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Abstract

Wind energy is one of the cleanest methods of producing electricity. It plays a major role in the transition
towards green energy. It is estimated that the installed capacity of wind energy will cover more than 6% of total
global electricity demand by the end of 2019. As the demand grows the requirement for bigger wind turbine also
grows. Each year larger wind turbine blades are being manufactured to satisfy the growing demand, resulting
in high manufacturing cost and operation and maintenance cost. So, an effective and proactive monitoring
system for the wind turbine blades becomes necessary due to the large downtime associated with failure and
high replacement cost.

The main objective of this thesis is to use smeared crack modelling and integrating it with FEM tools (ANSYS
18.2) to identify the damage in the wind turbine blade. First, spar cap - shear web assembly is modelled as
simple "I" beam in ANSYS. The dimension of the blade is measured from the "NedWind 40 turbine" provided
by LM Wind Power. The structure has been modelled using composite materials. The spar cap fibres are laid
at 0 ◦and the fibres of face sheet are laid at ± 45 ◦. One end of the structure is fixed to simulate the actual
working conditions. Similarly, the material property of all parts was chosen to represent the actual wind turbine
blade. To incorporated damping into the structure, the loss factor obtained from experiment is used. Damage
is introduced into the structure in the form of microscopic damping into the material property. The damage
modelling is done for different severity at different locations of the blade.

The concept that the damping of the structure will increase when it is damaged is used to identify the damage.
There will be a lag in the phase angle of the damaged elements compared to the phase angle of the undamaged
elements. Change in phase angle of each element is used to localize the damaged elements.

From the results shown in chapter 6, it is evident that this method is more suitable for identifying defects
in the fixed end and in the midsection. Since, the kinetic energy transferred by the elements near the tail end
is very low, that the change in phase angle is very less to identify the defected elements in these areas. Also,
1st flapwise and edgewise bending frequencies are suitable for identifying the defects near the fixed end and 2nd

flapwise bending frequency is suitable for identifying the defect near the mid area.
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1 Introduction

In this chapter, the background of the thesis is presented along with the introduction of wind energy. A
brief note on failure in wind turbines and the causes for failure of different components of a wind turbine are
discussed. Also, the methods and techniques used for monitoring the wind turbine blades and research objective
is explained.

1.1 Wind energy background
Wind energy is one of the cleanest methods of producing electricity. It plays a major role in the transition
towards green energy. By the end of 2019, total wind energy capacity of around 650.8 GW has been installed,
which covers more than 6% of total global electricity demand [10]. Each year larger wind turbine blades are
being manufactured to satisfy the growing demand, resulting in high manufacturing cost and operation and
maintenance cost. On average around $2.6 to $4 million USD is spent for manufacturing a wind turbine
[25] and around 45 million Euro to 47 million Euro is spent on O&M of onshore and offshore wind turbines
respectively [52]. The largest wind turbine built has a hub height of 260 m and the blade length of about 110 m
in Rotterdam[50]. Energy from wind is extracted using wind turbines, but the blades tend to break because of
the forces that are applied to it. With these long blade, failure in wind turbine blade will result in huge revenue
loss and high maintenance cost. So, an effective and proactive monitoring system for the wind turbine blades
becomes necessary due to the large downtime associated with failure and high replacement cost.

1.2 Failure in wind turbine
Yearly around 48 million Euro is being spent by Siemens for inspection and replacing the defected parts in the
onshore wind turbine. Based on the inspections done by Siemens the most common cause for wind turbine fail-
ures are blade design issues,bearing and gearbox issue, mechanical breakdown, axial stress, foundation damage,
extreme weather, icing, lightning strike and accumulation of dirt, bugs and other debris [25]. The damage to
the blade tip and yaw bearing is the most frequent cause of damage for a typical wind turbine system [16]. The
main reasons for wind turbine blade failures are lightning strikes, foreign object damage, poor design, material
failure, power regulator failure, extreme load buckling and human errors. Figure 1.1 shows the major causes for
wind turbine blade failure

Figure 1.1: Main causes for wind turbine blade failure
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The possible defects that can occur in wind turbine blades are surface damage such as erosion, delamination,
cracks and structural discontinuities. Figure 1.3 shows the defect percent of different components in a wind
turbine. The failure rate of the wind turbine blade is around 7%.

Figure 1.2: Defect percent of components in a wind turbine

Defects that can occur in a wind turbine blade is classified into 7 types and are shown in table 1.1 [16].

Table 1.1: Types of damage in a wind turbine blade

Type 1
Damage formation and growth in the adhesive layer joining skin and main spar flanges

(skin/adhesive debonding and/or main spar/adhesive layer debonding)

Type 2
Damage formation and growth in the adhesive layer joining the up- and downwind skins

along leading and/or trailing edges (adhesive joint failure between skins)

Type 3
Damage formation and growth at the interface between face and core in sandwich panels in

skins and main spar web (sandwich panel face/core debonding)

Type 4
Internal damage formation and growth in laminates in skin and/or main spar flanges,

under a tensile or compression load (delamination driven by a tensional or a buckling load)

Type 5
Splitting and fracture of separate fibres in laminates of the skin and main spar

(fibre failure in tension; laminate failure in compression)

Type 6
Buckling of the skin due to damage formation and growth in the bond between skin main spar
under compressive load (skin/adhesive debonding induced by buckling, a specific type 1 case)

Type 7
Formation and growth of cracks in the gel-coat; debonding of the gel-coat from the skin

(gel-coat cracking and gel-coat/skin debonding)
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Figure 1.3: Types of damage in a wind turbine blade

The locations at 30–35% and 70% along the length of the blade from the root section and upper spar cap (or)
flange of the spar are identified to be the more common section where damage occurs in a typical wind turbine
blade. One of the root cause for damages in these sections is crack initiation and propagation [16].

1.3 Maintenance of wind turbine blade
The wind turbine blades are made of glass-fibre, plastic foam and polymer adhesive. These materials are non-
homogeneous and isotropic in both mechanical and electrical parameters. Regular inspection is necessary for
detection of defects at early stages to prevent critical damages or even complete failure of a wind turbine. Tra-
ditionally, industrial climbers have been used to visually inspect the rotor blades on turbines. But the workers
face many challenges and safety issues. So many industries follow Non-Destructive Testing (NDT) for inspecting
the onshore and offshore wind turbines. The commonly used NDT techniques are infra-red thermography, ul-
trasonic testing, digital radiography, acoustic emission, tap testing, vibration analysis, microwave and terahertz
techniques [13].
Vibration analysis is one of the most commonly used non-destructive technology for condition monitoring of
wind turbine blades. Many vibration analysis techniques and methods have been developed by researches for
identifying defects in a wind turbine blades effectively and efficiently. Most of the techniques are suitable only
for offline condition monitoring [46]. The main concept behind the vibration analysis is that presence of a crack
in a structure modifies the modal parameters such as natural frequencies, damping and mode shape of that
structure. The change in the modal parameter can be used inversely to predict the crack parameters like crack
depth and crack location.

1.3.1 Vibration analysis methodology

Vibration analysis has four principles. Each principle gives specific information on the working conditions and
features of the vibrating parts[29]

1. Time Domain : Vibration signal is considered as a waveform. Useful for identifying the vibration issues
in machines [29].

2. Frequency Domain : The waveform is subjected to spectrum analysis and the end result is viewed as
frequency vs amplitude. Useful for in-depth analysis of vibration issues in machines [29].

3. Joint Domain : Gabor-Wigner-Wavelet technique (GWWT) is used to calculate more than one spectrum
from a single vibrating signal. This technique is useful in calculating variations of the Fast Fourier
Transform and Short-Time Fourier Transform (STFT) [29].

4. Modal Analysis : measured frequency response functions are incorporated into a computer model. The
computer model can be used to display all the different vibration modes. Mass or stiffness is adjusted to
see the effects [29].



1.4 Research Scope 4

In addition to these four principles, there are many algorithms used to determine the different aspect of vibration
analysis.

1. Fast Fourier Transform (FFT): Fast Fourier Transform is the most commonly used algorithm. FFT
converts the signal from the time domain into the frequency domain and is used to calculate a spectrum
from a time waveform [29].

2. Power spectral density (PSD): Power spectral density is calculated by multiplying the amplitude from
FFT by its different forms to normalize it with the frequency bin width [29].

Using these algorithms many analysis such as phase measurement, order analysis, envelope analysis, resonance
analysis are carried out. Defect detection in a wind turbine blade is based on the concept of resonance analysis.
Resonance analysis identifies all the natural vibrations and frequencies of a structure. The presence of resonance
means that the structure has high vibration[? ].

1.3.2 Categories of vibration measurement

Several categories of vibration measurement is listed below

• Spectral analysis of vibration

• Discrete frequency monitoring

• Shock pulse monitoring

• Kurtosis measurement

• Signal averaging

• Cepstrum analysis

1.4 Research Scope
Currently, discrete crack modelling concepts are being used in Finite Element Modelling (FEM) tools to identify
defects in a wind turbine blade. However, discrete crack modelling changes the topology of the material in the
place of the defect and vicinity of the defect while modelling the crack growth. Discrete modelling has two
disadvantages

1. Growth of small cracks is not captured in the early stages.

2. It required fine and dynamic mesh, which consumes a lot of time to run the model.

The main objective of this thesis is to use smeared crack modelling and integrating it with FEM tools to identify
the damage in the wind turbine blade. Different scenarios are created by changing the severity and location
of the damage in the FEM model. For each scenario, the mode shapes and natural frequencies are calculated.
These characteristics are used as a damage index to identify and localize the defect in a wind turbine blade.

1.5 Report Layout
This report follows the following layout.

Chapter 2 gives brief background information regarding causes for defects of a wind turbine blade. Also,
different crack identification techniques and methods that are being used currently to detect the crack in a wind
turbine blade.

Chapter 3 has details about constitutive equation of linear viscoelastic material, finite element vibration
equation of linear viscoelastic material, time-domain equation of motion, laplace form of the equation of mo-
tion, eigenvalue and eigenvector of vibration equation, eigenvalue and eigenvector of non-proportional damping
and damping matrix approximation.

Chapter 4 explains the modelling of spar cap- shear web assembly and different defect modelling scenar-
ios.
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Chapter 5 explains the guideline followed to identify and localize the damage for different damage scenar-
ios.

Chapter 6 explains the important results obtained from the thesis. Also, few important observations that
were observed during the project is discussed.

Chapter 7 contains results of sensitivity analysis

Chapter 8 concludes the thesis and few recommendations for future work are discussed.





2 Background

In this chapter, the background information required to understand this thesis is discussed. Also, literature
about the previous work regarding the damage identification in wind turbine based on the change in damping
properties is explained. Finally, the research methodology is briefly explained.

2.1 Crack identification using vibration analysis
Vibration analysis is used for identifying defects in a mechanical structures. Lot of techniques and methods are
being used in crack size and location detection in structures.

2.1.1 Vibration analysis techniques

There are several techniques available in vibration analysis. They are classified depending on the level of analysis
and type of risks. A brief explanation of different techniques is given below.

• Vibration Surveying and Monitoring: A vibration sensor is installed on multiple locations on the test
specimen by the inspectors to acquire vibration data. The acquired data is examined to get information
about the severity of the problem.

• Experimental Modal Analysis (EMA): In experimental modal analysis, various load which represents
the actual operating condition is applied to the structure, and the resulting signal is acquired. This
technique provides a theoretical solution that can be used to calibrate simulated models and is mostly
applied when the structure is not operating [26].

• Operational Modal Analysis (OMA): In operational modal analysis, the vibration sensors are in-
stalled on the machines or structures to acquire the vibration nodes and natural frequencies. Compared
to EMA, OMA is performed on structures which are still in service and when background noise is difficult
to distinguish from the vibration signal [26].

• Computer Simulations (CS): is used to simulate real-world situations and various operating conditions.
Two types of computer simulation are

– Finite Element Analysis (FEA)

– Computational Fluid Dynamics (CFD)

2.1.2 Crack analysis in a cantilever beam using modal parameters

Initially, vibration analysis methods were used for detection of crack size and location in small structures like
a cantilever beam to check its accuracy and effectiveness. Later, these techniques were scaled up for big and
complicated structures like wind turbine blades.

Dinesth et al., 2017 [18] uses finite element analysis of cantilever beam using ANSYS 14.5. First three natural
frequencies of transverse mode are extracted from the ANSYS FEA model which used to detect a crack in a
cantilever shaft beam.

Agarwalla et al., 2013 [2] analysed the effect of an open crack on the modal parameters of the cantilever
beam subjected to free vibration and compared the simulated ie., finite element method (FEM) results with the
experimental results. The results show that the two results agree with each other.

Barad et al., 2013 [30] He explains the effect of the crack location and the crack depth on the natural fre-
quency. First two frequencies of the cracked beam were obtained experimentally, and the crack location and
size was calculated using those frequencies. Jitendra et al., 2014 [28] observed the change in modal performance
such as natural frequency, damping and mode shape of cracked cantilever beam and compared these properties
with the properties of the defect-free beam to predict the crack size and depth. The vibration signals from the
defect-free and cracked beam were studied in the frequency domain with the help of Fast Fourier Transform.
First three natural frequencies were taken to identify the crack depth size and the crack location of the beam.

Batabyal et al., 2008 [3] developed a methodology to predict the crack parameters such as crack depth and
crack location in a thin cantilever beam using vibration response. A cantilever beam with line crack was

7
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used for this experiment. ANSYS was used to evaluate modal parameters like natural frequencies and mode
shapes for different crack parameters. It is observed that both crack location and depth have some effects on
the modal parameters of the cracked beam. Also, a certain frequency may correspond to different crack depths
and its locations. Contour lines of the cracked beam frequencies have been plotted based on the observed results.

Ranjan et al., 2014 [48] also analysed the influence of cracks on modal parameters such as natural frequen-
cies, mode shapes, stiffness and modal damping of a cantilever beam. Compared to Batabyal et al., 2008 [3],
Ranjan et al., 2014 [48] analysed inclined open edge crack on the cantilever beam was analysed in this research.
A Finite element model was developed to analyse the variation of modal parameters corresponding to the loca-
tion, size and inclination of a crack in the cantilever beam.

Nandwana et al., 1996[42] developed a method for detecting the crack location and size based on the nat-
ural frequency in a stepped cantilever beam. In this method, a characteristic equation was used to obtain
stiffness vs crack locating plot for any three natural modes. The point of intersection of the three curves gives
the crack location. The crack size is then computed using the standard relation between stiffness and crack size.

2.1.3 Multiple crack identification in cantilever beam

Khiem et al., 2004 [32] formulated a non-linear optimization problem to identify multi-cracks in a beam using
MATLAB functions. The frequency equation of the multi cracked beam is established based on the dynamic
stiffness of the beam. The crack parameters such as crack position, crack location and the number of cracks is
detected using the frequency equation. Numerical results up to 3 cracks show good efficiency and acceptability.
While Ravi et al., 2015 [49] developed a method to identify multiple cracks in a wind turbine blade by consider-
ing the blade as a cantilever beam and the shaft as simply support beam and formulated the relation between
the modal parameters and crack parameters. Finite element analysis has been done on a cantilever beam and
simply supported beams including two transverse open U-notches. Using ANSYS, modal analysis has been done
on the cantilever and simply supported beams with two U-notches and the influence of one U-notch on the other
has been observed for natural frequencies and mode shapes. Curvature mode shapes were calculated from the
displacement mode shapes using central difference approximation. The peak of the curve represents the crack
location and depth on the cantilever beam (wind turbine blade).

Wensheng et al., 2017 [27] simulates the complicated dynamic phenomena of a cracked cantilever beam struc-
tures with three different crack types. They are non-penetrating parabolic crack (NPPC), penetrating trapezoid
crack (PTC) and uniform-penetrating crack (UPC). Both beam element and solid element are considered for
FEM in ANSYS. The cracks are evaluated by using the area damage factor, i.e., the ratio of the damaged area
to the cross-sectional area. spectrum cascades, acceleration-velocity & velocity-displacement phase portraits,
and contact pressure nephograms are used to identify the vibration responses and crack level in the cantilever
beam.

2.1.4 Crack detection in beam using fuzzy logic

Harshal et al., 2014 [47] explains the drawback of modern NDT techniques like dye penetrant testing, ultrasonic
testing, acoustic emission techniques. The author also explains how improved fuzzy logic techniques and curve
fitting in MATLAB are used as an alternative for NDT techniques. As this technique uses simple fuzzy logic,
Dayal et al., 2011 [45] uses hybrid fuzzy logic technique to identify the presence of a crack in a cantilever
beam. Hybrid fuzzy logic system and finite element analysis were used to find the transverse surface crack.
The hybrid membership functions such as combination of triangular, trapezoidal and Gaussian functions are
given as input to the fuzzy controller. The output from the fuzzy controller is the trapezoidal function. FEA
is done on a cracked cantilever beam, and first three natural frequencies are given as the input parameters
to the fuzzy controller. The crack depth and relative crack location are the output parameter from the fuzzy
controller. Results obtained from FEA and MATLAB (using several fuzzy rules) are compared and found to be
in agreement with each other.

2.1.5 Crack detection in beam structures using wavelet transform

Jiang et al., 2015 [61] presented a hybrid method to detect crack locations using wavelet transform and fractal
dimension (FD) estimation in beam structures. Wavelet transform is employed to decompose the mode shape
of the cracked beam. And FD estimation method is applied to detect the crack location accurately. The ef-
fectiveness of the proposed method is validated by numerical simulations and experimental investigations of a
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cantilever beam. The results indicate that the proposed method is feasible in identifying defects in simple beam
structures and can be extended for identifying the defects of more complex structures.

Zhang et al., 2009 [58] developed a method combining wavelet analysis with transform matrix to identify cracks
in a stepped cantilever beam. First, the crack location is identified by giving the measured natural frequency
as input for wavelet analysis. Then the crack depth is identified by using the first two natural frequency in a
simple transform matrix method.

2.2 Vibration analysis in wind turbine blade with composite materials
Ganesh et al., 2016 [57] manufactured two small wind turbine blades using the Glass Fiber Reinforced Plastic
(GFRP) and GFRP with steel wire mesh reinforcement. Finite Element Analysis (FEA) was carried out using
finite element software ANSYS 16.0. From FEA, natural frequencies and mode shapes of two blades manufac-
tured are obtained and compared.

Nigam et al., 2019 [43] performed modal analysis on horizontal axis wind turbine blade using ANSYS. The
wind turbine blades are made of E-glass fibre reinforced plastic and carbon fibre reinforced plastic. For this
analysis, 14 m long wind turbine blade, with and without the shear web was modelled. Modal analysis was
conducted for edgewise, flap wise and tensional deflection. Deformation characteristics of the blade for two
above mentioned models at different frequencies are analyzed and compared.

Munteanu et al., 2018 [41] designed a 3D virtual model of a wind turbine blade in Catia V5 and Abaqus
software. The structure was built as GFRP laminated composite with 5 layers. First, the modes and natural
frequencies of the defect-free wind turbine blade is obtained. Second, the modal response of the delaminated
blade was analyzed and compared with the modal parameters of the defect-free blade. The results emphasize
that the values of the natural frequencies changes when the blade is delaminated.

Nilesh et al., 2019 [14] performed a finite element analysis on three small wind turbine blades made of dif-
ferent materials using ANSYS 14.5. Experimental Vibration Analysis (EVA) was carried out using fast fourier
transform analyzer to find the first two flap-wise natural frequencies of three blades. Similarly, using finite
element analysis (FEA), two flap-wise natural frequencies and mode shapes of three blades are obtained. The
results obtained from FEA and EVA are compared. The results show that the increase in natural frequency
means that the stiffness of the blade is increased.

Yanbin et al., 2010 [59] compares the characteristics of hierarchical structure based on finite element anal-
ysis software ANSYS. Laminated shell element is used to create a finite element model. Modal analysis is
performed to obtain modal parameters and the natural frequency spectrum of the blade.

Ashwani et al., 2014 [9] done a detailed study on Al 2024 wind turbine blade using structural and modal
analysis. The length of the designed blade was 25m. Carbon fibre reinforced polymer (CFRP) and glass
fibre-reinforced polymer (GFRP) woven composites were considered for model design. The 3D solid model was
prepared using SOLIDEDGE software, and model analysis was done using ANSYS 14.0. In this research, defor-
mations, stresses and natural frequencies for the first six modes shape of the wind turbine blade was analysed
and verified with the experimental result from (Andrew 1998) [4]. Andrew has studied the onshore and offshore
wind turbines. According to his experimental investigation, the maximum deformation occurs at tip, and the
stresses are less for lightweight materials.

2.2.1 Detection of crack in wind turbine blade

A wind turbine blade is a complex structure generally built using composite materials. They rotate and flutter
in extreme weather and fatigue loading conditions because of random wind speeds. Condition monitoring of
wind turbine blades becomes necessary to identify the defects such as crack in the early stages. Using the modal
parameters defects in a structure can be identified. As mentioned earlier, vibration analysis proved to provide
reliable results for small structures. This gave researches aspiration to use vibration analysis to identify defects
in wind turbine blades.

Chang et al., 2012 [15] explains the relationship between stress and crack growth. ANSYS was used to find the
stress intensity factor of a composite crack and compared with the analytical results and loading on the stress
intensity factor. This method is suitable only for small size cracks, as the dense of meshing becomes inadequate
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for large crack sizes.

Kim et al., 2013 [33] explains how Vibro-Acoustic modulation technique can be used to detect crack in wind
turbine blades of WHISPER 100 in its operating environment. The experiment is based on the principle that the
non-linear portion of the dynamic response is more sensitive to the presence of a crack than the environmental
conditions or operating loads.

Khalid et al., 2017 [1] uses Experimental Modal Analysis (EMS) to investigate the dynamic variations of a
structure such as cracks based on the behaviour of the modal parameters. A stepped beam was used instead
of a wind turbine blade to assess the structural health using EMA technique. Frequency Response Function
(FRF) is obtained at different locations experimentally as a ratio of the structure output to the input excitation
force, and 3D plots are generated to define the mode shape of the structure. The results prove that the modal
parameters can be used for the detection and estimation of crack size in the stepped beam. Khalid et al., 2018
[31] uses Wavelet Power Spectrum (WPS) in addition to Experimental Modal Analysis to detect defects in wind
turbine blades. WPS is calculated at different conditions instead of the traditional FFT spectrum to identify
the crack in the wind turbine blade. Experimental modal analysis is used to validate the mathematical model,
which correlates the variation of the blade natural frequencies with the crack severity and location. The results
prove that the WPS method is effective than FFT method.

