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Abstract

Existing tools for debugging battery-free applications are limited to specific ar-
chitectures or require code changes of the Device Under Test (DUT) to function.
These tools also cannot measure the efficiency of the application designed for
battery-free systems. Currently, there is a lack of independent broad compar-
isons of intermittent systems. Our work, therefore, evaluates state-of-the-art
frameworks and their artifacts and finds shortcomings in reproducibility and
their performance. To overcome these shortcomings, we introduce DIPS+, a
multi-platform debugger and measurement platform for intermittent systems
with ARM and MSP430 support. DIPS+ introduces new methods to analyse
applications for battery-free systems. One method finds the minimum energy
budget required for forward progress, crucial for determining the minimal ca-
pacitor size for intermittent systems. Furthermore, DIPS+ offers functions to
perform automatic profiling tests, like code start-up time, which gives valuable
insights into the system’s efficiency. DIPS+ achieves significant improvements in
debugging performance, with 11 times faster connection time and reduced code
execution by 157 times on the DUT before full reconnecting after intermittency
occurs. The evaluation of selected frameworks reveals substantial overheads
caused by the additional overhead of saving and restoring of system’s state. This
causes certain benchmarks to take up to 110 times longer to complete than their
uninstrumented counterparts. These findings raise concerns about the viability
of task-based approaches as an effective solution for managing intermittency in
battery-free IoT devices.
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Chapter 1

Introduction

There are almost 16 billion Internet of Things (IoT) devices today, with pro-
jections for 34 billion devices in 2030 [24]. IoT devices are computationally and
energy-restrained devices that communicate over the internet or other networks.
Rather than using the main power grid, a large number of these devices use small
batteries. However, as the number of devices increases, the number of discarded
devices also increases. Projections suggest that by 2025, we will discard around
78 million devices daily [14]. The burden to society from these devices is high
due to the environmental impact of making new batteries or the cost of recycling.

Removing the battery prolongs the device’s lifespan while having a smaller
environmental footprint. An alternative to a battery is using an energy har-
vester and capacitor. The energy harvester converts ambient energy (e.g. radi-
owaves [55], solar [22], wind [16] or interactions [37]) into usable power for IoT
devices. However, the use of an energy harvester and capacitor also introduces
some complexity. Namely that there is not always enough energy to always be
powered on. Hence, the devices can only work intermittently. Examples of such
intermittent devices are a battery-free gaming console [20] or, more commonly,
wireless sensors (e.g. [2]).

In order for an intermittent device to achieve forward progress, the work is
divided into multiple parts with ad-hoc or periodic saving of the device’s state.
When the device loses power and intermittency occurs, the previous state is
restored (as illustrated in Fig. 1.1). This approach ensures forward progress in-
stead of attempting to execute the entire program in one uninterrupted session.

Transforming the work into multiple parts is not trivial. Various bugs and errors
can occur as the device can experience a power failure at any moment in time.
Different solutions are developed that try to solve the problem of maintaining a
state while experiencing power failures by offering a framework of methods that
act as a foundation for an intermittent resistant application. Unfortunately, only
a handful of tools [11,19] can measure the efficiency and correctness of restoring
and saving the device’s state. Moreover, there is a lack of broad evaluation in
the efficiency of those frameworks and what overhead they cause.
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Figure 1.1: Example of a system saving and restoring state with a
checkpointing framework, saves and stores its current state based on
the capacitor voltage.

1.1 Problem Statement

In the field of intermittent battery-free devices, there are several challenges.
Firstly, there is a lack of a testing tool that can effectively debug any task-
based and checkpointing framework. Existing debuggers [11, 19] are often lim-
ited to specific architectures and do not support all major platforms used by
intermittent frameworks, such as the MSP430 and Cortex-M0. Secondly, there
is a notable absence of comprehensive comparisons among intermittent frame-
works, even when they run on the same platform. In addition, the intermittent
frameworks are often only evaluated primarily to their intermittent counter-
parts (E.g. [5, 41, 49, 52]). It does not give a comparison with regard to the
most optimal and non-intermittent resistant code, called uninstrumented code.
Such comparison would provide a more honest indication of overall performance.
Lastly, there is a shortage of tests for larger programs to assess the appropriate
placement of checkpoints within the code. In this thesis, we aim to address these
problems for intermittent-powered embedded systems by posing the following
research question:

How can comprehensive runtime analysis for battery-free devices
evaluate the reliability and performance of existing frameworks?

