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Abstract

Consumer-grade fitness trackers can produce unreliable physiological data due to sensor errors. The
same holds for cycling data from Wahoo Fitness, where heart rate (HR) and power readings are essen-
tial for training and performance analysis. This thesis presents a prediction-based anomaly detection
framework tailored to multivariate time-series cycling data. The approach reframes anomaly detection
as a personalized physiological HR prediction problem. We define anomalies as deviations between
measured sensor values and their predicted values, based on contextual activity metrics (e.g., power,
cadence, speed, altitude, and gradient) and user-specific embeddings. The system combines ordinary
differential equations (ODEs) modeling heart rate dynamics with machine learning techniques to cap-
ture non-linear, non-stationary, and individualized relationships. Themodel not only detects implausible
values but reconstructs them with physiologically consistent alternatives. Compared to reconstruction-
based methods, which are mostly used for anomaly detection in time series data, this physiologically
grounded approach better differentiates between normal variation and true anomalies. Experimental
results demonstrate effective identification and correction of HR and power anomalies, contributing to
improved data quality and reliability in wearable fitness applications.
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1
Introduction

1.1. Problem Context
Wearable technology for tracking workouts is a continuous trend in fitness tracking [1, 2, 3]. In cycling,
users record physiological and mechanical metrics with a variety of devices during both indoor and
outdoor rides. These sensors collect large volumes of time-series data over a workout. The resulting
datasets are rich, multi-dimensional, and personalized.

Among the many available metrics, power and heart rate (HR) stand out as arguably the most impor-
tant. Power reflects the mechanical output a cyclist produces (i.e. how hard they are pushing the
pedals) while heart rate captures the body’s physiological response to that effort. Together, these two
signals form the foundation of most performance assessments in cycling. Section 2.2 provides more
information on cycling metrics.

However, the reliability of this data is not guaranteed. Research has shown that consumer wearable
technology is not always accurate and reliable [4]. Data can be missing, corrupted, delayed, or simply
wrong due to sensor errors. Different users may also rely on different sensor types, each with its own
measurement technique and level of precision, introducing further variation across users and sessions.
Different sensors used are further described in Section 2.3. As a result, real-world cycling data often
includes segments that are incomplete, inconsistent, or implausible. This thesis focuses specifically on
detecting and correcting anomalies in power and heart rate data.

These large amounts of physiological data are increasingly used tomake decisions, by athletes, coaches,
and automated systems, to improve sport performance [5]. In cycling, heart rate and power data are
core inputs for training plans, performance metrics (e.g., training load, V O2max estimation), and fitness
assessments. These data also feed into machine learning models that power coaching apps, activity
recommendations, and athlete monitoring systems.

However, these applications depend critically on the accuracy of the input data. Erroneous sensor
readings can lead to flawed training decisions, inaccurate feedback, and misinformed physiological
modeling. For instance, overestimated power values can result in too large training loads, while heart
rate dropouts may hide early signs of overtraining or illness. The impact is not limited to individual
athletes. At scale, data-driven tools and recommender systems trained on corrupted datasets can
reinforce false assumptions and amplify errors across entire user bases. Without reliable methods to
identify and correct anomalous values, data pipelines built on wearables risk becoming untrustworthy
and even harmful. Moreover, athletes are increasingly aware of these issues. Persistent errors reduce
user trust in wearable technology brands and in digital coaching services. Providing accurate data is
not just a technical problem, it is a product trust issue for wearable manufacturers.

To address these reasons we are working in collaboration with Wahoo Fitness1, a manufacturer of cy-
cling sensors and training devices, to create an anomaly detection system for cycling workouts. The

1https://eu.wahoofitness.com/
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system identifies implausible data segments and reconstructs them with physiologically plausible re-
placements. An effective anomaly detection and reconstruction system can significantly improve the
quality of cycling data by correcting implausible values. This leads to more accurate performance met-
rics, better informed training decisions, and increased trust in wearable devices, both for end users and
for data-driven systems built on top of this information. For more background on the Wahoo Fitness
data ecosystem, see Section 2.1.

1.2. Knowledge Gap
Most time-series anomaly detection models rely on reconstruction-based techniques. These models
assume that if a data point cannot be accurately reconstructed from learned patterns, it is anomalous.
While effective in controlled domains, this assumption fails in physiological data like heart rate during
exercise. heart rate signals are not only non-stationary and nonlinear, but also highly individualized
and context-sensitive. Identical heart rate patterns may be plausible in one workout but anomalous in
another, depending on variables such as fatigue, hydration, terrain, or temperature. Current generic
reconstruction models fail to capture any of these.

Moreover, reconstruction-based methods lack awareness of physiological context. It does not evaluate
whether a heart rate value (body’s response to effort) actually makes sense given the surrounding
activity metrics, like power (effort of the cyclist). As a result, such models may incorrectly flag unfamiliar
but valid heart rate patterns as anomalies, while failing to detect implausible ones that resemble normal
sequences. Our objective is fundamentally different. We define anomalies not as statistical outliers,
but as physiologically implausible responses. Values that contradict what we would expect given the
user’s individual characteristics and current level of exertion. In this view, the relationship between effort
(e.g., power, cadence, gradient) and physiological output (e.g., heart rate) is central. A given heart rate
response might be entirely appropriate for one rider but clearly anomalous for another. Accurately
detecting such cases requires a model that incorporates both context and personalization.

Despite the extensive use of reconstruction, clustering, and graph-based methods in recent anomaly
detection literature, no prior work has successfully modeled this physiological relationship between
heart rate and effort as the basis for anomaly detection. Recent heart rate prediction models, such as
the one by Nazaret et al. [6], demonstrate that we can predict heart rate from activity metrics using
ODE-based models that incorporate individual physiological characteristics. However, these models
are not leveraged for anomaly detection, even though they provide the deviation between measured
heart rate and the physiologically expected heart rate.

This leaves a significant gap in the literature, there is currently no anomaly detection framework that
uses physiological models tailored to individual users and context-dependent effort data to evaluate
the plausibility of heart rate or power signals in cycling workouts.

1.3. Problem Statement
An anomaly in cycling data can be mathematically explained by having a difference in measured and
true value that exceeds a certain threshold (i.e. a sensor error in capturing the correct physiological
metric) and the reconstruction process replaces anomalous sensor readings with realistic values (i.e.
as close as possible to the real physiological value). Below we define the problem mathematically
following the notation of Bishop et al. [7]:

Let t = (1, 2, . . . , tk) be the sequence of time steps in a workout, where tk is the total number of time
steps in workout k. Each time step represents 1 second.

The set of metrics, M = {Power,HR,Speed,Cadence,Gradient,Altitude}. Sensor si captures metric
i, where i ∈ M (e.g., spower is the sensor that captures power).

X represents all the true physiological values of the metrics M across the workout. X is a matrix of
size |M| × tk, where each column represents a time step and each row represents a metric.

X̃ represents all the measured values, through sensor si ∀i ∈ M, across the workout. X is a matrix
of size |M| × tk, where each column represents a time step and each row represents a metric.

We include a masking matrix M, similar size to X̃, to make the model robust to missing sensor data.
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Mi,j =

{
1, if data from metric i is available at time j

0, if data from metric i is missing at time j
(1.1)

τ represents a threshold. Small deviations between measured and true heart rate or power are not
automatically considered anomalies. Such deviations often arise from unobserved contextual factors,
such as terrain variability, normal physiological fluctuations, or weather conditions, and do not neces-
sarily indicate sensor errors. To avoid incorrectly labeling normal sensor behavior as anomalous, the
model flags only deviations that exceed the threshold τ . The threshold accounts for noise, calibration
offsets, and minor inaccuracies inherent to the sensor [8, 9].

We express non-anomalous workouts as:

|(Xi,j − X̃i,j)⊙Mi,j | ≤ τ ∀i ∈ M, ∀j ∈ t (Non-anomalous workout) (1.2)

However, we detect anomalies only for the power and heart rate sensors, as Wahoo Fitness requires
us to identify which sensor is anomalous.

A noteworthy mention is that power anomalies of short duration are infeasible to capture. Only once the
power varies for a prolonged amount of time the correlation with other variables becomes infeasible. A
short difference in power can originate from many different factors (e.g., a small hole in the road). By
this we will only aim to detect time series power anomalies.

When a larger error component occurs (e.g., due to sensor malfunction, interference, or unexpected
behavior), it causes the deviation to exceed the threshold, which triggers the system to flag an anomaly
either over the full power time series or at specific heart rate time points.

Which leads to the following definitions of an anomaly in our work:

anomHR,j ⇐⇒ |(XHR,j − X̃HR,j)⊙MHR,j | > τ ∀j ∈ t

anomPower,: ⇐⇒

 1

|t|
∑
j∈t

∣∣∣(XPower,j − X̃Power,j)⊙MPower,j

∣∣∣
 > τ (1.3)

In this work, we categorize anomalies by their temporal extent: point anomalies (isolated outliers),
subsequence anomalies (corrupted time spans), and time series anomalies (entire workouts affected)
based on the outlier types identified by Blazquez-García et al. [10]. We apply our detection and recon-
struction approach at each time step, but evaluated across these different temporal extents to reflect
realistic error patterns in cycling data. The core anomaly detection formulas operate at the level of
individual time steps, making them directly applicable to all three anomaly types. Whether the anomaly
occurs in isolation, across a subsequence, or over an entire session, the detection logic remains con-
sistent.

It is important to note that while we adopt the categorization of anomalies from Blazquez-García et al.
[10], distinguishing point, subsequence, and time series anomalies based on their temporal extent, we
do not follow their definition of an anomaly in terms of statistical or behavioral outliers. In our work, we
consider a heart rate or power measurement anomalous only if it deviates from the true physiological
value due to a sensor error. This means that physiologically extreme or unusual values (e.g., a heart
rate of 200 BPM while standing still) are not treated as anomalies if they are genuinely occurring and
accurately captured by the sensor.

Following Equation 1.3, we could detect anomalies if we knew the true physiological valueX. We would
simply flag a measurement whenever its deviation between true and measured values exceeds the
threshold τ . However, in practice, we only observe the sensor measurement X̃, not the true underlying
value X. This lack of ground truth makes direct anomaly detection infeasible and forces us to take an
indirect approach.
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1.4. Proposed Solution
We could address the unavailability of ground truth X by learning to predict heart rate, creating pre-
diction y. To predict heart rate, we use measured X̃ values except the sensor measuring heart rate,
defined as X̃−HR,:. We generate the prediction yt based on:

yt = f(X̃−HR,1:t ⊙M−HR:,1:t,u
k
n) (Prediction) (1.4)

where we aim for y ≈ XHR,:. This means we try to learn to predict the expected response.

Learning the function f is a non-trivial task due to the following complexities:

• User dependency: The model conditions the function f on user-specific embedding uk
n ∈ Rz, rep-

resenting individual physiological characteristics of user n on the start of the users kth workout.
Therefore, f varies across users, i.e., f(X̃−HR,1:t⊙M−HR:,1:t,u

l
n) ̸= f(X̃−HR,1:t⊙M−HR:,1:t,u

k
m)

for different users n and m but on identical X̃−HR,1:t. These user-specific embeddings are dy-
namically updated so that f(X̃−HR,1:t ⊙M−HR:,1:t,u

k−1
n ) ̸= f(X̃−HR,1:t ⊙M−HR:,1:t,u

k
n) for two

consecutive workouts k − 1 and k for the same user n and X̃−HR,1:t, simulating fitness gain or
loss over time. [6, 8, 11, 12, 13].

– Note that not all users will have many varying workouts available to estimate their fitness.
New users may have little workouts available. Some users will only have workouts with
similar intensity available.

– Note that we define users in our system by the account they use to track their workout. If
different people (with different fitness levels) track workouts under the same account we
cannot differentiate them and will have difficulty learning a fitness representation for this
user.

Figure 1.1: Heatmap of average Spearman’s rank correlation coefficients between cycling activity metrics, illustrating the
strength and direction of monotonic relationships among sensor data.

• Complex dependencies: The mapping f is highly non-linear, where sensor interactions involve
complex dependencies [8, 9, 14]. A heatmap (Fig. 1.1) displays the average Spearman’s rank
correlation coefficient between all sensor values. Weak Spearman rank correlations between
metrics indicate that their relationships are not consistently monotonic, which is characteristic of
complex dependencies between sensors.

• Non-stationarity: The relationships between sensors are non-stationary; that is, the joint distribu-
tion of sensor data varies over time: P (X̃−HR,t|uk

n, X̃−HR,1:t) ̸= P (X̃−HR,t+∆t|uk
n, X̃−HR,1:t+∆t).

(e.g., early in the workout certain power will map to certain heart rate, once fatigue sets in the
same power will map to different heart rate) [6, 8, 14].
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• Unobserved contextual variables: Even for the same user-specific embedding and identical sen-
sor readings the response can be different. While f(X̃−HR,1:t ⊙M−HR:,1:t,u

k
m) = f(X̃−HR,1:t ⊙

M−HR:,1:t,u
l
n) with identical X̃−HR,1:t and uk

m = ul
n we could still have different Xi,: for users

m and n. This comes from unobserved contextual variables. (e.g., user m had better sleep then
user n, even though their fitness is equal user m will have lower fatigue.) [6, 11]

However, detecting anomalies by predicting heart rate (y) from other activity metrics (X̃−HR,:) intro-
duces an ambiguity: when a large prediction error occurs, it is unclear whether the source is an anoma-
lous input (power) or an anomalous output (heart rate), since the task proposed by Wahoo Fitness
allowed those two metrics to be possibly anomalous. To disambiguate, we use a second model that
predicts heart rate without using power, relying only on X̃−{HR,Power},: to predict heart rate y. If this
model still detects an anomaly, the issue lies in the heart rate signal. If not, we attribute the anomaly to
the power input. The notation for the model using power is ypower and for the model not using power
yno−power.

With this information, we create a formula similar to Eq. 1.3. We detect an anomaly if:

anomHR,j ⇐⇒ |(ypower
j − X̃HR,j)⊙MHR,j | > τ1

and |(yno−power
j − X̃HR,j)⊙MHR,j | > τ2 ∀j ∈ t

anomPower,: ⇐⇒ 1

|t|
∑
j∈t

∣∣∣(ypower
j − X̃HR,j)⊙MHR,j

∣∣∣ > τ1

and 1

|t|
∑
j∈t

∣∣∣(yno−power
j − X̃HR,j)⊙MHR,j

∣∣∣ ≤ τ2 (1.5)

We reconstruct anomalous and missing sensor readings by imputing the anomalous or missing values.
This can be easily done with:

X̃HR,j =

{
X̃HR,j , if anomHR,j = 0 and MHR,j = 1

yj , otherwise
(1.6)

1.5. Contributions
We formulate the anomaly detection task not as a generic outlier detection problem, but as a context-
aware prediction problem. Specifically, the learning problem becomes: given available sensor signals
and user-specific information, predict the expected physiological response, and compare it to the mea-
sured signal. This reframing turns anomaly detection into a prediction task, while adding the complexity
that we cannot observe the true ground truth X. Prior work in anomaly detection typically flags devia-
tions within a single sensor stream (e.g., heart rate) without considering context from related metrics
(e.g., power, cadence, gradient). We model heart rate as a function of surrounding metrics, enabling
anomaly detection that considers whether heart rate is plausible given the exertion, not just whether it
is statistically unusual.

We summarize our contributions as follows:

• Reframing anomaly detection: We introduce a formulation that detects physiologically implau-
sible sensor values by modeling the causal relationship between effort (power, cadence, gradient,
speed) and physiological response (heart rate), rather than relying on statistical deviations within
a single metric.

• Leverage heart rate prediction for anomaly detection: We transform an existing heart rate
prediction model into an anomaly detector by interpreting deviations between predicted and mea-
sured heart rate as indicators of sensor errors. This approach allows us to reuse a physiologically
grounded model for a new purpose.

• Personalization through dynamic user embeddings: We incorporate evolving user-specific
embeddings to capture individual physiological characteristics and adaptation over time, enabling
the model to differentiate between normal inter-user variability and true anomalies.
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• Heart rate prediction with ODEs: We use a heart rate prediction model using ordinary differ-
ential equations (ODEs). We chose ODEs over black-box models (e.g., pure neural networks or
transformers) because they embed domain knowledge from exercise physiology, ensuring more
interpretable and physiologically plausible predictions.

• Anomaly reconstruction capability: Beyond detecting anomalies, our method reconstructs
plausible heart rate values for corrupted or missing segments, improving data quality for down-
stream analysis.