Dolinski et al., 2020 [36] presented a numerical and experimental investigation related diagnostic method for
determining the location and size of damage in the laminated shell of wind turbine blades. The detection
technique is based on the analysis of low-frequency bending vibrations and mode shapes of rotor blades. The
research was conducted on a blade of a three-bladed horizontal-axis wind turbine with 36 m diameter rotor.
The natural vibrations for defect-free and damaged blade were determined using Laser Doppler Scanning Vi-
brometry. The results of the research confirm the effectiveness of the modal analysis combined with statistic
calculation in damage detection. The method points out the location of relatively small damage.

Yanfeng et al., 2014 [60] proposed a method for blade damage detection and diagnosis by incorporating a
finite element method (FEM) for dynamics analysis and the mode shape difference curvature (MSDC) infor-
mation for damage detection and diagnosis. The finite element model of a wind turbine blade was built and
modified via frequency comparison with experimental data and the formula for the model updating technique.
The numerical simulation results from the report show that the proposed method can detect the spatial locations
of damages in a wind turbine blade. Change in natural frequencies and mode shape for smaller blades occurs
at lower frequencies and lower modes. Since the relation between modal parameters and damage information
are complicated for larger sized blades, dynamic response analysis with multilayer composite material based
on aerodynamic loads calculation has been carried out. The efficiency and precision of damage detection are
improved by combining (MSDC) information.

Surendra et al., 2011 [24] uses the concept that change in the physical properties of a structure should cause a
change in modal parameters, to identify defects in a wind turbine blade. The author presents the test results
from a wind turbine blade with different induced cracks. The results show that some of the modes of the blade
are significantly affected by a crack and that the modal parameters change more significantly with a more severe
crack. Similarly, Alessandro et al., 2014 [23] investigates the effect of local failure on the modal parameters of a
wind turbine blade. The investigated wind turbine blade is made of glass fibres combined with epoxy resin and
is 6.4 m long. The blade is assumed to be clamped at the root. The experiment was carried out in three steps.
First, modal analysis is done on a blade without any defects, and its modal parameters are obtained. Second, a
static test is done to introduce cracks in the blade. Finally, another operational modal analysis is done on the
damaged structure, and the modal parameters are noted. By comparing the model parameters, it was observed
that the natural frequencies were decreased, and the modal damping of the structure was increased due to the
induced crack.

Emilio et al., 2016 [17] describes a vibration-based approach to identify a crack in a wind turbine blade.
Operational modal analysis has been performed and was used to monitor the integrity of the structure. A
numerical prediction has been done both with a full-scale model and with a one-dimensional model. Both the
results were compared, and it shows that this approach can estimate the presence of damage successfully, and
good numerical and experimental correlation has been found.

Cheng et al., 2015 [56] presents vibration and damping analysis of fibre reinforced composite wind turbine
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blade with viscoelastic damping. Layerwise displacement theory was employed to analyze the damping, natural
frequency, and modal loss factor of the composite shell structure. The curved geometry, transverse shear, and
normal strains were considered to depict the in-plane and out-of-plane displacements. The frequency response
functions (FRF) of the curved composite structure were calculated. The natural frequency, modal loss factor,
and mode shapes of composite fibre reinforced wind blade with viscoelastic damping control were calculated.
The results show that the sandwiched viscoelastic damping layer can effectively suppress vibration of the com-
posite wind turbine blade.

Larsen et al., 2002 [35] performed an experimental modal analysis to identify natural frequencies, damping
characteristics and mode shapes of 19 m wind turbine blade. Also, FE modelling of the same blade is done
to compare the results. For some of the higher modes, substantial discrepancies between the natural frequen-
cies obtained from the FE-modeling and the experimental modal analysis are observed. From comparing the
mode shapes, the author demonstrated a good agreement for the dominating deflection direction. Also, for
non-dominating deflection directions, the qualitative features of measured and computed modes shapes are in
good agreement.

Van der merwe et al., 2015 [34] identified the flap-wise, edge-wise and torsional natural frequencies and used
it to detect the defect in a variable length blade. Hallow and solid beams are used to form the fixed portion
and movable portion of the variable length blade. Uni graphics NX5 was used to develop the FEA model and
MATLAB program was developed to predict natural frequencies.

2.3 Viscoelastic material basics
Luke, 2009 [51] explains the properties, analysis, and uses of viscoelastic materials. The cause of viscoelastic
behaviour and the applications of viscoelastic materials was also explained. Viscoelastic phenomena are defined
for various materials. Theories regarding viscoelastic composite materials are explained. Few important infor-
mation about viscoelastic material from this book is explained below.
Viscoelastic material exhibits both viscous and elastic characteristics when undergoing deformation. The rela-
tionship between stress and strain for a viscoelastic material depends on time. The following formula gives the
Hooke’s law for a linearly elastic material.

σ = Eε (2.1)

where E and ε is strain and strain of a linearly elastic material respectively. All materials exhibit viscoelastic
response. Synthetic polymers, wood, and human tissue, as well as metals at the high temperature display
viscoelastic effects. The properties of elastic solids are independent of time or frequency, and they support both
shear stress and hydrostatic stress. On the other hand, viscous liquids support static hydrostatic stress. Viscous
liquids generate shear stress only if the strain is changing with time. Isotropic elastic solids are described by two
elastic constants, the shear and bulk modulus. Similarly, liquids and gases are described by two constants, the
viscosity and the compressibility (inverse bulk modulus). By contrast, viscoelastic materials require a function
of time or frequency to describe the behaviour[51].
The stress-strain curve provides the stiffness and strength of materials. The elastic material is not sensitive to
time. For a linearly elastic material, the stress-strain curve is a straight line with a slope proportional to the
elastic modulus. It has threshold stress called yield stress. If the applied load exceeds the yield stress, there
will be residual strain after load removal. By contrast, the viscoelastic material is sensitive to time. A linearly
viscoelastic material has a curved stress-strain plot. This kind of rise is because of the reason that both time
and strain increase during constant strain rate deformation. The residual strain recovers to zero in a viscoelastic
solid. But viscoelastic fluid undergoes a permanent residual strain. Figure 2.1 shows the stress-strain plots for
deformation at constant strain rate followed by unloading. The plot on the left shows the behaviour of a linearly
viscoelastic material. The plot on the right shows the behaviour of ideal elastic-plastic material. The response
to step strain is known as stress relaxation, and the response to step stress is known as creep [51].
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Figure 2.1: Stress strain plots at constant strain rate

Some phenomena in viscoelastic materials are [51]

1. If the stress is held constant, the strain increases with time (creep).

2. If the strain is held constant, the stress decreases with time (relaxation).

3. The effective stiffness depends on the rate of application of the load.

4. If cyclic loading is applied, hysteresis (a phase lag) occurs, leading to a dissipation of mechanical energy.

5. Acoustic waves experience attenuation and frictional resistance occurs during rolling.

6. The rebound of an object following an impact is less than 100 per cent.

Transient properties of viscoelastic material

Creep

Creep is a progressive deformation of a material under constant stress. For one dimension element, the stress
history depends on time (t) and is given by the formula 2.2 [51].

σ(t) = σoH(t) (2.2)

where, σo = magnitude of stress at t = 0; H(t) = Heaviside step function. The value of Heaviside step function
is defined as [51]

• H(t) = 0 for t < 0;

• H(t) = 1/2 for t = 0;

• H(t) = 1 for t > 0

The strain ε(t) increases with time. The ratio between the strain ε(t) and σo is called creep compliance J(t).

J(t) =
ε(t)

σo
(2.3)

Creep compliance is independent of stress level for a linearly viscoelastic material. If the loading is considered a
mathematical step function, the region around t = 0 has an infinite domain on a logarithmic scale. If the load
is released at a later time, the strain will exhibit recovery or a progressive decrease of deformation. Strain in
recovery may or may not approach zero, depending on the material. The following figure 2.2 shows the creep
curves for different loads [51].
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Figure 2.2: Strain vs time for different load

Creep curves have three regions, primary creep, secondary creep and tertiary creep. In primary creep, the
curve is concave down. In secondary creep, the deformation is proportional to time. The curve continues as
a linear line in the tertiary creep region. The linear response represents the linear relationship between stress
and strain at a given time. Secondary creep is usually a demonstration of nonlinear viscoelasticity, not linear
viscoelasticity. In tertiary creep, deformation accelerates until creep rupture occurs. In tertiary creep, the curve
proceeds as concave up. Tertiary creep is always a manifestation of nonlinear viscoelasticity [51].

Relaxation

Relaxation is a gradual decrease of stress under constant strain. For one dimension element, the stress history
depends on time (t) and is given by the formula 2.4 [51]

ε(t) = ε0H(t) (2.4)

where, ε0 = magnitude of strain at t = 0; H(t) = Heaviside step function. The ratio between the stress history
σ(t) and ε0 is called relaxation modulus E(t) [51].

E(t) =
σ(t)

ε0
(2.5)

The relaxation modulus is a function of time and is independent of strain level for linear materials. The creep
curve is increasing with time, whereas the relaxation curve is decreasing with time. The creep and relaxation
occur in both shear or volumetric deformation. Figure 2.3 shows the creep, relaxation and recovery response
curve of a viscoelastic material [51].
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Figure 2.3: Creep relaxation and recovery response curve

Upon releasing the load, the elastic material immediately recovers to zero strain. Creep deformation in a viscous
fluid is unbounded. Creep compliance of an elastic material and viscous fluid is given by the formula 2.6 and
2.7 respectively [51].

J(t) = JoH(t) (2.6)

J(t) =
1

ηV
tH(t) (2.7)

where Jo is a constant; ηV is the viscosity of the fluid. Viscoelastic materials exhibit complete recovery after
sufficient time following creep or relaxation. Creep, relaxation and recovery response of a viscoelastic material
are shown in the figure 2.3 [51].
In the modulus formulation, in a viscoelastic solid, the relaxation modulus E(t) tends to a finite, nonzero limit
as to time t increases to infinity. In a viscoelastic liquid, the relaxation modulus E(t) tends to zero. In the
compliance formulation, in a viscoelastic solid, the creep compliance J(t) tends to a finite limit as time (t)
increases to infinity. In a viscoelastic fluid, the creep compliance J(t) increases without bound as time (t)
increases. The time scale can extend from zero to infinity. In practice as the load can be applied so suddenly
the creep or relaxation procedures are difficult to accomplish in certain regions of the time scale. The time
scale can extend from zero to infinity. In practice as the load is applied so suddenly the creep or relaxation
procedures are difficult to accomplish in certain regions of the time scale. The dimensionless Deborah number
(D) is defined to overcome the observation of the behaviour of materials for longer times. The Deborah number
(D) is given by the formula [51]

D =
time of creep or relaxation

time of observation
(2.8)

Response to sinusoidal load

While loading of a linearly viscoelastic material dynamically, if the stress σ(t) is varying sinusoidally in time
(t), then the strain response ε(t) is also sinusoidal in time. But the response will lag the stress by a phase angle
δL. The stress and strain response are given by the formula 2.9 and 2.10 respectively [51].

σ(t) = σosin(2πυt) (2.9)

ε(t) = εosin(2πυt− δL) (2.10)

where, υ is the frequency in Hertz (HZ). The time required for one cycle known as period T = 1
υ . The phase

angle is related to the time lag ∆t between sinusoidals. It is derived as follows. The arguments in equation 2.10
can be written as

2πυt− δL = 2πυt−
(

2πυδL
2πυ

)
= 2πυ

(
t− δL

2πυ

)
= 2πυ(t−∆t) (2.11)

so,

∆t =
δL

2πυ
(2.12)
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since the frequency is inverse of period υ = 1
T , equation 2.12 becomes

δL =
2π∆t

T
(2.13)

As a result of the phase lag between stress and strain, the dynamic stiffness of a viscoelastic material is treated
as a complex number E∗. The dynamic stiffness is given by the formula

σ

εo
= E∗ = E′ + iE′′ (2.14)

The phase angle (or) loss angle δL is a dimensionless measure of the viscoelastic damping of the material. The
dynamic functions E′, E′′, and δ depend on frequency. The tangent of the loss angle is called the loss tangent
(tanδL). In an elastic solid, tanδL = 0 [51].

2.4 Viscoelastic damping basics
Various damping model are developed to describe the damping properties of viscoelastic material. Most com-
monly used classical model is explained below.
The viscoelastic materials can be modelled using classical models. Classic models include [39]

• Maxwell model

• Kalvin-Voight model

• Zener model

Maxwell model

The Maxwell model describes the material as a viscous damper (Cd) in series with an elastic stiffness (Es). The
applied stress is uniform in both the elements and is given as [39]

σ = Esεs = Cdε̇d (2.15)

The total strain of the viscoelastic material can be written as

ε = εs + εd (2.16)

by substituting equation 2.16 in equation 2.15 the stress can be written as

εs =
σ

Es
, εd =

∫
σ

Cd
dt (2.17)

The stress-strain relation the viscoelastic material in Maxwell model can be written as

ε =
σ

Es
+

∫
σ

Cd
dt⇒ ε̇ =

σ̇

Es
+

σ

Cd
(2.18)

Maxwell model characteristics

• Creep:
For constant stress, (σ̇) in equation 2.18 becomes zero, so the stress-strain relation equation becomes

ε =
σ

Cd
t (2.19)

This means that the strain will grow to an unbound value as time increases [38].

• Relaxation:
For constant strain, (ε̇) in equation 2.18 becomes zero, so the stress-strain relation equation becomes

σ = σoe
−tEs
Cd (2.20)

This means that the stress will decrease as time grows for the same strain [38].
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• Storage and Loss factors:
For a harmonic stress, the strain will also vary harmonically. The harmonic stress and the respective
strain response is given by the following equation

σ = σoe
jωt; ε = εoe

jωt (2.21)

from these two equations, the stress-strain relation of the viscoelastic material in the Maxwell model can
be written as given in the equation 2.22.

σo = E′(1 + jηM )εo (2.22)

It has a complex modulus of elasticity. The real part is called the storage modulus. The imaginary part
is called the loss modulus. The ratio of storage modulus and loss modulus is called the loss factor [38].

In the Maxwell model under static loading, the stiffness and storage modulus will become zero. Hence the loss
factor will be infinity. However, for very high-frequency loading, the loss factor becomes zero [39].

Kalvin-Voight model

In Kalvin-Voight model describes the viscoelastic material as a viscous damper (Cd) in parallel with an elastic
stiffness (Es). The applied stress is distributed through the elements and is given by the formula 2.23 [39].

σ = σs + σd (2.23)

The stress-strain relation of the viscoelastic material in Kalvin-Voight model can be written as

σ = Esεs + Cdε̇d (2.24)

Kalvin-Voight model characteristics

• Creep:
For constant stress, the stress-strain relation equation becomes

ε =
σ

Es

(
1− e

−Est
Cd

)
(2.25)

This means that the strain will grow to a constant value as time increases [38].

• Relaxation:
For constant strain, (ε̇) in equation 2.24 becomes zero, so the stress-strain relation equation becomes

σ = Esεo (2.26)

This means that the stress will remain constant as time grows for the same strain [38].

• Storage and Loss factors:
For a harmonic stress, the strain will also vary harmonically. The harmonic stress and the respective
strain response is given by the following equations

σ = σoe
jωt; ε = εoe

jωt (2.27)

from these two equations, the stress-strain relation of the viscoelastic material in Kalvin-Voigt model can
be written as given in the equation 2.28.

σ = (Es + jωCd)εo (2.28)

The real part is called the storage modulus. The imaginary part is called the loss modulus. The ratio of
storage modulus and loss modulus is called the loss factor [38].

In the Kalvin-Voight model under all loading, storage modulus is equal to the stiffness. Hence the loss factor is
zero. However, for very high-frequency loading, the loss factor increases to infinity [39].
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Zener model

The Zener model describes the material as a viscous damper (Cd) in parallel with an elastic stiffness (Ep) and
both the damper and spring are in series with another stiffness (Es).
The strain of the viscoelastic material in Zener model can be written as [39]

ε = εs + εp (2.29)

The stress-strain relation of the viscoelastic material in Zener model can be written as

σ = Esεs = Epεp + Cdε̇p (2.30)

The stress-strain equation in Zener model can be solved either using Laplace transform (Laplace domain) or
time domain.
Using the Laplace domain, the stress-strain relation equation can be written as

εs =
σ

Es
, εp =

σ

Ep + sCd
(2.31)

ε =
σ

Es
+

σ

Ep + sCd
= σ

(
Ep + sCd + Es
Es(Ep + sCd)

)
(2.32)

Likewise using the time domain, the stress-strain relation equation can be written as

Es(Ep + sCd)ε = (Ep + sCd + Es)σ ⇒ EsEpε+ EsCdε̇ = (Ep + Es)σ + Cdσ̇ (2.33)

Eε+ Eβε̇ = σ + ασ̇ (2.34)

The stress-strain relation equation formulated using time domain will be used to determine the characteristics
of Zener model [39].

Zener model characteristics

• Creep:
For constant stress, (σ̇) in equation 2.34 becomes zero, so the stress-strain relation equation becomes [40]

Eε+ Eβε̇ = σo ⇒ ε =
σo
E
− E−t/β

Es
(2.35)

• Relaxation:
For constant strain (ε̇) in equation 2.34 becomes zero, so the stress-strain relation equation becomes [40]

Eε = σ + ασ̇ ⇒ σ = σo + Eεo(1− e−t/α) (2.36)

• Storage and Loss factors:
For a harmonic stress, the strain will also vary harmonically. The harmonic stress and the respective
strain response is given by the following equations

σ = σoe
jωt; ε = εoe

jωt (2.37)

from these two equations, the stress-strain relation of the viscoelastic material in the Zener model can be
written as 2.39.

Eεo + jωEβεo = σo + jωασo (2.38)

Rearranging the above equation and solving it gives the simple stress-strain equation.

σo = E′(1 + jηZ)εo (2.39)

It has a complex modulus of elasticity. The real part is called the storage modulus. The imaginary part is
called the loss modulus. The ratio of storage modulus and loss modulus is called the loss factor. However,
equation 2.39 is not suitable for analysis of complex structures. For solving the complex structure, the
harmonic stress and strain are solved differently by substituting equation 2.37 in the differential equation
that was derived in equation 2.34 [39]

σoe
jωt + ασoiωe

jωt = Eεoe
jωt + Eβεojωe

jωt (2.40)
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expanding the real and imaginary parts,

σo(cosωt+ j sinωt) +ασoiω(cosωt+ j sinωt) = Eεo(cosωt+ j sinωt) +Eβεojω(cosωt+ j sinωt) (2.41)

The stress-strain equation is obtained by equating the real and imaginary parts separately and solving it.(
σd

ηZE′εo

)2

+

(
σe
E′εo

)2

= 1 (2.42)

This equation represents ellipse with major radius = E′εo and minor radius = ηZE
′εo [40]

Apart from the classic model, there are other models available to represent the behaviour of viscoelastic ma-
terial. These models were developed based on the time domain. Golla-Hughes-McTavish model, Augmented
Temperature Field model and Fractional Derivative model are few most commonly used models [39].

2.5 Material damping properties
The whole nature of vibration such as its source, frequency and direction is understood first for solving any
vibration and acoustics problem. A vibration and acoustics problem can be solved either by passive or active
control methods. In the passive control method, the stiffness, mass and damping of the vibration system are
modified to reduce the system response. Increasing the damping of a system controls the undesirable vibration
and acoustics caused by the resonance of the structure. Adding highly damped polymer material at the vital
local of a structure is the most commonly used method for increasing the damping of a structure. For the
damping to be effective, the added polymer must dissipate as much energy as possible [12].
There are two types of damping control method available for vibration and acoustics control. They are exten-
sional damping method and shear damping method. The structure is covered by damping material on both
sides in the extensional damping method. The damping material will be subjected to tension-compression de-
formation whenever the structure is subjected to any vibration. In shear damping treatment, the viscoelastic
material is constrained as a damping layer. The viscoelastic material will deform in shear whenever the structure
is subjected to any vibration [12].

Categories of damping materials

There are several Categories of damping [12]. They are

1. Viscous damping

2. Coulomb or Frictional damping

3. Structural or Hysteretic damping

Viscous damping

Viscous damping is the resistance offered by a viscous medium to the vibrating mechanical system. Because
of this resistance, energy from the mechanical system will be dissipated.In viscous damping, the velocity of the
vibrating body is proportional to the damping force, and the amount of dissipated energy depends on many
factors. An example of viscous damping is a vehicle’s shock absorbers [12].
In a simple spring-mass system with viscous damping, the force in viscous damper can be expressed as below.

F = −cẋ (2.43)

where c is proportionality constant and ẋ is velocity of the mass. The equation of motion for this system is
given by the equation

mẍ+ cẋ+ kx = F (2.44)

where m = mass of the system, c = damping coefficient, k = stiffness coefficient. The natural frequency of such
system is given by the formula

ωn =
√
k/m (2.45)

The damping ratio for a system with viscous damping is given by the formula

ζ =
c

cc
=

c

2mωn
(2.46)

Based on the value of the damping ratio the motion of the mass in the system can be classified into three type
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• When ζ < 1.0 ⇒ Oscillatory motion

• When ζ > 1.0 ⇒ Non-oscillatory motion

• When ζ = 1.0 ⇒ Critical damped motion

Rayleigh damping is the most common form of viscous damping and is given by the equation [12]

c = αm+ βk (2.47)

Frictional damping

Frictional damping is the results from sliding of two dry surfaces. It is also known as coulomb damping. In
frictional damping, the damping force is a product of normal force and friction coefficient (µ) [12].

F = −Nµ (2.48)

The damping force is independent of velocity and is always opposite to the direction of velocity. The equation
of motion of a system under frictional damping is given by the equation [12]

mẍ+ kx = F (2.49)

Structural or Hysteretic damping

In hysteretic damping, a damping material generally polymer (synthetic rubbers) is used to absorb the vibration
from the structure. Polymers are used as damping materials because these materials provide high damping
capacities under a broad range of frequency and temperature. When a structure with structural damping is
subjected to vibration, the stress-strain diagram looks like a hysteresis loop. Hence, structural damping is also
called hysteretic damping. When the polymeric material is deformed, because of friction between the internal
planes, the energy is absorbed and dissipated by the polymeric material itself. The area of the loop denotes
the energy lost per unit volume of the body per cycle. The energy lost is independent of frequency, but it is
proportional to the square of the amplitude [12].
For a harmonic motion, the response x is given by equation

x = Xeiωt (2.50)

The hysteretic damping coefficient (h) of hysteretic damping is given by the following equation

h = ceqω (2.51)

where ceq is equivalent damping coefficient. This coefficient is used to calculate the energy dissipated by the
hysteretic damping in one cycle.