1.2 Contributions

In this thesis, we present four main contributions:

• Minimum Energy Budget Finder: We develop an automated solution
for determining the minimum energy required to achieve forward progress.
The minimum required energy is a crucial metric in determining/optim-
ising capacitor size in intermittent systems.

• Evaluation of Selected Frameworks: We analyse a wide range of
frameworks for intermittent systems using a wide range of benchmarks.

2



State-of-the-art papers often only compare their framework with a lim-
ited number of other frameworks. Moreover, the efficiency is often only
compared with regard to intermittent counterparts and not with unin-
strumented code. The evaluation in this thesis provides insights into their
efficiency compared to the uninstrumented code. Additionally, during the
evaluation we discovered one bug in a framework.

• Extended Platform Support: The DIPS debugger [19] has been ex-
panded to include support for MSP430 microcontrollers. This platform
is used by 93% of all the published papers about intermittent systems.
Additionally, intermittent debugging support has also been added to the
debugger for this platform

• Optimized Debugger Performance: We optimise the debugging per-
formance and reduce the overhead of debugging. Notably, the connection
speed of DIPS+ has been increased by a factor of 11 while reducing the
code execution by 157 times before reconnecting after an intermittent
event.

3
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Chapter 2

Related Work

2.1 Intermittently-Powered Debugging and
Energy Emulation

Software for battery-free devices can be difficult to program and test. For ex-
ample, we want to make a temperature sensor that works with an intermittent
power source. Sometimes this hypothetical sensor gives a value of 70 degrees
Celsius while we expect a comfortable 21 degrees Celsius. In such a case, using
a debugger to see what is happening inside the sensor can be beneficial. By
connecting a hardware debugger to the debug ports of the Micro Controller
Unit (MCU) of the temperature sensor, we can establish a debug connection.
Depending on the features of the hardware debugger, we can use the debug
client on the PC to set breakpoints in the code. The program will stop at
breakpoints and allow us to check memory and registers or to continue until the
next breakpoint. These functionalities can help to find a specific software bug.
In the case of the hypothetical temperature sensor, it could be that sometimes
the temperature is wrongfully converted to Fahrenheit.

To debug a program on an intermittent device, the debugger needs to cope
with the power failures associated with an intermittent device. To prevent the
Device Under Test (DUT) from switching off, control over the power to the DUT
is needed. The DUT cannot be debugged when it is switched off. Table. 2.1
provides an overview of all debuggers.

2.1.1 Debugger

Hardware debuggers, or debug probes, are hardware components that inter-
face with the microcontroller of the DUT. Unfortunately, no single hardware
debugger supports all types of microcontrollers. This is because not all mi-
crocontrollers share the same Instruction Set Architecture (ISA), and certain
microcontrollers require different debugging methods.

In the field of intermittently powered systems, two architectures are predomin-
ant, with each their own ISA: MSP430FRxx and ARM. Both have low-power
modes, which is why they are a popular choice. Additionally, MSP430FRxx
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Table 2.1: Feature comparison of debuggers.

Framework J-
Lin

k
[5
1]

M
SP

FET
[6
0]

ED
B

[1
1]

D
IP

S
[1
9]

D
IP

S+

Intermittent Support No No Yes Yes Yes
MSP430 Support No Yes Yes No Yes

ARM Support Yes No No Yes Yes
IDE Support Yes Yes No Yes Yes

GDB Support Yes No No Yes Yes
Hardware Breakpoints Yes Yes No Yes Yes

Energy Breakpoints No No Yes Yes Yes
Minimum Energy Budget finder No No No No Yes

Automatic profiling support No No No No Yes

offers Ferroelectric Random Access Memory (FRAM), which is ideal for storing
the state of the devices as it is fast and non-volatile. However, no debugger
works out of the box with both architectures.