To fulfill the requirements for effective anomaly detection in cycling data, a solution needs to address
five key challenges defined in the problem statement: individual variability, complex dependencies,
temporal dynamics, unobserved contextual variables, and noisy measurements. Without explicitly ac-
counting for all five components, anomaly detection in this setting would be unreliable or overly sensitive
to normal variations.

1.6. Research Questions
To guide the development and evaluation of this approach, the following research question has been
formulated:

• RQ: How accurately can we identify and correct anomalies in heart rate and power data within
cycling datasets?

– How well do personalized user embeddings capture individual variability in physiological
responses for anomaly detection?

Hypothesis: Previous HR prediction work [6, 11, 12, 13, 15] shows that user embeddings
improve HR prediction. We extend this to anomaly detection and hypothesize that dynamic
embeddings will enable better separation of true anomalies from normal inter-individual vari-
ability.

– How does anomaly detection performance vary across anomaly types (point, subsequence,
full-session) in a physiologically grounded framework?

Hypothesis: Literature suggests point anomalies are easier to detect [10], but it is unclear
whether this holds when using a physiological model rather than a statistical one. We expect
that using physiological causality may solve some ambiguity in full-session anomalies.

– Can physiologically grounded heart rate predictions serve as effective replacements for
anomalous or missing heart rate segments?

Hypothesis: Reconstruction is a common approach for imputing missing or corrupted data,
but it lacks physiological plausibility guarantees. We hypothesize that predictions grounded
in effort metrics and user-specific physiology will yield more realistic imputations than generic
reconstruction.

1.7. Thesis Structure
We organize this paper into seven main chapters. Chapter 2 outlines supplementary but interesting and
related information that could help with understanding the thesis, but is not strictly necessary. Chapter 3
provides related work, presenting context to our scenario and the current state of research in anomaly
detection divided into two systematic literature reviews. The first systematic literature review goes
in depth about current anomaly detection techniques (Sec. 3.2), while the second covers heart rate
prediction (Sec. 3.3). Chapter 4, Methodology, describes the approach adopted in this study. It begins
with explaining the experimental objectives (Sec. 4.1) of the methodology. Afterward, we discuss the
methodology of the heart rate predictionmodels in Section 4.2. The chapter then introduces the Dataset
(Sec. 4.3). It concludes with an explanation of the anomaly detection and reconstruction approach (Sec.
4.4). Chapter 5, Results, starts with discussing the experimental setup (Sec. 5.1), then evaluates the
heart rate prediction models (Sec. 5.2), showcases the results of anomaly detection (Sec. 5.3) and
the results of reconstruction (Sec. 5.4). Chapter 6 discusses the implications, limitations, and potential
future directions of the findings. Finally, Chapter 7 concludes the paper with a summary of contributions
and key takeaways.



2
Background

This background section outlines supplementary information that, while not strictly necessary to follow
the main thesis, provides useful context for understanding the data and problem setup. It covers the the
metrics collected, types of sensors involved, and how anomalous segments originate. This information
helps unfamiliar readers, or people interested in the broader scope of the thesis.

2.1. Data Collection Ecosystem
Asmentioned, we work in collaboration withWahoo Fitness. Wahoo is a company specializing in fitness
technology, primarily focused on endurance sports such as cycling and running. Their product line
includes bike computers, heart rate (HR) monitors, indoor smart trainers, power meters, smartwatches
and a range of sensors that capture detailed performance metrics. Their devices collect high-resolution
data across various physiological and mechanical dimensions, which serve as the foundation for the
analysis conducted in this thesis.

The Wahoo data ecosystem is inherently decentralized and heterogeneous. Athletes often combine
different devices, including third-party heart rate monitors or power meters, not all manufactured by
Wahoo. As long as a Wahoo device, such as a bike computer or smartwatch, records the activity, we
ingest the aggregated data, including data from external sensors, into theWahoo cloud platform. These
sensors vary widely in sampling accuracy, signal stability, latency, and error characteristics. Data are
typically logged locally on the recording device and synced asynchronously, introducing additional vari-
ation in data completeness, temporal alignment, and quality. The result is a rich but noisy multivariate
dataset characterized by missing values, inconsistent sensor reliability, and user-specific configura-
tions. This raw, unfiltered input forms a realistic testbed for anomaly detection methods designed to
operate in real-world, imperfect data environments.

2.2. Physiological and Mechanical Metrics
Power Heart rate Cadence Gradient Altitude

Meaning Force on
the pedals

How hard your
body is working

How fast you
are pedaling

How steep is the
road at this moment

How far above
sea level

Unit Watts Beats per
Minute

Rotations per
Minute

% (Vertical /
Horizontal distance) Meters

Table 2.1: Overview of key metrics recorded during cycling activities, including their physiological or mechanical meaning and
respective measurement units.

The key metrics relevant to our work, recorded by these devices, include power, heart rate, cadence,
gradient, and altitude. Table 2.1 shows their meaning and units. All of these metrics are sample at a
rate of 1 Hertz (one sample every second). We perform anomaly detection on two signals: heart rate
and power. Different types of sensors collect both of these signals.

7
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To ensure that all input variables contribute equally during model training, we standardize each variable
to zeromean and unit variance in our preprocessing pipeline. Additionally, we adopt the original variable
names used in the Wahoo ecosystem with a _standardized suffix to clearly indicate that we have
transformed the values. Specifically, cadence becomes cad_rpm, power becomes pwr_watts, altitude
becomes alt_m, gradient becomes grade_perc, and speed becomes spd_mps. This approach ensures
clear traceability of each variable’s origin while avoiding implicit weighting due to scale differences
across metrics.

Power, measured in watts, represents the cyclist’s instantaneous mechanical output and serves as a
direct, objective indicator of exertion. Manufacturers calculate it from the torque applied to the pedals
and angular velocity, and generally consider it the gold standard for quantifying physical effort dur-
ing cycling. Heart rate, measured in beats per minute, reflects the internal physiological response to
that mechanical load. However, heart rate responds non-linearly and with a lag, and many non-effort-
related factors—including fatigue, dehydration, caffeine, psychological stress, ambient temperature,
and altitude acclimatization influence it. Cadence, expressed in rotations per minute, quantifies pedal-
ing frequency. Although it does not directly reflect effort or strain, it modifies power output dynamics
and influences muscle efficiency and cardiovascular response. Low cadence with high power generally
increases muscular load, while high cadence with lower power can elevate heart rate through cardio-
vascular strain. Gradient, defined as the percentage of vertical rise over horizontal distance, acts as a
proxy for terrain difficulty. When combined with speed, it directly impacts the power required to maintain
motion. Altitude, expressed in meters above sea level, influences air density and oxygen availability,
indirectly affecting both power output and heart rate.

These metrics are not independent; they exhibit complex, non-linear, and user-specific interdependen-
cies that vary over time. For example, the same power output at different gradients or altitudes may
elicit different heart rate responses. Likewise, two athletes with similar cadence and power may exhibit
different heart rate dynamics due to fitness levels or adaptation history. Understanding and modeling
these dependencies is crucial for detecting anomalies that violate expected physiological relationships
rather than merely statistical norms.

2.3. Sensor Technologies

Figure 2.1: Chest
strap for HR
measuring

Figure 2.2:
Optical

wrist-based sensor
for HR measuring

Figure 2.3: Smart
bike measuring
power output

Figure 2.4: Power
pedals measuring
power output

Figure 2.5: Smart
trainer measuring
power output

Figure 2.6: Examples of Wahoo heart rate and power sensing technologies used in cycling. Adapted from Wahoo Fitness.

Monitoring physiological signals such as heart rate and power output during cycling relies on a range
of sensor technologies, each with different underlying principles, form factors, and levels of accuracy.
Even when measuring the same metric, different devices capture data differently and yield varying
results. We will briefly outlines the main sensor types used for measuring heart rate and power in
cycling and highlights how these differences lead to inconsistencies in the recorded data.

For heart rate measuring the gold standard technique is electrocardiograph (ECG) with 12 electrodes
measuring changes of electrical potential. In the domain of activity tracking this however not very
feasible and thus two more common approaches of heart rate measuring dominate. One being ECG
based chest straps (Fig. 2.1) and one being optical sensors (Fig. 2.2) based on photoplethysmography
(PPG). Chest straps which also register varying electrical potentials, but only with two electrodes, show
high similarity 0.85-0.99 to ECG [16] showcasing why they are the gold standard in wearable heart rate
measuring. Optical sensors on the other hand, being much cheaper and wider spread, use a light
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source and detector. While the pulse wave of heart rate is running through the veins the amount
of red bloods cells is slightly increased. The red blood cells absorb the light leading to a different
return of light to the detector. Although widely used for their affordability, these devices have notable
limitations. These sensors often fail to capture rapid increases and decreases in heart rate and various
error sources influence them, such as skin color or tattoos, ambient light interference, pulse latency,
and the reliance on algorithms that convert pulse signals to heart rate. As a result, their similarity to
ECG readings varies significantly, ranging between 0.11-0.99 [17, 18].

Different kind of devices are suitable for capturing power. These include smart bikes (Fig. 2.3) which
are fully integrated bicycles for indoor riding, power pedals (Fig. 2.4) or cranks for measuring power
during outdoor rides, or smart trainers (Fig. 2.5) which are the most commonly used type of power mea-
surement. A smart trainer replaces the rear wheel of a standard road bike to provide an indoor cycling
experience. This last option is the most affordable alternative for power measurement. For power mea-
suring the gold standard technique is using strain gauges to measure torque applied combined with the
angular velocity. Their accuracy mainly lies in research and development of the producing companies.
Decathlon reports an accuracy of ±5% for their Van Rysel D100 trainer, while Wahoo Fitness reports
an accuracy of ±1% for their Wahoo Kickr, showcasing the difference between different manufacturers.

In both heart rate and power sensing, the choice of hardware introduces variability that leads to different
levels of accuracy across users and workouts. This inconsistency complicates the interpretation of
recorded signals and motivates the need for robust anomaly detection systems that account for such
sensor-dependent variation.

2.4. Sources of Anomalies
Wahoo Fitness has identified a range of realistic anomaly scenarios that occur frequently in field data.
These issues affect both heart rate and power measurements and highlight the diversity we must con-
sider when developing anomaly detection systems.

Heart rate signals are particularly sensitive to sensor placement, environmental conditions, and the
underlying measurement technology. Several common anomaly scenarios include:

• Signal Dropouts: heart rate data may be missing for short or extended periods due to temporary
signal loss, poor skin contact, or connectivity issues.

• Optical Sensor Issues:

– These sensors often fail to detect rapid changes in heart rate, introducing a lag between
actual exertion and the recorded signal.

– In cold weather conditions, reduced blood flow near the skin surface causes optical sensors
to struggle with accurate detection.

• Chest Strap Issues: While generally more reliable, chest straps can produce spurious high heart
rate readings due to static electricity buildup, especially in dry conditions or during vigorousmotion
with static clothing.

Power measurement is also prone to various types of errors, often stemming from hardware setup or
calibration issues. Common sources of anomalies include:

• Signal Dropouts: Similar to heart rate, power data may be intermittently missing, either due to
sensor disconnection or communication errors.

• Incorrect Calibration: If a power meter is not calibrated correctly, the entire workout may record
systematically inaccurate values, either overestimating or underestimating power.

• Pedal Malfunction: In dual-sided power meters, a pedal failure can result in unbalanced or mis-
leading power data, as the system reports only half of the actual power.

• Low-Precision Devices: Some power meters, especially low budget models, may have inherently
lower accuracy or less robust algorithms, contributing to noisy or biased measurements.

These anomaly scenarios reflect real-world challenges and underscore the need for detection systems
that can account for both transient and systematic deviations in sensor data.
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2.5. Hardware Setup
Component influ5 (CPU only) gpu01 (GPU accelerated)
CPU Model 2 × AMD EPYC 7452 (32-core) 2 × AMD EPYC 7413 (24-core)
Total CPU Cores 64 48
Clock Speed 2.35 GHz 2.65 GHz
RAM 503.6 GB 503.4 GB
GPU None 3 × NVIDIA A40 (48 GB each)
Job Scheduler Slurm Slurm
Python Version 3.12 3.12
PyTorch Version 2.2.1 2.2.1
CUDA Version Not used 12.1

Table 2.2: Hardware specifications of the two DAIC [19] HPC nodes used for training and inference.

We conducted all experiments on two high-performance computing (HPC) nodes provided by the DAIC
[19] infrastructure: influ5 and gpu01. We executed the CPU-based experiments on influ5, which fea-
tures two AMD EPYC 7452 processors (32 cores each, 2.35 GHz), totaling 64 CPU cores and 503.6 GB
of RAM. For GPU-accelerated experiments, we used gpu01, which features two AMD EPYC 7413 pro-
cessors (24 cores each, 2.65 GHz), 48 CPU cores, and the same RAM capacity. Additionally, we use
gpu01, which is outfitted with three NVIDIA A40 GPUs (48 GB VRAM each), to enable efficient training
and inference of deep learning models. Both nodes use Slurm as the job scheduler and were config-
ured with Python 3.12, PyTorch 2.2.1, and CUDA 12.1 (Table 2.2). Logging the setup also supports fair
comparison between models and aids reproducibility in future experiments.



3
Related Work

The objective of the literature review is to understand the current state of research, identify gaps and
determine if current solutions similar to the problem we try to solve already exist and how we could
leverage them in our specific context. The structure of this literature review reflects a progressive
deepening of insight, with each section building on the previous one. As new perspectives and findings
emerged, they naturally guided the focus and direction of the subsequent sections.

3.1. Initial Anomaly Detection Literature
Initial exploration of anomaly detection involved reviewing key surveys [10, 20] on anomaly detection,
identifying methods applicable to non-parametric, multivariate time series as our workout data. This
analysis revealed four main types of anomaly detection for this domain:

• Histogram-based methods [21] optimize data representation but fail to detect all local anomalies
or handle subsequence outliers effectively.

• Model-based approaches [22] relying on smooth trends also proved unsuitable due to abrupt
changes in cycling data.

• Dissimilarity-based methods [23, 24, 25] struggle with the non-linear, context-dependent relation-
ships in our data.

• Isolation techniques [26] struggle with the non-stationary nature of cycling data.

As explained for each method, none of the proposed methods could handle the nature of the data from
the cycling dataset. To address these limitations in initial literature, we initiated a systematic literature
review following the PRISMA1 framework. This allows us to use insights into the shortcomings of these
existing techniques and to gain a deeper understanding of the underlying data characteristics.

3.2. Systematic Literature Review on Anomaly Detection
We searched for relevant papers in three databases: ACM Digital Library, IEEE Xplore, and Scopus.
Firstly, ACM Digital Library and IEEE Xplore cover a wide array of computer science topics making it a
valuable literature source for our research. Secondly, Scopus is a multidisciplinary database chosen as
it provides a broad range of articles from different academic fields that can help us get a more diverse
understanding of the topic.

The Query Expression box displays the query used for the review. We developed this query by identi-
fying key factors in our research and selecting synonyms commonly found in the literature. We want to
remain focused on unsupervised anomaly detection for multivariate time series data, but incorporate
the flaws of initial literature exploration to strengthen our outcomes. We do this by incorporating the
non-stationary nature of the cycling data in the query.

1https://www.prisma-statement.org/

11
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Query Expression

( ”Anomaly detection” OR ”Outlier detection” ) AND ( ”Multivariate” OR ”Multi-dim*” OR ”High dim*” )
AND ”Time Series” AND ( ”Non-param*” OR ”Data-driven” OR ”Unsuperv*” OR ”Cluster*” ) AND ( ”Non-
stationar*” OR ”nonstationar*” OR ”non-linear*” OR ”nonlinear*” OR ”Time-var*” OR ”Heteroscedastic” )
The search was performed on 29/11/2024.

We removed duplicate records (n=6), conference reviews (n=5), and non-English records (n=2) during
the identification process.

During the screening step, we examine the title, keywords, and abstract of each record to determine
whether it meets the selection criteria.

Inclusion criteria:

• Follow the requirements of the search query: Anomaly detection on multivariate time series with
non-parametric techniques and difficult non-stationary relations between time series.

• Proposes a novel algorithm/technique.

Exclusion criteria:

• The main topic of the paper is not solely anomaly detection.
• The main data type of the paper are not time series.
• Paper focuses on univariate time series.
• The paper is a review of anomaly detection techniques.
• Focuses on computer vision applications.

Figure 3.1: PRISMA flowchart illustrating the selection process for papers included in the systematic review on multivariate
time-series anomaly detection in non-stationary data.

