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Preface

This master’s thesis concludes my studies at Delft University of Technology (TU Delft) in pursuit of a
Master’s degree in Civil Engineering. My research explores estimating period lengthening T̃

T in struc-
tures through model updating, a promising approach for enhancing damping predictions in high-rise
buildings.

When it came time to choose a subject for my master’s thesis, I discovered the research TNO was con-
ducting as part of the HiViBE project—a consortium of industry players working to improve predictions
of dynamic properties for high-rise buildings in the Netherlands. Living in Rotterdam, the Netherlands’
”skyscraper city,” I had been intrigued by the engineering innovations enabling the construction of tall
buildings, especially given the country’s soft soil conditions. This made the topic even more compelling
to me.

The research topic offered a perfect blend of my academic background and personal interests. It fo-
cused on incorporating soil-structure interaction as a factor in predicting the damping ratios of buildings.
This allowed me to merge my knowledge of structural dynamics with geo-technical engineering, creat-
ing a well-rounded and intellectually stimulating project.

Working on this thesis was both a rewarding and challenging experience. Structural dynamics is often
regarded as a complex field, and the inclusion of damping mechanisms adds further layers of difficulty.
I recall speaking with a professor of computational mechanics, another demanding area within civil
engineering, who simply responded with ”oof” when I mentioned that my research involved damping.
This reaction reflected the challenges ahead, but I kept determined about making a step forward with
regard to the subject.

On a personal level, completing this thesis pushed me well beyond my comfort zone, as it was the first
time I had managed a project of this scale independently. There were times when the scope and com-
plexity felt overwhelming, but—thanks to the invaluable support and advice from friends, family, and
supervisors—I was able to stay on track and push forward. This experience taught me what research
truly is about: not simply “doing a lot of work” or arriving at a final answer, but going for a deeper un-
derstanding of both the process and the underlying mechanics of what you do. After my last progress
meeting, I took a closer look at the meaning of the results I produced, looking for answers and expla-
nations, and it was only then that I fully understood the relevance and impact of my work.

I am ultimately proud of the outcomes of this thesis. The results demonstrate the potential of the model
updating approach to estimate period lengthening with some degree of accuracy. At the same time,
the research uncovered various challenges that must be addressed before this method can be reliably
applied to real-world structures. Most important among these are the uncertainties involved, which
stem from both the complexity of the models and the variability of real-world conditions.

This project has deepened my understanding of structural dynamics and performing research as a
whole. I hope it will be useful for future research, contributing to the ongoing effort to improve the de-
sign and safety of high-rise buildings in the Netherlands and beyond.

Finally, I would like to express my heartfelt gratitude to my supervisors, friends, and family for their
unwavering support, guidance, and encouragement the past months, without them I would not have
been able to finish this project succesfully!

C.D. Rijna
Delft, November 2024
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Summary

This thesis investigates the possibility of estimating the period lengthening (T̃/T ) of structures through
a process called model updating. Period lengthening refers to the elongation of a structure’s first natural
frequency due to changes in boundary conditions, such as the introduction of a flexible base, which is
an important factor in understanding soil-structure interaction and predicting the modal damping ratio
of the fundamental mode of buildings, which governs wind-induced vibrations.
The research employs a 2D finite element (FE) model, based on Timoshenko beam elements, to sim-
ulate the dynamic behavior of a small-scale steel structure for which vibration measurements were
previously conducted. These measurements provided dynamic properties such as natural frequencies
and mode shapes. The structural properties of the FE model were updated using a Sequential Least
Squares Quadratic Programming (SLSQP) algorithm to minimize discrepancies between the measured
and simulated dynamic properties. This process allowed for the determination of period lengthening
and its comparison with values derived from the previous experimental studies.

The research was conducted in two phases. In the first phase, synthetic modal data were used to
validate the model updating approach and investigate the approach in a situation without model or
measurement errors. This demonstrated that the algorithm effectively resolves the stiffness-to-mass
ratios (Esteel

ρ and Esteel

Espring
) rather than accurately determining individual properties. The comparison

between stiff and soft springs revealed that period lengthening predictions for stiff springs were more
accurate and stable, whereas soft springs exhibited greater sensitivity and larger discrepancies in the
results.

In the second phase, real measurement data were used to update the FE model. The results were
generally consistent with the synthetic data, although the optimization process revealed variations in
period lengthening estimates due to the presence of a ”plateau” in the cost function. This plateau was
a region where the cost function did not really improve, despite different properties and resulting period
lengthening values. This indicated that the model was unable to fit all dynamic properties perfectly,
highlighting the influence of both model and measurement uncertainties.

The findings show that model updating can effectively estimate period lengthening, particularly for flex-
ible foundations. However, the accuracy of the results is heavily dependent on both modeling and
measurement uncertainties. It is important to critically assess results from the optimization, to deter-
mine if the optimization has fully converged and wether uncertainty of the parameter is small enough.
Further research is recommended to address these uncertainties and refine the method for potential
use in real-world applications, particularly in high-rise building design.
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1
Introduction

1.1. Research context
Buildings in the Netherlands are becoming taller, more slender, and lighter, making them more suscep-
tible to wind-induced vibrations. Current calculation methods do not accurately predict the actual vibra-
tion behavior of high-rise buildings [2]. This phenomenon is mainly caused by inaccurate prediction of
building properties in the design phase. One of such design variables that has a large influence on the
dynamic response is the damping ratio. Full scale measurements have shown a discrepancy between
in-situ and design values of the modal damping ratio of the fundamental mode [3]. This discrepancy
can lead to several undesirable situations: due to an overestimation of damping, high accelerations of
high-rise buildings that can cause a diminished sense of safety in the building, but can also lead to the
sopite syndrome, a form of mild motion sickness [17] . An underestimation of damping may lead to
building designs that are too conservative and will therefore be unsustainable and cost-inefficient. To
improve predictions, a consortium of market parties (the HiViBE consortium), led by TNO, has initiated
a multi-year research program [1]. This thesis will serve as a part of this research program and will
specifically focus on methods to improve the predictions of damping values of high-rise structures in
the Netherlands.

When talking about damping of vibrations in high-rise buildings, one often means the damping value
associated with the fundamental mode of the structure, since the response of this kind of structures is
mainly governed by the response of the fundamental mode [3]. Before 1975, most studies on dynamic
behavior and damping of high-rise buildings have been focusing on Ultimate Limit State (ULS) condi-
tions, mainly caused by earthquake excitation [26]. Later, Serviceability Limit State (SLS) conditions
due to wind loads became more important due to the previously mentioned changing characteristics of
high-rise buildings. Several researchers, such as Jeary [13], Tamura [29], Lagomarsino [16] and Dav-
enport and Hill-Caroll [10], proposed damping predictors for the SLS of tall buildings based on full-scale
measurements. Bronkhorst et al. [3] showed that the damping estimated by these different empirical
predictors and additionally by the Dutch design codes (such as NEN-EN 1991-1-4 [30] and NEN-EN
1990 [22] ), can deviate significantly from the measured damping in Dutch high-rise buildings [4]. Sev-
eral studies have identified a large influence of soil structure interaction (SSI) on the overall damping
ratio of high-rise buildings [27][9] [4] and Gomez [26], who studied the relation between foundation stiff-
ness and overall damping ratio, found a correlation suggesting that a lower foundation stiffness leads
to a higher contribution of foundation damping to the overall damping ratio. Dutch soft soil conditions
could therefore partly explain the deviation of damping values from design codes and empirical predic-
tors.

In seismic design, Soil Structure Interaction (SSI) is often modeled with the substructure approach, us-
ing springs and dashpots to represent stiffness and damping of the foundation [23]. One approach to
include soil-structure interaction is by modifying the damping ratio of the fundamental mode, through
the use of the period lengthening ( T̃T ) [23]. Veletsos and Meek [33] developed a theoretical relationship
between building-, foundation-, and overall-damping of the fundamental mode through this parameter.

1



1.2. Research problem 2

Cruz and Miranda [9] developed an analytical model based on the theoretical relationship of Veletsos
et al. and found that for seismic vibrations, the change in overall damping ratio with increasing height
mainly depends on SSI. Carranza et al. [4] showed that this approach is also applicable to high-rise
buildings exposed to wind induced vibrations. He compared Eurocode predictions (NEN- EN 1991-1-
4 [30]) of the damping ratio of the fundamental mode of a 154 m tall residential high-rise building in
the Netherlands to predictions by an equivalent single-degree of freedom (SDOF) model with modified
damping ratio (according to the period lengthening). This study showed that the estimated damping
ratio using the SSI model was only 8% higher than the measured values, whereas the Eurocode pre-
dictions overestimated the damping value with 90 %. This result suggests that application of the SSI
model could offer a better estimate of the damping at the design stage than determined using Dutch
design codes (NEN-EN 1991-1-4 [30]) and NEN-EN 1990 [22]).

1.2. Research problem
Although results of the SSI modelling approach proposed by Cruz and Miranda [9] and Carranza et al.
[5] are promising for a better prediction of wind-induced vibrations, several problems exist that prevent
the approach from being used in design for high-rise buildings. First, both studies make different as-
sumptions about the magnitude of the building- and the foundation damping (ζb and ζf respectively). It
is unclear which assumptions lead to an optimal result of the overall damping ratio of the fundamental
mode (ζ0). Secondly, the period lengthening cannot be directly measured and therefore, there is no
database with period lengthening values for a large set of buildings. This means it cannot be inves-
tigated which assumptions made about building- and foundation damping lead to an optimal result of
the overall damping as computed using the SSI model. The third problem is about the estimation of
building properties: during the design phase, there is uncertainty in determining the exact structural
properties of a building, such as mass, stiffness, and damping characteristics. These properties are
often based on assumptions or generalized models, which may not accurately reflect the true behav-
ior of the building once constructed. This uncertainty complicates the prediction of dynamic behavior,
including period lengthening. To be able to calculate the period lengthening based on structural proper-
ties of buildings, model updating could be applied. This method involves adjusting the parameters of a
computational model to better match the measured dynamic response of a structure. By comparing the
observed modal characteristics, such as natural frequencies and mode shapes, with those predicted
by the model, the model parameters are iteratively refined to minimize the discrepancy between them.
This approach enhances the accuracy of the model in representing the actual behavior of the struc-
ture, making it a powerful tool for predicting period lengthening.A preliminary study conducted prior to
this thesis attempted to estimate the period lengthening of several buildings in Japan using an Euler-
Bernoulli beam model with uniformly distributed mass and stiffness. While the results were promising,
it was not possible to fully evaluate the method. In real-life situations, each building typically exists
on a single, flexible foundation, and it is impossible to place a building on different base conditions or
foundations to directly investigate period lengthening. This limitation makes it challenging to validate
the accuracy of the model across varying conditions.

1.3. Research objective
The goal of this study is to develop a reliable method to determine the period lengthening ( T̃T ) of a
structure through model updating of a Finite Element (FE) model and to investigate which conditions
play a role in the accuracy and precision of the outcome.

1.4. Research scope
This research will investigate the possibility of determining the period lengthening by model updating
of a 2D FE-model, such that its dynamic properties match the dynamic properties of a small-scale
steel frame. The natural frequencies and mode shapes used for the updating, correspond to bending
modes in one direction only, with torsional modes excluded from consideration. Therefore, a 2D FE
model and updating code was developed in python. These measured dynamic properties are obtained
from previous research by Elisa Marchelli [18] and the process of obtaining those is not part of this
research. The research will only cover the updating of the developed 2D FE model, no other types of
models are investigated. The main focus is determining the value for period lengthening, and reflect
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on the accuracy of the procedure. It will not try to conclude something on the contribution to the modal
damping ratio by building and foundation.

Figure 1.1: The small-scale steel building model of which vibration measurements were taken by Marchelli [18]. These
measurement were then used to update properties of a FE model in this thesis, to determine the period lengthening.

1.5. Research questions
The main research question of this thesis is the following:

”How can the period lengthening of a structure be estimated reliably through model updating based on
vibration measurements?”

To address the main research question of this thesis, it has been broken down into three specific
research questions:

1. What parameters play a large role when estimating the period lengthening of a structure by model
updating a 2D FE model.

2. What is the optimal setup for a model updating procedure to reliably estimate the period length-
ening of a structure?

3. How well do period lengthening values computed through model updating of a 2D FE model
compare to values obtained from measurements on a small-scale steel model.

This thesis aims to achieve several key objectives by exploring the research questions outlined. Specif-
ically, it will evaluate the feasibility of determining period lengthening through model updating. This
evaluation will involve analyzing the settings and input values of the optimization algorithm used to
update the system parameters. Additionally, the accuracy of the algorithm’s output will be assessed by
comparing it to measured data. Through this process, the thesis will determine whether the approach
produces sufficiently accurate results, which are necessary for understanding the damping distribution
in buildings. Moreover, key challenges encountered during the process will be identified.



2
Literature Review

In this section, a literature review will be presented that focuses on background information and theories
regarding the complexity of damping mechanisms of wind-induced vibrations in high rise buildings. In
addition, current design practices and their limitations will be discussed. The chapter aims to identify
research gaps and explain the setting and relevance of this study. In section 2.1, the background
and motivations for this study are explained. In section 2.1.4, state-of-the-art modelling approaches
focused on wind induced vibrations of high rise buildings are discussed and finally, in section 2.4, model
updating and the application of it in this study is discussed.

2.1. Background
2.1.1. Recent developments in high-rise buildings in the Netherlands
The Dutch population has been growing for the last decades and this growth is generally concentrated
in the Randstad, a metropolitan region in the west of the Netherlands [11]. In the vision of the Dutch
government [19], one of the proposed solutions for the large population growth is to increase the density
of this area. High-rise buildings are mentioned as an inspiring way to achieve this. Therefore, the
amount of buildings higher than 70 meters has doubled since 2008 [12] and several larger Dutch cities
have now published vision documents on high-rise buildings.
Two developments that characterize the development of high-rise buildings in the Netherlands are the
increasing slenderness of buildings and the use of lighter materials [2]. Typically, slenderness is in-
creasing with increasing building height, due to daylight requirements in cities, which dictate limitations
to floor surface area for buildings higher than 70 meters [2] [25]. More slender buildings are more sus-
ceptible to wind-induced vibrations. In addition to increasing slenderness, lighter materials are used
in the construction of HRB, following a trend within the building industry towards more sustainable de-
signs of structures [2]. Heavy buildings are more vulnerable to horizontal vibrations[2]. Overall, these
trends make HRB more susceptible to wind-induced vibrations.

2.1.2. Relevance of damping in wind-induced vibrations of HRB
Because of the increased susceptibility of wind induced vibrations, it becomes more important to un-
derstand the dynamic behaviour of HRB. Damping, which represents the energy loss during vibration,
remains the most uncertain design parameter that needs to be determined [2] [26]. This is because the
vibration energy is lost during a variety of uncertain and intricate processes or damping mechanisms,
which will be discussed in section 2.1.3. The modal damping ratio is usually denoted using the letter
ζ and is defined as the ratio between the actual damping and the critical damping, which is the mini-
mum amount of damping required to prevent a system from oscillating or vibrating. More knowledge on
damping of high-rise buildings is necessary because the parameter highly affects peak accelerations
in buildings. The peak acceleration is the maximum acceleration that can occur in a building due to
wind-induced vibration [30]. The main structural parameters determining the response are (1) the natu-
ral frequency and (2) the damping ratio of the building [2]. This research will focus on the damping ratio.
To visualize the strong dependency between the damping ratio and the peak acceleration, Bronkhorst
et al. Bronkhorst, Bentum, and Gomez performed a case study showing how the peak acceleration of

4
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a specific building is affected by the choice of damping ratio. He calculated this peak acceleration in
the range of damping ratios estimated by various empirical damping predictors. A plot of this study can
be seen in figure 2.2 (a).

Figure 2.1: Sensitivity analysis performed by [2] to see how peak acceleration is affected by the damping ratio for a specific
building. The limit value according to NEN 6702 is specified by the dashed red line.

Figure 2.2: Limit values specified by NEN 6702 for the peak acceleration with a return period of 1 year for wind-induced
vibrations in buildings. 1 = office function, 2 = living function [22].

Limits on allowable peak accelerations in the Netherlands can be found on in NEN 6702. In this design
code, SLS (Serviceability Limit State) conditions have been defined for buildings in the Netherlands.
These limits can be seen in figure 2.2. In current design practice however, often the (more strict)
criteria from ISO 10137 are used. With these criteria it becomes difficult to meet comfort levels for
buildings over 150-200 m.
Peak accelerations can be calculated using the procedure in EN 1991-1-4 [30], which will be further
explained in section 2.2

2.1.3. Damping mechanisms
Davenport and Hill-Carrol [10] describe four damping mechanisms for high-rise buildings: (1) intrinsic
material damping (main mechanism in the main load bearing structure (MLBS)), (2) frictional damping
(main mechanism in the non-structural elements), (3) aerodynamic damping and (4) radiation damping
(damping in the foundation). Others, such as Jeary [14] and Smith and Willford [28] have progressed
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Figure 2.3: Visual representation of a building with several damping mechanisms as identified by [26]

further on these concepts by describing several damping mechanisms. In table 2.1, a summary of
these damping mechanisms is portrayed, using the description as proposed by Gomez [26]. Auxiliary
damping is added, which is described by Carranza [4]. Important to note is that this study focuses on the
overall damping ratio, which includes all of the individual damping mechanisms described in table 2.1.
It aims at determining the period lengthening to separate the contribution to the overall damping by
the foundation damping from the contribution by the building damping. This is further explained in
section 2.2.3

2.1.4. Estimation of damping in design practices
Damping ratios of buildings can be estimated using the European code EN 1991-1-4 [30]. The values
made available in this code are obtained by field experiments on high-rise buildings, mostly from other
countries than the Netherlands, and can be seen as rough estimates [2]. The damping values are
fixed and depend only on the material of the main load-bearing structure of a building (such as steel,
concrete or mixed). Values can be found in figure 2.5.

Empirical damping estimators
The Eurocode formulation of damping assigns values for overall damping of the fundamental mode
based on building material (steel, concrete or mixed). To include parameters such as building height,
aspect ratio and natural frequency, several researchers, such as Jeary [13], Tamura [29], Lagomarsino
[16] and Davenport and Hill-Caroll[10], have developed alternative damping estimators. These estima-
tors are based on empirical relations between parameters and measured damping ratio’s of buildings
and none seems to fully capture the damping behaviour of high rise buildings [2]. An overview of the
researchers and their proposed damping estimators can be seen in figure 2.5. Important to note is that
none of these damping estimators give insight in the distribution over different building components,
nor do they include SSI as one of the governing factors in the overall damping ratio [2].