The commonly used debuggers for each architecture are MSPFET [60] for
MSP430 and J-Link [51] for ARM-based boards. Both debuggers can inter-
act with the DUT through a JTAG interface. Unlike MSPFET, J-LINK can
directly interact with the popular and feature-rich GNU Debugger (GDB). Both
debuggers, however, do not have any support for intermittent behaviour of the
DUT. Whenever the power fails, the connection is completely lost to the DUT.
This means that connecting to the DUT must be manually reestablished.

Fortunately, two debuggers offer intermittent support. EDB [11] only supports
MSP430 and is incompatible with GDB. A significant downside of EDB is the
need for code changes. All calls to the debugger need to be defined in the
code of the DUT. This includes reading memory and setting breakpoints. Con-
sequently, EDB does not allow for a great user experience [19]. The other
debugger, DIPS [19], is compatible with GDB and does not require any code
changes of the DUT to be used. However, it does support only ARM. As the
authors of DIPS noted, it is technically feasible to develop support for MSP430
and no problematic limitations that prevent MSP430 support. Note that in
this thesis, the work of DIPS is expended to support MSP430. To make the
difference clear, DIPS with MSP430 support is called DIPS+ in this thesis.

2.1.2 Energy Emulation

During a breakpoint in the DUT, it is important to maintain the voltage at the
same level to accurately read the device’s state and seamlessly resume execu-
tion from where the debugger halted (Fig. 2.1). This feature is called Debugger
take-over. If Debugger take-over is not present, the DUT will turn off during
the debugging, making it no longer possible to debug. Currently, only DIPS
and EDB support the Debugger take-over
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Figure 2.1: Display of voltage over time for an intermittent device.
The top figure shows the normal execution. The bottom figure shows
how the voltage is kept at the same level while the DUT is inside
a breakpoint. In the yellow zone, the emulator maintains the same
voltage as at the start of the breakpoint.

To further debug particular behaviour, it might be beneficial to simulate specific
voltage patterns to invoke certain behaviour from the DUT. Ehko is a recorder of
energy harvesting conditions and can also recreate those conditions [31]. Shep-
herd is an improvement of Ehko as it allows the recording and replaying of
voltage patterns for multiple devices and offers more accuracy in recording and
emulation [28]. Unlike DIPS and EDB, they do not provide any possibility to
detect breakpoints. This prevents Ekho and Shepherd from preventing the shut-
down of the DUT. Both EDB and DIPS can use the traces of Ehko to replay
energy patterns. DIPS can also simulate certain standard voltage patterns, such
as a square wave or a sawtooth.

2.2 Testing Frameworks for Battery-free
Devices

Some testing tools are designed explicitly for battery-free devices. They can be
divided into static code analysis, simulation-based and hardware-based testing.

Static code analysis only examines the source code without actually execut-
ing the program. An example of a static code analysis tool is CleanCut. The
tool automatically optimises the placing of task boundaries to prevent some
task-specific bugs, such as using too few task boundaries [13]. However, Clean-
Cut does not provide automatic tests for other bugs.
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Simulation-based testing does not execute the code on the target microcon-
troller architecture. Siren [26] introduces the concept of non-volatile memory
and energy simulation into the MSPSim emulator [25]. It also allows for energy-
neutral printf ’s, which enables primitive debugging. However, breakpoints must
be placed at the machine instruction level and it does not support automatic
tests. A similar tool ScEpTIC [45], uses the LLVM compiler [40] and emulator
to search for memory inconsistencies caused by the intermittency. This tool can
automatically search and find certain kinds of bugs. Nevertheless, since it is only
a simulation, inspecting the memory of the DUT or any peripheral is impossible.

An example of hardware-based testing is DIPS [19]. DIPS automated hardware-
based testing can be done to find memory inconsistencies. This works by auto-
matically setting the breakpoints on the checkpoint and restoring the function.
When the device is halted, it compares a pre-specified block of non-volatile
memory from the checkpoint and from after a restore function.

There is a benefit of using hardware-based testing compared to simulators. In
simulations, capturing and simulating the variation a real DUT experiences is
difficult. An example of such variation is the boot time.