After filtering on the exclusion criteria, we included 36 records and excluded 5. During the retrieval pro-
cess, we could not access 5 papers. After full-text eligibility assessment, we excluded five additional
papers. Although they mentioned multivariate time series anomaly detection, they did not primarily
focus on anomaly detection, lacked a multivariate or time series component, or did not apply unsuper-
vised methods. Ending with a total of 26 papers included in the literature review (Figure 3.1). The
literature review organizes papers into themes that frequently appear in the included studies. Many of
the papers combine different techniques and thus appear in different subsections.
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3.2.1. Clustering
A frequently used technique in anomaly detection is clustering [27, 28, 29, 30]. Clustering groups data
points based on similarity in a feature space. Clustering serves various purposes, such as pattern
recognition and classification, and is also highly useful for anomaly detection in many different use
cases.

Clustering groups a model’s output into non-anomalous and anomalous clusters. Dairi et al. [27]
explores this by detecting influent conditions of wastewater treatment plants. They propose a novel
method combining recurrent neural networks (RNN) and restricted Boltzmann machines (RBM) with
one-class support vector machines for clustering to detect anomalies in multivariate time-series data.
The RNN-RBM model captures both short- and long-term temporal dependencies into extracted fea-
tures. The extracted features are then classified using one-class support vector machines for clustering
normal and abnormal points. They claim prior methods either ignored temporal dependencies or relied
on standalone clustering. Vishwakarma et al. [28] does something similar by applying clustering on
transformed time-series to detect anomalies. The method transforms time series data into a lagged bi-
variate dataset to capture temporal dependencies. It then applies robust clustering using Mahalanobis
distance to identify outlier pairs based on statistical deviations. Clusters of outliers are iteratively re-
fined to exclude false positives. The method trains a single-layer hybrid functional neural network for
forecasting using the outlier-free dataset, ensuring better predictions by eliminating the influence of
outliers. The paper addresses the challenge of robust outlier detection in non-stationary multivariate
time series, where traditional methods struggle with clustered outliers and high-dimensional data.

Another clustering technique used in outlier detection is clustering to reduce dimension to uncover la-
tent spatio-temporal features. Oucheikh et al. [29] proposes a deep learning framework for real-time
anomaly detection in connected autonomous vehicles using spatio-temporal clustering. The framework
employs a Long Short-Term Memory (LSTM) autoencoder for dimensionality reduction, Grey Wolf Op-
timizer for clustering that reduced dimensional data. After forming the clusters, the method trains a
specific anomaly detection model for each cluster. The paper addresses the challenge of detecting
anomalies in high-dimensional, heterogeneous spatio-temporal data, where traditional methods strug-
gle with context-aware detection. However, the method uses context in the form of location and time
and is tailored for connected vehicle telemetry. This context differs fundamentally from the physiolog-
ical context we require: the relationship between effort metrics (e.g., power, cadence) and heart rate
(HR). The model also lacks personalization and does not model causal effort-to-HR dependencies. It
fails to support our mathematical formulation (e.g., Eq. 1.4) where the anomaly depends on a mismatch
between expected and measured heart rate for a specific user.

A complete other way of using clustering is in post-processing once the anomalies are already detected.
He et al. [30] uses fuzzy c-means clustering, not to identify anomalies, but to group anomalies for iden-
tifying patterns in the anomalies. He et al. [30] combines a nonlinear autoregressive with exogenous
inputs model for detrending, sequential collective and point anomaly detection for identifying anoma-
lies, and only then uses fuzzy c-means clustering based on empirical cumulative distribution functions
to group anomalies. Validated on telecommunications and benchmark datasets, the method excels in
detecting and clustering diverse anomalies. By integrating detection and clustering in a single frame-
work, it addresses limitations of traditional methods in handling dynamic data distributions and enables
more effective anomaly classification for real-time decision-making.

In our setting, anomaly detection demands personalized mappings from multivariate effort metrics to
expected physiological responses, as formalized in what makes Equations 1.4 complex. Clustering
treats anomalies as statistical outliers in the feature space without evaluating whether values are phys-
iologically coherent. As such, clustering techniques offer neither personalization nor interpretability
aligned with our modeling objectives. Methods cannot assess physiological plausibility and fail to ad-
dress the user-specific, non-linear, and dynamic dependencies central to our model. The approach
of He et al. [30] could be an interesting approach for future work to cluster identified anomalies for
anomaly classification.

3.2.2. Memory Units
Many papers use a memory unit to support a model in capturing the temporal dependencies of the
time series. For time-dependent data, memory units like Long Short-Term Memory (LSTM) and Gated
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Recurrent Units (GRU) are widely used [27, 29, 31, 32, 33, 34, 35, 36, 37]. Recurrent neural networks
(RNN) use these components to handle sequential data, retaining both short- and long-term depen-
dencies across time series. Their ability to model temporal patterns and adapt to abrupt shifts in data
makes them well-suited for detecting anomalies in non-stationary datasets, such as those observed in
cycling data.

Autoencoders are a powerful tool for identifying the most important features in data by reducing its
dimensions and learning a compressed representation. However, for time series data, they cannot
capture temporal dependencies in data which is necessary for the non-stationary nature of the cycling
data. Unsurprisingly many authors [29, 31, 32, 33] discuss the addition of a memory unit in the autoen-
coder architecture. Other models like the Restricted Boltzmann Machines from Dairi et al. [27] are also
extended with a RNN memory unit to capture the temporal correlation.

Zhang et al. [34] extends the LSTM autoencoder approach by using a Convolutional Gated Recurrent
Unit (ConvGRU) and a Variational Autoencoder. ConvGRU incorporates convolutional layers into the
gating mechanism, enabling it to capture dependencies across features (spatial structure) alongside
temporal patterns. The convolutional operations also reduce the complexity by focusing on localized
feature interactions, leading to better representation learning. Similarly, papers [35, 36] extend their
model with attention-based BiLSTM. Attention-based memory units compute a score for each time
step representing the importance of the time step. BiLSTM extends regular LSTMs by processing
input sequences in both forward and backward directions, allowing it to incorporate context from both
past and future timesteps. This bidirectional nature makes BiLSTM particularly effective for offline
applications, where predictions can leverage future information to improve accuracy.

Dai et al. [37] on the other hand proposes a model that incorporates a Switching Gaussian Mixture
Variational Recurrent Neural Network. The RNN in this architecture captures temporal dependencies
in multivariate Key Performance Indicators, while the switching mechanism handles non-stationary
temporal characteristics.

Architectures incorporating memory units (e.g., LSTMs, GRUs) are widely used to model temporal de-
pendencies in sequential data. These models, in principle, could represent time-evolving physiological
responses (e.g., Eq. 1.4). However, temporal modeling alone is insufficient. Without a physiologically
grounded, multi-modal prediction framework, these methods cannot fulfill the context-aware require-
ments of our problem.

3.2.3. Graph-based
Different papers [36, 38, 39, 40, 41, 42, 43, 44, 45, 46] uses a graph structure for anomaly detection.
The method frames anomaly detection as a graph problem, representing time series from different
sensors or variables as nodes and dynamically learning edges based on similarity metrics. The learned
structure evolves based on the varying relationships between nodes. Anomalies are then classified by
detecting abrupt shifts in node relationships.

Figure 3.2: Graph-based encoder-decoder architecture for time-series anomaly detection. Inputs are processed via a
Temporal Graph Convolutional Network (GCN), followed by attention mechanisms and reconstruction through a variational

encoder-decoder. Adapted from Shi et al. [40].

It’s important to note that many papers do not rely solely on graph-based models, but instead combine
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them with other deep learning techniques. Often frameworks [38, 39, 40] use the graph representation
as an input for an encoder-decoder model that detects the anomalies (Fig. 3.2). Other graph-based
approaches include the paper of Zheng et al. [41], which uses a Spatial-Temporal Graph Neural Net-
work combined with Dilated Convolutions for the temporal modeling. Similarly, Yang et al. [42] apply
a transformer to a Graph Neural Network to learn long-range dependencies between nodes. In the
HCroSTG framework, Ding et al. [43] construct two graphs, one dynamic graph capturing the evolving
non-stationary relationships between variables and one static graph to encoded persistent associa-
tions between variables. The method employs a Dual Temporal Graph Attention Module to extract
non-stationary temporal features, such as trends and seasonality.

Amil et al. [47] uses graphs in a different manner. The study proposes two graph-based methods.
The first a Percolation-Based Method uses graphs where nodes represent data points while edges
represent the distance between points. The method removes edges sequentially, starting from the
highest weight downward, monitoring graph fragmentation. The method flags nodes as outliers if they
disconnect early from the largest connected component. The second, IsoMap-Based Method applies
the IsoMap algorithm for non-linear dimensionality reduction, mapping data onto a low-dimensional
manifold. Compares geodesic distances in the reduced space with original distances using Pearson
correlation. Points poorly fitting the manifold receive high outlier scores. The paper addresses the
need for flexible, graph-based outlier detection methods that are parameter-free (Percolation-Based)
or parameter-optimized (IsoMap-Based).

Graph-based methods represent sensor data streams as dynamic graphs and detect anomalies via
changes in topological structure. While they can uncover complex inter-sensor relationships, these
models do not incorporate domain knowledge about physiological correctness, nor do they model user-
specific adaptation (e.g., through personalized fitness embeddings as in the required user dependency
in Eq. 1.4). In our case, anomaly detection hinges not on generic correlation shifts but on whether heart
rate is plausible given observed effort metrics. Graph approaches remain agnostic to this causality.

3.2.4. Reconstruction-based

Figure 3.3: Reconstruction-based anomaly detection using an encoder-decoder architecture. Normal and abnormal data are
encoded into a latent representation and reconstructed; anomalies are identified based on high reconstruction errors. Adapted

by Yeseul [48].

The most common technique used however was reconstruction-based anomaly detection [29, 31, 32,
33, 34, 35, 36, 37, 38, 39, 40, 42, 49, 50, 51, 52, 53] (Fig. 3.3). In essence, the model takes a multivari-
ate time series as input and tries to reproduce the measured target variable as accurately as possible.
Let Y m = {ym1 , ym2 , . . . , ymn } denote the actual measured values of the variable of interest over time,
and let Xm = {xm

1 , xm
2 , . . . , xm

n } represent auxiliary context variables, and let Y p = {yp1 , y
p
2 , . . . , y

p
n} be

the model’s reconstruction (i.e., its best guess of what the signal should have been, based on learned
patterns). Deviations between Y m and Y p indicate potential anomalies.

However, the mapping from Y m to Y p is not direct. Instead of learning a one-to-one function, the
model is deliberately constrained to first compress the input into a lower-dimensional latent space.
This compression forces the model to capture only the most essential features of the data, discarding
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noise and less relevant variation. The model decodes the reconstructed signal Y p from this latent
representation. This setup regularizes the learning andmakes themodel sensitive to abnormal patterns
it cannot compress and recover accurately.

Formally, they implement this using an encoder-decoder architecture, defined as:

z = Encoderθ(Y m, Xm) (latent representation) (3.1)
Y p = Decoderθ(z) (reconstructed signal) (3.2)
Y p = fθ(Y

m, Xm) = Decoderθ(Encoderθ(Y m, Xm)) (overall model) (3.3)

To detect anomalies, they compute the reconstruction error:

ε = ∥Y m − Y p∥ (3.4)

They classify each point in time as anomalous or not by comparing this error to a threshold τ :

anomt =

{
1 if εt > τ (anomaly)
0 otherwise (normal)

(3.5)

Optionally, they can replace anomalous values with the model’s reconstruction:

Y reconstruct
t =

{
Y p
t if anomt = 1

Y m
t if anomt = 0

(3.6)

Some papers used transformers for this, originally developed for natural language processing, have
emerged as a powerful alternative for time-series anomaly detection [49, 50]. Unlike RNNs, which
process sequences sequentially, transformers utilize self-attention mechanisms to focus on relevant
portions of the data regardless of their position. By learning normal patterns in multivariate time-series
datasets, transformers can predict or reconstruct portions of the data based on contextual information
from the rest of the sequence.

While others focused on the use of autoencoders [29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 52]. They are
frequently employed for their ability to model latent features and reconstruct normal patterns in data.
By encoding inputs into a compressed representation and then reconstructing them. Their ability to
model non-linear interdependencies makes them particularly suitable for multivariate datasets, where
relationships between variables are often intricate and challenging to capture with simpler methods.

Again different paper combine different techniques. Yang et al. [42] uses both and autoencoder and
graph transformer network to detect anomalies. The method combines the outputs of both models to
determine anomalies. Zhang et al. [34] uses a transformer to support the encoder from the autoencoder
to allow attention based encoding.

Feng et al. [53] highlights issues with standard reconstruction approaches stating they are insensitive
ti spatio-temporal dependencies and fail to handle heteroscedastic uncertainty. The paper solves this
by introducing statistical feature removal and adding a heteroscedastic uncertainty estimation.

Analysis of the 26 selected papers highlights key techniques in comparison to the initial literature ex-
plored from the literature surveys. Whilst the initial literature survey focused on algorithms and classical
machine learning the systematic literature uncovered the importance of deep learning. Deep learning
offers several key advantages for our problem: it effectively handles high-dimensional sensor data, au-
tomatically learns relevant features, adapts to the non-stationary nature of cycling data, demonstrates
robustness against sensor noise, and captures temporal dependencies.

The nature of reconstruction-based anomaly detection (eq. 3.5-3.6) aligns very well with the mathemat-
ical notation of the problem (eq. 1.3). Beyond detection, this approach can also correct anomalies or
impute missing values by replacing them with the model’s reconstructed output, which would be very
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valuable for our approach. However, reconstruction-based anomaly detection relies on the assumption
that a model trained on normal data will fail to accurately reconstruct anomalous inputs, thereby expos-
ing anomalies through increased reconstruction errors. This assumption does not hold in the context
of physiological time series such as heart rate during exercise. These signals are inherently individual
and highly context-dependent. The heart rate response to power output varies substantially between
athletes, across fitness levels, and even within the same individual depending on factors such as fa-
tigue, hydration status, and environmental conditions [54]. Consequently, identical heart rate patterns
may be entirely appropriate in one context and physiologically implausible in another. We cannot learn
or generalize a universal ”normal” heart rate sequence across individuals or sessions. Attempts to re-
construct heart rate, even when incorporating related variables such as power, cadence, and gradient,
fail because reconstruction models do not evaluate the plausibility of heart rate given the external condi-
tions. Instead, thesemodels detect deviations from learned temporal patterns within the sequence itself
[55]. In this case, however, we define anomalies not by irregular sequence patterns but by violations
of expected physiological responses. Reconstruction models inherently overlook such context-driven
discrepancies, making them unsuitable for detecting anomalies where correctness depends on the
relationship between heart rate and the surrounding effort and conditions.

3.3. Systematic Literature Review on Heart Rate Prediction
No existing anomaly detection paper from the previous literature review satisfies the full spectrum of
requirements dictated by our problem formulation. Specifically:

• Personalization: Accurate modeling of physiological signals necessitates dynamic, user-specific
representations. A framework should encode this through a function f(X,un) where un captures
temporal adaptations in fitness and physiology. Previous literature approaches assume static,
global models that disregard inter-individual variability, a critical omission given the heterogeneity
in human physiological responses.

• Physiological Grounding: Many anomaly detection frameworks conflate statistical deviance with
physiological implausibility. However, we define anomalies in our domain as violations of a causal,
effort-to-response relationship, not merely as statistical outliers. Without modeling the physiolog-
ical mapping from effort metrics to heart rate, these methods fail to distinguish true anomalies
from rare but valid states.

These limitations show that existing anomaly detection methods do not merely fall short; they target the
wrong kind of problem. Most of them look for unusual patterns in the data itself, without asking whether
those patterns make sense from a physiological point of view. Forecasting and prediction literature is
more aligned with this goal because it centers on estimating the value of a variable based on temporal
or contextual input features. Regression models offer a structured way to learn these relationships by
explicitly modeling how multiple variables interact to produce an expected outcome. These models
learn functional relationships between variables and can therefore simulate what heart rate should be
under normal physiological conditions. The prediction error then becomes a meaningful, interpretable
measure of abnormality. These approaches still allow us to correct faulty values.

For clarity, we distinguish between these terms as follows:

• Reconstruction: Attempts to reproduce the original signal (e.g., heart rate) via compression and
decompression, flagging high reconstruction errors as anomalies. However, it ignores physiolog-
ical context, making it poorly suited for detecting implausible values that look normal but violate
known effort-to-response relationships. We explicitly move away from this approach.