2.1.5. Applicability of estimators
Bronkhorst et al. [2] showed that both Eurocode procedure and the several damping predictors pro-
posed by researchers largely deviate from measured damping ratios of buildings. For most buildings,
this difference between measured and predicted values is large (more than 50%) and the differentiation
made in most models between concrete and steel buildings is not apparent from these measurement
results. This underlines the need for a more accurate method for damping estimation.

2.2. Modified damping to include SSI effects
2.2.1. Current design practice: Eurocode model
To determine the response of high-rise buildings to wind forces, modal analysis is performed. In modal
analysis, the total response of the structure is described as the superposition of vibration modes [5].
The maximum response of each mode can individually be described as a single degree of freedom
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Table 2.1: Description of several damping mechanisms in a building as identified by [26]

Building component Damping mechanism
Main load bearing struc-
ture (MLBS)

Consists of three mechanisms

1. Material damping is caused by energy dissipation in the form of heat, due
to friction of molecules. In the lab, damping ratios for pure materials such
as concrete and steel can be found according to Smith and Willford [4].

2. Slip on connections
3. Yielding of structural elements

Non-structural elements
(NSE)

facades, partition walls, cladding, fixed furniture and mechanical and electrical
shafts. Deform as structural elements deform, but energy dissipation generally
much weaker [4].

Aerodynamic /external
damping

Aerodynamic damping in high-rise buildings refers to the energy dissipation
caused by the interaction between the building’s vibrations and the surrounding
air during wind-induced motions. However, it is often considered negligible be-
cause the wind speed is significantly higher than the building’s vibration speed,
making the wind’s influence on the relative motion dominant. As a result, the
resistive forces generated by the building’s movement against the wind are too
small to meaningfully reduce vibration amplitudes and therefore Aerodynamic
damping is often considered negligible [4]

Auxiliary/supplementary
damping

Elements that are added to a structure to increase the amount of damping,
such as tuned mass dampers, tuned liquid dampers, friction dampers and vis-
cous and visco-elastic dampers. These elements can increase overall damp-
ing with up to 5% [4].

Foundation damping Energy dissipation in the foundation is mainly through:

1. Hysteretic damping: energy dissipation due to internal friction within the
soil material, occuring in hysteretic loops when loaded cyclically [2] [4]

2. Wave radiation or geometric damping: energy dissipation through the
radiation of elastic waves in the soil [4].

Figure 2.4: Overview of empirical damping estimators and damping estimators specified by Dutch design codes. Taken from
[2]. x is the maximum displacement at the top of the building (in m), σx is the standard deviation of the displacement at the top
of the building (in mm), H and d are the height and width of the building (in m) and fn is the natural frequency of the building.
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Figure 2.5: Predicted and measured damping for 12 high-rise buildings in the Netherlands (H ≥ 60 m). The first 8 buildings
have a concrete structure, the Montevideo and EWI faculty have a mixed structure, and the Kennedytoren and La Fenetre have
a steel structure. The height of the load-bearing part of the building structure is specified between brackets (i.e. antennas,

masts or special roof structures are not considered). Taken from [2]

system (SDOF) with a modal mass, stiffness and damping. The Eurocode describes a procedure to
calculate the peak acceleration of a high-rise building based on an equivalent SDOF that describes
the first mode of vibration of the building [30] [2]. This is, because the first mode commonly governs
the maximum dynamic response of a high-rise building under wind load [26] [4]. In figure 2.6, the
Eurocode model is depicted. The stiffness ki in this figure, represents the stiffness of the building only.
Soil stiffness and therefore soil damping is not included in the current approach.

Figure 2.6: Structural model used in the EN 1991-1-4 [4] and approximation as a single degree of freedom (as first mode
governs maximum response in wind-induced vibrations.

2.2.2. Modelling SSI in dynamic response
Soil-Structure Interaction (SSI) or Soil-Foundation-Structure Interaction is a concept referring to the
mechanical processes arising when the structure or system is impacted by the deformability of the
soil [2]. The Eurocode model disregards any effects of this interaction between the foundation and
the structure, while inertial displacements and rotations can be a significant source of flexibility and
energy dissipation in the soil-structure system[23]. To include SSI in model calculations, two principal
methods exist: the direct analysis and the substructure approach [5] [23]. In the direct analysis, the soil
and structure are included in the same model and analysed as a complete system. Often, it consists
of a Finite Element (FE) or Boundary Element (BE) formulation of the system. In the substructure
approach, the soil and the structure will be modelled separately and then combined to formulate the
complete solution. Here, the flexibility of the soil is represented by local springs and dashpots (see
figure 2.7). These springs and dashpots can be frequency dependent or independent [32].
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Figure 2.7: Methods for modelling SSI [32]

2.2.3. Modification of damping for SSI in Seismic-Induced Vibrations
For earthquake excitations, the National Institute of Standards and Technology (NIST) in the United
States prescribes a modelling procedure based on the substructure approach that includes SSI through
rotational and translational springs [23]. To include base moments, the Eurocode SDOF model is
modified to an SDOF stick model. The model is depicted in figure 2.8.

Figure 2.8: Schematic of deflections caused by a force in the case of (a) a fixed-base structure, and (b) a structure with a
flexibility and damping at the base by [23].

figure 2.8 shows an SDOF stick model on a fixed base in (a), meaning a combination of a rigid foun-
dation elements on a rigid base, and a flexible base in (b), meaning that the analysis considers the
compliance (i.e., deformability) of both the foundation elements and the soil. It is important to consider
this difference, as a flexible base introduces a period lengthening, which is an increase in the natural
period of a system [23] [26]. The period lengthening is defined as T̃

T and related the stiffness of the
foundation to the stiffness of the structure. Veletsos and Meek [33] defined the period lengthening for
the model in figure 2.8 as:

T̃

T
=

√
1 +

k

kx
+

kh2

kyy
(2.1)
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where:

T = Fundamental period of fixed base structure
T̃ = Fundamental period of flexible base structure
k = damage level
kx = translational stiffness
kyy = rotational stiffness
h = effective modal height ( = height of center of mass of first mode)

The importance of the period lenghtening parameter has been described by Wolf (1995) [35], who
derived an equation for the modification of the overall damping ratio of the fundamental mode, based
on this parameter:

ζ0 = ζf +
1

T̃
T

n ζb (2.2)

where:

ζ0 = Overall damping of the flexible-base system
ζf = Foundation damping
ζb = Building damping
n = taken as 3 for linearly viscous structural damping and 2 otherwise
T̃
T = period lengthening

This relation defines how much the overall damping of the model is affected by the flexibility of the
foundation and is used to modify the modal damping ratio used to calculate the response of buildings
to seismic excitation [23].

2.2.4. Relevance of damping modification for SSI-effects
In the context of earthquake induced vibrations, Cruz and Miranda [9] have shown how important SSI
is when it comes to the overall damping ratio. They suggested that the decrease of damping ratio
with increasing building height is mainly due to SSI, as model calculations closely follow the trend of
empirical data (see figure figure 2.10). In addition, Cruz and Miranda [8] showed through a parametric
study how SSI-effects can either increase or reduce the effective modal damping ratio of the funda-
mental period. Meaning that the overall damping ratio could turn out to be lower than the structural
damping, simply due to SSI. An experimental study by Vivek and Raychowdhury (2017) [34] showed
a linear correlation between the period elongation and overall damping ratio for two small scale steel
building models on various flexible foundation types, ranging from loose sand to dense sand. These
relationships are shown in figure 2.9.

Figure 2.9: Relationship between damping and period elongation ofstructure–foundation systems [34]
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(a) Variation of the effective damping ratio of the
fundamental mode with the building height and

comparison with empirical data from Cruz and Miranda
[9]

(b) Ratio of damping from foundation over total foundation (Df/Dt

against total stiffness over foundation stiffness (Kt/Kf ). Taken from [3]

Figure 2.10: Several indications of the importance of SSI on damping.

2.2.5. Relevance of damping modification for wind-induced vibrations
For the case of wind-induced vibrations, Gomez et al. [26] performed model calculations and found that
damping ratio is independent of structural velocity, meaning that unlike earthquake induced vibrations,
wind-induced vibrations can therefore be described using linear models. In addition, Gomez et al. [26]
found that for wind-induced vibrations, foundation damping is contributing asmuch as 50% to the overall
damping, regardless of the values of the admissible parameters in his model. Other evidence of the
importance of SSI, especially in the Netherlands where soft soils are predominant, was presented by
Gomez [27] in another paper, where he plotted the ratio of foundation damping to total damping (Df

/ Dt) against the ratio of total stiffness to foundation stiffness (Kt / Kf ) for various high-rise buildings
in the Netherlands (see figure 2.10). From this graph, it appeared that when the foundation stiffness
is relatively high compared to the total stiffness, most damping is coming from the building instead of
the foundation and vice versa. This could mean that the discrepancy found by Bronkhorst et al. [2]
between predicted and measured values is caused by SSI, since Dutch buildings are often built on
softer soils with low stiffness, meaning foundation damping would be higher.

Figure 2.11: SDOF stick model by Carranza [4] and equivalent SDOF model with dynamic impedance (Dr , Dt and D∗.

2.2.6. Applicability of modified damping ratio in wind-induced vibrations
Carranza [4] investigated the applicability of the SDOF model as proposed by the National Institute
of Standards and Technology (NIST) for wind-induced vibrations. He set up a SDOF stick-model with
translational and rotational dynamic impedance springs representing the soil translation and rocking
motion stiffness and damping. The model can be seen in figure 2.11. In a case study, Carranza
compared measurements of damping ratio of the fundamental mode of the New Orleans, a building in
the Netherlands founded on soft soils, to the modified modal damping ratio determined with the SDOF
stick model. The values from this model Carranza compared results for damping, natural frequency
and peak accelerations found using the eurocode, numerical simulations and the SDOF stick model
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to the results of full-scale measurements. Table 2.2 shows the results, which suggested a much more
accurate result is achieved for the overall damping ratio of the NewOrleans using the SDOF stick model
compared to the Eurocode model.

Model Estimated damping ζ [%] Error w.r.t measurement (%)
Measurements 0.842 -
HF model 0.802 - 5 %
NIST model 0.910 8%
EC model 1.6 90 %

Table 2.2: Comparison of results from [4].

2.3. Research gap: need for period lengthening estimation
As stated in the problem statement of the introduction, it is necessary to investigate the assumptions
leading to the promising results by Carranza et al. [4] , Cruz andMiranda [9] and Gomez et al. [26]. Sim-
ilar within these studies, is their use of a modified overall damping ratio based on the period lengthening
of the buildings investigated, using equation (2.2). Despite this similarity however, all of the studies use
a different approach to determine the foundation and building damping (ζf and ζb). Several different
models and assumptions are behind this determination. More information on these different models
and assumptions can be found in appendix A. To date, there has been no evaluation of these differ-
ing assumptions, and it remains unclear which approach yields the most accurate results for modified
damping in wind-induced vibrations. It is necessary to analyze a large dataset of buildings to identify
the values for ζf and ζb that result in the most accurate overall damping estimates. Therefore, the
period lengthening of each of these buildings should be estimated first.

Two problems exist however, that prevent one from determining the period lengthening of buildings to
investigate the damping assumptions. The first problem is that the period lengthening is a theoretical
value, since only one situation, with a flexible base, exists. Therefore, it cannot be directly measured,
and needs to be determined through modelling of the building in question. If the properties of the build-
ing and foundation are modelled such that they resemble the in-situ situation well enough, both the
period with a flexible base and the period on a fixed base can be determined. This brings us to the
second problem: lack of precise structural and foundation properties of buildings, prevent an accurate
estimation of the period lengthening.

This research tries to address both problems. First, it makes use of a small scale steel model that
is placed on different foundation types. Therefore, the period lengthening can be directly determined
from experiments. Secondly, it proposes a methodology aimed at determining the period lengthening
through model updating. Through model updating, in-situ structural and foundation properties can be
estimated. The process of model updating is further explained in section 2.4.

2.4. Model updating
Model updating is a technique that has been developed to address this challenge by estimating in-
situ structural properties from vibration measurements [20]. The process involves creating a structural
model, typically a finite element model (FEM), and iteratively adjusting its parameters to minimize the
differences between the modal properties (such as natural frequencies and mode shapes) of the model
and those obtained from actual measurements. This minimization problem is typically framed as a
constrained or unconstrained optimization task, with a cost or loss function representing the difference
between the measured and modeled modal properties. The goal is to find the global minimum of this
cost function, thereby ensuring that the model closely replicates the real-world behavior of the structure.
Numerous studies have successfully applied model updating to improve the accuracy of structural
models. For instance, Wu and Li [36] applied model updating to a FE model of a 310-meter-tall TV
tower to create a more accurate model for assessing the wind-induced response. This was particularly
important after it was observed that measured wind-induced accelerations exceeded comfort limits
due to inaccurate initial estimates of the natural frequencies. Similarly, Kaynardag and Soyöz [15]
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used model updating on an existing tall building’s FE model to better evaluate its seismic performance.
A comparable approach was undertaken by Torres et al. [31] to assess the resistance of the Cathedral
of Santiago to extreme seismic loads.
In the case of Moretti et al. [20], model updating was performed using an Euler-Bernoulli beam model
to determine the structural properties of the New Orleans building in Rotterdam. This approach, like
others, sought to estimate the structural properties by minimizing the difference between the modal
characteristics of the model and those measured on-site. The study found that the uniform beam
model was effective in accurately describing up to two bending modes. However, the estimation of
foundation stiffness proved more challenging, highlighting a common difficulty in model updating: while
the structural properties of the building can be estimated with reasonable accuracy, foundation-related
parameters are often less straightforward to quantify.

2.4.1. Model updating to estimate the period lengthening
A difficulty in determining structural properties based on measured dynamic properties arises from the
fact that natural frequencies depend on the ratio of stiffness to mass. For example, in a single degree
of freedom (SDOF) system, the natural frequency is given by ωn =

√
k
m , where k is the stiffness

and m is the mass. This means that a system with a certain mass and stiffness can have the same
natural frequency as another system with double the mass and double the stiffness, as long as the
ratio k

m remains the same. This interdependence creates ambiguity in isolating the exact values of
mass and stiffness, especially in complex structures with multiple modes of vibration. However, period
lengthening, which primarily depends on the distribution and ratio of stiffness rather than mass, can be
estimated more accurately because it reflects changes in stiffness directly, making it a more reliable
indicator for understanding how structural stiffness influences dynamic behavior.



3
Methodology

In this chapter, the methodology adopted to answer the research questions is presented. The chapter
starts with a general description and justification of the approach applied, followed by a description of
the small scale steel model and available data from the thesis by Marchelli [18]. Then, the various steps
taken to use this data to update the properties of the FE model to better match the dynamic properties
of the small-scale model will be described.

Model updating involves adjusting the parameters of a numerical model—in this case, a 2D FEM—to
align with the measured dynamic behavior of a structure. The process comprises three main compo-
nents: the collection of measurement data, the construction and refinement of the numerical model,
and the application of an optimization algorithm to minimize discrepancies between the model’s output
and observed measurements.

For this thesis, a 2D FE model with multiple configurations was developed and updated using dynamic
measurements from a small-scale steel buildingmodel previously studied byMarchelli [18]. The focus is
on adjusting the model properties to capture period lengthening, a phenomenon where the fundamental
period of a structure increases due to soil-structure interaction. Since period lengthening is essentially
determined by the ratio of building stiffness and foundation stiffness (see section 2.2.3), this study
emphasizes the identification of ratios between parameters—such as stiffness and mass—rather than
the precise value of individual parameters, unlike traditional model updating research.

3.1. Experimental setup
In 2023, Marchelli [18] performed experimental modal analysis (EMA) on a small-scale steel building
model (figure 3.1a). The model was lent from The Netherlands Organisation for Applied Scientific
Research (TNO) and consisted of five stories with five floor plates connected by four columns at each
story. The floors are connected to the columns through L-shaped steel bolted connectors (figure 3.1b).

14
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(a) Test setup (b) L-shaped steel connectors

Figure 3.1: Picture of the test setup and connections (taken from Marchelli’s thesis [18]).

3.1.1. experimental modal analysis
Marchelli [18]studied seven different building configurations with various base conditions. The different
setups (i.e., base condition/configuration combination) will be discussed in section 3.1.2. Each setup
was excited with an impact hammer in both x and y directions at the top floor. The hits were placed
not along the symmetry axes to allow for the identification of the torsional modes. The response of the
structure was measured through twenty-five PCB 333A structural accelerometers. Three accelerom-
eters per floor measured accelerations in the x-direction and one accelerometer per floor measured
acceleration in the y-direction. On the ground floor, more accelerometers were placed, with four in
both the x- and y-directions, and four additional sensors measuring accelerations in the z-direction. In
figure 3.2, the placement of the accelerometers is shown.

(a) Ground floor (b) Floor 2-5

Figure 3.2: Top view of the structure with (a) view on ground floor and (b)view on other floor levels. The location of the different
sensors and their direction of measurement is clearly depicted by arrows or crosses (meaning an upward direction)

After the experiments, Marchelli [18] processed the resulting accelerations and force signals using
Combined Subspace Identification as a technique of the EMAX. This way, for each of the setups, natural
frequencies and modeshapes were determined. An overview of all setups can be found in appendix B.
For a more extensive description of data acquisition and handling, it is recommended to consult the
thesis of Marchelli [18].
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3.1.2. Building configurations and base conditions
Marchelli studied seven different building configurations, each featuring a varying number of columns
with different thicknesses. Specifically, some columns were 1.5 mm thick, while others were 2 mm thick.
The thickness of the columns varied depending on their location within each configuration. A picture
of one of these test structure configurations is shown in figure 3.1a and an overview of all column
configurations is provided in figure 3.3. In this overview, the 1.5 mm thick columns are highlighted in
red and the 2 mm thick columns are shown in yellow. For the configuration labeled as C7, all tests
were performed twice to ensure the consistency of the experimental method. As a result, a total of 30
different setups were examined. A comprehensive list of all setups can be found in appendix B.

Figure 3.3: Axonometric view of configurations from C1 to C7 represented by 1.5-mm-thickness columns colored red and
2-mm-thickness columns colored yellow. Realised with AutoCAD (taken from Marchelli’s thesis [18]).

For three of the configurations (C5, C6, and C7), the base conditions were also varied. Marchelli
mounted them on three different types of support: (1) a thick steel plate, representing a fixed base, (2)
four neoprene springs of type 4035VV25, representing a soft support, and (3) four neoprene spring of
type 5020VV25, representing a stiff support. Specifics about the spring stiffness and dimensions can
be found in figure 3.4.