∆W = πhx2 (2.52)

The equation of motion of a simple spring-mass equation with hysteretic damping is given by equation.

mẍ+ ceqẋ+ kx = f(t) (2.53)

for a harmonic problem, the equation of equation becomes

− ω2mx+ k

(
1− i2 ω

ωn
ζeq

)
x = f(t) (2.54)

where ζeq =
ceq
cc

= h
2mωnω

is the damping ratio of the hysteretic damping. For model damping, ω = ωn, so the
motion equation becomes

mẍ+ k(1− iγ)x = f(t) (2.55)

where γ = 2ζeq = h/k is called the structural damping factor. k(1 − ih/k) is the complex stiffness, Similarly
viscous damping factor of viscous damping, the is given by γ = 2ζ [12].
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Complex stiffness

The effectiveness of polymer material in hysteretic damping depends on material stiffness and its damping.
These two properties are expressed by the complex Young’s modulus E(1−iηE) and the complex shear modulus
G(1− iηG). Both ηG and ηE are assumed to be equal for a given material. When a cyclic load is applied on the
structure the maximum energy stored per cycle is Eε2o/2 and maximum energy dissipated per cycle is πEηLε2o.
Where ηL is the loss factor. loss factor is equivalent to Structural damping factor (γ). Loss factor is used to
express the damping performance. The relation between maximum energy dissipated per cycle and maximum
strain energy stored (Um) for a structural damped system is given by [12]

∆W = 2πηLUm (2.56)

The loss factor is also expressed as

ηL =
1

2π

maximum energy dissipated per cycle

maximum strain energy stored
(2.57)

Higher the loss factor, higher the damping of the material [12].
The journal also explains about vibration damping in ANSYS software. The damping matrix can be modelled
using harmonic, damped modal and transient analysis in ANSYS. The journal also explains different command
used in ANSYS to input the different damping ratio and coefficient. Several case studies were carried out by the
author to explain various models of material damping effects and some key points are explained for the correct
application of damping effects for harmonic and modal analysis in ANSYS.

2.6 Inverse Finite Element Analysis
Zhenzhen, 2011 [63] explains how the small punch test (SPT) has been used to evaluate in-service materials in
nuclear fusion facilities and advantages of using finite element methods in SPT tests. Also, an improved inverse
finite element analysis procedure was proposed to obtain constitutive relations from load-displacement curves
recorded in SPT [63].
Small punch test (SPT) provides several mechanical properties like strength, ductility, ductile-brittle transition
temperature, and fracture toughness with a small volume of material compared to conventional mechanical
test. The experimental data from SPT are in the form of load-displacement curves. Empirical relations or
finite element analysis are used to determine the material properties. Inverse finite element method is used to
determine unknown material parameters from experiment results. [63].
In a conventional finite element method, elastic modulus, yield stress, and stress-strain curve from a uniaxial
test are given as input parameters. Whereas in inverse finite element method, these parameters are evaluated
as output. The procedure of an inverse finite element method is described as follows [63]

1. The load-displacement curve is divided into several segments, and an inverse FE analysis is used to obtain
the corresponding constitutive relation that matches each segment, in the experimental load-displacement
curve .

2. For the first (linear) segment P1, the elastic modulus is obtained in the inverse FEM analysis. It starts
with an assumed value of elastic modulus, which is then increased or decreased to match the experiment
curve. The yield stress equals the von-Mises stress at the end of the first segment.

3. For the second segment, the load is given as input into the FE model. The plastic strain is adjusted to
match the experimental load-displacement curve. The final value of the von-Mises stress and the equivalent
plastic strain will be those of the second data point.

4. Similarly, the nth segment of the experimental load-displacement curve should be analyzed.

The mechanical behaviour of the specimen is determined with the elastic modulus, yield stress, and uni axial
true stress-strain curve obtained from the above steps.

2.7 Research Problem
In vibration analysis, using modal parameters such as natural frequency, mode shapes, damping, stiffness to
identify cracks in structures like wind turbine blade has provided reliable results. Condition monitoring of the
wind turbine blades is done by gathering the modal parameters to identify any defects in its early stages.
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Based on the literature study, it is evident that current vibration analysis techniques use natural frequency,
mode shapes and also stiffness variations to identify the crack location, size and numbers in a wind turbine
blade. The limitations in those techniques are

1. The results are reliable only for small and medium-size cracks.

2. Only limited number of cracks can be identified using current techniques i.e., most of the techniques
provide good results up to 3 cracks. If the number of cracks increases the resonance also increases making
it difficult to identify the crack location and size correctly.

3. Crack initiation in adhesive bonds between spar cap and shear web assembly is not explained.

. So two research questions are formulated to overcome these limitations.

1. Can increase in material damping due to defect be used effectively to identify the defect location and size
effectively?

• Can the modal damping be used to identify defect in spar cap and shear web assembly?

2. Is it possible to model the vibration analysis based on the viscoelastic damping?

2.8 Methodology
The research methodology to be followed is explained in this sub-chapter. To reduce the computational time,
only the spar cap-shear web assembly of a wind turbine blade has been modelled for damage identification and
localization. A 3D model of the spar cap-shear web assembly is created using ANSYS 18.2 software. Through
modal analysis, the natural frequency of the undamped structure is found, and the stiffness and mass matrices
are extracted from ANSYS. The proposed method is based on the change in the damping properties of blade
material and its effects on the dynamic response of the blade. Damping is introduced into the dynamic motion
of the blade by the viscoelastic damping model and using a loss factor. Two dynamic properties of the blade
(the modal damping and the phase of complex mode shapes) are considered to identify and localize the damage
[54]. Following is the guideline that was followed to identify the damage index briefed in simple steps.

• Step 1: Extracting mass and stiffness matrix of undamped structure using ANSYS.

• Step 2: Deriving eigenvalues and eigenvectors of undamped structure.

• Step 3: Derive damping matrix using

1. First order perturbation method

2. Viscous analogy method

• Step 4: Deriving eigenvalues and eigenvectors of damped system.

• Step 5: Finding the damage index.





3 Vibration Modelling

In this chapter, methods used for vibration modelling of viscoelastic materials is explained. Also damping
modelling procedures are explained. The background calculation for this project is derived from the [51].

3.1 Constitutive equation of a linear viscoelastic material
For structures under constant load, creep and relaxation is adequate to understand the responses. But for
structures under cyclic (or) arbitrary load, the constitutive equation is necessary to incorporate all possible
responses. Various mathematical methods are used to develop the constitutive equation for a viscoelastic
material. Boltzmann superposition principle is used to develop the constitutive equation for linear materials
[51]. Due to the symmetry, the strain and stress can be expressed in the vector form (or) the Voigt notation
and is given by

σ = {σxσyσzσxyσyzσxz} (3.1)

ε = {εxεyεzεxyεyzεxz} (3.2)

Using these Voigt notation, the the general Hooke’s law of a linear elastic material can be written as [51]

{σ} = [C]{ε} (3.3)

where {}, [ ] are symbols for vector and matrix respectively. [C] is the elasticity matrix with 6 × 6 elements.
For a transverse orthotropic material associated with spar-cap shear web assembly, independent variables of the
matrix is reduces to 5 x 5 elements [11]. The independent variables in the Cartesian coordinate system(x, y, z)
are

1. Young’s modulus in x and y direction, denoted as (Ex, Ey)

2. Shear modulus in x-y plane, denoted as (Gxy) and

3. Poisson’s ratios in x-y and y-z planes, denoted as (νxy, νyz)

These variables are constant for an elastic material but these properties are time variant for a viscoelastic
material. Using the theory of linear viscoelasticity of material. the constitutive equation for a viscoelastic
material can be written as [51],[37]

{σ(t)} = [C(t)]{ε(0)}+

∫ t

0

[C(t− τ)]ε̇(τ)dτ (3.4)

where (˙) is defined as time derivative operator of a variable and is defined as,

(˙) =
∂()

∂t
(3.5)

taking the Laplace of equation 3.4 then,

{σ(S)} = S[C(S)]{ε(S)} (3.6)

where S[C(S)] is the dynamic modulus. It is decomposed in two parts

S[C(S)] = [C0] + S[C̄(s)] (3.7)

where, C0 is the relaxed elastic property of viscoelastic material. And S[C̄(s)] is the viscous property of a
viscoelastic material i.e., for a elastic material S[C̄(s)] = 0.

3.2 Finite element vibration equation of a linear viscoelastic material
There are many methods available to derive the finite element vibration equation of linear viscoelastic material.

23
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3.2.1 Time domain equation of motion

Similar to the elastic material, the finite element model of linear viscoelastic material is developed based on
the principle of the weak form of the equation of motion is used. The displacement field within an element is
approximated by shape functions and nodal displacements of that element. This approximated displacement
field is replaced in the weak form of the equation of motion. This leads to the construction of the matrix form of
the equation of motion in term of mass, stiffness and damping matrix. The displacement field in the cartesian
coordinate system can be written in the vector form as shown below [51]

U = {uvw} (3.8)

where u,v and w are displacement component in i,j and k directions respectively. The structure is divided into
n elements. Each element has m nodes, and each node has three degrees of freedom. The displacement field of
an element is written in the nodal displacement vector form as shown below. [44],[11]

qe = {u1v1w1u2v2w2....umvmwm} (3.9)

ue =

m∑
i−1

Niui

ve =

m∑
i−1

Nivi

we =

m∑
i−1

Niwi

(3.10)

qe is the nodal displacement vector of an element and Ni is shape function [37]. Equation 3.10 can also be
written in the matrix notation as

{Ue} = [N ]|qe (3.11)

[N ] is matrix shape function of an element with the size of 3 × 3 .

N =

N1(x, y, z) 0 0 N2(x, y, z) 0 0 N3(x, y, z) 0 0 ....
0 N1 0 0 N1 0 0 N1 0 ....
0 0 N1 0 0 N1 0 0 N1 ....

 (3.12)

The weak form of the equation of motion for an element of a structure is written as [37]∫
ve

{Ü}eT δ{U}eρdv +

∫
ve

{σ}T {ε}δ{ε}dv −
∫
Se

{t}eT δ{U}edS −
∫
ve

{f}eT δ{U}edv = 0 (3.13)

Index e is used to identify that a vector or matrix belongs to an element of a structure.
Index T is used to identify the transpose operator of a vector or matrix.
{t}e is boundary forces per unit area for an element.
{f}e is gravitational force per unit volume of an element.
From equation 3.11,

δ{U}e = [N ]δ{q}e (3.14)

{Ü}e = [N ]{q̈}e (3.15)

Strain in a continuum structure is related to displacement field as

{ε} = [D]{U} (3.16)

where [D] is the operator matrix and can be defined as

D =



∂
∂x 0 0
0 ∂

∂y 0

0 0 ∂
∂z

∂
∂y

∂
∂x 0

0 ∂
∂z

∂
∂y

∂
∂z 0 ∂

∂x


(3.17)
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substituting equation 3.11 in equation 3.16 then,

{ε} = [D]e[N ]e{q}e (3.18)

so the strain becomes ,
δ{ε} = [D]eδ{U}e = [D]e[N ]eδ{q}e (3.19)

and
{ε̈} = [D]e[N ]e{q̈}e = [B]e{q̈}e (3.20)

where matrix [B]e is defined as
[B]e = [D]e[N ]e (3.21)

If equation 3.14 to 3.21 are substituted in the equation 3.13, then

{q̈}T
∫
ve

ρ[N ]eT dv +

∫
ve

{{q(0)}eT [B]eT [C(t)][B]edv +

∫ t

0

{q̇}eT [B]eT [C(t− τ)][B]edτ}dv

−
∫
Ss

{t}eTNds−
∫
ve

{f}TNedv = 0

(3.22)

The element mass and stiffness matrices and the force vector are expressed as

[M ]e =

∫
ve

ρ[N ]eT dv (3.23)

[K(t)]e =

∫
ve

[B]eT [C(t)][B]edv (3.24)

{F (t)}e =

∫
Ss

[N ]e{t}eds+

∫
ve

{f}e[N ]edv (3.25)

So after taking transpose, the equation 3.22 becomes

[Me]q̈e +

∫
ve

{{q(0)}eT [B]eT [C(t)][B]edv +

∫ t

0

{q̇}eT [B]eT [C(t− τ)][B]edτ}dv = [F (t)]e (3.26)

The above equation is the time domain equation of motion for a single element of a viscoelastic structure. Then
the time domain equation for the whole structure is written as

n∑
e=1

[Me]q̈e +

n∑
ve

∫
ve

{{q(0)}eT [B]eT [C(t)][B]e +

∫ t

0

{q̇}eT [B]eT [C(t− τ)][B]edτ}dv =

n∑
e=1

[F (t)]e (3.27)

3.2.2 Laplace form of equation of motion

The equation of motion for a viscoelastic element in the Laplace domain is derived by taking the Laplace
transform of the equation 3.26.

S2[M ]e{q(s)}e + S[K(s)]eq(s)
e

= F (s)
e (3.28)

where
S[K(s)]e = S

∫
ve

[B]eT [C(s)][B]edv (3.29)

By using the decomposed form of S[C(S)] from equation 3.7, the equation 3.29 can be written as

S[K(s)]e =

∫
ve

[B]eT [C0][B]edv + S

∫
ve

[B]eT [ ¯C(s)][B]edv (3.30)

[KE ] =

∫
ve

[B]eT [C0][B]edv (3.31)

[KD]e(s) =

∫
ve

[B]eT [ ¯C(s)][B]edv (3.32)
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[KD]e(s) is the damping matrix. It is time-variant part of dynamic modulus in the Laplace domain. However,
only one part is correspondent to the dissipation of energy [37]. The Laplace form of the equation of motion
can be written as

S2[M ]e{q(s)}e + [KE ]e{q(s)}e + S[KD(s)]e{q(s)}e = {F (s)}e (3.33)

The Laplace form of equation of motion for the whole structure can be written as

n∑
e=1

S2[M ]e{q(s)}e + [KE ]e{q(s)}e + S[KD(s)]e{q(s)}e =

n∑
e=1

{F (s)}e (3.34)

S2[M ]{q(s)}+ [KE ]{q(s)}+ S[KD(s)]{q(s)} = {F (s)} (3.35)

where [M ], [KE ], [KD], F (s) are mass, stiffness, damping matrix and force vector respectively.

3.3 Eigenvalue and eigenvector of vibration equation
The eigenvalue and eigenvector of a vibration system is a response to the free vibration of that system. To
get a free vibration response of a vibration system the left hand side of equation 3.35 is equalled to zero. The
equation becomes

S2[M ] + [KE ] + S[KD(s)]{q(s)} (3.36)

The dynamic stiffness matrix of the structure can be written as

D = S2[M ] + [KE ] + S[KD(s)] (3.37)

The determinant of the dynamic stiffness matrix is set to zero to obtain the nontrivial solution of equation
3.36. Similarly, the eigenvalue of the vibration system is obtained by setting the det[D] to 0. The eigenvalue
is denoted by si. Correspondent to each eigenvalue there is a vector which is called eigenvector and is denoted
by φi. The eigenvalue and eigenvector of a vibration system depend on mass, stiffness and damping matrix.
Usually, in the analysis of a vibration system, three following scenarios happen [51].

1. Structure is assumed to have no damping, KD(s) = 0
In this case, the determinant of equation 3.37 gives n, the total degree of freedom of the system or size of
the mass and stiffness matrix. The square root of the determinant has the form of

Si = ±jωi (3.38)

Where ωi is the natural frequency. The eigenvector also denotes the undamped mode shapes of a system
and is indicated by {bi}. This mode shapes have orthogonality properties [53].

[bi]
T [M ][bj ] = miδij (3.39)

[bi]
T [KE ][bj ] = kEi δij (3.40)

where
δij =

{
1, i = j
0, i 6= j

}
(3.41)

2. Structure with proportional type of damping
In this case, the left and right hand side of equation 3.36 is multiplied by {bi}T , {bj}. Then the equation
becomes

miδijS
2 + S{bi}T [KD(s)]{bj}+ kEi δij = 0 (3.42)

If [KD(s)] matrix satisfies the following condition

[bi]T [KD][bj ] = kDi δij (3.43)

then the equation 3.42 for i, j = 1, 2, ...n becomes

miS
2
i + Sik

D
i + kEi = 0 (3.44)

If the damping matrix satisfies the equation 3.43, the damping is proportional. The eigenvalue of the
structure can be found by substituting the equation 3.44 in the equation 3.43 [53]. The eigenvector of a
proportionally damped structure noted to be same as undamped system [51].
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3. Structure with non proportional type of damping
When a structure is damaged, equation 3.43 will not be satisfied. And the damping matrix will be non
proportional. In this case, identifying the eigenvalue and eigenvector of the structure is not as straight
forward as an undamped and proportional damping system. The eigenvalue of the vibration system is
calculated by taking the square root of the determinant of the stiffness matrix. Dependent on the type
of damping matrix (a function of S), the number of eigenvalues can be 2m > 2n. For lightly damped
structure, 2m roots are divided by 2n roots, which form n conjugate pairs and (2m − 2n) real values. n
conjugate pairs return n pairs of conjugate mode shapes. These mode shapes are oscillatory in nature.
Real eigenvalue returns (2m− 2n) mode shapes. [55].

3.3.1 Eigenvalue and eigenvector of non proportional damping

There are three different approaches to determine the eigenvalue and eigenvector of the non proportional damp-
ing system. Each approach has its advantages and disadvantages [51]. The different approaches are explained
below

3.3.1.1 First order perturbation method

The idea behind the first order perturbation method is that for a system with "n" degree of freedom, "n"
undamped mode shapes construct eigenvector of non proportional damped system. The mode shape of the non
proportional damped structure can be expressed as [51]

ϕk =

n∑
i=1

αki {bi} (3.45)

ϕk is "kth" mode shapes of the non proportional damping system. Substituting equation 3.45 in equation
3.36 and multiplying the left hand side of equation 3.45 with {bk}T and using the orthogonality properties of
undamped mode shapes to get kki[51]

αkkS
2
k + αkkω

2
k + Sk

n∑
i=1

αki kki = 0 (3.46)

where,
kki = {bk}T [KD]{bi} (3.47)

Similarly, to get kmi equation 3.45 is substituted in the equation 3.36 and the left hand side of the equation
multiplies with {bm}T

αkmS
2
k + αkmω

2
m + Sk

n∑
i=1

αki kmi = 0 (3.48)

where
kmi = {bm}T [KD]{bi} (3.49)

if αkm and αkk are exclude from equation 3.48 then

αkmS
2
k + αkmω

2
m + Skα

k
mkmmSk + Skα

k
kkmk + Sk

n∑
i=1,i6=m,i6=k

αki kmi = 0 (3.50)

If αkk = 1, the components of ϕk can be obtained from (n−1) set equations such as equation 3.50, where 1 < m
< n except m = k which return 1. All the coefficient (αki ) of mode shape ϕk of the non proportional damped
system is found from the above set of equations [55]. For a lightly damped system, the last term in equation
3.48 and 3.50 can be neglected. These assumptions lead to the first-order perturbation solution. By neglecting
the last term from equation 3.48, [51]

S2
k + ω2

k + Skkkk(Sk) = 0 (3.51)

For lightly damped system, kkk(Si) ≈ kkk(±jωk). So this second order equation return the eigenvalue Sk as

Sk ≈ ±jωk − {kkk(±jωk)}/2 (3.52)

From the equation 3.50 by neglecting the last term, the equation becomes

αkm =
−SkKmk

S2
k + ω2

m + Skkmm
(3.53)
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3.3.1.2 Viscous analogy

The viscous damping is a special case of non proportional damping when [KD(S → o)]. The eigenvalue of the
viscous damping system has the form of [55]

Sk0 = −ξk0ωk ± jωk
√

1− ξ2k (3.54)

where,

ξk0 = {ϕk0T [KD(S)]ϕk0}/2ωk
S → 0

(3.55)

The eigenvalue of the viscoelastic damped system can be expressed in a small deviated form from the viscous
damping system

Sk = Sk0 + δk (3.56)

Substituting equation 3.56 in equation 3.51 and expanding kkk(Sk = Sk0 + δ) with Taylor series around Sk0
equation 3.51 becomes

kkk(Sk) = kkk(S0k) + δk
∂kkk(S = S0k)

∂S
+ δ2k

∂2kkk(S = S0k)

2i∂S2
+ .... (3.57)

Keeping the first two term and substituting equation 3.57 in equation 3.51 leads to

(Sk0 + δk)2 + ω2
k + (Sk0 + δk)(kkk(S0k)) + δk

∂kkk(S = S0k)

∂S
= 0 (3.58)

Equation 3.58 is solved to obtain the value of δk [55].

δk =
−Bk −

√
B2
k − 4AkCk

2Ak

Ak = 1 +
1

2

∂2kkk(S = S0k)

∂S2
S0k +

∂kkk(S = S0k)

∂S

Bk = 2S0k + S0k
∂kkk(S = S0k)

∂S
+ kkk(S = S0k)

Ck = S2
0k + S0kkkk(S = S0k) + ω2

k

(3.59)

3.3.1.3 Damping matrix approximation

The eigen matrix of the system is defined by multiplying [M−1] on both side of equation 3.36

(S2I +M−1KE + SM−1KD(s)q(s)) = (3.60)

U(s) = M−1KE + SM−1KD(s) (3.61)

From matrix eigen value decomposition theory

U(s)ϕk = λkϕ
k (3.62)

The eigen vector of the system q(s) is obtained from equation 3.60

S2
kϕ

k + U(s)ϕk = 0 (3.63)

Substituting equation 3.62 in equation 3.63 results in

S2
k = −λk (3.64)

It means that for each "S" the eigen matrix of the system U(s), return the eigenvalue and eigenvector of the
system only if the equation 3.64 satisfies. An iteration approach is required to identify the exact value of "S" to
satisfy both equations 3.62 and 3.64. This iteration approach is time consuming and not applicable to a large
system. An approximate solution for eigenvector can be found by assuming the damping matrix to a constant
value close to the eigenvalue of the system. For a lightly damped system, this approximation is quite reasonable.
The eigenvalue of the system can be written as [51]

Si = ai ± jbi (3.65)



3.3 Eigenvalue and eigenvector of vibration equation 29

The natural frequency and damping coefficient of the system can be defined as

ωk =
√
a2k + b2k (3.66)

ξk =
−ak
bk

(3.67)

For lightly damped system, the KD(s) can be obtained by replacing "S" with ±jωk. The mode shapes of the
system is found by solving the eigenvalue

(S2[M ] +KE + S[KD(jωk)]){q(s)} = 0 (3.68)

Equation 3.68 is in the form of viscous damping. The eigenvector of this system can be found by rearranging
the equation 3.68 in the state space Laplace from [53].

