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ABSTRACT 

To perform a geotechnical reliable design, the spatial variability and the uncertainties related 
to the adopted engineering geological model (EGM) must be taken into account. However, any 
conceived EGM is characterized by uncertainties covering (1) the bias in the mathematical 
expression that transforms the measured parameters into design ones; and (2) the uncertainty 
associated with the variability of the soil and rock parameters in the prediction equations. 
Hereinafter, the sequential Gaussian co-simulation method (SGCS) has been applied to 
propagate the uncertainty in the calculation of the undrained shear resistance Su from measured 
CPTu profiles (i.e., qc, fs, u2) through a linear model of co-regionalization. The studied area is 
located in the Po River alluvial plain (Bologna Province, Italy), where the mixture of silts, sands, 
and clays gets thicknesses of hundreds of meters. These heterogeneous deposits have been 
mechanically characterized through a 3D EGM to be used in reliability-based designing. 

INTRODUCTION 

Any Engineering Geological Model, EGM, used to design according to reliability-based 
design rules, must take into account the main sources of uncertainties. The need of assessing 
EGM spatial variability and uncertainties has been confirmed in the current revision process of 
the Eurocodes (Lesny et al., 2017). 

In particular, dealing with uncertainties, the following two sources can be pointed out (1) the 
bias in the mathematical expression that transforms the measured parameters into design ones 
and (2) the uncertainty associated with the variability of the soil and rock parameters in the 
prediction equations. Hence, to quantify the previous two sources of uncertainties, Lee and Chen 

(2009) listed five methods to carry out the uncertainty propagation (UP) from the measured to 
the design variables: 1) the simulation; 2) the local expansion; 3) the most probable point; 4) the 

functional expansion; 5) the numerical integration. 
In this study, the first method has been used through the Sequential Gaussian Co-Simulation 

method (SGCS). The uncertainty in the calculation of the undrained shear strength Su from the 
measured CPTu profiles (i.e., qc, fs, u2) has been assessed by means of the Linear Model of Co­

regionalization. This latter was fitted to the matrix of experimental direct and cross-variograms 
of the input data, and one thousand realizations that honor the experimental data were provided. 

These realizations enabled to calculate the distributions of Su values. Thus, the mean and the 

standard deviation maps of su can be drawn. The site where the present study has been· applied is 

located in the East part of the Bologna district (Po plain, Italy). 
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THE CASE STUDY OF THE PO RIVER ALLUVIAL PLAIN 

The selected study area (Figure 1) is a 900-square-kilometer-wide portion of the eastern 
Bologna district, located in the southern part of the Po plain (Italy). This latter is a tectonic 
depression, filled by hundreds-of-meter-thick continental and/or marine-transitional deposits 
(Amorosi and Farina 1995) . 
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Figure 1. Map showing the location and main geological features of the study area as well 
as the CPTus' distribution within the selected domain. In legend: 1) alluvial deposits; 

2) bedrock; 3) urban areas; 4) geostatistical domain; 5) CPTus' locations.

Within the study area, there are alluvial deposits made up of undifferentiated fine silty-sandy 
deposits (i.e. flooding plain), characterized by coarser (i.e. alluvial fans and paleo-channels) and 
finer (i.e. lacustrine lenses) geological bodies (ISPRA 2009a, 2009b ). From a lithological point 
of view, these inclusions consist of sandy, gravelly, and silty-clayey soils. 

On one hand, sandy-gravelly alluvial fans are prevalent nearby the Apennine reliefs, in the 
south; on the other hand, sandy paleo-channels become predominant moving northward. 
Conversely, fine lacustrine lenses can be found all over the study area. It is worth pointing out 
that all the types of inclusion have shape, size, and depth that can be predicted through direct 
investigations, within the whole subsoil volume. 

Dataset 

The dataset used in this research consists of 182 CPTus performed across a 900-square­
kilometer-wide area and collected in a comprehensive database by the Regiongl Office for 
Territorial Proteci:ion and Development of the Emilia-Romagna region 
(http://geoportale.regione.emilia-romagna.it/it), subsequently made available by Di Curzio and 
Vessia (2021 ). 
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It is worth pointing out that the distances among CPTu profiles vary between 500 m and 2 
km. Although these horizontal distances might not allow recognizing of the typical horizontal 
scale of fluctuation within a single geological body, this latter is not the objective of the 
Geostatistical methods because they are data-driven techniques. Hence, the spatial variability 
structure of the whole subsoil model, instead, is here recognized through the experimental 
vanogram. 