Figure 3.4: Dimensions and material properties of the soft and stiff springs, taken from the manufacturers’ manual [7].
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3.2. Development of a 2D FE model
3.2.1. Model type and dimensions
The model set up for updating based on the dynamic properties of the small-scale steel model was a
2D FE model. It was constructed in Python using the open-source PyJive library [6], developed by the
Computational Mechanics group at TU Delft. The model type chosen was a ’frame model,’ consisting
of Timoshenko beam elements. This model type was chosen since the columns are quite thick in the
strong y direction, so shear behaviour could affect the results. Each member of the model, columns,
and plates were assigned dimensions corresponding to measurements and physical properties based
on general properties of steel. An overview can be found in figure 3.5. Since the model was a 2D FE
model, the cross-sectional area (A) was double the area of one column. The shear modulus of the steel
was calculated based on the defined E-modulus using the following equation based on the Poisson’s
ratio of steel (ν):

G =
E

2(1 + ν)
(3.1)

Since the elements of the FEM-model were Timoshenko elements, a reduction factor was used for a
rectangular area, reducing the shear modulus to 0.85G.

Figure 3.5: Schematization of the 2D FE model used for the updating of configuration C5. Assumed dimensions, as well as
initial assumed physical properties are displayed in the tables on the right. The colors of the tables correspond to the colors of

the FE model on the left.
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3.2.2. Connections
The columns of the steel building model were connected to the floor plates through bolted L-shaped con-
nectors, as can be seen in figure 3.1b. In the model, the mass and stiffness added by these connectors
was left out of consideration and not included. Instead, column-floor connections were assumed rigid
with no rotation. Mass added by the sensors and connected wires, placed near the column/floorplate
connection points, were not considered either.

3.2.3. Base conditions
The fixed base condition (steel model mounted on a thick steel plate) was modeled by assuming a
clamped connection of the columns to the floor, with no rotation or displacement (ϕ(z = 0) = 0, u(z =
0) = 0). For the soft and stiff base conditions, the springs were modelled by adding two members at
the bottom of the FE model. The dimensions and material properties for these members were taken
from the springs manufacturers’ manual [7]. In the manual, axial and shear stiffness were defined in
kg/mm (see figure 3.4). For the FE model, an equivalent stiffness was then calculated using the axial
stiffness from the manual:

EA = kaxiall (3.2)

where:
EA = axial rigidity of the spring [N]
kaxial= Axial stiffness of the spring [N/m]
l = height of spring [m]

Again, due to the reduction of dimensions from 3 to 2, only 2 members were representing 4 springs,
so the cross-sectional area of the springs was doubled per member in the FEM-model. Axial stiffness
of these members was calculated using equation (3.2). The shear stiffness of the steel was calculated
using equation (3.3):

G =
E

2(1 + ν)
(3.3)

where:
G = Shear stiffness of the spring elements [N/m]
ν= Axial stiffness of the spring elements [N/m]

A reduction factor for the area (k) of 0.85 was applied to calculate the modified shear stiffness (GAs).
A Poisson-ratio of 0.5 and a mass density (ρ) of 0 kg/m3, to leave the mass of the springs out of
consideration. In table 3.1, all material properties assigned to the spring elements in the FEM-model
are depicted.

Table 3.1: Properties of Soft and Stiff Spring Elements (FEM)

Soft Spring Elements Stiff Spring Elements Units
EA 8721.09 568980000 N
GAs 2470.98 161211000 N
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3.2.4. Mode matching
After performing modal analysis on the FEM-model, several modes appear with dominant vertical mo-
tion. Since only pure bending modes in x direction are considered in this thesis, the modes with domi-
nant vertical motion should be discarded. Since this had to be done repeatedly for all building configura-
tion in combination with different base conditions, the selection was done by calculating a displacement
factor (R) of each mode using the following equation:

R =

∑N
i=1 dx

2
i∑

dy2i
(3.4)

where dx2
i and dy2i represent the displacement in x and y direction of each degree of freedom i. If R >

50, the mode was identified as a bending mode with predominant horizontal displacements. The factor
was determined based on visual inspection of some of the modeshapes.

3.2.5. Convergence analysis
A convergence analysis was performed based on the first four computed natural frequencies of the FE
model with fixed base, to ensure that the computed natural frequencies are accurate and not dependent
on the discretization level of themodel. The analysis verified that themesh is refined (i.e., as the number
of elements increases) to such a level that the solution approaches a stable value. This value is stable
when the difference in frequency when adding one additional node per member is less than 0.2%. In
figure 3.6, the outcome for the fourth natural frequency is shown on the y-axis, against the number of
elements on the x-axis. From this graph, it was concluded that 10 elements were satisfactory.

Figure 3.6: Plot showing the convergence of the fourth natural frequency against the number of elements.
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3.3. Model updating
The FE model in figure 3.5 is a schematization of one building configuration, on a fixed base. In total,
nine FE models were built, based on the three building configurations and three base conditions per
configuration. In this study, the structural properties of the various FE models were altered through
an iterative procedure for vibration-based model updating, based on a previous study by Moretti et al.
[20].

3.3.1. Cost function
The model updating procedure is designed to adjust the input parameters (the structural properties
assigned to the FEmodel) so that the computed output frequencies (fn,i) andmodeshapes (ϕn,i) closely
match the experimental natural frequencies and modeshapes determined by Marchelli [18], denoted
as f̂n,i and ϕ̂i , where the subscript i refers to the mode number. This adjustment is achieved by
minimizing the cost function J , which is defined as:

J =

N∑
i=1

∣∣∣fn,i − f̂n,i

∣∣∣
f̂n,i

+

N∑
i=1

(
1−MAC

(
ϕi, ϕ̂i

))
(3.5)

where,

MAC
(
ϕi, ϕ̂i

)
=

∣∣∣ϕi · ϕ̂i

∣∣∣2
(ϕi · ϕi)

(
ϕ̂i · ϕ̂i

) (3.6)

This optimization process is implemented in Python. Due to the nonlinear nature of the objective func-
tion, the iterative process can converge to a local rather than the global minimum. Thus, to increase
the likelihood of reaching the global minimum, multiple starting values were selected for each of the
structural properties. These starting points were randomly selected by drawing samples from a uni-
form distribution within a specified domain. All the domain specified for the structural properties form
the constrains for the optimization. Therefore, this update is called a constrained optimization. The
selected structural properties, number of starting points and constraints for each of the update, are
defined based on different studies that will be discussed in section 3.4.

3.3.2. Optimization algorithm
The mismatch in computed and measured dymamic properties is minimized using an optimization al-
gorithm known as Sequential Least Squares Quadratic Programming (SLSQP). In a study by Ritfeld
[24], the use of SLSQP was compared to Particle Swarm Optimization (PSO) and Differential Evolution
(DE), for the model updating of a Timoshenko beam model. Ritfeld concluded that SLSQP was most
effective for this type of problems. SLSQP is an individual-based optimization algorithm that uses the
gradient of the objective function to guide its search within the solution space. In this process, the
algorithm follows these steps:

1. Initial solution: the algorithm starts with one candidate solution.
2. Gradient evaluation: it calculates the gradient of the objective function at the current solution

point.
3. Solution adjustment: based on the gradient information, the solution is adjusted to move towards

minimizing the objective function.
4. Iteration: the updated solution is then evaluated, and the process is repeated until the objective

function reaches its minimum or the algorithm converges.

Individual-based algorithms, like SLSQP, require fewer function evaluations than population based al-
gorithms, making them advantageous when evaluations are computationally expensive. However, they
are prone to premature convergence, particularly in complex, multidimensional problems, which can
lead to suboptimal solutions [24].
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3.4. Research design
To select parameters to be updated and define the settings for each of the model updating procedures,
the research was divided into three main phases. These phases were designed to progressively build
the framework and methodology required for the effective application of model updating. In this section,
the activities in each phase and how they aim to answer to the research questions are discussed. The
first two phases focused on gaining an understanding of the model behavior, identifying critical param-
eters, and refining the updating process. The third phase implemented the refined updating procedure
across various structural configurations to validate its generalizability. In this phase, a reflection will
take place by comparing obtained values for period lengthening from this procedure to experimentally
obtained values.

3.4.1. Phase 1: Model Updating with Synthetic Data
In this phase, synthetic data is used to investigate and verify the model updating procedure in a con-
trolled environment, free from real-world uncertainties. Synthetic data is generated by a reference
FE model, and its dynamic properties are then used to update the structural properties of another FE
model. The use of synthetic data provides an opportunity to study the model updating process in an
environment without uncertainties, thereby providing a benchmark for the application using real data.
Three components of the output were investigated in order to verify the correct procedure: (1) the ob-
tained updated structural properties, (2) the dynamic properties in terms of mode shapes and natural
frequencies, (3) the period lengthening values obtained. This approach helps address the first research
question, ’What parameters play a large role when estimating the period lengthening of a structure by
model’. It also provides insights into the optimal setup for the model updating procedure, contributing
to the second research question.

Model
For this update, the FE model of configuration C5 on soft springs was used. As stated before, two
models were created, the test model and the reference model. The initial values for the reference FEM
parameters were based on general steel properties, as shown in figure 3.5. These base parameters
represent the original properties assigned to the finite element models (FEM), and were derived from
standard material properties for steel, as seen in figure 3.5. The test FE model was created by applying
scalars to the structural properties of the reference FEmodel. These scalars, as well as initial properties
of the reference and test FE model can be found in table 3.2.

Parameters
Reference model Test model

Value Scalar applied Value Error [%]
Esteel [Pa] 2.10E+11 1 2.10E+11 0.0
ρ [kg/m3] 7850 1.5 1.18E+04 50.0
Espring [N/m] 6.94E+06 0.8 5.55E+06 -20.0

Table 3.2: Parameter comparison between the reference model and test model. The test model was created by applying a
scalar to the properties of the reference model.

Choice of Parameters to Update
The parameters selected for updating included the Young’s modulus of the steel thin plates (Esteel), the
density (ρ), and the spring stiffness (Espring). These parameters were chosen based on the results of
sensitivity studies, which can be found in section 4.2.
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Update objectives
The FE model with the initial values corresponding to steel properties, was used as the reference
model. Its dynamic pr operties (natural frequencies and modeshapes) were used as the objectives for
the updating of the test FE model.

Reference model Test model
f1 3.01 2.35
f2 10.73 7.86
f3 18.47 13.53

Table 3.3: Objectives for the update of the test FE model

Initial values and constraints
The solution space, which is defined as all possible combinations of the parameters, is constrained
by setting limits for the optimization. The constraints applied during this update process are shown in
table 3.6. For instance, the Young’s modulus of steel, Esteel, had a range of [0.1, 10], meaning that the
parameter value can vary up to ten times higher or lower than the initial value. It’s important to note
that the initial values are only used to establish the bounds for these constraints, and are not directly
used as the starting point in the optimization process.

Table 3.4: Constraints for model updating parameters

Parameter Initial value test model Bounds Lower Bound Upper Bound
Young’s Modulus Esteel 2.10E+11 [0.1, 10] 2.10E+10 2.10E+12

Density ρ 1.18E+04 [0.1, 10] 1.18E+03 1.18E+05
Spring Stiffness Espring 5.55E+06 [0.1, 10] 5.55E+05 5.55E+07

Selection of starting points
The optimization algorithm (section 3.3.2) is gradient-based, meaning it may find local minima instead of
the global minimum. To address this, multiple starting points within the solution space (i.e., all possible
combinations of parameter values) are used. These starting points are randomly selected by drawing
samples from a uniform distribution based on the defined constraints. After the starting points have
been selected, these are individually updated, based on the gradient of the cost function, as described
in section 3.3.
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3.4.2. Phase 2: Model Updating with vibration measurements
In the second phase, the dynamic properties of the small-scale steel model, as determined from exper-
iments by Marchelli [18], were used as objectives for the model updating procedure. This is done to
compare results of updating with experimental data as input to results from updating where synthetic
data was used as input.

Model
For this update, the FE model of configuration C5 on soft springs was used again.

Choice of Parameters to Update
The parameters selected for updating included the Young’s modulus of the thin steel members (Esteel),
the density (ρ), and the spring stiffness (Espring). These parameters were chosen based on the results
of sensitivity studies, which can be found in section 4.2. They are the same as the parameters in phase
1.

Update objectives
For this phase, the objectives for the update were experimental and consisted of three mode shapes
and natural frequencies that were identified from experiments by Marchelli [18]. Specifically, the data
of experimental setup 19 was used, corresponding to small-scale steel model configuration 5 on soft
springs. The natural frequencies from this experiment can be found in section 3.4.2.

Reference model
f1 3.33
f2 12.05
f3 20.45

Table 3.5: Objectives for the update of the test FE model

Initial values and constraints
The solution space, defined as all possible combinations of the parameters, is constrained by setting
limits for the optimization. The constraints applied during this update process are shown in table 3.6.
It’s important to note that the initial values are only used to establish the bounds for these constraints,
and are not directly used as the starting point in the optimization process.

Table 3.6: Constraints for model updating parameters

Parameter Initial value FE model Bounds Lower Bound Upper Bound
Young’s Modulus Esteel 2.10E+11 [0.1, 10] 2.10E+10 2.10E+12

Density ρ 7840 [0.1, 10] 784 78400
Spring Stiffness Espring 6.90E+04 [0.1, 10] 6.90E+03 6.90E+05

Selection of starting points
The optimization algorithm (section 3.3.2) is gradient-based, meaning it may find local minima instead of
the global minimum. To address this, multiple starting points within the solution space (i.e., all possible
combinations of parameter values) are used. These starting points are randomly selected by drawing
samples from a uniform distribution based on the defined constraints. After the starting points have
been selected, these are individually updated, based on the gradient of the cost function, as described
in section 3.3

Phase 3: Comparison with Experimental Data
In the final phase, the updating procedure was adjusted based on the findings of the first two phases,
and then will be applied to all configurations and base conditions. The goal of this phase is to address
research question 3 How well do period lengthening values computed through model updating of a 2D
FE model align with experimental values?
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Figure 3.7: Overview of the updating procedure, which updates all mass and stiffness parameters at once.

The computed period lengthening values are comparedwith experimental results to evaluate themethod’s
accuracy and reliability. This phase provides a validation of the entire model updating process, allowing
for a final comparison between the model’s outputs and real-world observations. A reflection will be
made on the potential of the model updating method to determine the period lengthening.

Data used
For the model updating procedure, only the setups with configuration C5, C6 or C7 that were excitated
in x direction by the impact hammer were used for this thesis, since only these configurations were
tested under different base conditions and since the FEM-model set up for this thesis only describes
bending modes in x direction. An overview of the several setups of which the data was used in this
thesis can be found in table 3.7.

Table 3.7: Setups with excitation in x-direction. The modal data obtained from the EMA by Marchelli [18] was directly used in
this thesis as input for the model updating procedure explained in section 3.3.

Foundation condition
Configuration Fixed Soft Stiff

C5 09 19 27
C6 11 17 25
C7 13 16 23



4
Properties of the FE model

This chapter presents the dynamic properties of the FE model that was set up. For brevity, only the
dynamic properties of the FE model representing configuration 5 is discussed. A comparison will be
made to the dynamic properties and period lengthening from measurements, providing insights into the
model’s accuracy before the updating procedure. In addition, a sensitivity analysis is presented that
investigates the influence of different parameters on the dynamic properties. These sensitivity analyses
are necessary to determine which parameters are chosen to be updated and will help to understand
the outcome of the updating pocedure.

4.1. Dynamic properties FEM-model
Through modal analysis, the dynamic properties of the 2D FEM-model used to model the small-scale
steel model could be determined. Both the natural frequencies and the modeshapes were determined,
for configuration C5 till C7 on all foundation types. In appendix D.1.3, two examples are displayed of
modeshapes determined with the FE model with initial parameters.

(a) Modeshape of configuration 5 on a fixed base,
computed by the FE model

(b) Modeshape of configuration 5 on a soft base,
computed by the FE model

Figure 4.1: Modeshapes computed by the FE model containing all displacements of all nodes.
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4.1.1. Natural frequencies before update
In table 4.1, the first three natural frequencies are displayed for building C5 on different base condi-
tions. These frequencies are compared to the measured natural frequencies from the experiments
form Marchelli [18]. It can be seen that most frequencies are off with about 10 %. This could be be-
cause of the simplifications that have been assumed when setting up the FE model. For example,
additional mass and stiffness from corner connectors, sensors and wires are ignored. Furthermore,
the 2D approximation of the 3D structure might also have an effect.
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f1 3.85 4.35 -11.5% 3.85 4.25 -9.41% 3.09 3.33 -7.21%
f2 10.91 12.39 -11.9% 10.91 12.33 -11.52% 10.70 12.05 -11.20%
f3 18.73 20.92 -10.5% 18.73 20.79 -9.91% 18.41 20.45 -9.98%

Table 4.1: Natural frequencies of configuration 5 computed by the FE model compared to natural frequencies determined by
experiments of Marchelli (2023)[18]

In section 4.1.1, a comparison is made between the natural frequencies of configuration 5 on a fixed
base with results from a similar 2D model Marchelli updated in her thesis. Important to point out is that
the 2D FE model by Marchelli is based on a fixed base condition, and she assumed infinitely stiff floor
plates, while in the 2D FE model of this thesis, these floor plates were assigned general properties of
steel (see section 3.2).

FE model Thesis Eliza Difference [%]
f1 3.85 3.677 4.49%
f2 10.91 10.834 0.70%
f3 18.73 17.335 7.44%

Table 4.2: Comparison between natural frequencies from the FE model and natural frequencies obtained from the 2D shear
model from the thesis of Eliza, along with the percentage differences.
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4.1.2. Mode shapes before update
From the FE model, the mode shapes can be obtained. These mode shapes consist of three times the
amount of nodes, since three degrees of freedom per node are defined (x displacement, z displacement,
and rotation). Themode shapes in figure D.6 contains lots of nodes (10 per member). The experimental
mode shapes that were determined however, do not contain that much information, since they were
determined from the sensors, which provide limited displacement information. For example, the sensor
at each of the floor plates measured only horizontal displacement (with the exception of the base sensor,
which also measured horizontal displacement). Therefore, the experimental mode shapes contained
only 7 degrees of freedom. For the update procedure, this meant only 7 DOF’s could be compared.
For the comparison, only 6 horizontal displacements and 1 vertical displacement were taken from the
numerically computed mode shapes. These displacements corresponded to the nodes at the sensor
heights.