• Prediction: Estimating the expected value of a physiological variable (e.g., heart rate) at a given
point in time, conditioned on input signals such as power, cadence, speed, gradient, and user-
specific embeddings (e.g., fitness level).

• Forecasting: Refers to estimating the future value or values of a variable based on past values
of the same or other time series. For example, forecasting HR at time t+ 1 based HR and other
related variables observed at times t, . . . , t− n.

• Regression: Refers to learning the functional relationship between one or more input variables
(e.g., power, cadence, speed, gradient, user embeddings) and a continuous output variable (e.g.,
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heart rate). The goal is to fit a model that maps inputs to outputs, enabling the estimation of the
expected value of the output under varying conditions.

Prediction, forecasting and regression frameworks offer advantages over traditional anomaly detection
by enabling contextual reasoning about heart rate values and supporting plausible data imputation. This
is crucial for our use case, where we aim not just to detect anomalies based on statistical deviations,
but to assess whether measured heart rate is physiologically plausible given observed cycling metrics.
Therefore, building on the insights from Section 3.2, we conduct a second systematic literature review,
this time focused on heart rate prediction methods. The goal is to identify approaches most suitable
for modeling user-specific heart rate dynamics during cycling workouts.

Query Expression

( ”heart rate prediction*” OR ”predict* heart rate” OR ”heart rate forecast*” OR ”heart rate regression” OR
”HR regression” OR ”HR response prediction*” OR ”heart rate respons* to exercise” OR ”model* heart
rate” OR ”heart rate estimation” ) AND ( ”workout*” OR ”exercise*” OR ”physical activit*” OR ”cycl*” ) AND
( ( ”personalized” OR ”user-specific” OR ”subject-specific” OR ”person-specific” OR ”” ) OR ( ”wearable*”
OR ”fitness tracker*” OR ”smartwatch*” OR ”activity tracker*” ) ) AND
NOT ( ”PPG” OR ”photoplethysmograph*” OR ”ECG” OR ”electrocardiogram” )
The search was performed on 12/3/2025.

The Query Expression box displays the query used for the review. We design the query to retrieve
research on heart rate prediction models while maintaining relevance to our specific context. The first
component of the query targets heart rate prediction models, ensuring that the retrieved papers focus
on estimating heart rate rather than unrelated physiological metrics. The second component narrows
the scope to studies that apply heart rate prediction within the context of exercise, training, or physical
activity, as our interest lies in modeling heart rate response to exertion. The third component enforces
personalization, a crucial aspect highlighted by multiple papers [8, 56]. They emphasize that heart rate
response to exercise varies between individuals, making user-specific modeling essential for accurate
predictions. The fourth component filters for studies involving wearable activity trackers, as these de-
vices generate the noisy real-world data relevant to our use case. Finally, we added the last component
after the initial search revealed an overwhelming number of studies focused on photoplethysmography
(PPG)-based or electrocardiogram (ECG)-based heart rate estimation. By excluding PPG- and ECG-
related papers, we refined our results to studies that align better with our focus on predicting heart rate
response rather than reconstructing heart rate from sensor data.

We removed conference reviews (n=4) during identification. During the screening step, we review the
title, keywords, and abstract of each record to determine whether it meets the selection criteria.

Inclusion criteria:

• The paper proposes an algorithm to predict heart rate based on other activity metrics
• The paper reviews techniques for heart rate prediction

Exclusion criteria:

• The paper is an evaluation between heart rate measuring capabilities of different smartwatches.
• The paper is about detecting different activity types from wearable data.
• The paper uses computer vision to estimate heart rate.
• The paper tries to forecast heart rate, only using heart rate.
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Figure 3.4: PRISMA flowchart illustrating the selection process for papers included in the systematic review on heart rate
prediction models relevant to exercise physiology.

After the screening step, we included 14 records and excluded 9 (Fig. 3.4).

The oldest paper retrieved from the query, a 2018 literature survey on heart rate prediction within exer-
cise, provides a comprehensive overview of existing research at the time. Ludwig et al. [8] summarize
the state of heart rate prediction methods, but due to its age, it misses many recent and promising
approaches. Nevertheless, its classification of different system types used for heart rate prediction
remains valuable.

Ludwig et al. [8] defines 4 main tasks of Measurement, Prediction, and Control of Individual Heart Rate
Responses to Exercise.

• Approximation: Mathematically, approximation is just a curve fitting problem, which is a specific
type of optimization problems. The goal of curve fitting is to find the best solution to a specific
problem by finding the minimum of a error function which correlates to the problem.

• Short-term prediction: Using past heart rate and activity metrics, predict the heart rate response
to changes in load over a specified time horizon.

• Session prediction: Predict entire heart rate time series only based on activity metrics without
using the activity heart rate time series.

• Controlling: Special case of short-term prediction, where the model uses heart rate to regulate
intensity and keep it within a specified range.

We find session prediction, where we predict heart rate for an entire workout, the most relevant. While
we can technically adapt short-term prediction models for session-level prediction, as noted by Ludwig
et al. [8], this often reduces accuracy. If a short-term model relies on past heart rate values, the corre-
sponding session prediction model can use previously predicted heart rate values instead. However,
doing so may quickly lead to accumulating prediction errors.

The review then goes into detail about different techniques used for heart rate prediction, namely:

• Artificial Neural Networks (ANNs): At that point in time only used for short periods (1s) of one
single time step since longer predictions degraded in accuracy. ANN models often struggle with
generalization due to high parameter counts. While they excel in short-term predictions, they tend
to overfit when attempting to model heart rate over an entire session.

• Differential Equation (DE) Models: They model the relationship between exercise stress and
heart rate response over time. Paradiso et al. [57] uses this model to control a cycling ergo
meter to keep users within a desired heart rate range [57]. DE models are advantageous for
their interpretability and ability to capture physiological heart rate dynamics, but they often rely
on manually tuned parameters.

• Regression Models:Regression models analyze heart rate by establishing probabilistic relation-
ships between heart rate and various influencing factors. These models help identify correlations
rather than directly predicting heart rate dynamics.
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• Hammerstein and Wiener Models: They describe systems where the relationship between input
and output is not purely linear. These models break the system into two parts: a linear part
(which handles predictable relationships) and a nonlinear part (which accounts for more complex
behaviors). Hammerstein: In heart rate modeling, this setup means that exercise effort is first
processed through a nonlinear relationship (e.g., fatigue effects, metabolism), and then heart
rate increases in a more predictable way. Wiener: In heart rate terms, this means that your heart
rate responds somewhat predictably to workload at first, but nonlinear factors like exhaustion,
hydration, and stress modify the final response. Gonzalez et al. [58] found that the Hammerstein-
Wiener approach performed best in heart rate modeling within the cycling context [58].

Other interesting fields the review touches upon are parameter-reduced models. These models aim to
simplify existing models by reducing the number of parameters while maintaining predictive accuracy.
These models are particularly useful for applications in wearables and real-time heart rate monitoring.
Parameter-reduced models offer a promising balance between accuracy and simplicity. By minimizing
the number of free parameters, these models become more suitable for real-time heart rate monitor-
ing in wearable devices, though their generalizability to different individuals and activities remains a
challenge.

We will use the four main tasks (Approximation, Short-term prediction, Session prediction and Control-
ling) and four main techniques (Artificial Neural Networks, Differential Equation models, Regression
models and Hammerstein and Wiener models) discussed in the literature review from Ludwig et al. [8]
to further classify the results from the literature survey.

3.3.1. Linear Regression for Session Prediction
Linear regression is a fundamental statistical method that models the relationship between heart rate
and exercise-related features by fitting a straight line through the data. It assumes that a weighted sum
of the inputs plus an error term expresses the output.

Bychkov et al. [9] takes a simplistic approach by applying linear regression to predict heart rate
based on fitness tracker data, using three basic input features: Very Active Distance, Fairly Active
Minutes, and Calories. The paper derives the following linear regression formula for predicting heart
rate: HR = β0 + β1 × V eryActiveDistance + β2 × FairlyActiveMinutes + β3 × Calories + ϵ. This
formula flaws the experiment because including calories burned as an independent variable in this
equation is incorrect because Fitbit estimates calorie expenditure based on heart rate [59]. This setup
creates a circular dependency, where heart rate influences the calorie estimate, which is then used to
predict heart rate. Garrido et al. [60] follows the linear regression approach to see if there is a linear
relationship between measured oxygen uptake and heart rate. He found a relation between the two,
however measured oxygen uptake is already a very advanced metric which is not directly measurable
by wearables, needing in lab testing.

Fang et al. [61] builds a more suitable Bayesian inference-based federated learning for heart rate
prediction, integrating autoregression with exogenous variables. The paper uses past heart rate and
speed variables to predict the heart rate at the current time step in a linear regression manner: yt =
θ0 +

∑p
i=1 θiyt−i +

∑q
j=0 ωjzt−j + et.

Since the reviewed papers report reasonable predictive performance, it is possible that these mod-
els are still sufficiently reliable to detect anomalies as violations in the expected relationship between
activity metrics and heart rate. However it is important to mention that they oversimplify heart rate
dynamics by assuming a purely linear relationship, ignoring non-linear dependencies and external in-
fluences. Despite these limitations, such linear regression models can serve as a fundamental baseline
for evaluating the added value of more advanced predictive approaches.

3.3.2. ANNs for Short-term Prediction
Short term heart rate prediction is a widely tackled field where the papers aim to forecast heart rate
over a small horizon based on past heart rate and activity values. This approach establishes an initial
baseline to determine whether heart rate will rise or fall over a short period.

Extending from simple linear regression, the Bayesian combined predictor from Zhang et al. [62] im-
proves heart rate prediction by integrating multiple models. The method combines a linear regression
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predictor and a neural network predictor into a single framework. While linear regression captures basic
linear relationships between variables like power, cadence, and heart rate, it struggles with non-linear
and non-stationary relationships. The Bayesian approach dynamically adjusts the weight of each pre-
dictor based on its recent accuracy, allowing it to adapt over time. This results in more robust and accu-
rate predictions, especially for multi-step forecasting, where single models tend to accumulate errors.
By leveraging both statistical and machine learning methods, this approach balances interpretability
with predictive power, making it particularly effective for heart rate modeling in real-world conditions.

Mutijarsa et al. [63] proposes a very simple short-term heart rate prediction model using a Feedforward
Neural Network. The Feedforward Neural Network takes heart rate and cadence at a specific time step
as inputs and predicts heart rate for the next time step. Whilst achieving high performance this likely
comes mainly from having the previous heart rate time step. The paper does not try to estimate heart
rate for any longer horizon in the future, since it will likely decay quickly in accuracy.

Both Namazi et al. [14] and Zhu et al. [64] propose a framework for heart rate prediction for short
periods of time. Namazi predicts the next 30s, based on 25 min of heart rate data. Singular Spectrum
Analysis (SSA) and Copula-based analysis perform the heart rate prediction. SSA is a non-parametric
method used for trend extraction, noise reduction, forecasting, and change-point detection in time se-
ries data. Copula functions model the dependency structure between variables, independent of their
marginal distributions. They are particularly useful for handling complex relationships, including non-
linear dependencies. Zhu et al. [64] uses a LSTM-based neural network to predict heart rate in the
future. It takes in heart rate combined with activity metrics over a certain window size and is then tasked
to predict a heart rate in the future. Predictions further into the future quickly lose accuracy.

Fan introduces a dual-context LSTM model that integrates both immediate exercise context and histor-
ical user data for better heart rate prediction [13]. The architecture features personalized embedding
layers accounting for static user attributes and dynamic exercise history, significantly enhancing in-
dividualized estimations. The paper takes in 300 time steps of heart rate, activity metrics and user
characteristics. A first LSTM layer focuses on capturing immediate context. A second LSTM layer
focuses on both immediate and historical contexts. Misleading the author claims 250.000 workout
records, this claim gives the false impression that the researchers trained the model on over 250,000
workouts. However, later the authors discuss it was only trained on 65 workouts. 250.000 workout
records likely references to the individual time steps within all the workouts.

While these methods improve short-term prediction accuracy, they rely heavily on having a valid past
heart rate as an input, making them vulnerable if the starting heart rate is erroneous or missing, a likely
scenario in anomaly detection. Models primarily extrapolate recent heart rate trends without deeply
modeling the physiological response to external effort metrics. For our goal of detecting anomalies
based on expected heart rate from activity metrics alone, such models provide limited direct value.

3.3.3. ANNs and DE models for Session prediction
This section is highly relevant to our work. The models discussed here focus on predicting heart rate
over an entire session based on other activity metrics, which is exactly the mechanism we require for
anomaly detection. In our context, predicting the expected heart rate response from effort metrics (like
power, cadence, and gradient) allows us to flag implausible deviations that may indicate sensor errors.
For our goal, not just forecasting heart rate, but detecting anomalies based on physiological implausi-
bility, models need to provide session-wide, user-specific, and context-aware heart rate predictions.

Ni et al. [11] performed foundational work. They created and shared a dataset containing over 250
thousand workout records coupled with hundreds of millions of parallel sensor measurements (e.g.
HR, GPS) and metadata. They aim to address the challenges posed by this heterogeneous, noisy
data, which varies in scale and resolution and exhibits complex interdependencies, making it difficult
to model.

The paper introduces two models, Fitrec and Fitrec-Attn, designed for heart rate prediction in workouts.
Fitrec-Attn is an encoder-decoder LSTM with attention that forecasts heart rate over the next few time
steps during an ongoing workout, enabling users to adjust their pace or intensity in real time. In contrast,
Fitrec predicts a user’s heart rate and speed profile for an entire workout before it begins, leveraging
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learned fitness patterns from past activities and planned workout features. This model employs a two-
layer stacked LSTM.

Both are context-aware sequential models that captures the personalized and temporal patterns of
fitness data. Both models capture two levels of context information: context within a specific activity,
and context across a user’s activity history. This dual-context approach has proven to be pivotal in the
field, as supported by future studies [6, 12, 13]. By analyzing users’ history, the model can create a
user profile that accounts for past responses to workout intensity. The model maps this learned fitness
to predict how the user will respond in the current workout, allowing for personalization of heart rate
prediction.

Qiu et al. [15] develop personalized and course-specific heart rate prediction models for mountain
biking. It improves on the paper from Ni et al. [11] by adding course-specific features for better heart
rate prediction. It compares different types of heart rate prediction and finds similar result that LSTM
models are the best choice for personalized, course-specific heart rate prediction.

As discussed earlier the review of Ludwig et al. [8] said the following about differential equations (DE):

DE models are advantageous for their interpretability and ability to capture physiological
HR dynamics, but they often rely on manually tuned parameters. [8]

Liu et al. [65] notes a similar challenge, they were the first to use non-linear Ordinary Differential
Equations (ODEs) for heart rate prediction, later adopted by Nazaret et al. [6]. The ODE enables
full-session heart rate prediction rather than short-duration predictions, which is an improvement over
existing models. ODEs provide a well-established estimation of a physiological framework for model-
ing heart rate responses to exercise. The approach maintains interpretability, ensures smooth heart
rate transitions, and aligns better with prior research in exercise physiology [56, 57, 66, 67, 68]. The
Levenberg-Marquardt algorithm, a numerical optimization method, estimates the model parameters.

Nazaret et al. [6] address the issue of manually tuned parameters by leveraging machine learning to
estimate user-specific parameters. Their approach builds on a physiological model [56] designed to
describe heart rate dynamics based on activity metrics. This model consists of ODEs with user-specific
parameters.


Ḋ(t) = B · (f(I(t))−D(t)) ,

ḢR(t) = A · (HR(t)−HRmin)
α · (HRmax −HR(t))

β · (D(t)−HR(t)) ,

HR(0) = HR0,

D(0) = D0.

(3.7)

In the system (3.7) the function f(I(t)) defines the intensity of the activity at timestamp t. User-specific
parameterB controls how fast the demandD(t) at time t adapts to f(I(t)). The second equation steers
the heart rate towards the demand D(t). User-specific parameter A controls how fast the heart rate
can change. HRmin and HRmax are boundaries for the heart rate, while α and β control how difficult
it is to reach these boundaries of rest or max heart rate. The third and fourth equation are there for
initialization of the ODE.

In the physiological expert model we have 6 user-specific parameters, namely, A, B, α, β, HRmin and
HRmax. Each user has unique parameters, which the original paper [56] estimates through lab testing.
Nazaret et al. [6] found it is not feasible to learn these specific user parameters per user from laboratory
testing for user products. Instead the paper transforms the ODE equation into an equation where all
parameters are in function of the users fitness representation z. It also add component g(W ) and h(t)
for accounting weather and fatigue build up respectively.


