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ABSTRACT

To perform a geotechnical reliable design, the spatial variability and the uncertainties related
to the adopted engineering geological model (EGM) must be taken into account. However, any
conceived EGM 1is characterized by uncertainties covering (1) the bias in the mathematical
expression that transforms the measured parameters into design ones; and (2) the uncertainty
associated with the variability of the soil and rock parameters in the prediction equations.
Hereinafter, the sequential Gaussian co-simulation method (SGCS) has been applied to
propagate the uncertainty in the calculation of the undrained shear resistance su from measured
CPTu profiles (i.e., qc, fs, u2) through a linear model of co-regionalization. The studied area is
located in the Po River alluvial plain (Bologna Province, Italy), where the mixture of silts, sands,
and clays gets thicknesses of hundreds of meters. These heterogeneous deposits have been
mechanically characterized through a 3D EGM to be used in reliability-based designing.

INTRODUCTION

Any Engineering Geological Model, EGM, used to design according to reliability-based
design rules, must take into account the main sources of uncertainties. The need of assessing
EGM spatial variability and uncertainties has been confirmed in the current revision process of
the Eurocodes (Lesny et al., 2017).

In particular, dealing with uncertainties, the following two sources can be pointed out: (1) the
bias in the mathematical expression that transforms the measured parameters into design ones
and (2) the uncertainty associated with the variability of the soil and rock parameters in the
prediction equations. Hence, to quantify the previous two sources of uncertainties, Lee and Chen
(2009) listed five methods to carry out the uncertainty propagation (UP) from the measured to
the design variables: 1) the simulation; 2) the local expansion; 3) the most probable point; 4) the
functional expansion; 5) the numerical integration.

In this study, the first method has been used through the Sequential Gaussian Co-Simulation
method (SGCS). The uncertainty in the calculation of the undrained shear strength su from the
measured CPTu profiles (i.e., qc, fs, u2) has been assessed by means of the Linear Model of Co-
regionalization. This latter was fitted to the matrix of experimental direct and cross-variograms
of the input data, and one thousand realizations that honor the experimental data were provided.

These realizations enabled to calculate the distributions of su values. Thus, the mean and the
standard deviation maps of su can be drawn. The site where the present study has been-applied is
located in the East part of the Bologna district (Po plain, Italy).
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THE CASE STUDY OF THE PO RIVER ALLUVIAL PLAIN

The selected study area (Figure 1) is a 900-square-kilometer-wide portion of the eastern
Bologna district, located in the southern part of the Po plain (Italy). This latter is a tectonic
depression, filled by hundreds-of-meter-thick continental and/or marine-transitional deposits
(Amorosi and Farina 1995).
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Figure 1. Map showing the location and main geological features of the study area as well
as the CPTus’ distribution within the selected domain. In legend: 1) alluvial deposits;
2) bedrock; 3) urban areas; 4) geostatistical domain; 5) CPTus’ locations.

Within the study area, there are alluvial deposits made up of undifferentiated fine silty-sandy
deposits (i.e. flooding plain), characterized by coarser (i.e. alluvial fans and paleo-channels) and
finer (i.e. lacustrine lenses) geological bodies (ISPRA 2009a, 2009b). From a lithological point
of view, these inclusions consist of sandy, gravelly, and silty-clayey soils.

On one hand, sandy-gravelly alluvial fans are prevalent nearby the Apennine reliefs, in the
south; on the other hand, sandy paleo-channels become predominant moving northward.
Conversely, fine lacustrine lenses can be found all over the study area. It is worth pointing out
that all the types of inclusion have shape, size, and depth that can be predicted through direct
investigations, within the whole subsoil volume.

Dataset

The dataset used in this research consists of 182 CPTus performed across a 900-square-
kilometer-wide area and collected in a comprehensive database by the Regional Office for
Territorial Protection and  Development of  the Emilia-Romagna region
(http://geoportale.regione.emilia-romagna.it/it), subsequently made available by Di Curzio and
Vessia (2021).
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[t is worth pointing out that the distances among CPTu profiles vary between 500 m and 2
km. Although these horizontal distances might not allow recognizing of the typical horizontal
scale of fluctuation within a single geological body, this latter is not the objective of the
Geostatistical methods because they are data-driven techniques. Hence, the spatial variability
structure of the whole subsoil model, instead, is here recognized through the experimental
variogram.