Figure 4.2: First four modes plotted for configuration 5 with a fixed boundary condition at the bottom. The orange line shows
the mode shapes resulting from OMA performed in the thesis of Marchelli, while the blue line represents the mode shapes
computed by the FE model. However, only the horizontal displacements at the heights of the sensors are extracted from the

FEM-calculation.

In figure 4.2, the first four mode shapes of configuration 5 on a fixed foundation are displayed. Even
before updating, there is already a strong alignment between the experimental and FE model mode
shapes. This is further supported by the Modal Assurance Criterion (MAC). As shown in figure 4.3, the
MAC values for the first four modes of C5 were computed to compare the experimental data to the FE
model results. Across all base conditions, the MAC values are very high, indicating an excellent match
between the experimental measurements and the model predictions.

(a) MAC values for C5 on a fixed foundation (b) MAC values for C5 on a soft foundation (c) Plot 3

Figure 4.3: MAC values for C5 on a stiff foundation
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4.1.3. Period lengthening before update
Both the experimental and modeled period lengthening were determined for each configuration under
two base conditions: stiff springs and soft springs. Table 4.3 presents the period lengthening values
obtained from the tests performed by Marchelli’s, alongside those computed using the non-updated FE
model, as well as the corresponding percentage error. It appears that the FE model captures the period
lengthening reasonably well already. However, there are a few reasons why an update is necessary
for updating. Firstly, the aim is to estimate the period lengthening under conditions of high parameter
uncertainty. In this case, the parameter uncertainty is relatively small, which is why the discrepancies
between the model and experimental results are minor. For real buildings, which are composed of
more complex materials and structures, this level of certainty is rarely achievable. Additionally, period
lengthening is a highly sensitive parameter, typically falling within a narrow range (between 1 and 2).
As such, an error of 5% can be considered significant. An objective of this thesis is to explore whether
accurate estimates of period lengthening can still be made under greater uncertainty in the parameters.

Configurations
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Pe
rio

d
le
ng

th
en

in
g
(F
EM

)

Pe
rio

d
le
ng

th
en

in
g
(T
es
t)

Er
ro
r

Pe
rio

d
le
ng

th
en

in
g
(F
EM

)

Pe
rio

d
le
ng

th
en

in
g
(T
es
t)

Er
ro
r

C5 1.00003 1.02376 -2.32 1.24442 1.30568 -4.69
C6 1.00003 1.02205 -2.15 1.24667 1.31103 -4.91
C7 1.00003 1.02026 -1.98 1.24956 1.31460 -4.95

Table 4.3: Experimental and FE model period lengthening values, along with the percentage error, for stiff and soft spring base
conditions.

4.1.4. Conclusion on properties FE model before update
In conclusion, the initial evaluation of the dynamic properties of the FEmodel for configuration 5 demon-
strates that, while the model captures the general behavior of the system, there are discrepancies be-
tween the FE results and the experimental measurements, particularly in terms of natural frequencies
and period lengthening. The simplifications in the FE model, such as ignoring additional mass and stiff-
ness contributions, likely contribute to these differences. However, the mode shapes show a strong
alignment with the experimental data, as indicated by the high MAC values, suggesting that the model
structure is accurate enough.
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4.2. Sensitivity analysis
To identify which input parameters required updating, a sensitivity analysis was conducted on the dy-
namic properties of the FE model, which depend on mass and stiffness. The analysis focused on the
influence of mass density (ρ), E-modulus (E), and modified shear modulus (kG). Initially, standard
values for steel were used. These values can be found in figure 3.5 in the methodology chapter.

4.2.1. Sensitivity fixed base model
The sensitivity analysis was performed in two stages. The first one looks at the sensitivity of the dy-
namic properties (mode shapes and natural frequencies) to changes in structural properties. The pa-
rameters investigated were ρsteel, Esteel, Espring and ν (since the shear stiffness is calculated using
equation (3.2)). Each parameter was individually varied for all members to evaluate the impact on the
natural frequencies and mode shapes.

Figure 4.4: Percentual change in the first natural frequency, f1, as a function of scaling the parameters E, ρ, and ν individually.
The x-axis represents the scaling factor applied to each parameter, while the y-axis indicates the corresponding percentage
change in f1. The results for the second and third natural frequencies, f2 and f3, show similar trends, and therefore only the

graph for f1 is presented.

In figure D.2, the sensitivity of the first mode’s natural frequency and mode shape to changes in Young’s
modulus (Esteel), mass density (ρ), and Poisson’s ratio (ν) is shown. For these graphs, a fixed base
condition was assumed. It demonstrates how the natural frequency is affected by the stiffness (Esteel)
and mass (ρ) of the steel, which are the most important parameters defining the dynamic properties. In
contrast, the graph shows that the Poisson’s ratio (ν) has a negligible effect on the natural frequency,
probably since the thin beams and columns mainly show bending behaviour. The graph only shows
the effect on the first mode for brevity, since the second and third mode show exactly the same depen-
dencies.

In contrast to the frequencies, the MAC value of the first mode (as well as the second and third modes)
is not affected by changes in these parameters. This is because, when a scaling factor is applied to
the stiffness, the increased stiffness is uniformly distributed over the height of the structure, resulting in
no change in the mode shape. Only when local changes in stiffness or mass are applied will the mode
shape be affected.
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4.2.2. Sensitivity flexible base model

Figure 4.5: Percentual change of the natural frequencies, fn, as a function of scaling the structural properties Esteel, Espring ,
ρ, and ν. The x-axis represents the scaling factor applied to each parameter, while the y-axis indicates the corresponding

percentage change in fn.

In figure 4.5, the change of the natural frequencies and MAC due to variation in the structural properties
is shown again, but now for the case of the small-scale steel model on soft springs. In these graphs,
the influence of variety in the spring’s E-modulus (Espring) is also depicted. A few things are interesting
to mention. The effect of the added spring stiffness mostly has an effect on the first natural frequency:
this frequency is now affected by a combination of Esteel and Espring. This is important, since the first
natural frequency is directly determining the period lengthening. For higher modes, the influence of
Espring is low to negligible. The dependency of these natural frequencies does not change much com-
pared to the fixed base situation, and mainly depend on the contribution of Esteel and ρ.

Since the stiffness of the springs now introduces a localized change in stiffness, the modeshapes are
now affected by the variation of the structural properties. The higher the modes, the more effect can
be seen from the parameters. Variation in Esteel has the largest effect. A variation of Espring has very
little effect. The MAC is not affected by the choice for ρ, since no relative change in ρ is applied.



5
Model updating using synthetic data

This chapter presents the results of the model updating approach with synthetic data as input. Synthetic
data means that the output of a reference FEmodel (in terms of dynamic properties) was used to update
the structural parameters of another FE model. A study with synthetic data provides insight into the way
the updating code operates under conditions where there is no model error. In addition, it verifies that
the code works properly, if it it is able to obtain the structural and dynamical properties of the reference
model. The study was performed for configuration 5 on both soft and stiff springs. The results for both
of these base conditions will be discussed and compared. The chapter has been divided into three main
components, that were investigated in order to verify the correct procedure. Section 5.2 will discuss
the dynamic properties in terms of mode shapes and natural frequencies, while section 5.3 will focus
on the updated structural properties. Finally, section 5.3.3 will examine the period lengthening values
obtained.

5.1. Study overview
An overview of the update is shown in figure 5.1. Two updates were carried out, both using configuration
5, but with the structure placed on either soft or stiff springs. The results from the configurations with
both of these base conditions will be presented and compared in this chapter.

Figure 5.1: Overview of the update settings for the update with synthetic data. E, ρ, and Espring of the test FE model of
configuration 5 were updated using the procedure explained in section 3.3. To account for the nonlinearity of the cost function
in equation (3.5), 100 starting points were randomly selected from a uniform distribution for the test model, within the specified

bounds.
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5.2. Results - Dynamic properties
This section presents a detailed comparison of the dynamic properties before and after the model up-
date, specifically focusing on the natural frequencies and MAC values. The comparison is performed
for the configuration on both stiff and soft springs. First, the solution with the lowest cost function is
discussed to demonstrate the effectiveness of the model updating process. Subsequently, the errors
across various solutions are discussed. This broader analysis is necessary because the optimization
process may converge to different solutions depending on starting points, local minima, or constraints
encountered during the iterations. Studying the distribution of errors provides insights into the consis-
tency and robustness of the optimization process, revealing any systematic trends or challenges in
accurately capturing the system’s dynamic behavior.

5.2.1. Optimal solution
In table 5.1 and table 5.2, an overview of the dynamic properties of the system before and after the up-
date are presented for the configuration on soft and stiff springs respectively. The table lists the natural
frequencies and Modal Assurance Criteria (MAC) values corresponding to the solution with the lowest
cost function. The lowest cost function had a value of 3.72e-06 for the soft springs case and 1.47e-06
for the stiff springs case. Values for the first three modes for both the reference and test models are
compared.

For the soft spring situation, table 5.1 shows that after the update, the errors are reduced to zero for all
dynamic properties, indicating a successful execution of the updating code.

For the stiff spring situation, table 5.2 shows that after the update, the errors are also reduced almost to
zero for all natural frequencies. However, the error in the first natural frequency is slightly higher than
the error in other natural frequencies.

With regard to the MAC values, it can be seen in table 5.2 that the MAC before the update was already
equal to 1 for the stiff spring case. Apparently, the MAC is very insensitive to a change of Esprings when
the spring stiffness is already high.

Reference model Test model (before update) Test model (after update) Error before update[%] Error after update[%]
fn [Hz] 3.01 2.35 3.01 -21.9 0.0

10.73 7.86 10.73 -26.7 0.0
18.47 13.53 18.47 -26.7 0.0

MAC [-] 1 0.99998 1 0.0019 0.0
1 0.99995 1 0.0051 0.0
1 0.99987 1 0.0134 0.0

Table 5.1: Comparison of natural frequencies (fn) and MAC values between the reference model, test model (before and after
update), and the percentage errors before and after the update.The table shows the solution with the lowest cost function for

the configuration mounted to soft springs.

Reference model Test model (before update) Test model (after update) Error before update[%] Error after update[%]
fn [Hz] 3.86 2.81 3.86 -27.20 0.00011

10.94 7.98 10.94 -27.06 0.000008
18.79 13.73 18.79 -33.96 -0.000029

MAC [-] 1 1 1 0.0 0.0
1 1 1 0.0 0.0
1 1 1 0.0 0.0

Table 5.2: Comparison of natural frequencies (fn) and MAC values between the reference model, test model (before and after
update), and the percentage errors before and after the update. The table shows the solution with the lowest cost function for

the configuration mounted to stiff springs.

5.2.2. Errors in estimated natural frequencies
Not all solutions generated by the algorithm represent optimal or correct outcomes. This can occur
for several reasons: the algorithm may converge to a local minimum, it may terminate upon reaching
a boundary constraint or it may halt after exceeding the maximum number of iterations. Therefore, it
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is helpful to look at the distribution of errors. This analysis provides valuable insight into the overall
effectiveness of the optimization procedure in achieving its intended objectives.

(a) Error distribution for the first three natural frequencies for the soft spring case..

(b) Error distribution for the first three natural frequencies for the stiff spring case.

Figure 5.2: Errors in estimation natural frequencies. Each histograms shows the distribution of errors across 100 obtained
solutions.

Figure 5.2a and figure 5.2b show the error distribution of the solutions’ natural frequencies compared
to the reference model.

For the soft spring case in figure 5.2a, most errors are low for the second and third natural frequencies:
a large peak at zero error can be seen. For the first natural frequency however, the error is generally
higher. Of all solutions, the percentage with an estimated first natural frequency with an error below 1%
was 7%, whereas this percentage was 21% and 19% respectively for the second and third natural fre-
quency. It could be that a correct Esteel/ρ leads to low errors in the second and third natural frequency,
but that the parameter Esprings, which has a more significant influence on the first natural frequency
(see section 4.2.1), is estimated correctly for less cases, causing higher errors. This is supported by
figure 5.3, where a correlation is shown between the error of the first natural frequency and the value
of the Esteel/Espring ratio. In this graph, we see that even for solutions with a high error in this ratio, the
second and third natural frequencies are generally not affected. The dots in this plot that are located
off the line are affected by the value of the Esteel/ρ ratio.

For the stiff spring case, a different behavior can be observed compared to the update with soft springs.
Figure 5.2b shows the error distribution for the first three natural frequencies obtained from 100 starting
points for the stiff spring case. All three histograms in this figure are nearly identical, indicating that in
this case for the optimization algoritm it is not harder to estimate the first natural freqeuncy correctly.
Specifically, for all of the three natural frequencies, 44% of the solutions had errors within 1% from the
frequencies of the reference model.

SinceFigure 5.2a and figure 5.2b do not provide insight in the errors obtained within one solution, two
plots were made that connect the errors obtained for the first three natural frequencies within one
solution. Figure 5.4a and Figure 5.4b show the results in terms of error of the natural frequencies per
solution, for configuration 5 on soft and stiff springs respectively. For each solution, the errors of the
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Figure 5.3: Errors in the natural frequencies obtained plotted against the error in ratio of Esteel/Espring .

three corresponding frequencies are connected. In figure 5.4a, for the configuration on soft springs,
it can be seen that the lines connecting the second and third natural frequencies are almost entirely
horizontal, but the line connecting the first natural frequency has a different slope. This is caused by
the fact that the second and third natural frequencies are equally affected by the Esteel/ρ ratio, but the
first natural frequency is also affected by the Esteel/Espring ratio. In figure 5.4b, for the configuration on
stiff springs, again a clear difference can be seen. In contrast to the soft spring case, the errors for all
natural frequencies in a given solution are now nearly equal, as indicated by the almost horizontal lines.
This confirms that the influence of the Esteel/Espring ratio is minimal when the springs are very stiff,
since in the sensitivity study and the update of the soft spring case, it was concluded that the Espring

parameter was mainly affecting the first natural frequency. Therefore, the system’s frequencies — and
their errors — are now being primarily governed by the Esteel/ρ ratio.

(a) Errors in natural frequencies obtained. The connected dots
together represent a solution.

(b) Errors in the first three natural frequencies for the update of
the stiff spring case.

Figure 5.4: Errors in natural frequencies across solutions for configuration 5 on soft base (a) and stiff base (b).

5.2.3. Errors in modeshapes
For the configuration on soft springs, figure 5.5a presents three histograms showing the distribution of
MAC values for the first three modes across 100 solutions obtained. It can be seen that the error in
MAC value is generally higher for higher modes. In the sensitivity study (figure 4.5), we saw that mode
shapes are not dependent on the mass density (ρ), and Esteel and Espring have more effect on higher
modes. This could explain why the error in MAC value is generally higher for higher modes. This is also
supported by figure 5.6. In this graph, the error in Esteel/Espring ratio is plotted against the MAC-value
of each of the 100 solutions of the soft springs case. Since the update was performed using synthetic
data as input, the error in estimated Esteel/Espring ratio was known. Figure 5.6 shows that an error of
the Esteel/Espring ratio clearly leads to larger errors in higher modes. In addition, it is clear that the
MAC values are not affected by the mass density (ρ), since in that case there would be points located
above other points.
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(a) MAC values for the first three mode shapes obtained from the updating procedure compared to those of the reference model.

(b) MAC values for the first three mode shapes obtained from the updating procedure compared to those of the reference model.

Figure 5.5: Errors in estimation of dynamic properties for configuration 5 on a stiff base, updated with measurements from
Marchelli [18].

Figure 5.6: Errors in the MAC values obtained plotted against the error in ratio of Esteel/Espring . In this graph, it can be seen
that there is no influence of the Esteel/ρ ratio on the error of the MAC.

For the case on stiff springs, the errors are significantly lower across all modes compared to the soft
spring case, as seen in figure 5.5b. In the latter, the error was generally higher for higher modes.
However, with the stiff springs, the errors are low for all modes, with the lowest MAC value even being
as high as 0.9999994. Apparently, the spring stiffness compared to the building stiffness (Esteel/Espring

ratio) is already so low, that a variation in EsteelEspring within the given bounds won’t change the MAC.
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5.3. Results - Structural properties
In this section, the obtained structural properties for the update of configuration 5 on both soft and stiff
spring conditions will be discussed.

5.3.1. Optimal solution
In table 5.3 and table 5.4, the initial and updated values of three structural parameters are presented,
for the soft and stiff spring respectively. The tables show the results with the lowest cost function, after
running the optimization algorithm 100 times.

For the soft spring case, in table 5.3, it can be seen that all individual structural parameters have a large
error of 200%. A derivation in appendix C, demonstrates how these ratios between dynamic properties
dictate the dynamic characteristics of the system. Consequently, the optimized values obtained do not
represent physical properties; rather, it is the ratios between these properties that matter (Specifically,
the ratios of stiffness and mass: Esteel

ρ and Esteel

Espring
). Therefore, as long as these ratios are accurately

determined, the system’s dynamic properties can be correctly derived, regardless of the individual
values of the properties themselves. This indicates that scaling all structural properties by the same
scalar leads to identical dynamic properties.

Parameters
Reference model Test model (before update) Test model (after update)

Value Scalar applied to
reference model

Value Error [%] Bounds for update Updated value Error [%]

Esteel [Pa] 2.10E+11 1 2.10E+11 0.00 [0.3, 3] 6.30E+11 200.00
ρ [kg/m3] 7.85E+03 1.5 1.18E+04 50.00 [0.3, 3] 2.35E+04 200.00
Espring [N/m] 6.94E+06 0.8 5.55E+06 -20.00 [0.3, 3] 2.08E+07 200.00

Esteel/ρ [m2/s2] 2.68E+07 0.67 1.80E+07 33.00 [0.1, 10] 2.68E+07 0.00
Esteel/Espring [-] 3.03E+04 1.25 3.78E+04 25.00 [0.1, 10] 3.03E+04 0.00

Table 5.3: Parameter comparison between the reference model, test model, and optimized test model. The values of the
updated test model correspond to the solution obtained with the lowest cost function. The bounds of the ratios follow from the

bounds of the individual parameters.

For the stiff spring case, in table 5.4, the initial and updated values of three structural parameters are
presented for the solution with the lowest cost function. In contrast to the solution with the lowest cost
function obtained for the soft spring, not all parameters are estimated with a similar error. Although
Esteel and ρ are similar with an error of 448.97% and 448.27 %, the error of Espring is larger (558.22
%). This, despite the very low cost function of order 10−6. When it comes to ratios, it can be seen that
for the stiff spring case, only the Esteel

ρ is optimized very accurately. The Esteel

Espring
ratio however, has an

error of almost 17 %. Apparently, if the springs are very stiff, it is harder to optimize the Esteel

Espring
ratio.