(S[A] + [B]){Q(s)} = 0 (3.69)

[A] =

[
[0] M
M KD

]
(3.70)

[B] =

[
[−M ] [0]

[0] KE

]
(3.71)

{Q(s)} =

{
Sq(s)
q(s)

}
(3.72)

Multiplying equation 3.69 by [A]−1

(S[I] + [A]−1[B]){Q(s)} = 0 (3.73)

This lead to eigenvalue solution of
[A]−1[B]{φk} = λk{φk} (3.74)

where,

{φk} =

{
λkϕ

k

ϕk

}
(3.75)

substituting equation 3.74 in equation 3.73 gives

Sk = −λk (3.76)

More accurate eigenvector of the system is obtained when "Sk" from equation 3.52 and 3.56 is substituted in
damping matrix instead of ωk. This approach gives accurate results. However, the computational cost will be
high if all the mode shapes of the system are analysed. So for damage identification based on damping, only a
few first modes of vibration are considered [51].





4 Damage Modeling

In this chapter, the concept used for damage modelling is explained. Also, modelling of spar cap - shear web
assembly with four different damage scenarios such as damage only in the top surface near the fixed end and
midsection with 2 %, 4 % and 6 % defected area, damage in the top and core surfaces near fixed end and
midsection with 2 %, 4 % and 6 % defected area are explained.

4.1 Damage modelling concept
Spar cap - shear web assembly is an important part of a blade structure. This connection provides the structural
integrity to the wind turbine blade, and it carries most of the aerodynamic load. This assembly is constructed by
connecting the top and bottom spar caps to the shear web using adhesive. The shear web consists of face sheets
and foam, which constitute the core of the wind turbine blade. The spar cap - shear web assembly suffers from
damage at the bond line, which can propagate through the structure and compromise the structural integrity
[62],[22]. Usually, damage in the joint begins with the transverse cracks in the adhesive. At the same time,
delamination develops in the vicinity of the transverse cracks and finally with the growth of these cracks and
widening of delamination, debonding of the shear web from spar caps occurs [54].
Sharif et al., 2020 [54] conducted a fatigue test to relate the types of damages to the loss factor series of fatigue
tension test on a specimen representing the adhesive-bonded connection of spar cap - shear web assembly. The
purpose of this fatigue test was to produce progressive damage in the spar cap-shear web joint connection
and measure the gradual change in the loss factor by experimental modal testing. The loss factor in the test
specimen depends on the level of damage, frequency and strain amplitude. The results show that the loss factor
of the test specimen increases with frequency and reaches the maximum value around the first natural frequency
and then decreases. The maximum value also correspondent to maximum deflection or strain value [54]. The
dynamic elastic properties of spar cap of the blade have been expressed in the form of (Golla-Hughes-McTavish)
GHM model. In general, the dynamic modulus by GHM models is written as [19].

SG(S) = G0 +
a(S2 + 2bcS)

S2 + 2bcS + b2
(4.1)

where

1. G(S) is the general term for dynamic modulus.

2. a, b, c are constant parameters which are obtained from experimental tests to represent the real working
condition of the wind turbine blade.

3. G0 is the relaxed part of dynamic modulus.[51]

Equation 4.1 is used to incorporate damage into the structure. A detailed explanation is given in the chapter
4.3

4.2 Spar cap - shear web assembly
A wind turbine blade is made up of aerodynamic shell and shear web. The load-carrying aerodynamic shell
of the wind turbine blade is constructed using unidirectional composite laminates such as thick GFRM (Glass
Fibre Reinforced Materials). The shear web is the supporting structure of the wind turbine blade. The shear
web is moulded separately using multi-axial fibre lay-ups and a core made of balsa wood or polyvinyl chloride
(PVC) foam and then bonded together with the aerodynamic shell using a structural adhesive. The web body
is formed by infusion of a foam core with thin skin laminates. Whereas, the webfoot is made up of multi-axial
glass fibres. The web adhesive joint is assembled by bonding the webfoot onto the spar cap as shown in figure
4.1. As explained above, this web adhesive joint is a key element for the structural integrity of the wind turbine
blade. If this joint suffers fatigue damage at the bond-line, the damage can propagate through the spar cap and
lead to delamination and debonding of the spar cap from the shear web [54].

31
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Figure 4.1: Spar cap - shear web assembly

with copyright permission from the journal [54].

4.2.1 ANSYS model

To reduce complications, the spar cap - shear web assembly is modelled as "I" beam in ANSYS 18.3 workspace.
The dimensions of the blade are measured from the "NedWind 40 turbine" provided by LM Wind Power. The
length of the blade was measured to be about 20 m. The width and thickness of the spar cap are measured to
be about 1 m and 2 cm respectively. Similarly, the width and thickness of the Face-sheet were measured to be
about 1 cm and 37.5 cm respectively. The width and thickness of adhesive were measured to be about 5 cm and
0.6 cm respectively. The materials considered for modelling the spar cap - shear web assembly in ANSYS are
unidirectional Epoxy- S glass, unidirectional Epoxy- E glass, Epoxy Resin, PVC Foam for Spar cap, Face sheet,
Adhesive and Foam respectively. The Epoxy Resin, PVC Foam are isotropic materials. Whereas, Epoxy- S glass
and Epoxy- E glass are orthotropic materials. Since the structure has to be modelled as composite materials, all
parts are designed as surfaces as shown in below figure 4.2. Figure 4.3 shows the isometric view and figure 4.4
shows the side view of the blade surfaces. For spar cap - shear web assembly, 9 different surfaces are modelled.
They are top and bottom spar cap, top, bottom, left and right face sheet, top and bottom adhesive and foam.
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Figure 4.2: Design of spar cap - shear web assembly front view

Figure 4.3: Design of spar cap - shear web assembly isometric view
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Figure 4.4: Design of spar cap - shear web assembly side view

The layers of the composites are applied in ACP setup and modal analysis setup in ANSYS workbench. The
thickness of a single epoxy glass fibre is assumed to be about 1 mm and the thickness of the single foam layer
is assumed to be about 3 mm. Depending on the thickness, the number of layers forming a stack varies. Spar
cap has 20 layers, Face sheet and Foam has 10 layers. The Spar cap fibres are laid at 0◦ and fibres of face sheet
are laid at ±45◦. Face and edge connections are used to join the parts with each other. The element size was
selected to be about 25cm for meshing. Figure 4.5 shows the model after layup and meshing.

Figure 4.5: Front view spar cap - shear web assembly

Figure 4.6 shows the isometric view of the spar cap - shear web assembly.
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Figure 4.6: Isometric view spar cap - shear web assembly

Figure 4.7 shows the side view of the Spar cap - shear web assembly.

Figure 4.7: Side view spar cap - shear web assembly

4.3 Damage modelling of spar cap - shear web assembly
One end of the structure is fixed to simulate the actual working conditions. Similarly, the material property of
all parts was chosen to be that of the actual wind turbine blade. The material properties of the different parts
are as follows.

Table 4.1: Material properties of adhesive (Epoxy Resin)

Young’s Modulus (E) 5500 MPa
Poison Ratio 0.35
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Table 4.2: Material properties of PVC foam

Young’s Modulus (E) 102 MPa
Poison Ratio 0.3

Table 4.3: Material properties of Epoxy- E glass (face sheet material)

Young’s Modulus in X direction (Ex) 20000 MPa
Young’s Modulus in Y direction (Ey) 3000 MPa
Young’s Modulus in Z direction (Ez) 3000 MPa

Poison Ratio XY 0.3
Poison Ratio YZ 0.4
Poison Ratio XZ 0.3

Shear Modulus in XY direction (GXY ) 5000 MPa
Shear Modulus in YZ direction (GY Z) 3000 MPa
Shear Modulus in XZ direction (GXZ) 5000 MPa

Table 4.4: Material properties of Epoxy- S glass (spar cap material)

Young’s Modulus in X direction (Ex) 20000 MPa
Young’s Modulus in Y direction (Ey) 3000 MPa
Young’s Modulus in Z direction (Ez) 3000 MPa

Poison Ratio XY 0.3
Poison Ratio YZ 0.4
Poison Ratio XZ 0.3

Shear Modulus in XY direction (GXY ) 5000 MPa
Shear Modulus in YZ direction (GY Z) 3000 MPa
Shear Modulus in XZ direction (GXZ) 5000 MPa

The element size for meshing was chosen to be about 25cm. The reasons for choosing this element size are

1. If the size of the element is below 25 cm, the size of the matrix extracted from ANSYS is big that it is
difficult to use this matrix for further calculations.

2. The RAM and graphical memory of the PC was not sufficient to solve the simulation if the size of the
element is below 25 cm.

The number of elements and nodes after meshing are 1476 and 2241 respectively. Using Modal Analysis, the
natural frequency of the undamaged blade structure was calculated to be about

• 1st flapwise bending frequency: 0.6588 Hz (0.6588 x 2 x π = 4.1394rad/sec)

• 2nd flapwise bending frequency: 3.997 Hz (3.997 x 2 x π = 25.114rad/sec)

• 1st edgewise bending frequency: 9.261 Hz (9.261 x 2 x π = 58.188rad/sec)

• 2nd edgewise bending frequency: 27.66 Hz (27.66 x 2 x π = 173.793rad/sec)

The mass matrix M and stiffness matrix K of undamaged blade structure is extracted from ANSYS. The
matrices are extracted using *DMAT [6] and *EXPORT [8] APDL command. Using extracted mass and
stiffness matrices, eigenvalue and eigenvector of undamaged blade structure are calculated using *EIGEN APDL
command [7]. SUBSP modal analysis [5] option is selected in ANSYS. The APDL code used is given in Appendix
B. Damage is introduced into the structure in the form of microscopic damping into the material property. To
incorporated damping into the structure, the loss factor obtained from experiment [51], [54] is used. The loss
factor parameters (a,b and c) depends on many factors, natural frequency is once such factor. The value of a,b
and c for the 1st natural frequency (4.1394rad/sec) is calculated for 6 different conditions. Using first order
perturbation method, the value of C1, C2 are calculated by substituting the G0,a,b,c and S = jω in the equation
4.1. The material properties of the model set to C1, and the stiffness matrix KD

1 is extracted. The damping
matrix is then given by the formula

KD = KD
1 (4.2)
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The damping matrix is incorporated into the stiffness matrix using the formula

KDD = jωKD (4.3)

KEE = KE +KDD (4.4)

The eigenvalue and eigenvector of the undamaged damped blade structure are calculated using *EIGEN com-
mand. DAMP [5] modal analysis option is used. KEE is used in place of the stiffness matrix and zero matrix
is used instead of the damping matrix. Four scenarios with three defect cases for each scenario are considered
to model damage into the structure. The scenarios are

1. Damage only in top surfaces near the fixed end with 2 %, 4 %, 6 % defected area.

2. Damage only in top surfaces near mid section with 2 %, 4 %, 6 % defected area.

3. Damage in top and core surfaces near the fixed end with 2 %, 4 %, 6 % defected area.

4. Damage in top and core surfaces near mid section with 2 %, 4 %, 6 % defected area.

For each scenarios 6 damage condition is modelled, they are 50 % damage, 100 % damage, 350 % damage, 500
% damage, 650 % damage. For instance, 100 % damage means that the microscopic damping will be increased
by about 0.01 compared to the damping coefficient of undamaged structure. The damping coefficient for each
damage condition is given in table 4.5

Table 4.5: Loss factor and damping coefficient to represent different damaged condition

Damage Condition
Loss factor /

Damping coefficient
Loss factor Parameter
a b c

Undamaged 0.01144 0.03 45 15
50 % damage 0.01523 0.04 45 15
100 % damage 0.02276 0.06 45 15
200 % damage 0.03321 0.088 45 15
350 % damage 0.04504 0.012 45 15
500 % damage 0.06325 0.017 45 15
650 % damage 0.07759 0.21 45 15

As explained earlier, the damage is incorporated into the structure in the form of microscopic damping through
material property using equation 4.1. The damped material property of Undamaged structure is given in the
table 4.6.

Table 4.6: Material property for loss factor 0.0114

Foam Adhesive Face sheet Spar Cap
Young’s Modulus (E) 1.17 MPa 62.9 MPa

Poison Ratio 0.35 0.3
Young’s Modulus in X direction (Ex) 229 MPa 229 MPa
Young’s Modulus in Y direction (Ey) 34.3 MPa 34.3 MPa
Young’s Modulus in Z direction (Ez) 34.3 MPa 34.3 MPa

Poison Ratio XY 0.3 0.3
Poison Ratio YZ 0.4 0.4
Poison Ratio XZ 0.3 0.3

Shear Modulus in XY direction (GXY ) 57.2 MPa 57.2 MPa
Shear Modulus in YZ direction (GY Z) 44.0 MPa 44.0 MPa
Shear Modulus in XZ direction (GXZ) 57.2 MPa 57.2 MPa

The material property of 50 % damaged structure is given in the table 4.7. 50 % damage means that the
damping coefficient is increased by 0.015 compared to undamaged undamped material property.
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Table 4.7: Material property for loss factor 0.0152

Foam Adhesive Face sheet Spar Cap
Young’s Modulus (E) 1.55 MPa 83.7 MPa

Poison Ratio 0.35 0.3
Young’s Modulus in X direction (Ex) 305 MPa 305 MPa
Young’s Modulus in Y direction (Ey) 45.7 MPa 45.7 MPa
Young’s Modulus in Z direction (Ez) 45.7 MPa 45.7 MPa

Poison Ratio XY 0.3 0.3
Poison Ratio YZ 0.4 0.4
Poison Ratio XZ 0.3 0.3

Shear Modulus in XY direction (GXY ) 76.1 MPa 76.1 MPa
Shear Modulus in YZ direction (GY Z) 58.6 MPa 58.6 MPa
Shear Modulus in XZ direction (GXZ) 76.1 MPa 76.1 MPa

The material property of 100 % damaged structure is given in the table 4.8. 100 % damage means that the
damping coefficient is increased by 0.02 compared to undamaged undamped material property.

Table 4.8: Material property for loss factor 0.0227

Foam Adhesive Face sheet Spar Cap
Young’s Modulus (E) 2.32 MPa 125 MPa

Poison Ratio 0.35 0.3
Young’s Modulus in X direction (Ex) 455 MPa 455 MPa
Young’s Modulus in Y direction (Ey) 68.3 MPa 68.3 MPa
Young’s Modulus in Z direction (Ez) 68.3 MPa 68.3 MPa

Poison Ratio XY 0.3 0.3
Poison Ratio YZ 0.4 0.4
Poison Ratio XZ 0.3 0.3

Shear Modulus in XY direction (GXY ) 114 MPa 114 MPa
Shear Modulus in YZ direction (GY Z) 87.5 MPa 87.5 MPa
Shear Modulus in XZ direction (GXZ) 114 MPa 114 MPa

The material property of 200 % damaged structure is given in the table 4.9. 200 % damage means that the
damping coefficient is increased by 0.03 compared to undamaged undamped material property.

Table 4.9: Material property for loss factor 0.0332

Foam Adhesive Face sheet Spar Cap
Young’s Modulus (E) 3.39 MPa 183 MPa

Poison Ratio 0.35 0.3
Young’s Modulus in X direction (Ex) 664 MPa 664 MPa
Young’s Modulus in Y direction (Ey) 99.6 MPa 99.6 MPa
Young’s Modulus in Z direction (Ez) 99.6 MPa 99.6 MPa

Poison Ratio XY 0.3 0.3
Poison Ratio YZ 0.4 0.4
Poison Ratio XZ 0.3 0.3

Shear Modulus in XY direction (GXY ) 166 MPa 166 MPa
Shear Modulus in YZ direction (GY Z) 128 MPa 128 MPa
Shear Modulus in XZ direction (GXZ) 166 MPa 166 MPa

The material property of 350 % damaged structure is given in the table 4.10. 350 % damage means that the
damping coefficient is increased by 0.045 compared to undamaged undamped material property.
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Table 4.10: Material property for loss factor 0.0450

Foam Adhesive Face sheet Spar Cap
Young’s Modulus (E) 4.59 MPa 248 MPa

Poison Ratio 0.35 0.3
Young’s Modulus in X direction (Ex) 901 MPa 901 MPa
Young’s Modulus in Y direction (Ey) 135 MPa 135 MPa
Young’s Modulus in Z direction (Ez) 135 MPa 135 MPa

Poison Ratio XY 0.3 0.3
Poison Ratio YZ 0.4 0.4
Poison Ratio XZ 0.3 0.3

Shear Modulus in XY direction (GXY ) 225 MPa 225 MPa
Shear Modulus in YZ direction (GY Z) 173 MPa 173 MPa
Shear Modulus in XZ direction (GXZ) 225 MPa 225 MPa

The material property of 500 % damaged structure is given in the table 4.11. 500 % damage means that the
damping coefficient is increased by 0.06 compared to undamaged undamped material property.

Table 4.11: Material property for loss factor 0.0632

Foam Adhesive Face sheet Spar Cap
Young’s Modulus (E) 6.45 MPa 348 MPa

Poison Ratio 0.35 0.3
Young’s Modulus in X direction (Ex) 1270 MPa 1270 MPa
Young’s Modulus in Y direction (Ey) 190 MPa 190 MPa
Young’s Modulus in Z direction (Ez) 190 MPa 190 MPa

Poison Ratio XY 0.3 0.3
Poison Ratio YZ 0.4 0.4
Poison Ratio XZ 0.3 0.3

Shear Modulus in XY direction (GXY ) 316 MPa 316 MPa
Shear Modulus in YZ direction (GY Z) 243 MPa 243 MPa
Shear Modulus in XZ direction (GXZ) 316 MPa 316 MPa

The material property of 650 % damaged structure is given in the table 4.12. 650 % damage means that the
damping coefficient is increased by 0.075 compared to undamaged undamped material property.

Table 4.12: Material property for loss factor 0.0776

Foam Adhesive Face sheet Spar Cap
Young’s Modulus (E) 7.91 MPa 427 MPa

Poison Ratio 0.35 0.3
Young’s Modulus in X direction (Ex) 1550 MPa 1550 MPa
Young’s Modulus in Y direction (Ey) 233 MPa 233 MPa
Young’s Modulus in Z direction (Ez) 233 MPa 233 MPa

Poison Ratio XY 0.3 0.3
Poison Ratio YZ 0.4 0.4
Poison Ratio XZ 0.3 0.3

Shear Modulus in XY direction (GXY ) 388 MPa 388 MPa
Shear Modulus in YZ direction (GY Z) 298 MPa 298 MPa
Shear Modulus in XZ direction (GXZ) 388 MPa 388 MPa

4.3.1 Scenario 1: Damage only in top surfaces near fixed end with 2 %, 4 %, 6 % defected area

To model the damaged section, undamaged and damaged surfaces are modelled separately and joined together
to form a part. Damage in top surface include defect in top spar cap, top adhesive and top face sheet.
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4.3.1.1 Case 1: Top surface damage near fixed end with 2 % defected area

Figure 4.8 shows the damage in top surfaces near the fixed end with 2 % damaged area. Length of the defected
area is 40 cm (2 % of 20 m i.e., length of blade). Since the element size for meshing is chosen as 25 cm there
are 2 defected elements in adhesive, 2 defected elements in top face sheet and 8 defected elements in top spar
cap. So totally there are 12 defected elements for this case.

Figure 4.8: Top surface fixed end damage with 2 % defected area

4.3.1.2 Case 2: Top surface damage near the fixed end with 4 % defected area

Figure 4.9 shows the damage in top surfaces near the fixed end with 4 % damaged area. Length of the defected
area is 80 cm (4 % of 20 m i.e., length of blade). There are 4 defected elements in adhesive, 4 defected elements
in top face sheet and 16 defected elements in top spar cap. So totally there are 24 defected elements for this
case.

Figure 4.9: Top surface fixed end damage with 4 % defected area
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4.3.1.3 Case 3: Top surface damage near the fixed end with 6 % defected area

Figure 4.10 shows the damage in top surfaces near the fixed end with 6 % damaged area. Length of the defected
area is 120 cm (6 % of 20 m i.e., length of blade). There are 6 defected elements in adhesive, 6 defected elements
in top face sheet and 24 defected elements in top spar cap. So totally there are 36 defected elements for this
case.

Figure 4.10: Top surface fixed end damage with 6 % defected area

4.3.2 Scenario 2: Damage only in top surfaces near mid section with 2 %, 4 %, 6 % defected
area

4.3.2.1 Case 1: Top surface damage near mid section with 2 % defected area

Figure 4.11 shows the damage in top surfaces near mid section with 2 % damaged area. Length of the defected
area is 40 cm (2 % of 20 m i.e., length of blade). Since the element size for meshing is chosen as 25 cm there
are 2 defected elements in adhesive, 2 defected elements in top face sheet and 8 defected elements in top spar
cap. So totally there are 12 defected elements for this case.

Figure 4.11: Top surface mid section damage with 2 % defected area
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4.3.2.2 Case 2: Top surface damage near mid section with 4 % defected area

Figure 4.12 shows the damage in top surfaces near mid section with 4 % damaged area. Length of the defected
area is 80 cm (4 % of 20 m i.e., length of blade). There are 4 defected elements in adhesive, 4 defected elements
in top face sheet and 16 defected elements in top spar cap. So totally there are 24 defected elements for this
case.

Figure 4.12: Top surface mid section damage with 4 % defected area

4.3.2.3 Case 3: Top surface damage near mid section with 6 % defected area

Figure 4.13 shows the damage in top surfaces near mid section with 6 % damaged area. Length of the defected
area is 120 cm (6 % of 20 m i.e., length of blade). There are 6 defected elements in adhesive, 6 defected elements
in top face sheet and 24 defected elements in top spar cap. So totally there are 36 defected elements for this
case.

Figure 4.13: Top surface mid section damage with 6 % defected area

Damage in top and core surface includes defect in top spar cap, top adhesive, top, left and right face sheet and
foam.



4.3 Damage modelling of spar cap - shear web assembly 43

4.3.3 Scenario 3: Damage in top and core surfaces near fixed end with 2 %, 4 %, 6 % defected
area

4.3.3.1 Case 1: Top and core surface damage near the fixed end with 2 % defected area

Figure 4.14 shows the damage in top and core surfaces near the fixed end with 2 % damaged area. Length of
the defected area is 40 cm (2 % of 20 m i.e., length of blade). Since the element size for meshing is chosen as 25
cm, there are 2 defected elements in adhesive and top face sheet surface each, 8 defected elements in top spar
cap and 4 defected elements in left face sheet, right face sheet and foam each. So totally there are 24 defected
elements for this case.