8



Chapter 3

Software Frameworks for
Intermittently-powered
Devices

Intermittent devices store their current state in Non volatile memory (NVM) to
cope with power failures. Otherwise, their current state is lost after each power
interruption. The data is often stored inside the fast NVM, as it is quicker
than e.g. flash. Storing the current or restoring the previous state introduces
overhead. How much overhead there is, is determined by various factors such
as how often the device stores the state, what is exactly stored and how it is
restored.

Before looking at the overhead, it is important to investigate which methods
are there to save and restore the device’s state while experiencing intermittency.
The methods affect which kinds of overheads are present and when they occur.
Hence in Section 3.1, we describe the state-of-the-art frameworks of intermittent
devices. As we eventually want to measure the overhead of those frameworks,
Section 3.2 analyses whether the state-of-the-art frameworks can actually be
replicated and used to build applications. If intermittent frameworks cannot be
replicated, they can also not be used in the evaluation of frameworks in this
thesis. Both sections are based on 38 recent papers on intermittent battery-free
frameworks.

3.1 Checkpoint or Task-based

While constantly experiencing intermittency, the devices must store and restore
their state before and after each reboot to make forward progress. The storing
and restoring of the state can be achieved through two methods: checkpointing
and task-based frameworks.

Around 50% of the found frameworks make use of a checkpointing-based frame-
work [3,4,6–8,21,36,38,43,47,48,52,63,65]. In this approach, programmers, or
even the compiler, insert checkpoints into the code at strategic points. During

9



a checkpoint, the device’s state is saved. After a reboot, the device can restore
its state to the last successful checkpoint. This approach simplifies adaptation
as there is no need to rewrite the program in a specific manner.

However, one must be cautious of potential downsides. If manual placement
of checkpoints is needed, it could be easy to introduce a write-after-read error.
Such an error is caused by rebooting after writing a variable that a following
instruction depends on and can cause non-deterministic behaviour in the sys-
tem. Furthermore, the checkpoint approach also introduces overhead each time
the program checkpoints. To minimize the overhead, some frameworks choose
a Just-In-Time (JIT) checkpoint approach [36, 52]. Instead of using periodic
checkpoints, these frameworks use a voltage-based interrupt. It will start the
checkpoint procedure only when the voltage falls below a certain level.

The other method of storing and restoring the state, the task-based frame-
works, make up the remaining 50% [2,5,10,12,15,23,32,34,35,41,42,44,46,64].
The main idea behind this approach is that all code is transformed into idem-
potent tasks. The downside of this approach is that every code needs to be
transformed. Also, there is a significant overhead each time tasks are switched.

3.2 Replicability of Intermittent Frameworks

Replicability is an essential value of science, allowing others to validate work
and build on it. Replicability is also an important underlying assumption to
answer the research question because we must replicate frameworks to evaluate
them. In the field of intermittent systems, research artifacts can be included
with papers submission. Research artifacts are digital objects that are either
used in the study or generated as a result of the study. They add significant
value to the paper by allowing external parties to validate the experiments and
conclusions presented.

However, the submission of artifacts varies for papers with intermittent frame-
works, with only 12% of them providing artifacts [18,23,38,39,65]. Nonetheless,
even among papers without artifacts, 62% still made the source code publicly
available, e.g. through GitHub. Although there are not strictly speaking ar-
tifacts, this thesis considers them unreviewed non-paper artifacts. For the re-
maining 26% of papers, neither artifacts nor source code was made accessible
(e.g. [8, 10, 35]). An overview is provided in Table 3.1. The lack of availability
of source code makes it challenging to verify results or build upon the work of
others.

Moreover, the quality of the artifacts varies widely. In order to evaluate the
actual quality of artifacts, guidelines of ACM and Usenix can be used as start-
ing points. ACM specifically checks five characteristics: documentation, con-
sistency, completeness, exercisability, and inclusion of appropriate evidence of
verification and validation [1].

10



Table 3.1: The evaluation of the presence of research and non-paper
artifacts and the reproducibility without any extra help from the
relevant authors of those artifacts. The analysis is based around 38
recent pappers.

None
Source-code
only

Provided
Not able to
compile

Compiled

26% 62% 12% 52% 22%

Documentation plays a key role in enabling others to use the software of the
authors. One specific form of documentation is usage documentation, which ex-
plains how people can use the framework to build their own applications. Only
59% of all artifacts provide explanations on how to compile the given examples.
Moreover, 26% of all artifacts actually describe some part of how one can use
the framework for their own application.