Parameters
Reference model Test model (before update) Test model (after update)

Value Scalar applied to
reference model

Value Error [%] Bounds for update Updated value Error [%]

Esteel [Pa] 2.10E+11 1 2.10E+11 0.00 [0.1, 10] 1.15E+12 448.97
ρ [kg/m3] 7.85E+03 1.5 1.18E+04 50.00 [0.1, 10] 4.30E+04 448.27
Espring [N/m] 2.90E+11 0.8 2.90E+11 -20.00 [0.1, 10] 1.91E+12 558.22

Esteel/ρ [m2/s2] 2.68E+07 0.67 1.80E+07 33.00 [0.01, 100] 2.68E+07 0.13
Esteel/Espring [-] 0.72 1.25 3.78E+04 25.00 [0.01, 100] 0.60 -16.59

Table 5.4: Parameter comparison between the reference model, test model, and optimized test model. The values of the
updated test model correspond to the solution obtained with the lowest cost function. The bounds of the ratios follow from the

bounds of the individual parameters.

5.3.2. Optimization of ratios
When investigating the ratios between structural parameters, specifically Esteel

ρ and Esteel

Espring
, rather than

the individual parameters, a clear convergence can be observed in the cost function. Figure 5.7 shows
these ratios for both the stiff and soft spring cases, obtained across the 100 solutions. It is evident that
the minimum value for the cost function decreases as the ratio approaches its optimal value.
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A clear difference can be observed between the stiff and soft spring cases. For the soft spring case,
both ratios appear to converge towards the optimum. However, in the stiff spring case, the system’s
behavior is primarily governed by the Esteel

ρ ratio. As a result, the convergence for this ratio is even
more pronounced, with figure 5.7c showing an almost perfect V-shaped curve. In contrast, figure 5.7d
shows that for the Esteel

Espring
ratio, the convergence is harder to discern, as the behavior is asymptotic:

the Espring value becomes very large, approaching a fixed base scenario.

(a) Plot of the Esteel
ρ ratios across the 100 solutions from the

optimization algorithm. Dashed lines indicate value of the actual ratio
(of the reference model) and optimal value obtained from the

optimization.

(b) Plot of the Esteel
Espring

ratios across the 100 solutions from the
optimization algorithm. Dashed lines indicate value of the actual ratio

(of the reference model) and optimal value obtained from the
optimization.

(c) Plot of the Esteel
ρ ratios across the 100 solutions from the

optimization algorithm. Dashed lines indicate value of the actual ratio
(of the reference model) and optimal value obtained from the

optimization.

(d) Plot of the Esteel
Espring

ratios across the 100 solutions from the
optimization algorithm. Dashed lines indicate value of the actual ratio

(of the reference model) and optimal value obtained from the
optimization.

Figure 5.7: Plots comparing the Esteel
ρ

and Esteel
Espring

ratios across 100 solutions from the optimization algorithm, for both soft
and fixed configurations.
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5.3.3. Results - Period Lengthening Values
The period lengthening is the key parameter in this study, and figure 5.8a and figure 5.8b present his-
tograms depicting the distribution of all 100 period-lengthening values obtained for the soft and stiff
base condition.

For the soft springs case, the percentage of solutions that gave a period lengthening value within 1%
error was only 3.00%. This value is relatively low compared to the errors of the natural frequencies,
and it is interesting to understand the reason for this. In figure 5.9a, it can be seen that the error in
period lengthening estimated is directly related to the error of the Esteel/Espring ratio. If Esteel/ρ would
affect the period lengthening, not all solutions would be on a line. and it is independent of the Esteel/ρ
ratio. Therefore, it can be concluded that period lengthening is independent of the density ρ. This
observation is further supported by the analytical derivation of period lengthening in equation (2.1), in
which the parameter ρ is not present.

For the stiff spring case, figure 5.8b shows a much more shallow distribution. In fact, 100% of the
solutions were within 1% error of the actual period lengthening value. Similar to the soft spring case,
theEsteel/Espring ratio remains the dominant factor influencing period lengthening. However, as seen in
figure 5.9b, large overestimation of the Espring/Esteel ratio lead to only a very small underestimation of
period lengthening, with errors on the order of 10−3, behaving asymptotically as the period lengthening
approaches 1. This explains the large error in the estimation of the Espring/Esteel in table 5.4. When
the Espring/Esteel ratio is low, the resulting errors are relatively minor, staying below 1%.

(a) Histogram of the obtained T̃/T values (soft springs). (b) Errors in T̃/T vs. Esteel/Espring ratio (soft springs).

Figure 5.8: Comparison of T̃/T values for soft and stiff springs.

The results demonstrate that period lengthening is generally more accurately estimated in the stiff spring
configuration, where the optimization yields values consistently within 1% error. This improved accu-
racy can be attributed to the higher sensitivity of period lengthening to the Esteel/Espring ratio in the stiff
spring case, while the soft spring case shows a greater variation due to the lower sensitivity of this ratio.
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(a) Errors in T̃/T estimated against errors in Esteel/Espring

ratio from 100 solutions of the optimization algorithm for the soft
spring case. The graph shows the period lengthening is not

affected by ρ, as the Esteel/Espring ratio dictates the period
lengthening. (b) Errors in T̃/T vs. Esteel/Espring ratio for stiff springs.

Figure 5.9: Comparison of errors in T̃/T against Esteel/Espring ratio for stiff springs.

When plotting the period lengthening against the cost function, a clear convergence is observed, similar
to the convergence seen when plotting the ratios. The plots in figure 5.10a and figure 5.10b closely
resemble the shape of the Esteel/Espring ratio plotted against the cost function. Although the conver-
gence in figure 5.10b is less pronounced and does not form a clear V-shape, the period lengthening
values fall within a much narrower range, as previously indicated by the histograms. This suggests
that, despite the less distinct convergence pattern, the period lengthening estimates are still highly
consistent.

(a) T̃/T values obtained for the soft spring situation plotted
against the cost function.

(b) T̃/T values obtained for the stiff spring situation plotted
against the cost function.

Figure 5.10: Comparison of T̃/T values obtained for the stiff and soft springs situation.
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5.4. Conclusion
This chapter presented a detailed analysis of the model updating process using synthetic data. The
synthetic data was used to simulate an ideal case without any model or measurement errors. The main
focus was on updating an FE (finite element) model for configuration 5, using the dynamic properties
(natural frequencies and mode shapes) of a reference FE model. Two different scenarios were consid-
ered: one where configuration 5 was mounted on soft springs, and another where it was mounted on
stiff springs, to understand how spring stiffness affects the model updating.

The results of the model updating procedure applied demonstrated significant improvements in the ac-
curacy of dynamic property predictions. In general, the test FE model was able to be updated such
that the dynamic properties of the reference FE model were matched exactly.

A key observation from the study is that the current approach is unable to accurately estimate individ-
ual stiffness and mass properties. Instead, the optimization algorithm focuses on achieving accurate
ratios between these properties. In both the soft and stiff spring cases, the dynamic properties of the
reference model were matched very well, with errors in the order of 10−3%. However, the individual
parameters—like Espring, Esteel, and ρsteel—showed large errors, reaching up to 200%. Despite this, the
ratios between the properties, Esteel

Espring
and Esteel

Eρ
, were very accurately estimated, showing that the method

updates these ratios more effectively than individual parameters.

Each update cycle began with 100 randomly selected starting points within specific bounds, generat-
ing 100 updated sets of structural properties, each with its associated cost function value. By plotting
the ratios of the structural properties against the cost function, a clear convergence toward an optimal
solution was observed, with the cost function decreasing up to a certain point.

The comparison between soft and stiff springs revealed interesting differences. Since the spring stiff-
ness was already high, the system’s behaviour closely resembled a fixed-base situation, where dynamic
properties were governed by the Esteel

Eρ
ratio. A change in spring stiffness in this case, had very little ef-

fect on the dynamic properties of the model. Therefore the period lengthening predicted was in more
cases accurate, since a change in the Esteel

Espring
ratio simply didn’t affect the dynamic behaviour much and

therefore also not the period lengthening. For the soft spring, the dynamic properties and therefore
also the period lengthening were much more sensitive to a change in Esteel

Espring
ratio. Therefore, errors

were much higher for the solutions obtained from this update, especially for the first natural frequency.
In terms of period lengthening—the main parameter being estimated in this thesis—the optimization
procedure worked well, with small errors (below 1%). Accurate estimation of the period lengthening
was only possible when both property ratios were successfully estimated, with the Esteel

Espring
ratio being

especially critical.

There was a clear distinction between the stiff and soft spring cases. The optimization process was
much more successful for the stiff springs, as all solutions yielded a period lengthening within 1% of the
actual value. In contrast, only 3% of the solutions for the soft springs achieved this level of accuracy.
This difference was due to the large overestimation of the Espring

Esteel
ratio, which had only a minor impact

on the period lengthening, as it is asymptotic ( T̃
T cannot be less than 1).

In summary, this chapter demonstrated that the current model updating approach can match dynamic
properties well, but struggles with accurately estimating individual stiffness and mass parameters. In-
stead, the process focuses on the ratios between these properties. The study showed that spring
stiffness plays a critical role, with soft springs being more sensitive to the Esteel

Espring
ratio, while stiff springs

are more influenced by the Esteel
Eρ

ratio. Ultimately, the optimization process was more effective for stiff
springs, especially in accurately estimating period lengthening.



6
Model updating using experimental

data

This chapter presents the results of the model updating procedure applied to various 2D FE models,
based on dynamic properties measurements from Marchelli’s thesis [18]. These dynamic properties
were used as objectives for the optimization. As explained in the methodology chapter (chapter 3),
the structural properties of three configurations (C5, C6 and C7) of the small-scale steel model were
updated. These configurations weremounted to either soft or stiff springs at the base. All configurations,
boundary conditions, and update settings are summarized in section 6.1. In this chapter, results for
period lengthening values obtained will be discussed, but first, an in-depth analysis will be provided
only for configuration C5 for the sake of brevity. In sections section 6.2, section 6.3 and section 6.4
, this analysis will be discussed, following the same structure as chapter 5, starting with the dynamic
properties obtained from the updated FE model, followed by the updated structural properties, and
concluding with the period lengthening values, which are the main objective of this thesis. In section 6.1,
a summary will be provided for the results of the update procedure applied to all selected test setups.

6.1. Study overview
An overview of the updates performed in this chapter is shown in figure 6.1. Important to note is that
sections section 6.2, section 6.3 and section 6.4 only present detailed results for configuration 5 on
both stiff and soft springs, for the sake of brevity. In section section 6.7, a comparison will be made for
results across all configurations.

Figure 6.1: Overview of the FE model, its objectives, and update settings. The update was applied in two steps, with 100
starting points per step, to all configurations with different base conditions.

The optimization was initialized with 100 starting points, each leading to a different solution. The start-
ing points were generated by multiplying the initial parameters by a scalar randomly selected from in
between the specified bounds (0.1 and 10). For a detailed description of the update process, refer to
chapter 3

41
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6.2. Dynamic Properties
The FEmodel is updated based on natural frequencies andmode shapes obtained frommeasurements
by Marchelli [18]. This section investigates how well the updated FE model is able to replicate these
measurements. To investigate this, only results of the update of configuration 5 on both stiff and soft
springs are discussed in detail.

6.2.1. Optimal solution
In table 6.1 and table 6.2, an overview of the dynamic properties (natural frequencies and modeshapes)
of the FE model before and after the update are presented. In addition, it shows how the error with
respect to the measurements improves by performing the optimization. The solutions shown in the
tables correspond to the the solutions with the lowest cost function, of all 100 solutions.
For both the soft and stiff spring cases, a significant improvement is seen in the FEM model’s predic-
tions of natural frequencies. In the soft spring case (table 6.1), the error for the first natural frequency
dropped from -6.91% to 0.00%, for the second from -10.95% to -0.99%, and for the third from -9.68% to
0.44%. For the stiff spring configuration, the update also shows improvement, though the second nat-
ural frequency after update is overestimated by 1.79%, which is higher than the errors for f1 (0.47%)
and f3 (-0.05%). While these errors are low, they remain higher than those obtained with synthetic
data.
For the MAC values, the differences between the soft and stiff springs configurations are less pro-
nounced. In both cases, the errors before the update were relatively small, and the improvements after
the update were marginal. For example, for the soft spring case, the MAC values for the first mode
increased slightly (from 0.99875 to 0.99964), while the second mode remained nearly constant (from
0.99793 to 0.99805) and the third mode saw a slight decline (from 0.99318 to 0.99209). For the stiff
springs case, the MAC values were even more constant for all modes.

Measurements FE model (before update) FE model (after update) Error before update [%] Error after update [%]
fn [Hz] 3.33 3.10 3.33 -6.91 0.00

12.05 10.73 11.93 -10.95 -0.99
20.45 18.47 20.54 -9.68 0.44

MAC [-] 1 0.99875 0.99964 -0.13 -0.04
1 0.99793 0.99805 -0.21 -0.20
1 0.99318 0.99209 -0.68 -0.79

Table 6.1: Comparison of measured values with FE model predictions before and after the update for configuration 5 on soft
springs.

Measurements FE model (before update) FE model (after update) Error before update [%] Error after update [%]
fn [Hz] 4.25 3.86 4.27 -9.18 0.47

12.32 10.94 12.10 -11.20 -1.79
20.79 18.79 20.78 -9.62 -0.05

MAC [-] 1 0.99988 0.99988 -0.012 -0.012
1 0.99860 0.99860 -0.14 -0.14
1 0.99308 0.99307 -0.69 -0.69

Table 6.2: Comparison of measured values with FE model predictions before and after the update for configuration 5 on stiff
springs.

6.2.2. Errors in estimated natural frequencies across solutions
Figure 6.2a and figure 6.2b show histograms with the errors in the first three natural frequencies.

For the soft springs case, similar trends are observed when compared to the results from synthetic
data in previous chapter. The algorithm is more successful in estimating the second and third natural
frequencies than the first. The percentage of solutions with an error within 1% is 7.00% for f1, 11.00%
for f2, and 21.00% for f3.

For the stiff springs case, the distribution of errors in the natural frequencies shown in figure 6.2b
closely resembles the pattern observed in the synthetic data results. The histograms for all three
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natural frequencies display minimal variation, suggesting that the algorithm faces a similar level of
difficulty when optimizing each frequency. In the synthetic case, 44% of the obtained solutions had an
error smaller than 1%, and this was consistent across all natural frequencies. In contrast, the current
results show that the percentage of solutions with an error within 1% is 35% for f1, 8% for f2, and
38% for f3. It seems that when the algorithm optimizes the natural frequencies, it fits the first and
third frequencies well, but this comes at the cost of a larger error for the second frequency. This is
supported by figure 6.3, which shows that fitting the first and third natural frequency results in a larger
error for the second natural frequency. This fact that the errors cannot be minimized further, can be
attributed to either the model error or measurement errors, that prevent the model from being able to
fit the measurements exactly.

(a) Error distribution for the first three natural frequencies for the soft spring case..

(b) Error distribution for the first three natural frequencies for the stiff spring case.

Figure 6.2: Errors in estimation natural frequencies. Each histograms shows the distribution of errors across 100 obtained
solutions.

Figure 6.3: Errors in the natural frequencies obtained. The lines connect points corresponding to one obtained solution. It can
be seen that there is a consistent difference in error between f1, f2 and f3 and the algorithm cannot fit all three.
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6.2.3. Errors in MAC-values
For the soft spring case, the mode shapes of higher modes are generally more challenging to capture
accurately, which is similar to the results with synthetic data. As shown in figure 6.4a, this is evident
from the wider distribution of obtained MAC values for the higher modes. For the stiff spring case
(figure 6.4b), there is very low variability in obtained MAC values. A very steep spike can be seen for
all modes, similar to the synthetic case. This is caused by the fact that the MAC for the stiff spring case
is very insensitive to variety in Espring and Esteel. With the applied ranges of [0,10] for both variables,
no clear change in the MAC is achieved. A difference however with the synthetic data is that for the
update with synthetic data, the distribution of obtained MAC values is located very close to 1 for all
modes, but for the update with experimental data, this spike is centered around lower MAC values for
higher modes. This means that with the current settings, it is not possible to achieve a better result
in terms of MAC for the third mode. This phenomenon could also be explained by model errors and
errors in the measurements.

(a) MAC values of the first three modes, for the soft spring case.

(b) MAC values of the first three modes, for the stiff spring case.

Figure 6.4: MAC values for configuration 5 on a soft and stiff base, updated with measurements from Marchelli [18].
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6.3. Structural Properties
In table 6.3 and table 6.4, the initial and updated values of the three structural parameters for the soft
and stiff spring case are presented in two tables. The values in these two tables correspond to the
solutions with the lowest cost functions.

When using experimental data, it is again the ratios that are optimized, rather than the individual pa-
rameter values. For both the soft and stiff spring cases, it can be seen that Espring, Esteel and ρ are
multiplied by large scalars, and therefore, the updated values are unrealistically large. For example,
the E-modulus of steel being 4.51 times higher than the actual E-modulus for the soft spring case (ta-
ble 6.3). However, when looking at the ratios Esteel

ρ and Esteel

Espring
, more reasonable scalars are obtained.

For example, as shown in table 6.3, the initial Esteel

ρ ratio for the soft spring case is 2.68×107, and after
optimization, this value increases to 3.33× 107. This reflects a 24.57% increase in stiffness relative to
mass, that could be explained by the fact that certain features of the small-scale steel model, such as
the mass contributed by corner connections, bolts, and sensors, were not included in the FE model.
Additionally, the stiffness increase may be due to corner connections. The FE model assumes rigid,
monolithic connections between the column and floor plates, while in reality, these connections signifi-
cantly increase the stiffness of the columns over a greater length than just at the connection points.

When comparing the Esteel

ρ ratio in both tables, the scalar applied in the soft spring case was 1.24, while
it was 1.22 in the stiff spring case. Since the ratio reflects only the properties of the small-scale steel
structure, which remains unchanged in both scenarios, it is expected that the Esteel

ρ values would be
nearly identical. Indeed, the value for the solution with the lowest cost function in the soft spring case
was 33,333,809.2, compared to 32,764,166.4 in the stiff spring case, a difference of only 1.71%.