Ḋ(t) = B(z) · (f(z, l(t)) · g(W ) · h(t)−D(t)) ,

ḢR(t) = A(z) · (HR(t)− HRmin(z))
α(z) · (HRmax(z)− HR(t))β(z) · (D(t)− HR(t)) ,

HR(0) = HR0(z),

D(0) = D0(z).

(3.8)
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Figure 3.5: Overview of the ODE-based heart rate prediction model proposed by Nazaret et al., which combines exercise
intensity inputs with personalized physiological parameters to model heart rate response. Adapted from [6]

Themodel works by an encoder-decoder architecture where the encoder learns a fitness representation
z of the user and the decoder then turns z into the specific ODE parameters (Fig. 3.5). In this manner all
users can have global shared neural networks while using user-specific fitness representations for user
dependent variables. The function f(z, I(t) (drive function) is also learned via a neural network (multi-
layer perceptron with two hidden layers) that maps activity metrics and the users fitness representation
z towards an estimated intensity.

The model works by passing previous workouts from a user, sorted by starting date, into the encoder
and decoder to determine the ODE parameters. Over time newer workouts dynamically update the
learned parameters. Once we processed all workouts from that user from the train set, it estimates an
initial heart rate, ODE parameters, and processes the current workout activity metrics through the drive
function to generate an intensity time series. With the intensity time series and the initial heart rate, the
method solves the ODE to generate an heart rate prediction. After each prediction during training, the
method updates the encoder and decoder using L2 loss from the heart rate prediction, combined with
a regularization term.

Kayange et al. [12] builds further on the paper of Nazaret et al. [6] for developing a personalized
heart rate model. The proposed approach integrates a physiological model using Dynamic Bayesian
Networks (DBNs) to capture heart rate dynamics during workout sessions. The state transition func-
tion (Eq. 3.9) models how heart rate evolves over time based on exercise intensity and other factors.
While the emission model (Eq. 3.10) relates the latent physiological state to the observed heart rate,
accounting for uncertainty.

P (xt | xt−1,St) = N
(
xt | ftrans(xt−1,St), σ

2
)
, (3.9)

Yt = fem(Xt) + ϵt, ϵt ∼ N (0, σ2), (3.10)

A LSTM network processes historical workout data to learn user-specific physiological patterns which
helps adjust the DBN parameters. Predicting heart rate directly from latent representations might work
well for short-term heart rate forecasting. However, for long duration workouts, DBNs help maintain
consistency by explicitly modeling heart rate evolution over time, considering factors such as fatigue
and other environmental factors.

After reviewing the code provided by the author, we found major inconsistencies with the paper: key
methods like personalized heart rate prediction and adaptive feature selection were missing, test and
training data were improperly mixed, and the model only predicted short sequences instead of full
workouts. The author later clarified that the paper described a conceptual framework rather than the
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exact implementation and acknowledged that the validation setup could lead to biased performance
estimates.

These session-based models are more aligned with our project goals. By predicting heart rate over an
entire workout using contextual variables, they create a foundation for detecting deviations between
measured and expected heart rate at any point in time, a critical capability for prediction-based anomaly
detection. Despite some methodological weaknesses in the reviewed papers, the general approach of
combining effort metrics, user-specific embeddings, and dynamic modeling offers the most promising
path forward.

We select the models by Nazaret et al. [6] and Kayange el al. [12] as the most useful for our work, be-
cause they uniquely combine physiological interpretability with automatic personalization. Both model
the heart rate response to exercise, enabling predictions grounded in known HR-effort dynamics. Cru-
cially, they estimate user-specific parameters from data, allowing the predicted heart rate to reflect
individual differences in fitness and response, which is essential for our anomaly detection framework.
Unlike other models that simply forecast heart rate for short periods of time, the two papers [6, 12] ap-
proaches allow us to determine whether a measured heart rate value is physiologically plausible given
the effort, making them directly applicable to detecting anomalies in wearable data.

3.3.4. Research Gap
Through the literature review, it became clear that linear regression models offer a simple and inter-
pretable approach to heart rate prediction by modeling the relationship between input variables such
as power and cadence using fixed weights. While this simplicity makes them attractive, particularly
as a baseline for comparison, it also limits their ability to capture the complex, non-linear, and context-
dependent nature of heart rate dynamics. Factors like fatigue, hydration, and environmental conditions
influence heart rate response to effort, which also shows time-dependent behaviors such as lag and
adaptation. These introduce non-stationarity that linear models cannot address. Moreover, the relation-
ship between effort and heart rate is highly individual-specific, making it difficult for a single global model
to generalize across users. Despite these limitations, linear regression remains a valuable benchmark.
Its transparency and low computational cost make it useful for understanding baseline performance and
for highlighting the added value of more complex, personalized, and physiologically grounded models.
In this context, we do not expect linear regression to match state-of-the-art performance, but it serves
as a meaningful reference point for evaluating model improvements.

The literature also made it clear that while short-term models are often the most accurate for predicting
the next heart rate value, they heavily rely on having a valid heart rate input as a starting point. This
because they use autoregression, where future values depend on past values of itself. These models
typically predict whether heart rate will increase or decrease based on recent trends, meaning that if
the input heart rate is already erroneous or missing, the entire prediction quickly becomes unreliable.
Effective anomaly detection requires models that account for historical trends, individual adaptation,
and multi-modal dependencies rather than just extrapolating from recent data points.

Finally, reviewing session-wide heart rate prediction models [6, 12] revealed that although thesemodels
can accurately capture physiological trends over full exercise sessions, they are not leveraged for
anomaly detection. This leaves a gap where models with strong predictive power are not used to flag
deviations from expected patterns. Therefore, in Chapter 4, we design a prediction-based anomaly
detection framework specifically tailored to these challenges.



4
Methodology

4.1. Experimental Objectives
In Chapter 3, we identified that traditional anomaly detection methods fail because they do not model
the physiological plausibility of heart rate (HR) responses to exertion. To address this, we develop a
prediction-based anomaly detection framework tailored to the cycling domain. We design the experi-
ments in this chapter to answer the research questions and systematically build and test the framework.

The first objective is to get a heart rate prediction model that can accurately estimate heart rate from
exertion metrics (e.g., power, cadence) and user-specific profiles, following equation 1.4. This predic-
tive capability is foundational to the anomaly detection framework, without a reliable model of expected
heart rate, it is impossible to determine whether observed deviations reflect true anomalies or normal
variability. Therefore, this step aims to identify a model with minimal mean absolute error (MAE) and
high correlation to ground truth heart rate, providing a robust basis for downstream anomaly detection
and reconstruction tasks.

The second objective is to construct a clean evaluation dataset by first removing asmany real anomalies
as possible and then injecting synthetic anomalies, specifically point, subsequence, and time series
anomalies, under controlled conditions. This process creates a known ground truth, which is critical for
systematically evaluating both the detection and reconstruction capabilities of the proposed framework.
The goal is to simulate realistic sensor failures while maintaining full control over anomaly type, location,
and severity, enabling rigorous, quantitative performance benchmarking.

The third objective is to implement detection and reconstruction methods that operate by comparing
measured heart rate values against model predictions. Detection involves identifying time segments
where the prediction error exceeds a defined threshold, following equation 1.5. Reconstruction aims
to replace these anomalous segments with the model’s predicted values, following equation 1.6. This
experiment tests the core hypothesis of the framework, that physiologically implausible values can be
reliably isolated via prediction error, and that the model can generate plausible replacements. Our
goal is to evaluate how accurately we can detect anomalies and how effectively we can reconstruct
corrupted data.

4.2. Heart Rate Prediction Models
Our literature review (Sec. 3.3) identified three relevant modeling approaches suitable for our applica-
tion. The first is a linear regression model, similar to those used by Bychkov et al. [9], Garrido et al.
[60] and Fang et al. [61], serving as a baseline implementation to compare the other models against.
Additionally, the models from Nazaret et al. [6] and Kayange et al. [12] predict heart rate over an entire
session based on activity metrics and are thus very suitable for our approach. This is useful for us
because it lets us compare the predicted, or in other words expected, heart rate to the measured heart
rate and detect implausible deviations as anomalies. We will evaluate the performance of all three
where we use the linear regression model as a baseline to evaluate the other two methods against.

25
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4.2.1. Baseline
To establish a foundational benchmark in our heart rate prediction framework, we employ a linear regres-
sion model, similar to Bychkov et al. [9], Garrido et al. [60] and Fang et al. [61]. This model serves as
a first step in quantifying the relationship between standardized activity metrics and heart rate. Despite
the inherent non-linearity in cardiovascular response to exercise intensity, linear regression provides
a transparent, interpretable, and computationally efficient approximation of heart rate dynamics. By
incorporating 3 minute rolling averages, the model captures sustained physiological workload.

To ensure the model remains robust and interpretable, we rigorously controlled for multicollinearity by
selecting features with a low Variance Inflation Factor (VIF). High VIF values indicate redundant or
highly correlated predictors, which can lead to unstable regression coefficients and misleading conclu-
sions. By eliminating such redundancy, our model isolates the true impact of each variable on heart
rate, ensuring that features like power, which should logically be the dominant predictor, are not over-
shadowed by spurious correlations from secondary metrics like speed.

The formula we feed into the linear regression model is the following:

HR(t) = β0 +
1

180

179∑
i=0

β1 · powerstdt−i + β2 · cadencestdt−i + β3 · gradientstdt−i

While we acknowledge the limitations of a strictly linear approach such as its inability to account for heart
rate lag effects, fatigue accumulation, and non-linear physiological thresholds, this baseline provides
a crucial reference point for evaluating more advanced models.. The insights derived from this model
help validate feature selection, establish expected error margins, and ensure future improvements are
empirically justified rather than arbitrary.

4.2.2. Session Heart Rate prediction
Nazaret et al. [6] predicts heart rate using a physiological model based on ODEs, where parameters are
dynamically adjusted by a neural network. The model learns personalized heart rate responses from
past workouts and predicts the entire heart rate curve for new sessions by integrating workout intensity
and environmental factors. Contrary, Kayange et al. [12] predicts heart rate by combining a DBN with
an LSTM. The LSTM learns user-specific patterns from workout history, while the DBN models how
heart rate evolves over time based on workout intensity and other inputs. Together, this setup predicts
the full heart rate profile during workouts, handling temporal changes and individual differences. The
later study [12] claims higher accuracy as they compare with Nazaret et al. [6] However, because of
previously noted paper mismatches (Sec. 3.3.3), we need further study to determine which model is
more accurate.

We expanded both papers to incorporate a validation set for guiding training and resolved initial issues
with the code of Kayange et al. [12] We compared both models by running them on the dataset. Both
received the same train, validation and test activities with identical embedding sizes for both the subject
and the encoder.

In addition to evaluating the original model proposed by Nazaret et al. [6], we also introduce a parameter
reduced version of their approach. This modified version removes the barriers learned as HRmin and
HRmax, as a result also removing α and β, as well as the weather component which was unused
because of unavailability of data, resulting in the final formula:


Ḋ(t) = B(z) · (f(z, l(t)) · h(t)−D(t)) ,

ḢR(t) = A(z) · (D(t)− HR(t)) ,
HR(0) = HR0(z),

D(0) = D0(z).

(4.1)

Three key considerations motivate this reduced version. First, Ludwig et al. [8] highlights the value of
parameter-reduced models as they strike a balance between predictive accuracy and model simplicity.
Second, reducing the number of user-specific parameters from six to two (A and B) simplifies the
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learning task. It can adjust the fit of A and B better around the users fitness representation z. Finally,
the inclusion of fixed HRmin and HRmax values may inadvertently suppress useful anomaly signals.
For instance, when sensor error causes an athlete’s predicted heart rate to exceed HRmax due to high
power, the original model caps the predicted heart rate at HRmax reducing the difference between
measured and predicted heart rate. The same holds if we predict their HRmax too low. The prediction
caps while the measured heart rate will be larger, showcasing high error whilst there is no anomaly.
This constraint weakens the anomaly detection mechanism by masking precisely the deviations we
aim to detect. Removing these boundaries allows the model to produce uncapped predictions, better
exposing implausible measurements. This last reason opts that even for equal or worse performance
this new model will still be better to detect anomalies.

We tested the three models against each other and compared them with the baseline. As described
earlier (Sec. 4.3) MAE median error holds more value against MAE mean error. Another important
metric in our evaluation is the Spearman correlation coefficient, which measures how well the predicted
heart rate captures the overall shape and trend of the true heart rate response. This is particularly
relevant in our context, where the model isn’t just used for prediction in isolation, but serves as the
foundation for anomaly detection. A high Spearman correlation indicates that the model preserves the
correct relative ordering and dynamics of heart rate over time, meaning it reliably tracks when heart
rate should rise, plateau, or fall. This matters because anomaly detection relies on deviations from
expected patterns; if the model captures the correct trend, even if it’s off by a some BPM, it still can
serve well for our anomaly detection framework.

4.3. Dataset
The original cycling dataset provided by Wahoo Fitness contains an enormous amount of variables and
sensor data. For our research we use the following fields per workout: activity ID, user ID and start
time. Each workout tracks the following variables per time step: heart rate, power, cadence, speed,
gradient, and altitude. Resulting in an array of measurements equaling the workout length. Per time
step one can see the heart rate in beats per minute, the power in watts, the cadence in rotation per
minute, the speed in meters per second, the gradient in percentage and the altitude in meters.

Figure 4.1: Heart rate during a 10-minute segment of a
cycling workout. This data represents a normal,

non-anomalous heart rate response over time, taken
from the same workout and time interval as Figure 4.2.

Figure 4.2: Power during a 10-minute segment of a
cycling workout. This data represents a normal,

non-anomalous power data over time, taken from the
same workout and time interval as Figure 4.1.

Figure 4.1 and Figure 4.2 provide a visualization of normal, non-anomalous data taken from the same
workout at the same time. heart rate data exhibits a dynamic nature during workouts, as it responds
gradually to changes in intensity, making it dependent on its previous value HRt−1. Power measures
the immediate force output by the cyclist, which is not dependent on past values and can fluctuate
instantaneously in response to changes in effort.

Even though the goal of our research is anomaly detection, we deliberately begin by removing all
anomalous workouts from the dataset. This may seem counterintuitive, but it’s a critical step. To train a
heart rate prediction model (4.2) that reliably captures normal physiological behavior, we need data that
reflects how heart rate typically responds to changes in effort. If we were to include anomalous data
during training, the model could learn incorrect patterns, making it harder to distinguish between normal
and abnormal later on. We filter out noisy or unrealistic workouts upfront to ensure the model trains
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on representative, high-quality data. After training, we inject known anomalies ourselves. However,
this filtering step might not be perfect. Some workouts that contain anomalies may still slip through our
initial cleaning process and remain in the dataset with a non-anomalous label. As a result, the model
might correctly flag them as anomalous later on, but since their ground-truth label is normal, these
instances will appear as false positives during evaluation. This is a known limitation and reflects the
inherent difficulty of guaranteeing a fully clean training set in real-world physiological data.

We base the filtering procedure on the data selection approach by Nazaret et al. [6], aiming to retain only
physiologically realistic and representative workout sessions. The filtering process excluded extreme
activities where the average heart rate fell below 45 bpm or exceeded 215 bpm, or where the total
distance traveled was less than 2.5 kilometers. We trim missing values at the start and end of activities
until all relevant sensors provided complete data entries. The method allows a maximum of 10 seconds
of consecutive missing data per activity, and data gaps within this limit were linearly interpolated. To
ensure realistic heart rate dynamics, the dataset included only activities lasting between 15 minutes
and 2 hours. This range helps avoid biases from shorter activities, often reflecting warm-ups, failed
workouts, or non-representative activities, and longer activities, where external factors like nutrition and
hydration play a more significant role [69, 70, 71, 72]. These effects cause the same external effort to
produce different heart rate responses over time, since we have no model input for these contextual
variables, breaking the functional relationship the model aims to learn. Finally, the dataset included
only users who completed at least 10 workouts that met these criteria, ensuring the derivation of user-
specific parameters from a diverse set of activities. We extend the filtering approach by Nazaret et
al. [6] by restricting the dataset to workouts recorded using reliable indoor trainers and specific chest
straps that Wahoo Fitness identified as providing the most accurate and trustworthy measurements
for power and heart rate. We collected 21,218 workouts from 1,435 unique users, with each workout
averaging 4,025 time steps in duration. This represents only a fraction of the available data of Wahoo
Fitness. We based our decision on findings from related work [11, 12], where similarly sized datasets
proved sufficient for training accurate models. Thus, our final dataset strikes a balance between quality,
quantity, and practical feasibility.