THE SEQUENTIAL GAUSSIAN CO-SIMULATION

To get a deeper insight into the propagation of uncertainty while using transformation
equations, the Sequential Gaussian Co-Simulation (SGCS) method has been selected (Gooverts,
1997; Webster and Oliver, 2007; Chilés and Delfiner, 2012).

It was derived from the general Sequential Gaussian Simulation approach (SGS). This
advanced geostatistical technique is one of the most straightforward and used among Conditional
Simulation methods (Delbari et al., 2009; Emery and Pelaez, 2011; Nussbaumer et al., 2018),
which are the simulation approaches that honor measured data. Unlike kriging methods,
stochastic simulation techniques are devoted to assessing spatial uncertainty (Castrignano and
Buttafuoco, 2004).

Furthermore, since these methods can preserve the spatial variability, which is instead
smoothed in kriging methods, stochastic simulation approaches can be also used to obtain
optimized maps of estimates (ASTM International, 2018).

SGS is based on the multi-gaussian assumption, that is the conditionally simulated values
(zs(xg)) at each node of the grid is obtained conditioning results with the Kriging estimator
(z*(xq)), as follows:

zc(Xo) = 2" (Xo) + [s"(Xo) — z5(Xo)] (1

where, s*(Xg) is the simulated field calculated with the same variogram model as that of
experimental data, while zg(Xq) is the kriging estimates obtained by considering the simulated
values at the sampling points. In SGS, this process is repeated several times by random seeds,
which correspond to different paths through the data. As a result, several equiprobable
representations of the spatial distribution of the considered variable can be obtained, namely,
realizations, providing a statistical distribution for each node of the grid, instead of an estimated
value and the corresponding error (i.e., as in kriging methods).

As in this work we dealt with a multivariate case, the Kriging estimator in Eq. 1 was replaced
with the Co-Kriging one. In fact, the method name moves from SGS to SGCS. In this case, the
simulation relies on the fitting of a Linear Model of Coregionalization (LMC) of the considered
variables (i.e., qc, fs and u2), below represented in matrix notation (Wackernagel, 2003;
Castrignano et al., 2015; Di Curzio et al., 2019, Vessia et al., 2020a):

r(h) = 3,5, B'g"(h) @)

where, BY is the Coregionalization matrix of the LMC coefficients, which is symmetric and
positive, I'(h) is the n x n matrix with direct variograms (i.e., diagonal elements) and cross-

© ASCE
261



Geo-Risk 2023 GSP 347

variogram (i.e., non-diagonal elements) modeled as a linear combination of Ng basic variogram
functions, h is the lag, g"(h) is the spatial structure, and u is the spatial scale.

It is worth pointing out that, since a Gaussian distribution is required, non-Gaussian data
transformation is needed. In this study, raw measurements of qc, fs, and u2 have been transformed
through the Gaussian Anamorphosis function (Chiles and Delfiner, 2012). This function converts
a Gaussian-distributed variable (Y) into a new variable (Z = ®(Y)), whatever its statistical
distribution, by fitting a Hermite polynomial expansion Hi(Y):

o (Y) = X WiH;(Y) (3)

where, W¥; are the coefficients of the Hermite polynomials. Once the Gaussian Anamorphosis
function 1s defined, the transformation from a non-Gaussian variable into a Gaussian
standardized one (i.e., the one required to use SGCS) is performed by inverting the function, as
follows:

Y = &-1(Z) 4)

The selected estimation domain has a cell size equal to 500 m x 500 m x 0.5 m. All the
geostatistical analyses have been performed using Isatis 2018, whose results have then been
visualized through Isatis.neo (www.geovariances.com/ern/software/isatis-neo-geostatistics-
software/).

UNDRAINED SHEAR RESISTANCE FROM CPTU PROFILES

The commonest expression that is used to calculate the undrained shear resistance su from
CPTs follows (Lunne et al., 1997):

_ Qt—0Oy
Su = Nkt ()

where q: is the total cone tip resistance, ov the vertical stress at each depth and N is the cone
factor varying from 10 to 18 with 14 as an average.

[t is worth pointing out that Eq. 5 is valid for fine grained materials; thus, uncertainty
propagation for s, has been investigated only where the soil behaviour type index Isetn values
are greater than 2.6 (Figure 2 and 3) (Robertson, 2009).