Parameters
Starting model Updated model (lowest cost)

Value Bounds for update Scalar applied Updated value
Esteel [Pa] 2.10E+11 [0.1, 10] 4.51 9.47E+11
ρ [kg/m3] 7850 [0.1, 10] 3.62 2.84E+04
Espring [Pa] 6.94E+06 [0.1, 10] 3.71 2.58E+07

Esteel/Espring [-] 3.03E+04 [0.01, 100] 1.21 3.67E+04
Esteel/ρ [m2/s2] 2.68E+07 [0.01, 100] 1.24 3.33E+07

Table 6.3: Comparison of the starting model parameters and the updated model with the lowest cost function for the soft spring
case. The scalar applied to each parameter in the optimization process is also indicated, including the parameter ratios.

Parameters
Starting model Updated model (lowest cost)

Value Bounds for update Scalar applied Updated value
Esteel [Pa] 2.10E+11 [0.1, 10] 1.60 335092499535.59
ρ [kg/m3] 7850 [0.1, 10] 1.30 10227.41
Espring [Pa] 6.94E+06 [0.1, 10] 2.59 749278471899.11

Esteel/Espring [-] 0.72 [0.01, 100] 0.63 0.45
Esteel/ρ [m2/s2] 2.68E+07 [0.01, 100] 1.23 3.28E+07

Table 6.4: Comparison of the starting model parameters and the updated model for the stiff spring case with the lowest cost
function. The scalar applied to each parameter in the optimization process is also indicated, including the parameter ratios.
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6.3.1. Optimization of ratios
When investigating the results of all 100 obtained solutions in both cases, one can see that no relation
between the individual parameter values and the cost function exists. For example, Figure 6.6b plots the
parameter values alongside the cost function- for the soft spring situation. It shows that the optimized
values are all over the place.

Figure 6.5: Individual structural parameters across 100 solutions plotted against the cost function.

However, when focusing on the ratios between structural parameters, specifically Esteel

ρ and Esteel

Espring
,

rather than the individual parameters, a clear convergence can be seen. Figure 6.6 shows for both the
stiff and soft spring case these ratios obtained across the 100 solutions. Clearly, it shows that given a
certain ratio, there is a minimum value for the cost function that can be obtained. This minimum value
decreases up to the optimal value for the ratio. This pattern can be seen in all four plots and is consis-
tent with the results with synthetic data. Only for the stiff spring, in figure 6.6d one can see that for the
Esteel

Espring
, it is harder to find the optimal value. At the same time, in figure 6.6c, it can be seen that the

pattern becomes much more clear for the Esteel

ρ ratio. This behaviour was also observed in the results
with the synthetic data, indicating that since the springs are already quite stiff, a change in stiffness is
very hard to estimate, and an overestimation in spring stiffness only leads to very small errors since
the Esteel

ρ ratio is governing the dynamic behaviour.
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(a) Plot of the Esteel
ρ ratios across the 100 solutions from

the optimization of configuration 5 on soft springs .
Dashed lines indicate value of the ratio before the update
and the optimal value obtained after the optimization.

(b) Plot of the Esteel
Espring

ratios across the 100 solutions
from the optimization of configuration 5 on soft springs .
Dashed lines indicate value of the ratio before the update
and the optimal value obtained after the optimization.

(c) Plot of the Esteel
ρ ratios across the 100 solutions from

the optimization of configuration 5 on stiff springs .
Dashed lines indicate value of the actual ratio (of the
reference model) and optimal value obtained from the

optimization.

(d) Plot of the Esteel
Espring

ratios across the 100 solutions
from the optimization of configuration 5 on soft springs.
Dashed lines indicate value of the actual ratio (of the
reference model) and optimal value obtained from the

optimization.

Figure 6.6: Plots comparing the Esteel
ρ

and Esteel
Espring

ratios across 100 solutions from the optimization algorithm, for both soft
and fixed configurations.

In figure 6.7, the Esteel

ρ and Esteel

Espring
ratios are plotted in a 3D plot for the soft spring case, against the

cost function. It can be seen that a surface forms, showing the lowest obtainable cost function for a
certain ratio.

Figure 6.7: The two ratios plotted against the cost function for the soft spring case. The cost function clearly converges
towards a minimum value.
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6.4. Period lengthening values
In this section, the period lengthening values obtained from the updating procedure are analyzed. First,
the results of the updating of the FE model of configuration C5 on a soft and stiff springs base will be
presented in detail. Finally, in section 6.7, the results for period lengthening when the procedure is
applied to all configurations are discussed.

6.4.1. Distribution across solutions
The distribution of period lengthening values across the 100 solutions is shown in figure 6.8a for the
soft spring case and in figure 6.8b for the stiff spring case. It is clear that the distribution for the stiff
spring case is significantly narrower. This is especially evident when considering the difference in the
x-axis scales between the two graphs. The difference in scaling is intentional, as adjusting the axes to
be identical would cause the sharp peak in figure 6.8b to disappear.

The obtained values were compared to those determined from the experiments of Marchelli [18] rather
than the true values. It was found that in the soft spring case, 3% of all solutions had errors of less
than 1%, while for the stiff spring case, none of the solutions fell below this threshold (compared to
100% in the synthetic data update). However, this does not imply that the period lengthening estimates
are significantly inaccurate. When the error threshold was increased to 2.26%, 100% of the obtained
values had errors below this limit. This discrepancy can be attributed to the presence of model and
measurement errors introduced in the experimental setup.

(a) Histogram of the obtained T̃/T values (soft springs). (b) Histogram of the obtained T̃/T values (stiff springs).

Figure 6.8: Comparison of the obtained T̃/T values for configuration 5 on soft springs (a) and stiff springs (b).
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In figure 6.9a and figure 6.9b, the relationship between the obtained period lengthening values and
the corresponding optimization cost function across the 100 solutions is plotted for both the stiff and
soft spring conditions. A notable difference can be observed between the two cases, which mirrors the
results from the synthetic data study. In the soft spring case, there appears to be a clear V-shaped
convergence of the cost function towards a specific period lengthening value, as shown in figure 6.9a.

(a) Period lengthening ( T̃/T ) values of each of the 100 solutions
plotted against the corresponding cost function for configuration

5 on soft springs.

(b) Period lengthening ( T̃/T ) values of each of the 100
solutions plotted against the corresponding cost function for

configuration 5 on soft springs.

Figure 6.9: Comparison of the obtained T̃/T values for configuration 5 on soft springs (a) and stiff springs (b).

6.5. Consistency of results
In the update procedure, 100 initial solutions were generated to explore the optimization space. To
assess whether this sample size was sufficient, the process was repeated with another set of 100
solutions. The results of the period lengthening from both optimization runs are shown in figure 6.15a.
The graph reveals that the second run produced a solution with a higher cost function, resulting in a
period lengthening of 1.281, compared to 1.292 from the first run. Moreover, the error relative to the
measured period lengthening (1.306) was significantly larger in the second run—1.92% compared to
1.07% in the first run. This suggests that the first optimization run provided a better approximation of
the measured period lengthening and that the procedure does not return a stable, converged value yet.

Figure 6.10: Two solution sets obtained by running the optimization procedure twice with 100 starting values. The graph
shows that the current amount of starting values does not lead to a completely converged value of T̃/T .
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6.5.1. Sensitivity to number of starting points
To further investigate the variability in period lengthening values across different runs, the updating
procedure was executed 100 times using various numbers of starting points. This analysis was limited
to the soft spring case, as the variability in period lengthening for the stiff spring case was minimal
(see figure 6.8b). Figure 6.11 presents three histograms, each showing the distribution of T̃/T values
corresponding to the optimal result (i.e., the lowest cost function) obtained after running the update
procedure 100 times, with 50, 100, and 200 starting points.

(a) 50 starting points. The coëefficient of
variation CV = 1.5%

(b) 100 starting points. The coëefficient of
variation CV = 0.98%

(c) 200 starting points. The coëefficient of
variation CV = 0.71%

Figure 6.11: Histograms showing the distribution of T̃/T values corresponding to the optimal results (lowest cost function) for
50, 100, and 200 starting points after running the update procedure 50 times.

The histograms in figure 6.11 suggest that while the initial sample size of 100 starting points provided
a reasonable estimate of the period lengthening, the optimal solution had not yet been fully identified.
Increasing the number of starting points to 200 reduced the standard deviation of the obtained values,
indicating that further increasing the number of starting points might eventually lead to a stable period
lengthening value.

However, when the cost function is taken into consideration, this perspective changes. In figure 6.12,
three plots display the obtained T̃

T values against the cost function for runs with 50, 100, and 200
starting points. Only the values corresponding to the lowest cost function from each of the 100 runs are
plotted. While the same convergence toward a specific period lengthening value is observed, there is
a key difference: the period lengthening values do not converge to a single optimum. Instead, multiple
solutions with nearly identical cost functions emerge, creating a ’horizontal’ plateau—an area where
further improvement of the solution seems to not be possible.
at the measured value.

(a) 50 starting points (b) 100 starting points (c) 200 starting points

Figure 6.12: Scatter plots showing the relationship between period lengthening (T̃/T ) and cost function values for 50, 100,
and 200 starting points after running the update procedure 50 times.

It’s important to note that this plateau was not observed in the update procedure using synthetic data
(section 5.3.3), where a much steeper and more distinct convergence was achieved with cost function



6.6. Updating with refined solution space 51

values reaching order 10−6. Additionally, the presence of this plateau is consistent across all plots in
figure 6.12, even as the number of optimal solutions increases. Only one point in figure 6.12c , the plot
showing the results for the optimization with 200 starting points, is reaching lower than the plateau. This
point has a cost function that is 0.001836 lower- than the point. Interestingly, the point is almost exactly
In figure 6.13, three histograms illustrate the distribution of cost function values for the optimal solutions
obtained after running the optimization 100 times with 50, 100, and 200 starting points. As the number
of starting points increases, the distribution of values becomes progressively narrower. However, it is
noticeable that the lowest cost function value achieved does not really decrease, despite the increased
number of starting points. This is indicative of this observed plateau.

(a) 50 starting points (b) 100 starting points (c) 200 starting points

Figure 6.13: Histograms showing the distribution of cost function values corresponding to the optimal results for 50, 100, and
200 starting points after running the update procedure 50 times.

6.6. Updating with refined solution space
Given that running the code with multiple starting points over many iterations is time-consuming, an
alternative approach was tested to optimize the process. In this approach, the FE model is first up-
dated using 200 starting points only one time. After the initial run, the values of Esteel, Esprings, and ρ
that corresponded to the lowest cost function were selected as new starting points for a second step
of optimization. In this second step, the solution space was then refined by lowering bounds (initially
set at [0.1, 10]) specified for the parameters, allowing the optimization to concentrate more effectively.
Focusing on a refined solution space is more effective than simply increasing the number of starting
values, as it reduces the search area and increases the likelihood of converging to a global optimum.

The new bounds were based on the results of section 6.5.1. In figure 6.14, two histograms are depicted,
showing the distributions of the Esteel/ρ and Esteel/Esprings ratios corresponding to the lowest cost
function after 100 runs with 200 starting points.
For the Esteel/ρ ratio, the values fell between 3.30e+07 and 3.41e+07, or 0.98 and 1.01 times the
median value of 33689381.12. For the Esteel/Esprings ratio, the values ranged between 2.50e-05 and
2.87e-05, or 0.94 and 1.08 times the median value of all the solutions.

Since bounds can only be applied to the individual parameters (Esteel, ρ, and Esprings), a range of
[0.92, 1.1] was selected for these parameters. This results in bounds of approximately [0.84, 1.20] for
the Esteel/ρ and Esteel/Esprings ratios, given by the calculation [(0.92/1.1) - (1.1/0.92)].
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(a) Histogram of all E/ρ ratios obtained by running the updating
procedure 100 times.

(b) Histogram of all E/Espring ratios obtained by running the
updating procedure 100 times.

Figure 6.14: Comparison of the E/ρ and E/Espring ratios from 100 runs of the updating procedure with 200 starting points.

In figure 6.15, the results of an update of C5, soft springs, after a refinement of the bounds and two
steps of the optimization are shown. Now, almost all solutions have low cost functions (all of them are
below 0.07). The same plateau as in figure 6.12 can be observed.

(a) Period Lengthening: T̃/T solutions
after redefining bounds.

(b) E/ρ values after running with smaller
parameter bounds.

(c) Esteel/Espring values with smaller
parameter bounds.

Figure 6.15: Comparison of period lengthening, E/ρ, and E/Espring ratios from 30 runs of the updating procedure.

The plateau exists due to a combination of modeling and measurement errors. Since the model cannot
fully capture the dynamic behavior of the real structure, it is inherently unable to perfectly match the
measured natural frequencies and mode shapes. Furthermore, errors in measurements and uncertain-
ties add another layer of complexity, making it even harder to achieve an exact fit. As a result, fitting
the natural frequencies and mode shapes becomes a trade-off: solutions with similar cost functions, as
shown in figure 6.16a and figure 6.16b, exist because some solutions may achieve a very good fit for
the first natural frequency but a poorer fit for the second, while others might have the opposite result.
Consequently, even though the cost functions are nearly identical, the solutions themselves differ. This
trade-off is illustrated in figure 6.16, where two plots display the obtained natural frequencies and mode
shapes. The color of each line, which connects values of a specific solution, represents the cost func-
tion value. In figure 6.16a, it is evident that as the error for the second natural frequency decreases,
the error for the third natural frequency increases.
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(a) Natural frequencies of the first three modes of the solutions
obtained from the update with modified bounds. In this plot, only

solutions with a cost function lower than 0.035 are shown.

(b) MAC values of the first three modes of the solutions obtained
from the update with modified bounds. In this plot, only solutions

with a cost function lower than 0.035 are shown.

Figure 6.16: Values for dynamic properties, obtained from running the optimization in two steps with refined bounds

6.7. Application to all configurations
The two-step approach explained in section 6.6 was applied to all configurations, C5, C6 and C7 on
soft and stiff springs. In table 6.5 and table 6.6, an overview is given on the period lengthening values
obtained for the different configurations on the two spring types.
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C5 1.02376 1.00003 1.00002 2.32% 2.32%
C6 1.02205 1.00003 1.00031 2.15% 2.13%
C7 1.02026 1.00003 1.00058 1.98% 1.93%

Table 6.5: Overview of the period lengthening values for the stiff spring, obtained from measurements, FE model, and updated
FE model.
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C5 1.30568 1.24442 1.29933 4.69% 0.49%
C6 1.31103 1.24667 1.31403 4.91% 0.23%
C7 1.31460 1.24956 1.31861 4.64% 0.31%

Table 6.6: Overview of the period lengthening values for the soft spring, obtained from measurements, FE model, and updated
FE model.

For the soft spring cases, it can be seen that the period lengthening significantly improves for all con-
figurations, going from above 4 % error to lower than 0.5 % error. In figure 6.17 an overview of the
obtained period lengthening values is depicted for all configurations. The range over which the plateau
is observed is also indicated.

For the stiff spring, a less pronounced effect can be seen. The values obtained after optimization
only improve slightly with some per cent points. This can be due to the fact that since the stiffness of
the springs is very high and the period lengthening is already close to one (fixed base situation) and
therefore, errors of the model are more pronounced. Another reason can be that since the model is so
insensitive to the spring stiffness, the cost function becomes very flat and it is not possible to improve.
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Figure 6.17: T̃/T before and after the update, compared to the values from measurements by Marchelli [18]. The light-red line
indicates the area of the plateau, meaning the area where the cost function value does not improve much as the model is

unable to fit all natural frequencies

6.8. Conclusion
This chapter applied the model updating process to various 2D finite element (FE) models using ex-
perimental data from Marchelli’s thesis as input. The dynamic properties measured in the experiments
were used as the optimization targets. The model updating focused on three configurations (C5, C6,
and C7), each mounted on either soft or stiff springs at the base. Detailed results for configuration 5 on
both soft and stiff springs were discussed in this chapter, along with an overview of the performance
for all configurations.

The updated FE model showed improved predictions of the natural frequencies compared to the initial
model. Similar trends were observed when compared to the update using synthetic data; for instance,
in the soft spring case, the error for f1 was generally larger. However, the update based on experimen-
tal data introduced additional differences due to model and measurement errors. For example, in the
stiff spring case, the second natural frequency consistently exhibited a slightly larger error (though still
minor), suggesting a trade-off between fitting different frequencies. In contrast, with the synthetic data
update, the errors were more uniform across all frequencies.

With regard to the mode shapes, represented by MAC values, the updated FE model showed only
marginal improvements. These improvements were more significant in the update with synthetic data,
where the exact mode shapes could be matched. However, for the update with experimental data,
achieving a MAC value of 1 was not possible, indicating that the model could not fully replicate the
dynamic behavior, regardless of the structural properties chosen. This limitation is likely due to uncer-
tainties arising from either the model or measurement errors.

In terms of structural properties, similar patterns were observed as when using synthetic data. The
optimization process primarily adjusted the ratios between stiffness and mass properties, rather than
the individual parameters. The updated values for Espring, Esteel, and ρ were unrealistically large, but
the ratios Esteel

Espring
and Esteel

Eρ
were optimized to more reasonable values. This behavior suggests that the

optimization algorithm is effective in matching the dynamic behavior of the system, even though the
individual parameter estimates remain inaccurate.

Regarding period lengthening, the obtained values were compared to those derived from Marchelli’s
experimental data [18], rather than the true values. The study clearly demonstrated that both model
and measurement errors had a significant impact on the results. For the soft spring case, only 3% of
the solutions had errors of less than 1%, indicating accurate period lengthening values for T̃

T ., similarly
to the results with synthetic data. In contrast, for the stiff spring case, none of the solutions had errors
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below 1%, whereas 100% of the solutions in the synthetic data update reached this level of accuracy.
Nevertheless, 100% of the stiff spring solutions had errors below 2.26%, indicating that while the accu-
racy of the model updating procedure was impacted by the presence of model or measurement errors,
the overall precision remained consistent.

An important aspect of this study involved investigating the consistency of results. The optimization
process was repeated to assess the variability of the period lengthening values. For the soft spring
configuration, there was significant variability across the 100 solutions, indicating that the optimization
process had not fully converged. When the optimization was repeated over 100 runs, the distribution of
period lengthening values continued to show variability for the soft spring case. Increasing the number
of starting points reduced this variability, but was very time inefficient. In addition, even with these
refinements, the cost function could not be minimized further for all natural frequencies, suggesting
that either model errors or measurement inaccuracies limited the optimization’s potential. Another ap-
proach, overcoming the time inefficiency, was refining the bounds for a second update step. This also
led to improved consistency, with more solutions converging to lower cost functions. However, the
same plateau was observed, where the cost function did not improve.

