax , xold1 , xold2 , . . .
246 f0 , df0dx , df0dx2 , f , dfdx , dfdx2 , low , upp , a0 , a , cmma , d , subs) ; % mma

solver
247 xold2 = xold1 ; % used by mma to monitor convergence
248 xold1 = xFree (:) ; % previous x, to monitor convergence
249 xnew = xF ; % update result
250 xnew (efree) = xmma ; % include restricted elements
251 xnew = reshape (xnew , ny , nx) ; % reshape xmma vector to original

size
252 if fil == 0 % sensitivity filter
253 xF = xnew ; % update design variables
254 elseif fil == 1 % density filter
255 xF (:) = (H∗xnew (:)) . / Hs ; % update filtered densities result
256 elseif fil == 2 % heaviside filter
257 xTilde (:)= (H∗xnew (:)) . / Hs ; % filtered result
258 xF (:)=1−exp(−beta∗xTilde)+xTilde∗exp(−beta) ; % update design

variable
259 end
260 if shap == 1 % if restrictions enableed
261 xF (rest==1) = area ; % set restricted area
262 end
263
264 end
265 xFree = xnew (efree) ; % set non-restricted area
266 diff = max (abs (xnew (:)−x (:))) ; % difference of maximum element change
267 x = xnew ; % update design variable
268 if fil == 2 && beta < 512 && pen == p (end) && (loopbeta >= 50 | | diff

<= tol) % hs filter
269 beta = 2∗beta ; % increase beta-factor
270 fprintf (’beta now is %3.0f\n’ , beta) % display increase of b-

factor
271 loopbeta = 0 ; % set hs filter loop to zero
272 diff = 1 ; % set convergence to initial value
273 end
274 %% Store results into database X
275 X (: , : , iter) = xF ; % each element value x is stored for each

iteration
276 C (iter) = c (iter) ; % each compliance is stored for each iteration
277 assignin (’base’ , ’X’ , X) ; % each iteration (3rd dimension)
278 assignin (’base’ , ’C’ , C) ; % each iteration (3rd dimension)
279 %% Results
280 if dis == 1 % display iterations

Master of Science Thesis Stefan Broxterman

182 Matlab Codes

281 disp ([’ Iter:’ sprintf (’%4i’ , iter) ’ Uin:’ sprintf (’%6.2f’ ,U (Uin)
) . . .

282 ’ Uout:’ sprintf (’%6.2f’ ,c (iter)) ’ Con:’ sprintf (’%6.2f’ ,
diff) ’ Vol:’ sprintf (’%6.2f’ , mean (xF (:))) ’ Diff:’
sprintf (’%6.3f’ , diff)]) ;

283 end
284 if draw == 1 % plot iterations
285 figure (1)
286 subplot (2 , 1 , 1)
287 colormap (gray) ; imagesc(1−xF) ;
288 set (gca , ’XTick’ , [] , ’YTick’ , [] , ’XTicklabel’ , [] , . . .
289 ’YTicklabel’ , [] , ’xcolor’ ,’w’ ,’ycolor’ ,’w’)
290 xlabel (sprintf (’c = %.2f’ ,c (iter)) ,’Color’ ,’k’)
291 drawnow ;
292 hold on
293 if iter == 1
294 axis equal ; axis tight ;
295 % Plot coloured dots for constraints
296 for i = 1 : length (fix)
297 npx (i) = ceil (fix (i) /(2∗ (ny+1))) −0.5;
298 nplot = ceil (fix (i) /2) ;
299 while nplot > (ny+1)
300 nplot = nplot−(ny+1) ;
301 end
302 npy (i) = nplot−0.5 ;
303 end
304 plot (npx , npy , ’r.’ ,’MarkerSize’ , 20)
305 % Plot coloured dots for force application
306 for i = 1 : length (Fe)
307 npfx (i) = ceil (Fe (i) /(2∗ (ny+1))) −0.5;
308 nplot = ceil (Fe (i) /2) ;
309 while nplot > (ny+1)
310 nplot = nplot−(ny+1) ;
311 end
312 npfy (i) = nplot−0.5 ;
313 end
314 plot (npfx , npfy , ’g.’ ,’MarkerSize’ , 20)
315 end
316 % Plot compliance plot
317 figure (1)
318 subplot (2 , 1 , 2)
319 plot (c (1 : iter))
320 xaxmax = c (iter) ;
321 yaxmax = max (c) ;
322 yaxmin = min (c (1 : iter)) ;
323 if pcon == 0
324 yaxmax = mean ([yaxmin yaxmax]) ;
325 end
326 ylim ([0 . 9 5 ∗ yaxmin yaxmax])
327 xlim ([0 iter+10])
328 figure (2)
329 if sym ~= 0 % apply symmetry
330 if sym == 1 % symmetry around x-axis

Stefan Broxterman Master of Science Thesis

B.6 BASIC COMPLIANT MECHANISMS.m 183

331 xFlip = fliplr (xF) ;
332 xFliplot = [xFlip xF] ;
333 end
334 if sym == 2 % symmetry around y-axis
335 xFlip = flip (xF) ;
336 xFliplot = [xF ; xFlip] ;
337 end
338 colormap gray
339 imagesc(1−xFliplot)
340 axis equal
341 axis off
342 end
343 end
344 end
345 %% ONLY DISPLAY FINAL RESULT
346 if dis == 0 % display final result
347 disp ([’ Iter:’ sprintf (’%4i’ , iter) ’ Uin:’ sprintf (’%6.2f’ ,U (Uin))

. . .
348 ’ Uout:’ sprintf (’%6.2f’ ,c (iter)) ’ Con:’ sprintf (’%6.2f’ , diff) ’

Vol:’ sprintf (’%6.2f’ , mean (xF (:))) ’ Diff:’ sprintf (’%6.3f’ ,
diff)]) ;

349 end
350 if draw == 0 % plot final result
351 figure (1)
352 subplot (2 , 1 , 1)
353 colormap (gray) ; imagesc(1−xF) ;
354 axis equal ; axis tight ;
355 set (gca , ’XTick’ , [] , ’YTick’ , [] , ’XTicklabel’ , [] , . . .
356 ’YTicklabel’ , [] , ’xcolor’ ,’w’ ,’ycolor’ ,’w’)
357 xlabel (sprintf (’c = %.2f’ ,c (iter)) , ’Color’ ,’k’)
358 drawnow ;
359 hold on
360 %% Plot coloured dots for constraints
361 for i = 1 : length (fix)
362 npx (i) = ceil (fix (i) /(2∗ (ny+1))) −0.5;
363 nplot = ceil (fix (i) /2) ;
364 while nplot > (ny+1)
365 nplot = nplot−(ny+1) ;
366 end
367 npy (i) = nplot−0.5 ;
368 end
369 plot (npx , npy , ’r.’ ,’MarkerSize’ , 20)
370 %% Plot coloured dots for force application
371 for i = 1 : length (Fe)
372 npfx (i) = ceil (Fe (i) /(2∗ (ny+1))) −0.5;
373 nplot = ceil (Fe (i) /2) ;
374 while nplot > (ny+1)
375 nplot = nplot−(ny+1) ;
376 end
377 npfy (i) = nplot−0.5 ;
378 end
379 plot (npfx , npfy , ’g.’ ,’MarkerSize’ , 20)
380 %% Plot compliance plot

Master of Science Thesis Stefan Broxterman

184 Matlab Codes

381 if adv == 0
382 figure (1)
383 subplot (2 , 1 , 2)
384 plot (c (1 : iter))
385 xaxmax = c (iter) ;
386 yaxmax = max (c) ;
387 yaxmin = min (c (1 : iter)) ;
388 if pcon == 0
389 yaxmax = mean ([yaxmin yaxmax]) ;
390 end
391 ylim ([0 . 9 5 ∗ yaxmin yaxmax])
392 xlim ([0 iter+10])
393 end
394 figure (2)
395 if sym ~= 0 % apply symmetry
396 if sym == 1 % symmetry around x-axis
397 xFlip = fliplr (xF) ;
398 xFliplot = [xFlip xF] ;
399 end
400 if sym == 2 % symmetry around y-axis
401 xFlip = flip (xF) ;
402 xFliplot = [xF ; xFlip] ;
403 end
404 colormap gray
405 imagesc(1−xFliplot)
406 axis equal
407 axis off
408 end
409 end
410 %% PLOTTING DISPLACEMENT (COMPLIANT MECHANISMS)
411 if def == 1
412 figure (2)
413 xaxis = get (gca , ’XLim’) ;
414 yaxis = get (gca , ’YLim’) ;
415 figure (3)
416 clear mov
417 colormap (gray) ;
418 Umov = 1 ; % Start movie counter
419 Umax = 0 . 0 5 ; % Define maximum displacement
420 for Udisp = linspace (0 , Umax , 1) ; % Vary input displacement
421 clf
422 for ely = 1 : ny % plot displacements...
423 for elx = 1 : nx % for each element...
424 if xF (ely , elx) > 0 % exclude white regions for plotting

purposes
425 n1 = (ny+1)∗(elx−1)+ely ;
426 n2 = (ny+1)∗ elx +ely ;
427 Ue = −Udisp∗U ([2∗ n1−1;2∗n1 ; 2∗n2−1;2∗n2 ; 2∗n2+1;2∗n2

+2; 2∗n1+1;2∗n1+2] ,1) ;
428 ly = ely−1; lx = elx−1;
429 xx = [Ue (1 , 1)+lx Ue (3 , 1)+lx+1 Ue (5 , 1)+lx+1 Ue (7 , 1)+lx

] ’ ;

Stefan Broxterman Master of Science Thesis

B.6 BASIC COMPLIANT MECHANISMS.m 185

430 yy = [−Ue (2 , 1)−ly −Ue (4 , 1)−ly −Ue (6 , 1)−ly−1 −Ue (8 , 1)−
ly−1] ’ ;

431 patch ([xx xx] , [yy+ny −yy−ny] , [− xF (ely , elx) −xF (ely ,
elx)] , ’LineStyle’ ,’none’) ;

432 end
433 end
434 end
435 xlim (xaxis)
436 ylim (yaxis−ny)
437 drawnow
438 mov (Umov) = getframe (3) ; % movie
439 Umov = Umov +1; % update counter
440 end
441
442 movlip = flip (mov) ; % create symmetry
443 movull = [mov movlip] ; % create symmetry
444 FileName = [’Compliant_’ , datestr (now , ’ddmm_HHMMSS’) , ’.avi’] ; %

dynamic filename
445 movie2avi (movull , FileName , ’compression’ , ’None’ , ’FPS’ , 10) ; % save

video
446 end
447 toc % stop timer

Master of Science Thesis Stefan Broxterman

186 Matlab Codes

B.7 Design of Supports.m

In this section, the complete code of producing bridge examples is available. A distributed
vertical force at the top, and a user-friendly configuration interface can be used to calculate
design of support, including a pre-defined cost distribution. The produced picture in Fig-
ure 4-4 can be made immediately by running this code.

1 %%
2 % %
3 % Topology Optimization Using Matlab %
4 % BRIDGE.m %
5 % %
6 % Delft University of Technology , Department PME %
7 % Master of Science Thesis Project %
8 % %
9 % Stefan Broxterman %

10 % %
11 %%
12 %
13 tic % start timer
14 %% DEFINE PARAMETERS
15 adv = 0 ; % use advanced function [0 = off, 1 = on]
16 if adv == 0 % define parameters at behalf of the advanced

function
17 nx = 80 ; % numer of elements horizontal
18 ny = 40 ; % number of elements vertical
19 vol = 0 . 2 ; % volume fraction [0-1]
20 pen = 3 ; % penalty
21 rmin = 1 . 5 ; % filter size
22 fil = 1 ; % filter method [0 = sensitivity filtering , 1 =

density filtering , 2 = heaviside filtering]
23 clc ; clf ; close all ; clear X ; clear Z ; % clear workspace
24 end
25 %% DEFINE SOLUTION METHOD
26 sol = 1 ; % solution method [0 = oc(sens), 1 = mma]
27 pcon = 0 ; % use continuation method [0 = off, 1 = on]
28 %% DEFINE CALCULATION
29 tol = 0 . 0 1 ; % tolerance for convergence criterion [0.01]
30 move = 0 . 2 ; % move limit for lagrange [0.2]
31 pcinc = 1 . 0 3 ; % penalty continuation increasing factor [1.03]
32 piter = 20 ; % number of iteration for starting penalty [20]
33 miter = 1000 ; % maximum number of iterations [1000]
34 plotiter = 5 ; % gap of iterations used to plot or draw

iterations [5]
35 def = 0 ; % plot deformations [0 = off, 1 = on]
36 zplot = 0 . 9 9 ; % define treshold plotting supports [0.99]
37 %% DEFINE OUTPUT
38 draw = 2 ; % plot iterations [0 = off, 1 = on, 2 = partial]
39 dis = 2 ; % display iterations [0 = off, 1 = on, 2 =

partial]
40 %% DEFINE MATERIAL

Stefan Broxterman Master of Science Thesis

B.7 Design of Supports.m 187

41 E = 1 ; % young ’s modulus of solid [1]
42 Emin = 1e−9; % young ’s modulus of void [1e-9]
43 nu = 0 . 3 ; % poisson ratio [0.3]
44 rho = 0e−3; % density [0e-3]
45 g = 9 . 8 1 ; % gravitational acceleration [9.81]
46 %% DEFINE FORCE
47 Fe = 2 :2∗ (ny+1) : 2∗ (ny+1)∗(nx+1) ; % element of force application [2:2*(ny

+1):2*(ny+1)*(nx+1)]
48 Fn = 1 ; % number of applied force locations [1]
49 Fv = −1; % value of applied force [-1]
50 %% DEFINE SUPPORTS
51 fix = [1 : 2 2∗(ny+1)∗nx+(1:2)] ; % define fixed locations [1:2 2*(ny+1)*nx

+(1:2)]
52 %% DEFINE DESIGN OF SUPPORTS
53 supp = [1 : ny (1 : ny)+(nx−1)∗ny ny : ny : nx∗ny] ; % support area [1:ny (1:ny)+(

nx-1)*ny ny:ny:nx*ny]
54 supp = unique (supp) ; % create unique support area
55 zvol = 0 . 2 ; % maximum support area [0.2]
56 cost = 1 ; % set maximum cost of supports [1]
57 k0 = 0 . 0 1 ; % spring stiffness for support stiffness [0.01]
58 q = 5 ; % penalty for support design [3]
59 zmin = 1e−4; % minimum support design variable [1e-4]
60 dist = 2 ; % cost distribution [0 = off, 1 = x-distributed ,

2 = y-distribution]
61 %% DEFINE ELEMENT RESTRICTIONS
62 shap = 2 ; % [0 = no restrictions , 1 = circle , 2 = custom]
63 area = 1 ; % [0 = no material (passive), 1 = material (

active)]
64 nodr = [1 : ny : nx∗ny 2 : ny : nx∗ny] ; % custom restricted nodes [1:ny:nx*ny]
65 %% PREPARE FINITE ELEMENT
66 N = 2∗(nx+1)∗(ny+1) ; % total element nodes
67 all = 1 :2∗ (nx+1)∗(ny+1) ; % all degrees of freedom
68 free = setdiff (all , fix) ; % free degrees of freedom
69 A11 = [12 3 −6 −3; 3 12 3 0 ; −6 3 12 −3; −3 0 −3 1 2] ; % fem
70 A12 = [−6 −3 0 3 ; −3 −6 −3 −6; 0 −3 −6 3 ; 3 −6 3 −6]; % fem
71 B11 = [−4 3 −2 9 ; 3 −4 −9 4 ; −2 −9 −4 −3; 9 4 −3 −4]; % fem
72 B12 = [2 −3 4 −9; −3 2 9 −2; 4 9 2 3 ; −9 −2 3 2] ; % fem
73 Ke = 1/(1−nu^2) /24∗ ([A11 A12 ; A12 ’ A11]+nu ∗ [B11 B12 ; B12 ’ B11]) ; % element

stiffness matrix
74 nodes = reshape (1 : (nx+1)∗(ny+1) ,1+ny ,1+nx) ; % create node numer matrix
75 dofvec = reshape (2∗ nodes (1 : end−1 ,1:end−1)+1,nx∗ny , 1) ; % create dof vector
76 dofmat = repmat (dofvec , 1 , 8)+repmat ([0 1 2∗ny+[2 3 0 1] −2 −1] ,nx∗ny , 1) ; %

create dof matrix
77 iK = reshape (kron (dofmat , ones (8 , 1)) ’ ,64∗ nx∗ny , 1) ; % build sparse i
78 jK = reshape (kron (dofmat , ones (1 , 8)) ’ ,64∗ nx∗ny , 1) ; % build sparse j
79 %% PREPARE FILTER
80 iH = ones (nx∗ny ∗ (2∗ (ceil (rmin)−1)+1)^2 ,1) ; % build sparse i
81 jH = ones (size (iH)) ; % create sparse vector of ones
82 kH = zeros (size (iH)) ; % create sparse vector of zeros
83 m = 0 ; % index for filtering
84 for i = 1 : nx % for each element calculate distance between ...
85 for j = 1 : ny % elements ’ center for filtering
86 r1 = (i−1)∗ny+j ; % sparse value i

Master of Science Thesis Stefan Broxterman

188 Matlab Codes

87 for k = max (i−(ceil (rmin)−1) ,1) : min (i+(ceil (rmin)−1) ,nx) %
center of element

88 for l = max (j−(ceil (rmin)−1) ,1) : min (j+(ceil (rmin)−1) , ny) %
center of element

89 r2 = (k−1)∗ny+l ; % sparse value 2
90 m = m+1; % update index for filtering
91 iH (m) = r1 ; % sparse vector for filtering
92 jH (m) = r2 ; % sparse vector for filtering
93 kH (m) = max (0 , rmin−sqrt ((i−k)^2+(j−l) ^2)) ; % weight

factor
94 end
95 end
96 end
97 end
98 H = sparse (iH , jH , kH) ; % build filter
99 Hs = sum (H , 2) ; % summation of filter

100 %% DEFINE ELEMENT RESTRICTIONS
101 x = repmat (vol , ny , nx) ; % initial material distribution
102 if shap == 0 % no restrictions
103 efree = (1 : nx∗ny) ’ ; % all elements are free
104 eres= [] ; % no restricted elements
105 elseif shap == 1 % circular restrictions
106 rest = zeros (ny , nx) ; % pre-allocate space
107 for i = 1 : nx % start loop
108 for j = 1 : ny % for each element
109 if sqrt ((j−ny /2)^2+(i−nx /4) ^2) < ny /2 .5 % circular

restriction
110 rest (j , i) = 1 ; % write restriction
111 if rest (j , i) == area % check for restriction
112 x (j , i) = area ; % store restrictions in material

distribution
113 end
114 end
115 end
116 end
117 elseif shap == 2 % custom restrictions
118 rest = zeros (ny∗nx , 1) ; % pre-allocate space
119 for i = 1 : length (nodr) % write restriction
120 resti = nodr (i) ; % write restriction
121 rest (resti) = 1 ; % write restriction
122 end
123 rest = reshape (rest , ny , nx) ;
124 for i = 1 : nx % start loop
125 for j = 1 : ny % for each element
126 if rest (j , i) == area % check for restriction
127 x (j , i) = area ; % store restrictions in material

distribution
128 end
129 end
130 end
131 efree = find (rest ~= 1) ; % set free elements
132 eres = find (rest == 1) ; % set restricted ellements
133 end

Stefan Broxterman Master of Science Thesis

B.7 Design of Supports.m 189

134 if fil == 0 | | fil == 1 % sensitivity , density filter
135 xF = x ; % set filtered design variables
136 elseif fil == 2 % heaviside filter
137 beta = 1 ; % hs filter
138 xTilde = x ; % hs filter
139 xF = 1−exp(−beta∗xTilde)+xTilde∗exp(−beta) ; % set filtered design

space
140 end
141 xFree = xF (efree) ; % define free design matrix
142 %% DEFINE STRUCTURAL
143 Fsiz = size (Fe , 2) ; % size of load vector
144 F = sparse (Fe , Fn , Fv , N , Fsiz) ; % define load vector
145 %% DESIGN OF SUPPORT DISTRIBUTION
146 xsiz = size (xFree (:) , 1) ; % size of design variables
147 zsiz = size (supp , 2) ; % size of support design variables
148 xzer = zeros (xsiz , 1) ; % empty row of zeros for mma usage
149 zzer = zeros (zsiz , 1) ; % empty row of zeros for mma usage
150 z = zeros (ny , nx) ; % create design of support domain
151 z (supp) = 1 ; %zvol; % plugin initial support design variables
152 zval = z ’ ; % create vector of design variables
153 Si = 1 ; % counter
154 if dist == 1 % x-axis cost distribution
155 Scos = [linspace (1 , cost , nx /2) linspace (cost , 1 , nx /2)] ; % x-axis cost

distribution
156 Scost = zeros (nx , nx) ; % create multiplication matrix
157 for i = 1 : nx % create weighted cost matrix
158 Scost (Si , i) = Scos (i) ; % plug-in cost values
159 Si = Si+1; % update counter
160 end
161 elseif dist == 2 % y-axis cost distribution
162 Scos = [linspace (cost , 1 , ny /2) linspace (1 , cost , ny /2)] ; % y-axis cost

distribution
163 Scost = zeros (ny , ny) ; % create multiplication matrix
164 for i = 1 : ny % create weighted cost matrix
165 Scost (Si , i) = Scos (i) ; % plug-in cost values
166 Si = Si+1; % update counter
167 end
168 end
169 Adofsup = dofmat (supp , :) ; % degrees of freedom for support locations
170 Asup = unique (Adofsup (:)) ; % unique support locations
171 zF = z ; % set design of support
172 zval = zval (zval ~= 0) ; % create configurable design of support vector
173 k1 = k0∗eye (8) ; % reshape scalar to diagonal matrix
174 %% DEFINE MMA PARAMETERS
175 m = 2 ; % number of constraint functions
176 n = xsiz+zsiz ; % number of variables
177 xmin = [1 e−4∗ones (xsiz , 1) ; zmin∗ones (zsiz , 1)] ; % minimum values of x
178 xmax = ones (n , 1) ; % maximum values of x
179 xold1 = zeros (n , 1) ; % previous x, to monitor convergence
180 xold2 = xold1 ; % used by mma to monitor convergence
181 df0dx2 = zeros (n , 1) ; % second derivative of the objective function
182 dfdx2 = zeros (m , n) ; % second derivative of the constraint function
183 low = xmin ; % lower asymptotes from the previous iteration

Master of Science Thesis Stefan Broxterman

190 Matlab Codes

184 upp = xmax ; % upper asymptotes from the previous iteration
185 a0 = 1 ; % constant a_0 in mma formulation [1]
186 a = zeros (m , 1) ; % constant a_i in mma formulation
187 cmma = 1e3∗ones (m , 1) ; % constant c_i in mma formulation
188 d = zeros (m , 1) ; % constant d_i in mma formulation
189 subs = 200 ; % maximum number of subsolv iterations [200]
190 %% PRE-ALLOCATE SPACE
191 npx = zeros (length (fix) , 1) ’ ; % pre-allocate constraint dots
192 npy = zeros (length (fix) , 1) ’ ; % pre-allocate constraint dots
193 npfx = zeros (length (Fe) , 1) ’ ; % pre-allocate force dots
194 npfy = zeros (length (Fe) , 1) ’ ; % pre-allocate force dots
195 npdx = zeros (length (nodes) , 1) ’ ; % pre-allocate force dots
196 npdy = zeros (length (nodes) , 1) ’ ; % pre-allocate force dots
197 U = zeros (size (F)) ; % pre-allocate space displacement
198 c = zeros (miter , 1) ; % pre-allocate objective vector
199 %% INITIALIZE LOOP
200 iter = 0 ; % initialize loop
201 diff = 1 ; % initialize convergence criterion
202 loopbeta = 1 ; % initialize beta-loop
203 %% START LOOP
204 while ((diff > tol) | | (iter < piter+1)) && iter < miter % convergence

criterion not met
205 loopbeta = loopbeta +1; % iteration loop for hs filter
206 iter = iter+1; % define iteration
207 if pcon == 1 % use continuation method
208 if iter <= piter % first number of iterations...
209 p = 1 ; %... set penalty 1
210 elseif iter > piter % after a number of iterations...
211 p = min (pen , pcinc∗p) ; % ... set continuation penalty
212 end
213 elseif pcon == 0 % not using continuation method
214 p = pen ; % set penalty
215 end
216 %% Selfweight
217 if rho ~= 0 % gravity is involved
218 xP=zeros (ny , nx) ; % pre-allocate space
219 xP (xF>0.25) = xF (xF>0.25) .^ p ; % normal penalization
220 xP (xF<=0.25) = xF (xF<=0.25) . ∗ (0 . 2 5^ (p−1)) ; % below pseudo -density
221 Fsw = zeros (N , 1) ; % pre-allocate self-weight
222 for i=1:nx∗ny % for each element , set gravitational...
223 Fsw (dofmat (i , 2 : 2 : end))=Fsw (dofmat (i , 2 : 2 : end))−xF (i) ∗rho

∗9 . 81/4 ;
224 end % force to the attached nodes
225 Fsw=repmat (Fsw , 1 , size (F , 2)) ; % set self-weight for load cases
226 elseif rho == 0 % no gravity
227 xP = xF .^ p ; % penalized design variable
228 Fsw = 0 ; % no selfweight
229 end
230 Ftot = F + Fsw ; % total force
231 %% Finite element analysis
232 kK = reshape (Ke (:) ∗(Emin+xP (:) ’∗ (E−Emin)) ,64∗nx∗ny , 1) ; % create

sparse vector k
233 K = sparse (iK , jK , kK) ; % combine sparse vectors

Stefan Broxterman Master of Science Thesis

B.7 Design of Supports.m 191

234 K = (K+K ’) /2 ; % build stiffness matrix
235 Kfvec = zeros (2∗ (ny+1)∗(nx+1) ,1) ; % build zeros support vector
236 for i = 1 : length (supp) % for each support element...
237 dofsup = dofmat (supp (i) , :) ; %...find the corresponding dof
238 for j = 1 : length (dofsup) % calculate new stiffness vector
239 Kfvec (dofsup (j)) = Kfvec (dofsup (j))+(zF (supp (i))^q) ∗k0 ;
240 end
241 end
242 Kf = spdiags (Kfvec , 0 , 2∗ (ny+1)∗(nx+1) ,2∗ (ny+1)∗(nx+1)) ; % create

diagonal Kf
243 Kt = K+Kf ; % update total force
244 U (free , :) = Kt (free , free) \Ftot (free , :) ; % displacement solving
245 c (iter) = 0 ; % set compliance to zero
246 comp (iter) = 0 ; %

%%%TEMP%%%
247 Sens = 0 ; % set sensitivity to zero
248 Senz = 0 ; % set constraint sensitivity to zero
249 %% Calculate compliance and sensitivity
250 for i = 1 : size (Fn , 2) % for number of load cases
251 Ui = U (: , i) ; % displacement per load case
252 c0 = reshape (sum ((Ui (dofmat) ∗Ke) .∗ Ui (dofmat) , 2) ,ny , nx) ; % initial

compliance
253 cz0 = reshape (sum ((Ui (dofmat) ∗k1) .∗ Ui (dofmat) , 2) ,ny , nx) ; %

initial support compliance
254 c (iter) = c (iter) + sum (sum ((Emin+xF .^ p∗(E−Emin)) .∗ c0)) + sum (sum

((zF .^ q) .∗ cz0)) ; % calculate compliance
255 comp (iter) = comp (iter) + sum (sum ((Emin+xF .^ p∗(E−Emin)) .∗ c0)) ; %

%%%%TEMP%%%
256 Sens = Sens + reshape (2∗Ui (dofmat) ∗repmat ([0 ; −9 .81∗ rho /4] , 4 , 1) ,ny

, nx) −p∗(E−Emin) ∗xF . ^ (p−1) .∗ c0 ; % sensitivity
257 Senz = Senz + −q∗zF . ^ (q−1) .∗ cz0 ; % calculate sensitivity to

support variable
258 end
259 Senc = ones (ny , nx) ; % set constraint sensitivity
260 if dist == 0
261 Sencz = ones (ny , nx) ;
262 elseif dist == 1
263 Sencz =ones (ny , nx) ∗Scost ; % set weighted cost constraint

sensitivity
264 elseif dist == 2
265 Sencz = Scost∗ones (ny , nx) ; % set weighted cost constraint

sensitivity
266 %Sencz = ones(ny,nx); % set weighted cost constraint sensitivity
267 end
268 if fil == 0 % optimality criterion with sensitivity filter
269 Sens (:) = H∗(x (:) .∗ Sens (:)) . / Hs . / max (1e−3,x (:)) ; % update

filtered sensitivity
270 elseif fil == 1 % optimality criterion with density filter
271 Sens (:) = H∗(Sens (:) . / Hs) ; % update filtered sensitivity
272 Senc (:) = H∗(Senc (:) . / Hs) ; % update filtered sensitivity of

constraint
273 elseif fil == 2 % optimality criterion with heaviside filter
274 dx = beta∗exp(−beta∗xTilde)+exp(−beta) ; % update hs parameter

Master of Science Thesis Stefan Broxterman

192 Matlab Codes

275 Sens (:) = H∗(Sens (:) .∗ dx (:) . / Hs) ; % update filtered sensitivity
276 Senc (:) = H∗(Senc (:) .∗ dx (:) . / Hs) ; % update filtered sensitivity

of constraint
277 end
278 %% Update design variables Optimality Criterion
279 if sol == 0 % use optimality criterion method
280 l1 = 0 ; % initial lower bound for lagranian mulitplier
281 l2 = 1e9 ; % initial upper bound for lagranian multiplier
282 while (l2−l1) /(l1+l2) > 1e−3; % start loop
283 lag = 0 .5∗ (l1+l2) ; % average of lagranian interval
284 xnew = max (0 , max (x−move , min (1 , min (x+move , x .∗ sqrt(−Sens . / Senc/

lag))))) ; % update element densities
285 if fil == 0 % sensitivity filter
286 xF = xnew ; % updated result
287 elseif fil == 1 % density filter
288 xF (:) = (H∗xnew (:)) . / Hs ; % updated filtered density

result
289 elseif fil == 2 % heaviside filter
290 xTilde (:)= (H∗xnew (:)) . / Hs ; % set filtered density
291 xF (:) =1−exp(−beta∗xTilde)+xTilde∗exp(−beta) ; % updated

result
292 end
293 if shap == 1 % restriction is on
294 xF (rest==1) = area ; % set restricted area
295 end
296 if sum (xF (:)) > vol∗nx∗ny ; % check for optimum
297 l1 = lag ; % update lower bound to average
298 else
299 l2 = lag ; % update upper bound to average
300 end
301 end
302 %% Method of moving asymptotes
303 elseif sol == 1 % use mma solver
304 xval = [xFree (:) ; zval (:)] ; % store current design variable for

mma
305 if iter == 1 % for the first iteration...
306 cscale = 1/c (iter) ; % ...set scaling factor for mma solver
307 cscale = 5.0131e−6;
308 end
309 f0 = c (iter) ∗cscale ; % objective at current design variable for

mma
310 df0dx = [Sens (efree) ∗cscale ; Senz (supp) ’∗ cscale] ; % store

sensitivity for mma
311 if dist == 0 % no cost distribution
312 Scosts = zF ; % cost-funcion no influence
313 elseif dist == 1 % x-axis cost distribution
314 Scosts = zF∗Scost ; % update weighted constraint function
315 elseif dist == 2 % y-axis cost distribution
316 Scosts = Scost∗zF ; % update weighted constraint function
317 end
318 f = [(sum (xF (:)) /(vol∗nx∗ny)−1) ; (sum (Scosts (supp)) /(zvol∗size (

supp , 2))−1)] ; % normalized constraint function

Stefan Broxterman Master of Science Thesis

B.7 Design of Supports.m 193

319 dfdx = [Senc (efree) ’ / (vol∗ny∗nx) zzer ’ ; xzer ’ Sencz (supp) /(zvol∗
size (supp , 2))] ; % derivative of the constraint function

320 [xmma , ~ ,~ ,~ ,~ ,~ ,~ ,~ ,~ , low , upp] = . . .
321 mmasub (m , n , iter , xval , xmin , xmax , xold1 , xold2 , . . .
322 f0 , df0dx , df0dx2 , f , dfdx , dfdx2 , low , upp , a0 , a , cmma , d , subs) ; % mma

solver
323 xold2 = xold1 ; % used by mma to monitor convergence
324 xold1 = [xFree (:) ; zval (:)] ; % previous x, to monitor convergence
325 xnew = xF ; % update result
326 xnew (efree) = xmma (1 : xsiz) ; % include restricted elements
327 znew = zF ; % update design result
328 znew (supp) = xmma (xsiz+1:end) ; % include mma solved supports
329 xnew = reshape (xnew , ny , nx) ; % reshape xmma vector to original

size
330 znew = reshape (znew , ny , nx) ; % reshape support vector to original

size
331 if fil == 0 % sensitivity filter
332 xF = xnew ; % update design variables
333 elseif fil == 1 % density filter
334 xF (:) = (H∗xnew (:)) . / Hs ; % update filtered densities result
335 elseif fil == 2 % heaviside filter
336 xTilde (:)= (H∗xnew (:)) . / Hs ; % filtered result
337 xF (:)=1−exp(−beta∗xTilde)+xTilde∗exp(−beta) ; % update design

variable
338 end
339 if shap == 1 | | shap == 2 % if restrictions enableed
340 xF (rest==1) = area ; % set restricted area
341 end
342 zF (:) = znew (:) ; % update support variables
343 zval = znew (supp) ; % update support variables
344 end
345 xFree = xnew (efree) ; % set non-restricted area
346 diff = max (abs (xnew (:)−x (:))) ; % difference of maximum element change
347 x = xnew ; % update design variable
348 z = znew ; % update support design variable
349 if fil == 2 && beta < 512 && pen == p (end) && (loopbeta >= 50 | | diff

<= tol) % hs filter
350 beta = 2∗beta ; % increase beta-factor
351 fprintf (’beta now is %3.0f\n’ , beta) % display increase of b-

factor
352 loopbeta = 0 ; % set hs filter loop to zero
353 diff = 1 ; % set convergence to initial value
354 end
355 %% Store results into database X
356 X (: , : , iter) = xF ; % each element value x is stored for each

iteration
357 C (iter) = c (iter) ; % each compliance is stored for each iteration
358 Z (: , : , iter) = zF ; % each support variable is stored for each

iteration
359 assignin (’base’ , ’X’ , X) ; % each iteration (3rd dimension)
360 assignin (’base’ , ’C’ , C) ; % each iteration (3rd dimension)
361 assignin (’base’ , ’Z’ , Z) ; % each iteration (3rd dimension).
362 %% Results