THE SEQUENTIAL GAUSSIAN CO-SIMULATION 

To get a deeper insight into the propagation of uncertainty while using transformation 
equations, the Sequential Gaussian Co-Simulation (SOCS) method has been selected (Gooverts, 
1997; Webster and Oliver, 2007; Chiles and Delfiner, 2012). 

It was derived from the general Sequential Gaussian Simulation approach (SGS). This 
advanced geostatistical technique is one of the most straightforward and used among Conditional 
Simulation methods (Delbari et al., 2009; Emery and Pelaez, 2011; Nussbaumer et al., 2018), 
which are the simulation approaches that honor measured data. Unlike kriging methods, 
stochastic simulation techniques are devoted to assessing spatial uncertainty (Castrignano and 
Buttafuoco, 2004). 

Furthermore, since these methods can preserve the spatial variability, which is instead 
smoothed in kriging methods, stochastic simulation approaches can be also used to obtain 
optimized maps of estimates (ASTM International, 2018). 

SGS is based on the multi-gaussian assumption, that is the conditionally simulated values 
(z�(x0 )) at each node of the grid is obtained conditioning results with the Kriging estimator 
(z* (x0 )), as follows: 

(1) 

where, s* (x0) is the simulated field calculated with the same variogram model as that of 
experimental data, while z; (x0 ) is the kriging estimates obtained by considering the simulated 
values at the sampling points. In SGS, this process is repeated several times by random seeds, 
which correspond to different paths through the data. As a result, several equiprobable 
representations of the spatial distribution of the considered variable can be obtained, namely, 
realizations, providing a statistical distribution for each node of the grid, instead of an estimated 
value and the corresponding error (i.e., as in kriging methods). 

As in this work we dealt with a multivariate case, the Kriging estimator in Eq. 1 was replaced 
with the Co-Kriging one. In fact, the method name moves from SGS to SOCS. In this case, the 
simulation relies on the fitting of a Linear Model of Coregionalization (LMC) of the considered 
variables (i.e., qc, fs and u2), below represented in matrix notation (Wackemagel, 2003; 
Castrignano et al., 2015; Di Curzio et al., 2019, Vessia et al., 2020a): 

(2) 

where, B u is the Coregionalization matrix of the LMC coefficients, which is symmetric and 
positive, r (h) is the n x n matrix with direct variograms (i.e., diagonal elements) �nd cross-
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variogram (i.e., non-diagonal elements) modeled as a linear combination of N s basic variogram 
functions, h is the lag, gu(h) is the spatial structure, and u is the spatial scale. 

It is worth pointing out that, since a Gaussian distribution is required, non-Gaussian data 
transformation is needed. In this study, raw measurements of qc, fs, and u2 have been transformed 
through the Gaussian Anamorphosis function (Chiles and Delfiner, 2012). This function converts 
a Gaussian-distributed variable (Y) into a new variable (Z = <t>(Y)), whatever its statistical 
distribution, by fitting a Hermite polynomial expansion Hi(Y): 

(3) 

where, lJli are the coefficients of the Hermite polynomials. Once the Gaussian Anamorphosis 
function is defined, the transformation from a non-Gaussian variable into a Gaussian 
standardized one (i.e., the one required to use SGCS) is performed by inverting the function, as 
follows: 

y = <1>-1cz) (4) 

The selected estimation domain has a cell size equal to 500 m x 500 m x 0.5 m. All the 
geostatistical analyses have been performed using Isatis 2018, whose results have then been 
visualized through Isatis.neo (www.geovariances.com/ en/ software/isatis-neo-geostatistics­
software/). 

UNDRAINED SHEAR RESISTANCE FROM CPTU PROFILES 

The commonest expression that is used to calculate the undrained shear resistance Su from 
CPTs follows (Lunne et al., 1997): 

(5) 

where qt is the total cone tip resistance, crv the vertical stress at each depth and N1ct is the cone 
factor varying from 10 to 18 with 14 as an average. 

It is worth pointing out that Eq. 5 is valid for fine grained materials; thus, uncertainty 
propagation for Su has been investigated only where the soil behaviour type index IssTn values 
are greater than 2.6 (Figure 2 and 3) (Robertson, 2009). 