Finally, when comparing period lengthening values across all configurations, the results showed signif-
icant improvement for configurations mounted on soft springs. The error in period lengthening predic-
tions dropped from above 4% to below 1%. For the stiff springs, the improvement was less pronounced,
as the initial errors were already quite small. This can be explained by the fact that, with period length-
ening values close to 1, changes in spring stiffness had a less significant impact, making the system
less sensitive to updates in the Espring/Esteel ratio.

In conclusion, the model updating procedure applied to experimental data provided similar insights
as those obtained from synthetic data. While the dynamic properties were matched effectively, the
optimization primarily focused on achieving accurate ratios between stiffness and mass properties. The
study highlighted that the model updating process was more effective for stiff spring configurations, with
more consistent period lengthening predictions and a better overall fit to the experimental data. For the
soft spring case, model and measurement errors made it not possible for the algorithm to come to one
solution of the period lengthening.
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Discussion and Conclusion

This research investigated the possibility of determining the period lenghtening (T̃/T ) for a structure
through model updating. The period lengthening of a structure is the elongation of the first natural
frequency due to a change in the boundary condition, namely the addition of a flexible base. Period
lengthening, i.e. as a measure of the ratio between stiffnesses of superstructure and foundation, is
fundamental to SSI. The main research question of this thesis was the following:

”How can the period lengthening of a structure be estimated reliably using vibration measurements?”

The hypothesis when starting this research was that since the period lengthening reflects the stiffness
ratio between structure and foundation, this property could be determinedmore accurate than individual
structural properties through model updating based on vibration measurements. To understand the pro-
cedure, two FE models, representing a small-scale steel model on a soft and a stiff spring foundation,
were updated first using synthetically generated modal data, extracted from other reference FEmodels.

Of this this small-scale steel model, vibration measurements had been conducted in the past, and
dynamic properties such as mode shapes and natural frequencies were known. Some factors were
excluded from the FE model, such as the influence of the L-shaped connections, the measurement
equipment, and the effect of bolts on the mass and stiffness of the system. Despite these omissions,
the model was able to reasonably predict the dynamic behavior of the structure even before the update,
with errors around 10%. The results were also compared with those obtained from Marchelli’s model,
where the differences were similarly small (differences up to 7.44%) but also a few slightly different
assumptions were made. This demonstrates that the FE model was set up correctly.

The 2D FE model, consisting of Timoshenko beam elements, was given initial structural properties,
which lead to a mismatch between dynamic properties measured and numerically calculated. This mis-
match was then minimized by updating the structural properties of the FE model using a Sequential
Least Squares Quadratic Programming (SLSQP) algorithm. After updating the structural properties,
the period lengthening could be determined for the FE model and compared to period lengthening val-
ues calculated from the vibration measurements.

The results from the update using synthetic data show that the model can be updated to produce the
exact same dynamic properties as the reference model (zero error for both natural frequencies and
mode shapes). This confirms that the optimization process proceeds correctly, without being affected
by errors in the code. The results of the update with synthetic data demonstrated that the algorithm
primarily resolves the ratios between mass and stiffness parameters, specifically Esteel

ρ and Esteel

Espring
, to

replicate the reference model’s behavior and correctly determine the period lengthening. While the
individual properties themselves were not accurately determined—their values deviated significantly—
the ratios Esteel

ρ and Esteel

Espring
were updated with 0.0% and 0.0% error respectively for the soft spring

case and 0.0 and 16.6 % error for the stiff spring case.
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A comparison between soft and stiff springs shows clear differences. For stiff springs, the system
acted like the building was fixed at the bottom, due to the high spring stiffness. As a result, the dynamic
properties were mainly controlled by the Esteel

ρ ratio, and changes in spring stiffness had little effect.
This made the range in predicted period lengthening much more narrow around the actual value: 100
% of all T̃/T obtained across 100 solutions were within an error of 1 % of the actual value. For soft
springs, however, the dynamic properties and period lengthening were muchmore sensitive to changes
in the Esteel

Espring
ratio. This caused larger errors across the solutions obtained, especially for the first natural

frequency. For only 3 % of solutions, the error of T̃/T was lower than 1 %.
In the second phase of this research, the same FE models (on soft and stiff springs) were updated, this
time using measurement data. The goal was twofold: (1) to investigate the differences compared to
the update based on synthetic data, and (2) to identify the optimization settings necessary to achieve
stable, converged results.

Regarding (1), the update based on measurement data showed some similarities to the update using
synthetic data in terms of how well the objectives (dynamic properties) were met. Again, the first nat-
ural frequency and the third mode shape proved to be the most difficult to fit accurately for the soft
spring case. For the stiff spring, the spring stiffness was large and therefore the system had a period
lengthening very close to one. In contrast to the update with synthetic data, the error with respect to
period lengthening could not be lower than 2% (compared to the value of measurements), due to model
and measurement errors. Additionally, the optimization process again focused on optimizing the ratios
Esteel

ρ and Esteel

Espring
, with the cost function clearly converging toward specific values for both ratios.

However, the results were not fully consistent: running the optimization multiple times with 100 initial
values produced slightly different period lengthening results each time. To address this, and answer to
(2), the number of starting points picked was varied. This decreased the variation of period lengthening
values (lower standard deviation): a standard deviation of 0.019 for 50 starting points, 0.0127 for 100
starting points and 0.0092 for 200 starting points. However, the lowest cost function observed was not
decreasing much: A ”plateau” in the cost function was observed near the measured period lengthen-
ing values, where further improvements in the cost function were minimal. This phenomenon was not
present in the synthetic data. It appeared to result from the FE model’s inability to fit all natural frequen-
cies accurately. Some solutions within this plateau fitted the first natural frequency almost perfectly but
diverged significantly for the higher natural frequencies. Similarly, different solutions exhibited varying
accuracy for the MAC values. As a result, although the cost function values for these solutions were
approximately the same, the material properties—and therefore the period lengthening—differed, be-
cause the optimization prioritized different natural frequencies and mode shapes.

Since the running with many starting points was time consuming, another approach was also adopted,
with a second round of optimization after one with 200 starting values, but then starting from the opti-
mized values obtained in the first round and reducing the bounds for the individual parameters to [0.9,
1.1]. Again, the plateau was observed, this time more clearly than previous method. Finally, this two-
step procedure was applied to all building configurations, on two foundation types per configuration. for
all configurations, the plateau could be observed, but for each a different width was obtained. When
comparing to the measurements, it could be seen that the measured values of period lenghtening all
fell within the plateau.
The results showed a significant improvement of the period lengthening values compared to the initial
values found using the FE model for the case of the soft spring foundation, and only a slight improve-
ment for the stiff spring foundation. This shows that model updating is a promising way to determine the
period lengthening, but model and measurement uncertainties play a large role in the accuracy of the
results. Therefore, more research is necessary to investigate these uncertainties, before a generalized
approach can be adopted for real-life high rise buildings.



8
Recommendations

The findings of this research offer valuable insights that can guide future studies aimed at estimating
period lengthening

(
T̃
T

)
through model updating, a method optimizing structural properties based on

dynamic characteristics. The period lengthening values estimated for real buildings may help develop
more accurate damping predictors that incorporate soil-structure interaction (SSI) effects. Building on
the results and challenges encountered in this study, several recommendations are proposed to sup-
port future research efforts.

In the discussion chapter, several factors were identified that negatively affect the reliability of the pe-
riod lengthening values estimated in this research. Specifically, three sources of error and uncertainty
were noted: (1) modeling inaccuracies, (2) measurement data errors, and (3) uncertainties within the
optimization method. This chapter outlines several steps to better understand and mitigate these un-
certainties. The recommendations chapter is organized into two sections: the first proposes ways to
refine the current model to enhance its accuracy in predicting the dynamic behavior of the small-scale
steel model, and the second section deals with recommendations that can be used to translate this
research to applications for real-sized high-rise buildings.

8.1. Improving the current model
In this research, several implications arose when updates were performed using experimental data.
For example, the cost function could not reach the low levels seen with synthetic data because the
model was unable to match all measured frequencies and mode shapes simultaneously. One reason
for this is model error: the inability of the model to exactly replicate the behavior of the real-life system.
In addition, the non-linearity of the cost function created challenges in finding the optimal solution that
best fit the data. This section proposes improvements to the current model that could result in better
period lengthening estimates for the small-scale steel model.

8.1.1. Model errors
In this research, a 2D FE model consisting of Timoshenko beam elements was updated. When using
measurement data rather than synthetic data as objectives for the optimization, several observations
suggested model error. Improving the model’s ability to predict dynamic behavior could reduce model
error and improve convergence towards a stable period lengthening value. Some specific proposals to
improve model accuracy include:

• Accounting for mass and stiffness added by corner connections, sensors, and other elements of
the small-scale steel structure. This could be done for example by defining elements modeling
these connectors.

• Modeling the springs in a different way to better capture the behavior of the rubber material.
• Extending the FEM model to 3D to include for example torsional modes.
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Alternative model types may also be worth investigating. However, it is crucial that these models repli-
cate the behavior of the system accurately. For example, an Euler Bernoulli-beam model might fit the
natural frequencies and mode shapes of a high-rise building well, but it may not produce frequencies
and mode shapes suitable for the small-scale steel model, which primarily exhibits shear-dominated
behavior. Examples of model types that could be effective for the small-scale steel model include:

• Lumped parameter models
• Shear beam models
• Timoshenko beam models

8.1.2. Measurement errors
The second recommendation addresses errors and uncertainties in measurement data, particularly
those associated with vibration measurements used to estimate natural frequencies and mode shapes.
Measurement errors can introduce significant variability in results, especially in period lengthening es-
timates, which are highly sensitive to these dynamic properties.
To improve the accuracy of future model updates and reduce uncertainties arising from measurement
errors, several strategies can be considered. First, efforts should be made to enhance the quality
and quantity of measurement data to improve overall reliability and mitigate local inaccuracies. Future
research could focus on the following methods to reduce measurement uncertainties:

• Deploy additional sensors: Add more sensors to the structure to capture additional data points
across mode shapes, especially in directions not previously measured. This can provide more
accurate and robust measurements by reducing the influence of individual sensor errors.

• Expand measurement directions: Capture measurements in a wider range of directions, allow-
ing for a more complete representation of the structure’s mode shapes and dynamic behavior.
Currently, displacements in the vertical direction are only measured at the foundation, where
errors in this sensor have a large effect.

8.1.3. Improving optimization approach
The third recommendation focuses on uncertainties associated with the optimization method itself.
Quantifying the impact of the chosen optimization approach is important for improving the consistency,
accuracy, and reliability of results. Several factors contribute to the effectiveness of the optimization
process, including the specific algorithm used, the size and boundaries of the solution space, the num-
ber of optimization iterations, and the number of starting points sampled within the solution space.
To address these uncertainties, future work could involve:

• Implementing adaptive or multi-scale optimization techniques, where the solution space is refined
based on intermediate results to focus on areas most likely to contain the optimal solution. This
is more effective than simply increasing the number of starting points.

• Investigating the influence of varying the number of optimization steps and determining optimal
stopping criteria that balance accuracy with computational efficiency.

• One component that does affect the results is the selection of the starting points, that operates
on the basis of random selection of values. Therefore, results obtained in terms of solutions with
lowest cost function might be slightly different. A more straight forward selection, not depending
on a random selection, could ensure that repeating the work would yield the same results. Ex-
ploring strategies for selecting starting points, such as random sampling, clustering, or targeted
sampling in regions with higher potential for optimal solutions.

8.2. Application to real high-rise buildings
This research aimed to determine period lengthening

(
T̃
T

)
through model updating based on natural

frequencies and mode shapes. To extend this approach to a broader set of buildings, potentially using
measurements of natural frequencies and mode shapes, a clear framework is necessary to address
the various issues and uncertainties associated with this method.
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For applications to high-rise buildings, it is critical to understand and quantify the magnitude of model
and measurement errors and their effect on period lengthening estimation. In real buildings, it is not
feasible to extract period lengthening directly frommeasurements, as was possible with the small-scale
steel model. Therefore, the approach cannot be directly applied by comparing estimated period length-
ening values to actual measurements in a real-building context.

Using the small-scale steel model, a study should be designed to quantify the effect of measurement un-
certainty. Specifically, the following approaches could be used to assess the influence of measurement
errors:

• Applying random errors to the natural frequencies andmode shapes, similarly to the synthetic data
approach in Chapter 5, to examine how these errors affect optimization results and to assess the
significance of their impact.

• Following the method of Moretti et al. [21] by systematically excluding data from specific sensors
to simulate the effect of missing or inaccurate measurements. This approach can help reveal the
impact of incomplete measurement data on the optimization process and its outcomes.

The next step toward applying this method to real high-rise buildings is to select a model that can accu-
rately predict the dynamic behavior of various buildings. An Euler-Bernoulli beam model, for example,
might be suitable for buildings with significant bending behavior. A study should be conducted to iden-
tify which types of buildings are best modeled by an Euler-Bernoulli beam. Alternatively, other models,
such as a Timoshenko beam model, could be considered. The selected model for updating should
capture the dynamic behavior of the buildings accurately, and an argument for the model’s general
accuracy should be provided.

The third step is to investigate the effect of different model variables on the outcomes related to dynamic
properties, such as the effects of variations in mass and stiffness. In this study, dimensions were as-
sumed constant, with stiffness modeled as the product of Young’s modulus (E) and the moment of
inertia (I). However, Ritfeld [24] has shown that estimating the moment of inertia for real buildings is
challenging, as floor-column connections significantly affect stiffness.

Another method to address these issues is to modify the optimization’s objective function by placing
greater emphasis onmore reliable or important natural frequencies or mode shapes. By prioritizing data
with higher accuracy or greater impact on period lengthening in the optimization process, the influence
of measurement errors on the final results can be minimized. For example, the first natural frequency,
which can often be estimated more accurately, provides valuable information about foundation stiffness
(as it is more sensitive to this parameter).
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A
Assumptions to determine

foundation- and building-damping

In this chapter, a summary is provided on the various models and assumptions used by several re-
searchers for the estimation of building- and foundation-damping, used to calculate a modified overall
damping ratio of the fundamental mode, using equation:

ζ0 = ζf +
1

T̃
T

n ζb (A.1)

A.0.1. Foundation damping
Foundation damping consists of damping in the form of energy radiating away (radiation damping) and
energy loss in the form of deformation of the soil (hysteretic damping)[23]. Bronkhorst and Geurts [3]
and Gomez et al. [26] assumed hystereric damping to be negligible and estimated radiation damping
using Wolf’s cone model [35]. This model assumes a a rigid disk on the surface of a homogeneous soil
halfspace (so no embedment, which is often the case with foundations). The model prescribes equa-
tions for calculating the soil stiffness and damping properties. For foundation damping, the following
equation is introduced:

ζf =

(
T̃
T

)2
− 1(

T̃
T

)2 ζs +
1(
T̃
Tx

)2 ζx +
1(
T̃
Tr

)2 ζr (A.2)

Where, ζs represents the hysteresis (or internal damping) of the ground, ζx and ζr are the damping val-
ues for radiation damping in the translation and rotation directions, respectively. Tx and Tr are fictitious
vibration periods, calculated as if there were only vibration in the translation or rotation direction of the
foundation. Bronkhorst and Geurts [3] concluded that the overall damping computed with the model
was notably lower than the measured values in a case study. They identified the exclusion of hysteretic
damping from the calculations as one of the possible contributing factors to this underestimation. In
another study, Bronkhorst et al. [2] compared the results of Wolf’s cone model to results computed with
commercial software Dynapile, in order to assess the influence of the piled foundation. Dynapile is a
3D, Boundary Element Method (BEM) and Finite Element Method (FEM) model of the pile foundation
and returns a dynamic stiffness matrix of which the real terms represent stiffness and the imaginary
terms represent damping:
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kx = Re
[
K̃tt (2πfn,EC)

]
kyy = Re

[
K̃yy (2πfn,EC)

]
ζx =

Im
[
K̃tt (2πfn,EC)

]
2πfn,EC

ζyy =
Im
[
K̃yy (2πfn,EC)

]
2πfn,EC

(A.3)

Important to note is that the imaginary part of the dynamic stiffness matrix, which represents damping,
cannot be separated into a material and radiation damping. In addition, soil damping parameters are
not computed but should be entered. For example, Carranza [4] used the Linear complex stress-strain
model in Dynapile. This model requires the damping coefficient η, which Carranza assumed a value for.
Cruz and Miranda [9] used a model introduced by Veletsos and Meek [33] which assumes a circular
shallow foundation on an elastic halfspace. Veletsos and Meek did not describe material damping, but
only assumed radiation damping. This can be seen in the following equation for overall damping:

ζ̃ =

∣∣∣∣∣∣
(
f̃

f

)3 [
ζ +

(2− ν)π4δ

2σ3

(
βx

αx (αx + ia0βx)

r2

h2
+

βθ

αθ (αθ + ia0βθ)

)]∣∣∣∣∣∣ (A.4)

where ζ represents structural damping or Ds, the first term between brackets with βx represents trans-
lational radiation damping and the third term with βθ represents rocking motion radiation damping.αx,
αθ, βx, and βtheta are dimensionless factors which can be deduced from certain graphs [33].
For wind-induced vibrations however, radiation damping is very small to negligible, according to Malek-
jafarian et al. (2021), Venanzi et al. (2014) and Bronkhorst et al (2018). This could mean that the only
factor influencing the damping of the foundation is hysteretic damping.

A.0.2. Building or structural damping
For structural damping, Bronkhorst and Geurts [3], Gomez et al. [26] and Carranza et al [5] use the
empirical estimator by Jeary. This equation takes into account the reduction of damping with increased
flexibility, but does not capture solely structural damping. It includes other forms of energy dissipation,
also foundation damping, therefore it is a conservative value. Cruz and Miranda [9] simply assumed 2%
as a value for structural damping, in order to match the value of the paper by Veletsos and Meek [33].
A more accurate estimation of building damping excluding foundation damping is therefore needed to
make sure the SSI model accurately predicts dynamic behaviour.



B
Overview setups

In the table below, an overview of the experiments is given. Notice that 15 experiments involve excita-
tion in the x direction and 15 experiments in the y direction.

Table B.1: Overview of the experiments

Direction of
Excitation

Setup
No.

% 1.5mm columns Configuration Base conditions

x 01 100 C1 Fixed

x 03 90 C2 Fixed
x 05 80 C3 Fixed

x 07 60 C4 Fixed

x 09 40 C5 Fixed

x 11 30 C6 Fixed

x 13 20 C7 Fixed

x 15 20 C7 Soft

x 17 30 C6 Soft
x 19 40 C5 Soft

x 21 20 C7 Soft

x 23 20 C7 Stiff

x 25 30 C6 Stiff

x 27 40 C5 Stiff

x 29 20 C7 Stiff

y 02 100 C1 Fixed
y 04 90 C2 Fixed

y 06 80 C3 Fixed

y 08 60 C4 Fixed

y 10 40 C5 Fixed

y 12 30 C6 Fixed

y 14 20 C7 Fixed
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Table B.1: (continued)

Direction of
Excitation

Setup
No.