Master of Science Thesis Stefan Broxterman

194 Matlab Codes

363 if dis == 1 % display iterations
364 disp ([’ Iter:’ sprintf (’%4i’ , iter) ’ Obj:’ sprintf (’%10.4f’ ,c (

iter)) . . .
365 ’ Vol:’ sprintf (’%6.3f’ , mean (xF (:))) ’ Diff:’ sprintf (’%6.3f’

, diff) ’ ZVol:’ sprintf (’%6.3f’ , mean (Scosts (supp)))]) ;
366 elseif dis == 2 % display parts of iterations
367 if iter == 1 | | iter == disiter
368 if iter == 1
369 disiter = plotiter ;
370 elseif iter == disiter
371 disiter = disiter + plotiter ;
372 end
373 disp ([’ Iter:’ sprintf (’%4i’ , iter) ’ Obj:’ sprintf (’%10.4f’ ,c

(iter)) . . .
374 ’ Vol:’ sprintf (’%6.3f’ , mean (xF (:))) ’ Diff:’ sprintf (’

%6.3f’ , diff) ’ ZVol:’ sprintf (’%6.3f’ , mean (Scosts (supp
)))]) ;

375 end
376 end
377 if draw == 1 % plot iterations
378 figure (1)
379 subplot (2 , 1 , 1)
380 colormap (gray) ; imagesc(1−xF) ;
381 set (gca , ’XTick’ , [] , ’YTick’ , [] , ’XTicklabel’ , [] , . . .
382 ’YTicklabel’ , [] , ’xcolor’ ,’[0.7 0.7 0.7]’ ,’ycolor’ ,’[0.7 0.7

0.7]’)
383 xlabel (sprintf (’c = %.2f’ ,c (iter)) ,’Color’ ,’k’)
384 axis equal ; axis tight
385 drawnow ;
386 hold on
387 if iter == 1
388 % Plot coloured dots for force application
389 for i = 1 : length (Fe)
390 npfx (i) = ceil (Fe (i) /(2∗ (ny+1))) −0.5;
391 nplot = ceil (Fe (i) /2) ;
392 while nplot > (ny+1)
393 nplot = nplot−(ny+1) ;
394 end
395 npfy (i) = nplot−0.5 ;
396 end
397 plot (npfx , npfy , ’g.’ ,’MarkerSize’ , 20)
398 % Plot coloured dots for constraints
399 for i = 1 : length (fix)
400 npx (i) = ceil (fix (i) /(2∗ (ny+1))) −0.5;
401 nplot = ceil (fix (i) /2) ;
402 while nplot > (ny+1)
403 nplot = nplot−(ny+1) ;
404 end
405 npy (i) = nplot−0.5 ;
406 end
407 plot (npx , npy , ’r.’ ,’MarkerSize’ , 20)
408 end
409 % Plot coloured dots for design of supports

Stefan Broxterman Master of Science Thesis

B.7 Design of Supports.m 195

410 for i = 1 : nx∗ny
411 if zF (i) > zplot % treshold for plotting supports
412 if ceil (i/ny) == nx
413 npdx (i) = ceil (i/ny) + 0 . 5 ;
414 elseif ceil (i/ny) == 1
415 npdx (i) = ceil (i/ny) −0.5;
416 else
417 npdx (i) = ceil (i/ny) ;
418 end
419 nplot = i ;
420 while nplot > ny
421 nplot = nplot−ny ;
422 end
423 if nplot == ny
424 npdy (i) = nplot+0.5;
425 elseif nplot == 1
426 npdy (i) = nplot−0.5 ;
427 else
428 npdy (i) = nplot ;
429 end
430 end
431 end
432 if iter > 1
433 delete (Dos)
434 end
435 if exist (’npdx’) %#ok<EXIST >
436 Dos = plot (nonzeros (npdx) , nonzeros (npdy) , ’b.’ ,’MarkerSize’

, 20) ;
437 clear npdx ; clear npdy ;
438 uistack (Dos , ’bottom’)
439 end
440 % Plot compliance plot
441 figure (1)
442 subplot (2 , 1 , 2)
443 plot (c (1 : iter))
444 set (gca , ’YTick’ , [] , ’YTicklabel’ , [])
445 xlabel (’Iterations’)
446 ylabel (’Compliance’)
447 xaxmax = c (iter) ;
448 yaxmax = max (c) ;
449 yaxmin = min (c (1 : iter)) ;
450 if pcon == 0
451 yaxmax = mean ([yaxmin yaxmax]) ;
452 end
453 ylim ([0 . 9 5 ∗ yaxmin yaxmax])
454 xlim ([1 min (iter+10,miter)])
455 elseif draw == 2 % plot parts of iterations
456 if iter == 1 | | iter == drawiter
457 if iter == 1
458 drawiter = plotiter ;
459 elseif iter == drawiter
460 drawiter = drawiter + plotiter ;
461 end

Master of Science Thesis Stefan Broxterman

196 Matlab Codes

462 figure (1)
463 subplot (2 , 1 , 1)
464 colormap (gray) ; imagesc(1−xF) ;
465 set (gca , ’XTick’ , [] , ’YTick’ , [] , ’XTicklabel’ , [] , . . .
466 ’YTicklabel’ , [] , ’xcolor’ ,’[0.7 0.7 0.7]’ ,’ycolor’ ,’[0.7

0.7 0.7]’)
467 xlabel (sprintf (’c = %.2f’ ,c (iter)) , ’Color’ ,’k’)
468 axis equal ; axis tight
469 drawnow ;
470 hold on
471 if iter == 1
472 % Plot coloured dots for force application
473 for i = 1 : length (Fe)
474 npfx (i) = ceil (Fe (i) /(2∗ (ny+1))) −0.5;
475 nplot = ceil (Fe (i) /2) ;
476 while nplot > (ny+1)
477 nplot = nplot−(ny+1) ;
478 end
479 npfy (i) = nplot−0.5 ;
480 end
481 plot (npfx , npfy , ’g.’ ,’MarkerSize’ , 20)
482 % Plot coloured dots for constraints
483 for i = 1 : length (fix)
484 npx (i) = ceil (fix (i) /(2∗ (ny+1))) −0.5;
485 nplot = ceil (fix (i) /2) ;
486 while nplot > (ny+1)
487 nplot = nplot−(ny+1) ;
488 end
489 npy (i) = nplot−0.5 ;
490 end
491 plot (npx , npy , ’r.’ ,’MarkerSize’ , 20)
492 end
493 % Plot coloured dots for design of supports
494 for i = 1 : nx∗ny
495 if zF (i) > zplot % treshold for plotting supports
496 if ceil (i/ny) == nx
497 npdx (i) = ceil (i/ny) + 0 . 5 ;
498 elseif ceil (i/ny) == 1
499 npdx (i) = ceil (i/ny) −0.5;
500 else
501 npdx (i) = ceil (i/ny) ;
502 end
503 nplot = i ;
504 while nplot > ny
505 nplot = nplot−ny ;
506 end
507 if nplot == ny
508 npdy (i) = nplot+0.5;
509 elseif nplot == 1
510 npdy (i) = nplot−0.5 ;
511 else
512 npdy (i) = nplot ;
513 end

Stefan Broxterman Master of Science Thesis

B.7 Design of Supports.m 197

514 end
515 end
516 if iter > 1
517 delete (Dos)
518 end
519 if exist (’npdx’) %#ok<EXIST >
520 Dos = plot (nonzeros (npdx) , nonzeros (npdy) , ’b.’ ,’MarkerSize

’ , 20) ;
521 clear npdx ; clear npdy ;
522 uistack (Dos , ’bottom’)
523 end
524 % Plot compliance plot
525 figure (1)
526 subplot (2 , 1 , 2)
527 plot (c (1 : iter))
528 set (gca , ’YTick’ , [] , ’YTicklabel’ , [])
529 xlabel (’Iterations’)
530 ylabel (’Compliance’)
531 xaxmax = c (iter) ;
532 yaxmax = max (c) ;
533 yaxmin = min (c (1 : iter)) ;
534 if pcon == 0
535 yaxmax = mean ([yaxmin yaxmax]) ;
536 end
537 ylim ([0 . 9 5 ∗ yaxmin yaxmax])
538 xlim ([1 min (iter+10,miter)])
539 end
540 end
541 end
542 %% ONLY DISPLAY FINAL RESULT
543 if dis == 0 | | dis == 2 % display final result
544 disp ([’ Iter:’ sprintf (’%4i’ , iter) ’ Obj:’ sprintf (’%10.4f’ ,c (iter))

. . .
545 ’ Vol:’ sprintf (’%6.3f’ , mean (xF (:))) ’ Diff:’ sprintf (’%6.3f’ ,

diff) ’ ZVol:’ sprintf (’%6.3f’ , mean (Scosts (supp)))]) ;
546 end
547 if draw == 0 | | draw == 2 % plot final result
548 figure (1)
549 subplot (2 , 1 , 1)
550 colormap (gray) ; imagesc(1−xF) ;
551 axis equal ; axis tight ;
552 set (gca , ’XTick’ , [] , ’YTick’ , [] , ’XTicklabel’ , [] , . . .
553 ’YTicklabel’ , [] , ’xcolor’ ,’[0.7 0.7 0.7]’ ,’ycolor’ ,’[0.7 0.7 0.7]’

)
554 xlabel (sprintf (’c = %.2f’ ,c (iter)) , ’Color’ ,’k’)
555 drawnow ;
556 hold on
557 % Plot coloured dots for force application
558 for i = 1 : length (Fe)
559 npfx (i) = ceil (Fe (i) /(2∗ (ny+1))) −0.5;
560 nplot = ceil (Fe (i) /2) ;
561 while nplot > (ny+1)
562 nplot = nplot−(ny+1) ;

Master of Science Thesis Stefan Broxterman

198 Matlab Codes

563 end
564 npfy (i) = nplot−0.5 ;
565 end
566 For = plot (npfx , npfy , ’g.’ ,’MarkerSize’ , 20) ;
567 uistack (For , ’bottom’)
568 % Plot coloured dots for constraints
569 for i = 1 : length (fix)
570 npx (i) = ceil (fix (i) /(2∗ (ny+1))) −0.5;
571 nplot = ceil (fix (i) /2) ;
572 while nplot > (ny+1)
573 nplot = nplot−(ny+1) ;
574 end
575 npy (i) = nplot−0.5 ;
576 end
577 plot (npx , npy , ’r.’ ,’MarkerSize’ , 20)
578 % Plot coloured dots for design of supports
579 for i = 1 : nx∗ny
580 if zF (i) > zplot % treshold for plotting supports
581 if ceil (i/ny) == nx
582 npdx (i) = ceil (i/ny) + 0 . 5 ;
583 elseif ceil (i/ny) == 1
584 npdx (i) = ceil (i/ny) −0.5;
585 else
586 npdx (i) = ceil (i/ny) ;
587 end
588 nplot = i ;
589 while nplot > ny
590 nplot = nplot−ny ;
591 end
592 if nplot == ny
593 npdy (i) = nplot+0.5;
594 elseif nplot == 1
595 npdy (i) = nplot−0.5 ;
596 else
597 npdy (i) = nplot ;
598 end
599 end
600 end
601 if exist (’Dos(1)’) %#ok<EXIST >
602 delete (Dos (1))
603 end
604 if exist (’npdx’) %#ok<EXIST >
605 Dos = plot (nonzeros (npdx) , nonzeros (npdy) , ’b.’ ,’MarkerSize’ , 20) ;
606 clear npdx ; clear npdy ;
607 uistack (Dos , ’bottom’)
608 end
609 % Plot compliance plot
610 if adv == 0
611 figure (1)
612 subplot (2 , 1 , 2)
613 plot (c (1 : iter))
614 set (gca , ’YTick’ , [] , ’YTicklabel’ , [])
615 xlabel (’Iterations’)

Stefan Broxterman Master of Science Thesis

B.7 Design of Supports.m 199

616 ylabel (’Compliance’)
617 xaxmax = c (iter) ;
618 yaxmax = max (c) ;
619 yaxmin = min (c (1 : iter)) ;
620 if pcon == 0
621 yaxmax = mean ([yaxmin yaxmax]) ;
622 end
623 ylim ([0 . 9 5 ∗ yaxmin yaxmax])
624 xlim ([1 min (iter+10,miter)])
625 end
626 end
627 %% PLOTTING DISPLACEMENT (COMPLIANT MECHANISMS)
628 if def == 1
629 figure (1)
630 subplot (2 , 1 , 1)
631 xaxis = get (gca , ’XLim’) ;
632 yaxis = get (gca , ’YLim’) ;
633 figure (3)
634 clear mov
635 colormap (gray) ;
636 Umov = 1 ; % start movie counter
637 Umax = −0.005; % define maximum displacement
638 for Udisp = linspace (0 , Umax , 1 0) ; % vary input displacement
639 clf
640 for ely = 1 : ny % plot displacements...
641 for elx = 1 : nx % for each element...
642 if xF (ely , elx) > 0 % exclude white regions for plotting

purposes
643 n1 = (ny+1)∗(elx−1)+ely ;
644 n2 = (ny+1)∗ elx +ely ;
645 Ue = Udisp∗U ([2∗ n1−1;2∗n1 ; 2∗n2−1;2∗n2 ; 2∗n2+1;2∗n2

+2; 2∗n1+1;2∗n1+2] ,1) ;
646 ly = ely−1; lx = elx−1;
647 xx = [Ue (1 , 1)+lx Ue (3 , 1)+lx+1 Ue (5 , 1)+lx+1 Ue (7 , 1)+lx

] ’ ;
648 yy = [−Ue (2 , 1)−ly −Ue (4 , 1)−ly −Ue (6 , 1)−ly−1 −Ue (8 , 1)−

ly−1] ’ ;
649 subplot (2 , 1 , 1)
650 patch ([xx xx] , [yy yy] , [− xF (ely , elx) −xF (ely , elx)] , ’

LineStyle’ ,’none’) ;
651
652 end
653 end
654 end
655 xlim (xaxis)
656 ylim ([−yaxis (2) yaxis (1)])
657 axis equal ; axis tight ;
658 set (gca , ’xcolor’ ,’[0.7 0.7 0.7]’ ,’ycolor’ ,’[0.7 0.7 0.7]’)
659 drawnow
660 mov (Umov) = getframe (3) ; % movie
661 Umov = Umov +1; % update counter
662 end
663 movlip = flip (mov) ; % create symmetry

Master of Science Thesis Stefan Broxterman

200 Matlab Codes

664 movull = [mov movlip] ; % create symmetry
665 FileName = [’Compliant_’ , datestr (now , ’ddmm_HHMMSS’) , ’.avi’] ; %

dynamic filename
666 movie2avi (movull , FileName , ’compression’ , ’None’ , ’FPS’ , 10) ; % save

video
667 end
668 toc % stop timer
669 max (K (:))
670 max (Kf (:))

Stefan Broxterman Master of Science Thesis

B.8 ADVANCED DOS.m 201

B.8 ADVANCED DOS.m

By the inspiration of the ADVANCED (B.2) and the Design of Supports plug-in (C.9) a
complete advanced and enhanced code is made. This code includes displaying support design
and can be used to easily vary in cost distribution functions, in order to produce the figures
as depicted in 4.3. The changes are quite big, so it’s recommended to just run this new file,
instead of writing an add-in code.

1 %%
2 % %
3 % Topology Optimization Using Matlab %
4 % ADVANCED_DOS.m %
5 % %
6 % Delft University of Technology , Department PME %
7 % Master of Science Thesis Project %
8 % %
9 % Stefan Broxterman %

10 % %
11 %%
12 clc ; clf ; close all ; clear X ;
13 %% DEFINE OPTIMIZATION VARIABLES
14 var = 5 ; % [1 = mesh, 2 = penalty , 3 = filter radius , 4 =

volume fraction , 5 = support cost, 6 = evolution]
15 nxvec = [30 , 6 0 , 8 0 , 1 2 0] ; % horizontal elements vector
16 nyvec = [10 , 2 0 , 4 0 , 4 0] ; % vertical elements vector
17 volvec = [0 . 2 0 .35 0 .5 0 . 6 5] ; % volume fraction vector
18 rminvec = [1 , 1 . 2 5 , 1 . 5 , 3] ; % filter size vector
19 penvec = [1 , 2 , 3 , 5] ; % penalty vector
20 filvec = [0 , 1 , 2] ; % filter vector
21 costvec = [1 , 5 , 10 , 5 0] ; % cost vector
22 evolvec = [0 . 0 5 , 0 . 25 , 0 . 5 , 1] ; % evolution fraction vector
23 %% SET DEFAULT VALUES
24 nx = nxvec (3) ; % default number of horizontal elements
25 ny = nyvec (3) ; % default number of vertical elements
26 vol = volvec (1) ; % default number of volume fraction
27 pen = penvec (3) ; % default penalty
28 rmin = rminvec (3) ; % default filter radius
29 fil= filvec (2) ; % default filter method
30 cost = costvec ; % default cost distribution
31 %% SET OPTIMIZATION VALUES
32 ex = [30 , 6 0 , 9 0 , 1 2 0] ; % vector size for pre-allocating space
33 figend = 4 ; % set total of varying values
34 label = [’a’ ,’b’ ,’c’ ,’d’ ,’e’] ; % graphic label
35 %% PRE-ALLOCATE SPACE
36 loops = zeros (1 , size (ex , 2)) ; % initial loops matrix
37 obj = zeros (1 , size (ex , 2)) ; % initial ojective matrix
38 t = zeros (1 , size (ex , 2)) ; % initial time matrix
39 Y = zeros (size (ex , 2) , 5) ; % initial results matrix
40 if var == 6 % for evolution scheme , BasicK.m only needs to

...
41 BRIDGE % run one time only

Master of Science Thesis Stefan Broxterman

202 Matlab Codes

42 end
43 %% START LOOP
44 for fig = 1 : figend % start itertation loop
45 tic ; % start timer
46 if var ~= 6 % for non-evolution scheme , run below
47 clear X ; clear C ; % clear results matrix for each run
48 if var == 1 % differentiation on number of elements
49 nx = nxvec (fig) ; % pick each horizontal value
50 ny = nyvec (fig) ; % pick each vertical value
51 elseif var == 2 % differentiation on penalty
52 pen = penvec (fig) ; % pick each penalty
53 elseif var == 3 % differentiation on filter radius
54 rmin = rminvec (fig) ; % pick each rmin
55 elseif var == 4 % differentiation on filter method
56 vol = volvec (fig) ; % pick each filter method
57 elseif var == 5 % differentiation on support cost
58 cost = costvec (fig) ; % pick each support cost
59 end
60 figure (1)
61 clf
62 BRIDGE % run Basic.m
63 loops (fig) = size (X , 3) ; % number of iterations used
64 obj (fig) = c (iter) ; % store objective function
65 prog = X (: , : , loops (fig)) ; % store densities for progression

drawing
66 elseif var == 6 % store compliance for evolution vector
67 loops = size (X , 3) ; % for evolutionary scheme , calculate rounded

...
68 loop (1) = round (evolvec (1) ∗loops) ; % values of loops and store

...
69 loop (2) = round (evolvec (2) ∗loops) ; % this loop number
70 loop (3) = round (evolvec (3) ∗loops) ;
71 loop (4) = round (evolvec (4) ∗loops) ;
72 prog = X (: , : , loop) ; % progression picture for each evolution

fraction
73 end
74 %% Set graphics
75 if draw == 1 % check for drawing
76 H = get (gcf , ’Position’) ; % get position of figure
77 else
78 H = [680 , 5 58 , 5 60 , 4 20] ; % set size of figure(2) plot windows
79 end
80 H2 = figure (2) ; % plot window for progression pictures
81 set (H2 , ’position’ , [H (1)+H (3) H (2) H (3) H (4)]) ; % place figure(2) next

to (1)
82 %% Draw progression plots
83 subplot (3 , 2 , fig+2) % plot each differentiation
84 colormap (gray) ; % grayscale
85 if var == 6 % evolution needs different plotting
86 imagesc(1−prog (: , : , fig)) ; % plot progression picture
87 xlabel (sprintf (’c = %.2f’ ,C (loop (fig))) ,’color’ ,’k’)
88 else
89 imagesc(1−prog) ; % plot progression picture

Stefan Broxterman Master of Science Thesis

B.8 ADVANCED DOS.m 203

90 xlabel (sprintf (’c = %.2f’ , obj (fig)) , ’color’ ,’k’)
91 end
92 set (gca , ’XTick’ , [] , ’YTick’ , [] , ’XTicklabel’ , [] , . . .
93 ’YTicklabel’ , [] , ’xcolor’ ,’[0.7 0.7 0.7]’ ,’ycolor’ ,’[0.7 0.7 0.7]’

)
94 axis equal ; axis tight ; % set additional options
95 if var == 6 % evolution needs different plotting
96 xlabel (sprintf (’c = %.2f’ ,C (loop (fig))) ,’color’ ,’k’)
97 else
98 xlabel (sprintf (’c = %.2f’ , obj (fig)) , ’color’ ,’k’)
99 end

100 ylabel (sprintf (’%s) ’ , (label (fig+1))) , . . .
101 ’rot’ , 0 , ’color’ ,’k’ ,’FontSize’ , 11)
102 hold on
103 % Plot coloured dots for design of supports
104 for i = 1 : nx∗ny
105 if zF (i) > zplot % treshold for plotting supports
106 if ceil (i/ny) == nx
107 npdx (i) = ceil (i/ny) + 0 . 5 ;
108 elseif ceil (i/ny) == 1
109 npdx (i) = ceil (i/ny) −0.5;
110 else
111 npdx (i) = ceil (i/ny) ;
112 end
113 nplot = i ;
114 while nplot > ny
115 nplot = nplot−ny ;
116 end
117 if nplot == ny
118 npdy (i) = nplot+0.5;
119 elseif nplot == 1
120 npdy (i) = nplot−0.5 ;
121 else
122 npdy (i) = nplot ;
123 end
124 end
125 end
126 if exist (’npdx’) %#ok<EXIST >
127 Dos = plot (nonzeros (npdx) , nonzeros (npdy) , ’b.’ ,’MarkerSize’ , 20) ;
128 clear npdx ; clear npdy ;
129 uistack (Dos , ’bottom’)
130 end
131 %% Store compliance
132 if var ~= 6 % store compliance for further plotting
133 if fig == 1
134 C1 = C ;
135 elseif fig == 2
136 C2 = C ;
137 elseif fig == 3
138 C3 = C ;
139 elseif fig == 4
140 C4 = C ;
141 end

Master of Science Thesis Stefan Broxterman

204 Matlab Codes

142 end
143 %% Draw graphics
144 xbox = get (gca , ’XLim’) ;
145 ybox = get (gca , ’YLim’) ;
146 xwidth = xbox (2)−xbox (1) ;
147 ywidth = ybox (2)−ybox (1) ;
148 rectangle (’Position’ , [xbox (1) , ybox (1) , xwidth , ywidth] , . . .
149 ’EdgeColor’ , [0 . 5 0 . 5 0 . 5] , ’LineStyle’ ,’:’) ; drawnow ;
150 t (fig) = toc ;
151
152 %% Output
153 if var ~= 6 % output results for non-evolutionary schemes
154 Y (fig , :) = [fig ex (fig) loops (fig) obj (fig) t (fig)] ;
155 if fig == figend
156 Y
157 end ;
158 end
159 %% Compliance graphs
160 if var ~= 6
161 H3 = figure (3) ;
162 set (H3 , ’position’ , [H (1)−H (3) H (2) H (3) H (4)]) ; % place figure(2)

next to (1)
163 hold on
164 switch fig
165 case 1 % first variable
166 plot (1 : length (C1) ,C1 , ’b:’ ,’LineWidth’ , 2)
167 xaxmax = mean (length (C1)) ;
168 yaxmax = max (max (C1)) ;
169 yaxmin = min (C1) ;
170 if var == 1
171 legend (sprintf (’mesh = %g x %g ’ , nxvec (1) , nyvec (1)))
172 elseif var == 2
173 legend (sprintf (’pen = %g’ , penvec (1)))
174 elseif var == 3
175 legend (sprintf (’Rmin = %g’ , rminvec (1)))
176 elseif var == 4
177 legend (sprintf (’vol = %g’ , volvec (1)))
178 elseif var == 5
179 legend (sprintf (’cost = %g’ , costvec (1)))
180 end
181 case 2 % second variable
182 plot (1 : length (C2) ,C2 , ’r--’ ,’LineWidth’ , 2)
183 xaxmax = mean ([length (C1) length (C2)]) ;
184 yaxmax = max ([max (C1) max (C2)]) ;
185 yaxmin = min (min ([C1 C2])) ;
186 if var == 1
187 legend (sprintf (’mesh = %g x %g’ , nxvec (1) , nyvec (2)) ,

sprintf (’mesh = %g x %g’ , nxvec (2) , nyvec (2)))
188 elseif var == 2
189 legend (sprintf (’pen = %g ’ , penvec (1)) , sprintf (’pen =

%g’ , penvec (2)))
190 elseif var == 3

Stefan Broxterman Master of Science Thesis

B.8 ADVANCED DOS.m 205

191 legend (sprintf (’Rmin = %g ’ , rminvec (1)) , sprintf (’Rmin
= %g’ , rminvec (2)))

192 elseif var == 4
193 legend (sprintf (’vol = %g ’ , volvec (1)) , sprintf (’vol =

%g’ , volvec (2)))
194 elseif var == 5
195 legend (sprintf (’cost = %g ’ , costvec (1)) , sprintf (’cost

= %g’ , costvec (2)))
196 end
197 case 3 % third variable
198 plot (1 : length (C3) ,C3 , ’k’ ,’LineWidth’ , 2)
199 xaxmax = mean ([length (C1) length (C2) length (C3)]) ;
200 yaxmax = max ([max (C1) max (C2) max (C3)]) ;
201 yaxmin = min (min ([C1 C2 C3])) ;
202 if var == 1
203 legend (sprintf (’mesh = %g x %g’ , nxvec (1) , nyvec (2)) ,

sprintf (’mesh = %g x %g’ , nxvec (2) , nyvec (2)) ,
sprintf (’mesh = %g x %g’ , nxvec (3) , nyvec (3)))

204 elseif var == 2
205 legend (sprintf (’pen = %g ’ , penvec (1)) , sprintf (’pen =

%g’ , penvec (2)) , sprintf (’pen = %g’ , penvec (3)))
206 elseif var == 3
207 legend (sprintf (’Rmin = %g ’ , rminvec (1)) , sprintf (’Rmin

= %g’ , rminvec (2)) , sprintf (’Rmin = %g’ , rminvec (3))
)

208 elseif var == 4
209 legend (sprintf (’vol = %g ’ , volvec (1)) , sprintf (’vol =

%g’ , volvec (2)) , sprintf (’vol = %g’ , volvec (3)))
210 elseif var == 5
211 legend (sprintf (’cost = %g ’ , costvec (1)) , sprintf (’cost

= %g’ , costvec (2)) , sprintf (’cost = %g’ , costvec (3))
)

212 end
213 case 4 % fourth variable
214 plot (1 : length (C4) ,C4 , ’g-.’ ,’LineWidth’ , 2)
215 xaxmax = mean ([length (C1) length (C2) length (C3) length (C4

)]) ;
216 yaxmax = max ([max (C1) max (C2) max (C3) max (C4)]) ;
217 yaxmin = min (min ([C1 C2 C3 C4])) ;
218 if var == 1
219 legend (sprintf (’mesh = %g x %g’ , nxvec (1) , nyvec (2)) ,

sprintf (’mesh = %g x %g’ , nxvec (2) , nyvec (2)) ,
sprintf (’mesh = %g x %g’ , nxvec (3) , nyvec (3)) ,
sprintf (’mesh = %g x %g’ , nxvec (4) , nyvec (4)))

220 elseif var == 2
221 legend (sprintf (’pen = %g ’ , penvec (1)) , sprintf (’pen =

%g’ , penvec (2)) , sprintf (’pen = %g’ , penvec (3)) ,
sprintf (’pen = %g’ , penvec (4)))

222 elseif var == 3
223 legend (sprintf (’Rmin = %g ’ , rminvec (1)) , sprintf (’Rmin

= %g’ , rminvec (2)) , sprintf (’Rmin = %g’ , rminvec (3))
, sprintf (’Rmin = %g’ , rminvec (4)))

224 elseif var == 4

Master of Science Thesis Stefan Broxterman

206 Matlab Codes

225 legend (sprintf (’vol = %g ’ , volvec (1)) , sprintf (’vol =
%g’ , volvec (2)) , sprintf (’vol = %g’ , volvec (3)) ,
sprintf (’vol = %g’ , volvec (4)))

226 elseif var == 5
227 legend (sprintf (’cost = %g ’ , costvec (1)) , sprintf (’cost

= %g’ , costvec (2)) , sprintf (’cost = %g’ , costvec (3))
, sprintf (’cost = %g’ , costvec (4)))

228 end
229 end
230 xlabel (’Number of iterations’)
231 ylabel (’Compliance’)
232 if exist (’pcon’ ,’var’) == 0
233 yaxmax = mean ([yaxmin yaxmax]) ;
234 elseif pcon == 0
235 yaxmax = mean ([yaxmin yaxmax]) ;
236 end
237 axis ([0 xaxmax 0 .95∗ yaxmin yaxmax])
238 elseif var == 6
239 H3 = figure (3) ;
240 set (H3 , ’position’ , [H (1)−H (3) H (2) H (3) H (4)]) ; % place figure(2)

next to (1)
241 hold on
242 plot (C)
243 xlabel (’Number of iterations’)
244 ylabel (’Compliance’)
245 axis ([0 length (C) 0 .9∗ min (C) max (C)])
246 end
247 end
248 %% STORE RESULTS
249 disp (’Y = i, penalty , loops , objective , time’)
250 if var == 1 % mesh refinement
251 Ymesh = Y ; % store result matrix
252 save (’MeshRefinementY.mat’ ,’Y’) ;
253 elseif var == 2 % penalty
254 Ypenal = Y ; % store result matrix
255 save (’PenaltyY.mat’ ,’Y’) ;
256 elseif var == 3 % filter radius
257 Yfilter = Y ; % store result matrix
258 save (’FilterY.mat’ ,’Y’) ;
259 elseif var == 4 % filter radius
260 Yvolume = Y ; % store result matrix
261 save (’VolumeY.mat’ ,’Y’) ;
262 end
263 %% DRAW DESIGN PROBLEM
264 figure (2)
265 subplot (3 , 2 , (1 : 2)) % plot the initial mechanical problem
266 rectangle (’Position’ , [xbox (1) , ybox (1) , xwidth , ywidth] , . . .
267 ’FaceColor’ , [0 . 5 0 . 5 0 . 5])
268 axis equal ; axis tight ;
269 set (gca , ’XTick’ , [] , ’YTick’ , [] , ’XTicklabel’ , [] , . . .
270 ’YTicklabel’ , [] , ’xcolor’ ,’w’ ,’ycolor’ ,’w’)
271 ylabel (sprintf (’%s) ’ , (label (1))) ,’rot’ , 0 , ’color’ ,’k’ ,’FontSize’ , 11)
272 draw_arrow ([xbox (2) ybox (1)] , [xbox (2) −0.25∗ywidth] , 1)

Stefan Broxterman Master of Science Thesis

B.8 ADVANCED DOS.m 207

273 rectangle (’Position’ , [−0.1∗ xwidth , ybox (1) −0.1∗ywidth , . . .
274 0 .1∗ xwidth , 1 . 2 ∗ ywidth] , ’FaceColor’ , [0 0 0] , ’LineWidth’ , 3)

Master of Science Thesis Stefan Broxterman

208 Matlab Codes

B.9 Design of Actuator Placement.m

In this section, the complete code of designing optimal actuator placement is available. Here,
topology is not yet involved and remains fixed. By running this code, the produced picture
in Figure 5-2 can be made immediately.