Figure 4.14: Top and core surfaces fixed end damage with 2 % defected area

4.3.3.2 Case 2: Top and core surface damage near the fixed end with 4 % defected area

Figure 4.15 shows the damage in top and core surfaces near the fixed end with 4 % damaged area. Length of
the defected area is 80 cm (4 % of 20 m i.e., length of blade). There are 4 defected elements in adhesive and
top face sheet surface each, 16 defected elements in top spar cap and 8 defected elements in left face sheet, right
face sheet and foam each. So totally there are 48 defected elements for this case.

Figure 4.15: Top and core surface fixed end damage with 4 % defected area
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4.3.3.3 Case 3: Top and core surface damage near the fixed end with 6 % defected area

Figure 4.16 shows the damage in top and core surfaces near the fixed end with 6 % damaged area. Length of
the defected area is 120 cm (6 % of 20 m i.e., length of blade). There are 6 defected elements in adhesive and
top face sheet surface each, 24 defected elements in top spar cap and 12 defected elements in left face sheet,
right face sheet and foam each. So totally there are 72 defected elements for this case.

Figure 4.16: Top and core surface fixed end damage with 6 % defected area

4.3.4 Scenario 4: Damage in top and core surfaces near mid section with 2 %, 4 %, 6 % defected
area

4.3.4.1 Case 1: Top and core surface damage near mid section with 2 % defected area

Figure 4.17 shows the damage in top and core surfaces near the midsection with 2 % damaged area. Length of
the defected area is 40 cm (2 % of 20 m i.e., length of blade). Since the element size for meshing is chosen as
25 cm there are 2 defected elements in adhesive and top face sheet surface each, 8 defected elements in top spar
cap and 4 defected elements in left face sheet, right face sheet and Foam each. So totally there are 24 defected
elements for this case.

Figure 4.17: Top and core surface mid section damage with 2 % defected area
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4.3.4.2 Case 2: Top and core surface damage near mid section with 4 % defected area

Figure 4.18 shows the damage in top and core surfaces near the midsection with 4 % damaged area. Length of
the defected area is 80 cm (4 % of 20 m i.e., length of blade). There are 4 defected elements in adhesive and
top face sheet surface each, 16 defected elements in top spar cap and 8 defected elements in left face sheet, right
face sheet and Foam each. So totally there are 48 defected elements for this case.

Figure 4.18: Top and core surface mid section damage with 4 % defected area

4.3.4.3 Case 3: Top and core surface damage near mid section with 6 % defected area

Figure 4.19 shows the damage in top and core surfaces near the midsection with 6 % damaged area. Length of
the defected area is 120 cm (6 % of 20 m i.e., length of blade). There are 6 defected elements in adhesive and
top face sheet surface each, 24 defected elements in top spar cap and 12 defected elements in left face sheet,
right face sheet and Foam each. So totally there are 72 defected elements for this case.

Figure 4.19: Top and core surface mid section damage with 6 % defected area

To identify the damaged elements or node, the material property of the undamaged structure is changed to
damped material properties as given in tables 4.7 - 4.12 for each scenario and the damped mass matrix and
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stiffness matrix are extracted from ANSYS using *DMAT command and the eigenvalue and eigenvector is
calculated using *EIGEN command and modal analysis option is chosen as DAMP.
The number of defected elements for different damage scenario is summarized in the below table for easy
comparison and understanding.

Table 4.13: Number of defected elements for each scenario

Length of
Defected area

Top
Spar cap

Top
Adhesive

Face sheet Foam TotalTop Left Right

Scenario
1

Case 1 40 cm 8 2 2 - - - 12
Case 2 80 cm 16 4 4 - - - 24
Case 3 120 cm 24 6 6 - - - 36

Scenario
2

Case 1 40 cm 8 2 2 - - - 12
Case 2 80 cm 16 4 4 - - - 24
Case 3 120 cm 24 6 6 - - - 36

Scenario
3

Case 1 40 cm 8 2 2 4 4 4 24
Case 2 80 cm 16 4 4 8 8 8 48
Case 3 120 cm 24 6 6 12 12 12 72

Scenario
4

Case 1 40 cm 8 2 2 4 4 4 24
Case 2 80 cm 16 4 4 8 8 8 48
Case 3 120 cm 24 6 6 12 12 12 72

Note:
Scenario 1 : Damage only in top surfaces near the fixed end.
Scenario 2 : Damage only in top surfaces near the mid section.
Scenario 3 : Damage in top and core surfaces near the fixed end.
Scenario 4 : Damage in top and core surfaces near the mid section.
Case 1: 2 % defected area.
Case 2: 4 % defected area.
Case 3: 6 % defected area.



5 Damage Identification and Localization

The percentage increase in modal damping of the whole structure proves that the structure is damaged. To
localize the damage the eigen vector that corresponds to flapwise and edgewise frequencies is noted down. From
the eigen vector, phase angle is calculated. The change in node shape is compared to find the damaged elements.
The node change of element which is damaged or in the vicinity of damage will be higher compared to the nodes
far away from the damage. In other words, when the structure is undamaged the change in phase angle is very
minimum (almost zero). However, when the structure is damaged, the change in phase angle will be higher in
place of damage and the change in phase angle will keep on reducing as one move away from defected element.
Since the current technology allows one to measure the node change only in top surfaces, eigen vector of the
top spar cap chosen for damage identification and localization In this chapter, the concept used to identify
and localize the defect based on the change in modal damping and node shape is explained. And the defect
identification and localization of Spar cap - Shear web assembly for four different damage scenarios such as
damage in only in the top surface near the fixed end and midsection with 2 %, 4 % and 6 % defected area and
damage in the top and core surfaces with a defect in the fixed end and midsection with 2 %, 4 % and 6 %
defected area are explained.

5.1 Damage identification and localization concept

5.1.1 Damage identification

Based on the literature review, it is evident that local damage will affect the dynamic response of the wind
turbine blade. Change in the dynamic response of the wind turbine blade such as modal damping and mode
shapes are used to identify and localize damage. The first approach to identify damage is based on an increase
in modal damping. This index shows the dissipation of energy within the whole structure. The eigenvalue of
the system Si can be written as [51]

Si = −ai ± jbi (5.1)

where, ai and bi are real and imaginary numbers. Then the modal damping of system can be obtained by

I1 = ζi =
−ai
ωi

(5.2)

where, ωi is given by

ωi =
√
a2i + b2i (5.3)

For the general case of damping, ωi can be interpreted as the damped natural frequency of mode i [53]. Local
damage increases the degree of non-proportionality of the system [20], [21]. The second approach to identify
damage is based on an index which shows the degree of non-proportionality of the system. One of this index
can be the weight of the imaginary part of the eigen mode which is defined as [19], [54]

I2 =

n∑
i=1

∥∥Imϕi∥∥
n
∥∥ϕi∥∥ (5.4)

Where Im is the imaginary part of mode shapes, ϕi is the it mode shapes and n is the total number of oscillatory
modes in the system. The index I1 and I2 helps identify the damage but not in localizing the damaged elements
[51].

5.1.2 Damage localization

The dissipation of energy is not uniform within the structure when it is damaged. Dissipation of energy is more
in the damaged area. There will be relative increases in the degree of non-proportionality at the defected area
and surrounding area. This means that the phase angle change is more at the nodes close to the damaged area,
and the phase angle is less prone to change far from the damaged area. This concept is used to define the third
index that helps in localizing the damage. The index is given as [51]

I3(nodek) =

∑m
j=1 θ

iD

jk −
∑m
j=1 θ

iU

jk

mπ
(5.5)

where θi
D

jk is the phase of mode shape j of node k of the damaged structure, θi
U

jk is the phase of mode shape j
of node k of the undamaged structure, m is the degree of freedom for each node and n is the total number of
oscillatory modes. To calculate the damaged index first few modes are considered.

47
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5.2 Damage identification and localization of spar cap - shear web assembly
The steps followed to identify and localize the damage in a spar cap - shear web assembly for four different
damage scenarios, damage only in the top surface near the fixed end and midsection with 2 %, 4 % and 6
% defected area and damage in the top and core surfaces with a defect in the fixed end and midsection with
2 %, 4 % and 6 % defected area are as follows. To detect the damage for each scenario, the eigenvalue and
eigenvector of the structure for different microscopic damping coefficient corresponding to 1st and 2nd flapwise
and edgewise frequencies are compared. The concept that the damping of the structure will increase when it
is damaged is used to detect the damage. The modal damping of the structure is calculated as follows. The
eigenvalue of the structure with microscopic damping coefficient of 0.01 corresponding to 1st natural frequency
is −0.01560 + 0.6589. The modal damping of the undamaged structure is calculated using the formula 5.2

I1 =
−ai√
a2i + b2i

=
0.01560√

0.015602 + 0.65892

= 0.02367

(5.6)

To localize the damage, the eigenvector that corresponds to 1st and 2nd flapwise and edgewise frequencies are
noted down. From the eigenvector, the phase angle is calculated using formula

θ = tan−1
(
bi
ai

)
(5.7)

To find the damaged elements, change in node shape is compared. Node change of damaged elements or elements
in the vicinity of damage will be higher than the node of elements far away from the damage. In other words,
when the structure is undamaged, the change in phase angle is minimum (almost zero). However, when the
structure is damaged, the change in phase angle will be higher in place of damage, and the change in phase
angle will keep on reducing as one move away from the defected element. The damaged node is identified by
calculating the difference between the phase angle of the element and the maximum phase angle. Formula 5.8
is used to identify the damaged elements.

I = [θ − θm] (5.8)

Since the current technology allows one to measure the node change only in top surfaces, eigenvector of the top
spar cap chosen for damage identification and localization.
The modal damping increase for 6 different microscopic damping coefficient (damage condition) is calculated
using formula 5.2 for different scenarios. The eigenvector of first natural frequency is used for modal damping
calculation in each scenario. The percentage increase of damping of the structure is calculated using formula

%increase =

(
I12 − I1
I1

)
∗ 100 (5.9)

For simplicity, change in phase angle calculation, and plots for each element are done for microscopic damping
coefficients 0.02, 0.045 and 0.075, among which plots corresponding to damping coefficient 0.075 is given below
for each scenario. Plots of other damping coefficients are given in Appendix A. Also, in the plots corresponding
to 2nd flapwise and edgewise bending frequency, there is a sudden rise in phase angle (noise) around elements
60 to 70. The reason for this sharp change in phase angle is that the real part of the eigenvector is smaller for
these elements, so dividing the imaginary part with a small value for calculating the phase angle results in an
unexpected rise in phase angle. Also, deflection in these nodes is very small. So, when divided by a small value
results in the unusual peak in phase angle around these nodes. Since this rise happens at elements which were
not modelled as defected one, this change can be neglected. [Note: Only the plots of microscopic damping
coefficient 0.075 is given here. Plots of other damping coefficients are given in Appendix A]

5.2.1 Scenario 1: Damage only in top surfaces near fixed end with 2 %, 4 %, 6 % defected area

5.2.1.1 Case 1: Top surface damage near fixed end with 2 % defected area

The modal damping calculation and percent increase in damping of structure for case 1 for 6 different microscopic
damping coefficient (damage condition) is given below.
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Table 5.1: Modal damping and percentage increase of damping for scenario 1 case 1

Damping Coefficient Eigen Value Modal Damping % Increasing in damping
0.015 -0.01580 + 0.6590i 0.02397 1.267
0.02 -0.01619 + 0.6590i 0.02456 3.76
0.03 -0.01673 + 0.6591i 0.02537 7.18
0.045 -0.01733 + 0.6592i 0.02628 11.03
0.06 -0.01820 + 0.6595i 0.02759 16.56
0.075 -0.01882 + 0.6598i 0.02851 20.45

The percentage increase in modal damping of the whole structure proves that it is damaged. For simplicity, the
change in Phase angle of elements and damaged node identification plots for 1st and 2nd flapwise and edgewise
frequencies are calculated and plotted for microscopic damping coefficient 0.075 and are given below.

Figure 5.1: Scenario 1 case 1 650 % damage 1st flapwise bending frequency

Figure 5.2: Scenario 1 case 1 650 % damage 2nd flapwise bending frequency

Figure 5.3: Scenario 1 case 1 650 % damage 1st edgewise bending frequency
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Figure 5.4: Scenario 1 case 1 650 % damage 2nd edgewise bending frequency

From the above figures, the change in phase angle is more in first 2 elements, which in turn indicates that these
elements are defected.

5.2.1.2 Case 2: Top surface damage near fixed end with 4 % defected area

The modal damping calculation and percent increase in damping of structure for case 2 for 6 different microscopic
damping coefficient (damage condition) is given below.

Table 5.2: Modal damping and percentage increase of damping for Scenario 1 case 2

Damping Coefficient Eigen Value Modal Damping % Increasing in damping
0.015 -0.01598 + 0.6590i 0.02424 2.41
0.02 -0.01673 + 0.6590i 0.02538 7.22
0.03 -0.01776 + 0.6592i 0.02693 13.77
0.045 -0.01890 + 0.6594i 0.02865 21.04
0.06 -0.02059 + 0.6600i 0.03118 31.73
0.075 -0.02179 + 0.6605i 0.03297 39.29

The change in Phase angle of elements and damaged node identification plots for 1st and 2nd flapwise and
edgewise frequencies for microscopic damping coefficient 0.075 is given below.

Figure 5.5: Scenario 1 case 2 650 % damage 1st flapwise bending frequency

Figure 5.6: Scenario 1 case 2 650 % damage 2nd flapwise bending frequency
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Figure 5.7: Scenario 1 case 2 650 % damage 1st edgewise bending frequency

Figure 5.8: Scenario 1 case 2 650 % damage 2nd edgewise bending frequency

From the above figures, the change in phase angle is more in first 4 elements which in turn indicates that these
elements are defected.

5.2.1.3 Case 3: Top surface damage near fixed end with 6 % defected area

The modal damping calculation and percent increase in damping of structure for case 3 for 6 different microscopic
damping coefficient (damage condition) is given below.

Table 5.3: Modal damping and percentage increase of damping for scenario 1 case 3

Damping Coefficient Eigen Value Modal Damping % Increasing in damping
0.015 -0.01615 + 0.6590i 0.02450 3.51
0.02 -0.01723 + 0.6590i 0.02614 10.44
0.03 -0.01872 + 0.6593i 0.02838 19.90
0.045 -0.02036 + 0.6596i 0.03085 30.33
0.06 -0.02280 + 0.6604i 0.03450 45.75
0.075 -0.02455 + 0.6612i 0.03710 56.74

The change in phase angle of elements and damaged node identification plots for 1st and 2nd flapwise and
edgewise frequencies for microscopic damping coefficient 0.075 is given below.

Figure 5.9: Scenario 1 case 3 650 % damage 1st flapwise bending frequency
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Figure 5.10: Scenario 1 case 3 650 % damage 2nd flapwise bending frequency

Figure 5.11: Scenario 1 case 3 650 % damage 1st edgewise bending frequency

Figure 5.12: Scenario 1 case 3 650 % damage 2nd edgewise bending frequency

From the above figures, the change in phase angle is more in first 6 elements which indicates that these elements
are defected.

5.2.2 Scenario 2: Damage only in top surfaces near mid section with 2 %, 4 %, 6 % defected
area

5.2.2.1 Case 1: Top surface damage near mid section with 2 % defected area

The modal damping calculation and percent increase in damping of structure for case 1 for 6 different microscopic
damping coefficient (damage condition) is given below.

Table 5.4: Modal damping and percentage increase of damping for Scenario 2 case 1

Damping Coefficient Eigen Value Modal Damping % Increasing in damping
0.015 -0.01563 + 0.6589i 0.02371 0.17
0.02 -0.01567 + 0.6589i 0.02378 0.46
0.03 -0.01573 + 0.6590i 0.02386 0.80
0.045 -0.01580 + 0.6590i 0.02397 1.27
0.06 -0.01589 + 0.6590i 0.02411 1.86
0.075 -0.01596 + 0.6590i 0.02421 2.28

The change in Phase angle of elements and damaged node identification plots for 1st and 2nd flapwise and
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edgewise frequencies for microscopic damping coefficient 0.075 is given below.

Figure 5.13: Scenario 2 case 1 650 % damage 1st flapwise bending frequency

Figure 5.14: Scenario 2 case 1 650 % damage 2nd flapwise bending frequency

Figure 5.15: Scenario 2 case 1 650 % damage 1st edgewise bending frequency

Figure 5.16: Scenario 2 case 1 650 % damage 2nd edgewise bending frequency

From the figure 5.14, the change in phase angle is more in elements 42 and 43 (2 elements) this shows that these
elements are defected.

5.2.2.2 Case 2: Top surface damage near mid section with 4 % defected area

The modal damping calculation and percent increase in damping of structure for case 2 for 6 different microscopic
damping coefficient (damage condition) is given below.
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Table 5.5: Modal damping and percentage increase of damping for scenario 2 case 2

Damping Coefficient Eigen Value Modal Damping % Increasing in damping
0.015 -0.01565 + 0.6589i 0.02375 0.34
0.02 -0.01575 + 0.6590i 0.02389 0.93
0.03 -0.01587 + 0.6590i 0.02407 1.69
0.045 -0.01602 + 0.6590i 0.02430 2.66
0.06 -0.01623 + 0.6591i 0.02462 4.01
0.075 -0.01638 + 0.6592i 0.02484 4.94

The change in phase angle of elements and damaged node identification plots for 1st and 2nd flapwise and
edgewise frequencies for microscopic damping coefficient 0.075 is given below.

Figure 5.17: Scenario 2 case 2 650 % damage 1st flapwise bending frequency

Figure 5.18: Scenario 2 case 2 650 % damage 2nd flapwise bending frequency

Figure 5.19: Scenario 2 case 2 650 % damage 1st edgewise bending frequency
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Figure 5.20: Scenario 2 case 2 650 % damage 2nd edgewise bending frequency

From figure 5.18, the change in phase angle is more in elements 40, 41, 42 and 43 (4 elements) this shows that
these elements are defected.

5.2.2.3 Case 3: Top surface damage near mid section with 6 % defected area

The modal damping calculation and percent increase in damping of structure for case 3 for 6 different microscopic
damping coefficient (damage condition) is given below.

Table 5.6: Modal damping and percentage increase of damping for scenario 2 case 3

Damping Coefficient Eigen Value Modal Damping % Increasing in damping
0.015 -0.01567 + 0.6589i 0.02378 0.46
0.02 -0.01580 + 0.6590i 0.02397 1.27
0.03 -0.01598 + 0.6590i 0.02424 2.41
0.045 -0.01619 + 0.6590i 0.02456 3.76
0.06 -0.01648 + 0.6591i 0.02500 5.62
0.075 -0.01669 + 0.6592i 0.02531 6.93

The change in Phase angle of elements and damaged node identification plots for 1st and 2nd flapwise and
edgewise frequencies for microscopic damping coefficient 0.075 is given below.

Figure 5.21: Scenario 2 case 3 650 % damage 1st flapwise bending frequency

Figure 5.22: Scenario 2 case 3 650 % damage 2nd flapwise bending frequency
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Figure 5.23: Scenario 2 case 3 650 % damage 1st edgewise bending frequency

Figure 5.24: Scenario 2 case 3 650 % damage 2nd edgewise bending frequency

From figure 5.22, the change in phase angle is more in elements 40, 41, 42, 43,44 and 45 (6 elements) this shows
that these elements are defected.

5.2.3 Scenario 3: Damage in top and core surfaces near fixed end with 2 %, 4 %, 6 % defected
area

5.2.3.1 Case 1: Top and core surface damage near fixed end with 2 % defected area

The modal damping calculation and percent increase in damping of structure for case 1 for 6 different microscopic
damping coefficient (damage condition) is given below.

Table 5.7: Modal damping and percentage increase of damping for scenario 3 case 1

Damping Coefficient Eigen Value Modal Damping % Increasing in damping
0.015 -0.01586 + 0.6590i 0.02406 1.65
0.02 -0.01635 + 0.6590i 0.02480 4.77
0.03 -0.01703 + 0.6591i 0.02583 9.13
0.045 -0.01779 + 0.6592i 0.02698 13.98
0.06 -0.01892 + 0.6596i 0.02867 21.12
0.075 -0.01972 + 0.6599i 0.02987 26.19

The change in Phase angle of elements and damaged node identification plots for 1st and 2nd flapwise and
edgewise frequencies for microscopic damping coefficient 0.075 is given below.

Figure 5.25: Scenario 3 case 1 650 % damage 1st flapwise bending frequency
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Figure 5.26: Scenario 3 case 1 650 % damage 2nd flapwise bending frequency

Figure 5.27: Scenario 3 case 1 650 % damage 1st edgewise bending frequency

Figure 5.28: Scenario 3 case 1 650 % damage 2nd edgewise bending frequency

From the above figures, the change in phase angle is more in first 2 elements which in turn indicates that these
elements are defected.

5.2.3.2 Case 2: Top and core surface damage near fixed end with 4 % defected area

The modal damping calculation and percent increase in damping of structure for case 2 for 6 different microscopic
damping coefficient (damage condition) is given below.

Table 5.8: Modal damping and percentage increase of damping for scenario 3 case 2

Damping Coefficient Eigen Value Modal Damping % Increasing in damping
0.015 -0.01606 + 0.6590i 0.02436 2.92
0.02 -0.01696 + 0.6590i 0.02573 8.70
0.03 -0.01820 + 0.6592i 0.02760 16.60
0.045 -0.01957 + 0.6595i 0.02966 25.31
0.06 -0.02161 + 0.6601i 0.03272 38.23
0.075 -0.02308 + 0.6607i 0.03491 47.49

The change in Phase angle of elements and damaged node identification plots for 1st and 2nd flapwise and
edgewise frequencies for microscopic damping coefficient 0.075 is given below.
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Figure 5.29: Scenario 3 case 2 650 % damage 1st flapwise bending frequency

Figure 5.30: Scenario 3 case 2 650 % damage 2nd flapwise bending frequency

Figure 5.31: Scenario 3 case 2 650 % damage 1st edgewise bending frequency

Figure 5.32: Scenario 3 case 2 650 % damage 2nd edgewise bending frequency

From the above figures, the change in phase angle is more in first 4 elements which in turn indicates that these
elements are defected.

5.2.3.3 Case 3: Top and core surface damage near fixed end with 6 % defected area

The modal damping calculation and percent increase in damping of structure for case 3 for 6 different microscopic
damping coefficient (damage condition) is given below.
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Table 5.9: Modal damping and percentage increase of damping for scenario 3 case 3

Damping Coefficient Eigen Value Modal Damping % Increasing in damping
0.015 -0.01624 + 0.6590i 0.02464 4.10
0.02 -0.01751 + 0.6591i 0.02656 12.21
0.03 -0.01924 + 0.6593i 0.02917 23.24
0.045 -0.02116 + 0.6597i 0.03206 35.45
0.06 -0.02403 + 0.6605i 0.03636 53.61
0.075 -0.02608 + 0.6614i 0.03940 66.45

The change in Phase angle of elements and damaged node identification plots for 1st and 2nd flapwise and
edgewise frequencies for microscopic damping coefficient 0.075 is given below.