% 1.5mm columns Configuration Base conditions

y 16 20 C7 Soft

y 18 30 C6 Soft

y 20 40 C5 Soft

y 22 20 C7 Soft

y 24 20 C7 Stiff

y 26 30 C6 Stiff

y 28 40 C5 Stiff

y 30 20 C7 Stiff

Marchelli [18] saved the results of the operational modal analysis in text files, numbered t_00aa, where
aa represents the file number. t_0001 is the first file number, corresponding to setup 01 in the x direction.
t_0002 is the second file number, corresponding to setup 01 in the y direction. t_0003 is the third file
number, corresponding to setup 02 in the x direction, and so on...

The setups in x direction:

Table B.2: Setups in x direction

Configuration
Foundation condition

Fixed Soft Stiff

C5 09 19 27
C6 11 17 25
C7 13 16 23

The setups in y direction:

Table B.3: Setups in y direction

Configuration
Foundation condition

Fixed Soft Stiff

C5 10 20 28
C6 12 18 26
C7 14 22 30

So we have 6 combinations of a building configuration combined with 3 different soil types. We want
to store the natural frequencies of each configuration-foundation combination and compare the period
lengthening that is measured to the period lengthening that is estimated through model updating of a
simple beam model. We will save the data in a nested dictionary.



C
Timoshenko Beam Elements

The equation of motion for the system can be expressed as:

Md2u
dt2

+ Ku = F(t) (C.1)

Where:

• M is the mass matrix,
• C is the damping matrix,
• K is the stiffness matrix,
• u is the displacement vector,
• F(t) is the external force vector as a function of time,
• d2u

dt2 is the acceleration vector,
• du

dt is the velocity vector.

This equation governs the dynamic behavior of the system and can be used to analyze its response to
various loading conditions. To obtain natural frequencies and mode shapes, the external force is set to
zero:

Md2u
dt2

+ Ku = 0 (C.2)

C.0.1. Element Stiffness Matrices
The stiffness matrix for a Timoshenko beam element is given by:

Kelement =


EA/L 0 0 −EA/L 0 0

0 12EI/L3 6EI/L2 0 −12EI/L3 6EI/L2

0 6EI/L2 2kGA/L 0 −6EI/L2 kGA/L
−EA/L 0 0 EA/L 0 0

0 −12EI/L3 −6EI/L2 0 12EI/L3 −6EI/L2

0 6EI/L2 kGA/L 0 −6EI/L2 2kGA/L

 (C.3)

We define G as:

G =
E

2(1 + ν)
(C.4)

Substituting this into the stiffness matrix with shear deformation effects, we have:
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Kelement =



EA/L 0 0 −EA/L 0 0
0 12EI/L3 6EI/L2 0 −12EI/L3 6EI/L2

0 6EI/L2 2k E
2(1+ν)A/L 0 −6EI/L2 k E

2(1+ν)A/L

−EA/L 0 0 EA/L 0 0
0 −12EI/L3 −6EI/L2 0 12EI/L3 −6EI/L2

0 6EI/L2 k E
2(1+ν)A/L 0 −6EI/L2 2k E

2(1+ν)A/L

 (C.5)

Simplifying the shear terms, we get:

Kelement =



EA/L 0 0 −EA/L 0 0
0 12EI/L3 6EI/L2 0 −12EI/L3 6EI/L2

0 6EI/L2 k EA
1+ν 0 −6EI/L2 k EA

1+ν

−EA/L 0 0 EA/L 0 0
0 −12EI/L3 −6EI/L2 0 12EI/L3 −6EI/L2

0 6EI/L2 k EA
1+ν 0 −6EI/L2 2k EA

1+ν

 (C.6)

For the steel building mounted on springs, only two elements types are used. Their element stiffness
matrices look like:

Ksteel = Esteel



A
L 0 0 −A

L 0 0
0 12I

L3
6I
L2 0 − 12I

L3
6I
L2

0 6I
L2

kA
1+ν 0 − 6I

L2
kA
1+ν

−A
L 0 0 A

L 0 0
0 − 12I

L3 − 6I
L2 0 12I

L3 − 6I
L2

0 6I
L2

kA
1+ν 0 − 6I

L2 2 kA
1+ν

 (C.7)

and

Ksprings = Esprings



A
L 0 0 −A

L 0 0
0 12I

L3
6I
L2 0 − 12I

L3
6I
L2

0 6I
L2

kA
1+ν 0 − 6I

L2
kA
1+ν

−A
L 0 0 A

L 0 0
0 − 12I

L3 − 6I
L2 0 12I

L3 − 6I
L2

0 6I
L2

kA
1+ν 0 − 6I

L2 2 kA
1+ν

 (C.8)

TheE modulus is taken in front of these matrices since all other parameters are known and this variable
is scaled equally for all members during the update. When the global stiffness matrix is assembled, it
will have terms dependent on Esteel, some terms dependent on Esprings, and some terms dependent
on the sum of Esteel and Esprings. A visual representation of this can be found in figure C.1.

C.0.2. Element mass Matrices
The element mass matrix for a Timoshenko beam element can be expressed as:

Melement =
ρAL

6


2 0 0 1 0 0
0 12 6L 0 −12 6L
0 6L 4L2 0 −6L 2L2

1 0 0 2 0 0
0 −12 −6L 0 12 −6L
0 6L 2L2 0 −6L 4L2

 (C.9)

Where:

• ρ = density of the material,
• A = cross-sectional area,
• L = length of the beam element.
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Figure C.1: Example of terms in a global stiffness matrix

This mass matrix accounts for both translational and rotational inertia in the Timoshenko beam element.
Assuming all variables are constants, we can factor out ρ from the mass matrix:

Melement = ρ



AL
3 0 0 AL

6 0 0

0 12AL3

3 6AL2

3 0 −12AL3

3 6AL2

3

0 6AL2

3 4AL2

3 0 −6AL2

3 2AL2

3
AL
6 0 0 AL

3 0 0

0 −12AL3

3 −6AL2

3 0 12AL3

3 −6AL2

3

0 6AL2

3 2AL2

3 0 −6AL2

3 4AL2

3


(C.10)

Where:

• ρ = density of the material,
• A = cross-sectional area,
• L = length of the beam element.

The mass of the springs is set to zero, and therefore, all terms in the global stiffness matrix correspond-
ing to the springs will also be set to zero.
The total system will now look like:

ρAd2u
dt2

+ EsteelK(
Esprings

Esteel
)u = 0 (C.11)

where we have a purely geometric matrix A, and the K matrix consisting only of Esprings/Esteel terms.
If we divide the system by ρ, we obtain:

Ad2u
dt2

+
Esteel

ρ
K(Esprings

Esteel
)u = 0 (C.12)

So the only two ratios defining the system now are Esteel/ρ and Esprings/Esteel. If these ratios are kept
the same, the system’s dynamic properties (mode shapes and frequencies) will also remain the same.

C.1. Influence of ρ
From figure 5.9a, it can be concluded that period lengthening is independent of the density ρ. Conse-
quently, not updating ρ during the optimization process may be advantageous, as the primary ratio that
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governs the period lengthening is Esteel

Espring
.

Interestingly, when the updating procedure is repeated with ρ fixed at 7840 kg/m3, the errors in the
natural frequencies increase significantly. In figure C.2a, errors up to 200 % can be seen. There is
however still a small peak around zero error. The percentage of f1 solutions within 1% error was
1.00%, while for f2 solutions it is 17.00%, and for f3 solutions it is 15.00%.

(a) Error distribution for the first three natural frequencies obtained from the updating procedure with parameter ρ fixed. The errors are calculated
by comparing the natural frequencies obtained from the updating procedure with those of the reference model.

(b) MAC value distribution for the first three modes obtained from the updating procedure, compared to the mode shapes of the reference model.
In this case, parameter ρ was fixed.

Figure C.2: Errors in estimation of dynamic properties of the reference model.

The observed behavior can be explained by two factors. Firstly, with ρ fixed, the starting value of Esteel

in the optimization process needs to change more significantly to achieve the optimal Esteel/ρ ratio.
This increases the likelihood of the optimization ending in a local minimum. Secondly, the chance
of converging to a local minimum is further increased because the MAC values are optimized based
primarily on the Esteel

Espring
ratio. As demonstrated in the sensitivity study in figure 4.5, ρ has no impact

on the mode shapes, since the mass is uniformly distributed across the structure’s height. By fixing ρ,
the optimization algorithm may find a local minimum where the mode shapes are satisfied, optimizing
the Esteel

Espring
ratio. This is supported by figure C.2b, where the MAC values remain close to 1 for the first

mode and only show minor deviations for the second and third modes, consistent with ??. Since the
natural frequencies are more sensitive to the Esteel

ρ ratio, they are not fully optimized, as ρ is fixed, and
a local minimum is reached when the Esteel

Espring
ratio produces high MAC values. The period lengthening

is largely dependent on this ratio, which explains why 4.00% of the solutions for period lengthening
fall within 1% error when ρ is fixed, compared to 5.00% in the case where ρ was not fixed. This small
difference likely arises from the random selection of starting values, indicating that fixing ρ produces
results that are almost equivalent when the objective is to match the period lengthening behavior.
In figure C.3 and figure C.4, it can be seen that when rho is not fixed, the optimization is still updating
the Esteel

ρ ratio. A clear convergence towards a value can be seen for this ratio, based on the cost
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function. The value with the lowest cost function is at the Esteel

ρ ratio of the reference model. Since ρ is
fixed, and this ratio needs to be satisfied to obtain the proper dynamic properties (and thus a low cost
function), the parameter E is also converging towards an optimal value. Therefore, this value will be
closer to the actual physical value of the structure.
This study showed that it is beneficial to not fix rho, since it decreases the change that the updating
procedure ends up in a local minimum. Therefore, larger bounds can be applied, meaning more uncer-
tainty in the parameters is acceptable. When applying this procedure to real buildings, this is beneficial.

Figure C.3: Plot of the Esteel
ρ

ratios across the 100
solutions from the optimization algorithm. Dashed lines

indicate value of the actual ratio (of the reference model) and
optimal value obtained from the optimization.

Figure C.4: Plot of the Esteel
Espring

ratios across the 100
solutions from the optimization algorithm. Dashed lines

indicate value of the actual ratio (of the reference model) and
optimal value obtained from the optimization.



D
Sequential update

D.0.1. Sensitivity to local parameters
The second stage involved varying the stiffness of specific member types, such as the 1.5 mm thick
columns, the floor plates, and the 2 mm thick columns. This was done to examine the effect of local-
ized stiffness variation on the dynamic properties. This approach helped to identify specific members
whose stiffness significantly influence the overall model behavior. The parameters investigated were
Ecolumn1,5, Ecolumn2, Eplate, Ebase, and ν (since the shear stiffness was calculated using equation (3.2)).
Overall, one can see that a change in the stiffness of the 2mm thick columns have the largest effect on
the natural frequencies and MAC-values. This is largely because these columns make up the largest
part of the structure.

A change in stiffness of the springs has a large influence on the first natural fequency. For other natural
frequencies, this effect is very small (less than 3% effect on frequency as well as MAC, against up to
19% for the first natural frequency.)

A change in stiffness of the baseplate (the plate that connects the columns at the bottom) has a negli-
gible effect on both natural frequency and MAC.

Changes in stiffness of the horizontal plates do affect the natural frequency and the MAC. For all modes,
this effect is approximately the same, with only a few percentage points difference.

Figure D.1: Percentual change of the first three natrual frequencies resulting from scaling the parameters Espring , Eplate,
Ebase, Ecolumn1 and Ecolumn2 individually. The x-axis represents the scaling factor applied to each parameter, while the

y-axis indicates the corresponding percentage change in natural frequency. The colors of the lines correspons to the colors of
the 2D FEM-model on the left.
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Figure D.2: Percentual change of the first three modeshapes measured in means of MAC value resulting from scaling the
parameters Espring , Eplate, Ebase, Ecolumn1 and Ecolumn2 individually. The x-axis represents the scaling factor applied to
each parameter, while the y-axis indicates the corresponding change of the MAC-value of the specific mode. The colors of the

lines correspons to the colors of the 2D FEM-model on the left.

D.1. Sequential Update
In this section, the results of the sequential update method are presented and compared with the di-
rect update method. The primary distinction between the two approaches lies in how the building and
spring properties are updated. In the direct method, both sets of properties are updated simultaneously,
whereas in the sequential update, the building properties are updated first, followed by the spring prop-
erties. Although the sequential method offers a clearer separation of influences, it is not possible in
real-world scenarios, as buildings cannot be placed on different foundation types.

The results are structured into three parts. First, the global parameters in the fixed-base configuration
are updated and compared to the results from the direct update case. Next,local parameters are up-
dated, to obtain the best fit for the frequencies and MAC possible. Finally, the spring stiffness update
is examined and the period lengthening calculated.

D.1.1. Updating Fixed Base
The update settings and finite element model (FEM) configuration for the first step of the sequential
update are illustrated in figure D.3. This figure provides a visual representation of the FEM model,
including its objectives and update settings for this initial phase.

Figure D.3: Overview of the FEM model, its objectives, and update settings for the first step of the sequential update.

The resulting natural frequencies before and after the update are detailed in table D.1. The data demon-
strates a significant reduction in errors following the update, achieving a minimum cost function of
0.079757. The MAC values, as expected, did not change, as no relative adjustments to stiffness or
mass were made.
The natural frequencies show significant following the update, particularly for the first and second
modes. For instance, the error for the first natural frequency dropped from 11.26% to 1.29%.
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Measurements FEM model (before update) FEM model (after update) Error before update [%] Error after update [%]
fn [Hz] 4.35 3.86 4.294025 11.26% 1.29%

12.39 10.94 12.177268 11.72% 1.72%
20.92 18.79 20.918612 10.18% 0.01%

MAC [-] 1 0.99992 0.99992 0.008% 0.008%
1 0.99909 0.99909 0.091% 0.091%
1 0.99424 0.99424 0.576% 0.576%

Table D.1: Comparison of measured values with FEM model predictions before and after the update for configuration C5 with
fixed base conditions.

Like before, a fit of the frequencies does not mean that accurate structural properties are determined
from the updating procedure. However, a clear pattern can be seen when the E/ρ ratio is plotted
against the corresponding cost function that is obtained from the optimization. In figure D.4, this clear
dependency of the cost function on the value of the E/ρ ratio can be seen. The optimized value from
the sequential update closely matches the result from the direct method, with only a 0.43% difference
in the E/ρ ratio, as seen in table D.2.

Figure D.4: E/ρ ratio against the corresponding cost function of each of the 100 solutions.

Cost Function (Direct) Cost Function (Sequential) Difference [%] E/Rho Ratio (Direct) E/Rho Ratio (Sequential) Difference [%]
0.025158 0.079757 216.92% 33,325,150.37 33,182,544.47 0.43%

Table D.2: Comparison of cost functions and E/ρ ratios between direct and sequential updates.

D.1.2. Updating Local Variables
In the second step of the sequential update, local stiffness variations were introduced to allow different
structural sections to be modified independently. In this step, ρ was fixed at the value from the solution
with the lowest cost of the previous update step (47166.86) and only local stiffness properties were
adjusted within bounds of [0.3, 3]. figure D.5 provides an overview of the second step of the sequential
update.

Structural Properties
The updated values for the local stiffness properties are displayed in table D.3. Slight changes occur
in the values of Ecolumn1, Ecolumn2 and Eplate, which are scaled by 1.056, 0.93 and 1.425 respectively.
This changemeans that the plates behavemuchmore stiff, and the columns of 2mm thickness relatively
behave less stiff.
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Figure D.5: Overview of the FEM model, its objectives, and update settings for the second step of the sequential update.

Parameters
Starting model Updated model (lowest cost)

Value Bounds for update Scalar applied Updated value
Ecolumn1 [Pa] 1.653× 1012 [0.3, 3] 1.056 1.653× 1012

Ecolumn2 [Pa] 1.457× 1012 [0.3, 3] 0.93 1.457× 1012

Eplate [Pa] 2.232× 1012 [0.3, 3] 1.425 2.232× 1012

Table D.3: Updated structural properties after the second step of the sequential update, corresponding to the solution with the
lowest cost function.

Dynamic Properties
The adjustment of local stiffness properties led to a substantial reduction in the cost function, from
0.079757 to 0.00647, marking a decrease of 91.89%. As demonstrated in table D.4, the errors in the first
and second frequencies were reduced from 1.29% to -0.12% and from 1.72% to -0.37%, respectively,
with only a slight increase in the error for the third frequency.

Measurements FEM model (after update) FEM model (after second update) Error before second update [%] Error after second update [%]
fn [Hz] 4.35 4.294025 4.344655 1.29% -0.12%

12.39 12.177268 12.344666 1.72% -0.37%
20.92 20.918612 20.925055 0.01% 0.02%

MAC [-] 1 0.99992 0.999925 -0.008% -0.0075%
1 0.99909 0.999807 -0.091% -0.0193%
1 0.99424 0.998028 -0.576% -0.1972%

Table D.4: Comparison of measured values with FEM model predictions before and after the second update for configuration
C5 with fixed base conditions.

D.1.3. Updating spring stiffness
in this section, the resulting spring stiffness values are presented. Again, the value obtained for spring
stiffness is not close to the actual value, nor the value from the manual. However, the optimization
seeks to balance all stiffness parameters such that the dynamic behaviour is best replicated. More
interesting is to investigate the influence of the parameter Espring on the period lenghtening, and the
way lower cost functions as a result of the Espring choice cause more accurate results for the period
lengthening when compared to measurements.

PL Measurements PL Before Update PL After Update Error Before Update [%] Error After Update [%]
1.306 1.246 1.305 -4.69 0.0625%

Table D.5: Comparison of period lengthening (PL) measurements, FEM model values before the update and after the final step
in the sequential update, along with respective percentage errors.
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(a) Espring values of all 100 solutions plotted against
cost function. The vertical lines represent the value that
were mentioned in the manual and optimal value obtained.

(b) Period lengthening values obtained from the 100
sequential optimization solutions plotted against the

period lengthening. The vertical lines represent the test
result and the result of the direct update.

Figure D.6: Results for the period lenthening and the value of the spring chosen. The value for the spring stiffness that leads
to a low cost function, also leads to a period lenthening value that is close to the test result.
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