Figure 4.3: Per-user temporal split of cycling workouts into training, validation, and test sets. For each user, workouts are
ordered by start time, with the first 70% assigned to training, the next 15% to validation, and the final 15% to test.

For training and evaluation, we split the data into training, validation, and test sets individually for each
user. For every user, we assign the first 70% of their workouts, ordered by activity start time, to the
training set, the next 15% to the validation set, and the final 15% to the test set, as shown in Fig. 4.3.
Ending with 14.318 training workouts, 3.116 validation workouts and 3.820 test workouts.

4.3.1. Creating Anomalies in the Dataset
There is no ground truth for whether data was anomalous or not. We hold the assumption that most data
is non-anomalous and aim to create anomalies ourself in the data to see if we can detect those. To do
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meaningful research we need to recreate realistic anomalies, that could occur in real-world scenarios.
Based on the scenarios where anomalies commonly occur, as discussed in Section 2.4, Wahoo Fitness
translated these insights into a concrete list of anomaly types that can be systematically injected into
our dataset. We divided them into three categories. Point anomalies occur when the power or heart
rate value abruptly shifts at a single timestamp. Subsequence anomalies, where power or heart rate
values shift for a variable amount of consecutive time ranging from 1 minute to ten minutes. Lastly,
time series anomalies occur when the entire time series shifts for an entire activity. This categorization
follows the taxonomy of Blázquez et al. [10], earlier discussed in Section 1.3.

Figure 4.4: Point anomaly - Heart rate measurement is
half the value of the true heart rate

Figure 4.5: Subsequence anomaly - Heart rate
measurements matches cadence

• Point anomalies

– Heart rate measurement is half the value of true heart rate (Fig. 4.4)
– Heart rate measurement matches cadence

• Subsequence anomalies

– Heart rate lags behind during a rapid increase in heart rate.
– Heart rate measurement matches cadence (Fig. 4.5)

• Time series

– Heart rate measurement is half the value of true heart rate
– Heart rate measurement matches cadence
– Power data is half the value of true power
– Power data overestimates true power by 20%.

The method introduces anomalies in 20% of the test set to simulate a realistic scenario where most
workouts remain unaffected. The anomalies are only allowed to occur outside of 1 minute from each
other. This is to isolate their effects from each other.

Since we evaluate the model using only anomalies we injected ourselves, any real-world anomaly that
slipped through preprocessing (Fig. 5.4-5.6) won’t be labeled as such. So even if the model correctly
flags it as anomalous, we penalize it as a false positive. This artificially lowers our measured precision,
even though the model is behaving correctly. While this is an important limitation to acknowledge, it
should only affect a small portion of the dataset thanks to the extensive preprocessing and filtering
steps applied upfront. Nonetheless, we must consider this factor when interpreting evaluation metrics.
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4.4. Anomaly Detection

Figure 4.6: Dual-model approach for anomaly source attribution. Model A predicts heart rate using power, while Model B relies
on different metrics. By comparing anomaly detections from both models, we determine whether the anomaly originates from

the heart rate sensor or the power input.

We train the model on normal data, then introduce anomalies in 20% of all test workouts. We previously
described the specific types of anomalies in Chapter 4.3.1. Our model predicts heart rate based on
sensor input, with power identified as the most effective predictor of heart rate changes. However, we
face a challenge when detecting an anomaly in the heart rate reconstruction. A key challenge is that
when we detect an anomaly in the predicted heart rate, we don’t immediately know whether the problem
comes from the heart rate data itself or from the input power data used to predict it. This distinction
is necessary as discussed in the context of the problem in the introduction (Eq. 1.3). To resolve this,
we use a second, independent model that predicts heart rate based on different inputs, as stated in
equation 1.5. If both models detect an anomaly, the heart rate data is likely at fault, since even a model
that doesn’t rely on power finds it implausible. But if only the first model flags an issue, the problem
originates from the original power input, not the heart rate itself, as otherwise the model which is not
using power should identify an anomaly as well. This approach helps us isolate which signal is causing
the anomaly. Figure 4.6 visualizes this.

The model’s ability to detect anomalies depends on the time scale at which the anomaly occurs. As
discussed in the introduction we will follow the outlier types identified by Blazquez-Garcia et al. [10]. For
the evaluation we will tackle the performance for each anomaly type individually. It is important to note
that we make no changes to the model. The model is capable to detect different types of anomalies
without finetuning for a specific anomaly type.

To ensure robustness and mitigate the effects of random variation from creating random anomalies in
the test set we conduct 10 experiments with different random placed anomalies. For each metric we
compute the average, minimum and maximum scores across all these runs.

The methods described in this section were originally devised for this thesis. While it draws conceptual
inspiration from reconstruction-based anomaly detection approaches, particularly the use of data-driven
error thresholds for identifying anomalies, its design choices, including the use of different thresholds
for different temporal patterns and jump conditions are novel and application-specific. These custom
formulations are necessary to move beyond standard reconstruction anomaly detection and capture
more realistic anomalies aligned with how physiological deviations manifest over time.

4.4.1. Point Anomalies
Point anomalies refer to anomalies of isolated single unit length (i.e. 1 second anomaly). We detect
these by sliding a three-point window over the residual error signal (i.e., the difference between pre-
dicted and true heart rate). We mark a point as anomalous if its deviation from neighboring error values
exceeds three times the local standard deviation and if it significantly exceeds the surrounding context.
This lets us detect singular, high-magnitude outliers caused by brief sensor errors or physiological
artifacts.
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This method is intentionally conservative, prioritizing precision over recall. It assumes that model fore-
casts are locally smooth and that genuine point anomalies will produce statistically unlikely errors that
do not align with the trajectory of neighboring samples.

4.4.2. Subsequence Anomalies
Subsequence anomalies refer to deviations in heart rate that persist for a defined interval but do not
span the entire workout. We detect anomalies based on the absolute error between predicted and
measured heart rate values using two mechanisms:

• Threshold-based detection: We flag anomalies when the error exceeds a threshold (µ + 3 · σ)
based on training data statistics. To improve robustness, we tolerate brief error drops below the
threshold, preventing short correct segments or isolated point anomalies from splitting longer
anomalous sequences.

• Abrupt change detection: We use sudden large increases in absolute error as indicators to cap-
ture abrupt onsets or terminations of anomalies.

4.4.3. Time Series Anomalies
Time series anomalies refer to sustained, systematic deviations between predicted andmeasured heart
rate throughout an entire workout. We quantify these anomalies using the mean absolute error (MAE)
between predicted and observed heart rate values over the full time series.

To determine the origin of the anomaly, whether it comes from heart rate or power sensor, we use two
separate prediction models:

• Model 1 (with power): Uses cadence, power, and altitude as input.
• Model 2 (without power): Uses gradient, cadence and speed.

We label anomalies using a two-stage decision process:

1. We consider the workout anomalous if Model 1’s prediction error exceeds the detection threshold.
2. We attribute the anomaly to heart rate data if Model 2 also exceeds the threshold at the same

time points. We attribute the anomaly to power data if only Model 1 shows high residuals.

To convert model prediction errors into anomaly labels, we implement two complementary threshold-
ing strategies: a statistical thresholding approach based on residual distributions and a performance-
optimized approach using Monte Carlo optimization.

Static Thresholding

We define the threshold as: τ = µϵ + k · σϵ, where µϵ is the mean and σϵ is the standard deviation of
the residuals. We sweep values of k between 2.0 and 4.0 in 0.5 increments and report performance
metrics (precision, recall, F1) for each.

Performance-Driven Thresholding via Monte Carlo PR-AUC Optimization

To optimize threshold selection based on detection performance, we perform a Monte Carlo–style eval-
uation consisting of ten repeated runs. In each run, we inject anomalies randomly into the test set. For
each run, we compute the precision-recall curve and identify the threshold that maximizes the area un-
der the curve (PR-AUC). We define the final threshold as the average of the optimal thresholds across
all runs. This threshold is then evaluated on new, unseen anomaly placements to assess generalization
performance.

Between the two thresholding methods, we adopt the one that demonstrates superior generalization
performance on held-out data, thereby ensuring optimal detection accuracy in real-world scenarios. For
the selectedmethod, we document its precision, recall and F1-score to provide a transparent evaluation
of its effectiveness.
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4.5. Heart Rate Reconstruction
4.5.1. Point Anomaly Reconstruction
Reconstructing anomalous segments in our data can follow equation 1.6 due to the high correlation
between the model predictions and the original, uncorrupted sequences. For point anomalies, our
baselinemethod is a simple interpolation over the anomalous region, which provides a quick but context-
agnostic fix. Hypothesis is that this will work well for point anomalies and will be hard to outperform.
A more model-driven approach replaces the anomaly directly with the model’s forecast, relying on its
learned expectation of normal behavior but without considering error in the models forecast. Finally,
we apply a more sophisticated strategy where the forecast is not just inserted blindly but adjusted so
that the resulting prediction error aligns with the error levels observed immediately before and after the
anomaly. This produces smoother transitions and better preserves the signal’s local temporal dynamics.
This technique builds on the high correlation obtained from the model.

4.5.2. Subsequence Anomaly Reconstruction
Similarly for subsequence anomalies, we compare three reconstruction strategies. The baseline ap-
proach again uses simple linear interpolation across the anomalous region. However, compared to
point anomalies, this method is expected to perform poorly because longer durations and increased
variability within these segments challenge interpolation. The second approach again leverages the
forecasting model to directly replace the anomalous section with its predicted values. Unlike interpo-
lation, this model-driven reconstruction accounts for intra-sequence variation, producing more realistic
estimates by incorporating contextual input features. Lastly, we introduce the adjusted forecast method
again that modifies the model’s output to align its prediction error with the error levels observed imme-
diately before and after the anomaly. This technique smooths transitions at anomaly boundaries and
better preserves local temporal dynamics. It builds on the strong temporal correlation structure learned
by the model, resulting in more coherent reconstructions.

4.5.3. Time Series Anomaly Reconstruction
Time series anomalies pose a greater challenge because they affect the entire workout, leaving no
reliable non-anomalous context within the sequence. In these cases, we rely entirely on the model’s
forecast as the replacement for the corrupted signal. By doing so, we anchor the reconstruction to the
model’s learned expectation of what a typical workout should look like. This has the effect of pulling the
overall reconstruction error of the anomalous activity back toward the model’s global mean error. For
full-session anomalies, interpolation is not a viable option due to the absence of valid context within
the session. Instead, we replace the anomalous heart rate signal with the user’s average heart rate,
computed across all their previous sessions.



5
Results

5.1. Experimental Setup
This chapter evaluates the methodology developed in Chapter 4, with each experiment aimed at an-
swering specific aspects of the research question.

We first evaluate the predictive models by measuring how accurately they can predict heart rate (HR)
during clean, non-anomalous workouts. This establishes whether the predictive foundation is strong
enough to support anomaly detection.

We then assess anomaly detection performance by applying the models to datasets with injected
anomalies, examining detection accuracy across different types: point anomalies, subsequence anoma-
lies, and full session anomalies. This evaluates whether deviations from predicted heart rate reliably
indicate sensor errors rather than normal physiological variability.

Lastly, we measure the quality of reconstruction, replacing corrupted heart rate values with predicted
values and assessing the resulting error reduction. We do this on the identified anomalies from the
anomaly detection experiment and on the the ground truth of the injected anomalies, this to assess the
total pipeline and the reconstruction mechanism itself. This demonstrates whether the model not only
detects errors but can also realistically correct them.

5.2. Heart Rate Prediction Models
This section evaluates the performance of the heart rate prediction models developed in Section 4.2.
The goal is to assess whether the model can generate accurate, physiologically plausible heart rate
estimates based on exertion metrics and user-specific embeddings, as required for anomaly detection
in future steps.

5.2.1. Model Comparison
In this subsection we compare the baseline and prediction-based models to determine which achieves
the lowest MAE and highest correlation with true heart rate values. This directly tests the predictive
quality required for anomaly detection.

We fitted our baseline linear regression model on 80% of the workouts and tested it on the remaining
20%. The final fitted formula was the following:

HR(t) = 131.16 +
1

180

179∑
i=0

18.95 · powerstdt−i + 2.54 · cadencestdt−i + 0.58 · gradientstdt−i

VIF values (power = 1.94, cadence = 1.74, gradient = 1.15) remained low to show low correlation
between the standardized rolling averaged activity metrics. The high weight for power highlights the
importance of power as a heart rate predictor once more.

33
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MAE
mean

MAE
median [IQR]

RMSE
median [IQR]

MAPE
median [IQR]

correlation
median [IQR]

Baseline
Linear Regression 14.287 12.321

[8.875-17.791]
16.591

[11.164-20.316]
8.14%

[5.44%-12.58%]
0.627

[0.484-0.741]

Nazaret et al. [6] 10.927 9.307
[6.679-13.441]

13.493
[8.575-16.486]

5.79%
[3.92%-8.67%]

0.736
[0.563-0.840]

Kayange et al. [12] 14.275 13.182
[10.655-18.027]

17.214
[13.336-21.407]

8.45%
[6.32%-12.52%]

0.166
[0.069-0.392]

Nazaret et al. [6]
Parameter reduced 9.595 8.185

[5.979-11.441]
11.747

[7.728-13.907]
5.18%

[3.68%-7.68%]
0.812

[0.697-0.886]

Table 5.1: Performance comparison of different models on heart rate prediction.

Training
time

Inference time
(per new workout)

Number of
epochs

Average time
per epoch

Baseline
Linear Regression 00:00:02 0.015 ms - -

Nazaret et al. [6] 2-06:52:36 58.115 ms 21 2:36:47
Kayange et al. [12] 4-19:37:54 7.592 ms 6 19:16:19
* GPU accelerated 2:42:10 2.356 ms 6 27:02
Nazaret et al. [6]
Parameter reduced 1-13:00:05 27.487 ms 21 1:45:43

Table 5.2: Training and inference time analysis for each model.

The average error of the baseline in prediction was 14.28 beats per minute, but more meaningful for a
realistic comparison is the median error of 12.32 beats per minute (Table 5.1). Training and inference
time (Table 5.2) were, as expected, extremely low.

The results clearly show that the model by Nazaret et al. [6] significantly outperforms both the baseline
linear regression and the Kayange et al. [12] model across all key metrics. With a median MAE of 9.307
and a correlation of 73.6%, it achieves notably better accuracy than the baseline, which sits at 12.321
MAE and 62.7%. This translates to an improvement of over 3 BPM in median error. The results from
the Kayange et al. [12] however showcase a low performance having similar results to the baseline
linear regression approach. Because of the DBN-LSTM model from Kayange et al. [12], a lot of noise
enters the estimation, resulting in a very low correlation score.

As seen in Table 5.1, the model with the removed HRmin, HRmax, α and β parameters, referred to as
the parameter-reduced version of Nazaret et al. [6], not only outperforms the original in all performance
metrics, but also leads to a notably higher Spearman correlation (0.812 vs. 0.736). This suggests that
removing the heart rate boundary constraints, reducing the total number of user-specific parameters
from six to two, allows the model to better capture the dynamic shape of the heart rate signal across
different users. This improved flexibility is particularly valuable for anomaly detection, where capped
predictions can mask real deviations caused by anomalous input metrics.

The DBN-LSTM model, as implemented, is computationally expensive when executed on CPU. This is
primarily due to the recurrent nature of LSTMs and the dense layers that require large matrix multiplica-
tions at each time step. On CPU, these operations are inherently slow because they are not optimized
for the highly parallel computations deep learning models rely on. However, running the DBN-LSTM on
a GPU yields a significant speedup. The reason is simple: GPUs efficiently handle large-scale parallel
computations, especially matrix operations in LSTM layers and dense neural networks. This allows
the DBN-LSTM to fully leverage the GPU architecture, drastically reducing runtime. In contrast, the
ODE-based model does not experience the same performance gain when moving from CPU to GPU.
Although all model components run on the GPU, the core computational bottleneck remains the numer-
ical ODE solver (torchdiffeq.odeint). ODE solvers require sequential integration over time, where each
time step depends on the solution of the previous one. This recursive nature limits the ability of the
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GPU to parallelize the computation across time steps. While the ODE solver parallelizes across the
batch dimension, it processes the time-stepping loop sequentially. As a result, even when executed
on a GPU, the ODE model shows minimal speed improvement compared to the CPU version.

Figure 5.1: Output of the predictive model proposed by Nazaret et al. [6]. The figure shows the measured and model’s
predicted heart rate and demand over the same time period.