Figure 5.33: Scenario 3 case 3 650 % damage 1st flapwise bending frequency

Figure 5.34: Scenario 3 case 3 650 % damage 2nd flapwise bending frequency

Figure 5.35: Scenario 3 case 3 650 % damage 1st edgewise bending frequency
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Figure 5.36: Scenario 3 case 3 650 % damage 2nd edgewise bending frequency

From the above figures, the change in phase angle is more in first 6 elements which indicates that these elements
are defected.

5.2.4 Scenario 4: Damage in top and core surfaces near mid section with 2 %, 4 %, 6 % defected
area

5.2.4.1 Case 1: Top and core surface damage near mid section with 2 % defected area

The modal damping calculation and percent increase in damping of structure for case 1 for 6 different microscopic
damping coefficient (damage condition) is given below.

Table 5.10: Modal damping and percentage increase of damping for scenario 4 case 1

Damping Coefficient Eigen Value Modal Damping % Increasing in damping
0.015 -0.01563 + 0.6589i 0.02371 0.17
0.02 -0.01568 + 0.6589i 0.02379 0.51
0.03 -0.01575 + 0.6590i 0.02389 0.93
0.045 -0.01582 + 0.6590i 0.02400 1.39
0.06 -0.01593 + 0.6590i 0.02417 2.11
0.075 -0.01601 + 0.6591i 0.02428 2.58

The change in Phase angle of elements and damaged node identification plots for 1st and 2nd flapwise and
edgewise frequencies for microscopic damping coefficient 0.075 is given below.

Figure 5.37: Scenario 4 case 1 650 % damage 1st flapwise bending frequency

Figure 5.38: Scenario 4 case 1 650 % damage 2nd flapwise bending frequency
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Figure 5.39: Scenario 4 case 1 650 % damage 1st edgewise bending frequency

Figure 5.40: Scenario 4 case 1 650 % damage 2nd edgewise bending frequency

From figure 5.38, the change in phase angle is more in elements 42 and 43 (2 elements) this shows that these
elements are defected.

5.2.4.2 Case 2: Top and core surface damage near mid section with 4 % defected area

The modal damping calculation and percent increase in damping of structure for case 2 for 6 different microscopic
damping coefficient (damage condition) is given below.

Table 5.11: Modal damping and percentage increase of damping for scenario 4 case 2

Damping Coefficient Eigen Value Modal Damping % Increasing in damping
0.015 -0.01566 + 0.6589i 0.02376 0.38
0.02 -0.01576 + 0.6590i 0.02391 1.01
0.03 -0.01591 + 0.6590i 0.02414 1.99
0.045 -0.01607 + 0.6590i 0.02438 3.00
0.06 -0.01631 + 0.6591i 0.02474 4.52
0.075 -0.01648 + 0.6592i 0.02499 5.58

The change in Phase angle of elements and damaged node identification plots for 1st and 2nd flapwise and
edgewise frequencies for microscopic damping coefficient 0.075 is given below.

Figure 5.41: Scenario 4 case 2 650 % damage 1st flapwise bending frequency
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Figure 5.42: Scenario 4 case 2 650 % damage 2nd flapwise bending frequency

Figure 5.43: Scenario 4 case 2 650 % damage 1st edgewise bending frequency

Figure 5.44: Scenario 4 case 2 650 % damage 2nd edgewise bending frequency

From figure 5.42, the change in phase angle is more in elements 40, 41, 42 and 43 (4 elements) this shows that
these elements are defected.

5.2.4.3 Case 3: Top and core surface damage near mid section with 6 % defected area

The modal damping calculation and percent increase in damping of structure for case 2 for 6 different microscopic
damping coefficient (damage condition) is given below.

Table 5.12: Modal damping and percentage increase of damping for scenario 4 case 3

Damping Coefficient Eigen Value Modal Damping % Increasing in damping
0.015 -0.01568 + 0.6589i 0.02379 0.51
0.02 -0.01583 + 0.6590i 0.02401 1.44
0.03 -0.01604 + 0.6590i 0.02433 2.79
0.045 -0.01626 + 0.6590i 0.02467 4.22
0.06 -0.01660 + 0.6592i 0.02517 6.34
0.075 -0.01684 + 0.6593i 0.02553 7.86

The change in Phase angle of elements and damaged node identification plots for 1st and 2nd flapwise and
edgewise frequencies for microscopic damping coefficient 0.075 is given below.
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Figure 5.45: Scenario 4 case 3 650 % damage 1st flapwise bending frequency

Figure 5.46: Scenario 4 case 3 650 % damage 2nd flapwise bending frequency

Figure 5.47: Scenario 4 case 3 650 % damage 1st edgewise bending frequency

Figure 5.48: Scenario 4 case 3 650 % damage 2nd edgewise bending frequency

From the figure 5.46 the change in phase is more in elements 40, 41, 42, 43,44 and 45 (6 elements) this shows
that these elements are defected.
The modal damping percent increase for different loss factor (microscopic damping coefficients) for each dam-
aged scenario obtained from the above chapter is summarized in the below table for easy comparison and
understanding
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Table 5.13: Increase in overall damping of the structure for different loss factor (microscopic damping coeffi-
cients)

Loss factor/ Microscopic Damping coefficient
0.015 0.02 0.03 0.045 0.06 0.075

Scenario 1
Case 1 1.27 % 3.76 % 7.18 % 11.03 % 16.56 % 20.45 %
Case 2 2.41 % 7.22 % 13.77 % 21.04 % 31.73 % 39.29 %
Case 3 3.51 % 10.44 % 19.90 % 30.33 % 45.75 % 56.74 %

Scenario 2
Case 1 0.17 % 0.46 % 0.80 % 1.27 % 1.86 % 2.28 %
Case 2 0.34 % 0.93 % 1.69 % 2.66 % 4.01 % 4.94 %
Case 3 0.46 % 1.27 % 2.41 % 3.76 % 5.62 % 6.93 %

Scenario 3
Case 1 1.65 % 4.77 % 9.13 % 13.98 % 21.12 % 26.19 %
Case 2 2.92 % 8.70 % 16.60 % 25.31 % 38.23 % 47.49 %
Case 3 4.10 % 12.21 % 23.24 % 35.45 % 53.61 % 66.45 %

Scenario 4
Case 1 0.17 % 0.51 % 0.93 % 1.39 % 2.11 % 2.58 %
Case 2 0.38 % 1.01 % 1.99 % 3.00 % 4.52 % 5.58 %
Case 3 0.51 % 1.44 % 2.79 % 4.22 % 6.34 % 7.86 %

Note:
Scenario 1 : Damage only in top surfaces near the fixed end.
Scenario 2 : Damage only in top surfaces near the mid section.
Scenario 3 : Damage in top and core surfaces near the fixed end.
Scenario 4 : Damage in top and core surfaces near the mid section.
Case 1: 2 % defected area.
Case 2: 4 % defected area.
Case 3: 6 % defected area.



6 Results and Discussions

In this chapter, results from the project are discussed and the results for each scenario are compared.
The difference in the phase angle of elements for undamaged structure and 3 damaged conditions are compared to
understand the effect of damage in increasing the overall damping of the structure. As explained in the previous
chapter, change in phase angle vs element is plotted only for undamaged damped structure and microscopic
damping coefficient of 0.02,0.045 and 0.075. As explained before in previous chapter, in the plots corresponds
to 2nd flapwise and edgewise bending frequencies there is an unexpected rise in phase angle around elements 60
to 70 because of phase angle calculation method used, so these values are not considered to avoid confusion.

6.1 Scenario 1: Damage only in top surfaces near fixed end with 2 %, 4 %, 6 %
defected area

6.1.1 Case 1: Top surface damage near fixed end with 2 % defected area

The following plots show the change in phase angle for each element at different microscopic damping coefficients
for a particular frequency for a top surface defect with 2 % defected area near fixed end. Figure 6.1 shows the
basic layout of the damaged elements of this case. The increase in overall damping of the structure calculated
using modal damping for the microscopic damping coefficients 0.02, 0.045 and 0.75 are about 3.76 %, 11.03 %
and 20.45 % respectively.

Figure 6.1: Layout of top surface damage near fixed end with 2 % defected area

Figure 6.2 shows the change in phase angle for 1st flapwise bending frequency. The maximum defection for
1st flapwise bending frequency for the microscopic damping coefficients 0.02, 0.045 and 0.75 are about -0.85◦,
-2.49◦and -4.73◦respectively.

Figure 6.2: Defect identification for scenario 1 case 1 for 1st flapwise bending frequency

Figure 6.3 shows the change in phase angle for 2nd flapwise bending frequency. The maximum defection for
2nd flapwise bending frequency for the microscopic damping coefficients 0.02, 0.045 and 0.75 are about -0.68◦,
-2.01◦and -3.81◦respectively.
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Figure 6.3: Defect identification for scenario 1 case 1 for 2nd flapwise bending frequency

Figure 6.4 shows the change in phase angle for 1st edgewise bending frequency. The maximum defection for
1st edgewise bending frequency for the microscopic damping coefficients 0.02, 0.045 and 0.75 are about -2.29◦,
-6.69◦and -12.87◦respectively.

Figure 6.4: Defect identification for scenario 1 case 1 for 1st edgewise bending frequency

Figure 6.5 shows the change in phase angle for 2nd edgewise bending frequency. The maximum defection for
2nd edgewise bending frequency for the microscopic damping coefficients 0.02, 0.045 and 0.75 are about -2.43◦,
-7.04◦and -13.50◦respectively.

Figure 6.5: Defect identification for scenario 1 case 1 for 2nd edgewise bending frequency

Figures 6.2 and 6.4 clearly shows that the phase angle change is higher near fixed end for first 2 elements and
it keep on increasing and reaches zero for the elements far away from the fixed end.

6.1.2 Case 2: Top surface damage near fixed end with 4 % defected area

The following plots show the change in phase angle for each element at different microscopic damping coefficients
for a particular frequency for a top surface defect with 4 % defected area near fixed end. Figure 6.6 shows the
basic layout of the damaged elements of this case. The increase in overall damping of the structure calculated
using modal damping for the microscopic damping coefficient 0.02, 0.045 and 0.75 is about 7.22 %, 21.04 % and
39.29 % respectively.
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Figure 6.6: Layout of top surface damage near fixed end with 4 % defected area

Figure 6.7 shows the change in phase angle for 1st flapwise bending frequency. The maximum defection for
1st flapwise bending frequency for the microscopic damping coefficients 0.02, 0.045 and 0.75 are about -0.75◦,
-2.22◦and -4.21◦respectively.

Figure 6.7: Defect identification for scenario 1 case 2 for 1st flapwise bending frequency

Figure 6.8 shows the change in phase angle for 2nd flapwise bending frequency. The maximum defection for
2nd flapwise bending frequency for the microscopic damping coefficients 0.02, 0.045 and 0.75 are about -0.52◦,
-1.53◦and -2.92◦respectively.

Figure 6.8: Defect identification for scenario 1 case 2 for 2nd flapwise bending frequency

Figure 6.9 shows the change in phase angle for 1st edgewise bending frequency. The maximum defection for
1st edgewise bending frequency for the microscopic damping coefficients 0.02, 0.045 and 0.75 are about -2.15◦,
-6.29◦and -12.11◦respectively.
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Figure 6.9: Defect identification for scenario 1 case 2 for 1st edgewise bending frequency

Figure 6.10 shows the change in phase angle for 2nd edgewise bending frequency. The maximum defection for
2nd edgewise bending frequency for the microscopic damping coefficients 0.02, 0.045 and 0.75 are about 177.83◦,
-6.90◦and -13.27◦respectively.

Figure 6.10: Defect identification for scenario 1 case 2 for 2nd edgewise bending frequency

In figure 6.10, even though the results for microscopic damping coefficients 0.01, 0.045 and 0.75 are as expected
for 2nd edgewise bending frequency, the result corresponding to microscopic damping coefficients 0.02 is an
anomaly. And the reason for this anomaly is unclear, so detailed research on this was not done. Figures 6.7
and 6.9 clearly shows that the phase angle change is higher near the fixed end for first 4 elements and it keep
on increasing and reaches zero for the elements far away from the fixed end.

6.1.3 Case 3: Top surface damage near fixed end with 6 % defected area

The following plots show the change in phase angle for each element at different microscopic damping coefficients
for a particular frequency for a top surface defect with 6 % defected area near fixed end. Figure 6.11 shows the
basic layout of the damaged elements of this case. The increase in overall damping of the structure calculated
using modal damping for the microscopic damping coefficient 0.02, 0.045 and 0.75 is about 10.44 %, 30.33 %
and 56.74 % respectively.

Figure 6.11: Layout of top surface damage near fixed end with 6 % defected area

Figure 6.12 shows the change in phase angle for 1st flapwise bending frequency. The maximum defection for
1st flapwise bending frequency for the microscopic damping coefficients 0.02, 0.045 and 0.75 are about -0.73◦,
-2.15◦and -4.09◦respectively.
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Figure 6.12: Defect identification for scenario 1 case 3 for 1st flapwise bending frequency

Figure 6.13 shows the change in phase angle for 2nd flapwise bending frequency. The maximum defection for
2nd flapwise bending frequency for the microscopic damping coefficients 0.02, 0.045 and 0.75 are about -0.47◦,
-1.38◦and -2.62◦respectively.

Figure 6.13: Defect identification for scenario 1 case 3 for 2nd flapwise bending frequency

Figure 6.14 shows the change in phase angle for 1st edgewise bending frequency. The maximum defection for
1st edgewise bending frequency for the microscopic damping coefficients 0.02, 0.045 and 0.75 are about -2.07◦,
-6.06◦and -11.66◦respectively.

Figure 6.14: Defect identification for scenario 1 case 3 for 1st edgewise bending frequency

Figure 6.15 shows the change in phase angle for 2nd edgewise bending frequency. The maximum defection for
2nd edgewise bending frequency for the microscopic damping coefficients 0.02, 0.045 and 0.75 are about -2.37◦,
-6.91◦and -13.29◦respectively.
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Figure 6.15: Defect identification for scenario 1 case 3 for 2nd edgewise bending frequency

Figures 6.12 and 6.14 clearly shows that the phase angle change is higher near the fixed end for first 6 elements
and it keep on increasing and reaches zero for the elements far away from the fixed end.

6.2 Scenario 2: Damage only in top surfaces near mid section with 2 %, 4 %, 6
% defected area

6.2.1 Case 1: Top surface damage near mid section with 2 % defected area

The following plots show the change in phase angle for each element at different microscopic damping coefficients
for a particular frequency for a top surface defect with 2 % defected area near the midsection. Figure 6.16 shows
the basic layout of the damaged elements of this case. The increase in overall damping of the structure calculated
using modal damping for the microscopic damping coefficient 0.02, 0.045 and 0.75 is about 0.46 %, 1.27 % and
2.28 % respectively.

Figure 6.16: Layout of top surface damage near mid section with 2 % defected area

Figure 6.17 shows the change in phase angle for 1st flapwise bending frequency. The maximum defection for
1st flapwise bending frequency for the microscopic damping coefficients 0.02, 0.045 and 0.75 are about 0.0047◦,
0.043◦and 0.083◦respectively.

Figure 6.17: Defect identification for scenario 2 case 1 for 1st flapwise bending frequency

Figure 6.18 shows the change in phase angle for 2nd flapwise bending frequency. The maximum defection for
2nd flapwise bending frequency for the microscopic damping coefficients 0.02, 0.045 and 0.75 are about -0.036◦,
-0.11◦and -0.21◦respectively.
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Figure 6.18: Defect identification for scenario 2 case 1 for 2nd flapwise bending frequency

Figure 6.19 shows the change in phase angle for 1st edgewise bending frequency. The maximum defection for
1st edgewise bending frequency for the microscopic damping coefficients 0.02, 0.045 and 0.75 are about 0.015◦,
0.033◦and 0.071◦respectively.

Figure 6.19: Defect identification for scenario 2 case 1 for 1st edgewise bending frequency

Figure 6.20 shows the change in phase angle for 2nd edgewise bending frequency. The maximum defection for
2nd edgewise bending frequency for the microscopic damping coefficients 0.02, 0.045 and 0.75 are about 0.062◦,
0.15◦and 0.29◦respectively.

Figure 6.20: Defect identification for scenario 2 case 1 for 2nd edgewise bending frequency

Figure 6.18 clearly shows that the phase angle change is positive near the fixed end; it keeps reducing and
reaches maximum change in phase angle around the elements 42, 43 (2 damaged elements) and the value keep
on increasing and reaches zero for the elements far away from the damaged elements.

6.2.2 Case 2: Top surface damage near mid section with 4 % defected area

The following plots show the change in phase angle for each element at different microscopic damping coefficients
for a particular frequency for a top surface defect with 4 % defected area near the midsection. Figure 6.21 shows
the basic layout of the damaged elements of this case. The increase in overall damping of the structure calculated
using modal damping for the microscopic damping coefficient 0.02, 0.045 and 0.75 is about 0.93 %, 2.66 % and
4.94 % respectively.
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Figure 6.21: Layout of top surface damage near mid section with 4 % defected area

Figure 6.22 shows the change in phase angle for 1st flapwise bending frequency. The maximum defection for
1st flapwise bending frequency for the microscopic damping coefficients 0.02, 0.045 and 0.75 are about 0.032◦,
0.094◦and 0.18◦respectively.

Figure 6.22: Defect identification for scenario 2 case 2 for 1st flapwise bending frequency

Figure 6.23 shows the change in phase angle for 2nd flapwise bending frequency. The maximum defection for
2nd flapwise bending frequency for the microscopic damping coefficients 0.02, 0.045 and 0.75 are about -0.067◦,
-0.207◦and -0.385◦respectively.

Figure 6.23: Defect identification for scenario 2 case 2 for 2nd flapwise bending frequency

Figure 6.24 shows the change in phase angle for 1st edgewise bending frequency. The maximum defection for
1st edgewise bending frequency for the microscopic damping coefficients 0.02, 0.045 and 0.75 are about 0.047◦,
0.133◦and 0.246◦respectively.
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Figure 6.24: Defect identification for scenario 2 case 2 for 1st edgewise bending frequency

Figure 6.25 shows the change in phase angle for 2nd edgewise bending frequency. The maximum defection for
2nd edgewise bending frequency for the microscopic damping coefficients 0.02, 0.045 and 0.75 are about 0.15◦,
0.43◦and 0.80◦respectively.

Figure 6.25: Defect identification for scenario 2 case 2 for 2nd edgewise bending frequency

Figure 6.23 clearly shows that the phase angle change is positive near the fixed end; it keeps reducing and
reaches maximum change in phase angle around the elements 40, 41, 42 and 43 (4 damaged elements) and the
value keeps on increasing and reaches zero for the elements far away from the damaged elements.

6.2.3 Case 3: Top surface damage near mid section with 6 % defected area

The following plots show the change in phase angle for each element at different microscopic damping coefficients
for a particular frequency for a top surface defect with 6 % defected area near the midsection. Figure 6.26 shows
the basic layout of the damaged elements of this case. The increase in overall damping of the structure calculated
using modal damping for the microscopic damping coefficient 0.02, 0.045 and 0.75 is about 1.27 %, 3.76 % and
6.93 % respectively.

Figure 6.26: Layout of top surface damage near mid section with 6 % defected area

Figure 6.27 shows the change in phase angle for 1st flapwise bending frequency. The maximum defection for
1st flapwise bending frequency for the microscopic damping coefficients 0.02, 0.045 and 0.75 are about 0.046◦,
0.133◦and 0.247◦respectively.
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Figure 6.27: Defect identification for scenario 2 case 3 for 1st flapwise bending frequency

Figure 6.28 shows the change in phase angle for 2nd flapwise bending frequency. The maximum defection for
2nd flapwise bending frequency for the microscopic damping coefficients 0.02, 0.045 and 0.75 are about -0.095◦,
-0.284◦and -0.519◦respectively.

Figure 6.28: Defect identification for scenario 2 case 3 for 2nd flapwise bending frequency

Figure 6.29 shows the change in phase angle for 1st edgewise bending frequency. The maximum defection for
1st edgewise bending frequency for the microscopic damping coefficients 0.02, 0.045 and 0.75 are about 0.086◦,
0.237◦and 0.428◦respectively.

Figure 6.29: Defect identification for scenario 2 case 3 for 1st edgewise bending frequency

Figure 6.30 shows the change in phase angle for 2nd edgewise bending frequency. The maximum defection for
2nd edgewise bending frequency for the microscopic damping coefficients 0.02, 0.045 and 0.75 are about 0.29◦,
0.83◦and 1.56◦respectively.
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Figure 6.30: Defect identification for scenario 2 case 3 for 2nd edgewise bending frequency

Figure 6.28 clearly shows that the phase angle change is positive near the fixed end; it keeps reducing and
reaches maximum change in phase angle around the elements 40, 41, 42, 43, 44 and 45 (6 damaged elements)
and the value keep on increasing and reaches zero for the elements far away from the damaged elements.
The plots corresponding to 1st flapwise bending frequency shows that the phase angle starts to drops gradually
from the damaged element and the plots corresponding to 1st edgewise bending frequency shows that the phase
angle starts to drops sharply and the goes below zero from the damaged elements. However, it is hard to identify
defected elements only with a sudden change in phase angle. On the contrary, the plots corresponding to 2nd

flapwise bending frequency helps in identifying the damaged elements.

6.3 Scenario 3: Damage in top and core surfaces near fixed end with 2 %, 4 %, 6
% defected area

6.3.1 Case 1: Top and core surface damage near fixed end with 2 % defected area

The following plots show the change in phase angle for each element at different microscopic damping coefficients
for a particular frequency for top and core surface defect with 2 % defected area near fixed end. Figure 6.31
shows the basic layout of the damaged elements of this case. The increase in overall damping of the structure
calculated using modal damping for the microscopic damping coefficients 0.02, 0.045 and 0.75 are about 4.77
%, 13.98 % and 26.19 % respectively.

Figure 6.31: Layout of top and core surface damage near fixed end with 2 % defected area

Figure 6.32 shows the change in phase angle for 1st flapwise bending frequency. The maximum defection for
1st flapwise bending frequency for the microscopic damping coefficients 0.02, 0.045 and 0.75 are about -1.35◦,
-3.98◦and -7.65◦respectively.
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Figure 6.32: Defect identification for scenario 3 case 1 for 1st flapwise bending frequency

Figure 6.33 shows the change in phase angle for 2nd flapwise bending frequency. The maximum defection for
2nd flapwise bending frequency for the microscopic damping coefficients 0.02, 0.045 and 0.75 are about -1.52◦,
-4.46◦and -8.51◦respectively.