1 %%
2 % %
3 % Topology Optimization Using Matlab %
4 % Design of Actuator Placement %
5 % %
6 % Delft University of Technology , Department PME %
7 % Master of Science Thesis Project %
8 % %
9 % Stefan Broxterman %

10 % %
11 %%
12 %
13 tic % start timer
14 %% DEFINE PARAMETERS
15 adv = 0 ; % use advanced function [0 = off, 1 = on]
16 if adv == 0 % define parameters at behalf of the advanced

function
17 nx = 90 ; % numer of elements horizontal
18 ny = 30 ; % number of elements vertical
19 vol = 1 ; % volume fraction [0-1]
20 pen = 3 ; % penalty
21 rmin = 1 . 5 ; % filter size
22 fil = 1 ; % filter method [0 = sensitivity filtering , 1 =

density filtering , 2 = heaviside filtering]
23 clc ; clf ; close all ; clear X ; clear W ; % clear workspace
24 end
25 %% DEFINE SOLUTION METHOD
26 sol = 1 ; % solution method [0 = oc(sens), 1 = mma]
27 pcon = 1 ; % use continuation method [0 = off, 1 = on]
28 fincheck = 1 ; % finite difference check [0 = off, 1 = on, 2 =

break]
29 %% DEFINE CALCULATION
30 tol = 0 . 0 0 1 ; % tolerance for convergence criterion [0.01]
31 move = 0 . 2 ; % move limit for lagrange [0.2]
32 pcinc = 1 . 0 3 ; % penalty continuation increasing factor [1.03]
33 piter = 20 ; % number of iteration for starting penalty [20]
34 miter = 1000 ; % maximum number of iterations [1000]
35 plotiter = 5 ; % gap of iterations used to plot or draw

iterations [5]
36 def = 0 ; % plot deformations [0 = off, 1 = on, 2 = play

video]
37 wplot = 0 . 2 0 ; % define treshold factor of Fmax for force plot

[0.20]
38 h = 1e−6; % perturbation value for finite difference method

[1e-6]
39 %% DEFINE OUTPUT

Stefan Broxterman Master of Science Thesis

B.9 Design of Actuator Placement.m 209

40 draw = 0 ; % plot iterations [0 = off, 1 = on, 2 = partial]
41 dis = 0 ; % display iterations [0 = off, 1 = on, 2 =

partial]
42 %% DEFINE MATERIAL
43 E = 1 ; % young ’s modulus of solid [1]
44 Emin = 1e−9; % young ’s modulus of void [1e-9]
45 nu = 0 . 3 ; % poisson ratio [0.3]
46 rho = 0e−3; % density [0e-3]
47 g = 9 . 8 1 ; % gravitational acceleration [9.81]
48 %% DEFINE FORCE
49 Fe = 2∗(ny+1)+45∗2∗(ny+1) : 2∗ (ny+1) : 2∗ (ny+1)∗(nx+1) ; % element of force

application [2*(ny+1)+45*2*(ny+1):2*(ny+1):2*(ny+1)*(nx+1)]
50 Fn = 1 ; % number of applied force locations [1]
51 Fv = −1/length (Fe) ; % value of applied force [-1]
52 %% DEFINE SUPPORTS
53 fix = 1 :2∗ (ny+1) ; % fixed degrees of freedom [1:2*(ny+1)]
54 %% DEFINE DESIGN OF ACTUATOR
55 Fmaxnode = 1 ; % define max force per node [1]
56 Fmin = −1; % minimal force constraint [1]
57 sen = 5 ; % penalty for actuator design [5]
58 if abs (Fmaxnode) > abs (Fmin) % check for force model
59 Fmma = −Fmin ; % use Fmin as maximum xmma value
60 else
61 Fmin = Fmin/Fmaxnode ; % use fraction for constraint function
62 Fmma = Fmaxnode ; % use maximum force per node as maximum xmma

value
63 end
64 Uarray = 1 :2∗ (nx+1)∗(ny+1) ; % define objective area
65 %% DEFINE ELEMENT RESTRICTIONS
66 shap = 0 ; % [0 = no restrictions , 1 = circle , 2 = custom]
67 area = 1 ; % [0 = no material (passive), 1 = material (

active)]
68 nodr = [1 : ny : nx∗ny 2 : ny : nx∗ny] ; % custom restricted nodes [1:ny:nx*ny]
69 %% PREPARE FINITE ELEMENT
70 N = 2∗(nx+1)∗(ny+1) ; % total element nodes
71 all = 1 :2∗ (nx+1)∗(ny+1) ; % all degrees of freedom
72 free = setdiff (all , fix) ; % free degrees of freedom
73 A11 = [12 3 −6 −3; 3 12 3 0 ; −6 3 12 −3; −3 0 −3 1 2] ; % fem
74 A12 = [−6 −3 0 3 ; −3 −6 −3 −6; 0 −3 −6 3 ; 3 −6 3 −6]; % fem
75 B11 = [−4 3 −2 9 ; 3 −4 −9 4 ; −2 −9 −4 −3; 9 4 −3 −4]; % fem
76 B12 = [2 −3 4 −9; −3 2 9 −2; 4 9 2 3 ; −9 −2 3 2] ; % fem
77 Ke = 1/(1−nu^2) /24∗ ([A11 A12 ; A12 ’ A11]+nu ∗ [B11 B12 ; B12 ’ B11]) ; % element

stiffness matrix
78 nodes = reshape (1 : (nx+1)∗(ny+1) ,1+ny ,1+nx) ; % create node numer matrix
79 dofvec = reshape (2∗ nodes (1 : end−1 ,1:end−1)+1,nx∗ny , 1) ; % create dof vector
80 dofmat = repmat (dofvec , 1 , 8)+repmat ([0 1 2∗ny+[2 3 0 1] −2 −1] ,nx∗ny , 1) ; %

create dof matrix
81 iK = reshape (kron (dofmat , ones (8 , 1)) ’ ,64∗ nx∗ny , 1) ; % build sparse i
82 jK = reshape (kron (dofmat , ones (1 , 8)) ’ ,64∗ nx∗ny , 1) ; % build sparse j
83 %% PREPARE FILTER
84 iH = ones (nx∗ny ∗ (2∗ (ceil (rmin)−1)+1)^2 ,1) ; % build sparse i
85 jH = ones (size (iH)) ; % create sparse vector of ones
86 kH = zeros (size (iH)) ; % create sparse vector of zeros

Master of Science Thesis Stefan Broxterman

210 Matlab Codes

87 m = 0 ; % index for filtering
88 for i = 1 : nx % for each element calculate distance between ...
89 for j = 1 : ny % elements ’ center for filtering
90 r1 = (i−1)∗ny+j ; % sparse value i
91 for k = max (i−(ceil (rmin)−1) ,1) : min (i+(ceil (rmin)−1) ,nx) %

center of element
92 for l = max (j−(ceil (rmin)−1) ,1) : min (j+(ceil (rmin)−1) , ny) %

center of element
93 r2 = (k−1)∗ny+l ; % sparse value 2
94 m = m+1; % update index for filtering
95 iH (m) = r1 ; % sparse vector for filtering
96 jH (m) = r2 ; % sparse vector for filtering
97 kH (m) = max (0 , rmin−sqrt ((i−k)^2+(j−l) ^2)) ; % weight

factor
98 end
99 end

100 end
101 end
102 H = sparse (iH , jH , kH) ; % build filter
103 Hs = sum (H , 2) ; % summation of filter
104 %% DEFINE ELEMENT RESTRICTIONS
105 x = vol∗ones (ny , nx) ; % initial material distribution
106 if shap == 0 % no restrictions
107 efree = (1 : nx∗ny) ’ ; % all elements are free
108 eres= [] ; % no restricted elements
109 elseif shap == 1 % circular restrictions
110 rest = zeros (ny , nx) ; % pre-allocate space
111 for i = 1 : nx % start loop
112 for j = 1 : ny % for each element
113 if sqrt ((j−ny /2)^2+(i−nx /4) ^2) < ny /2 .5 % circular

restriction
114 rest (j , i) = 1 ; % write restriction
115 if rest (j , i) == area % check for restriction
116 x (j , i) = area ; % store restrictions in material

distribution
117 end
118 end
119 end
120 end
121 elseif shap == 2 % custom restrictions
122 rest = zeros (ny∗nx , 1) ; % pre-allocate space
123 for i = 1 : length (nodr) % write restriction
124 resti = nodr (i) ; % write restriction
125 rest (resti) = 1 ; % write restriction
126 end
127 rest = reshape (rest , ny , nx) ;
128 for i = 1 : nx % start loop
129 for j = 1 : ny % for each element
130 if rest (j , i) == area % check for restriction
131 x (j , i) = area ; % store restrictions in material

distribution
132 end
133 end

Stefan Broxterman Master of Science Thesis

B.9 Design of Actuator Placement.m 211

134 end
135 efree = find (rest ~= 1) ; % set free elements
136 eres = find (rest == 1) ; % set restricted ellements
137 end
138 if fil == 0 | | fil == 1 % sensitivity , density filter
139 xF = x ; % set filtered design variables
140 elseif fil == 2 % heaviside filter
141 beta = 1 ; % hs filter
142 xTilde = x ; % hs filter
143 xF = 1−exp(−beta∗xTilde)+xTilde∗exp(−beta) ; % set filtered design

space
144 end
145 xFree = xF (efree) ; % define free design matrix
146 %% DEFINE STRUCTURAL
147 Fsiz = size (Fe , 1) ; % size of load vector
148 F = sparse (Fe , Fn , Fv , N , Fsiz) ; % define load vector
149 %% DESIGN OF ACTUATOR DISTRIBUTION
150 wsiz = size (Fe , 2) ; % size of actuator variables
151 wzer = zeros (wsiz , 1) ; % empty row of zeros for mma usage
152 wF = F ; % plugin initial force distribution
153 wval = F (Fe) ; % create vector of design variables
154 %% DEFINE MMA PARAMETERS
155 m = 1 ; % number of constraint functions
156 n = wsiz ; % number of variables
157 xmin = −1∗ones (n , 1) ; % minimum values of x
158 xmax = −(1e−9/Fmma) ∗ones (wsiz , 1) ; % maximum values of x
159 xold1 = zeros (n , 1) ; % previous x, to monitor convergence
160 xold2 = xold1 ; % used by mma to monitor convergence
161 df0dx2 = zeros (n , 1) ; % second derivative of the objective function
162 dfdx2 = zeros (m , n) ; % second derivative of the constraint function
163 low = xmin ; % lower asymptotes from the previous iteration
164 upp = xmax ; % upper asymptotes from the previous iteration
165 a0 = 1 ; % constant a_0 in mma formulation [1]
166 a = zeros (m , 1) ; % constant a_i in mma formulation
167 cmma = 1e3∗ones (m , 1) ; % constant c_i in mma formulation
168 d = zeros (m , 1) ; % constant d_i in mma formulation
169 subs = 200 ; % maximum number of subsolv iterations [200]
170 %% PRE-ALLOCATE SPACE
171 npx = zeros (length (fix) , 1) ’ ; % pre-allocate constraint dots
172 npy = zeros (length (fix) , 1) ’ ; % pre-allocate constraint dots
173 npfx = zeros (length (Fe) , 1) ’ ; % pre-allocate force dots
174 npfy = zeros (length (Fe) , 1) ’ ; % pre-allocate force dots
175 npdx = zeros (length (nodes) , 1) ’ ; % pre-allocate force dots
176 npdy = zeros (length (nodes) , 1) ’ ; % pre-allocate force dots
177 U = zeros (size (F)) ; % pre-allocate space displacement
178 c = zeros (miter , 1) ; % pre-allocate objective vector
179 L = zeros (N , 1) ; % pre-allocate selection tensor
180 labda = zeros (N , 1) ; % pre-allocate lagrange multiplier
181 Fi = zeros (1 , N) ; % pre-allocate force selection vector
182 Cons = zeros (miter , 1) ; % pre-allocate constraint vector
183 %% DEFINE SELECTION TENSOR
184 for j = Uarray % for each iteration..
185 if mod (j , 2) == 0 % ...check for horizontal or vertical

Master of Science Thesis Stefan Broxterman

212 Matlab Codes

186 L (j) = 1 ; % vertical selection value
187 else
188 L (j) = 1 ; % horizontal selection value
189 end
190 end
191 %% INITIALIZE LOOP
192 iter = 0 ; % initialize loop
193 diff = 1 ; % initialize convergence criterion
194 loopbeta = 1 ; % initialize beta-loop
195 %% START LOOP
196 while ((diff > tol) | | (iter < piter+1)) && iter < miter % convergence

criterion not met
197 loopbeta = loopbeta +1; % iteration loop for hs filter
198 iter = iter+1; % define iteration
199 if pcon == 1 % use continuation method
200 if iter <= piter % first number of iterations...
201 p = 1 ; %... set penalty 1
202 s = 0 . 5 ; %... set penalty 0.5 for actuator design
203 elseif iter > piter % after a number of iterations...
204 p = min (pen , pcinc∗p) ; % ... set continuation penalty
205 s = min (sen , 1 . 0 6∗ s) ; % ... set continuation penalty actuator

design
206 end
207 elseif pcon == 0 % not using continuation method
208 p = pen ; % set penalty
209 s = sen ; % set penalty actuator design
210 end
211 %% Selfweight
212 if rho ~= 0 % gravity is involved
213 xP=zeros (ny , nx) ; % pre-allocate space
214 xP (xF>0.25) = xF (xF>0.25) .^ p ; % normal penalization
215 xP (xF<=0.25) = xF (xF<=0.25) . ∗ (0 . 2 5^ (p−1)) ; % below pseudo -density
216 Fsw = zeros (N , 1) ; % pre-allocate self-weight
217 for i=1:nx∗ny % for each element , set gravitational...
218 Fsw (dofmat (i , 2 : 2 : end))=Fsw (dofmat (i , 2 : 2 : end))−xF (i) ∗rho

∗9 . 81/4 ;
219 end % force to the attached nodes
220 Fsw=repmat (Fsw , 1 , size (F , 2)) ; % set self-weight for load cases
221 elseif rho == 0 % no gravity
222 xP = xF .^ p ; % penalized design variable
223 Fsw = 0 ; % no selfweight
224 end
225 wP = atan (s∗wF) /atan (s) ; % penalized actuator variable
226 Ftot = Fmma ∗(wP) + Fsw ; % total force
227 %% Finite element analysis
228 kK = reshape (Ke (:) ∗(Emin+xP (:) ’∗ (E−Emin)) ,64∗nx∗ny , 1) ; % create

sparse vector k
229 K = sparse (iK , jK , kK) ; % combine sparse vectors
230 K = (K+K ’) /2 ; % build stiffness matrix
231 U (free , :) = K (free , free) \Ftot (free , :) ; % displacement solving
232 c (iter) = 0 ; % set compliance to zero
233 Sens = 0 ; % set sensitivity to zero
234 Senw = 0 ; % set constraint sensitivity to zero

Stefan Broxterman Master of Science Thesis

B.9 Design of Actuator Placement.m 213

235 Cons (iter) = 0 ; % set constraint to zero
236 Senc = ones (1 , N) ; % set constraint sensitivity
237 %% Calculate compliance and sensitivity
238 for i = 1 : size (Fn , 2) % for number of load cases
239 Ui = U (: , i) ; % displacement per load case
240 c0 = reshape (sum ((Ui (dofmat) ∗Ke) .∗ Ui (dofmat) , 2) ,ny , nx) ; % initial

compliance
241 c (iter) = c (iter) − sum (sum (Ui)) ; % objective
242 labda (free) = −K (free , free) \L (free) ; % calculate lagrange

multiplie
243 Fi (Fe) = (Fmma∗s . / ((s^2∗wF (Fe) .^2+1) ∗(atan (s)))) ; % force

selection vector
244 FFi = spdiags (Fi ’ , 0 , N , N) ; % force selection vector
245 Sens = Sens + FFi (Fe , Fe) ∗labda (Fe) ; % calculate sensitivity
246 Cons (iter) = Cons (iter) + Fmma ∗(Fmin/sum (sum (wF)))−1; % calculate

constraint
247 dCdf = Senc (Fe) ’∗ Fmma∗full (Fmin)/−(sum (sum (full (wF)))) ^2 ; %

constraint sensitivity
248 if iter == 2 % finite difference method
249 wF1 = wF ; % store first force vector
250 [~ , S1] = max (abs (Sens (:))) ; % calculate maximum sensitivity

value
251 Sens1 = Sens (S1) ; % store maximum sensitivity value
252 [~ , S2] = max (abs (dCdf (:))) ; % calculate maximum sensitivity

value
253 Sens2 = dCdf (S2) ; % store maximum sensitivity value
254 end
255 end
256
257 if fil == 0 % optimality criterion with sensitivity filter
258 Sens (:) = Sens ; % update filtered sensitivity
259 Sencw (:) = Senc ; % update filtered sensitivity
260 elseif fil == 1 % optimality criterion with density filter
261 Sens (:) = Sens ; % update filtered sensitivity of constraint
262 Sencw (:) = Senc ; % update filtered sensitivity of constraint
263 elseif fil == 2 % optimality criterion with heaviside filter
264 dx = beta∗exp(−beta∗xTilde)+exp(−beta) ; % update hs parameter
265 Sens (:) = H∗(Sens (:) .∗ dx (:) . / Hs) ; % update filtered sensitivity
266 Sencw (:) = Senc ; % update filtered sensitivity of constraint
267 end
268 %% Update design variables Optimality Criterion
269 if sol == 0 % use optimality criterion method
270 l1 = 0 ; % initial lower bound for lagranian mulitplier
271 l2 = 1e9 ; % initial upper bound for lagranian multiplier
272 while (l2−l1) /(l1+l2) > 1e−3 % start loop
273 lag = 0 .5∗ (l1+l2) ; % average of lagranian interval
274 xnew = max (0 , max (x−move , min (1 , min (x+move , x .∗ sqrt(−Sens . / Senc/

lag))))) ; % update element densities
275 if fil == 0 % sensitivity filter
276 xF = xnew ; % updated result
277 elseif fil == 1 % density filter
278 xF (:) = (H∗xnew (:)) . / Hs ; % updated filtered density

result

Master of Science Thesis Stefan Broxterman

214 Matlab Codes

279 elseif fil == 2 % heaviside filter
280 xTilde (:)= (H∗xnew (:)) . / Hs ; % set filtered density
281 xF (:) =1−exp(−beta∗xTilde)+xTilde∗exp(−beta) ; % updated

result
282 end
283 if shap == 1 % restriction is on
284 xF (rest==1) = area ; % set restricted area
285 end
286 if sum (xF (:)) > vol∗nx∗ny % check for optimum
287 l1 = lag ; % update lower bound to average
288 else
289 l2 = lag ; % update upper bound to average
290 end
291 end
292 %% Method of moving asymptotes
293 elseif sol == 1 % use mma solver
294 xval = wval (:) ; % store current design variable for mma
295 if iter == 1 % for the first iteration...
296 cscale = 1/c (iter) ; % ...set scaling factor for mma solver
297 end
298 f0 = c (iter) ∗cscale ; % objective at current design variable for

mma
299 df0dx = Sens∗cscale ; % store sensitivity for mma
300 f = Cons (iter) ; % normalized constraint function
301 dfdx = dCdf ; % derivative constraint function
302 [xmma , ~ ,~ ,~ ,~ ,~ ,~ ,~ ,~ , low , upp] = . . .
303 mmasub (m , n , iter , xval , xmin , xmax , xold1 , xold2 , . . .
304 f0 , df0dx , df0dx2 , f , dfdx , dfdx2 , low , upp , a0 , a , cmma , d , subs) ; % mma

solver
305 xold2 = xold1 ; % used by mma to monitor convergence
306 xold1 = wval (:) ; % previous x, to monitor convergence
307 xnew = xF ; % update density result
308 wnew = wF ; % update force result
309 wnew (Fe) = xmma (1 : end) ; % include mma result
310 if fil == 0 % sensitivity filter
311 xF = xnew ; % update design variables
312 elseif fil == 1 % density filter
313 xF (:) = (H∗xnew (:)) . / Hs ; % update filtered densities result
314 elseif fil == 2 % heaviside filter
315 xTilde (:)= (H∗xnew (:)) . / Hs ; % filtered result
316 xF (:)=1−exp(−beta∗xTilde)+xTilde∗exp(−beta) ; % update design

variable
317 end
318 if shap == 1 | | shap == 2 % if restrictions enableed
319 xF (rest==1) = area ; % set restricted area
320 end
321 wF (:) = wnew (:) ; % update support variables
322 wval = wnew (Fe) ; % update support variables
323 end
324 diff = max (abs (full (Fmma∗wnew (:))−full (F (:)))) ; % difference of

maximum element change
325 F = Fmma∗wnew ; % update design variable

Stefan Broxterman Master of Science Thesis

B.9 Design of Actuator Placement.m 215

326 if fil == 2 && beta < 512 && pen == p (end) && (loopbeta >= 50 | | diff
<= tol) % hs filter

327 beta = 2∗beta ; % increase beta-factor
328 fprintf (’beta now is %3.0f\n’ , beta) % display increase of b-

factor
329 loopbeta = 0 ; % set hs filter loop to zero
330 diff = 1 ; % set convergence to initial value
331 end
332 %% Finite difference method
333 if (fincheck == 1 | | fincheck == 2) % check for finite difference

method
334 if iter == 2 % on first findif iteration
335 wF = wF1 ; % store first findif result...
336 wF (Fe (S1)) = wF1 (Fe (S1))+h ; %...and add a small pertubation
337 elseif iter == 3 % on second findif iteration
338 findif = (c (3)−c (2)) /h ; % calculate finite difference method
339 Sensdif = abs (max ((findif−Sens1) /Sens1 , (Sens1−findif) /findif)

) ; % maximum difference
340 if Sensdif > 0.01 % when difference between sensitivity and

findif is too much display
341 disp ([’Warning: Sensitivity needs to be checked , max

difference:’ sprintf (’%10.2f’ , Sensdif)])
342 if fincheck == 2 % when fincheck is not accomplished...
343 break %... break the loop and stop the code
344 end
345 end
346 wF = wF1 ; % store first findif result...
347 wF (Fe (S2)) = wF1 (Fe (S2))+h ; %...and add a small pertubation
348 elseif iter == 4 % on third findif iteration
349 findif2 = (Cons (4)−Cons (2)) /h ; % calculate finite difference

method
350 Sensdif2 = abs (max ((findif2−Sens2) /Sens2 , (Sens2−findif2) /

findif2)) ; % maximum difference
351 if Sensdif2 > 0.01 % when difference between sensitivity and

findif is too much display
352 disp ([’Warning: Sensitivity needs to be checked , max

difference:’ sprintf (’%10.2f’ , Sensdif2)])
353 if fincheck == 2 % when fincheck is not accomplished...
354 break %... break the loop and stop the code
355 end
356 end
357 end
358 end
359 %% Store results into database X
360 X (: , : , iter) = xF ; % each element value x is stored for each

iteration
361 C (iter) = c (iter) ; % each compliance is stored for each iteration
362 W (: , : , iter) = full (wF) ; % each force variable is stored for each

iteration
363 assignin (’base’ , ’X’ , X) ; % each iteration (3rd dimension)
364 assignin (’base’ , ’C’ , C) ; % each iteration (3rd dimension)
365 assignin (’base’ , ’W’ , W) ; % each iteration (3rd dimension)
366 %% Results

Master of Science Thesis Stefan Broxterman

216 Matlab Codes

367 if dis == 1 % display iterations
368 disp ([’ Iter:’ sprintf (’%4i’ , iter) ’ Obj:’ sprintf (’%10.4f’ ,c (

iter)) . . .
369 ’ Ftot:’ sprintf (’%6.3f’ , sum (full (wP (:)))) ’ Diff:’ sprintf (’

%6.3f’ , diff)]) ;
370 elseif dis == 2 % display parts of iterations
371 if iter == 1 | | iter == disiter
372 if iter == 1
373 disiter = plotiter ;
374 elseif iter == disiter
375 disiter = disiter + plotiter ;
376 end
377 disp ([’ Iter:’ sprintf (’%4i’ , iter) ’ Obj:’ sprintf (’%10.4f’ ,c

(iter)) . . .
378 ’ Ftot:’ sprintf (’%6.3f’ , sum (full (wP (:)))) ’ Diff:’

sprintf (’%6.3f’ , diff)]) ;
379 end
380 end
381 if draw == 1 % plot iterations
382 figure (1)
383 subplot (2 , 1 , 1)
384 colormap (gray) ; imagesc(1−xF) ;
385 set (gca , ’XTick’ , [] , ’YTick’ , [] , ’XTicklabel’ , [] , . . .
386 ’YTicklabel’ , [] , ’xcolor’ ,’[0.7 0.7 0.7]’ ,’ycolor’ ,’[0.7 0.7

0.7]’)
387 xlabel (sprintf (’c = %.2f’ ,c (iter)) ,’Color’ ,’k’)
388 axis equal ; axis tight
389 drawnow ;
390 hold on
391 if iter == 1
392 % Plot coloured dots for constraints
393 for i = 1 : length (fix)
394 npx (i) = ceil (fix (i) /(2∗ (ny+1))) −0.5;
395 nplot = ceil (fix (i) /2) ;
396 while nplot > (ny+1)
397 nplot = nplot−(ny+1) ;
398 end
399 npy (i) = nplot−0.5 ;
400 end
401 plot (npx , npy , ’r.’ ,’MarkerSize’ , 20)
402 end
403 % Plot coloured dots for force application
404 Fmaxplot = min (min (full (F))) ;
405 for i = 1 : length (Fe)
406 if F (Fe (i)) < wplot∗Fmaxplot
407 npfx (i) = ceil (Fe (i) /(2∗ (ny+1))) −0.5;
408 nplot = ceil (Fe (i) /2) ;
409 while nplot > (ny+1)
410 nplot = nplot−(ny+1) ;
411 end
412 npfy (i) = nplot−0.5 ;
413 end
414 end

Stefan Broxterman Master of Science Thesis

B.9 Design of Actuator Placement.m 217

415 if iter > 1
416 delete (Dof)
417 end
418 if exist (’npfx’ ,’var’)
419 Dof = plot (npfx (npfx (:) >0) , npfy (npfy (:) >0) , ’b.’ ,’MarkerSize’

, 20) ;
420 clear npfx ; clear npfy ;
421 uistack (Dof , ’top’)
422 end
423 % Plot coloured arrows for force application
424 if (((diff < tol) && iter >= piter+1) | | iter >= miter)
425 for i = 1 : length (Fe)
426 npfx (i) = ceil (Fe (i) /(2∗ (ny+1))) −0.5;
427 nplot = ceil (Fe (i) /2) ;
428 while nplot > (ny+1)
429 nplot = nplot−(ny+1) ;
430 end
431 npfy (i) = nplot−0.5 ;
432 end
433 for i = 1 : length (Fe)
434 if F (Fe (i)) < wplot∗Fmaxplot
435 headsize = 1/sqrt (length (nonzeros (F (Fe) <0.5∗Fmaxplot)

)) ;
436 if mod (Fe (i) , 2)
437 arrowz ([npfx (i) npfy (i)] , [npfx (i) +0.5∗ny∗F (Fe (i))

/Fmaxplot npfy (i)] , headsize , 2 , [0 0 1])
438 else
439 arrowz ([npfx (i) npfy (i)] , [npfx (i) npfy (i) +0.5∗ny∗

F (Fe (i)) /Fmaxplot] , headsize , 2 , [0 0 1])
440 end
441 end
442 end
443 end
444 % Plot compliance plot
445 figure (1)
446 subplot (2 , 1 , 2)
447 plot (c (1 : iter))
448 set (gca , ’YTick’ , [] , ’YTicklabel’ , [])
449 xlabel (’Iterations’)
450 ylabel (’Compliance’)
451 xaxmax = c (iter) ;
452 yaxmax = max (c) ;
453 yaxmin = min (c (1 : iter)) ;
454 if pcon == 0
455 yaxmax = mean ([yaxmin yaxmax]) ;
456 end
457 ylim ([0 . 9 5 ∗ yaxmin yaxmax])
458 xlim ([1 min (iter+10,miter)])
459 elseif draw == 2 % plot parts of iterations
460 if iter == 1 | | iter == drawiter
461 if iter == 1
462 drawiter = plotiter ;
463 elseif iter == drawiter

Master of Science Thesis Stefan Broxterman

218 Matlab Codes

464 drawiter = drawiter + plotiter ;
465 end
466 figure (1)
467 subplot (2 , 1 , 1)
468 colormap (gray) ; imagesc(1−xF) ;
469 set (gca , ’XTick’ , [] , ’YTick’ , [] , ’XTicklabel’ , [] , . . .
470 ’YTicklabel’ , [] , ’xcolor’ ,’[0.7 0.7 0.7]’ ,’ycolor’ ,’[0.7

0.7 0.7]’)
471 xlabel (sprintf (’c = %.2f’ ,c (iter)) , ’Color’ ,’k’)
472 axis equal ; axis tight
473 drawnow ;
474 hold on
475 if iter == 1
476 % Plot coloured dots for constraints
477 for i = 1 : length (fix)
478 npx (i) = ceil (fix (i) /(2∗ (ny+1))) −0.5;
479 nplot = ceil (fix (i) /2) ;
480 while nplot > (ny+1)
481 nplot = nplot−(ny+1) ;
482 end
483 npy (i) = nplot−0.5 ;
484 end
485 plot (npx , npy , ’r.’ ,’MarkerSize’ , 20)
486 end
487 % Plot coloured dots for force application
488 Fmaxplot = min (min (full (F))) ;
489 for i = 1 : length (Fe)
490 if F (Fe (i)) < wplot∗Fmaxplot
491 npfx (i) = ceil (Fe (i) /(2∗ (ny+1))) −0.5;
492 nplot = ceil (Fe (i) /2) ;
493 while nplot > (ny+1)
494 nplot = nplot−(ny+1) ;
495 end
496 npfy (i) = nplot−0.5 ;
497 end
498 end
499 if iter > 1
500 delete (Dof)
501 end
502 if exist (’npfx’ ,’var’)
503 Dof = plot (npfx (npfx (:) >0) , npfy (npfy (:) >0) , ’b.’ ,’

MarkerSize’ , 20) ;
504 clear npfx ; clear npfy ;
505 uistack (Dof , ’top’)
506 end
507 % Plot coloured arrows for force application
508 if (((diff < tol) && iter >= piter+1) | | iter >= miter)
509 for i = 1 : length (Fe)
510 npfx (i) = ceil (Fe (i) /(2∗ (ny+1))) −0.5;
511 nplot = ceil (Fe (i) /2) ;
512 while nplot > (ny+1)
513 nplot = nplot−(ny+1) ;
514 end

Stefan Broxterman Master of Science Thesis

B.9 Design of Actuator Placement.m 219

515 npfy (i) = nplot−0.5 ;
516 end
517 for i = 1 : length (Fe)
518 if F (Fe (i)) < wplot∗Fmaxplot
519 headsize = 1/sqrt (length (nonzeros (F (Fe) <0.5∗

Fmaxplot))) ;
520 if mod (Fe (i) , 2)
521 arrowz ([npfx (i) npfy (i)] , [npfx (i) +0.5∗ny∗F (Fe

(i)) /Fmaxplot npfy (i)] , headsize , 2 , [0 0 1])
522 else
523 arrowz ([npfx (i) npfy (i)] , [npfx (i) npfy (i)

+0.5∗ny∗F (Fe (i)) /Fmaxplot] , headsize , 2 , [0 0
1])

524 end
525 end
526 end
527 end
528 % Plot compliance plot
529 figure (1)
530 subplot (2 , 1 , 2)
531 plot (c (1 : iter))
532 set (gca , ’YTick’ , [] , ’YTicklabel’ , [])
533 xlabel (’Iterations’)
534 ylabel (’Compliance’)
535 xaxmax = c (iter) ;
536 yaxmax = max (c) ;
537 yaxmin = min (c (1 : iter)) ;
538 if pcon == 0
539 yaxmax = mean ([yaxmin yaxmax]) ;
540 end
541 ylim ([0 . 9 5 ∗ yaxmin yaxmax])
542 xlim ([1 min (iter+10,miter)])
543 end
544 end
545 end
546 %% ONLY DISPLAY FINAL RESULT
547 if dis == 0 | | dis == 2 % display final result
548 disp ([’ Iter:’ sprintf (’%4i’ , iter) ’ Obj:’ sprintf (’%10.4f’ ,c (iter))

. . .
549 ’ Ftot:’ sprintf (’%6.3f’ , sum (full (wP (:)))) ’ Diff:’ sprintf (’%6.3

f’ , diff)]) ;
550 end
551 if draw == 0 | | draw == 2 % plot final result
552 figure (1)
553 subplot (2 , 1 , 1)
554 colormap (gray) ; imagesc(1−xF) ;
555 axis equal ; axis tight ;
556 set (gca , ’XTick’ , [] , ’YTick’ , [] , ’XTicklabel’ , [] , . . .
557 ’YTicklabel’ , [] , ’xcolor’ ,’[0.7 0.7 0.7]’ ,’ycolor’ ,’[0.7 0.7 0.7]’

)
558 xlabel (sprintf (’c = %.2f’ ,c (iter)) , ’Color’ ,’k’)
559 drawnow ;
560 hold on

Master of Science Thesis Stefan Broxterman

220 Matlab Codes

561 % Plot coloured dots for constraints
562 for i = 1 : length (fix)
563 npx (i) = ceil (fix (i) /(2∗ (ny+1))) −0.5;
564 nplot = ceil (fix (i) /2) ;
565 while nplot > (ny+1)
566 nplot = nplot−(ny+1) ;
567 end
568 npy (i) = nplot−0.5 ;
569 end
570 plot (npx , npy , ’r.’ ,’MarkerSize’ , 20)
571 % Plot coloured dots for force application
572 Fmaxplot = min (min (full (F))) ;
573 for i = 1 : length (Fe)
574 if F (Fe (i)) < wplot∗Fmaxplot
575 npfx (i) = ceil (Fe (i) /(2∗ (ny+1))) −0.5;
576 nplot = ceil (Fe (i) /2) ;
577 while nplot > (ny+1)
578 nplot = nplot−(ny+1) ;
579 end
580 npfy (i) = nplot−0.5 ;
581 end
582 end
583 if iter > 1
584 delete (Dof)
585 end
586 if exist (’npfx’ ,’var’)
587 Dof = plot (npfx (npfx (:) >0) , npfy (npfy (:) >0) , ’b.’ ,’MarkerSize’ , 20) ;
588 clear npfx ; clear npfy ;
589 uistack (Dof , ’top’)
590 end
591 % Plot coloured arrows for force application
592 if (((diff < tol) && iter >= piter+1) | | iter >= miter)
593 for i = 1 : length (Fe)
594 npfx (i) = ceil (Fe (i) /(2∗ (ny+1))) −0.5;
595 nplot = ceil (Fe (i) /2) ;
596 while nplot > (ny+1)
597 nplot = nplot−(ny+1) ;
598 end
599 npfy (i) = nplot−0.5 ;
600 end
601 for i = 1 : length (Fe)
602 if F (Fe (i)) < wplot∗Fmaxplot
603 headsize = 1/sqrt (length (nonzeros (F (Fe) <0.5∗Fmaxplot))) ;
604 if mod (Fe (i) , 2)
605 arrowz ([npfx (i) npfy (i)] , [npfx (i) +0.5∗ny∗F (Fe (i)) /

Fmaxplot npfy (i)] , headsize , 2 , [0 0 1])
606 else
607 arrowz ([npfx (i) npfy (i)] , [npfx (i) npfy (i) +0.5∗ny∗F (Fe

(i)) /Fmaxplot] , headsize , 2 , [0 0 1])
608 end
609 end
610 end
611 end

Stefan Broxterman Master of Science Thesis

B.9 Design of Actuator Placement.m 221

612 % Plot compliance plot
613 if adv == 0
614 figure (1)
615 subplot (2 , 1 , 2)
616 plot (c (1 : iter))
617 set (gca , ’YTick’ , [] , ’YTicklabel’ , [])
618 xlabel (’Iterations’)
619 ylabel (’Compliance’)
620 xaxmax = c (iter) ;
621 yaxmax = max (c) ;
622 yaxmin = min (c (1 : iter)) ;
623 if pcon == 0
624 yaxmax = mean ([yaxmin yaxmax]) ;
625 end
626 ylim ([0 . 9 5 ∗ yaxmin yaxmax])
627 xlim ([1 min (iter+10,miter)])
628 end
629 end
630 %% PLOTTING DISPLACEMENT
631 if (def == 1 | | def == 2)
632 FileName = [’Displacement_’ , datestr (now , ’ddmm_HHMMSS’) , ’.avi’] ; %

dynamic filename
633 vidObj = VideoWriter (FileName) ;
634 vidObj . FrameRate = 3 ;
635 figure (1)
636 subplot (2 , 1 , 1)
637 xaxis = get (gca , ’XLim’) ;
638 yaxis = get (gca , ’YLim’) ;
639 open (vidObj) ;
640 figure (2)
641 clear mov
642 colormap (gray) ;
643 Umov = 1 ; % start movie counter
644 Uim = zeros (5642 ,1) ;
645 Uim (2 : 2 : end) = Ui (2 : 2 : end) ;
646 Uim (1 : 2 : end) = −Ui (1 : 2 : end) ;
647 Umax = −10/max (abs (Uim)) ; % define maximum displacement
648 steps = 1 ; % number of displacement steps
649 set (gca , ’nextplot’ ,’replacechildren’) ;
650 Upatch = zeros (nx∗ny , 1) ;
651 for i = 1 : ny∗nx
652 Uindex = 2∗(i+floor ((i−1)/ny))−1+[1 2 2∗(ny+1)+1 2∗(ny+1)+3] ;
653 Upatch (i , 1) = mean (U (Uindex)) ;
654 end
655 Upatch = reshape (Upatch , ny , nx) ;
656 Upatchmin = min (min (Upatch)) ;
657 Upatchnorm = −Upatch/Upatchmin ;
658 for Udisp = linspace (Umax/steps , Umax , steps) % vary input displacement
659 clf
660 for ely = 1 : ny % plot displacements...
661 for elx = 1 : nx % for each element...
662 if xF (ely , elx) > 0 % exclude white regions for plotting

purposes

Master of Science Thesis Stefan Broxterman

222 Matlab Codes

663 n1 = (ny+1)∗(elx−1)+ely ;
664 n2 = (ny+1)∗ elx +ely ;
665 Ue = Udisp∗Uim ([2∗ n1−1;2∗n1 ; 2∗n2−1;2∗n2 ; 2∗n2+1;2∗n2

+2; 2∗n1+1;2∗n1+2] ,1) ;
666 ly = ely−1; lx = elx−1;
667 xx = [Ue (1 , 1)+lx Ue (3 , 1)+lx+1 Ue (5 , 1)+lx+1 Ue (7 , 1)+lx

] ’ ;
668 yy = [−Ue (2 , 1)−ly −Ue (4 , 1)−ly −Ue (6 , 1)−ly−1 −Ue (8 , 1)−

ly−1] ’ ;
669 patch ([xx xx] , [yy yy] , [Upatchnorm (ely , elx) Upatchnorm

(ely , elx)] , ’LineStyle’ ,’none’) ;
670
671 end
672 end
673 end
674 colormap jet % for better interpation...
675 axis tight
676 axis equal
677 xticks ([0 15 30 45 60 75 90])
678 box on
679 colorbar
680 drawnow % ...draw coloured densities
681 currFrame = getframe ; % get current frame...
682 writeVideo (vidObj , currFrame) ; % ... write to video file
683 end
684 close (vidObj) ;
685 end
686 if def == 2 % when def equals 2...
687 implay (FileName) % ...open Matlab Movie Player
688 end
689 toc

Stefan Broxterman Master of Science Thesis

B.10 Design of Actuator Placement Including Topology Optimization.m 223

B.10 Design of Actuator Placement Including Topology Optimiza-
tion.m

In this section, the complete code of designing optimal actuator placement, including topol-
ogy optimization is made available. By running this code, the produced picture in Figure 5-6
can be made immediately. The constraints are scaled, in order to prioritize the compliance
constraint.