RESULTS AND DISCUSSION

1000 three-dimensional realizations of raw measurements have been obtained through SGCS
considering the directional LMC (anisotropic) described in detail in Table 1, which is a
combination of scale-dependent variabilities: one isotropic structure on the horizontal plane and
one vertical structure. The large horizontal gap among CPTu profiles does not allow us to infer
the ranges at a smaller size than 500 m. In Table 1, the nested variogram consisting of double
spherical functions shows that at distances larger than 500 m there is still a spatial correlation
among data.

Conversely, in the vertical direction, the accurate profile description through the CPTu
measurements enables us to describe accurately the vertical variability structure through four
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nested variogram functions. The k-Bessel function simulates the vertical trend observed along all
the CPTu profiles. It is assumed that the stationarity is reached at a vertical scale larger than the
model dimension.

Table 1. Features of the Linear Model of Coregionalization related to the Gaussian
transformed variables

Variables Horizontal LMC structures Range (m)

£ ou Spherical 1200
et Spherical 12000
Variables Vertical LMC structures Range (m)
Spherical 20
Spherical 6
gde, gfs, gu2 Spherical 12
k-Bessel > 100
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Figure 2. Optimized 3D models of q, fs, uz, and Isgrn, represented by the mean values of the
1000 realizations.

In turn, these realizations have been used as input variables of Eq. 5, providing the same
number of realizations of the selected output variable (i.e., s,).

Figures 3 and 4 show the optimized 3D models (i.e., mean values of 1000 realizations) of qc,
fs, and u2 (including Isstn, used as a filtering variable in Figure 4), and su, respectively. It appears
clear that the considered subsoil is mainly characterized by fine-grained alluvial deposits, with
coarser sandy gravelly inclusions (i.e., buried alluvial fans, and paleo-channels). A< a matter of
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fact, qc, fs, and u2 values are generally very low for fine lithotypes, while increase considerably in
the case of coarse deposits.
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Figure 3. Optimized 3D models of s, related to Isgrn values greater than 2.60 (i.e., fine
deposits). The black circle indicates the test cell taken into account for uncertainty
propagation (Figure 4 and Table 2).

Within lithological classes described by Isstn values larger than 2.60, su varies considerably
as well, probably because of both the different fine deposits present in the study area and the
confining stress.

The histograms in Figure 4 as well as the descriptive statistics in Table 2 depict the
propagation of uncertainty when calculating 1000 realizations of su from the same number of
realizations of input variables (i.e., qc, fs, and u2) obtained through the SGCS. Even though all the
statistical distributions are characterized by very large outliers, the values of the majority of the
realizations are slightly variable, both for the input and the output variables.

This evidence suggests that the uncertainty quantified for qc, fs, and u2 does not propagate
generating a larger variability of su, perhaps due to the use of a multivariate variability model
(i.e., LMC), which allows reducing the uncertainty in the estimation process.

Table 2. Descriptive statistics of equiprobable values of input variables (i.e., qc, fs, and uz)
with the output ones (i.e., su), at the test cell T1, shown in Figure 3.

Variable Mean Median Min Max I quartile III quartile St.D. Skewness Kurtosis

qc 2433 1.945 0.540 22.490 1.560 2.400 2286 5.111 30.962
fs 0.097 0.090 0.010 0.460  0.000 0.120 0.049 1393 4.032
w 0.187 0.120 0.000 0.940 0.060 0.270 0.171  1.438 1.848
Su 0.155 0.120 0.030 1.580  0.090 0.150 0.162 5.134 31.200
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Figure 4. Histograms comparing the statistical distribution of equiprobable values of input
variables (i.e., qc, fs, and uz) with the output ones (i.e., su), at the test cell, shown in Figure 3.

CONCLUSION

In the present study, the uncertainty propagation has been accomplished starting from CPTu
profiles of data (mainly qc) to derive the design variable suby Eq. 5. To this end, the Sequential
Gaussian Co-Simulation has been applied by fitting a Linear Model of Coregionalization. In
detail, 1000 realizations of qc, fs, and u2, obtained through SGCS, have been used to calculate the
same number of realizations of su, providing an optimized 3D model of lithotypes” distribution as
well as a quantification of the uncertainty associated with the transformation expression.

The same methodological approach can be used to quantitatively assess the uncertainty
propagation of other crucial design variables, which are generally obtained using empirical
equations and raw measured data. This study shows how to calculate a 3D data model with its
uncertainty of a large subsoil volume to be used as a support of the infrastructure designing and
urban planning development.
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