Figure 6.33: Defect identification for scenario 3 case 1 for 2nd flapwise bending frequency

Figure 6.34 shows the change in phase angle for 1st edgewise bending frequency. The maximum defection for
1st edgewise bending frequency for the microscopic damping coefficients 0.02, 0.045 and 0.75 are about -2.33◦,
-6.81◦and -13.08◦respectively.

Figure 6.34: Defect identification for scenario 3 case 1 for 1st edgewise bending frequency

Figure 6.35 shows the change in phase angle for 2nd edgewise bending frequency. The maximum defection for
2nd edgewise bending frequency for the microscopic damping coefficients 0.02, 0.045 and 0.75 are about -2.47◦,
-7.17◦and -13.77◦respectively.
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Figure 6.35: Defect identification for scenario 3 case 1 for 2nd edgewise bending frequency

Figures 6.32 and 6.34 clearly shows that the phase angle change is higher near the fixed end for first 2 elements
and it keep on increasing and reaches zero for the elements far away from the fixed end.

6.3.2 Case 2: Top and core surface damage near fixed end with 4 % defected area

The following plots show the change in phase angle for each element at different microscopic damping coefficients
for a particular frequency for top and core surface defect with 4 % defected area near fixed end. Figure 6.36
shows the basic layout of the damaged elements of this case. The increase in overall damping of the structure
calculated using modal damping for the microscopic damping coefficient 0.02, 0.045 and 0.75 is about 8.70 %,
25.31 % and 47.49 %

Figure 6.36: Layout of top and core surface damage near fixed end with 4 % defected area

Figure 6.37 shows the change in phase angle for 1st flapwise bending frequency. The maximum defection for
1st flapwise bending frequency for the microscopic damping coefficients 0.02, 0.045 and 0.75 are about -1.18◦,
-3.47◦and -6.63◦respectively.

Figure 6.37: Defect identification for scenario 3 case 2 for 1st flapwise bending frequency

Figure 6.38 shows the change in phase angle for 2nd flapwise bending frequency. The maximum defection for
2nd flapwise bending frequency for the microscopic damping coefficients 0.02, 0.045 and 0.75 are about -1.36◦,
-3.99◦and -7.63◦respectively.
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Figure 6.38: Defect identification for scenario 3 case 2 for 2nd flapwise bending frequency

Figure 6.39 shows the change in phase angle for 1st edgewise bending frequency. The maximum defection for
1st edgewise bending frequency for the microscopic damping coefficients 0.02, 0.045 and 0.75 are about -2.25◦,
-6.57◦and -12.64◦respectively.

Figure 6.39: Defect identification for scenario 3 case 2 for 1st edgewise bending frequency

Figure 6.40 shows the change in phase angle for 2nd edgewise bending frequency. The maximum defection for
2nd edgewise bending frequency for the microscopic damping coefficients 0.02, 0.045 and 0.75 are about -2.46◦,
-7.21◦and -13.83◦respectively.

Figure 6.40: Defect identification for scenario 3 case 2 for 2nd edgewise bending frequency

Figures 6.37 and 6.39 clearly shows that the phase angle change is higher near the fixed end for first 4 elements
and it keep on increasing and reaches zero for the elements far away from the fixed end.

6.3.3 Case 3: Top and core surface damage near fixed end with 6 % defected area

The following plots show the change in phase angle for each element at different microscopic damping coefficients
for a particular frequency for top and core surface defect with 6 % defected area near fixed end. Figure 6.41
shows the basic layout of the damaged elements of this case. The increase in overall damping of the structure
calculated using modal damping for the microscopic damping coefficient 0.02, 0.045 and 0.75 is about 12.21 %,
35.45 % and 66.45 %
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Figure 6.41: Layout of top and core surface damage near fixed end with 6 % defected area

Figure 6.42 shows the change in phase angle for 1st flapwise bending frequency. The maximum defection for
1st flapwise bending frequency for the microscopic damping coefficients 0.02, 0.045 and 0.75 are about -1.08◦,
-3.17◦and -6.08◦respectively.

Figure 6.42: Defect identification for scenario 3 case 3 for 1st flapwise bending frequency

Figure 6.43 shows the change in phase angle for 2nd flapwise bending frequency. The maximum defection for
2nd flapwise bending frequency for the microscopic damping coefficients 0.02, 0.045 and 0.75 are about -1.21◦,
-3.58◦and -6.85◦respectively.

Figure 6.43: Defect identification for scenario 3 case 3 for 2nd flapwise bending frequency

Figure 6.44 shows the change in phase angle for 1st edgewise bending frequency. The maximum defection for
1st edgewise bending frequency for the microscopic damping coefficients 0.02, 0.045 and 0.75 are about -2.19◦,
-6.40◦and -12.33◦respectively.
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Figure 6.44: Defect identification for scenario 3 case 3 for 1st edgewise bending frequency

Figure 6.45 shows the change in phase angle for 2nd edgewise bending frequency. The maximum defection for
2nd edgewise bending frequency for the microscopic damping coefficients 0.02, 0.045 and 0.75 are about -2.48◦,
-7.23◦and -13.90◦respectively.

Figure 6.45: Defect identification for scenario 3 case 3 for 2nd edgewise bending frequency

Figures 6.42 and 6.44 clearly shows that the phase angle change is higher near the fixed end for first 6 elements
and it keep on increasing and reaches zero for the elements far away from the fixed end.

6.4 Scenario 4: Damage in top and core surfaces near mid section with 2 %, 4 %,
6 % defected area

6.4.1 Case 1: Top and core surface damage near mid section with 2 % defected area

The following plots show the change in phase angle for each element at different microscopic damping coefficients
for a particular frequency for top and core surface defect with 2 % defected area near the midsection. Figure 6.46
shows the basic layout of the damaged elements of this case. The increase in overall damping of the structure
calculated using modal damping for the microscopic damping coefficient 0.02, 0.045 and 0.75 is about 0.51 %,
1.39 % and 2.58 %.

Figure 6.46: Layout of top and core surface damage near mid section with 2 % defected area

Figure 6.47 shows the change in phase angle for 1st flapwise bending frequency. The maximum defection for
1st flapwise bending frequency for the microscopic damping coefficients 0.02, 0.045 and 0.75 are about 0.014◦,
0.055◦and 0.093◦respectively.
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Figure 6.47: Defect identification for scenario 4 case 1 for 1st flapwise bending frequency

Figure 6.48 shows the change in phase angle for 2nd flapwise bending frequency. The maximum defection for
2nd flapwise bending frequency for the microscopic damping coefficients 0.02, 0.045 and 0.75 are about -0.039◦,
-0.119◦and -0.213◦respectively.

Figure 6.48: Defect identification for scenario 4 case 1 for 2nd flapwise bending frequency

Figure 6.49 shows the change in phase angle for 1st edgewise bending frequency. The maximum defection for
1st edgewise bending frequency for the microscopic damping coefficients 0.02, 0.045 and 0.75 are about 0.019◦,
0.057◦and 0.107◦respectively.

Figure 6.49: Defect identification for scenario 4 case 1 for 1st edgewise bending frequency

Figure 6.50 shows the change in phase angle for 2nd edgewise bending frequency. The maximum defection for
2nd edgewise bending frequency for the microscopic damping coefficients 0.02, 0.045 and 0.75 are about 0.166◦,
0.540◦and 1.036◦respectively.
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Figure 6.50: Defect identification for scenario 4 case 1 for 2nd edgewise bending frequency

Figure 6.48 clearly shows that the phase angle change is positive near the fixed end and it keeps reducing and
reaches maximum change in phase angle around the elements 42, 43 (2 damaged elements) and the value keep
on increasing and reaches zero for the elements far away from the damaged elements.

6.4.2 Case 2: Top and core surface damage near mid section with 4 % defected area

The following plots show the change in phase angle for each element at different microscopic damping coefficients
for a particular frequency for top and core surface defect with 4 % defected area near the midsection. Figure 6.51
shows the basic layout of the damaged elements of this case. The increase in overall damping of the structure
calculated using modal damping for the microscopic damping coefficient 0.02, 0.045 and 0.75 is about 1.01 %,
3.00 % and 5.58 %.

Figure 6.51: Layout of top and core surface damage near mid section with 4 % defected area

Figure 6.52 shows the change in phase angle for 1st flapwise bending frequency. The maximum defection for
1st flapwise bending frequency for the microscopic damping coefficients 0.02, 0.045 and 0.75 are about 0.046◦,
0.101◦and 0.195◦respectively.

Figure 6.52: Defect identification for scenario 4 case 2 for 1st flapwise bending frequency

Figure 6.53 shows the change in phase angle for 2nd flapwise bending frequency. The maximum defection for
2nd flapwise bending frequency for the microscopic damping coefficients 0.02, 0.045 and 0.75 are about -0.0765◦,
-0.224◦and -0.416◦respectively.
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Figure 6.53: Defect identification for scenario 4 case 2 for 2nd flapwise bending frequency

Figure 6.54 shows the change in phase angle for 1st edgewise bending frequency. The maximum defection for
1st edgewise bending frequency for the microscopic damping coefficients 0.02, 0.045 and 0.75 are about 0.058◦,
0.168◦and 0.317◦respectively.

Figure 6.54: Defect identification for scenario 4 case 2 for 1st edgewise bending frequency

Figure 6.55 shows the change in phase angle for 2nd edgewise bending frequency. The maximum defection for
2nd edgewise bending frequency for the microscopic damping coefficients 0.02, 0.045 and 0.75 are about 0.416◦,
1.22◦and 2.35◦respectively.

Figure 6.55: Defect identification for scenario 4 case 2 for 2nd edgewise bending frequency

Figure 6.53 clearly shows that the phase angle change is positive near the fixed end; it keeps reducing and
reaches maximum change in phase angle around the elements 40, 41, 42 and 43 (4 damaged elements) and the
value keep on increasing and reaches zero for the elements far away from the damaged elements.

6.4.3 Case 3: Top and core surface damage near mid section with 6 % defected area

The following plots show the change in phase angle for each element at different microscopic damping coefficients
for a particular frequency for top and core surface defect with 6 % defected area near the midsection. Figure 6.56
shows the basic layout of the damaged elements of this case. The increase in overall damping of the structure
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calculated using modal damping for the microscopic damping coefficient 0.02, 0.045 and 0.75 is about 1.44 %,
4.22 % and 7.86 %.

Figure 6.56: Layout of top and core surface damage near mid section with 6 % defected area

Figure 6.57 shows the change in phase angle for 1st flapwise bending frequency. The maximum defection for
1st flapwise bending frequency for the microscopic damping coefficients 0.02, 0.045 and 0.75 are about 0.0518◦,
0.147◦and 0.272◦respectively.

Figure 6.57: Defect identification for scenario 4 case 3 for 1st flapwise bending frequency

Figure 6.58 shows the change in phase angle for 2nd flapwise bending frequency. The maximum defection for
2nd flapwise bending frequency for the microscopic damping coefficients 0.02, 0.045 and 0.75 are about -0.105◦,
-0.304◦and -0.563◦respectively.

Figure 6.58: Defect identification for scenario 4 case 3 for 2nd flapwise bending frequency

Figure 6.59 shows the change in phase angle for 1st edgewise bending frequency. The maximum defection for
1st edgewise bending frequency for the microscopic damping coefficients 0.02, 0.045 and 0.75 are about 0.100◦,
0.299◦and 0.553◦respectively.
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Figure 6.59: Defect identification for scenario 4 case 3 for 1st edgewise bending frequency

Figure 6.60 shows the change in phase angle for 2nd edgewise bending frequency. The maximum defection for
2nd edgewise bending frequency for the microscopic damping coefficients 0.02, 0.045 and 0.75 are about 0.71◦,
2.07◦and 3.97◦respectively.

Figure 6.60: Defect identification for scenario 4 case 3 for 2nd edgewise bending frequency

Figure 6.58 clearly shows that the phase angle change is positive near the fixed end; it keeps reducing and
reaches maximum change in phase angle around the elements 40, 41, 42, 43, 44 and 45 (6 damaged elements)
and the value keep on increasing and reaches zero for the elements far away from the damaged elements.
As the microscopic damping is increased, the modal damping of the structure also increases. This means that
as the damage increases the damping of the structure also increases. From the above plots, following results are
observed.

1. 1st flap and edgewise bending frequencies are suitable for identifying the defects near the fixed end.

2. 2nd flapwise bending frequency is suitable for identifying the defect near the mid area. However, 2nd

edgewise bending frequency is not suitable for identifying the defect near the mid area.

3. The phase angle change of defected elements and the modal damping percent increase is more for scenarios
3 and 4 compared to scenarios 1 and 2. It shows that the defect in the top and core areas affects the
modal parameters more compared to defect only in the top surface.

The results discussed in the above chapter is compiled in table 6.1 for easy comparison and understanding.
The values given in this table is the maximum difference between the phase angle of defected elements and the
maximum phase angle θm. The maximum phase angle θm not necessarily be at the defected nodes (or) elements.
A threshold value of 2◦ is chosen from an experimental study to highlight the given values in red. These values
would be useful to identify the microscopic damping conditions which are suitable to localize the defect. Also,
the phase angle corresponding to 2nd flapwise bending frequency of scenarios 2 and 4 is highlighted in orange
to show that this 2nd flapwise frequency is suitable to identify defects at the midsection. From the table 6.1, it
can be observed that

• The 2nd flapwise bending frequency can be potentially used to detect the damage in the midsection for a
higher level of damage ie., higher microscopic damping with a loss factor greater than 0.075.
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• Even though the change in phase angle of defected elements corresponding to 2nd edgewise bending
frequency is more than that of 2nd flapwise bending frequency in scenarios 2 and 4, 2nd edgewise bending
frequency is not suitable for identifying defects near the midsection because the defected elements are
closer to the nodes with zero displacement. As explained in chapter 5.2, these nodes (or) elements have
higher phase angle change compared to other elements.

Table 6.1: Change in phase angle of the structure for different loss factor (microscopic damping coefficients)

Loss factor
0.02 0.045 0.075

Scenario 1
(Top surface defect
near fixed end)

Case 1
(2 % defected

area)

1st flapwise bending frequency -0.85◦ -2.49◦ -4.73◦
2nd flapwise bending frequency -0.68◦ -2.01◦ -3.81◦
1st edgewise bending frequency -2.29◦ -6.69◦ -12.87◦
2nd edgewise bending frequency -2.43◦ -7.04◦ -13.50◦

Case 2
(4 % defected

area)

1st flapwise bending frequency -0.75◦ -2.22◦ -4.21◦
2nd flapwise bending frequency -0.52◦ -1.53◦ -2.92◦
1st edgewise bending frequency -2.15◦ -6.29◦ -12.11◦
2nd edgewise bending frequency 177.83◦ -6.90◦ -13.27◦

Case 3
(6 % defected

area)

1st flapwise bending frequency -0.73◦ -2.15◦ -4.09◦
2nd flapwise bending frequency -0.47◦ -1.38◦ -2.62◦
1st edgewise bending frequency -2.07◦ -6.06◦ -11.66◦
2nd edgewise bending frequency -2.37◦ -6.91◦ -13.29◦

Scenario 2
(Top surface defect
near mid section)

Case 1
(2 % defected

area)

1st flapwise bending frequency 0.0047◦ 0.043◦ 0.083◦
2nd flapwise bending frequency -0.036◦ -0.11◦ -0.211◦
1st edgewise bending frequency 0.015◦ 0.033◦ 0.071◦
2nd edgewise bending frequency 0.062◦ 0.15◦ 0.29◦

Case 2
(4 % defected

area)

1st flapwise bending frequency 0.032◦ 0.094◦ 0.18◦
2nd flapwise bending frequency -0.067◦ -0.207◦ -0.385◦
1st edgewise bending frequency 0.047◦ 0.133◦ 0.246◦
2nd edgewise bending frequency 0.15◦ 0.43◦ 0.80◦

Case 3
(6 % defected

area)

1st flapwise bending frequency 0.046◦ 0.133◦ 0.247◦
2nd flapwise bending frequency -0.095◦ -0.284◦ -0.519◦
1st edgewise bending frequency 0.086◦ 0.237◦ 0.428◦
2nd edgewise bending frequency 0.29◦ 0.83◦ 1.56◦

Scenario 3
(Top and core defect

near fixed end)

Case 1
(2 % defected

area)

1st flapwise bending frequency -1.35◦ -3.98◦ -7.65◦
2nd flapwise bending frequency -1.52◦ -4.46◦ -8.51◦
1st edgewise bending frequency -2.33◦ -6.81◦ -13.08◦
2nd edgewise bending frequency -2.47◦ -7.17◦ -13.77◦

Case 2
(4 % defected

area)

1st flapwise bending frequency -1.18◦ -3.47◦ -6.63◦
2nd flapwise bending frequency -1.36◦ -3.99◦ -7.63◦
1st edgewise bending frequency -2.25◦ -6.57◦ -12.64◦
2nd edgewise bending frequency -2.46◦ -7.21◦ -13.83◦

Case 3
(6 % defected

area)

1st flapwise bending frequency -1.08◦ -3.17◦ -6.08◦
2nd flapwise bending frequency -1.21◦ -3.58◦ -6.85◦
1st edgewise bending frequency -2.19◦ -6.40◦ -12.33◦
2nd edgewise bending frequency -2.48◦ -7.23◦ -13.90◦

Scenario 4
(Top and core defect
near mid section)

Case 1
(2 % defected

area)

1st flapwise bending frequency 0.014◦ 0.055◦ 0.093◦
2nd flapwise bending frequency -0.039◦ -0.119◦ -0.213◦
1st edgewise bending frequency 0.019◦ 0.057◦ 0.107◦
2nd edgewise bending frequency 0.166◦ 0.540◦ 1.036◦

Case 2
(4 % defected

area)

1st flapwise bending frequency 0.046◦ 0.101◦ 0.195◦
2nd flapwise bending frequency -0.0765◦ -0.224◦ -0.416◦
1st edgewise bending frequency 0.058◦ 0.168◦ 0.317◦
2nd edgewise bending frequency 0.416◦ 1.22◦ 2.35◦

Case 3
(6 % defected

area)

1st flapwise bending frequency 0.0518◦ 0.147◦ 0.272◦
2nd flapwise bending frequency -0.105◦ -0.304◦ -0.563◦
1st edgewise bending frequency 0.100◦ 0.299◦ 0.553◦
2nd edgewise bending frequency 0.71◦ 2.07◦ 3.97◦



7 Sensitivity Analysis

A sensitive analysis is done to check how the results vary for different element sizes. For this analysis, the
element size for meshing was changed from 25cm to 40 cm and 20 cm. The number of elements and nodes
are 658 and 1136 for element size of 40 cm and 2822 and 3928 for element size of 20 cm. As explained earlier
in chapter 4.3 the RAM was not sufficient to extract matrix from ANSYS for element size 20cm. So, damage
identification and localization calculation are not performed for this element size.
The damage modelling is done for structure with an element size of 40 cm. For simplicity, only two scenarios,

1. Damage at the fixed end with 2 % defected area

2. Damage at the midsection with 2 % defected area

are considered to modal damage into the structure. Also, microscopic damping coefficient of 0.075 is considered
for this analysis. Since the element size is 40 cm, there are 8 defected elements in each case. The modal damping
is calculated using the formula 5.2. The results obtained are as follows.

Table 7.1: Sensitivity analysis results: Modal damping calculation

Case Eigen Value Modal Damping % Increasing in damping
Undamaged -1.573 + 6.885i 0.2227 -

Damage at fixed end -1.631 + 6.956i 0.2283 2.51
Damage at mid section -1.6315+ 6.933i 0.2295 3.05

The phase angle is calculated using formula 5.7 and formula 5.8 is used to identify the damaged elements. The
change in phase angle corresponding to 1st and 2nd flapwise and edgewise bending frequency is given in below
table.

Table 7.2: Sensitivity analysis results: Change in phase angle

Case frequency Change in phase angle in degree

Damage at fixed end

1st flapwise bending frequency -32.11◦
2nd flapwise bending frequency -33.054◦
1st edgewise bending frequency -29.23◦
2nd edgewise bending frequency -29.03◦

Damage at mid section

1st flapwise bending frequency 0.152◦
2nd flapwise bending frequency -1.44◦
1st edgewise bending frequency 0.392◦
2nd edgewise bending frequency -0.805◦

The change in phase angle and node identification plots for defect at the fixed end case for microscopic damping
coefficient of 0.075 is as follows.

Figure 7.1: Fixed end defect: 1st flapwise bending frequency
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Figure 7.2: Fixed end defect: 2nd flapwise bending frequency

Figure 7.3: Fixed end defect: 1st edgewise bending frequency

Figure 7.4: Fixed end defect: 2nd edgewise bending frequency

Following are the change in phase angle and node identification plots for defect at midsection case for microscopic
damping coefficient of 0.075.

Figure 7.5: Midsection defect: 1st flapwise bending frequency
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Figure 7.6: Midsection defect: 2nd flapwise bending frequency

Figure 7.7: Midsection defect: 1st edgewise bending frequency

Figure 7.8: Midsection defect: 2nd edgewise bending frequency

From the above plots, it is evident that 1st flapwise and edgewise bending frequency is suitable for identifying
defects at the fixed end and 2nd flapwise bending frequency is suitable for identifying defects near the midsection.
Also, these plots follow a similar pattern as the plots given in chapter 5.2, which proves that this model provides
similar results for different element size. To show this the change in phase angle for each element obtained from
sensitive analysis results is compared with the results of following cases

• Top surface damage near fixed end with 6 % defected area and top and core surface damage near fixed
end with 6 % defected area.

• Top surface damage near midsection with 6 % defected area and top and core surface damage near
midsection with 6 % defected area.

for the loss factor 0.075 in figure 7.9.

Figure 7.9: Comparison of results for 1st and 2nd flapwise bending frequency





8 Conclusion and Recommendation

In this chapter, the important results and findings of the thesis are explained. Later, some recommendations
for future work are given. The main objective of this thesis is to use smeared crack modelling and integrating it
with FEM tools to identify the damage in the wind turbine blade. After reviewing the literature, two research
questions were formulated

1. Can increase in material damping due to defect initiation be used effectively to identify the defect location
and size effectively?

• Can the modal damping be used to identify defect in spar cap and shear web assembly?