1 %%
2 % %
3 % Topology Optimization Using Matlab %
4 % Design of Actuator Placement %
5 % %
6 % Delft University of Technology , Department PME %
7 % Master of Science Thesis Project %
8 % %
9 % Stefan Broxterman %

10 % %
11 %%
12 %
13 tic % start timer
14 %% DEFINE PARAMETERS
15 adv = 0 ; % use advanced function [0 = off, 1 = on]
16 if adv == 0 % define parameters at behalf of the advanced

function
17 nx = 90 ; % numer of elements horizontal
18 ny = 30 ; % number of elements vertical
19 vol = 0 . 2 ; % volume fraction [0-1]
20 pen = 3 ; % penalty
21 rmin = 1 . 5 ; % filter size
22 fil = 1 ; % filter method [0 = sensitivity filtering , 1 =

density filtering , 2 = heaviside filtering]
23 clc ; clf ; close all ; clear X ; clear W ; % clear workspace
24 end
25 %% DEFINE SOLUTION METHOD
26 sol = 1 ; % solution method [0 = oc(sens), 1 = mma]
27 pcon = 1 ; % use continuation method [0 = off, 1 = on]
28 fincheck = 1 ; % finite difference check [0 = off, 1 = on, 2 =

break]
29 %% DEFINE CALCULATION
30 tol = 0 . 0 0 1 ; % tolerance for convergence criterion [0.01]
31 move = 0 . 2 ; % move limit for lagrange [0.2]
32 pcinc = 1 . 0 3 ; % penalty continuation increasing factor [1.03]
33 piter = 20 ; % number of iteration for starting penalty [20]
34 miter = 1000 ; % maximum number of iterations [1000]
35 plotiter = 5 ; % gap of iterations used to plot or draw

iterations [5]
36 def = 0 ; % plot deformations [0 = off, 1 = on, 2 = play

video]
37 wplot = 0 . 2 0 ; % define treshold factor of Fmax for force plot

[0.20]

Master of Science Thesis Stefan Broxterman

224 Matlab Codes

38 h = 1e−6; % perturbation value for finite difference method
[1e-6]

39 %% DEFINE OUTPUT
40 draw = 1 ; % plot iterations [0 = off, 1 = on, 2 = partial]
41 dis = 1 ; % display iterations [0 = off, 1 = on, 2 =

partial]
42 %% DEFINE MATERIAL
43 E = 1 ; % young ’s modulus of solid [1]
44 Emin = 1e−9; % young ’s modulus of void [1e-9]
45 nu = 0 . 3 ; % poisson ratio [0.3]
46 rho = 0e−3; % density [0e-3]
47 g = 9 . 8 1 ; % gravitational acceleration [9.81]
48 %% DEFINE FORCE
49 Fe = 2∗(ny+1)+45∗2∗(ny+1) : 2∗ (ny+1) : 2∗ (ny+1)∗(nx+1) ; % element of force

application [2*(ny+1)+45*2*(ny+1):2*(ny+1):2*(ny+1)*(nx+1)]
50 Fn = 1 ; % number of applied force locations [1]
51 Fv = −1/length (Fe) ; % value of applied force [-1]
52 %% DEFINE SUPPORTS
53 fix = 1 :2∗ (ny+1) ; % fixed degrees of freedom [1:2*(ny+1)]
54 %% DEFINE DESIGN OF ACTUATOR
55 Fmaxnode = 1 ; % define max force per node [1]
56 Fmin = −1; % minimal force constraint [1]
57 sen = 5 ; % penalty for actuator design [5]
58 if abs (Fmaxnode) > abs (Fmin) % check for force model
59 Fmma = −Fmin ; % use Fmin as maximum xmma value
60 else
61 Fmin = Fmin/Fmaxnode ; % use fraction for constraint function
62 Fmma = Fmaxnode ; % use maximum force per node as maximum xmma

value
63 end
64 Uarray = 2 : 2 : 2 ∗ (nx+1)∗(ny+1) ; % define objective area
65 %% DEFINE ELEMENT RESTRICTIONS
66 shap = 0 ; % [0 = no restrictions , 1 = circle , 2 = custom]
67 area = 1 ; % [0 = no material (passive), 1 = material (

active)]
68 nodr = [1 : ny : nx∗ny 2 : ny : nx∗ny] ; % custom restricted nodes [1:ny:nx*ny]
69 %% PREPARE FINITE ELEMENT
70 N = 2∗(nx+1)∗(ny+1) ; % total element nodes
71 all = 1 :2∗ (nx+1)∗(ny+1) ; % all degrees of freedom
72 free = setdiff (all , fix) ; % free degrees of freedom
73 A11 = [12 3 −6 −3; 3 12 3 0 ; −6 3 12 −3; −3 0 −3 1 2] ; % fem
74 A12 = [−6 −3 0 3 ; −3 −6 −3 −6; 0 −3 −6 3 ; 3 −6 3 −6]; % fem
75 B11 = [−4 3 −2 9 ; 3 −4 −9 4 ; −2 −9 −4 −3; 9 4 −3 −4]; % fem
76 B12 = [2 −3 4 −9; −3 2 9 −2; 4 9 2 3 ; −9 −2 3 2] ; % fem
77 Ke = 1/(1−nu^2) /24∗ ([A11 A12 ; A12 ’ A11]+nu ∗ [B11 B12 ; B12 ’ B11]) ; % element

stiffness matrix
78 nodes = reshape (1 : (nx+1)∗(ny+1) ,1+ny ,1+nx) ; % create node numer matrix
79 dofvec = reshape (2∗ nodes (1 : end−1 ,1:end−1)+1,nx∗ny , 1) ; % create dof vector
80 dofmat = repmat (dofvec , 1 , 8)+repmat ([0 1 2∗ny+[2 3 0 1] −2 −1] ,nx∗ny , 1) ; %

create dof matrix
81 iK = reshape (kron (dofmat , ones (8 , 1)) ’ ,64∗ nx∗ny , 1) ; % build sparse i
82 jK = reshape (kron (dofmat , ones (1 , 8)) ’ ,64∗ nx∗ny , 1) ; % build sparse j
83 %% PREPARE FILTER

Stefan Broxterman Master of Science Thesis

B.10 Design of Actuator Placement Including Topology Optimization.m 225

84 iH = ones (nx∗ny ∗ (2∗ (ceil (rmin)−1)+1)^2 ,1) ; % build sparse i
85 jH = ones (size (iH)) ; % create sparse vector of ones
86 kH = zeros (size (iH)) ; % create sparse vector of zeros
87 m = 0 ; % index for filtering
88 for i = 1 : nx % for each element calculate distance between ...
89 for j = 1 : ny % elements ’ center for filtering
90 r1 = (i−1)∗ny+j ; % sparse value i
91 for k = max (i−(ceil (rmin)−1) ,1) : min (i+(ceil (rmin)−1) , nx) %

center of element
92 for l = max (j−(ceil (rmin)−1) ,1) : min (j+(ceil (rmin)−1) , ny) %

center of element
93 r2 = (k−1)∗ny+l ; % sparse value 2
94 m = m+1; % update index for filtering
95 iH (m) = r1 ; % sparse vector for filtering
96 jH (m) = r2 ; % sparse vector for filtering
97 kH (m) = max (0 , rmin−sqrt ((i−k)^2+(j−l) ^2)) ; % weight

factor
98 end
99 end

100 end
101 end
102 H = sparse (iH , jH , kH) ; % build filter
103 Hs = sum (H , 2) ; % summation of filter
104 %% DEFINE ELEMENT RESTRICTIONS
105 x = vol∗ones (ny , nx) ; % initial material distribution
106 if shap == 0 % no restrictions
107 efree = (1 : nx∗ny) ’ ; % all elements are free
108 eres= [] ; % no restricted elements
109 elseif shap == 1 % circular restrictions
110 rest = zeros (ny , nx) ; % pre-allocate space
111 for i = 1 : nx % start loop
112 for j = 1 : ny % for each element
113 if sqrt ((j−ny /2)^2+(i−nx /4) ^2) < ny /2 .5 % circular

restriction
114 rest (j , i) = 1 ; % write restriction
115 if rest (j , i) == area % check for restriction
116 x (j , i) = area ; % store restrictions in material

distribution
117 end
118 end
119 end
120 end
121 elseif shap == 2 % custom restrictions
122 rest = zeros (ny∗nx , 1) ; % pre-allocate space
123 for i = 1 : length (nodr) % write restriction
124 resti = nodr (i) ; % write restriction
125 rest (resti) = 1 ; % write restriction
126 end
127 rest = reshape (rest , ny , nx) ;
128 for i = 1 : nx % start loop
129 for j = 1 : ny % for each element
130 if rest (j , i) == area % check for restriction

Master of Science Thesis Stefan Broxterman

226 Matlab Codes

131 x (j , i) = area ; % store restrictions in material
distribution

132 end
133 end
134 end
135 efree = find (rest ~= 1) ; % set free elements
136 eres = find (rest == 1) ; % set restricted ellements
137 end
138 if fil == 0 | | fil == 1 % sensitivity , density filter
139 xF = x ; % set filtered design variables
140 elseif fil == 2 % heaviside filter
141 beta = 1 ; % hs filter
142 xTilde = x ; % hs filter
143 xF = 1−exp(−beta∗xTilde)+xTilde∗exp(−beta) ; % set filtered design

space
144 end
145 xFree = xF (efree) ; % define free design matrix
146 %% DEFINE STRUCTURAL
147 Fsiz = size (Fe , 1) ; % size of load vector
148 F = sparse (Fe , Fn , Fv , N , Fsiz) ; % define load vector
149 %% DESIGN OF ACTUATOR AND TOPOLOGY DISTRIBUTION
150 xsiz = size (xFree , 1) ; % size of topology variables
151 wsiz = size (Fe , 2) ; % size of actuator variables
152 xzer = zeros (xsiz , 1) ; % empty row of zeros for mma usage
153 wzer = zeros (wsiz , 1) ; % empty row of zeros for mma usage
154 wF = F ; % plugin initial force distribution
155 wval = F (Fe) ; % create vector of design variables
156 %% DEFINE MMA PARAMETERS
157 m = 3 ; % number of constraint functions
158 n = xsiz+wsiz ; % number of variables
159 xmin = [1 e−9∗ones (xsiz , 1) ; −1∗ones (wsiz , 1)] ; % minimum values of x
160 xmax = [ones (xsiz , 1) ; −(1e−9/Fmma) ∗ones (wsiz , 1)] ; % maximum values of x
161 xold1 = zeros (n , 1) ; % previous x, to monitor convergence
162 xold2 = xold1 ; % used by mma to monitor convergence
163 df0dx2 = zeros (n , 1) ; % second derivative of the objective function
164 dfdx2 = zeros (m , n) ; % second derivative of the constraint function
165 low = xmin ; % lower asymptotes from the previous iteration
166 upp = xmax ; % upper asymptotes from the previous iteration
167 a0 = 1 ; % constant a_0 in mma formulation [1]
168 a = zeros (m , 1) ; % constant a_i in mma formulation
169 cmma = 1e3∗ones (m , 1) ; % constant c_i in mma formulation
170 d = zeros (m , 1) ; % constant d_i in mma formulation
171 subs = 50 ; % maximum number of subsolv iterations [200]
172 %% PRE-ALLOCATE SPACE
173 npx = zeros (length (fix) , 1) ’ ; % pre-allocate constraint dots
174 npy = zeros (length (fix) , 1) ’ ; % pre-allocate constraint dots
175 npfx = zeros (length (Fe) , 1) ’ ; % pre-allocate force dots
176 npfy = zeros (length (Fe) , 1) ’ ; % pre-allocate force dots
177 npdx = zeros (length (nodes) , 1) ’ ; % pre-allocate force dots
178 npdy = zeros (length (nodes) , 1) ’ ; % pre-allocate force dots
179 U = zeros (size (F)) ; % pre-allocate space displacement
180 c = zeros (miter , 1) ; % pre-allocate objective vector
181 L = zeros (N , 1) ; % pre-allocate selection tensor

Stefan Broxterman Master of Science Thesis

B.10 Design of Actuator Placement Including Topology Optimization.m 227

182 labda = zeros (N , 1) ; % pre-allocate lagrange multiplier
183 labda2 = zeros (N , 1) ; % pre-allocate second lagrange multiplier
184 Fi = zeros (1 , N) ; % pre-allocate force selection vector
185 Ua = zeros (N , 1) ; % pre-allocate displacement vector
186 Cons = zeros (miter , 1) ; % pre-allocate constraint vector
187 Cons2 = zeros (miter , 1) ; % pre-allocate constraint #2 vector
188 Cons3 = zeros (miter , 1) ; % pre-allocate constraint #3 vector
189 %% DEFINE SELECTION TENSOR
190 for j = Uarray % for each iteration..
191 if mod (j , 2) == 0 % ...check for horizontal or vertical
192 L (j) = 1 ; % vertical selection value
193 else
194 L (j) = 0 ; % horizontal selection value
195 end
196 end
197 %% INITIALIZE LOOP
198 iter = 0 ; % initialize loop
199 diff = 1 ; % initialize convergence criterion
200 loopbeta = 1 ; % initialize beta-loop
201 %% START LOOP
202 while ((diff > tol) | | (iter < piter+1)) && iter < miter % convergence

criterion not met
203 loopbeta = loopbeta +1; % iteration loop for hs filter
204 iter = iter+1; % define iteration
205 if pcon == 1 % use continuation method
206 if iter <= piter % first number of iterations...
207 p = 1 ; %... set penalty 1
208 s = 0 . 5 ; %... set penalty 0.5 for actuator design
209 elseif iter > piter % after a number of iterations...
210 p = min (pen , pcinc∗p) ; % ... set continuation penalty
211 s = min (sen , 1 . 0 6∗ s) ; % ... set continuation penalty actuator

design
212 end
213 elseif pcon == 0 % not using continuation method
214 p = pen ; % set penalty
215 s = sen ; % set penalty actuator design
216 end
217 %% Selfweight
218 if rho ~= 0 % gravity is involved
219 xP=zeros (ny , nx) ; % pre-allocate space
220 xP (xF>0.25) = xF (xF>0.25) .^ p ; % normal penalization
221 xP (xF<=0.25) = xF (xF<=0.25) . ∗ (0 . 2 5^ (p−1)) ; % below pseudo -density
222 Fsw = zeros (N , 1) ; % pre-allocate self-weight
223 for i=1:nx∗ny % for each element , set gravitational...
224 Fsw (dofmat (i , 2 : 2 : end))=Fsw (dofmat (i , 2 : 2 : end))−xF (i) ∗rho

∗9 . 81/4 ;
225 end % force to the attached nodes
226 Fsw=repmat (Fsw , 1 , size (F , 2)) ; % set self-weight for load cases
227 elseif rho == 0 % no gravity
228 xP = xF .^ p ; % penalized design variable
229 Fsw = 0 ; % no selfweight
230 end
231 wP = atan (s∗wF) /atan (s) ; % penalized actuator variable

Master of Science Thesis Stefan Broxterman

228 Matlab Codes

232 Ftot = Fmma ∗(wP) + Fsw ; % total force
233 %% Finite element analysis
234 kK = reshape (Ke (:) ∗(Emin+xP (:) ’∗ (E−Emin)) ,64∗nx∗ny , 1) ; % create

sparse vector k
235 K = sparse (iK , jK , kK) ; % combine sparse vectors
236 K = (K+K ’) /2 ; % build stiffness matrix
237 Kt = K ; % update total force
238 U (free , :) = Kt (free , free) \Ftot (free , :) ; % displacement solving
239 c (iter) = 0 ; % set compliance to zero
240 Sens = 0 ; % set sensitivity to zero
241 Senw = 0 ; % set constraint sensitivity to zero
242 Cons (iter) = 0 ; % set constraint to zero
243 Senc = ones (1 , N) ; % set constraint sensitivity
244 %% Calculate compliance and sensitivity
245 for i = 1 : size (Fn , 2) % for number of load cases
246 Ui = U (: , i) ; % displacement per load case
247 Ua (Uarray) = Ui (Uarray) ; % selection of displacement
248 c0 = reshape (sum ((Ui (dofmat) ∗Ke) .∗ Ui (dofmat) , 2) ,ny , nx) ; % initial

compliance
249 c (iter) = c (iter) + sum (Ua . ^2) ; % objective
250 labda (free) = −sparse (Kt (free , free)) \sparse (2∗Ua (free)) ; %

calculate lagrange multiplier
251 labda2 (free) = 2∗Ua (free) ; % calculate second lagrange multiplier
252 c00 = reshape (sum ((labda (dofmat) ∗Ke) .∗ Ui (dofmat) , 2) ,ny , nx) ; %

initial labda compliance
253 Fi (Fe) = (Fmma∗s . / ((s^2∗wF (Fe) .^2+1) ∗(atan (s)))) ; % force

selection vector
254 FFi = spdiags (Fi ’ , 0 , N , N) ; % force selection vector
255 Sens = Sens + p∗(E−Emin) ∗xF . ^ (p−1) .∗ c00 ; % calculate density

sensitivity
256 Senw = Senw − FFi (Fe , Fe) ∗labda (Fe) ; % calculate force sensitivity
257 Cons (iter) = Cons (iter) + 10∗(sum (xF (:)) /(vol∗nx∗ny)−1) ; %

calculate constraint
258 dCdx = 10∗Senc (efree) /(vol∗ny∗nx) ; % constraint sensitivity
259 Cons2 (iter) = Cons2 (iter) + 10∗(Fmin/sum (sum (wF)))−1; % calculate

constraint
260 dCdf = 10∗Senc (Fe) ∗Fmin/−(sum (sum (full (wF)))) ^2 ; % constraint

sensitivity
261 Cons3 (iter) = Cons3 (iter) + (sum (sum ((Emin+xF .^ p∗(E−Emin)) .∗ c0))

−50) ; % compliance constraint
262 dCCdx = −p∗(E−Emin) ∗xF . ^ (p−1) .∗ c0 ; % constraint sensitivity
263 dCCdf = labda2 (Fe) ’∗ FFi (Fe , Fe) ; % constraint sensitivity
264 if iter == 2 % finite difference method
265 F1 = wF ; % store force vector
266 X1 = xF ; % store density vector
267 [~ , S1] = max (abs (Sens (:))) ; % calculate maximum sensitivity

value
268 Sens1 = Sens (S1) ; % store maximum sensitivity value
269 [~ , S2] = max (abs (Senw (:))) ; % calculate maximum sensitivity

value
270 Sens2 = Senw (S2) ; % store maximum sensitivity value
271 [~ , S3] = max (abs (dCdx (:))) ; % calculate maximum sensitivity

value

Stefan Broxterman Master of Science Thesis

B.10 Design of Actuator Placement Including Topology Optimization.m 229

272 Sens3 = dCdx (S3) ; % store maximum sensitivity value
273 [~ , S4] = max (abs (dCdf (:))) ; % calculate maximum sensitivity

value
274 Sens4 = dCdf (S4) ; % store maximum sensitivity value
275 [~ , S5] = max (abs (dCCdx (:))) ; % calculate maximum sensitivity

value
276 Sens5 = dCCdx (S5) ; % store maximum sensitivity value
277 [~ , S6] = max (abs (dCCdf (:))) ; % calculate maximum sensitivity

value
278 Sens6 = dCCdf (S6) ; % store maximum sensitivity value
279 end
280 end
281 if fil == 0 % optimality criterion with sensitivity filter
282 Sens (:) = Sens ; % update filtered sensitivity
283 Sencw (:) = Senc ; % update filtered sensitivity
284 elseif fil == 1 % optimality criterion with density filter
285 Sens (:) = H∗(Sens (:) . / Hs) ; % update filtered sensitivity
286 Sencw (:) = Senc ; % update filtered sensitivity of constraint
287 elseif fil == 2 % optimality criterion with heaviside filter
288 dx = beta∗exp(−beta∗xTilde)+exp(−beta) ; % update hs parameter
289 Sens (:) = H∗(Sens (:) .∗ dx (:) . / Hs) ; % update filtered sensitivity
290 Sencw (:) = Senc ; % update filtered sensitivity of constraint
291 end
292 %% Update design variables Optimality Criterion
293 if sol == 0 % use optimality criterion method
294 l1 = 0 ; % initial lower bound for lagranian mulitplier
295 l2 = 1e9 ; % initial upper bound for lagranian multiplier
296 while (l2−l1) /(l1+l2) > 1e−3 % start loop
297 lag = 0 .5∗ (l1+l2) ; % average of lagranian interval
298 xnew = max (0 , max (x−move , min (1 , min (x+move , x .∗ sqrt(−Sens . / Senc/

lag))))) ; % update element densities
299 if fil == 0 % sensitivity filter
300 xF = xnew ; % updated result
301 elseif fil == 1 % density filter
302 xF (:) = (H∗xnew (:)) . / Hs ; % updated filtered density

result
303 elseif fil == 2 % heaviside filter
304 xTilde (:)= (H∗xnew (:)) . / Hs ; % set filtered density
305 xF (:) =1−exp(−beta∗xTilde)+xTilde∗exp(−beta) ; % updated

result
306 end
307 if shap == 1 % restriction is on
308 xF (rest==1) = area ; % set restricted area
309 end
310 if sum (xF (:)) > vol∗nx∗ny % check for optimum
311 l1 = lag ; % update lower bound to average
312 else
313 l2 = lag ; % update upper bound to average
314 end
315 end
316 %% Method of moving asymptotes
317 elseif sol == 1 % use mma solver

Master of Science Thesis Stefan Broxterman

230 Matlab Codes

318 xval = [xFree (:) ; wval (:)] ; % store current design variable for
mma

319 if iter == 1 % for the first iteration...
320 cscale = 1/c (iter) ; % ...set scaling factor for mma solver
321 end
322 f0 = c (iter) ∗cscale ; % objective at current design variable for

mma
323 df0dx = [Sens (efree) ; Senw]∗ cscale ; % store sensitivity for mma
324 f = [Cons (iter) ; Cons2 (iter) ; Cons3 (iter)] ; % normalized constraint

function
325 dfdx =[dCdx wzer ’ ; xzer ’ dCdf ; dCCdx (efree) ’ dCCdf] ; % derivative

constraint functions
326 [xmma , ~ ,~ ,~ ,~ ,~ ,~ ,~ ,~ , low , upp] = . . .
327 mmasub (m , n , iter , xval , xmin , xmax , xold1 , xold2 , . . .
328 f0 , df0dx , df0dx2 , f , dfdx , dfdx2 , low , upp , a0 , a , cmma , d , subs) ; % mma

solver
329 xold2 = xold1 ; % used by mma to monitor convergence
330 xold1 = [xFree (:) ; wval (:)] ; % previous x, to monitor convergence
331 xnew = xF ; % update density result
332 wnew = wF ; % update force result
333 xnew (efree) = xmma (1 : xsiz) ; % update mma to density
334 wnew (Fe) = xmma (xsiz+1:end) ; % update mma to force
335 if fil == 0 % sensitivity filter
336 xF = xnew ; % update design variables
337 elseif fil == 1 % density filter
338 xF (:) = (H∗xnew (:)) . / Hs ; % update filtered densities result
339 elseif fil == 2 % heaviside filter
340 xTilde (:)= (H∗xnew (:)) . / Hs ; % filtered result
341 xF (:)=1−exp(−beta∗xTilde)+xTilde∗exp(−beta) ; % update design

variable
342 end
343 if shap == 1 | | shap == 2 % if restrictions enableed
344 xF (rest==1) = area ; % set restricted area
345 end
346 wF (:) = wnew (:) ; % update support variables
347 xFree = xnew (efree) ; % update density variable
348 wval = wnew (Fe) ; % update support variables
349 end
350 diff = (max (abs (full (Fmma∗wnew (:))−full (F (:))))+max (abs (xnew (:)−x (:))

)) ; % difference of maximum element change
351 x = xnew ; % update design variable density
352 F = Fmma∗wnew ; % update design variable force
353 if fil == 2 && beta < 512 && pen == p (end) && (loopbeta >= 50 | | diff

<= tol) % hs filter
354 beta = 2∗beta ; % increase beta-factor
355 fprintf (’beta now is %3.0f\n’ , beta) % display increase of b-

factor
356 loopbeta = 0 ; % set hs filter loop to zero
357 diff = 1 ; % set convergence to initial value
358 end
359 %% Finite difference method
360 if (fincheck == 1 | | fincheck == 2) % check for finite difference

method

Stefan Broxterman Master of Science Thesis

B.10 Design of Actuator Placement Including Topology Optimization.m 231

361 if iter == 2 % on first findif iteration
362 xF = X1 ; % store first findif result...
363 xF (S1) = X1 (S1)+h ; %...and add a small pertubation
364 wF = F1 ; % store first findif result
365 elseif iter == 3 % on second findif iteration
366 findif = (c (3)−c (2)) /h ; % calculate finite difference method
367 Sensdif = abs (max ((findif−Sens1) /Sens1 , (Sens1−findif) /findif)

) ; % maximum difference
368 if Sensdif > 0.01 % when difference between sensitivity and

findif is too much display
369 disp ([’Warning: Sensitivity needs to be checked , max

difference:’ sprintf (’%10.2f’ , Sensdif)])
370 if fincheck == 2 % when fincheck is not accomplished...
371 break %... break the loop and stop the code
372 end
373 end
374 wF = F1 ; % store first findif result...
375 wF (Fe (S2)) = F1 (Fe (S2))+h ; %...and add a small pertubation
376 xF = X1 ; % store first findif result
377 elseif iter == 4 % on third findif iteration
378 findif2 = (c (4)−c (2)) /h ; % calculate finite difference method
379 Sensdif2 = abs (max ((findif2−Sens2) /Sens2 , (Sens2−findif2) /

findif2)) ; % maximum difference
380 if Sensdif2 > 0.01 % when difference between sensitivity and

findif is too much display
381 disp ([’Warning: Sensitivity needs to be checked , max

difference:’ sprintf (’%10.2f’ , Sensdif2)])
382 if fincheck == 2 % when fincheck is not accomplished...
383 break %... break the loop and stop the code
384 end
385 end
386 wF = F1 ; % store first findif result
387 xF = X1 ; % store first findif result...
388 xF (S3) = xF (S3)+h ; %...and add a small pertubation
389 elseif iter == 5 % on fourth findif iteration
390 findif3 = (Cons (5)−Cons (2)) /h ; % calculate finite difference

method
391 Sensdif3 = abs (max ((findif3−Sens3) /Sens3 , (Sens3−findif3) /

findif3)) ; % maximum difference
392 if Sensdif3 > 0.01 % when difference between sensitivity and

findif is too much display
393 disp ([’Warning: Sensitivity needs to be checked , max

difference:’ sprintf (’%10.2f’ , Sensdif3)])
394 if fincheck == 2 % when fincheck is not accomplished...
395 break %... break the loop and stop the code
396 end
397 end
398 wF = F1 ; % store first findif result
399 wF (S4) = wF (S4)+h ; % store first findif result...
400 xF = X1 ; %...and add a small pertubation
401 elseif iter == 6 % on fifth findif iteration
402 findif4 = (Cons2 (6)−Cons2 (2)) /h ; % calculate finite

difference method

Master of Science Thesis Stefan Broxterman

232 Matlab Codes

403 Sensdif4 = abs (max ((findif4−Sens4) /Sens4 , (Sens4−findif4) /
findif4)) ; % maximum difference

404 if Sensdif4 > 0.01 % when difference between sensitivity and
findif is too much display

405 disp ([’Warning: Sensitivity needs to be checked , max
difference:’ sprintf (’%10.2f’ , Sensdif4)])

406 if fincheck == 2 % when fincheck is not accomplished...
407 break %... break the loop and stop the code
408 end
409 end
410 wF = F1 ; % store first findif result
411 xF = X1 ; % store first findif result...
412 xF (S5) = xF (S5)+h ; %...and add a small pertubation
413 elseif iter == 7 % on sixth findif iteration
414 findif5 = (Cons3 (7)−Cons3 (2)) /h ; % calculate finite

difference method
415 Sensdif5 = abs (max ((findif4−Sens5) /Sens5 , (Sens5−findif5) /

findif5)) ; % maximum difference
416 if Sensdif5 > 0.01 % when difference between sensitivity and

findif is too much display
417 disp ([’Warning: Sensitivity needs to be checked , max

difference:’ sprintf (’%10.2f’ , Sensdif5)])
418 if fincheck == 2 % when fincheck is not accomplished...
419 break %... break the loop and stop the code
420 end
421 end
422 wF = F1 ; % store first findif result...
423 wF (Fe (S6)) = F1 (Fe (S6))+h ; %...and add a small pertubation
424 xF = X1 ; % store first findif result
425 elseif iter == 8 % on second finidif iteration
426 findif6 = (Cons3 (8)−Cons3 (2)) /h ; % calculate finite

difference method
427 Sensdif6 = abs (max ((findif6−Sens6) /Sens6 , (Sens6−findif6) /

findif6)) ; % maximum difference
428 if Sensdif6 > 0.01 % when difference between sensitivity and

findif is too much display
429 disp ([’Warning: Sensitivity needs to be checked , max

difference:’ sprintf (’%10.2f’ , Sensdif6)])
430 if fincheck == 2 % when fincheck is not accomplished...
431 break %... break the loop and stop the code
432 end
433 end
434 end
435 end
436 %% Store results into database X
437 X (: , : , iter) = xF ; % each element value x is stored for each

iteration
438 C (iter) = c (iter) ; % each compliance is stored for each iteration
439 W (: , : , iter) = full (wF) ; % each force variable is stored for each

iteration
440 assignin (’base’ , ’X’ , X) ; % each iteration (3rd dimension)
441 assignin (’base’ , ’C’ , C) ; % each iteration (3rd dimension)
442 assignin (’base’ , ’W’ , W) ; % each iteration (3rd dimension)

Stefan Broxterman Master of Science Thesis

B.10 Design of Actuator Placement Including Topology Optimization.m 233

443 %% Results
444 if dis == 1 % display iterations
445 disp ([’ Iter:’ sprintf (’%4i’ , iter) ’ Obj:’ sprintf (’%10.4f’ ,c (

iter)) . . .
446 ’ Vol:’ sprintf (’%6.3f’ , mean (xF (:))) ’ Ftot:’ sprintf (’%6.3f’

, . . .
447 sum (full (F))) ’ Diff:’ sprintf (’%6.3f’ , diff)]) ;
448 elseif dis == 2 % display parts of iterations
449 if iter == 1 | | iter == disiter
450 if iter == 1
451 disiter = plotiter ;
452 elseif iter == disiter
453 disiter = disiter + plotiter ;
454 end
455 disp ([’ Iter:’ sprintf (’%4i’ , iter) ’ Obj:’ sprintf (’%10.4f’ ,c

(iter)) . . .
456 ’ Vol:’ sprintf (’%6.3f’ , mean (xF (:))) ’ Ftot:’ sprintf (’

%6.3f’ , . . .
457 sum (full (F))) ’ Diff:’ sprintf (’%6.3f’ , diff)]) ;
458 end
459 end
460 if draw == 1 % plot iterations
461 figure (1)
462 subplot (2 , 1 , 1)
463 colormap (gray) ; imagesc(1−xF) ;
464 set (gca , ’XTick’ , [] , ’YTick’ , [] , ’XTicklabel’ , [] , . . .
465 ’YTicklabel’ , [] , ’xcolor’ ,’[0.7 0.7 0.7]’ ,’ycolor’ ,’[0.7 0.7

0.7]’)
466 xlabel (sprintf (’c = %.2f’ ,c (iter)) ,’Color’ ,’k’)
467 axis equal ; axis tight
468 drawnow ;
469 hold on
470 if iter == 1
471 % Plot coloured dots for constraints
472 for i = 1 : length (fix)
473 npx (i) = ceil (fix (i) /(2∗ (ny+1))) −0.5;
474 nplot = ceil (fix (i) /2) ;
475 while nplot > (ny+1)
476 nplot = nplot−(ny+1) ;
477 end
478 npy (i) = nplot−0.5 ;
479 end
480 plot (npx , npy , ’r.’ ,’MarkerSize’ , 20)
481 end
482 % Plot coloured dots for force application
483 Fmaxplot = min (min (full (F))) ;
484 for i = 1 : length (Fe)
485 if F (Fe (i)) < wplot∗Fmaxplot
486 npfx (i) = ceil (Fe (i) /(2∗ (ny+1))) −0.5;
487 nplot = ceil (Fe (i) /2) ;
488 while nplot > (ny+1)
489 nplot = nplot−(ny+1) ;
490 end

Master of Science Thesis Stefan Broxterman

234 Matlab Codes

491 npfy (i) = nplot−0.5 ;
492 end
493 end
494 if iter > 1
495 delete (Dof)
496 end
497 if exist (’npfx’ ,’var’)
498 Dof = plot (npfx (npfx (:) >0) , npfy (npfy (:) >0) , ’b.’ ,’MarkerSize’