RESULTS AND DISCUSSION 

1000 three-dimensional realizations of raw measurements have been obtained through SGCS 
considering the directional LMC (anisotropic) described in detail in Table 1, which is a 
combination of scale-dependent variabilities: one isotropic structure on the horizontal plane and 
one vertical structure. The large horizontal gap among CPTu profiles does not allow us to infer 
the ranges at a smaller size than 500 m. In Table 1, the nested variogram consisting of double 
spherical functions shows that at distances larger than 500 m there is still a spatial correlation 
among data. 

Conversely, in the vertical direction, the accurate profile description through the CPTu 
measurements enables us to describe accurately the vertical variability structure through four 

©ASCE 

262 



Geo-Risk 2023 GSP 347 

nested variogram functions. The k-Bessel function simulates the vertical trend observed along all 
the CPTu profiles. It is assumed that the stationarity is reached at a vertical scale larger than the 
model dimension. 

Table 1. Features of the Linear Model of Coregionalization related to the Gaussian 
transformed variables 
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Figure 2. Optimized 3D models of Qc, fs, u2, and lsBTn, represented by the mean values of the 
1000 realizations. 

In tum, these realizations have been used as input variables of Eq. 5, providing the same 
number of realizations of the selected output variable (i.e., Su). 

Figures 3 and 4 show the optimized 3D models (i.e., mean values of 1000 realizations) of qc, 
fs, and u2 (including IssTn, used as a filtering variable in Figure 4), and Su, respectively. It appears 
clear that the considered subsoil is mainly characterized by fine-grained alluvial deposits, with 
coarser sandy gravelly inclusions (i.e., buried alluvial fans, and paleo-channels). A� a matter of 
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fact, qc, fs, and u2 values are generally very low for fine lithotypes, while increase considerably in 
the case of coarse deposits. 

X(m) 
70.SO(J() 

'llOOt)o 7150()() 

Figure 3. Optimized 3D models of Su related to lsoTn values greater than 2.60 (i.e., fine 
deposits). The black circle indicates the test cell taken into account for uncertainty 

propagation (Figure 4 and Table 2). 

Within lithological classes described by IssTn values larger than 2.60, Su varies considerably 
as well, probably because of both the different fine deposits present in the study area and the 
confining stress. 

The histograms in Figure 4 as well as the descriptive statistics in Table 2 depict the 
propagation of uncertainty when calculating 1000 realizations of Su from the same number of 
realizations of input variables (i.e., qc, fs, and u2) obtained through the SGCS. Even though all the 
statistical distributions are characterized by very large outliers, the values of the majority of the 
realizations are slightly variable, both for the input and the output variables. 

This evidence suggests that the uncertainty quantified for qc, fs, and u2 does not propagate 
generating a larger variability of Su, perhaps due to the use of a multivariate variability model 
(i.e., LMC), which allows reducing the uncertainty in the estimation process. 

©ASCE 

Table 2. Descriptive statistics of equiprobable values of input variables (i.e., qc, fs, and u2) 
with the output ones (i.e., Su), at the test cell Tl, shown in Figure 3. 

Variable Mean Median Min Max I quartile III quartile St.D. Skewness Kurtosis 

qc 2.433 1.945 0.540 22.490 1.560 2.400 2.286 5.111 30.962 
fs 0.097 0.090 0.010 0.460 0.060 0.120 0.049 1.393 

, 
4.032 

U2 0.187 0.120 0.000 0.940 0.060 0.270 0.171 1.438 1.848 
Su 0.155 0.120 0.030 1.580 0.090 0.150 0.162 5.134 31.200 
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Figure 4. Histograms comparing the statistical distribution of equiprobable values of input 
variables (i.e., qc, fs, and u2) with the output ones (i.e., Su), at the test cell, shown in Figure 3. 

CONCLUSION 

In the present study, the uncertainty propagation has been accomplished starting from CPTu 
profiles of data (mainly qc) to derive the design variable Su by Eq. 5. To this end, the Sequential 
Gaussian Co-Simulation has been applied by fitting a Linear Mod 1 of Coregionalization. In 
detail, 1000 realizations of qc, £, and u2, obtained through SGCS, have been used to calculate the 
same number of realizations of Su, providing an optimized 3D model of lithotypes distribution as 
well as a quantificatiop of the uncertainty associated with the transformation expression. 

The same methodological approach can be used to quantitatively assess the uncertainty 
propagation of other crucial design variables, which are generally obtained using empirical 
equations and raw measured data. This study shows how to calculate a 3D data model with its 
uncertainty of a large subsoil volume to be used as a support of the infrastructure designing and 
urban planning development. 
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