Before frameworks can be used, they need to be installed or built. This is where
dependency documentation becomes essential, as it describes the required soft-
ware for framework installation and usage. Surprisingly, 44% of the frameworks
fail to mention the required software at all. Only 29% mentions all required soft-
ware with version numbers. Additionally, 7% offers a Virtual Machine (VM) or
docker image with everything already set up [38,65].

The absence of a VM or software version numbers presents significant chal-
lenges, mainly because many frameworks depend on a specific compiler, such as
LLVM. There are many breaking changes between LLVM majors and minors,
which increases the necessity for detailed dependency information. Further-
more, certain frameworks (e.g. [42]) also require patches to a specific version of
LLVM, meaning it needs to be compiled from the source. This in turn, requires
more information about dependencies needed.

Another evaluation criterion is exercisability, which for source code means that
the included programs can be run. Unfortunately, several frameworks could
not be compiled due to ambiguity and errors originating from the LLVM com-
piler [12, 39, 41–43, 48, 63]. The completeness criteria, as evaluated by ACM,
checks whether all relevant components are available. Some had missing sub-
modules in their repository [46, 49]. These difficulties led to only 30% of all
frameworks with an artifact offering enough instructions to compile the provided
examples without the help of the relevant authors. Ultimately, only the frame-
works of 22% of papers could be recreated (See Table 3.1). This highlights
the poor quality of software and science in the field of intermittent battery-free
frameworks.
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Chapter 4

Design Methodology

For us to address the research question, we first need to define further perform-
ance in the context of intermittent systems. One interpretation is the ability to
accomplish the maximum amount of work or code in the shortest possible time.
Ideally, an intermittent program should complete its execution as efficiently as
an program designed for a non-intermittent system. However, this is impossible
due to the time required for saving and restoring the state. Thus, performance
can be evaluated by assessing the overhead caused by the framework.

Another interpretation of performance in intermittent systems is the ability
to continue execution with the smallest capacitor or smallest maximum avail-
able energy. While related and correlated to the overhead interpretation, this
perspective also considers energy requirements from peripherals, placement of
checkpoints, and overhead of starting up the device. The smaller the energy
needed to progress forward, the higher the performance.

Crucially, both interpretations of performance require that the saving and stor-
ing of the state are executed correctly, which can be assessed through an auto-
matic memory restoration verification. To measure the overhead performance,
profiling functionality is introduced to the hardware debugger and implemen-
ted as a software test, as described in Section 4.1. Determining the minimum
energy performance is achieved through the minimum energy budget finder, as
described in Section 4.2.

As 74.4% of the frameworks are based on MSP430, support for the chipset
is crucial to debug and compare most frameworks, based on the papers found
in Chapter 3. Unfortunately, the existing debugger DIPS lacks support for this
chipset. Therefore, MSP430 support must be added to support 65% of all in-
termittent frameworks. MSP430 support will be discussed in Section 4.3.

We provide a complete overview of DIPS+ in Fig. 4.1. DIPS+ exists out of
three parts. The first part is the DIPS+ console which provides software tests.
It communicates through GDB protocol with the hardware debugger based on
a Black Magic Probe (BMP) [9]. The debugger also communicates with the
Energy Emulator and can debug the DUT. The Energy Emulator can emulate
the power for the DUT and can communicate with the DIPS+ console.

13
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Figure 4.1: Overview of DIPS+ platform features developed as part
of this thesis, in relation to existing debugger DIPS [19]; Light green
color denotes specific contributions on op of DIPS.

4.1 Profiler

Sometimes precise timing is required to measure the characteristics of a pro-
gram. This is especially the case when measuring the overheads of frameworks.
Using breakpoints and measuring time works well until a resolution is needed
which is higher than the duration of the breakpoint polling. For more accurate
timing, we introduce profile mode. A high-level overview of how profile mode
operates within the components of DIPS+ is given in Fig. 4.2. We use the pro-
filer mode to measure overhead as defined in Section 4.1.1.