, 20) ;
499 clear npfx ; clear npfy ;
500 uistack (Dof , ’top’)
501 end
502 % Plot coloured arrows for force application
503 if (((diff < tol) && iter >= piter+1) | | iter >= miter)
504 for i = 1 : length (Fe)
505 npfx (i) = ceil (Fe (i) /(2∗ (ny+1))) −0.5;
506 nplot = ceil (Fe (i) /2) ;
507 while nplot > (ny+1)
508 nplot = nplot−(ny+1) ;
509 end
510 npfy (i) = nplot−0.5 ;
511 end
512 for i = 1 : length (Fe)
513 if F (Fe (i)) < wplot∗Fmaxplot
514 headsize = 1/sqrt (length (nonzeros (F (Fe) <0.5∗Fmaxplot)

)) ;
515 if mod (Fe (i) , 2)
516 arrowz ([npfx (i) npfy (i)] , [npfx (i) +0.5∗ny∗F (Fe (i))

/Fmaxplot npfy (i)] , headsize , 2 , [0 0 1])
517 else
518 arrowz ([npfx (i) npfy (i)] , [npfx (i) npfy (i) +0.5∗ny∗

F (Fe (i)) /Fmaxplot] , headsize , 2 , [0 0 1])
519 end
520 end
521 end
522 end
523 % Plot compliance plot
524 figure (1)
525 subplot (2 , 1 , 2)
526 plot (c (1 : iter))
527 set (gca , ’YTick’ , [] , ’YTicklabel’ , [])
528 xlabel (’Iterations’)
529 ylabel (’Compliance’)
530 xaxmax = c (iter) ;
531 yaxmax = max (c) ;
532 yaxmin = min (c (1 : iter)) ;
533 if pcon == 0
534 yaxmax = mean ([yaxmin yaxmax]) ;
535 end
536 ylim ([0 . 9 5 ∗ yaxmin yaxmax])
537 xlim ([1 min (iter+10,miter)])
538 elseif draw == 2 % plot parts of iterations
539 if iter == 1 | | iter == drawiter

Stefan Broxterman Master of Science Thesis

B.10 Design of Actuator Placement Including Topology Optimization.m 235

540 if iter == 1
541 drawiter = plotiter ;
542 elseif iter == drawiter
543 drawiter = drawiter + plotiter ;
544 end
545 figure (1)
546 subplot (2 , 1 , 1)
547 colormap (gray) ; imagesc(1−xF) ;
548 set (gca , ’XTick’ , [] , ’YTick’ , [] , ’XTicklabel’ , [] , . . .
549 ’YTicklabel’ , [] , ’xcolor’ ,’[0.7 0.7 0.7]’ ,’ycolor’ ,’[0.7

0.7 0.7]’)
550 xlabel (sprintf (’c = %.2f’ ,c (iter)) , ’Color’ ,’k’)
551 axis equal ; axis tight
552 drawnow ;
553 hold on
554 if iter == 1
555 % Plot coloured dots for constraints
556 for i = 1 : length (fix)
557 npx (i) = ceil (fix (i) /(2∗ (ny+1))) −0.5;
558 nplot = ceil (fix (i) /2) ;
559 while nplot > (ny+1)
560 nplot = nplot−(ny+1) ;
561 end
562 npy (i) = nplot−0.5 ;
563 end
564 plot (npx , npy , ’r.’ ,’MarkerSize’ , 20)
565 end
566 % Plot coloured dots for force application
567 Fmaxplot = max (max (full (F))) ;
568 for i = 1 : length (Fe)
569 if F (Fe (i)) > wplot∗Fmaxplot
570 npfx (i) = ceil (Fe (i) /(2∗ (ny+1))) −0.5;
571 nplot = ceil (Fe (i) /2) ;
572 while nplot > (ny+1)
573 nplot = nplot−(ny+1) ;
574 end
575 npfy (i) = nplot−0.5 ;
576 end
577 end
578 if iter > 1
579 delete (Dof)
580 end
581 if exist (’npfx’ ,’var’)
582 Dof = plot (npfx (npfx (:) >0) , npfy (npfy (:) >0) , ’b.’ ,’

MarkerSize’ , 20) ;
583 clear npfx ; clear npfy ;
584 uistack (Dof , ’top’)
585 end
586 % Plot coloured arrows for force application
587 if (((diff < tol) && iter >= piter+1) | | iter >= miter)
588 for i = 1 : length (Fe)
589 npfx (i) = ceil (Fe (i) /(2∗ (ny+1))) −0.5;
590 nplot = ceil (Fe (i) /2) ;

Master of Science Thesis Stefan Broxterman

236 Matlab Codes

591 while nplot > (ny+1)
592 nplot = nplot−(ny+1) ;
593 end
594 npfy (i) = nplot−0.5 ;
595 end
596 for i = 1 : length (Fe)
597 if F (Fe (i)) > wplot∗Fmaxplot
598 headsize = 1/sqrt (length (nonzeros (F (Fe) >0.5∗

Fmaxplot))) ;
599 if mod (Fe (i) , 2)
600 arrowz ([npfx (i) npfy (i)] , [npfx (i) +0.5∗ny∗F (Fe

(i)) /Fmaxplot npfy (i)] , headsize , 2 , [0 0 1])
601 else
602 arrowz ([npfx (i) npfy (i)] , [npfx (i) npfy (i)

+0.5∗ny∗F (Fe (i)) /Fmaxplot] , headsize , 2 , [0 0
1])

603 end
604 end
605 end
606 end
607 % Plot compliance plot
608 figure (1)
609 subplot (2 , 1 , 2)
610 plot (c (1 : iter))
611 set (gca , ’YTick’ , [] , ’YTicklabel’ , [])
612 xlabel (’Iterations’)
613 ylabel (’Compliance’)
614 xaxmax = c (iter) ;
615 yaxmax = max (c) ;
616 yaxmin = min (c (1 : iter)) ;
617 if pcon == 0
618 yaxmax = mean ([yaxmin yaxmax]) ;
619 end
620 ylim ([0 . 9 5 ∗ yaxmin yaxmax])
621 xlim ([1 min (iter+10,miter)])
622 end
623 end
624 end
625 %% ONLY DISPLAY FINAL RESULT
626 if dis == 0 | | dis == 2 % display final result
627 disp ([’ Iter:’ sprintf (’%4i’ , iter) ’ Obj:’ sprintf (’%10.4f’ ,c (iter))

. . .
628 ’ Vol:’ sprintf (’%6.3f’ , mean (xF (:))) ’ Ftot:’ sprintf (’%6.3f’ ,

. . .
629 sum (full (wP (:)))) ’ Diff:’ sprintf (’%6.3f’ , diff)]) ;
630 end
631 if draw == 0 | | draw == 2 % plot final result
632 figure (1)
633 subplot (2 , 1 , 1)
634 colormap (gray) ; imagesc(1−xF) ;
635 axis equal ; axis tight ;
636 set (gca , ’XTick’ , [] , ’YTick’ , [] , ’XTicklabel’ , [] , . . .

Stefan Broxterman Master of Science Thesis

B.10 Design of Actuator Placement Including Topology Optimization.m 237

637 ’YTicklabel’ , [] , ’xcolor’ ,’[0.7 0.7 0.7]’ ,’ycolor’ ,’[0.7 0.7 0.7]’
)

638 xlabel (sprintf (’c = %.2f’ ,c (iter)) , ’Color’ ,’k’)
639 drawnow ;
640 hold on
641 % Plot coloured dots for constraints
642 for i = 1 : length (fix)
643 npx (i) = ceil (fix (i) /(2∗ (ny+1))) −0.5;
644 nplot = ceil (fix (i) /2) ;
645 while nplot > (ny+1)
646 nplot = nplot−(ny+1) ;
647 end
648 npy (i) = nplot−0.5 ;
649 end
650 plot (npx , npy , ’r.’ ,’MarkerSize’ , 20)
651 % Plot coloured dots for force application
652 Fmaxplot = max (max (full (F))) ;
653 for i = 1 : length (Fe)
654 if F (Fe (i)) > wplot∗Fmaxplot
655 npfx (i) = ceil (Fe (i) /(2∗ (ny+1))) −0.5;
656 nplot = ceil (Fe (i) /2) ;
657 while nplot > (ny+1)
658 nplot = nplot−(ny+1) ;
659 end
660 npfy (i) = nplot−0.5 ;
661 end
662 end
663 if iter > 1
664 delete (Dof)
665 end
666 if exist (’npfx’ ,’var’)
667 Dof = plot (npfx (npfx (:) >0) , npfy (npfy (:) >0) , ’b.’ ,’MarkerSize’ , 20) ;
668 clear npfx ; clear npfy ;
669 uistack (Dof , ’top’)
670 end
671 % Plot coloured arrows for force application
672 if (((diff < tol) && iter >= piter+1) | | iter >= miter)
673 for i = 1 : length (Fe)
674 npfx (i) = ceil (Fe (i) /(2∗ (ny+1))) −0.5;
675 nplot = ceil (Fe (i) /2) ;
676 while nplot > (ny+1)
677 nplot = nplot−(ny+1) ;
678 end
679 npfy (i) = nplot−0.5 ;
680 end
681 for i = 1 : length (Fe)
682 if F (Fe (i)) > wplot∗Fmaxplot
683 headsize = 1/sqrt (length (nonzeros (F (Fe) >0.5∗Fmaxplot))) ;
684 if mod (Fe (i) , 2)
685 arrowz ([npfx (i) npfy (i)] , [npfx (i) +0.5∗ny∗F (Fe (i)) /

Fmaxplot npfy (i)] , headsize , 2 , [0 0 1])
686 else

Master of Science Thesis Stefan Broxterman

238 Matlab Codes

687 arrowz ([npfx (i) npfy (i)] , [npfx (i) npfy (i) +0.5∗ny∗F (Fe
(i)) /Fmaxplot] , headsize , 2 , [0 0 1])

688 end
689 end
690 end
691 end
692 % Plot compliance plot
693 if adv == 0
694 figure (1)
695 subplot (2 , 1 , 2)
696 plot (c (1 : iter))
697 set (gca , ’YTick’ , [] , ’YTicklabel’ , [])
698 xlabel (’Iterations’)
699 ylabel (’Compliance’)
700 xaxmax = c (iter) ;
701 yaxmax = max (c) ;
702 yaxmin = min (c (1 : iter)) ;
703 if pcon == 0
704 yaxmax = mean ([yaxmin yaxmax]) ;
705 end
706 ylim ([0 . 9 5 ∗ yaxmin yaxmax])
707 xlim ([1 min (iter+10,miter)])
708 end
709 end
710 %% PLOTTING DISPLACEMENT
711 if (def == 1 | | def == 2)
712 FileName = [’Displacement_’ , datestr (now , ’ddmm_HHMMSS’) , ’.avi’] ; %

dynamic filename
713 vidObj = VideoWriter (FileName) ;
714 vidObj . FrameRate = 3 ;
715 figure (1)
716 subplot (2 , 1 , 1)
717 xaxis = get (gca , ’XLim’) ;
718 yaxis = get (gca , ’YLim’) ;
719 open (vidObj) ;
720 figure (2)
721 clear mov
722 colormap (gray) ;
723 Umov = 1 ; % start movie counter
724 Uim = zeros (5642 ,1) ;
725 Uim (2 : 2 : end) = Ui (2 : 2 : end) ;
726 Uim (1 : 2 : end) = −Ui (1 : 2 : end) ;
727 Umax = −10/max (abs (Uim)) ; % define maximum displacement
728 steps = 1 ; % number of displacement steps
729 set (gca , ’nextplot’ ,’replacechildren’) ;
730 Upatch = zeros (nx∗ny , 1) ;
731 for i = 1 : ny∗nx
732 Uindex = 2∗(i+floor ((i−1)/ny))−1+[1 2 2∗(ny+1)+1 2∗(ny+1)+3] ;
733 Upatch (i , 1) = mean (U (Uindex)) ;
734 end
735 Upatch = reshape (Upatch , ny , nx) ;
736 Upatchmin = min (min (Upatch)) ;
737 Upatchnorm = −Upatch/Upatchmin ;

Stefan Broxterman Master of Science Thesis

B.10 Design of Actuator Placement Including Topology Optimization.m 239

738 for Udisp = linspace (Umax/steps , Umax , steps) % vary input displacement
739 clf
740 for ely = 1 : ny % plot displacements...
741 for elx = 1 : nx % for each element...
742 if xF (ely , elx) > 0 % exclude white regions for plotting

purposes
743 n1 = (ny+1)∗(elx−1)+ely ;
744 n2 = (ny+1)∗ elx +ely ;
745 Ue = Udisp∗Uim ([2∗ n1−1;2∗n1 ; 2∗n2−1;2∗n2 ; 2∗n2+1;2∗n2

+2; 2∗n1+1;2∗n1+2] ,1) ;
746 ly = ely−1; lx = elx−1;
747 xx = [Ue (1 , 1)+lx Ue (3 , 1)+lx+1 Ue (5 , 1)+lx+1 Ue (7 , 1)+lx

] ’ ;
748 yy = [−Ue (2 , 1)−ly −Ue (4 , 1)−ly −Ue (6 , 1)−ly−1 −Ue (8 , 1)−

ly−1] ’ ;
749 patch ([xx xx] , [yy yy] , [Upatchnorm (ely , elx) Upatchnorm

(ely , elx)] , ’LineStyle’ ,’none’) ;
750
751 end
752 end
753 end
754 colormap jet % for better interpation...
755 axis tight
756 axis equal
757 xticks ([0 15 30 45 60 75 90])
758 box on
759 colorbar
760 drawnow % ...draw coloured densities
761 currFrame = getframe ; % get current frame...
762 writeVideo (vidObj , currFrame) ; % ... write to video file
763 end
764 close (vidObj) ;
765 end
766 if def == 2 % when def equals 2...
767 implay (FileName) % ...open Matlab Movie Player
768 end
769 toc

Master of Science Thesis Stefan Broxterman

240 Matlab Codes

Stefan Broxterman Master of Science Thesis

Appendix C

Add-in Codes

In this section some add-ins can be found. Keep in mind: it is highly recommended to not
just copy and paste the code, but type it yourself. By this way, the user could actually achieve
some knowledge over the changes made, and also overcome copy-paste problems.
The add-ins are split up in the following parts: making use of the MMA solution (C.1), using
restrictive regions (C.2), solving multiple load cases (C.3), implementing self-weight (C.4),
using the continuity method (C.5) and using different filtering techniques (C.6).
Up to here, all functions for two dimensional cases are described. A third dimension can be
introduced by applying (C.7). An add-in to be able to calculate compliant mechanisms can
be seen in (C.8). Design of supports can be implemented by following (C.9).
Design of actuator placement can be implemented by following the regime (C.10). When also
implementing topology optimization, besides the actuator placement, make sure to implement
(C.11).

Master of Science Thesis Stefan Broxterman

242 Add-in Codes

C.1 Basic MMA Add-in.m

As a follow-up from (B.1), an extra implementation of the MMA solution is added (3.1). In
the preamble, the solution method can be implemented [between line 23-24]:

1 %% DEFINE SOLUTION METHOD
2 sol = 1 ; % solution method [0 = oc(sens), 1 = mma]

The parameters of this MMA can be implemented accordingly [between line 80-81]:

1 %% DEFINE MMA PARAMETERS
2 m = 1 ; % number of constraint functions
3 n = size (xF (:) , 1) ; % number of variables
4 xmin = zeros (n , 1) ; % minimum values of x
5 xmax = ones (n , 1) ; % maximum values of x
6 xold1 = zeros (n , 1) ; % previous x, to monitor convergence
7 xold2 = xold1 ; % used by mma to monitor convergence
8 df0dx2 = zeros (n , 1) ; % second derivative of the objective function
9 dfdx2 = zeros (1 , n) ; % second derivative of the constraint function

10 low = xmin ; % lower asymptotes from the previous iteration
11 upp = xmax ; % upper asymptotes from the previous iteration
12 a0 = 1 ; % constant a_0 in mma formulation
13 a = zeros (m , 1) ; % constant a_i in mma formulation
14 cmma = 1e3∗ones (m , 1) ; % constant c_i in mma formulation
15 d = zeros (m , 1) ; % constant d_i in mma formulation
16 subs = 200 ; % maximum number of subsolv iterations

A simple if-loop needs to be implemented [between line 108-109]:

1 if sol == 0 % use optimality criterion method

The actual MMA algorithm can now be implemented [between line 120-121]:

1 %% Method of moving asymptotes
2 elseif sol == 1 % use mma solver
3 xval = x (:) ; % store current design variable for mma
4 if iter == 1 % for the first iteration...
5 cscale = 1/c (iter) ; % ...set scaling factor for mma solver
6 end
7 f0 = c (iter) ∗cscale ; % objective at current design variable for

mma
8 df0dx = Sens (:) ∗cscale ; % store sensitivity for mma
9 f = (sum (xF (:)) /(vol∗nx∗ny)−1) ; % normalized constraint function

Stefan Broxterman Master of Science Thesis

C.1 Basic MMA Add-in.m 243

10 dfdx = Senc (:) ’ / (vol∗ny∗nx) ; % derivative of the constraint
function

11 [xmma , ~ ,~ ,~ ,~ ,~ ,~ ,~ ,~ , low , upp] = . . .
12 mmasub (m , n , iter , xval , xmin , xmax , xold1 , xold2 , . . .
13 f0 , df0dx , df0dx2 , f , dfdx , dfdx2 , low , upp , a0 , a , cmma , d , subs) ; % mma

solver
14 xold2 = xold1 ; % used by mma to monitor convergence
15 xold1 = x (:) ; % previous x, to monitor convergence
16 xnew = xF ; % update result
17 xnew (:) = xmma ; % include restricted elements
18 xnew = reshape (xnew , ny , nx) ; % reshape xmma vector to original

size
19 xF = xnew ; % update design variables
20 end

Some external function are called, which are attached to this report (D.1) and (D.2). [line 12
from above]

Master of Science Thesis Stefan Broxterman

244 Add-in Codes

C.2 Basic Restrictions Add-in.m

As a follow-up from (B.1), an extra implementation of restricted regions is added (3.2.1). In
the preamble, the restricted element parameters is implemented [between line 40-41]:

1 %% DEFINE ELEMENT RESTRICTIONS
2 shap = 0 ; % [0 = no restrictions , 1 = circle , 2 = custom]
3 area = 0 ; % [0 = no material (passive), 1 = material (

active)]
4 nodr = (round (ny /2) +(0:ny : (nx−1)∗ny)) ; % custom restricted nodes

In order to make a work-around for the restrictive regions, an add-in needs to be imple-
mented, before the loop, by making this addition a number of lines needs to be replaced
[replace line 76-78]:

1 %% DEFINE ELEMENT RESTRICTIONS
2 x = repmat (vol , ny , nx) ; % initial material distribution
3 if shap == 0 % no restrictions
4 efree = (1 : nx∗ny) ’ ; % all elements are free
5 eres= [] ; % no restricted elements
6 elseif shap == 1 % restrictions
7 rest = zeros (ny , nx) ; % pre-allocate space
8 for i = 1 : nx % start loop
9 for j = 1 : ny % for each element

10 if sqrt ((j−ny /2)^2+(i−nx /4) ^2) < ny /2 .5 % circular
restriction

11 rest (j , i) = 1 ; % write restriction
12 if rest (j , i) == area % check for restriction
13 x (j , i) = area ; % store restrictions in material

distribution
14 end
15 end
16 end
17 end
18 efree = find (rest ~= 1) ; % set free elements
19 eres = find (rest == 1) ; % set restricted ellements
20 end
21 xF = x ; % set filtered design variables
22 xFree = xF (efree) ; % define free design matrix
23 %% DEFINE STRUCTURAL

Only when using the MMA method, and already implemented all add-ins as described in
(C.1), the restrictions vector needs to be initialized by the MMA method by replacing one
variable [replace line 85]:

1 n = size (xFree (:) , 1) ; % number of variables

Stefan Broxterman Master of Science Thesis

C.2 Basic Restrictions Add-in.m 245

To set restricted area on, using the Optimality Criteria, a small add-in is made [between
line 114-115]:

1 if shap == 1 % restriction is on
2 xF (rest==1) = area ; % set restricted area
3 end

Only when using the MMA method, and already implemented all add-ins as described in
(C.1) a smart implementations is made, while using the MMA solution, it can be helpful to
skip all restrictive regions from the design space, and after the optimization simple plug them
into the design space. This work-around should gain some time performance. The MMA code
needs to be replaced [replace line 140-159]:

1 %% Method of moving asymptotes
2 elseif sol == 1 % use mma solver
3 xval = xFree (:) ; % store current design variable for mma
4 if iter == 1 % for the first iteration...
5 cscale = 1/c (iter) ; % ...set scaling factor for mma solver
6 end
7 f0 = c (iter) ∗cscale ; % objective at current design variable for

mma
8 df0dx = Sens (efree) ∗cscale ; % store sensitivity for mma
9 f = (sum (xF (:)) /(vol∗nx∗ny)−1) ; % normalized constraint function

10 dfdx = Senc (efree) ’ / (vol∗ny∗nx) ; % derivative of the constraint
function

11 [xmma , ~ ,~ ,~ ,~ ,~ ,~ ,~ ,~ , low , upp] = . . .
12 mmasub (m , n , iter , xval , xmin , xmax , xold1 , xold2 , . . .
13 f0 , df0dx , df0dx2 , f , dfdx , dfdx2 , low , upp , a0 , a , cmma , d , subs) ; % mma

solver
14 xold2 = xold1 ; % used by mma to monitor convergence
15 xold1 = xFree (:) ; % previous x, to monitor convergence
16 xnew = xF ; % update result
17 xnew (efree) = xmma ; % include restricted elements
18 xnew = reshape (xnew , ny , nx) ; % reshape xmma vector to original

size
19 xF = xnew ; % update design variables
20 if shap == 1 % if restrictions enableed
21 xF (rest==1) = area ; % set restricted area
22 end
23 end
24 xFree = xnew (efree) ; % set non-restricted area

Master of Science Thesis Stefan Broxterman

246 Add-in Codes

C.3 Basic Load Cases Add-in.m

When applying multiple load cases, a small adjustment should be implemented (3.2.2). To
adapt the program to perform the compliance and sensitivity analysis for the number of pre-
defined load-cases, these lines should be replaced. [replace line 102-105]:

1 %% Calculate compliance and sensitivity
2 for i = 1 : size (F , 2) % for number of load cases
3 Ui = U (: , i) ; % displacement per load case
4 c0 = reshape (sum ((Ui (dofmat) ∗Ke) .∗ Ui (dofmat) , 2) ,ny , nx) ; % initial

compliance
5 c (iter) = c (iter) + sum (sum ((Emin+xF .^ p∗(E−Emin)) .∗ c0)) ; %

calculate compliance
6 Sens = Sens −p∗(E−Emin) ∗xF . ^ (p−1) .∗ c0 ; % sensitivity
7 end

When performing multiple load cases, the force vector needs to be defined accordingly. The
example shown in (Figure 3-4b) can be build by replacing the force vector. [replace line 35-38]:

1 %% DEFINE FORCE
2 Fe = [2∗ (nx+1)∗(ny+1) 2∗(nx+1)∗(ny+1)−1]; % element node of applied

force
3 Fn = [1 2] ;
4 Fv = [−1 1] ;

Stefan Broxterman Master of Science Thesis

C.4 Basic Self-weight Add-in.m 247

C.4 Basic Self-weight Add-in.m

When adding self-weight to the optimization problem some additions can be implemented
(3.2.3). The self-weight parameters can be defined [between line 34-35]:

1 rho = 0e−3; % density [0e-3]
2 g = 9 . 8 1 ; % gravitational acceleration [9.81]

When gravity is involved, the force of the gravity needs to be added to the external force
[between line 94-95]:

1 %% Selfweight
2 if rho ~= 0 % gravity is involved
3 xP=zeros (ny , nx) ; % pre-allocate space
4 xP (xF>0.25) = xF (xF>0.25) .^ p ; % normal penalization
5 xP (xF<=0.25) = xF (xF<=0.25) . ∗ (0 . 2 5^ (p−1)) ; % below pseudo -density
6 Fsw = zeros (N , 1) ; % pre-allocate self-weight
7 for i=1:nx∗ny % for each element , set gravitational...
8 Fsw (dofmat (i , 2 : 2 : end))=Fsw (dofmat (i , 2 : 2 : end))−xF (i) ∗rho

∗9 . 81/4 ;
9 end % force to the attached nodes

10 Fsw=repmat (Fsw , 1 , size (F , 2)) ; % set self-weight for load cases
11 elseif rho == 0 % no gravity
12 xP = xF .^ p ; % penalized design variable
13 Fsw = 0 ; % no selfweight
14 end
15 Ftot = F + Fsw ; % total force

To adapt the finite element analysis to the added self-weight, some replacements are needed
[replace line 95-99]:

1 %% Finite element analysis
2 kK = reshape (Ke (:) ∗(Emin+xP (:) ’∗ (E−Emin)) ,64∗nx∗ny , 1) ; % create

sparse vector k
3 K = sparse (iK , jK , kK) ; % combine sparse vectors
4 K = (K+K ’) /2 ; % build stiffness matrix
5 U (free , :) = K (free , free) \Ftot (free , :) ; % displacement solving

The sensitivity analysis needs to be adapted accordingly by replacing one line [replace line
105]:

1 Sens = Sens + reshape (2∗Ui (dofmat) ∗repmat ([0 ; −9 .81∗ rho /4] , 4 , 1) ,ny
, nx) −p∗(E−Emin) ∗xF . ^ (p−1) .∗ c0 ; % sensitivity

Master of Science Thesis Stefan Broxterman

248 Add-in Codes

C.5 Basic Continuity Add-in.m

To implement the continuity approach, a number of changes needs to be made to the pro-
gram (3.2.4). First, one line of specifying whether or not the user want the continuity method
[between line 23-24]:

1 pcon = 0 ; % use continuation method [0 = off, 1 = on]

Next, the continuity parameters can be defined [between line 26-27]:

1 pcinc = 1 . 0 3 ; % penalty continuation increasing factor [1.03]
2 piter = 20 ; % number of iteration for starting penalty [20]

The iteration loop needs to be adapted, in order to fulfill the maximum "continuity" iter-
ations, these replacements should be made [replace line 91-94]:

1 while ((diff > tol) | | (iter < piter+1)) && iter < miter % convergence
criterion not met

2 iter = iter+1; % define iteration
3 if pcon == 1 % use continuation method
4 if iter <= piter % first number of iterations...
5 p = 1 ; %... set penalty 1
6 elseif iter > piter % after a number of iterations...
7 p = min (pen , pcinc∗p) ; % ... set continuation penalty
8 end
9 elseif pcon == 0 % not using continuation method

10 p = pen ; % set penalty
11 end

In order to display the compliance of the iterations at a correct scale, one adaption should be
made to the plotting code. [between line 171-172]:

1 if pcon == 0
2 yaxmax = mean ([yaxmin yaxmax]) ;
3 end

The exact same addition should be added further on [between line 218-219]:

1 if pcon == 0
2 yaxmax = mean ([yaxmin yaxmax]) ;
3 end

Stefan Broxterman Master of Science Thesis

C.6 Basic Filters Add-in.m 249

C.6 Basic Filters Add-in.m

During the report some filtering techniques are introduced. (3.2.5) both the sensitivity, den-
sity and the heaviside projection filter are implemented in this section. At first, determine
the type of filter [between line 21-22]:

1 fil = 0 ; % filter method [0 = sensitivity filtering , 1 =
density filtering , 2 = heaviside filtering]

Set the design space accordingly to the filter technique specified [between line 75-76]:

1 if fil == 0 | | fil == 1 % sensitivity , density filter
2 xF = x ; % set filtered design variables
3 elseif fil == 2 % heaviside filter
4 beta = 1 ; % hs filter
5 xTilde = x ; % hs filter
6 xF = 1−exp(−beta∗xTilde)+xTilde∗exp(−beta) ; % set filtered design

space
7 end

Initialize the loop-number of β [between line 90-91]:

1 loopbeta = 1 ; % initialize beta-loop

Make sure this β is updated during each loop [between line 92-93]:

1 loopbeta = loopbeta +1; % iteration loop for hs filter

The sensitivity analysis needs to be adapted to the new filter inputs, by replacing the original
sensitivity line [replace line 107]:

1 if fil == 0 % optimality criterion with sensitivity filter
2 Sens (:) = H∗(x (:) .∗ Sens (:)) . / Hs . / max (1e−3,x (:)) ; % update

filtered sensitivity
3 elseif fil == 1 % optimality criterion with density filter
4 Sens (:) = H∗(Sens (:) . / Hs) ; % update filtered sensitivity
5 Senc (:) = H∗(Senc (:) . / Hs) ; % update filtered sensitivity of

constraint
6 elseif fil == 2 % optimality criterion with heaviside filter
7 dx = beta∗exp(−beta∗xTilde)+exp(−beta) ; % update hs parameter

Master of Science Thesis Stefan Broxterman

250 Add-in Codes

8 Sens (:) = H∗(Sens (:) .∗ dx (:) . / Hs) ; % update filtered sensitivity
9 Senc (:) = H∗(Senc (:) .∗ dx (:) . / Hs) ; % update filtered sensitivity

of constraint
10 end

After the Optimality Criteria, the design variables needs to be filtered accordingly by re-
placing the update step [replace line 114]:

1 if fil == 0 % sensitivity filter
2 xF = xnew ; % updated result
3 elseif fil == 1 % density filter
4 xF (:) = (H∗xnew (:)) . / Hs ; % updated filtered density

result
5 elseif fil == 2 % heaviside filter
6 xTilde (:)= (H∗xnew (:)) . / Hs ; % set filtered density
7 xF (:) =1−exp(−beta∗xTilde)+xTilde∗exp(−beta) ; % updated

result
8 end

Only when the MMA method is implemented (C.1), and only this implemented is done,
replace the same line as above [replace line 158]:

1 if fil == 0 % sensitivity filter
2 xF = xnew ; % updated result
3 elseif fil == 1 % density filter
4 xF (:) = (H∗xnew (:)) . / Hs ; % updated filtered density

result
5 elseif fil == 2 % heaviside filter
6 xTilde (:)= (H∗xnew (:)) . / Hs ; % set filtered density
7 xF (:) =1−exp(−beta∗xTilde)+xTilde∗exp(−beta) ; % updated

result
8 end

After the optimization step, update the β of the heaviside projection filter. [between line
122-123]:

1 if fil == 2 && beta < 512 && pen == p (end) && (loopbeta >= 50 | | diff <=
tol) % hs filter

2 beta = 2∗beta ; % increase beta-factor
3 fprintf (’beta now is %3.0f\n’ , beta) % display increase of b-

factor
4 loopbeta = 0 ; % set hs filter loop to zero
5 diff = 1 ; % set convergence to initial value
6 end

Stefan Broxterman Master of Science Thesis

C.7 3D Add-in.m 251

C.7 3D Add-in.m

Up to here, only two dimensions are take into account. However, there is an add-in available
in order to upgrade the Basic (B.1) to three dimensions (3.3). This add-in consist of a lot
of manipulations, replacements and additions. At first, define the number of lateral elements
[between line 18-19]:

1 nz = 5 ; % number of elements lateral

Because the discretization can vary over time, it is helpful to clear the big X-matrix each
run [between line 21-22]:

1 clear X ; % clear the big X matrix

In order to force a black-white solution, a so-called gray-scale filter is implemented, the
associated parameter and the option itself can be implemented to enable or disable the filter
technique. [between line 27-28]:

1 graysc = 1 ; % use gray-scale filter [0 = off, 1 = on]
2 q = 1 ; % gray-scale parameter
3 qmax = 2 ; % maximum gray-scale parameter
4 plotiter = 5 ; % gap of iterations used to plot or draw

iterations

Because the third dimension cost a lot of computational time, it can be helpful to plot the
iterations and graphics only partially by introducing the plotiter, which is a definition of the
output steps of the iterations [replace line 34-36]:

1 plotiter = 5 ; % gap of iterations used to plot or draw
iterations

2 %% DEFINE OUTPUT
3 draw = 1 ; % plot iterations [0 = off, 1 = on, 2 = partial]
4 dis = 1 ; % display iterations [0 = off, 1 = on, 2 =

partial]

The number of elements is increased, by the introduction of a third dimension. As an exam-
ple, to reproduce the example shown in Figure 3-7, change the load [replace line 36]:

Master of Science Thesis Stefan Broxterman

252 Add-in Codes

1 Fe = (3∗ (nx+1)∗(ny+1)−1)+(3∗(nx+1)∗(ny+1)) ∗ (0 : nz) ’ ; % element of force
application

The number of elements is increased, by the introduction of a third dimension. As an exam-
ple, to reproduce the example shown in Figure 3-7, change the fixed locations [replace line 40]:

1 fix = repmat ((1 : 3 ∗ (ny+1)) ’ , 1 , nz+1)+repmat ((0 : nz) ∗3∗(nx+1)∗(ny+1) , length
((1 : 3 ∗ (ny+1))) ,1) ;

2 fix = fix (:) ; % fixed elements

The finite element analysis needs to be rebuild. The number of changes is big, so the best way
is by making a replacement of the current preparation of the finite elements [replace line 41-48]:

1 %% PREPARE FINITE ELEMENT
2 N = 3∗(nx+1)∗(ny+1)∗(nz+1) ; % total elements nodes
3 all = 1 :3∗ (nx+1)∗(ny+1)∗(nz+1) ; % all degrees of freedom
4 free = setdiff (all , fix) ; % free degrees of freedom
5 A = [32 6 −8 6 −6 4 3 −6 −10 3 −3 −3 −4 −8;
6 −48 0 0 −24 24 0 0 0 12 −12 0 12 12 1 2] ; % fem
7 k = 1/72∗A ’ ∗ [1 ; nu] ; % simple stiffness matrix

The next lines are ment to replace the element stiffness matrix and eventually introduce
a new way to define the nodes and dof vectors and matrices [replace line 49-54]:

1 %% GENERATE SIX SUB-MATRICES AND THEN GET KE MATRIX
2 K1 = [k (1) k (2) k (2) k (3) k (5) k (5) ;
3 k (2) k (1) k (2) k (4) k (6) k (7) ;
4 k (2) k (2) k (1) k (4) k (7) k (6) ;
5 k (3) k (4) k (4) k (1) k (8) k (8) ;
6 k (5) k (6) k (7) k (8) k (1) k (2) ;
7 k (5) k (7) k (6) k (8) k (2) k (1)] ; % stiffness matrix
8 K2 = [k (9) k (8) k (12) k (6) k (4) k (7) ;
9 k (8) k (9) k (12) k (5) k (3) k (5) ;