Figure 5.1 clearly demonstrates Nazaret et al. [6] model’s ability to predict heart rate with high accuracy.
The predicted heart rate curve closely follows the measured heart rate throughout the workout, cap-
turing both gradual trends and rapid fluctuations. This alignment indicates that the model successfully
learns the underlying relationship between input variables and heart rate response.

Figure 5.2: Output of the predictive model proposed by Kayange et al. [12]. The figure shows the measured and model’s
predicted heart rate over the same time period.

The DBN-LSTM model (Fig. 5.2) performs best in scenarios where the heart rate remains relatively
stable, even if the input signals fluctuate significantly. In these cases, the model effectively ignores the
noisy oscillations in the input and maintains consistent heart rate predictions. This suggests that the
DBN-LSTM is able to extract underlying patterns that reflect the heart rate’s inertia and resistance to
rapid changes, rather than reacting directly to every input variation.

Figure 5.3: Comparative output from all heart rate prediction models, Linear Regression, Nazaret et al. [6], and Kayange et al.
[12], on the same workout segment. The figure shows the measured and model’s predicted heart rate over the same time

period.
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Figure 5.3 compares all different models (Linear Regression, ODE and DBN-LSTM). The baseline
linear regression model shows it can capture some of the overall heart rate trend. It follows the general
direction of the signal but lacks the flexibility to adapt to rapid changes or nonlinear dynamics. Still, it
manages to roughly align with the trend, providing a basic approximation. In contrast, the ODE-based
model tracks the heart rate dynamics much more accurately. It not only captures the general trend but
also adapts to changes in heart rate levels over time. The model produces smooth predictions that align
closely with the ground truth, reflecting its strength in modeling continuous physiological processes.
The DBN-LSTM model, however, shows a different behavior. While it roughly follows the large-scale
trends, the predictions exhibit significant oscillations around the true heart rate. These fluctuations are
not present in the actual data and cause the model to diverge from the ground truth frequently. As a
result, the excessive oscillations reduce the correlation score substantially, even though the model is
occasionally in the correct range. This highlights a weakness making it less reliable for capturing the
true underlying trend.

To evaluate which model performs best, we compare the mean absolute error (MAE) and correlation be-
tween predicted and true heart rate values across all workouts. MAE reflects how far off the predictions
are on average and correlation indicates how well the model captures the trends and fluctuations in
heart rate. We use the Wilcoxon Signed-Rank Test to assess whether the differences between models
are statistically significant. This non-parametric test is appropriate for our paired, non-normally dis-
tributed error data. Results (Appendix D) show that the ODE Parameter Reduced model consistently
outperforms the other models across both MAE and correlation, with extremely statistically significant
differences (p < 0.0001). This confirms that the improvement is not due to chance but reflects a real
performance advantage.

In addition to prediction accuracy, we also log both training time and inference time for each model.
We did this at Wahoo Fitness’s request, explicitly noting that these metrics are for their internal ref-
erence only and won’t influence the research direction.While training time matters less because the
model trains once or infrequently, inference time is crucial for our use case. Since the predicted heart
rate feeds anomaly detection for many workouts daily, inefficient inference can bottleneck the process.
Logging inference time allows us to assess the model’s practicality for large-scale deployment and en-
sures that performance gains don’t come at the cost of scalability. We trained models without GPU
acceleration on the influ5 node, while GPU-accelerated jobs ran on gpu01; their specifications appear
in Section 2.5.

Figure 5.4: Ordered distribution of heart rate prediction
errors across all test workouts. Each point represents a

workout, sorted by increasing error magnitude.

Figure 5.5: Zoomed-in view of the right tail of the
ordered distribution of heart rate prediction errors across

all test workouts.

Figure 5.6: Example workout illustrating an unrealistic heart rate measurement segment. Combined with a more
plausible predicted heart rate signal.

Besides the precaution of selecting high level data it can still occur that workout with measurement
errors occur in the dataset. We should consider this when evaluating the results. Figure 5.4-5.5 show
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sudden exponential growth in prediction errors. Figure 5.6 shows an example workout from the real
dataset where the change inmeasured heart rate is unrealistically large. In those cases, large prediction
errors are actually expected and even desirable, since the model should not try to fit faulty measure-
ments. Using the median instead of the mean to track heart rate prediction performance makes sense
here—it reduces the impact of outliers and better reflects typical model performance without skew from
occasional bad data.

5.2.2. Anomaly Source Identification
We evaluate whether the heart rate prediction model can maintain high accuracy without using power
as an input. If successful, this power-independent model enables us to isolate and attribute anomalies
to the power or heart rate sensor specifically, providing insight into the source of data corruption.

Variables MAE
mean

MAE
median

RMSE
median

MAPE
median

correlation
median

Power Model 9.595 8.185
[5.979-11.441]

11.747
[7.728-13.907]

5.18%
[3.68%-7.68%]

0.812
[0.697-0.886]

No Power Model 10.048 8.777
[6.807-11.672]

12.293
[8.628-14.206]

5.56%
[4.18%-7.75%]

0.693
[0.536-0.803]

Table 5.3: Summary of prediction error ranges for the test set across prediction model with and without power. The table
reports minimum, average, and maximum errors per metric over 10 test runs.

Our model predicts heart rate based on sensor input, with power identified as the most effective predic-
tor of heart rate changes. However, we face a challenge when detecting an anomaly in the heart rate
reconstruction: we cannot immediately determine whether the anomaly originates from power or heart
rate data. To address this, we employ a secondary model, which predicts heart rate using gradient,
cadence and speed (Table 5.3). Although this model is less accurate, it helps distinguish the source of
the anomaly. If the secondary model also detects an anomaly, the issue lies with the heart rate data.
If the secondary model detects no anomaly, we deem the power data anomalous.

Figure 5.7: Output of the heart rate prediction model, from Nazaret et al. [6], that uses power as an input, with a
simulated power anomaly (10% reduction) introduced between the dotted lines.

Figure 5.8: Output of the heart rate prediction model, from Nazaret et al. [6], that does not use power as an input,
with a simulated power anomaly (10% reduction) introduced between the dotted lines.
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From Fig. 5.7 we can see that the model using power detects anomalous heart rate, since the error
between measured and predicted is higher than in the rest of the activity. While in Fig. 5.8 we can
see that the model which does not use power does not detect anomalous heart rate data, as the error
stays relatively consistent. From this we can derive that it is not the heart rate that is anomalous but
the power input to the model.

5.3. Anomaly Detection
This section evaluates how well the trained models detect anomalies, injected following Section 4.3.1,
as described in Section 4.4. We assess detection performance for point, subsequence, and time series
anomalies to reflect realistic sensor error patterns.

For anomaly detection, we rely on several evaluation metrics to assess the performance of our model:
precision, recall, and F1 score. For each metric we compute the average, minimum and maximum
scores across all ten runs with random anomalies.

5.3.1. Point Anomaly Detection
Point

Anomalies Precision Recall F1-score

Half HR 0.84 [0.83-0.84] 1.00 [1.00-1.00] 0.91 [0.91-0.91]
HR matches
cadence 0.83 [0.83-0.84] 0.99 [0.99-1.00] 0.91 [0.90-0.91]

Table 5.4: Average, minimal and maximal results of precision, recall and F1-score from 10 iterations
of Point Anomaly Detection per anomaly type.

Table (5.4) shows the results of point anomaly detection on two types of artificially injected heart rate
anomalies: Half HR and HRmatches cadence. The model achieves perfect or near-perfect recall (1.00
and 0.99) in both cases, meaning it detects nearly all the injected anomalies. Precision is slightly lower
(0.84 and 0.83), indicating that some of the flagged anomalies weren’t the manually injected ones.

This pattern suggests that hard deviations like these, which occur on a very short time scale, are
relatively easy for the model to detect, hence the perfect recall. However, since precision isn’t 1.00, the
model is also detecting additional points it considers anomalous, even though they weren’t manually
labeled. These could be real anomalies in the data, just not part of the injected ground truth. So, we
likely lose some performance on precision due to false positives, though in practice these might still be
valuable detections.

5.3.2. Subsequence Anomaly Detection
Subsequence
Anomalies Precision Recall F1-score

HR lags
behind 0.59 [0.47-0.73] 0.25 [0.19-0.33] 0.35 [0.27-0.46]

HR matches
cadence 0.57 [0.56-0.58] 0.86 [0.85-0.86] 0.68 [0.68-0.69]

Table 5.5: Average, minimal and maximal results of precision, recall and F1-score from 10 iterations
of Subsequence Anomaly Detection per anomaly type.

Table 5.5 shows the results of subsequence anomaly detection. The two subsequence anomalies
introduced in the dataset are subsequences where the heart rate lags behind the real heart rate and
sequences where the heart rate matches the cadence. Subsequence anomalies prove significantly
more difficult to detect than point anomalies. This is partly due to their more subtle nature, rather than
a single sharp deviation, these anomalies often take the form of slow drifts or lagging responses that
are harder to distinguish from natural physiological variability.
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Anomalies where the heart rate lags behind after a sudden increase in power is challenging because
such delayed responses can also occur during recovery, fatigue onset, or changes in conditions. The
model struggles to confidently classify these patterns without falsely flagging valid but atypical physio-
logical behavior. In contrast, anomalies matching cadence are easier to detect and the model reliably
picks them up.

An additional challenge is the increased likelihood of false positives in the dataset. Some labeled
normal segments may be actual anomalous segments due to subtle real errors slipping through the data
cleaning phase. These mislabeled segments lead to artificially inflated false positive counts, reducing
precision. This is especially relevant in our setup, where we deliberately prioritize precision over recall,
we want to avoid flagging clean workouts as anomalous, even if it means missing some anomalies.
The model still maintains high practical utility by preserving confidence in the anomalies it does detect,
when accounting for this lowered precision due to working with a real-world dataset.

5.3.3. Time Series Anomaly Detection
Time Series
Anomalies Precision Recall F1-score

k=2.0 0.82 [0.81-0.82] 0.72 [0.68 – 0.76] 0.77 [0.74 – 0.79]
k=2.5 0.86 [0.86-0.87] 0.67 [0.64 – 0.70] 0.75 [0.73 – 0.77]
k=3.0 0.89 [0.89-0.89] 0.62 [0.60 – 0.67] 0.73 [0.72 – 0.76]
k=3.5 0.91 [0.90-0.91] 0.59 [0.56 – 0.63] 0.71 [0.69 – 0.75]
k=4.0 0.93 [0.93-0.94] 0.56 [0.52 – 0.60] 0.70 [0.67 – 0.73]

PR-AUC
optimization 0.81 [0.81-0.82] 0.78 [0.76-0.81] 0.80 [0.78-0.81]

Table 5.6: Average, minimal and maximal results of precision, recall and F1-score from 10 iterations
of Time Series Anomaly Detection with different thresholding techniques.

First we evaluate all metrics on the same set of diverse anomalies to see which thresholding technique
works best as described in the methodology. This allows us to compare static thresholding (based on
prediction error statistics) with dynamic, performance-optimized thresholding using PR-AUC maximiza-
tion. For static thresholding, Model 1 yields a mean prediction error of 9.591 with a standard deviation
of 5.665, while Model 2 shows a slightly higher mean of 10.048 and 5.361 standard deviation. In con-
trast, PR-AUC-based optimization selects significantly different thresholds: 19.925 (= µ+1.824 · σ) for
Model 1 and 32.630 (= µ+ 4.212 · σ) for Model 2.

Table 5.6 shows that PR-AUC optimization consistently outperforms static thresholding. Its advantage
lies in the added flexibility of tuning the threshold k independently per model. This allows Model 1 to
apply a more lenient threshold, capturing broader anomaly patterns across a time series, while Model
2 uses a much stricter threshold, flagging only the most severe heart rate anomalies. Based on this
improved performance, we select PR-AUC optimization as the preferred thresholding method and use
it for evaluating each anomaly type separately in the next section.

Time Series
Anomalies Precision Recall F1-score

Half HR 0.85 [0.84-0.85] 1.00 [1.00-1.00] 0.92 [0.91-0.92]
HR matches
cadence 0.84 [0.84-0.85] 1.00 [1.00-1.00] 0.91 [0.91-0.92]

Half Power 0.80 [0.78-0.82] 0.74 [0.64-0.81] 0.77 [0.70-0.82]
20% Power

offset 0.72 [0.53-0.81] 0.51 [0.20-0.74] 0.59 [0.29-0.77]

Table 5.7: Average, minimal and maximal results of precision, recall and F1-score from 10 iterations
of Time Series Anomaly Detection per anomaly type.
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In Table 5.7 we can see the results of time series anomalies. We see that our model is very suitable in
detecting most anomaly types. We find that sessions where heart rate is consistently too low or too high
for the given effort are easier to flag, whereas miscalibrated power sensors (e.g., constant offset) are
harder to catch, especially if the error remains within plausible human output ranges. This highlights
the challenge of context ambiguity in time series anomaly detection.

5.4. Heart Rate Reconstruction
This section tests whether anomalous or corrupted heart rate values can be plausibly replaced bymodel
predictions, as described in Section 4.5. The aim is to evaluate whether imputation using predicted
heart rate improves signal quality.

We evaluate our model’s reconstruction performance in two ways: using only anomalies detected by
the model, and using the ground truth anomalies. The first is realistic in cases where we want to
reconstruct anomalies identified by the model. The second is realistic for reconstructing data dropout,
where no data is available. For both cases, we calculate the deviation of the reconstructed heart rate
from the true measured heart rate. We document the average, minimum and maximum over the 10
test runs.

5.4.1. Point Anomaly Reconstruction

Anomaly Source Method Half HR MAE HR Matches
Cadence MAE

Model Anomalies

Before Reconstruction 84.138 [84.05–84.59] 54.285 [52.08–55.76]
Baseline Interpolation 0.982 [0.97–1.00] 0.998 [0.97–1.03]
Forecast 12.098 [11.87–12.45] 12.254 [11.94–12.57]
Constant Error 1.067 [1.05–1.07] 1.082 [1.05–1.11]

Ground Truth
Anomalies

Before Reconstruction 100.751 [99.98–101.31] 64.790 [62.58–66.28]
Baseline Interpolation 0.305 [0.28–0.32] 0.302 [0.29–0.33]
Forecast 9.454 [9.13–9.83] 9.652 [9.35–10.06]
Constant Error 0.333 [0.31–0.35] 0.331 [0.32–0.36]

Table 5.8: Reconstruction MAE for Point Anomalies of Two Types: Half HR and HR Matches Cadence, across Model-Injected
and Ground Truth Anomalies. Results show average, minimum, and maximum error across 10 test runs.

The results (Table 5.8) show that anomalies are reconstructed with very little error. As expected the
baseline solution, interpolation, still outperforms the other methods for such time scale. Although we
can see that our more sophisticatedmethod of keeping constant errors already performs relatively close
to this, highlighting its potential.

5.4.2. Subsequence Anomaly Reconstruction

Anomaly Source Method HR lags behind MAE HR Matches
Cadence MAE

Model Anomalies

Before Reconstruction 17.470 [12.65–23.35] 51.870 [51.10–52.71]
Baseline Interpolation 18.631 [18.16–19.06] 46.915 [45.52–48.30]
Forecast 19.245 [16.16–22.14] 11.324 [11.06–11.76]
Constant Error 16.533 [15.65–17.22] 9.702 [8.37–11.14]

Ground Truth
Anomalies

Before Reconstruction 17.423 [14.22–22.00] 65.073 [63.76–66.64]
Baseline Interpolation 11.947 [10.80–13.67] 7.945 [7.76–8.20]
Forecast 10.287 [9.86–10.63] 9.470 [9.24–10.01]
Constant Error 8.048 [7.47–8.93] 5.889 [5.74–6.15]

Table 5.9: Reconstruction MAE for Subsequence Anomalies of Two Types: HR lags behind and HR Matches Cadence, across
Model-Injected and Ground Truth Anomalies. Results show average, minimum, and maximum error across 10 test runs.
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Table 5.9 highlights a clear contrast between controlled and real-world performance of the reconstruc-
tion model. When provided with ground truth anomaly segments, the constant-error reconstruction ap-
proach performs well, especially because it can rely on accurate context before and after the anomaly.

However, in the full pipeline, where anomalies are automatically detected, the reconstruction process
also acts on false positives. These segments wrongly flagged as anomalous introduce unnecessary
corrections, which inflate reconstruction error. This effect is particularly pronounced in the heart rate
matches cadence anomaly type, where the models identified anomalies are heavily corrected due to
the large discrepancy between heart rate and cadence. As a result, many normal sequences are
mistakenly altered, leading to substantial extra error. The forecast reconstruction approach seems to
handle this in a more robust manner. In contrast, heart rate lag anomalies exhibit smaller deviations,
making them harder to detect. Consequently, the model produces a large number of false positives
for this category. Because reconstruction also applies to false positives in model anomalies, the net
effect is minimal improvement or even degradation. This explains why the reconstruction error for heart
rate lag anomalies remains nearly the same before and after applying reconstruction, roughly half the
reconstructed segments were not anomalous in the first place.