2. Is it possible to model the vibration analysis based on the viscoelastic damping?

8.1 Using increase in modal damping percent to identify damage location and size
The first objective of the thesis is to formulate a finite element model to identify damage location and size
using increase in modal damping percent. A wind turbine blade is made up of aerodynamic shell (spar cap)
and shear web. To reduce complications, the spar cap - shear web assembly is modelled as "I" beam in ANSYS.
The dimension of the blade is measured from the "NedWind 40 turbine" provided by LM Wind Power. The
structure has been modelled using composite materials. The spar cap fibres are laid at 0◦, and the fibres of face
sheet are laid at ±45◦. One end of the structure is fixed to simulate the actual working conditions. Similarly,
the material property of all parts was chosen to represent an actual wind turbine blade. The element size
was selected to be about 25 cm for meshing. The number of elements and nodes after meshing are 1476 and
2241 respectively. Using Modal Analysis in ANSYS, the natural frequency of the undamaged blade structure
was calculated. Damage is introduced into the structure in the form of microscopic damping into the material
property using formula 4.1. To incorporated damping into the structure, the loss factor equation derived from
experiment [54] is used. The loss factor parameters (a,b and c) depends on natural frequency. The value of
a,b and c for the 1st natural frequency is used to calculate six different microscopic damping coefficients. Mass
matrix and stiffness matrix of the structure is extracted from ANSYS for six microscopic damping coefficients.
Using the extracted mass and stiffness matrices, eigenvalue and eigenvector of the structure is calculated.
Four scenarios with three defect cases are considered to model the damage into the structure. The scenarios are

1. Damage only in top surfaces near fixed end with 2 %, 4 %, 6 % defected area.

2. Damage only in top surfaces near mid section with 2 %, 4 %, 6 % defected area.

3. Damage in top and core surfaces near fixed end with 2 %, 4 %, 6 % defected area.

4. Damage in top and core surfaces near mid section with 2 %, 4 %, 6 % defected area.

Eigenvalue was used to calculate the modal damping using the formula 5.2.
From chapter 5.2, it is noticeable that the modal damping of the damaged structure is higher than that of the
undamaged structure. Also, the modal damping percent increases significantly when the microscopic damping
increases. This means that the damping of the structure increase when the severity of the damage increases.
The displacement is given by the eigenvector, which is used to calculate the phase angle for each element. The
change in phase angle is used to localize the damaged elements. There will be a lag in the phase angle of a
damaged element compared to the phase angle of the undamaged element. Chapter 6 shows plots of change in
phase of each element for different microscopic damping coefficients. The observations from these plots are as
follows

1. 1st flap and edgewise bending frequencies are suitable for identifying the defects near the fixed end.

2. 2nd flap wise bending frequency is suitable for identifying the defect near the mid area. However, 2nd

edgewise bending frequency is not suitable for identifying the defect near the mid area.

3. The phase angle change of defected elements and increase modal damping percent is more for scenarios 3
and 4 compared to scenarios 1 and 2. It means that the defect in the top and core areas affects the modal
parameters more compared to defect only in the top surface.

To answer the first research question, the increase in damping of the structure shows that the structure is
damaged. 1st flapwise and edgewise bending frequencies are suitable for localizing the defects near the fixed end
and 2nd flapwise bending frequency is suitable for localizing the defect near the mid area. Also, modal damping
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increase percent and change in phase angle is higher for top and core defects compared to defects only at top
surfaces.
This method is more suitable for identifying defects in the fixed end and midsection because, the kinetic energy
transfer through the elements will be higher at the fixed end and it will gradually decrease and reaches to almost
zero for the elements away from the fixed end. This is the reason why the increase in modal damping percent
is less for the defects around the midsection (scenarios 2 and 4). Since the kinetic energy of the elements near
the tail end is very low, the change in phase angle is very less to identify the defected elements in these areas.

8.2 Modelling the vibration analysis based on the viscoelastic damping
The second objective of the thesis is to model the vibration analysis based on viscoelastic damping. From
chapter 2.4 it is understandable that the viscoelastic damping depends on frequency. To answer this research
question, as explained in the previous section 8.1 the damage is introduced into the structure in the form of
microscopic damping. The loss factor parameters obtained from experiment [54] is used to incorporate damping
into the material property. The value of a,b and c depends on natural frequency. For this thesis, the frequency
corresponding to 1st flap wise bending is considered for all scenarios and damaged conditions.

8.3 Future work
In future, the thesis can be developed further in the following ways.

1. The length of the current ANSYS model is 20m. Compared to the present wind turbine blade lengths,
the length of the blade modelled is small. So in future, the longer blades can be modelled and analysed.

2. Current mesh size of the model is 25 cm, in future more complex meshing can be done to get more accurate
results.

3. As explained in the chapter 8.2, only 1st flap wise bending frequency is considered now for modelling
viscoelastic damping. Continuing this thesis in future more detailed analysis can be done by considering
other frequencies to model viscoelastic damping.
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Appendix A:Damage identification and localization support plots

Scenario 1: Damage only in top surfaces near the fixed end with 2 %, 4 %, 6 % defected area

Case 1: Top surface damage near fixed end with 2 % defected area (Damping Coefficient 0.02)

Figure 8.1: Scenario 1 case 1 100 % damage 1st flap wise bending

Figure 8.2: Scenario 1 case 1 100 % damage 2nd flap wise bending

Figure 8.3: Scenario 1 case 1 100 % damage 1st edge wise bending

Figure 8.4: Scenario 1 case 1 100 % damage 2nd edge wise bending
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Case 1: Top surface damage near fixed end with 2 % defected area (Damping Coefficient 0.045)

Figure 8.5: Scenario 1 case 1 350 % damage 1st flap wise bending

Figure 8.6: Scenario 1 case 1 350 % damage 2nd flap wise bending

Figure 8.7: Scenario 1 case 1 350 % damage 1st edge wise bending

Figure 8.8: Scenario 1 case 1 350 % damage 2nd edge wise bending
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Case 2: Top surface damage near fixed end with 4 % defected area (Damping Coefficient 0.02)

Figure 8.9: Scenario 1 case 2 100 % damage 1st flap wise bending

Figure 8.10: Scenario 1 case 2 100 % damage 2nd flap wise bending

Figure 8.11: Scenario 1 case 2 100 % damage 1st edge wise bending

Figure 8.12: Scenario 1 case 2 100 % damage 2nd edge wise bending
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Case 2: Top surface damage near fixed end with 4 % defected area (Damping Coefficient 0.045)

Figure 8.13: Scenario 1 case 2 350 % damage 1st flap wise bending

Figure 8.14: Scenario 1 case 2 350 % damage 2nd flap wise bending

Figure 8.15: Scenario 1 case 2 350 % damage 1st edge wise bending

Figure 8.16: Scenario 1 case 2 350 % damage 2nd edge wise bending
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Case 3: Top surface damage near fixed end with 6 % defected area (Damping Coefficient 0.02)

Figure 8.17: Scenario 1 case 3 100 % damage 1st flap wise bending

Figure 8.18: Scenario 1 case 3 100 % damage 2nd flap wise bending

Figure 8.19: Scenario 1 case 3 100 % damage 1st edge wise bending

Figure 8.20: Scenario 1 case 3 100 % damage 2nd edge wise bending



REFERENCES 104

Case 3: Top surface damage near fixed end with 6 % defected area (Damping Coefficient 0.045)

Figure 8.21: Scenario 1 case 3 350 % damage 1st flap wise bending

Figure 8.22: Scenario 1 case 3 350 % damage 2nd flap wise bending

Figure 8.23: Scenario 1 case 3 350 % damage 1st edge wise bending

Figure 8.24: Scenario 1 case 3 350 % damage 2nd edge wise bending
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Scenario 2: Damage only in top surfaces near the mid section with 2 %, 4 %, 6 % defected area

Case 1: Top surface damage near mid section with 2 % defected area (Damping Coefficient 0.02)

Figure 8.25: Scenario 2 case 1 100 % damage 1st flap wise bending

Figure 8.26: Scenario 2 case 1 100 % damage 2nd flap wise bending

Figure 8.27: Scenario 2 case 1 100 % damage 1st edge wise bending

Figure 8.28: Scenario 2 case 1 100 % damage 2nd edge wise bending
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Case 1: Top surface damage near mid section with 2 % defected area (Damping Coefficient 0.045)

Figure 8.29: Scenario 2 case 1 350 % damage 1st flap wise bending

Figure 8.30: Scenario 2 case 1 350 % damage 2nd flap wise bending

Figure 8.31: Scenario 2 case 1 350 % damage 1st edge wise bending

Figure 8.32: Scenario 2 case 1 350 % damage 2nd edge wise bending
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Case 2: Top surface damage near mid section with 4 % defected area (Damping Coefficient 0.02)

Figure 8.33: Scenario 2 case 2 100 % damage 1st flap wise bending

Figure 8.34: Scenario 2 case 2 100 % damage 2nd flap wise bending

Figure 8.35: Scenario 2 case 2 100 % damage 1st edge wise bending

Figure 8.36: Scenario 2 case 2 100 % damage 2nd edge wise bending
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Case 2: Top surface damage near mid section with 4 % defected area (Damping Coefficient 0.045)

Figure 8.37: Scenario 2 case 2 350 % damage 1st flap wise bending

Figure 8.38: Scenario 2 case 2 350 % damage 2nd flap wise bending

Figure 8.39: Scenario 2 case 2 350 % damage 1st edge wise bending

Figure 8.40: Scenario 2 case 2 350 % damage 2nd edge wise bending
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Case 3: Top surface damage near fixed end with 6 % defected area (Damping Coefficient 0.02)

Figure 8.41: Scenario 2 case 3 100 % damage 1st flap wise bending

Figure 8.42: Scenario 2 case 3 100 % damage 2nd flap wise bending

Figure 8.43: Scenario 2 case 3 100 % damage 1st edge wise bending

Figure 8.44: Scenario 2 case 3 100 % damage 2nd edge wise bending
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Case 3: Top surface damage near fixed end with 6 % defected area (Damping Coefficient 0.045)

Figure 8.45: Scenario 2 case 3 350 % damage 1st flap wise bending

Figure 8.46: Scenario 2 case 3 350 % damage 2nd flap wise bending

Figure 8.47: Scenario 2 case 3 350 % damage 1st edge wise bending

Figure 8.48: Scenario 2 case 3 350 % damage 2nd edge wise bending
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Scenario 3: Damage in top and core surfaces near the fixed end with 2 %, 4 %, 6 % defected area

Case 1: Top and core surface damage near fixed end with 2 % defected area (Damping Coefficient
0.02)

Figure 8.49: Scenario 3 case 1 100 % damage 1st flap wise bending

Figure 8.50: Scenario 3 case 1 100 % damage 2nd flap wise bending

Figure 8.51: Scenario 3 case 1 100 % damage 1st edge wise bending

Figure 8.52: Scenario 3 case 1 100 % damage 2nd edge wise bending
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Case 1: Top and core surface damage near fixed end with 2 % defected area (Damping Coefficient
0.045)

Figure 8.53: Scenario 3 case 1 350 % damage 1st flap wise bending

Figure 8.54: Scenario 3 case 1 350 % damage 2nd flap wise bending

Figure 8.55: Scenario 3 case 1 350 % damage 1st edge wise bending

Figure 8.56: Scenario 3 case 1 350 % damage 2nd edge wise bending
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Case 2: Top and core surface damage near fixed end with 4 % defected area (Damping Coefficient
0.02)

Figure 8.57: Scenario 3 case 2 100 % damage 1st flap wise bending

Figure 8.58: Scenario 3 case 2 100 % damage 2nd flap wise bending

Figure 8.59: Scenario 3 case 2 100 % damage 1st edge wise bending

Figure 8.60: Scenario 3 case 2 100 % damage 2nd edge wise bending
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Case 2: Top and core surface damage near fixed end with 4 % defected area (Damping Coefficient
0.045)

Figure 8.61: Scenario 3 case 2 350 % damage 1st flap wise bending

Figure 8.62: Scenario 3 case 2 350 % damage 2nd flap wise bending

Figure 8.63: Scenario 3 case 2 350 % damage 1st edge wise bending

Figure 8.64: Scenario 3 case 2 350 % damage 2nd edge wise bending
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Case 3: Top and core surface damage near fixed end with 6 % defected area (Damping Coefficient
0.02)

Figure 8.65: Scenario 3 case 3 100 % damage 1st flap wise bending

Figure 8.66: Scenario 3 case 3 100 % damage 2nd flap wise bending

Figure 8.67: Scenario 3 case 3 100 % damage 1st edge wise bending

Figure 8.68: Scenario 3 case 3 100 % damage 2nd edge wise bending
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Case 3: Top and core surface damage near fixed end with 6 % defected area (Damping Coefficient
0.045)

Figure 8.69: Scenario 3 case 3 350 % damage 1st flap wise bending

Figure 8.70: Scenario 3 case 3 350 % damage 2nd flap wise bending

Figure 8.71: Scenario 3 case 3 350 % damage 1st edge wise bending

Figure 8.72: Scenario 3 case 3 350 % damage 2nd edge wise bending
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Scenario 4: Damage in top and core surfaces near the mid section with 2 %, 4 %, 6 % defected
area

Case 1: Top and core surface damage near Mid section with 2 % defected area (Damping Coef-
ficient 0.02)

Figure 8.73: Scenario 4 case 1 100 % damage 1st flap wise bending

Figure 8.74: Scenario 4 case 1 100 % damage 2nd flap wise bending

Figure 8.75: Scenario 4 case 1 100 % damage 1st edge wise bending

Figure 8.76: Scenario 4 case 1 100 % damage 2nd edge wise bending
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Case 1: Top and core surface damage near Mid section with 2 % defected area (Damping Coef-
ficient 0.045)

Figure 8.77: Scenario 4 case 1 350 % damage 1st flap wise bending

Figure 8.78: Scenario 4 case 1 350 % damage 2nd flap wise bending

Figure 8.79: Scenario 4 case 1 350 % damage 1st edge wise bending

Figure 8.80: Scenario 4 case 1 350 % damage 2nd edge wise bending
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Case 2: Top and core surface damage near Mid section with 4 % defected area (Damping Coef-
ficient 0.02)

Figure 8.81: Scenario 4 case 2 100 % damage 1st flap wise bending

Figure 8.82: Scenario 4 case 2 100 % damage 2nd flap wise bending

Figure 8.83: Scenario 4 case 2 100 % damage 1st edge wise bending

Figure 8.84: Scenario 4 case 2 100 % damage 2nd edge wise bending
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Case 2: Top and core surface damage near Mid section with 4 % defected area (Damping Coef-
ficient 0.045)

Figure 8.85: Scenario 4 case 2 350 % damage 1st flap wise bending

Figure 8.86: Scenario 4 case 2 350 % damage 2nd flap wise bending

Figure 8.87: Scenario 4 case 2 350 % damage 1st edge wise bending

Figure 8.88: Scenario 4 case 2 350 % damage 2nd edge wise bending
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Case 3: Top and core surface damage near Mid section with 6 % defected area (Damping Coef-
ficient 0.02)

Figure 8.89: Scenario 4 case 3 100 % damage 1st flap wise bending

Figure 8.90: Scenario 4 case 3 100 % damage 2nd flap wise bending

Figure 8.91: Scenario 4 case 3 100 % damage 1st edge wise bending

Figure 8.92: Scenario 4 case 3 100 % damage 2nd edge wise bending
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Case 3: Top and core surface damage near Mid section with 6 % defected area (Damping Coef-
ficient 0.045)

Figure 8.93: Scenario 4 case 3 350 % damage 1st flap wise bending

Figure 8.94: Scenario 4 case 3 350 % damage 2nd flap wise bending

Figure 8.95: Scenario 4 case 3 350 % damage 1st edge wise bending

Figure 8.96: Scenario 4 case 3 350 % damage 2nd edge wise bending



Appendix B:APDL Code

!UNDAMAGED Structure
! s t i f f n e s s
∗DMAT,K,Z , IMPORT,FULL, f i l e . f u l l , STIFF
∗EXPORT, K, MAT, KDense , , ,
!∗DMAT,MatK,Z , IMPORT,MAT, KDense
!∗PRINT,MatK, Kdense . txt

! Mass
∗DMAT,M,D, IMPORT,FULL, f i l e . f u l l ,MASS
∗EXPORT, M, MAT, MDense , , ,
!∗DMAT,MatM,D,IMPORT,MAT,MDense
!∗PRINT,MatM,Mdense . txt

!Kd1
!∗DMAT,Kd1 , Z , IMPORT,FULL, f i l e . f u l l , STIFF
!∗EXPORT, Kd1 , MAT, KD1, , ,
!∗DMAT,MatKd1 , Z , IMPORT,MAT,KD1
!∗PRINT,MatKd1 ,Kd1 . txt

!Kd2
!∗DMAT,Kd2 , Z , IMPORT,FULL, f i l e . f u l l , STIFF
!∗EXPORT, Kd2 , MAT, KD2, , ,
!∗DMAT,MatKd2 , Z , IMPORT,MAT,KD2
!∗PRINT,MatKd2 ,Kd2 . txt
∗DMAT,M,D, IMPORT,FULL, f i l e . f u l l ,MASS
∗EXPORT, M, MAT, MDense , , ,

! Damping Matrix
!∗DMAT,MatKd1 , Z ,IMPORT,MAT,KD1
!∗DMAT,MatKd2 , Z ,IMPORT,MAT,KD2
!∗AXPY, 1 , ,MatKd1, ,−1 ,MatKd2
!∗EXPORT, MatKd2 , MAT, KD, , ,
!∗DMAT,MatKd, Z , IMPORT,MAT,KD
!∗PRINT,MatKd,Kd. txt

!KDD
∗DMAT,MatKd, Z , IMPORT,MAT,KD1
∗SCAL, MatKd,0 , 10

!KEE
∗DMAT,MatK,Z , IMPORT,MAT, KDense
∗AXPY, 1 , ,MatK, 1 , ,MatKd

!DAMAGED Structure
! Damaged Kd1
!∗DMAT,DKd1, Z , IMPORT,FULL, f i l e . f u l l , STIFF
!∗EXPORT, DKd1, MAT, DamagedKD1 , , ,
!∗DMAT,MatDamagedKd1 , Z , IMPORT,MAT,DamagedKD1
!∗PRINT,MatDamagedKd1 ,DKd1. txt

! Damaged Kd2
!∗DMAT,DKd2, Z , IMPORT,FULL, f i l e . f u l l , STIFF
!∗EXPORT, DKd2, MAT, DamagedKD2 , , ,
!∗DMAT,MatDamagedKd2 , Z , IMPORT,MAT,DamagedKD2
!∗PRINT,MatDamagedKd2 ,DKd2. txt
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! Damaged Damping Matrix
!∗DMAT,MatDKd1, Z ,IMPORT,MAT,DamagedKD1
!∗DMAT,MatDKd2, Z ,IMPORT,MAT,DamagedKD2
!∗AXPY, 1 , ,MatDKd1, ,−1 ,MatDKd2
!∗EXPORT, MatDKd2, MAT, DamagedKD, , ,
!∗DMAT,MatDKd,Z , IMPORT,MAT,DamagedKD
!∗PRINT,MatDKd,DamagedKd . txt

! Damaged KDD
!∗DMAT,MatDKd,Z ,IMPORT,MAT,DamagedKD
!∗SCAL, MatDKd, , 1 0

! Damaged KEE
!∗DMAT,MatK,Z , IMPORT,MAT, KDense
!∗AXPY, 1 , ,MatK, 1 , ,MatDKd

!∗DMAT,MatK,Z ,IMPORT,MAT, KDense
!∗DMAT,MatM,D,IMPORT,MAT,MDense
!∗DMAT,MatC,Z ,IMPORT,MAT,KD
!/ so lu
! antype , modal
!MODOPT,SUBSP,2
!∗EIGEN, MatDKd, MatM, , e i gva lue , e i g v e c t o r
!∗ pr int , e i gva lue , UDeigvalue . txt
!∗ pr int , e i gvec to r , UDeigvector . txt

! Zero matrix
∗DMAT,MatK,Z ,IMPORT,MAT, KDense
∗DMAT,MatM,Z ,IMPORT,MAT,MDense
∗AXPY, , ,MatK, , ,MatM
∗EXPORT,MatM,MAT,MatZ

∗DMAT,K,Z ,IMPORT,MAT, Kdense
∗DMAT,M,D,IMPORT,MAT,Mdense
/ so lu
antype , modal
MODOPT,SUBSP,20
∗EIGEN, K, M, , e i gva lue , e i g v e c t o r
∗ pr int , e i gva lue , UDeigvalue . txt
∗ pr int , e i gvec to r , UDeigvector . txt
!Damped e igen value
!KDD
∗DMAT,MatKd, Z , IMPORT,MAT,KD1
∗SCAL, MatKd, 0 , 1 77 . 0 3

!KEE
∗DMAT,MatK,Z , IMPORT,MAT, KDense
∗AXPY, 1 , ,MatK, 1 , ,MatKd

∗DMAT,MatC,Z ,IMPORT,MAT,MatZ
∗DMAT,MatM,D,IMPORT,MAT,Mdense
/ so lu
antype , modal
MODOPT,DAMP,6
∗EIGEN,MatKd,MatM,MatC, e igva lue , e i g v e c t o r
∗ pr int , e i gva lue , Dampedeigvalue . txt
∗ pr int , e i gvec to r , Dampedeigvector . txt
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Damaged1
!KDD
∗DMAT,MatKd1 , Z , IMPORT,MAT,DamagedKD1
∗SCAL, MatKd1 , 0 , 1 77 . 0 3

!KEE
∗DMAT,MatK,Z , IMPORT,MAT, KDense
∗AXPY, 1 , ,MatK, 1 , ,MatKd1

∗DMAT,MatC,Z ,IMPORT,MAT,MatZ
∗DMAT,MatM,D,IMPORT,MAT,Mdense
/ so lu
antype , modal
MODOPT,DAMP,6
∗EIGEN,MatKd1 ,MatM,MatC, e igva lue , e i g v e c t o r
∗ pr int , e i gva lue , Damagedeigvalue . txt
∗ pr int , e i gvec to r , Damagedeigvector . txt

! Mapping
f i n i
/ f i lname , I e l e Mid Defect ! name o f the super element
/ so lu
antype ,MODAL ! ana l y s i s type : subs t ruc tu r e
seopt , I e l e Mid Defect , 2 ! saves mass and s t i f f n e s s matrix
m, a l l , a l l ! c r e a t e s master nodes
s o l v e
f i n i

/AUX2
FILE , I e l e Mid Defect , f u l l
HBMAT, aux2_st i f fmatr ix , txt , , ASCII , STIFF ,YES,YES
FINISH

/AUX2
FILE , I e l e Mid Defect , f u l l
HBMAT, aux2_massmatrix , txt , , ASCII ,MASS,YES,YES
FINISH
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