10 k (10) k (10) k (13) k (7) k (4) k (6) ;
11 k (6) k (5) k (11) k (9) k (2) k (10) ;
12 k (4) k (3) k (5) k (2) k (9) k (12)
13 k (11) k (4) k (6) k (12) k (10) k (13)] ; % stiffness matrix
14 K3 = [k (6) k (7) k (4) k (9) k (12) k (8) ;
15 k (7) k (6) k (4) k (10) k (13) k (10) ;
16 k (5) k (5) k (3) k (8) k (12) k (9) ;
17 k (9) k (10) k (2) k (6) k (11) k (5) ;
18 k (12) k (13) k (10) k (11) k (6) k (4) ;
19 k (2) k (12) k (9) k (4) k (5) k (3)] ; % stiffness matrix
20 K4 = [k (14) k (11) k (11) k (13) k (10) k (10) ;

Stefan Broxterman Master of Science Thesis

C.7 3D Add-in.m 253

21 k (11) k (14) k (11) k (12) k (9) k (8) ;
22 k (11) k (11) k (14) k (12) k (8) k (9) ;
23 k (13) k (12) k (12) k (14) k (7) k (7) ;
24 k (10) k (9) k (8) k (7) k (14) k (11) ;
25 k (10) k (8) k (9) k (7) k (11) k (14)] ; % stiffness matrix
26 K5 = [k (1) k (2) k (8) k (3) k (5) k (4) ;
27 k (2) k (1) k (8) k (4) k (6) k (11) ;
28 k (8) k (8) k (1) k (5) k (11) k (6) ;
29 k (3) k (4) k (5) k (1) k (8) k (2) ;
30 k (5) k (6) k (11) k (8) k (1) k (8) ;
31 k (4) k (11) k (6) k (2) k (8) k (1)] ; % stiffness matrix
32 K6 = [k (14) k (11) k (7) k (13) k (10) k (12) ;
33 k (11) k (14) k (7) k (12) k (9) k (2) ;
34 k (7) k (7) k (14) k (10) k (2) k (9) ;
35 k (13) k (12) k (10) k (14) k (7) k (11) ;
36 k (10) k (9) k (2) k (7) k (14) k (7) ;
37 k (12) k (2) k (9) k (11) k (7) k (14)] ; % stiffness matrix
38 Ke = 1/((nu+1)∗(1−2∗nu)) ∗ . . .
39 [K1 K2 K3 K4 ;
40 K2 ’ K5 K6 K3 ’ ;
41 K3 ’ K6 K5 ’ K2 ’ ;
42 K4 K3 K2 K1 ’] ; % element stiffness matrix
43 nodes = reshape (1 : (nx+1)∗(ny+1) ,1+ny ,1+nx) ; % create node number matrix
44 nodes2 = reshape (nodes (1 : end−1 ,1:end−1) , ny∗nx , 1) ; % create node number

matrix
45 nodes3 = 0 : (ny+1)∗(nx+1) : (nz−1)∗(ny+1)∗(nx+1) ; % create node number

matrix
46 nodes4 = repmat (nodes2 , size (nodes3))+repmat (nodes3 , size (nodes2)) ; %

create node number matrix
47 dofvec = 3∗nodes4 (:) +1; % create dof vector
48 dofmat = repmat (dofvec , 1 , 2 4)+repmat ([0 1 2 3∗ny+[3 4 5 0 1 2] −3 −2 −1

3∗(ny+1)∗(nx+1) + [0 1 2 3∗ny + [3 4 5 0 1 2] −3 −2 −1]] , nx∗ny∗nz , 1) ;
% create dof matrix

49 iK = kron (dofmat , ones (24 ,1)) ’ ; % build sparse i
50 jK = kron (dofmat , ones (1 , 24)) ’ ; % build sparse j

Now, the filter needs to redefined to account for the third dimension, here again, the number
of changes is big, so a complete replacement is recommended [replace line 55-77]:

1 %% PREPARE FILTER
2 iH = ones (nx∗ny∗nz ∗ (2∗ (ceil (rmin)−1)+1)^2 ,1) ; % build sparse i
3 jH = ones (size (iH)) ; % create sparse vector of ones
4 kH = zeros (size (iH)) ; % create sparse vector of zeros
5 m = 0 ; % index for filtering
6 for h = 1 : nz % for each element calculate...
7 for i = 1 : nx % distance between elements ’...
8 for j = 1 : ny % centre for filtering
9 r1 = (h−1)∗nx∗ny + (i−1)∗ny+j ; % sparse value 1

10 for k2 = max (h−(ceil (rmin)−1) ,1) : min (h+(ceil (rmin)−1) , nz) %
centre of element

Master of Science Thesis Stefan Broxterman

254 Add-in Codes

11 for k = max (i−(ceil (rmin)−1) ,1) : min (i+(ceil (rmin)−1) , nx)
% centre of element

12 for l = max (j−(ceil (rmin)−1) ,1) : min (j+(ceil (rmin)−1) ,
ny) % centre of element

13 r2 = (k2−1)∗nx∗ny + (k−1)∗ny+l ; % sparse value 2
14 m = m+1; % update index for filtering
15 iH (m) = r1 ; % sparse vector for filtering
16 jH (m) = r2 ; % sparse vector for filtering
17 kH (m) = max (0 , rmin−sqrt ((i−k)^2+(j−l) ^2)+(h−k2)

^2) ; % weight factor
18 end
19 end
20 end
21 end
22 end
23 end
24 H = sparse (iH , jH , kH) ; % build filter
25 Hs = sum (H , 2) ; % summation of filter
26 %% DEFINE STRUCTURAL
27 x = repmat (vol , ny , nx , nz) ; % initial material distribution

The constraint dots are pre-allocated, with the introduction of a third dimensions, the pre-
allocations should be implemented also [between line 83-84]:

1 npz = zeros (length (fix) , 1) ’ ; % pre-allocate constraint dots

The force dots are pre-allocated, with the introduction of a third dimensions, the pre-
allocations should be implemented also [between line 85-86]:

1 npfz = zeros (length (Fe) , 1) ’ ; % pre-allocate force dots

The loop is starting, when the gray-scale filter is enabled, this implementation uses a con-
tinuation method, in order to apply the correct gray-scale filter parameter [between line 94-95]:

1 if gray == 1 % if grayscale is enabled
2 if iter <= 15 % within 15 iterations
3 q = 1 ; % don’t use grayscale
4 else % after 15 iterations
5 q = min (qmax , 1 . 0 1∗ q) ; % use continuation method to pick a

gray-scale factor
6 end
7 end

Stefan Broxterman Master of Science Thesis

C.7 3D Add-in.m 255

The stiffness matrix is reshaped to account a third dimension, therefore the sparse vector
k needs to replaced [replace line 96]:

1 kK = Ke (:) ∗(Emin+xF (:) ’ . ^ p∗(E−Emin)) ; % create sparse vector k

The compliance and sensitivity analysis needs to be replaced also to account for the newly
introduced dimension. This can be done by a simple replacement of the lines [replace line
102-106]:

1 %% Calculate compliance and sensitivity
2 c0 = reshape (sum ((U (dofmat) ∗Ke) .∗ U (dofmat) , 2) ,ny , nx , nz) ; % initial

compliance
3 c (iter) = c (iter) + sum (sum (sum ((Emin+xF .^ p∗(E−Emin)) .∗ c0))) ; %

calculate compliance
4 Sens = Sens −p∗(E−Emin) ∗xF . ^ (p−1) .∗ c0 ; % sensitivity
5 Senc = ones (ny , nx , nz) ; % set constraint sensitivity

When the gray-scale filter is enabled, the Optimality Criteria method should be used, to
filter the calculated elements to achieve a black-white solution [replace line 113]:

1 if q == 0 % don’t use grayscale
2 xnew = max (0 , max (x−move , min (1 , min (x+move , x .∗ sqrt(−Sens . / Senc/

lag))))) ; % update element densities
3 elseif q == 1 % use grayscale
4 xnew = max (0 , max (x−move , min (1 , min (x+move , x .∗ sqrt(−Sens . / Senc/

lag)) .^ q))) ; % update element densities
5 end

The optimum solution within the Optimality Criteria should also account for the third di-
mension [replace line 115]:

1 if sum (xF (:)) > vol∗nx∗ny∗nz ; % check for optimum

The third dimension should be stored also in the big X-matrix, by replacing the existing
line [replace line 124]:

1 X (: , : , : , iter) = xF ; % each element value x is stored for each
iteration

Master of Science Thesis Stefan Broxterman

256 Add-in Codes

In order to show a graphical output of the results, a complete rewritten part of the code
is needed. The changes from plot to plot3d are that big, all the results lines should be re-
placed with the following collection of lines [replace line 128-223]:

1 %% Results
2 if dis == 1 % display iterations
3 disp ([’ Iter:’ sprintf (’%4i’ , iter) ’ Obj:’ sprintf (’%10.4f’ ,c (

iter)) . . .
4 ’ Vol:’ sprintf (’%6.3f’ , mean (xF (:))) ’ Diff:’ sprintf (’%6.3f’

, diff)]) ;
5 elseif dis == 2 % display parts of iterations
6 if iter == 1 | | iter == disiter
7 if iter == 1
8 disiter = plotiter ;
9 elseif iter == disiter

10 disiter = disiter + plotiter ;
11 end
12 disp ([’ Iter:’ sprintf (’%4i’ , iter) ’ Obj:’ sprintf (’%10.4f’ ,c

(iter)) . . .
13 ’ Vol:’ sprintf (’%6.3f’ , mean (xF (:))) ’ Diff:’ sprintf (’

%6.3f’ , diff)]) ;
14 end
15
16 end
17 if draw == 1 % plot iterations
18 figure (1)
19 subplot (2 , 1 , 1)
20 [nely , nelx , nelz] = size (xF) ;
21 hx = 1 ; hy = 1 ; hz = 1 ; % User-defined unit element

size
22 face = [1 2 3 4 ; 2 6 7 3 ; 4 3 7 8 ; 1 5 8 4 ; 1 2 6 5 ; 5 6 7 8] ;
23 for k = 1 : nelz
24 z = (k−1)∗hz ;
25 for i = 1 : nelx
26 xplot = (i−1)∗hx ;
27 for j = 1 : nely
28 y = nely∗hy − (j−1)∗hy ;
29 if (xF (j , i , k) > 0 . 5) % User-defined display density

threshold
30 vert = [xplot y z ; xplot y−hx z ; xplot+hx y−hx z ;

xplot+hx y z ; xplot y z+hx ; xplot y−hx z+hx ;
xplot+hx y−hx z+hx ; xplot+hx y z+hx] ;

31 vert (: , [2 3]) = vert (: , [3 2]) ; vert (: , 2 , :) = −
vert (: , 2 , :) ;

32 patch (’Faces’ ,face , ’Vertices’ ,vert , ’FaceColor’
, [0 .2+0.8∗(1− xF (j , i , k)) ,0.2+0.8∗(1−xF (j , i , k))
,0.2+0.8∗(1−xF (j , i , k))]) ;

33 hold on ;
34 end
35 end

Stefan Broxterman Master of Science Thesis

C.7 3D Add-in.m 257

36 end
37 end
38 axis equal ; axis tight ;
39 set (gca , ’XTick’ , [] , ’YTick’ , [] , ’ZTick’ , [] , ’XTicklabel’ , [] , . . .
40 ’YTicklabel’ , [] , ’ZTicklabel’ , [] , ’xcolor’ ,’w’ ,’ycolor’ ,’w’ ,’

zcolor’ ,’w’)
41 view ([3 0 , 3 0]) ;
42 xlabel (sprintf (’c = %.2f’ ,c (iter)) ,’Color’ ,’k’)
43 drawnow ;
44 hold on
45 if iter == 1
46 % Plot coloured dots for constraints
47 for i = 1 : length (fix)
48 nplotx = ceil (fix (i) /(3∗ (ny+1))) ;
49 while nplotx > (nx+1)
50 nplotx = nplotx −(nx+1) ;
51 end
52 npx (i) = nplotx−1;
53 nplot = ceil (fix (i) /3) ;
54 while nplot > (ny+1)
55 nplot = nplot−(ny+1) ;
56 end
57 npy (i) = nplot−1;
58 npz (i) = 1−ceil (fix (i) /(3∗ (nx+1)∗(ny+1))) ;
59 end
60 plot3 (npx , npz , npy , ’r.’ ,’MarkerSize’ , 20)
61 % Plot coloured dots for force application
62 for i = 1 : length (Fe)
63 nplotx = ceil (Fe (i) /(3∗ (ny+1))) ;
64 while nplotx > (nx+1)
65 nplotx = nplotx −(nx+1) ;
66 end
67 npfx (i) = nplotx−1;
68 nplot = ceil (Fe (i) /3) ;
69 while nplot > (ny)
70 nplot = nplot−(ny+1) ;
71 end
72 npfy (i) = nplot ;
73 npfz (i) = 1−ceil (Fe (i) /(3∗ (nx+1)∗(ny+1))) ;
74 end
75 plot3 (npfx , npfz , npfy , ’g.’ ,’MarkerSize’ , 20)
76 drawnow ;
77 end
78 % Plot compliance plot
79 figure (1)
80 subplot (2 , 1 , 2)
81 plot (c (1 : iter))
82 xaxmax = c (iter) ;
83 yaxmax = max (c) ;
84 yaxmin = min (c (1 : iter)) ;
85 ylim ([0 . 9 5 ∗ yaxmin yaxmax])
86 xlim ([0 iter+10])
87 elseif draw == 2 % plot parts of iterations

Master of Science Thesis Stefan Broxterman

258 Add-in Codes

88 if iter == 1 | | iter == drawiter
89 if iter == 1
90 drawiter = plotiter ;
91 elseif iter == drawiter
92 drawiter = drawiter + plotiter ;
93 end
94 figure (1)
95 subplot (2 , 1 , 1)
96 [nely , nelx , nelz] = size (xF) ;
97 hx = 1 ; hy = 1 ; hz = 1 ; % User-defined unit

element size
98 face = [1 2 3 4 ; 2 6 7 3 ; 4 3 7 8 ; 1 5 8 4 ; 1 2 6 5 ; 5 6 7

8] ;
99 for k = 1 : nelz

100 z = (k−1)∗hz ;
101 for i = 1 : nelx
102 xplot = (i−1)∗hx ;
103 for j = 1 : nely
104 y = nely∗hy − (j−1)∗hy ;
105 if (xF (j , i , k) > 0 . 5) % User-defined display

density threshold
106 vert = [xplot y z ; xplot y−hx z ; xplot+hx y−

hx z ; xplot+hx y z ; xplot y z+hx ; xplot y−
hx z+hx ; xplot+hx y−hx z+hx ; xplot+hx y z+
hx] ;

107 vert (: , [2 3]) = vert (: , [3 2]) ; vert (: , 2 , :) =
−vert (: , 2 , :) ;

108 patch (’Faces’ ,face , ’Vertices’ ,vert , ’FaceColor
’ , [0 .2+0.8∗(1− xF (j , i , k)) ,0.2+0.8∗(1−xF (j , i
, k)) ,0.2+0.8∗(1−xF (j , i , k))]) ;

109 hold on ;
110 end
111 end
112 end
113 end
114 axis equal ; axis tight ;
115 set (gca , ’XTick’ , [] , ’YTick’ , [] , ’ZTick’ , [] , ’XTicklabel’ , [] , . . .
116 ’YTicklabel’ , [] , ’ZTicklabel’ , [] , ’xcolor’ ,’w’ ,’ycolor’ ,’w’

,’zcolor’ ,’w’)
117 view ([3 0 , 3 0]) ;
118 xlabel (sprintf (’c = %.2f’ ,c (iter)) , ’Color’ ,’k’)
119 drawnow ;
120 hold on
121 if iter == 1
122 % Plot coloured dots for constraints
123 for i = 1 : length (fix)
124 nplotx = ceil (fix (i) /(3∗ (ny+1))) ;
125 while nplotx > (nx+1)
126 nplotx = nplotx −(nx+1) ;
127 end
128 npx (i) = nplotx−1;
129 nplot = ceil (fix (i) /3) ;
130 while nplot > (ny+1)

Stefan Broxterman Master of Science Thesis

C.7 3D Add-in.m 259

131 nplot = nplot−(ny+1) ;
132 end
133 npy (i) = nplot−1;
134 npz (i) = 1−ceil (fix (i) /(3∗ (nx+1)∗(ny+1))) ;
135 end
136 plot3 (npx , npz , npy , ’r.’ ,’MarkerSize’ , 20)
137 % Plot coloured dots for force application
138 for i = 1 : length (Fe)
139 nplotx = ceil (Fe (i) /(3∗ (ny+1))) ;
140 while nplotx > (nx+1)
141 nplotx = nplotx −(nx+1) ;
142 end
143 npfx (i) = nplotx−1;
144 nplot = ceil (Fe (i) /3) ;
145 while nplot > (ny)
146 nplot = nplot−(ny+1) ;
147 end
148 npfy (i) = nplot ;
149 npfz (i) = 1−ceil (Fe (i) /(3∗ (nx+1)∗(ny+1))) ;
150 end
151 plot3 (npfx , npfz , npfy , ’g.’ ,’MarkerSize’ , 20)
152 drawnow ;
153 end
154 % Plot compliance plot
155 figure (1)
156 subplot (2 , 1 , 2)
157 plot (c (1 : iter))
158 xaxmax = c (iter) ;
159 yaxmax = max (c) ;
160 yaxmin = min (c (1 : iter)) ;
161 ylim ([0 . 9 5 ∗ yaxmin yaxmax])
162 xlim ([0 iter+10])
163 end
164 end
165 end
166 %% ONLY DISPLAY FINAL RESULT
167 if dis == 0 | | dis == 2 % display final result
168 disp ([’ Iter:’ sprintf (’%4i’ , iter) ’ Obj:’ sprintf (’%10.4f’ ,c (iter))

. . .
169 ’ Vol:’ sprintf (’%6.3f’ , mean (xF (:))) ’ Diff:’ sprintf (’%6.3f’ ,

diff)]) ;
170 end
171 if draw == 0 | | draw == 2 % plot final result
172 figure (1)
173 subplot (2 , 1 , 1)
174 [nely , nelx , nelz] = size (xF) ;
175 hx = 1 ; hy = 1 ; hz = 1 ; % User-defined unit element size
176 face = [1 2 3 4 ; 2 6 7 3 ; 4 3 7 8 ; 1 5 8 4 ; 1 2 6 5 ; 5 6 7 8] ;
177 for k = 1 : nelz
178 z = (k−1)∗hz ;
179 for i = 1 : nelx
180 xplot = (i−1)∗hx ;
181 for j = 1 : nely

Master of Science Thesis Stefan Broxterman

260 Add-in Codes

182 y = nely∗hy − (j−1)∗hy ;
183 if (xF (j , i , k) > 0 . 5) % User-defined display density

threshold
184 vert = [xplot y z ; xplot y−hx z ; xplot+hx y−hx z ;

xplot+hx y z ; xplot y z+hx ; xplot y−hx z+hx ; xplot+
hx y−hx z+hx ; xplot+hx y z+hx] ;

185 vert (: , [2 3]) = vert (: , [3 2]) ; vert (: , 2 , :) = −vert
(: , 2 , :) ;

186 patch (’Faces’ ,face , ’Vertices’ ,vert , ’FaceColor’
, [0 .2+0.8∗(1− xF (j , i , k)) ,0.2+0.8∗(1−xF (j , i , k))
,0.2+0.8∗(1−xF (j , i , k))]) ;

187 hold on ;
188 end
189 end
190 end
191 end
192 axis equal ; axis tight ;
193 set (gca , ’XTick’ , [] , ’YTick’ , [] , ’ZTick’ , [] , ’XTicklabel’ , [] , . . .
194 ’YTicklabel’ , [] , ’ZTicklabel’ , [] , ’xcolor’ ,’w’ ,’ycolor’ ,’w’ ,’zcolor

’ ,’w’)
195 view ([3 0 , 3 0]) ;
196 xlabel (sprintf (’c = %.2f’ ,c (iter)) , ’Color’ ,’k’)
197 drawnow ;
198 hold on
199 % Plot coloured dots for constraints
200 for i = 1 : length (fix)
201 nplotx = ceil (fix (i) /(3∗ (ny+1))) ;
202 while nplotx > (nx+1)
203 nplotx = nplotx −(nx+1) ;
204 end
205 npx (i) = nplotx−1;
206 nplot = ceil (fix (i) /3) ;
207 while nplot > (ny+1)
208 nplot = nplot−(ny+1) ;
209 end
210 npy (i) = nplot−1;
211 npz (i) = 1−ceil (fix (i) /(3∗ (nx+1)∗(ny+1))) ;
212 end
213 plot3 (npx , npz , npy , ’r.’ ,’MarkerSize’ , 20)
214 % Plot coloured dots for force application
215 for i = 1 : length (Fe)
216 nplotx = ceil (Fe (i) /(3∗ (ny+1))) ;
217 while nplotx > (nx+1)
218 nplotx = nplotx −(nx+1) ;
219 end
220 npfx (i) = nplotx−1;
221 nplot = ceil (Fe (i) /3) ;
222 while nplot > (ny)
223 nplot = nplot−(ny+1) ;
224 end
225 npfy (i) = nplot ;
226 npfz (i) = 1−ceil (Fe (i) /(3∗ (nx+1)∗(ny+1))) ;
227 end

Stefan Broxterman Master of Science Thesis

C.7 3D Add-in.m 261

228 plot3 (npfx , npfz , npfy , ’g.’ ,’MarkerSize’ , 20)
229 % Plot compliance plot
230 figure (1)
231 subplot (2 , 1 , 2)
232 plot (c (1 : iter))
233 xaxmax = c (iter) ;
234 yaxmax = max (c) ;
235 yaxmin = min (c (1 : iter)) ;
236 ylim ([0 . 9 5 ∗ yaxmin yaxmax])
237 xlim ([0 iter+10])
238 end
239 toc % stop timer

Master of Science Thesis Stefan Broxterman

262 Add-in Codes

C.8 Complaint Mechanisms Add-in.m

In this section, an add-in is made available to compute a variety of complaint mechanisms,
as described in (3.4).
Using the previously described BASIC-code (B.3) as basis, the following lines should upgrade
the code to calculate compliant mechanisms. At first, change the move limit for the Optimal-
ity Criteria, to allow for smaller steps in the optimization [replace line 30]:

1 move = 0 . 1 ; % move limit for lagrange [0.1]

Since compliance mechanisms often consist of a symmetric problem, a new symmetry-function
is build in. Also, an option for plotting small displacement is implemented [between line 33-
34]:

1 sym = 2 ; % symmetry [0 = off, 1 = x-axis, 2 = y-axis]
2 def = 1 ; % plot deformations [0 = off, 1 = on]

In compliance mechanisms it is helpful to describe and calculate a displacement, in stead
of a force. Therefore a stiffness for the input and output load can be defined [between line
42-43]:

1 Kin = 5e−2; % spring stiffness at input force [5e-4]
2 Kout = 5e−4; % spring stiffness at output force [5e-4]

The compliant mechanism case as described in 3-11a can be created by changing the force
and supports [replace line 44-48]:

1 %% DEFINE FORCE
2 Uin = 2∗(ny+1)−1; % input force node
3 Uout = 2∗(nx+1)∗(ny+1)−1; % output force node
4 Fe = [Uin Uout] ; % element of force application [Uin Uout]
5 Fn = [1 2] ; % number of applied force locations [1 2]
6 Fv = [1 −1]; % value of applied force [1 -1]
7 %% DEFINE SUPPORTS
8 fix = [1 : 4 (Uin+1) : 2∗ (ny+1) : (Uout+1)] ; % fixed elements

In order to implement the stiffness at the input and output nodes, the predefined spring
stiffness needs to be added to the existing stiffness matrix [between line 177-178]:

Stefan Broxterman Master of Science Thesis

C.8 Complaint Mechanisms Add-in.m 263

1 K (Uin , Uin) = K (Uin , Uin) + Kin ; % add input spring stiffness
2 K (Uout , Uout) = K (Uout , Uout) + Kout ; % add output spring stiffness

The adjoint load cases, as well as the new objective needs to be defined by replacing the
original line [replace line 182-187]:

1 U1 = U (: , 1) ; U2 = U (: , 2) ;
2 c0 = reshape (sum ((U1 (dofmat) ∗Ke) .∗ U2 (dofmat) , 2) ,ny , nx) ;
3 c (iter) = U (Uout , 1) ;
4 Sens = p∗(E−Emin) ∗xF . ^ (p−1) .∗ c0 ;

When using the Optimality Criteria method, the convergence criteria is changed [replace
line 203-205]:

1 while (l2−l1) /(l1+l2) > 1e−4 && l2 > 1e−40; % start loop
2 lag = 0 .5∗ (l1+l2) ; % average of lagranian interval
3 xnew = max (0 , max (x−move , min (1 , min (x+move , x . ∗ (max (1e−10,−Sens

. / lag)) . ^ 0 . 3)))) ; % update element densities

With this compliant mechanisms, in order to compare the in- and output displacements,
it could be helpful to display these displacement in the workspace [replace line 269-271]:

1 disp ([’ Iter:’ sprintf (’%4i’ , iter) ’ Uin:’ sprintf (’%6.2f’ ,U (Uin)) . . .
2 ’ Uout:’ sprintf (’%6.2f’ ,c (iter)) ’ Con:’ sprintf (’%6.2f’ ,

diff) ’ Vol:’ sprintf (’%6.2f’ , mean (xF (:))) ’ Diff:’
sprintf (’%6.3f’ , diff)]) ;

When symmetry case is implemented, this requires an additional figure, which displays the
symmetric case scenario, using the live optimization [between line 316-317]:

1 if sym ~= 0 % apply symmetry
2 if sym == 1 % symmetry around x-axis
3 xFlip = fliplr (xF) ;
4 xFliplot = [xFlip xF] ;
5 end
6 if sym == 2 % symmetry around y-axis
7 xFlip = flip (xF) ;
8 xFliplot = [xF ; xFlip] ;
9 end

10 colormap gray

Master of Science Thesis Stefan Broxterman

264 Add-in Codes

11 imagesc(1−xFliplot)
12 axis equal
13 axis off
14 end

Also display the final results, when not using the display output [replace line 320-322]:

1 disp ([’ Iter:’ sprintf (’%4i’ , iter) ’ Uin:’ sprintf (’%6.2f’ ,U (Uin)) . . .
2 ’ Uout:’ sprintf (’%6.2f’ ,c (iter)) ’ Con:’ sprintf (’%6.2f’ ,

diff) ’ Vol:’ sprintf (’%6.2f’ , mean (xF (:))) ’ Diff:’
sprintf (’%6.3f’ , diff)]) ;

As defined before, also an implementation for the fast implementation, without live opti-
mization needs to be implemented [between line 367-368]:

1 if sym ~= 0 % apply symmetry
2 if sym == 1 % symmetry around x-axis
3 xFlip = fliplr (xF) ;
4 xFliplot = [xFlip xF] ;
5 end
6 if sym == 2 % symmetry around y-axis
7 xFlip = flip (xF) ;
8 xFliplot = [xF ; xFlip] ;
9 end

10 colormap gray
11 imagesc(1−xFliplot)
12 axis equal
13 axis off
14 end

In case displacement needs to be plotted, a small add-in to create a movie for different
input displacement is made available [between line 368-369]:

1 %% PLOTTING DISPLACEMENT (COMPLIANT MECHANISMS)
2 figure (2)
3 xaxis = get (gca , ’XLim’) ;
4 yaxis = get (gca , ’YLim’) ;
5 if def == 1
6 figure (3)
7 clear mov
8 colormap (gray) ;
9 Umov = 1 ; % start movie counter

10 Umax = 0 .0025 ; % define maximum displacement
11 for Udisp = linspace (0 , Umax , 1 0) ; % vary input displacement

Stefan Broxterman Master of Science Thesis

C.8 Complaint Mechanisms Add-in.m 265

12 clf
13 for ely = 1 : ny % plot displacements...
14 for elx = 1 : nx % for each element...
15 if xF (ely , elx) > 0 % exclude white regions for plotting

purposes
16 n1 = (ny+1)∗(elx−1)+ely ;
17 n2 = (ny+1)∗ elx +ely ;
18 Ue = −Udisp∗U ([2∗ n1−1;2∗n1 ; 2∗n2−1;2∗n2 ; 2∗n2+1;2∗n2

+2; 2∗n1+1;2∗n1+2] ,1) ;
19 ly = ely−1; lx = elx−1;
20 xx = [Ue (1 , 1)+lx Ue (3 , 1)+lx+1 Ue (5 , 1)+lx+1 Ue (7 , 1)+lx

] ’ ;
21 yy = [−Ue (2 , 1)−ly −Ue (4 , 1)−ly −Ue (6 , 1)−ly−1 −Ue (8 , 1)−

ly−1] ’ ;
22 patch ([xx xx] , [yy+ny −yy−ny] , [− xF (ely , elx) −xF (ely ,

elx)] , ’LineStyle’ ,’none’) ;
23 end
24 end
25 end
26 xlim (xaxis)
27 ylim (yaxis−ny)
28 drawnow
29 mov (Umov) = getframe (3) ; % movie
30 Umov = Umov +1; % update counter
31 end
32 toc % stop timer
33 movlip = flip (mov) ; % create symmetry
34 movull = [mov movlip] ; % create symmetry
35 FileName = [’Compliant_’ , datestr (now , ’ddmm_HHMMSS’) , ’.avi’] ; %

dynamic filename
36 movie2avi (movull , FileName , ’compression’ , ’None’ , ’FPS’ , 10) ; % save

video
37 end

Master of Science Thesis Stefan Broxterman

266 Add-in Codes

C.9 Design of Supports Add-in.m

In this section, an add-in is made available to include design of supports, as described in (4.1).
Using the previously described BASIC-code (B.3) as basis, the following lines should upgrade
the code to include computation of the optimal support design. At first, change the pre-amble
to clear a big Z matrix, which stores the support design each iteration. [replace line 23]:

1 clc ; clf ; close all ; clear X ; clear Z ; % clear workspace

Because the design of support costs a lot of computational time, it can be helpful to plot
the iterations and graphics only partially by introducing the plotiter, which is a definition of
the output steps of the iterations [replace line 34-36]:

1 plotiter = 5 ; % gap of iterations used to plot or draw
iterations [5]

2 %% DEFINE OUTPUT
3 draw = 1 ; % plot iterations [0 = off, 1 = on, 2 = partial]
4 dis = 1 ; % display iterations [0 = off, 1 = on, 2 =

partial]

Design of support implementation require some additional input parameters. By implement-
ing the following inputs. Additionally, the force as shown in Figure 4-4 needs to be changed.
[replace line 43-44]:

1 %% DEFINE DESIGN OF SUPPORTS
2 supp = [1 : ny (1 : ny)+(nx−1)∗ny ny : ny : nx∗ny] ; % support area [1:ny (1:ny)+(

nx-1)*ny ny:ny:nx*ny]
3 supp = unique (supp) ; % create unique support area
4 zvol = 0 . 2 ; % maximum support area [0.2]
5 cost = 1 ; % set maximum cost of supports [1]
6 k0 = 0 . 0 1 ; % spring stiffness for support stiffness
7 q = 5 ; % penalty for support design [3]
8 zmin = 1e−9; % minimum support design variable [1e-9]
9 dist = 0 ; % cost distribution [0 = off, 1 = x-distributed ,

2 = y-distribution]
10 %% DEFINE FORCE
11 Fe = 2 :2∗ (ny+1) : 2∗ (ny+1)∗(nx+1) ; % element of force application [2:2*(ny

+1):2*(ny+1)*(nx+1)]

To implement the case as shown in Figure 4-4, the fixed supports need to be changed. The
same example includes a solid road at the upper size, so an element restriction needs to be
defined. [replace line 47-52]:

Stefan Broxterman Master of Science Thesis

C.9 Design of Supports Add-in.m 267

1 %% DEFINE SUPPORTS
2 fix = [1 : 2 2∗(ny+1)∗nx+(1:2)] ; % define fixed locations [1:2 2*(ny+1)*nx

+(1:2)]
3 %% DEFINE ELEMENT RESTRICTIONS
4 shap = 2 ; % [0 = no restrictions , 1 = circle , 2 = custom]
5 area = 1 ; % [0 = no material (passive), 1 = material (

active)]
6 nodr = 1 : ny : nx∗ny ; % custom restricted nodes [1:ny:nx*ny]

To handle the element restriction, the following lines need to be inserted. [between line
104-105]:

1 elseif shap == 2 % custom restrictions
2 rest = zeros (ny∗nx , 1) ; % pre-allocate space
3 for i = 1 : length (nodr) % write restriction
4 resti = nodr (i) ; % write restriction
5 rest (resti) = 1 ; % write restriction
6 end
7 rest = reshape (rest , ny , nx) ;
8 for i = 1 : nx % start loop
9 for j = 1 : ny % for each element

10 if rest (j , i) == area % check for restriction
11 x (j , i) = area ; % store restrictions in material

distribution
12 end
13 end
14 end

The design of support implementation needs some more actions, which needs to be defined.
Also, a distribution of costs can be defined over here. [between line 118-119]:

1 %% DESIGN OF SUPPORT DISTRIBUTION
2 xsiz = size (xFree (:) , 1) ; % size of design variables
3 zsiz = size (supp , 2) ; % size of support design variables
4 xzer = zeros (xsiz , 1) ; % empty row of zeros for mma usage
5 zzer = zeros (zsiz , 1) ; % empty row of zeros for mma usage
6 z = zeros (ny , nx) ; % create design of support domain
7 z (supp) = zvol ; % plugin initial support design variables
8 zval = z ’ ; % create vector of design variables
9 Si = 1 ; % counter

10 if dist == 1 % x-axis cost distribution
11 Scos = linspace (1 , cost , nx) ; % x-axis cost distribution
12 Scost = zeros (nx , nx) ; % create multiplication matrix
13 for i = 1 : nx % create weighted cost matrix
14 Scost (Si , i) = Scos (i) ; % plug-in cost values
15 Si = Si+1; % update counter
16 end

Master of Science Thesis Stefan Broxterman

268 Add-in Codes

17 elseif dist == 2 % y-axis cost distribution
18 Scos = linspace (1 , cost , ny) ; % y-axis cost distribution
19 Scost = zeros (ny , ny) ; % create multiplication matrix
20 for i = 1 : ny % create weighted cost matrix
21 Scost (Si , i) = Scos (i) ; % plug-in cost values
22 Si = Si+1; % update counter
23 end
24 end
25 Adofsup = dofmat (supp , :) ; % degrees of freedom for support locations
26 Asup = unique (Adofsup (:)) ; % unique support locations
27 zF = z ; % set design of support
28 zval = zval (zval ~= 0) ; % create configurable design of support vector

The number of constraints is increased, by the introduction of the design of supports. Conse-
quentially, the number of variables is increased, since the design space is enlarged. A minimum
variable of the support density is introduced, to prevent the solution to lock in a local opti-
mum. [replace line 120-122]:

1 m = 2 ; % number of constraint functions
2 n = xsiz+zsiz ; % number of variables
3 xmin = [zeros (xsiz , 1) ; zmin∗ones (zsiz , 1)] ; % minimum values of x

A small error is fixed, to include the number of constraint functions. [replace line 127]:

1 dfdx2 = zeros (m , n) ; % second derivative of the constraint function

A pre-allocation step is required for plotting purposes, as explained further on. [between
line 139-140]:

1 npdx = zeros (length (nodes) , 1) ’ ; % pre-allocate force dots
2 npdy = zeros (length (nodes) , 1) ’ ; % pre-allocate force dots

Design of supports require an additional calculation of the springs stiffnesses of the sup-
ports. This stiffness tensor needs to be calculated each loop and is added to the external
stiffness tensor, resulting in a final stiffness matrix for that iteration. [replace line 178]:

1 Kfvec = zeros (2∗ (ny+1)∗(nx+1) ,1) ; % build zeros support vector
2 for i = 1 : length (supp) % for each support element...
3 dofsup = dofmat (supp (i) , :) ; %...find the corresponding dof
4 for j = 1 : length (dofsup) % calculate new stiffness vector

Stefan Broxterman Master of Science Thesis

C.9 Design of Supports Add-in.m 269

5 Kfvec (dofsup (j)) = Kfvec (dofsup (j))+(zF (supp (i))^q) ∗k0 ;
6 end
7 end
8 Kf = spdiags (Kfvec , 0 , 2∗ (ny+1)∗(nx+1) ,2∗ (ny+1)∗(nx+1)) ; % create

diagonal Kf
9 Kt = K+Kf ; % update total force

10 U (free , :) = Kt (free , free) \Ftot (free , :) ; % displacement solving

The added constraint requires an additional sensitivity analysis. Also, the objective is changed,
since it includes now the design of supports factor. By replacing the following lines the com-
pliance and subsequent sensitivities are correctly calculated. [replace line 181-188]:

1 Senz = 0 ; % set constraint sensitivity to zero
2 %% Calculate compliance and sensitivity
3 for i = 1 : size (Fn , 2) % for number of load cases
4 Ui = U (: , i) ; % displacement per load case
5 c0 = reshape (sum ((Ui (dofmat) ∗Ke) .∗ Ui (dofmat) , 2) ,ny , nx) ; % initial

compliance
6 cz0 = reshape (sum ((Ui (dofmat) ∗k0) .∗ Ui (dofmat) , 2) ,ny , nx) ; %

initial support compliance
7 c (iter) = c (iter) + sum (sum ((Emin+xF .^ p∗(E−Emin)) .∗ c0)) + sum (sum

((zF .^ q) .∗ cz0)) ; % calculate compliance
8 Sens = Sens + reshape (2∗Ui (dofmat) ∗repmat ([0 ; −9 .81∗ rho /4] , 4 , 1) ,ny

, nx) −p∗(E−Emin) ∗xF . ^ (p−1) .∗ c0 ; % sensitivity
9 Senz = Senz + −q∗zF . ^ (q−1) .∗ cz0 ; % calculate sensitivity to

support variable
10 end
11 Senc = ones (ny , nx) ; % set constraint sensitivity
12 if dist == 0
13 Sencz = ones (ny , nx) ;
14 elseif dist == 1
15 Sencz =ones (ny , nx) ∗Scost ; % set weighted cost constraint

sensitivity
16 elseif dist == 2
17 Sencz = Scost∗ones (ny , nx) ; % set weighted cost constraint

sensitivity
18 end

The MMA solver as described in C.1 needs some changes. The design variable space is
enlarged, by the introduction of the support design. The sensitivities of the support con-
straint is now added to the MMA solver. A cost distribution is used in the MMA-solver, to
get the optimal result with respect to the cost function objective. [replace line 225-232]:

1 xval = [xFree (:) ; zval (:)] ; % store current design variable for
mma

2 if iter == 1 % for the first iteration...