Overall, this analysis suggests that forecast-based imputation is a more reliable fallback than simple
reconstruction when the detection step cannot guarantee high precision.

5.4.3. Time Series Anomaly Reconstruction

Anomaly Source Method Half HR MAE HR Matches
Cadence MAE

Model Anomalies
Before Reconstruction 65.251 [64.88-65.58] 63.827 [63.42–64.63]
Baseline Average HR 17.974 [17.44–18.50] 17.956 [17.49–18.38]
Forecast 10.289 [10.00–10.50] 10.412 [10.17–10.83]

Ground Truth
Anomalies

Before Reconstruction 66.896 [66.42-67.24] 64.786 [64.39–65.48]
Baseline Average HR 17.331 [16.73-17.78] 17.457 [16.97-17.91]
Forecast 9.543 [9.30–9.72] 9.599 [9.32–10.07]

Table 5.10: Reconstruction MAE for Time Series Anomalies of Two Types: Half HR and HR Matches Cadence, across
Model-Injected and Ground Truth Anomalies. Results show average, minimum, and maximum error across 10 test runs.

Reconstruction of time series anomalies is notably effective, as shown in Table 5.10. Unlike point or
subsequence anomalies, we cannot apply the constant error approach here because no clean con-
text exists within the session. Despite this limitation, the forecasting model significantly outperforms
the baseline across all anomaly types, both when operating on ground truth labels and within the full
anomaly detection pipeline.

Interestingly, even when the model detects anomalies less precisely, reconstruction performance re-
mains strong. This suggests that, in the case of full-session corruption, the forecasting model is not
only effective but also resilient to occasional misclassifications of sessions.
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Discussion

6.1. Summary
This thesis demonstrates that prediction-based anomaly detection can be effectively applied to multi-
variate cycling data to identify and reconstruct heart rate (HR) and power anomalies. The results show
a clear advantage of physiological model-based predictors over a naive baseline. Specifically, the
parameter-reduced ODE model provided not only competitive predictive performance but also more
reliable anomaly detection due to the absence of hard constraints like HRmin and HRmax.

Across all experiments, the parameter reduced prediction-based model by Nazaret et al. [6] demon-
strated strong capability in modeling personalized heart rate dynamics. It consistently outperformed
baseline and other approaches. Anomaly detection results confirm the hypothesis that point anoma-
lies are easiest to detect, while subsequence anomalies, specifically the heart rate lag anomaly type,
poses greater challenges. Reconstruction experiments show that replacing corrupted heart rate values
with model predictions significantly reduces error, supporting the hypothesis that predicted values are
more physiologically plausible than corrupted inputs. These findings validate the framework’s ability to
detect and correct implausible heart rate data.

6.2. Interpretations
By modeling heart rate as a function of effort metrics through a personalized ODE framework, we
were able to identify anomalies not just based on statistical deviation but on physiological implausibility.
The model correctly detects unrealistic heart rate behaviors, such as abrupt spikes or drops, that are
not justified by surrounding activity metrics. This indicates that it has internalized core dynamics of
cardiovascular response during exercise.

It is important to recognize that perfect anomaly detection and reconstruction are fundamentally unattain-
able in this setting. Our model predicts expected values based on contextual metrics and user embed-
dings, but unobserved factors such as fatigue, hydration, stress, or sensor drift introduce variability
that no model can fully capture. Moreover, the very definition of what constitutes a ”true” heart rate
or power value is inherently noisy and dynamic. As a result, the model may flag some valid but un-
usual data points. The goal is not perfection, but to strike a practical balance: to reliably correct the
most impactful and obvious errors while avoiding over-correction of plausible physiological variation.
Our results demonstrate that the model meets this goal, improving data quality in a measurable way,
while acknowledging that a certain level of residual error is inevitable in any real-world wearable data
pipeline.

6.3. Implications
This work demonstrates that anomaly detection in physiological time-series data can go beyond black-
box reconstruction models. For real-world applications, where flawed data can lead to incorrect training
decisions, poor athlete feedback, or compromised recommender systems, detection models need to
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understand the underlying physiological mechanisms. By framing anomaly detection as a prediction
task and grounding the model in domain knowledge, we move closer to trustworthy data pipelines.

Moreover, the model’s ability to not only detect but also correct erroneous heart rate readings has
practical value. Replacing corrupted values with realistic predictions enables continued downstream
analysis without throwing away entire sessions. This makes it suitable for real applications, where
missing or unusable data can be costly. This type of model can increase user trust in wearables,
instead of logging flawed data, systems can now flag, explain, and correct it.

6.4. Limitations
Despite extensive preprocessing, the dataset is not perfectly clean. Some real-world anomalies likely
slipped through the filtering phase. Because evaluation relies only on injected anomalies, any model-
detected anomaly not labeled as such counts as a false positive. This penalizes the model unfairly and
artificially lowers the measured precision, even though it behaves correctly. While we must account
for this in evaluation, the volume of such mislabeled cases should be small thanks to rigorous filtering.
Although good performance on synthetically injected anomalies, the system’s practical value depends
on its ability to handle real anomalies. The use of synthetic anomaly injection could oversimplify the
problem. Real-world sensor noise is not always as structured or isolated as simulated dropouts or
mismatches with cadence.

Additionally, the model trains to infer a user’s fitness from scratch, a challenging task with limited data
or workouts in a narrow intensity range. However, this may not be strictly necessary. Many users
have already completed Wahoo’s fitness test, which provides an estimated fitness level. Incorporating
these values into the model could serve as a prior or guiding signal for the fitness estimation process,
potentially significantly improving the accuracy and stability of user-specific fitness learning for those
users who have this data available.

6.5. Recommendations
While the primary purpose of the heart rate predictor in this project is to support anomaly detection, the
model itself offers broader potential value to Wahoo Fitness. By accurately predicting an athlete’s heart
rate response from contextual variables, this system could enhance several features. For example, the
predictor could improve real-time pacing guidance, alerting athletes when their physiological response
deviates from expected effort, helping avoid overtraining or early burnout. Training workouts have an
intended effort level, but it doesn’t adjust in real-time. The model could monitor deviations from the
intended intensity and adapt workouts in real-time to better fit the planned intensity. Additionally, the
model could enhance adaptive training recommendations, where future sessions adjust automatically
based on how the athlete’s heart rate trends compared to predictions, capturing fatigue, fitness, or
environmental effects. Overall, the heart rate predictor could serve as a foundation for Wahoo to deliver
smarter, physiology-driven insights.

Notably, the original heart rate prediction paper that inspired this work focused on running exercises
rather than cycling. Interestingly, the model achieved even lower prediction errors in that context than
what we observed for cycling, suggesting that its physiological modeling may generalize well in running
workouts. As Wahoo Fitness continues to expand its presence in the running market this predictive
capability could provide direct value for running-focused applications as well.

An important aspect of the heart rate predictor is that the model learns a user-specific fitness represen-
tation. This representation captures how an individual’s heart rate responds to changes in power and
other variables, modeling the athlete’s physiological profile. Beyond anomaly detection, Wahoo Fitness
could repurpose this learned fitness embedding for other applications on their platform. For example,
by adding a new decoder, the model could predict an athlete’s 4DP (Four-Dimensional Power) profile,
a Wahoo test estimating performance across Neuromuscular Power, Anaerobic Capacity, Maximal Aer-
obic Power, and Functional Threshold Power (FTP). These metrics give a more complete picture of a
cyclist’s strengths and weaknesses. Integrating the fitness representation with 4DP estimation could
reduce the need for frequent testing and enable continuous updates of a rider’s profile based on reg-
ular training data. This would open the door for smarter, personalized training recommendations and
performance tracking.
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Conclusion

This thesis set out to address the increasingly pressing issue of erroneous sensor data in wearable
fitness technology, particularly within the cycling domain. Leveraging the rich but often noisy dataset
provided by Wahoo Fitness, we proposed a novel prediction-based framework for anomaly detection
that moves beyond traditional statistical outlier detection. Instead, we rooted anomaly detection in phys-
iological plausibility by modeling individual heart rate (HR) responses to exercise metrics like power,
cadence, gradient, altitude and speed.

A central contribution of this work was the use of user-specific embeddings and a hybrid ODE-based
model proposed by Nazaret et al. [6], enabling the system to predict what a plausible heart rate re-
sponse should look like for each individual athlete. This design allowed the model not only to detect
implausible heart rate values but also to distinguish between anomalies originating from heart rate sen-
sors and those stemming from corrupted input signals like power. Through dual-model architecture and
carefully tuned prediction error thresholds, we effectively isolated error sources, addressing a critical
real-world challenge that existing literature had largely neglected.

Our parameter-reduced version of Nazaret et al. [6] model consistently outperformed both the linear
regression baseline and the DBN-LSTM model, confirming that simpler yet physiologically grounded
models can excel when appropriately personalized. The experimental results validate the hypothesis.
Point anomalies, as expected, were the easiest to detect and reconstruct, benefiting from short temporal
disruptions and strong local correlation. Full-session anomalies posed greater challenges but were still
handled effectively through adjusted thresholding techniques. Subsequence anomalies remained the
hardest to reconstruct, specifically the heart rate lag.

While our approach improves detection and reconstruction accuracy, it is not without limitations. The
reliance on injected synthetic anomalies, while necessary to establish ground truth, limits the realism of
the evaluation. Moreover, real-world anomalies that slipped through preprocessing likely penalized the
model unfairly by inflating false positives. The lack of full contextual data availability, like sleep, stress
and hydration, also prevent us from getting near perfect results.

Nevertheless, the implications of this work are far-reaching. Beyond the immediate benefit of improving
Wahoo Fitness data quality, our method lays the groundwork for smarter wearable analytics. By embed-
ding an athlete’s physiological signature into the model, we move closer to continuous, individualized
monitoring systems capable of detecting early signs of overtraining, illness, or equipment malfunction.
Moreover, the reconstructed heart rate signals can serve as high-quality input for downstream tasks
such as training load estimation, adaptive workout generation, and long-term performance tracking—
functions that hinge on accurate physiological data.

44



45

Looking forward, several avenues for future research emerge. One is to expand the model input space
to include environmental variables or subjective user input, thereby increasing robustness against un-
measured context. Additionally, real-time implementation could transform this approach from a retro-
spective analysis tool into an active feedback mechanism. For a detailed reflection on the methodolog-
ical and practical lessons encountered during this project, see Appendix E: Lessons Learned.

In summary, this thesis has shown that by rethinking anomaly detection as a problem of physiological
plausibility, grounded in individualized models of heart rate dynamics, we can not only identify data
corruption more accurately but also correct it with meaningful replacements. This prediction-based
approach represents a significant step toward restoring trust in wearable fitness data and unlocking its
full potential for both athletes and the systems that support them.
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Data and Code Availability

The dataset used in this study is proprietary to Wahoo Fitness and cannot be publicly shared. Ac-
cess to the dataset was granted under confidentiality agreements. The dataset and code were stored
and processed on the High Performance Computing (HPC) cluster DAIC at TU Delft. In accordance
with DAIC standard policy, all backups were permanently deleted two weeks after completion of the
project. Throughout the project, access to the DAIC folder containing the data and code was restricted
exclusively to the author.

The code developed for this study could be made available upon request, subject to prior approval
from Wahoo Fitness due to proprietary dependencies. Additionally, all code and copies of the trained
models are available on Wahoo Fitness’ private GitHub repository, under access control.
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D
Wilcoxon Signed-Rank Test Results

Model A Model B Median Diff
(A - B) p-value Significant? Better

Model
Linear

Regression ODE 2.553 2.11e-122 Yes ODE

Linear
Regression

DBN
LSTM -1.300 1.25e-32 Yes Linear

Regression
Linear

Regression
ODE Parameter

Reduced 3.496 4.90e-275 Yes ODE Parameter
Reduced

ODE DBN
LSTM -3.936 3.07e-228 Yes ODE

ODE ODE Parameter
Reduced 0.711 5.68e-113 Yes ODE Parameter

Reduced
DBN
LSTM

ODE Parameter
Reduced 5.076 0.00 Yes ODE Parameter

Reduced

Table D.1: Statistical Comparison MAE from models using Wilcoxon Signed-Rank Test

Model A Model B Median Diff
(A - B) p-value Significant? Better

Model
Linear

Regression ODE -0.097 3.34e-145 Yes ODE

Linear
Regression

DBN
LSTM 0.366 0.00 Yes Linear

Regression
Linear

Regression
ODE Parameter

Reduced -0.157 0.00 Yes ODE Parameter
Reduced

ODE DBN
LSTM 0.457 0.00 Yes ODE

ODE ODE Parameter
Reduced -0.034 6.48e-227 Yes ODE Parameter

Reduced
DBN
LSTM

ODE Parameter
Reduced -0.542 0.00 Yes ODE Parameter

Reduced

Table D.2: Statistical Comparison Correlation from models using Wilcoxon Signed-Rank Test
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E
Lessons Learned

Throughout the thesis project, I encountered several technical, methodological, and personal lessons
that significantly shaped both the process and the outcome. I have decided to write them down to help
potential future master students in guiding them through their first big research project.

One of the most important lessons was the value of first understanding the problem space deeply
before jumping into implementation. That said, there is a tension here: trying things quickly, failing fast,
often leads to insights you would not get from just thinking. Balancing structured understanding with
experimental iteration proved to be crucial. Both approaches are valid. The challenge is knowing when
to switch between them. In hindsight, I jumped into implementation too quickly, wasting time that would
have been better spent understanding the problem first. A bit of upfront analysis would have made it
obvious that my initial approach didn’t align with the problem’s characteristics. That said, many of the
more valuable lessons I learned during this thesis came from building something, seeing it fail, and
then working backwards to understand why it failed.

Discussing the project with people who understood the domain very well, like my company supervisor
K. Hendrickx, helped guiding the research. They didn’t steer me in any particular direction. Instead,
simply talking about the project helped me uncover new insights I had not considered on my own. The
conversations themselves sparked ideas I wouldn’t have reached in isolation. Surprisingly, speaking
with those unfamiliar with the topic was also valuable, they asked basic but revealing questions that
exposed assumptions or weaknesses in my understanding. At times, these discussions snapped me
out of tunnel vision, challenging assumptions I had made or revealing parts of the thesis that were still
unclear or poorly explained.

Time spent trying to “rediscover the wheel” can often be saved by locating relevant literature early.
Learning how to quickly assess what is and is not useful was essential. Papers not only inform your
direction, they shape how you frame your own work. In the beginning I tried creating a reconstruction
framework myself, which took me a lot of time, while heart rate prediction models, like discussed in the
literature review, already existed.

Regular check-ins with supervisors helped prevent misalignment. Often you start to set your own
goals and requirements, which do not always align with the expectations from your supervisors and
university. More importantly take the time to understand their feedback, rather than just implementing
their feedback, try to understand were it is coming from and what the underlying lesson is. They have
a lot of experience in research, and aim to guide you on developing that skill set.

A thesis needs narrative clarity. It’s tempting to include technically interesting but tangential ideas. I
learned to push such content into a background or appendix section and keep the main storyline fo-
cused. The same applies to experiments. They should be designed around the central hypothesis,
not just as stand-alone experiments. Reading how other authors structured and justified their experi-
ments helped sharpen mine. How results are presented affects how they’re interpreted. Simply running
experiments isn’t enough, making their purpose, design, and meaning clear is just as important.
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An important realization was that the problem was more physiological in nature than it was a classic
anomaly detection task. Misframing it early led to a lot of effort in trying to make classical anomaly
detection work. Being willing to adjust the framing, based on data and insight was essential.

Working with the DAIC supercomputer demands careful planning. Environment setup was slow, and
run times on large datasets were long, making it especially frustrating when a bug appeared at the
end of a multi-day job, producing no usable results. Testing locally on a small dataset is essential, and
although I did this, some errors still slipped through due to differences between my local environment
and DAIC. To avoid this, always run an example on a small dataset directly on DAIC before scaling up.
When running large jobs, set checkpoints so you can recover from errors without starting over. The
DAIC beginner course was also extremely valuable and something I highly recommend. It teaches you
all the basics and how to estimate resource usage, which is critical. Finally, always build buffer time
into your planning, technical delays are inevitable.
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