Master of Science Thesis Stefan Broxterman

270 Add-in Codes

3 cscale = 1/c (iter) ; % ...set scaling factor for mma solver
4 end
5 f0 = c (iter) ∗cscale ; % objective at current design variable for

mma
6 df0dx = [Sens (efree) ∗cscale ; Senz (supp) ’∗ cscale] ; % store

sensitivity for mma
7 if dist == 0 % no cost distribution
8 Scosts = zF ; % cost-funcion no influence
9 elseif dist == 1 % x-axis cost distribution

10 Scosts = zF∗Scost ; % update weighted constraint function
11 elseif dist == 2 % y-axis cost distribution
12 Scosts = Scost∗zF ; % update weighted constraint function
13 end
14 f = [(sum (xF (:)) /(vol∗nx∗ny)−1) ; (sum (Scosts (supp)) /(zvol∗size (

supp , 2))−1)] ; % normalized constraint function
15 dfdx = [Senc (efree) ’ / (vol∗ny∗nx) zzer ’ ; xzer ’ Sencz (supp) /(zvol∗

size (supp , 2))] ; % derivative of the constraint function

The output of the MMA solver is changed, so different commands are needed to get the
right results. The output form the MMA solver is received into density and support design.
[replace line 237-240]:

1 xold1 = [xFree (:) ; zval (:)] ; % previous x, to monitor convergence
2 xnew = xF ; % update result
3 xnew (efree) = xmma (1 : xsiz) ; % include restricted elements
4 znew = zF ; % update design result
5 znew (supp) = xmma (xsiz+1:end) ; % include mma solved supports
6 xnew = reshape (xnew , ny , nx) ; % reshape xmma vector to original

size
7 znew = reshape (znew , ny , nx) ; % reshape support vector to original

size

To enable the restriction, after the filtering step, as well as update the new design of support,
requires an additional step, which is found here. [replace line 249-253]:

1 if shap == 1 | | shap == 2 % if restrictions enableed
2 xF (rest==1) = area ; % set restricted area
3 end
4 zF (:) = znew (:) ; % update support variables
5 zval = znew (supp) ; % update support variables
6 end

Substitute here the correct support design variables. [between line 256-257]:

Stefan Broxterman Master of Science Thesis

C.9 Design of Supports Add-in.m 271

1 z = znew ; % update support design variable

Store each support variable in a big Z-matrix for each iteration. [between line 265-266]:

1 Z (: , : , iter) = zF ; % each support variable is stored for each
iteration

Make sure the big Z-matrix is stored to the workspace. [between line 267-268]:

1 assignin (’base’ , ’Z’ , Z) ; % each iteration (3rd dimension)

The introduced plotiter, needs some different output setting. The output is hold and out-
putted each plotiter iteration. Also, for each display setting, the amount of support material
is shown. [replace line 270-271]:

1 disp ([’ Iter:’ sprintf (’%4i’ , iter) ’ Obj:’ sprintf (’%10.4f’ ,c (
iter)) . . .

2 ’ Vol:’ sprintf (’%6.3f’ , mean (xF (:))) ’ Diff:’ sprintf (’%6.3f’
, diff) ’ ZVol:’ sprintf (’%6.3f’ , mean (Scosts (supp)))]) ;

3 elseif dis == 2 % display parts of iterations
4 if iter == 1 | | iter == disiter
5 if iter == 1
6 disiter = plotiter ;
7 elseif iter == disiter
8 disiter = disiter + plotiter ;
9 end

10 disp ([’ Iter:’ sprintf (’%4i’ , iter) ’ Obj:’ sprintf (’%10.4f’ ,c
(iter)) . . .

11 ’ Vol:’ sprintf (’%6.3f’ , mean (xF (:))) ’ Diff:’ sprintf (’
%6.3f’ , diff) ’ ZVol:’ sprintf (’%6.3f’ , mean (Scosts (supp
)))]) ;

12 end

The support design elements can be plotted using blue dots. Using a threshold value of
0.99 to determine whether or not to plot a support design element. [between line 304-305]:

1 % Plot coloured dots for design of supports
2 for i = 1 : nx∗ny
3 if zF (i) > 0 .99 % treshold for plotting supports
4 if ceil (i/ny) == nx
5 npdx (i) = ceil (i/ny) + 0 . 5 ;

Master of Science Thesis Stefan Broxterman

272 Add-in Codes

6 elseif ceil (i/ny) == 1
7 npdx (i) = ceil (i/ny) −0.5;
8 else
9 npdx (i) = ceil (i/ny) ;

10 end
11 nplot = i ;
12 while nplot > ny
13 nplot = nplot−ny ;
14 end
15 if nplot == ny
16 npdy (i) = nplot+0.5;
17 elseif nplot == 1
18 npdy (i) = nplot−0.5 ;
19 else
20 npdy (i) = nplot ;
21 end
22 end
23 end
24 if exist (’Dos(1)’) %#ok<EXIST >
25 delete (Dos (1))
26 end
27 if exist (’npdx’) %#ok<EXIST >
28 Dos = plot (nonzeros (npdx) , nonzeros (npdy) , ’b.’ ,’MarkerSize’

, 20) ;
29 clear npdx ; clear npdy ;
30 uistack (Dos , ’bottom’)
31 end

When enabling partial drawing, the following lines needs to be added into the code, to work
around with this method. [between line 316-317]:

1 elseif draw == 2 % plot parts of iterations
2 if iter == 1 | | iter == drawiter
3 if iter == 1
4 drawiter = plotiter ;
5 elseif iter == drawiter
6 drawiter = drawiter + plotiter ;
7 end
8 figure (1)
9 subplot (2 , 1 , 1)

10 colormap (gray) ; imagesc(1−xF) ;
11 set (gca , ’XTick’ , [] , ’YTick’ , [] , ’XTicklabel’ , [] , . . .
12 ’YTicklabel’ , [] , ’xcolor’ ,’[0.7 0.7 0.7]’ ,’ycolor’ ,’[0.7

0.7 0.7]’)
13 xlabel (sprintf (’c = %.2f’ ,c (iter)) , ’Color’ ,’k’)
14 axis equal ; axis tight
15 drawnow ;
16 hold on
17 if iter == 1
18 % Plot coloured dots for force application

Stefan Broxterman Master of Science Thesis

C.9 Design of Supports Add-in.m 273

19 for i = 1 : length (Fe)
20 npfx (i) = ceil (Fe (i) /(2∗ (ny+1))) −0.5;
21 nplot = ceil (Fe (i) /2) ;
22 while nplot > (ny+1)
23 nplot = nplot−(ny+1) ;
24 end
25 npfy (i) = nplot−0.5 ;
26 end
27 plot (npfx , npfy , ’g.’ ,’MarkerSize’ , 20)
28 % Plot coloured dots for constraints
29 for i = 1 : length (fix)
30 npx (i) = ceil (fix (i) /(2∗ (ny+1))) −0.5;
31 nplot = ceil (fix (i) /2) ;
32 while nplot > (ny+1)
33 nplot = nplot−(ny+1) ;
34 end
35 npy (i) = nplot−0.5 ;
36 end
37 plot (npx , npy , ’r.’ ,’MarkerSize’ , 20)
38 end
39 % Plot coloured dots for design of supports
40 for i = 1 : nx∗ny
41 if zF (i) > 0 .99 % treshold for plotting supports
42 if ceil (i/ny) == nx
43 npdx (i) = ceil (i/ny) + 0 . 5 ;
44 elseif ceil (i/ny) == 1
45 npdx (i) = ceil (i/ny) −0.5;
46 else
47 npdx (i) = ceil (i/ny) ;
48 end
49 nplot = i ;
50 while nplot > ny
51 nplot = nplot−ny ;
52 end
53 if nplot == ny
54 npdy (i) = nplot+0.5;
55 elseif nplot == 1
56 npdy (i) = nplot−0.5 ;
57 else
58 npdy (i) = nplot ;
59 end
60 end
61 end
62 if exist (’Dos(1)’) %#ok<EXIST >
63 delete (Dos (1))
64 end
65 if exist (’npdx’) %#ok<EXIST >
66 Dos = plot (nonzeros (npdx) , nonzeros (npdy) , ’b.’ ,’MarkerSize

’ , 20) ;
67 clear npdx ; clear npdy ;
68 uistack (Dos , ’bottom’)
69 end
70 % Plot compliance plot

Master of Science Thesis Stefan Broxterman

274 Add-in Codes

71 figure (1)
72 subplot (2 , 1 , 2)
73 plot (c (1 : iter))
74 set (gca , ’YTick’ , [] , ’YTicklabel’ , [])
75 xlabel (’Iterations’)
76 ylabel (’Compliance’)
77 xaxmax = c (iter) ;
78 yaxmax = max (c) ;
79 yaxmin = min (c (1 : iter)) ;
80 if pcon == 0
81 yaxmax = mean ([yaxmin yaxmax]) ;
82 end
83 ylim ([0 . 9 5 ∗ yaxmin yaxmax])
84 xlim ([1 min (iter+10,miter)])
85 end

When disabling outputs, the design of support volume still needs to be displayed, at the
end of the optimization process. [replace line 320-324]:

1 if dis == 0 | | dis == 2 % display final result
2 disp ([’ Iter:’ sprintf (’%4i’ , iter) ’ Obj:’ sprintf (’%10.4f’ ,c (iter))

. . .
3 ’ Vol:’ sprintf (’%6.3f’ , mean (xF (:))) ’ Diff:’ sprintf (’%6.3f’ ,

diff) ’ ZVol:’ sprintf (’%6.3f’ , mean (Scosts (supp)))]) ;
4 end
5 if draw == 0 | | draw == 2 % plot final result

When disabling outputs, the support design elements still can be plotted using blue dots.
Using a threshold value to determine whether or not to plot a support design element. [be-
tween line 353-354]:

1 % Plot coloured dots for design of supports
2 for i = 1 : nx∗ny
3 if zF (i) > 0 .99 % treshold for plotting supports
4 if ceil (i/ny) == nx
5 npdx (i) = ceil (i/ny) + 0 . 5 ;
6 elseif ceil (i/ny) == 1
7 npdx (i) = ceil (i/ny) −0.5;
8 else
9 npdx (i) = ceil (i/ny) ;

10 end
11 nplot = i ;
12 while nplot > ny
13 nplot = nplot−ny ;
14 end
15 if nplot == ny
16 npdy (i) = nplot+0.5;

Stefan Broxterman Master of Science Thesis

C.9 Design of Supports Add-in.m 275

17 elseif nplot == 1
18 npdy (i) = nplot−0.5 ;
19 else
20 npdy (i) = nplot ;
21 end
22 end
23 end
24 if exist (’Dos(1)’) %#ok<EXIST >
25 delete (Dos (1))
26 end
27 if exist (’npdx’) %#ok<EXIST >
28 Dos = plot (nonzeros (npdx) , nonzeros (npdy) , ’b.’ ,’MarkerSize’

, 20) ;
29 clear npdx ; clear npdy ;
30 uistack (Dos , ’bottom’)
31 end

Master of Science Thesis Stefan Broxterman

276 Add-in Codes

C.10 Design of Actuator Placement Add-in.m

In this section, an add-in is made available to include design of forces, as described in (5).
Using the previously described BASIC-code (B.3) as basis, the following lines should upgrade
the code to include computation of the optimal placement of actuator design.
At first, in order to disable topology optimization, the volume can be fixed at a total void
regime. [replace line 19]:

1 vol = 1 ; % volume fraction [0-1]

Next, change the pre-amble to clear a big W matrix, which stores the force design for each
iteration. [replace line 23]:

1 clc ; clf ; close all ; clear X ; clear W ; % clear workspace

Now to enable finite difference check, and a way to enable or disable this finite difference
check method. In the pre-amble a variable for this check can be build in. [between line 27-28]:

1 fincheck = 1 ; % finite difference check [0 = off, 1 = on, 2 =
break]

Because the design of actuator placement take a lot of computational time, it can be helpful
to plot the iterations and graphics only partially by introducing the plotiter, which is a defini-
tion of the output steps of the iterations. Also, it is possible to create a deformed shape after
the optimization. A threshold factor for plotting the forces, as well as a small perturbation
value are implemented. [replace line 34-36]:

1 plotiter = 5 ; % gap of iterations used to plot or draw
iterations [5]

2 def = 0 ; % plot deformations [0 = off, 1 = on, 2 = play
video]

3 wplot = 0 . 2 0 ; % define treshold factor of Fmax for force plot
[0.20]

4 h = 1e−6; % perturbation value for finite difference method
[1e-6]

5 %% DEFINE OUTPUT
6 draw = 1 ; % plot iterations [0 = off, 1 = on, 2 = partial]
7 dis = 1 ; % display iterations [0 = off, 1 = on, 2 =

partial]

Stefan Broxterman Master of Science Thesis

C.10 Design of Actuator Placement Add-in.m 277

The actual implementation of the design of actuator placement is made here. The mini-
mal force constraint and maximum force per actuator can be defined here, as well as setting
an area for the objective. [between line 48-49]:

1 %% DEFINE DESIGN OF ACTUATOR
2 Fmaxnode = 1 ; % define max force per node [1]
3 Fmin = −1; % minimal force constraint [1]
4 sen = 5 ; % penalty for actuator design [5]
5 if abs (Fmaxnode) > abs (Fmin) % check for force model
6 Fmma = −Fmin ; % use Fmin as maximum xmma value
7 else
8 Fmin = Fmin/Fmaxnode ; % use fraction for constraint function
9 Fmma = Fmaxnode ; % use maximum force per node as maximum xmma

value
10 end
11 Uarray = 1 :2∗ (nx+1)∗(ny+1) ; % define objective area

The initial distribution of the actuator lay-out is implemented here. Also, the MMA pa-
rameters are changed to handle with the force, since the force should be negative. [replace
line 119-123]:

1 %% DESIGN OF ACTUATOR DISTRIBUTION
2 wsiz = size (Fe , 2) ; % size of actuator variables
3 wzer = zeros (wsiz , 1) ; % empty row of zeros for mma usage
4 wF = F ; % plugin initial force distribution
5 wval = F (Fe) ; % create vector of design variables
6 %% DEFINE MMA PARAMETERS
7 m = 1 ; % number of constraint functions
8 n = wsiz ; % number of variables
9 xmin = −1∗ones (n , 1) ; % minimum values of x

10 xmax = −(1e−9/Fmma) ∗ones (wsiz , 1) ; % maximum values of x

Additional pre-allocation of variables is needed, to speed up the optimization program. [be-
tween line 139-140]:

1 npdx = zeros (length (nodes) , 1) ’ ; % pre-allocate force dots
2 npdy = zeros (length (nodes) , 1) ’ ; % pre-allocate force dots
3 L = zeros (N , 1) ; % pre-allocate selection tensor
4 labda = zeros (N , 1) ; % pre-allocate lagrange multiplier
5 Fi = zeros (1 , N) ; % pre-allocate force selection vector
6 Cons = zeros (miter , 1) ; % pre-allocate constraint vector

To be able to make a selection of certain area, which needs to be optimized, a selection

Master of Science Thesis Stefan Broxterman

278 Add-in Codes

vector can be defined. This vector makes it easy to switch between horizontal and vertical
displacements. [between line 141-142]:

1 %% DEFINE SELECTION TENSOR
2 for j = Uarray % for each iteration..
3 if mod (j , 2) == 0 % ...check for horizontal or vertical
4 L (j) = 1 ; % vertical selection value
5 else
6 L (j) = 1 ; % horizontal selection value
7 end
8 end

To be able to penalize the force, a newly introduced penalty approach is made. The cal-
culation of the continuation method should be changed, to include correct penalization of the
force. [replace line 153-157]:

1 s = 0 . 5 ; %... set penalty 0.5 for actuator design
2 elseif iter > piter % after a number of iterations...
3 p = min (pen , pcinc∗p) ; % ... set continuation penalty
4 s = min (sen , 1 . 0 6∗ s) ; % ... set continuation penalty actuator

design
5 end
6 elseif pcon == 0 % not using continuation method
7 p = pen ; % set penalty
8 s = sen ; % set penalty actuator design

To actually calculate the penalization of the force, and subsequently scale the force to force
the MMA solver to search the optimal value between 0 and 1, some adjustments should be
made. [replace line 173]:

1 wP = atan (s∗wF) /atan (s) ; % penalized actuator variable
2 Ftot = Fmma ∗(wP) + Fsw ; % total force

Since the finite difference is built in inside the calculation loop, some pre-allocation steps
are needed inside this loop. [between line 180-181]:

1 Senw = 0 ; % set constraint sensitivity to zero
2 Cons (iter) = 0 ; % set constraint to zero
3 Senc = ones (1 , N) ; % set constraint sensitivity

Stefan Broxterman Master of Science Thesis

C.10 Design of Actuator Placement Add-in.m 279

The actual finite difference check inside the loop needs to be included. Also, the objec-
tive is updated here to optimize towards minimum displacement. The associated sensitivities
are calculated and filtered accordingly. [replace line 182-198]:

1 for i = 1 : size (Fn , 2) % for number of load cases
2 Ui = U (: , i) ; % displacement per load case
3 c0 = reshape (sum ((Ui (dofmat) ∗Ke) .∗ Ui (dofmat) , 2) ,ny , nx) ; % initial

compliance
4 c (iter) = c (iter) − sum (sum (Ui)) ; % objective
5 labda (free) = −K (free , free) \L (free) ; % calculate lagrange

multiplie
6 Fi (Fe) = (Fmma∗s . / ((s^2∗wF (Fe) .^2+1) ∗(atan (s)))) ; % force

selection vector
7 FFi = spdiags (Fi ’ , 0 , N , N) ; % force selection vector
8 Sens = Sens + FFi (Fe , Fe) ∗labda (Fe) ; % calculate sensitivity
9 Cons (iter) = Cons (iter) + Fmma ∗(Fmin/sum (sum (wF)))−1; % calculate

constraint
10 dCdf = Senc (Fe) ’∗ Fmma∗full (Fmin)/−(sum (sum (full (wF)))) ^2 ; %

constraint sensitivity
11 if iter == 2 % finite difference method
12 wF1 = wF ; % store first force vector
13 [~ , S1] = max (abs (Sens (:))) ; % calculate maximum sensitivity

value
14 Sens1 = Sens (S1) ; % store maximum sensitivity value
15 [~ , S2] = max (abs (dCdf (:))) ; % calculate maximum sensitivity

value
16 Sens2 = dCdf (S2) ; % store maximum sensitivity value
17 end
18 end
19 if fil == 0 % optimality criterion with sensitivity filter
20 Sens (:) = Sens ; % update filtered sensitivity
21 Sencw (:) = Senc ; % update filtered sensitivity
22 elseif fil == 1 % optimality criterion with density filter
23 Sens (:) = Sens ; % update filtered sensitivity of constraint
24 Sencw (:) = Senc ; % update filtered sensitivity of constraint
25 elseif fil == 2 % optimality criterion with heaviside filter
26 dx = beta∗exp(−beta∗xTilde)+exp(−beta) ; % update hs parameter
27 Sens (:) = H∗(Sens (:) .∗ dx (:) . / Hs) ; % update filtered sensitivity
28 Sencw (:) = Senc ; % update filtered sensitivity of constraint
29 end

The MMA solver can here be adjusted to store the current force distribution as design vari-
able. [replace line 225]:

1 xval = wval (:) ; % store current design variable for mma

Since the sensitivity and constraint values are calculated inside the loop, some adjustments

Master of Science Thesis Stefan Broxterman

280 Add-in Codes

should be made inside the MMA loop. [replace line 230-232]:

1 df0dx = Sens∗cscale ; % store sensitivity for mma
2 f = Cons (iter) ; % normalized constraint function
3 dfdx = dCdf ; % derivative of normalized constraint

function

The MMA solver should be updated to update the force design. [replace line 237-240]:

1 xold1 = wval (:) ; % previous x, to monitor convergence
2 xnew = xF ; % update density result
3 wnew = wF ; % update force result
4 wnew (Fe) = xmma (1 : end) ; % include mma result

The update of the force distribution is here built in. Also, an adjustment is made for the
tolerance, to check the difference between force vectors. [replace line 253-256]:

1 wF (:) = wnew (:) ; % update force variables
2 wval = wnew (Fe) ; % update force variables
3 end
4 diff = max (abs (full (Fmma∗wnew (:))−full (F (:)))) ; % difference of

maximum element change
5 F = Fmma∗wnew ; % update design variable

The actual finite difference check is made after each loop. Here, the values are changed
using a small perturbation. The pre-allocation of fincheck can be used to check, stop, or skip
the finite difference method. [between line 262-263]:

1 %% Finite difference method
2 if (fincheck == 1 | | fincheck == 2) % check for finite difference

method
3 if iter == 2 % on first findif iteration
4 wF = wF1 ; % store first findif result...
5 wF (Fe (S1)) = wF1 (Fe (S1))+h ; %...and add a small pertubation
6 elseif iter == 3 % on second findif iteration
7 findif = (c (3)−c (2)) /h ; % calculate finite difference method
8 Sensdif = abs (max ((findif−Sens1) /Sens1 , (Sens1−findif) /findif)

) ; % maximum difference
9 if Sensdif > 0.01 % when difference between sensitivity and

findif is too much display
10 disp ([’Warning: Sensitivity needs to be checked , max

difference:’ sprintf (’%10.2f’ , Sensdif)])
11 if fincheck == 2 % when fincheck is not accomplished...

Stefan Broxterman Master of Science Thesis

C.10 Design of Actuator Placement Add-in.m 281

12 break %... break the loop and stop the code
13 end
14 end
15 wF = wF1 ; % store first findif result...
16 wF (Fe (S2)) = wF1 (Fe (S2))+h ; %...and add a small pertubation
17 elseif iter == 4 % on third findif iteration
18 findif2 = (Cons (4)−Cons (2)) /h ; % calculate finite difference

method
19 Sensdif2 = abs (max ((findif2−Sens2) /Sens2 , (Sens2−findif2) /

findif2)) ; % maximum difference
20 if Sensdif2 > 0.01 % when difference between sensitivity and

findif is too much display
21 disp ([’Warning: Sensitivity needs to be checked , max

difference:’ sprintf (’%10.2f’ , Sensdif2)])
22 if fincheck == 2 % when fincheck is not accomplished...
23 break %... break the loop and stop the code
24 end
25 end
26 end
27 end

Make a separate value index, which stores each force distribution for each iteration. [be-
tween line 265-266]:

1 W (: , : , iter) = full (wF) ; % each force variable is stored for each
iteration

Additionally, store this variable to the workspace. [between line 267-268]:

1 assignin (’base’ , ’W’ , W) ; % each iteration (3rd dimension).

The introduced plotiter, needs some different output setting. The output is hold and out-
putted each plotiter iteration. Also, for each display setting, the amount of total force is
shown. [replace line 270-271]:

1 disp ([’ Iter:’ sprintf (’%4i’ , iter) ’ Obj:’ sprintf (’%10.4f’ ,c (
iter)) . . .

2 ’ Ftot:’ sprintf (’%6.3f’ , sum (full (wP (:)))) ’ Diff:’ sprintf (’
%6.3f’ , diff)]) ;

3 elseif dis == 2 % display parts of iterations
4 if iter == 1 | | iter == disiter
5 if iter == 1
6 disiter = plotiter ;
7 elseif iter == disiter

Master of Science Thesis Stefan Broxterman

282 Add-in Codes

8 disiter = disiter + plotiter ;
9 end

10 disp ([’ Iter:’ sprintf (’%4i’ , iter) ’ Obj:’ sprintf (’%10.4f’ ,c
(iter)) . . .

11 ’ Ftot:’ sprintf (’%6.3f’ , sum (full (wP (:)))) ’ Diff:’
sprintf (’%6.3f’ , diff)]) ;

12 end

The force distribution can be plotted by blue dots and attached arrows. Using a thresh-
old value of wplot to determine whether or not to plot a force application. [replace line
277-304]:

1 set (gca , ’XTick’ , [] , ’YTick’ , [] , ’XTicklabel’ , [] , . . .
2 ’YTicklabel’ , [] , ’xcolor’ ,’[0.7 0.7 0.7]’ ,’ycolor’ ,’[0.7 0.7

0.7]’)
3 xlabel (sprintf (’c = %.2f’ ,c (iter)) ,’Color’ ,’k’)
4 axis equal ; axis tight
5 drawnow ;
6 hold on
7 if iter == 1
8 % Plot coloured dots for constraints
9 for i = 1 : length (fix)

10 npx (i) = ceil (fix (i) /(2∗ (ny+1))) −0.5;
11 nplot = ceil (fix (i) /2) ;
12 while nplot > (ny+1)
13 nplot = nplot−(ny+1) ;
14 end
15 npy (i) = nplot−0.5 ;
16 end
17 plot (npx , npy , ’r.’ ,’MarkerSize’ , 20)
18 end
19 % Plot coloured dots for force application
20 Fmaxplot = min (min (full (F))) ;
21 for i = 1 : length (Fe)
22 if F (Fe (i)) < wplot∗Fmaxplot
23 npfx (i) = ceil (Fe (i) /(2∗ (ny+1))) −0.5;
24 nplot = ceil (Fe (i) /2) ;
25 while nplot > (ny+1)
26 nplot = nplot−(ny+1) ;
27 end
28 npfy (i) = nplot−0.5 ;
29 end
30 end
31 if iter > 1
32 delete (Dof)
33 end
34 if exist (’npfx’ ,’var’)
35 Dof = plot (npfx (npfx (:) >0) , npfy (npfy (:) >0) , ’b.’ ,’MarkerSize’

, 20) ;
36 clear npfx ; clear npfy ;

Stefan Broxterman Master of Science Thesis

C.10 Design of Actuator Placement Add-in.m 283

37 uistack (Dof , ’top’)
38 end
39 % Plot coloured arrows for force application
40 if (((diff < tol) && iter >= piter+1) | | iter >= miter)
41 for i = 1 : length (Fe)
42 npfx (i) = ceil (Fe (i) /(2∗ (ny+1))) −0.5;
43 nplot = ceil (Fe (i) /2) ;
44 while nplot > (ny+1)
45 nplot = nplot−(ny+1) ;
46 end
47 npfy (i) = nplot−0.5 ;
48 end
49 for i = 1 : length (Fe)
50 if F (Fe (i)) < wplot∗Fmaxplot
51 headsize = 1/sqrt (length (nonzeros (F (Fe) <0.5∗Fmaxplot)

)) ;
52 if mod (Fe (i) , 2)
53 arrowz ([npfx (i) npfy (i)] , [npfx (i) +0.5∗ny∗F (Fe (i))

/Fmaxplot npfy (i)] , headsize , 2 , [0 0 1])
54 else
55 arrowz ([npfx (i) npfy (i)] , [npfx (i) npfy (i) +0.5∗ny∗

F (Fe (i)) /Fmaxplot] , headsize , 2 , [0 0 1])
56 end
57 end
58 end
59 end

When enabling partial drawing, the following lines needs to be added into the code, to work
around with this method. [between line 316-317]:

1 elseif draw == 2 % plot parts of iterations
2 if iter == 1 | | iter == drawiter
3 if iter == 1
4 drawiter = plotiter ;
5 elseif iter == drawiter
6 drawiter = drawiter + plotiter ;
7 end
8 figure (1)
9 subplot (2 , 1 , 1)

10 colormap (gray) ; imagesc(1−xF) ;
11 set (gca , ’XTick’ , [] , ’YTick’ , [] , ’XTicklabel’ , [] , . . .
12 ’YTicklabel’ , [] , ’xcolor’ ,’[0.7 0.7 0.7]’ ,’ycolor’ ,’[0.7

0.7 0.7]’)
13 xlabel (sprintf (’c = %.2f’ ,c (iter)) , ’Color’ ,’k’)
14 axis equal ; axis tight
15 drawnow ;
16 hold on
17 if iter == 1
18 % Plot coloured dots for constraints
19 for i = 1 : length (fix)

Master of Science Thesis Stefan Broxterman

284 Add-in Codes

20 npx (i) = ceil (fix (i) /(2∗ (ny+1))) −0.5;
21 nplot = ceil (fix (i) /2) ;
22 while nplot > (ny+1)
23 nplot = nplot−(ny+1) ;
24 end
25 npy (i) = nplot−0.5 ;
26 end
27 plot (npx , npy , ’r.’ ,’MarkerSize’ , 20)
28 end
29 % Plot coloured dots for force application
30 Fmaxplot = min (min (full (F))) ;
31 for i = 1 : length (Fe)
32 if F (Fe (i)) < wplot∗Fmaxplot
33 npfx (i) = ceil (Fe (i) /(2∗ (ny+1))) −0.5;
34 nplot = ceil (Fe (i) /2) ;
35 while nplot > (ny+1)
36 nplot = nplot−(ny+1) ;
37 end
38 npfy (i) = nplot−0.5 ;
39 end
40 end
41 if iter > 1
42 delete (Dof)
43 end
44 if exist (’npfx’ ,’var’)
45 Dof = plot (npfx (npfx (:) >0) , npfy (npfy (:) >0) , ’b.’ ,’

MarkerSize’ , 20) ;
46 clear npfx ; clear npfy ;
47 uistack (Dof , ’top’)
48 end
49 % Plot coloured arrows for force application
50 if (((diff < tol) && iter >= piter+1) | | iter >= miter)
51 for i = 1 : length (Fe)
52 npfx (i) = ceil (Fe (i) /(2∗ (ny+1))) −0.5;
53 nplot = ceil (Fe (i) /2) ;
54 while nplot > (ny+1)
55 nplot = nplot−(ny+1) ;
56 end
57 npfy (i) = nplot−0.5 ;
58 end
59 for i = 1 : length (Fe)
60 if F (Fe (i)) < wplot∗Fmaxplot
61 headsize = 1/sqrt (length (nonzeros (F (Fe) <0.5∗

Fmaxplot))) ;
62 if mod (Fe (i) , 2)
63 arrowz ([npfx (i) npfy (i)] , [npfx (i) +0.5∗ny∗F (Fe

(i)) /Fmaxplot npfy (i)] , headsize , 2 , [0 0 1])
64 else
65 arrowz ([npfx (i) npfy (i)] , [npfx (i) npfy (i)

+0.5∗ny∗F (Fe (i)) /Fmaxplot] , headsize , 2 , [0 0
1])

66 end
67 end

Stefan Broxterman Master of Science Thesis

C.10 Design of Actuator Placement Add-in.m 285

68 end
69 end
70 % Plot compliance plot
71 figure (1)
72 subplot (2 , 1 , 2)
73 plot (c (1 : iter))
74 set (gca , ’YTick’ , [] , ’YTicklabel’ , [])
75 xlabel (’Iterations’)
76 ylabel (’Compliance’)
77 xaxmax = c (iter) ;
78 yaxmax = max (c) ;
79 yaxmin = min (c (1 : iter)) ;
80 if pcon == 0
81 yaxmax = mean ([yaxmin yaxmax]) ;
82 end
83 ylim ([0 . 9 5 ∗ yaxmin yaxmax])
84 xlim ([1 min (iter+10,miter)])
85 end

When disabling outputs, the design of force placement still needs to be displayed, at the
end of the optimization process. [replace line 320-353]:

1 %% ONLY DISPLAY FINAL RESULT
2 if dis == 0 | | dis == 2 % display final result
3 disp ([’ Iter:’ sprintf (’%4i’ , iter) ’ Obj:’ sprintf (’%10.4f’ ,c (iter))

. . .
4 ’ Ftot:’ sprintf (’%6.3f’ , sum (full (wP (:)))) ’ Diff:’ sprintf (’%6.3

f’ , diff)]) ;
5 end
6 if draw == 0 | | draw == 2 % plot final result
7 figure (1)
8 subplot (2 , 1 , 1)
9 colormap (gray) ; imagesc(1−xF) ;

10 axis equal ; axis tight ;
11 set (gca , ’XTick’ , [] , ’YTick’ , [] , ’XTicklabel’ , [] , . . .
12 ’YTicklabel’ , [] , ’xcolor’ ,’[0.7 0.7 0.7]’ ,’ycolor’ ,’[0.7 0.7 0.7]’

)
13 xlabel (sprintf (’c = %.2f’ ,c (iter)) , ’Color’ ,’k’)
14 drawnow ;
15 hold on
16 % Plot coloured dots for constraints
17 for i = 1 : length (fix)
18 npx (i) = ceil (fix (i) /(2∗ (ny+1))) −0.5;
19 nplot = ceil (fix (i) /2) ;
20 while nplot > (ny+1)
21 nplot = nplot−(ny+1) ;
22 end
23 npy (i) = nplot−0.5 ;
24 end
25 plot (npx , npy , ’r.’ ,’MarkerSize’ , 20)

Master of Science Thesis Stefan Broxterman

286 Add-in Codes

26 % Plot coloured dots for force application
27 Fmaxplot = min (min (full (F))) ;
28 for i = 1 : length (Fe)
29 if F (Fe (i)) < wplot∗Fmaxplot
30 npfx (i) = ceil (Fe (i) /(2∗ (ny+1))) −0.5;
31 nplot = ceil (Fe (i) /2) ;
32 while nplot > (ny+1)
33 nplot = nplot−(ny+1) ;
34 end
35 npfy (i) = nplot−0.5 ;
36 end
37 end
38 if iter > 1
39 delete (Dof)
40 end
41 if exist (’npfx’ ,’var’)
42 Dof = plot (npfx (npfx (:) >0) , npfy (npfy (:) >0) , ’b.’ ,’MarkerSize’ , 20) ;
43 clear npfx ; clear npfy ;
44 uistack (Dof , ’top’)
45 end
46 % Plot coloured arrows for force application
47 if (((diff < tol) && iter >= piter+1) | | iter >= miter)
48 for i = 1 : length (Fe)
49 npfx (i) = ceil (Fe (i) /(2∗ (ny+1))) −0.5;
50 nplot = ceil (Fe (i) /2) ;
51 while nplot > (ny+1)
52 nplot = nplot−(ny+1) ;
53 end
54 npfy (i) = nplot−0.5 ;
55 end
56 for i = 1 : length (Fe)
57 if F (Fe (i)) < wplot∗Fmaxplot
58 headsize = 1/sqrt (length (nonzeros (F (Fe) <0.5∗Fmaxplot))) ;
59 if mod (Fe (i) , 2)
60 arrowz ([npfx (i) npfy (i)] , [npfx (i) +0.5∗ny∗F (Fe (i)) /

Fmaxplot npfy (i)] , headsize , 2 , [0 0 1])
61 else
62 arrowz ([npfx (i) npfy (i)] , [npfx (i) npfy (i) +0.5∗ny∗F (Fe

(i)) /Fmaxplot] , headsize , 2 , [0 0 1])
63 end
64 end
65 end
66 end

To show deformed shape of the structure, please add-in the following lines. [between line
368-369]:

1 %% PLOTTING DISPLACEMENT
2 if (def == 1 | | def == 2)
3 FileName = [’Displacement_’ , datestr (now , ’ddmm_HHMMSS’) , ’.avi’] ; %

Stefan Broxterman Master of Science Thesis

C.10 Design of Actuator Placement Add-in.m 287

dynamic filename
4 vidObj = VideoWriter (FileName) ;
5 vidObj . FrameRate = 3 ;
6 figure (1)
7 subplot (2 , 1 , 1)
8 xaxis = get (gca , ’XLim’) ;
9 yaxis = get (gca , ’YLim’) ;

10 open (vidObj) ;
11 figure (2)
12 clear mov
13 colormap (gray) ;
14 Umov = 1 ; % start movie counter
15 Uim = zeros (5642 ,1) ;
16 Uim (2 : 2 : end) = Ui (2 : 2 : end) ;
17 Uim (1 : 2 : end) = −Ui (1 : 2 : end) ;
18 Umax = −10/max (abs (Uim)) ; % define maximum displacement
19 steps = 1 ; % number of displacement steps
20 set (gca , ’nextplot’ ,’replacechildren’) ;
21 Upatch = zeros (nx∗ny , 1) ;
22 for i = 1 : ny∗nx
23 Uindex = 2∗(i+floor ((i−1)/ny))−1+[1 2 2∗(ny+1)+1 2∗(ny+1)+3] ;
24 Upatch (i , 1) = mean (U (Uindex)) ;
25 end
26 Upatch = reshape (Upatch , ny , nx) ;
27 Upatchmin = min (min (Upatch)) ;
28 Upatchnorm = −Upatch/Upatchmin ;
29 for Udisp = linspace (Umax/steps , Umax , steps) % vary input displacement
30 clf
31 for ely = 1 : ny % plot displacements...
32 for elx = 1 : nx % for each element...
33 if xF (ely , elx) > 0 % exclude white regions for plotting

purposes
34 n1 = (ny+1)∗(elx−1)+ely ;
35 n2 = (ny+1)∗ elx +ely ;
36 Ue = Udisp∗Uim ([2∗ n1−1;2∗n1 ; 2∗n2−1;2∗n2 ; 2∗n2+1;2∗n2

+2; 2∗n1+1;2∗n1+2] ,1) ;
37 ly = ely−1; lx = elx−1;
38 xx = [Ue (1 , 1)+lx Ue (3 , 1)+lx+1 Ue (5 , 1)+lx+1 Ue (7 , 1)+lx

] ’ ;
39 yy = [−Ue (2 , 1)−ly −Ue (4 , 1)−ly −Ue (6 , 1)−ly−1 −Ue (8 , 1)−

ly−1] ’ ;
40 patch ([xx xx] , [yy yy] , [Upatchnorm (ely , elx) Upatchnorm

(ely , elx)] , ’LineStyle’ ,’none’) ;
41
42 end
43 end
44 end
45 colormap jet % for better interpation...
46 axis tight
47 axis equal
48 xticks ([0 15 30 45 60 75 90])
49 box on
50 colorbar

Master of Science Thesis Stefan Broxterman

288 Add-in Codes

51 drawnow % ...draw coloured densities
52 currFrame = getframe ; % get current frame...
53 writeVideo (vidObj , currFrame) ; % ... write to video file
54 end
55 close (vidObj) ;
56 end
57 if def == 2 % when def equals 2...
58 implay (FileName) % ...open Matlab Movie Player
59 end
60 toc

C.11 Topology Add-in.m

In this section, an add-in is made available to include topology, to work with design of actua-
tor placement, as described in (5.4). Using the previously described Actuator Placement-code
(C.10) as basis, the following lines should upgrade the code to include computation of the op-
timal placement of actuator design. The implementation of topology optimziation will result
in a much longer computational time.
First, the volume constraint can now be used, so a change to the volume should be made.
[replace line 19]:

1 vol = 0 . 2 ; % volume fraction [0-1]

Since the topology is now included, the sizes should be calculated and included. [replace
line 149-150]:

1 %% DESIGN OF ACTUATOR AND TOPOLOGY DISTRIBUTION
2 xsiz = size (xFree , 1) ; % size of topology variables
3 wsiz = size (Fe , 2) ; % size of actuator variables
4 xzer = zeros (xsiz , 1) ; % empty row of zeros for mma usage

The number of constraints should be updates, and so does the size of the number of variables.
[replace line 155-158]:

1 m = 3 ; % number of constraint functions
2 n = xsiz+wsiz ; % number of variables
3 xmin = [1 e−9∗ones (xsiz , 1) ; −1∗ones (wsiz , 1)] ; % minimum values of x
4 xmax = [ones (xsiz , 1) ; −(1e−9/Fmma) ∗ones (wsiz , 1)] ; % maximum values of x

Stefan Broxterman Master of Science Thesis

C.11 Topology Add-in.m 289

The topology optimization add-in results in an additional number of calculations inside the
loop, so extra allocation steps are needed. [replace line 181-182]:

1 labda2 = zeros (N , 1) ; % pre-allocate second lagrange multiplier
2 Fi = zeros (1 , N) ; % pre-allocate force selection vector
3 Ua = zeros (N , 1) ; % pre-allocate displacement vector
4 Cons = zeros (miter , 1) ; % pre-allocate constraint vector
5 Cons2 = zeros (miter , 1) ; % pre-allocate constraint #2 vector
6 Cons3 = zeros (miter , 1) ; % pre-allocate constraint #3 vector

In this case, only the vertical selection is included, so no need for horizontal. [replace line 188]:

1 L (j) = 0 ; % horizontal selection value

The change of design variables will result in a huge amount of changes inside the loop. Addi-
tional sensitivities needs to be calculated. An additional compliance constraint is added, in
order to create physically possible structures. Also, the finite difference method is extended
for all sensitivities. [replace line 240-253]:

1 Ua (Uarray) = Ui (Uarray) ; % selection of displacement
2 c0 = reshape (sum ((Ui (dofmat) ∗Ke) .∗ Ui (dofmat) , 2) ,ny , nx) ; % initial

compliance
3 c (iter) = c (iter) + sum (Ua . ^2) ; % objective
4 labda (free) = −sparse (Kt (free , free)) \sparse (2∗Ua (free)) ; %

calculate lagrange multiplier
5 labda2 (free) = 2∗Ua (free) ; % calculate second lagrange multiplier
6 c00 = reshape (sum ((labda (dofmat) ∗Ke) .∗ Ui (dofmat) , 2) ,ny , nx) ; %

initial labda compliance
7 Fi (Fe) = (Fmma∗s . / ((s^2∗wF (Fe) .^2+1) ∗(atan (s)))) ; % force

selection vector
8 FFi = spdiags (Fi ’ , 0 , N , N) ; % force selection vector
9 Sens = Sens + p∗(E−Emin) ∗xF . ^ (p−1) .∗ c00 ; % calculate density

sensitivity
10 Senw = Senw − FFi (Fe , Fe) ∗labda (Fe) ; % calculate force sensitivity
11 Cons (iter) = Cons (iter) + 10∗(sum (xF (:)) /(vol∗nx∗ny)−1) ; %

calculate constraint
12 dCdx = 10∗Senc (efree) /(vol∗ny∗nx) ; % constraint sensitivity
13 Cons2 (iter) = Cons2 (iter) + 10∗(Fmin/sum (sum (wF)))−1; % calculate

constraint
14 dCdf = 10∗Senc (Fe) ∗Fmin/−(sum (sum (full (wF)))) ^2 ; % constraint

sensitivity
15 Cons3 (iter) = Cons3 (iter) + (sum (sum ((Emin+xF .^ p∗(E−Emin)) .∗ c0))

−50) ; % compliance constraint
16 dCCdx = −p∗(E−Emin) ∗xF . ^ (p−1) .∗ c0 ; % constraint sensitivity

Master of Science Thesis Stefan Broxterman

290 Add-in Codes

17 dCCdf = labda2 (Fe) ’∗ FFi (Fe , Fe) ; % constraint sensitivity
18 if iter == 2 % finite difference method
19 F1 = wF ; % store force vector
20 X1 = xF ; % store density vector
21 [~ , S1] = max (abs (Sens (:))) ; % calculate maximum sensitivity

value
22 Sens1 = Sens (S1) ; % store maximum sensitivity value
23 [~ , S2] = max (abs (Senw (:))) ; % calculate maximum sensitivity

value
24 Sens2 = Senw (S2) ; % store maximum sensitivity value
25 [~ , S3] = max (abs (dCdx (:))) ; % calculate maximum sensitivity

value
26 Sens3 = dCdx (S3) ; % store maximum sensitivity value
27 [~ , S4] = max (abs (dCdf (:))) ; % calculate maximum sensitivity

value
28 Sens4 = dCdf (S4) ; % store maximum sensitivity value
29 [~ , S5] = max (abs (dCCdx (:))) ; % calculate maximum sensitivity

value
30 Sens5 = dCCdx (S5) ; % store maximum sensitivity value
31 [~ , S6] = max (abs (dCCdf (:))) ; % calculate maximum sensitivity

value
32 Sens6 = dCCdf (S6) ; % store maximum sensitivity value

The MMA solver should work with more design variables. [replace line 294]:

1 xval = [xFree (:) ; wval (:)] ; % store current design variable for
mma

The MMA solver is here updated to extend the number of constraints and additional sensi-
tivities. [replace line 299-301]:

1 df0dx = [Sens (efree) ; Senw]∗ cscale ; % store sensitivity for mma
2 f = [Cons (iter) ; Cons2 (iter) ; Cons3 (iter)] ; % normalized constraint

function
3 dfdx =[dCdx wzer ’ ; xzer ’ dCdf ; dCCdx (efree) ’ dCCdf] ; % derivative

constraint functions

The previous design variable is here updated to include topology design. [replace line 306]:

1 xold1 = [xFree (:) ; wval (:)] ; % previous x, to monitor convergence

Stefan Broxterman Master of Science Thesis

C.11 Topology Add-in.m 291

The MMA result is split to update the topology and actuator placement. [replace line 309]:

1 xnew (efree) = xmma (1 : xsiz) ; % update mma to density
2 wnew (Fe) = xmma (xsiz+1:end) ; % update mma to force

The density design variables should be updated. [between line 321-322]:

1 xFree = xnew (efree) ; % update density variable

The tolerance is updated, as a summation of changes in force and changes in density. [replace
line 324]:

1 diff = (max (abs (full (Fmma∗wnew (:))−full (F (:))))+max (abs (xnew (:)−x (:))
)) ; % difference of maximum element change

2 x = xnew ; % update design variable density

The finite difference method checks six different sensitivities. This results in an extension
of the code. [replace line 335-354]:

1 xF = X1 ; % store first findif result...
2 xF (S1) = X1 (S1)+h ; %...and add a small pertubation
3 wF = F1 ; % store first findif result
4 elseif iter == 3 % on second findif iteration
5 findif = (c (3)−c (2)) /h ; % calculate finite difference method
6 Sensdif = abs (max ((findif−Sens1) /Sens1 , (Sens1−findif) /findif)

) ; % maximum difference
7 if Sensdif > 0.01 % when difference between sensitivity and

findif is too much display
8 disp ([’Warning: Sensitivity needs to be checked , max

difference:’ sprintf (’%10.2f’ , Sensdif)])
9 if fincheck == 2 % when fincheck is not accomplished...

10 break %... break the loop and stop the code
11 end
12 end
13 wF = F1 ; % store first findif result...
14 wF (Fe (S2)) = F1 (Fe (S2))+h ; %...and add a small pertubation
15 xF = X1 ; % store first findif result
16 elseif iter == 4 % on third findif iteration
17 findif2 = (c (4)−c (2)) /h ; % calculate finite difference method
18 Sensdif2 = abs (max ((findif2−Sens2) /Sens2 , (Sens2−findif2) /

findif2)) ; % maximum difference
19 if Sensdif2 > 0.01 % when difference between sensitivity and

findif is too much display

Master of Science Thesis Stefan Broxterman

292 Add-in Codes

20 disp ([’Warning: Sensitivity needs to be checked , max
difference:’ sprintf (’%10.2f’ , Sensdif2)])

21 if fincheck == 2 % when fincheck is not accomplished...
22 break %... break the loop and stop the code
23 end
24 end
25 wF = F1 ; % store first findif result
26 xF = X1 ; % store first findif result...
27 xF (S3) = xF (S3)+h ; %...and add a small pertubation
28 elseif iter == 5 % on fourth findif iteration
29 findif3 = (Cons (5)−Cons (2)) /h ; % calculate finite difference

method
30 Sensdif3 = abs (max ((findif3−Sens3) /Sens3 , (Sens3−findif3) /

findif3)) ; % maximum difference
31 if Sensdif3 > 0.01 % when difference between sensitivity and

findif is too much display
32 disp ([’Warning: Sensitivity needs to be checked , max

difference:’ sprintf (’%10.2f’ , Sensdif3)])
33 if fincheck == 2 % when fincheck is not accomplished...
34 break %... break the loop and stop the code
35 end
36 end
37 wF = F1 ; % store first findif result
38 wF (S4) = wF (S4)+h ; % store first findif result...
39 xF = X1 ; %...and add a small pertubation
40 elseif iter == 6 % on fifth findif iteration
41 findif4 = (Cons2 (6)−Cons2 (2)) /h ; % calculate finite

difference method
42 Sensdif4 = abs (max ((findif4−Sens4) /Sens4 , (Sens4−findif4) /

findif4)) ; % maximum difference
43 if Sensdif4 > 0.01 % when difference between sensitivity and

findif is too much display
44 disp ([’Warning: Sensitivity needs to be checked , max

difference:’ sprintf (’%10.2f’ , Sensdif4)])
45 if fincheck == 2 % when fincheck is not accomplished...
46 break %... break the loop and stop the code
47 end
48 end
49 wF = F1 ; % store first findif result
50 xF = X1 ; % store first findif result...
51 xF (S5) = xF (S5)+h ; %...and add a small pertubation
52 elseif iter == 7 % on sixth findif iteration
53 findif5 = (Cons3 (7)−Cons3 (2)) /h ; % calculate finite

difference method
54 Sensdif5 = abs (max ((findif4−Sens5) /Sens5 , (Sens5−findif5) /

findif5)) ; % maximum difference
55 if Sensdif5 > 0.01 % when difference between sensitivity and

findif is too much display
56 disp ([’Warning: Sensitivity needs to be checked , max

difference:’ sprintf (’%10.2f’ , Sensdif5)])
57 if fincheck == 2 % when fincheck is not accomplished...
58 break %... break the loop and stop the code
59 end

Stefan Broxterman Master of Science Thesis

C.11 Topology Add-in.m 293

60 end
61 wF = F1 ; % store first findif result...
62 wF (Fe (S6)) = F1 (Fe (S6))+h ; %...and add a small pertubation
63 xF = X1 ; % store first findif result
64 elseif iter == 8 % on second finidif iteration
65 findif6 = (Cons3 (8)−Cons3 (2)) /h ; % calculate finite

difference method
66 Sensdif6 = abs (max ((findif6−Sens6) /Sens6 , (Sens6−findif6) /

findif6)) ; % maximum difference
67 if Sensdif6 > 0.01 % when difference between sensitivity and

findif is too much display
68 disp ([’Warning: Sensitivity needs to be checked , max

difference:’ sprintf (’%10.2f’ , Sensdif6)])
69 if fincheck == 2 % when fincheck is not accomplished...
70 break %... break the loop and stop the code

An update is made, to include topology in the output window. [replace line 369]:

1 ’ Vol:’ sprintf (’%6.3f’ , mean (xF (:))) ’ Ftot:’ sprintf (’%6.3f’
, . . .

2 sum (full (F))) ’ Diff:’ sprintf (’%6.3f’ , diff)]) ;

An update is made, to include topology in the output window. [replace line 378]:

1 ’ Vol:’ sprintf (’%6.3f’ , mean (xF (:))) ’ Ftot:’ sprintf (’%6.3f’
, . . .

2 sum (full (F))) ’ Diff:’ sprintf (’%6.3f’ , diff)]) ;

An update is made, to include topology in the output window. [replace line 549]:

1 ’ Vol:’ sprintf (’%6.3f’ , mean (xF (:))) ’ Ftot:’ sprintf (’%6.3f’
, . . .

2 sum (full (F))) ’ Diff:’ sprintf (’%6.3f’ , diff)]) ;

An update is made, to include topology in the output window. [replace line 549]:

1 ’ Vol:’ sprintf (’%6.3f’ , mean (xF (:))) ’ Ftot:’ sprintf (’%6.3f’
, . . .

2 sum (full (F))) ’ Diff:’ sprintf (’%6.3f’ , diff)]) ;

Master of Science Thesis Stefan Broxterman

294 Add-in Codes

Stefan Broxterman Master of Science Thesis

Appendix D

Supplementary Codes

In this section some supplementary MATLAB codes can be found. The prescribed MMA
solution (C.1) method calls two external functions, in order to calculate the optimal solution.
These functions can be found in (D.1) and (D.2). A function to create arrows can be found
in (D.3).

Master of Science Thesis Stefan Broxterman

mlangelaar
Cross-Out

304 Supplementary Codes

D.3 Arrowz.m

In order to be able to plot force application as an arrow representation, a new code is written.
This code can be used to draw a certain arrow from start- to endpoint, with an adjustable
shaft- and headsize. Also, the color of these arrows can be adjusted (Broxterman, 2016).

1 function arrowz (startpair , endpair , varargin)
2 % Written in Sep 2016 by Stefan Broxterman (TU Delft)
3 %
4 % ARROWZ draws an easily adjustable arrow from startpair to endpair.

These
5 % pairs should be vectors of length 2. The input of ARROWZ can vary from

2
6 % to 6 inputs.
7 %
8 % ARROWZ(starpair ,endpair) creates an easy arrow , a line plot from
9 % startpair to endpair , with an additional head within the direction of

the
10 % endpair. Input format is [x y],[x y].
11 %
12 % ARROWZ(starpair ,endpair ,headsize) is able to adjust the size of the

head.
13 % Default size is 1.
14 %
15 % ARROWZ(starpair ,endpair ,headsize ,shaftsize) sets the thickness of the
16 % shaft to the desired size. Default size is 1.
17 %
18 % ARROWZ(starpair ,endpair ,headsize ,shaftsize ,color) specifies the color

of
19 % the total arrow. These values should be provided as RGB. Default is

black
20 % [0 0 0].
21 %
22 % ARROWZ(starpair ,endpair ,headsize ,shaftsize ,headcolor ,shaftcolor) colors
23 % the shaft of the arrow into a seperate color. Default is black [0 0 0].
24 %
25 % Many thanks to Ryan Molecke
26 switch nargin % Check number of inputs
27 case 2
28 headsize = 1 ;
29 shaftsize = 1 ;
30 headcolor = [0 0 0] ;
31 shaftcolor = [0 0 0] ;
32 case 3
33 headsize = varargin {1} ;
34 shaftsize = 1 ;
35 headcolor = [0 0 0] ;
36 shaftcolor = [0 0 0] ;
37 case 4
38 headsize = varargin {1} ;
39 shaftsize = varargin {2} ;
40 headcolor = [0 0 0] ;
41 shaftcolor = [0 0 0] ;

Stefan Broxterman Master of Science Thesis

D.3 Arrowz.m 305

42 case 5
43 headsize = varargin {1} ;
44 shaftsize = varargin {2} ;
45 headcolor = varargin {3} ;
46 shaftcolor = varargin {3} ;
47 case 6
48 headsize = varargin {1} ;
49 shaftsize = varargin {2} ;
50 headcolor = varargin {3} ;
51 shaftcolor = varargin {4} ;
52 end
53 % Begin drawing
54 v1 = headsize ∗(startpair−endpair) / 2 . 5 ; % Create drawing vector
55
56 alfa = pi /8 ; % 45*pi/360
57 R = [cos (alfa) −sin (alfa) ; sin (alfa) cos (alfa)] ; % Rotational matrix
58 R1 = [cos(−alfa) −sin(−alfa) ; sin(−alfa) cos(−alfa)] ; % Reverse Rot

mat
59
60 v2 = v1∗R ; % Create right -hand vector
61 v3 = v1∗R1 ; % Create left-hand vector
62 x1 = endpair ; % Top of the arrow
63 x2 = x1 + v2 ; % Right -hand arrowhead point
64 x3 = x1 + v3 ; % Left-hand arrowhead point
65 x4 = 0 .5∗ (x2+x3) ; % Create endpoint of shaft
66 hold on ;
67 % Begin plot
68 plot ([startpair (1) x4 (1)] , [startpair (2) x4 (2)] , . . .
69 ’linewidth’ , shaftsize , ’color’ , shaftcolor) ;
70 fill ([x1 (1) x2 (1) x3 (1)] , [x1 (2) x2 (2) x3 (2)] , headcolor) ;

Master of Science Thesis Stefan Broxterman

306 Supplementary Codes

Stefan Broxterman Master of Science Thesis

Bibliography

Alves da Silveira, O. A., Ono Fonseca, J. S., and Santos, I. F. (2015). Actuator topology
design using the controllability gramian. Structural and Multidisciplinary Optimization,
51(1):145–157.

Andreasen, C. S., Gersborg, A. R., and Sigmund, O. (2009). Topology optimization of mi-
crofluidic mixers. International Journal for Numerical Methods in Fluids, 61(5):498–513.

Andreassen, E., Clausen, A., Schevenels, M., Lazarov, B., and Sigmund, O. (2011). Efficient
topology optimization in matlab using 88 lines of code. Structural and Multidisciplinary
Optimization, 43(1):1–16.

Barboni, R., Mannini, A., Fantini, E., and Gaudenzi, P. (2000). Optimal placement of pzt
actuators for the control of beam dynamics. Smart Materials and Structures, 9(1):110.

Begg, D. W., Liu, X., and Matravers, D. R. (1997). Optimal topology/actuator placement
design of structures using sa.

Bendsoe, M. P. and Kikuchi, N. (1988). Generating optimal topologies in structural design
using a homogenization method. Computer Methods in Applied Mechanics and Engineering,
71(2):197 – 224.

Bendsoe, M. P. and Sigmund, O. (2003). Topology Optimization, theory, methods and appli-
cations. Springer.

Bourdin, B. (2001). Filters in topology optimization. International Journal for Numerical
Methods in Engineering, 50(9):2143–2158.

Broxterman, S. (2016). Mathworks file exchange: Arrowz.m.
https://nl.mathworks.com/matlabcentral/fileexchange/59660-arrowz-startpair-endpair-
varargin-.

Bruyneel, M. and Duysinx, P. (2005). Note on topology optimization of continuum structures
including self-weight. Structural and Multidisciplinary Optimization, 29(4):245–256.

Master of Science Thesis Stefan Broxterman

308 BIBLIOGRAPHY

Buhl, T. (2002). Simultaneous topology optimization of structure and supports. Structural
and Multidisciplinary Optimization, 23(5):336–346.

Chickermane, H. and Gea, H. C. (1997). Design of multi-component structural systems for
optimal layout topology and joint locations. Engineering with Computers, 13(4):235–243.

Foutsitzi, G. A., Gogos, C. G., Hadjigeorgiou, E. P., and Stavroulakis, G. E. (2013). Ac-
tuator location and voltages optimization for shape control of smart beams using genetic
algorithms. Actuators, 2(4):111–128.

Groenwold, A. and Etman, L. (2009). A simple heuristic for gray-scale suppression in optimal-
ity criterion-based topology optimization. Structural and Multidisciplinary Optimization,
39(2):217–225.

Groenwold, A. A. and Etman, L. F. P. (2010). A quadratic approximation for structural topol-
ogy optimization. International Journal for Numerical Methods in Engineering, 82(4):505–
524.

Guest, J. K., PrÃ c©vost, J. H., and Belytschko, T. (2004). Achieving minimum length scale in
topology optimization using nodal design variables and projection functions. International
Journal for Numerical Methods in Engineering, 61(2):238–254.

Huang, X. and Xie, Y. (2007). Convergent and mesh-independent solutions for the bi-
directional evolutionary structural optimization method. Finite Elements in Analysis and
Design, 43(14):1039 – 1049.

Jihong, Z. and Weihong, Z. (2006). Maximization of structural natural frequency with optimal
support layout. Structural and Multidisciplinary Optimization, 31(6):462–469.

Langelaar, M. (2012). Engineering optimization: Concepts and applications, wb1440. Engi-
neering Optimization Course WB1440.

Liu, K. and Tovar, A. (2014). An efficient 3d topology optimization code written in matlab.
Structural and Multidisciplinary Optimization, 50(6):1175–1196.

Ma, Z.-D., Kikuchi, N., and Cheng, H.-C. (1995). Topological design for vibrating structures.
Computer Methods in Applied Mechanics and Engineering, 121(1-4):259–280.

Maeda, Y., Nishiwaki, S., Izui, K., Yoshimura, M., Matsui, K., and Terada, K. (2006).
Structural topology optimization of vibrating structures with specified eigenfrequencies and
eigenmode shapes. International Journal for Numerical Methods in Engineering, 67(5):597–
628.

Qian, Z. and Ananthasuresh, G. K. (2004). Optimal embedding of rigid objects in the topology
design of structures. Mechanics Based Design of Structures and Machines, 32(2):165–193.

Querin, O., Steven, G., and Xie, Y. (2000). Evolutionary structural optimisation using an
additive algorithm. Finite Elements in Analysis and Design, 34(3 - 4):291 – 308.

Reliant Systems Inc. (2017). Wafer inspection stage assemblies.
http://reliantsystemsinc.com/contract-manufacturing/.

Stefan Broxterman Master of Science Thesis

BIBLIOGRAPHY 309

Rixen, D. J. (2008). Engineering dynamics lecture notes. Engineering Dynamics Course
WB1418.

Rozvany, G., Zhou, M., and Birker, T. (1992). Generalized shape optimization without
homogenization. Structural optimization, 4(3-4):250–252.

Sheng, L. and Kapania, R. K. (2001). Genetic algorithms for optimization of piezoelectric
actuator locations. AIAA Journal, 39(9):1818–1822.

Sigmund, O. (1997). On the design of compliant mechanisms using topology optimization.
Mechanics of Structures and Machines, 25(4):493–524.

Sigmund, O. (2000). Topology optimization: A tool for the tailoring of structures and
materials. Philosophical Transactions - Mathematical Physical and Engineering Sciences,
358(1765):211–288.

Sigmund, O. (2001a). A 99 line topology optimization code written in matlab. Structural and
Multidisciplinary Optimization, 21(2):120–127.

Sigmund, O. (2001b). Design of multiphysics actuators using topology optimization - part i
one-material structures. Computer Methods in Applied Mechanics and Engineering, 190(49
- 50):6577 – 6604.

Sigmund, O. and Petersson, J. (1998). Numerical instabilities in topology optimization a
survey on procedures dealing with checkerboards, mesh-dependencies and local minima.
Structural optimization, 16(1):68–75.

Svanberg, K. (1987). The method of moving asymptotes - a new method for structural
optimization. International Journal for Numerical Methods in Engineering, 24(2):359–373.

Thomas, H., Zhou, M., and Schramm, U. (2002). Issues of commercial optimization software
development. Structural and Multidisciplinary Optimization, 23(2):97–110.

Zhu, J. and Zhang, W. (2010). Integrated layout design of supports and structures. Computer
Methods in Applied Mechanics and Engineering, 199(9-12):557–569.

Zhu, J.-H., Hou, J., Zhang, W.-H., and Li, Y. (2014). Structural topology optimization with
constraints on multi-fastener joint loads. Structural and Multidisciplinary Optimization,
50(4):561–571.

Master of Science Thesis Stefan Broxterman

310 BIBLIOGRAPHY

Stefan Broxterman Master of Science Thesis

	Title Page
	Front Matter
	Abstract
	Preface
	Table of Contents
	List of Figures
	List of Tables
	Nomenclature

	Main Matter
	Introduction
	Background
	Research goals
	Approach
	Outline

	I Topology Optimization Preliminaries
	Topology Optimization
	Topology optimization formulation
	Compliance example
	Mesh-refinement
	Volume fraction

	Solution methods
	SIMP method
	BESO method
	Sensitivity analysis
	Filtering

	Applications
	Statics
	Dynamics
	Other domains

	Design of supports
	Optimizing supports

	Conclusions

	Topology Optimization for Engineers
	Solution method: MMA
	OC versus MMA

	Advanced applications
	Restrictive regions
	Multiple load cases
	Self-weight implementation
	Continuation method
	Different filter techniques

	Turning 2D into 3D
	Gray-scale filter

	Compliant mechanisms
	Inverter and amplifier
	Micro-gripper

	Conclusions

	II Topology Optimization Extensions: Design of Supports and Loads
	Design of Supports
	Support design formulation
	The bridge
	The optimal bridge

	Advanced bridge designs
	Hanging bridge
	Train tunnel
	Integration of layout design in supports

	Design of compliant mechanisms
	The optimal amplifier
	The optimal micro-gripper

	Application of support design
	Actuator locations

	Conclusions

	Design of Actuator Placement
	Actuator design formulation
	Sensitivity selection
	Arching continuation approach
	Finite difference method

	Simple cantilever beam
	Minimal displacement

	Advanced applications
	Maximal displacement
	Triple fixed beam
	Minimal area displacement

	Topology optimization for actuator placement
	Displacement consideration
	Compliance constraint
	Objective refinement

	Application of actuator placement
	Conclusions

	III Dynamic Topology Optimization
	Case Study: Wafer Stage
	Case introduction
	Dynamics
	Single force actuator
	Eigenmodes
	Frequency response
	Dynamic mode dependency
	Double actuator
	Distributed actuators

	Design of actuators
	Design of negative forces
	Design of force at multiple sides

	Topology optimization for dynamic performance
	Topology optimization for fixed force
	Topology optimization for double actuator
	Side force and topology optimization
	Negative forces and topology optimization

	Topology optimization for actuator placement
	Improving gray regions
	Changing conditions

	3D extrusion
	Conclusions

	IV Closure
	Conclusions and Recommendations
	Conclusions
	Recommendations

	Appendices
	Appendix
	Computational setup
	Numerical results
	Chapter 2 results
	Chapter 3 results
	Chapter 4 results
	Chapter 5 results
	Chapter 6 results

	Convergence graph
	Chapter 3 graphs
	Chapter 4 graphs

	Computational graph
	Arching continuation
	Deformed geometry
	Deformed triple fixed beam
	Deformed cantilever beam
	Deformed cantilever beam with density dependency
	Deformed cantilever beam topology
	Deformed cantilever beam topology with density dependency

	Mode contribution
	Mode contribution tables
	Mode contribution graphics
	Mode contribution progress plots

	Additional stage examples
	Optimizing at eigenfrequency
	Overfitting design of actuators
	Overfitting design of actuators with topology optimization
	Changing conditions representations
	3D Extrusion

	Flowcharts

	Matlab Codes
	Basic.m
	ADVANCED.m
	BASIC.m
	BASIC 3D.m
	ADVANCED 3D.m
	BASIC COMPLIANT MECHANISMS.m
	Design of Supports.m
	ADVANCED DOS.m
	Design of Actuator Placement.m
	Design of Actuator Placement Including Topology Optimization.m

	Add-in Codes
	Basic MMA Add-in.m
	Basic Restrictions Add-in.m
	Basic Load Cases Add-in.m
	Basic Self-weight Add-in.m
	Basic Continuity Add-in.m
	Basic Filters Add-in.m
	3D Add-in.m
	Complaint Mechanisms Add-in.m
	Design of Supports Add-in.m
	Design of Actuator Placement Add-in.m
	Topology Add-in.m

	Supplementary Codes
	Arrowz.m

	Back Matter
	Bibliography