The accuracy required for the profiler, of course, depends on the character-
istics to be measured. However, there is an upper limit to the useful accuracy.
It is determined by the clock speed of the DUT, as we are only interested in
the cycle count. As the MSP430’s CPU runs on only a maximum of 8 MHz and
Cortex-M0 below 120 MHz, it is not necessary to have an accuracy greater than
tclock cycle = 1/fcpu = 1/120MHz = 8.3ns. For maximum versatility, the profiler
should also be able to measure the complete runtime of benchmarks, which can
take multiple seconds.

The profiler requires direct control over the emulator. This is necessary as
it can automatise specific behaviour, such as measuring startup time after a
power outage. The DUT directly controls the timer through an IO pin to in-
dicate when the timer has to start and when to stop. Keeping track of time
is done inside the debugger rather than in the emulator or computer to min-
imise measurement latency. Also, basic statistics like the average of each timer
duration are recorded. The profiler can request the timer information from the
debugger for further analysis.

The DUT can execute some parts of its program while establishing the debug
connection after intermittency; see Section 5.3.4 for more details. If ignored,
this phenomenon could wrongly affect timing, as starting and stopping the timer
is unjustly called. To ensure that the debugger does not execute code before an
active debug connection, an IO pin lets the DUT know it can execute code.
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Figure 4.2: Overview of the interaction between the components used
by the automatic profiler of DIPS+.

4.1.1 Defining Overhead

Frameworks for intermittent devices inevitably cause overhead as the state of
the device needs to be stored to the NVM. The overhead is unevenly spread
throughout the time the DUT is powered. While turning on, computing, and
shutting off, the device encounters several phases with its own overhead, listed
below. However, not all frameworks encounter all types of overhead.

Boot time: The DUT boots by powering on the CPU and initialising re-
gisters. The precise time is random and varies depending on factors like device
temperature. The randomness is caused by the boot ROM in the MCU. It is,
however, independent of the framework used.

Startup Overhead (SUO): This is all the extra code that is executed setting
up and loading the framework. It starts from the first line of code until the first
line of code of the benchmark itself. This overhead can also vary depending on
the state of the device itself, i.e. a fresh boot might be faster as the DUT does
not need to restore memory. Moreover, this also includes the time waiting to
reach a restore voltage threshold.

Runtime Overhead (RTO): This is all the overhead that is present while
executing the benchmark. It includes the usage of FRAM instead of volatile
memory or hidden extra operations caused by the compiler. Additionally, all
the checkpoint or task switching done while executing the benchmark is counted
towards the runtime overhead.

Shutdown Overhead (SDO): For JIT frameworks, there is also a shutting
down overhead. This is the time the DUT uses to save their state.

Accurately knowing when SUO starts and SDO stops requires knowing at which
voltage the CPU turns off and on. This voltage differs per MCU and introduces
uncertainty. Furthermore, a part of SUO is waiting on a voltage threshold of
the power supply being exceeded to restore the state of the DUT. The different
voltage thresholds also can cause unfair comparisons of intermittent frameworks,
as the SUO depends on how quickly the voltage threshold is exceeded. To avoid
these uncertainties and unfair comparison associated with the transient voltages
of the power supply of the DUT, the energy emulator does not emulate a voltage
pattern usually experienced by battery-free systems. Instead of ramping and
slowly falling the power supply of the DUT, the power supply voltage pattern
is idealised with constant voltages. An example of this is given in Fig. 4.3b.
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Figure 4.3: Overhead with voltage pattern, below idealised voltage
pattern for profiling purposes. The idealised voltage pattern limits
the uncertainty associated with the precise start of Startup Overhead
(SUO) and end of Shutdown Overhead (SDO).

4.2 Minimum Energy Budget Finder

The minimum energy budget finder is a method to find the minimum energy
required for forward progress of the DUT. This test needs to control the level
of energy sent to the device through the emulator. An approximation is used
because the emulator cannot precisely measure the energy sent to the device.
The test itself needs to determine the amount of energy to achieve forward pro-
gress. To find the amount of energy, the minimum energy budget finder uses a
search algorithm, which will be explained in Section 4.2, to try different energy
budgets and search for the minimum energy budget to achieve forward progress.
As forward progress needs to be measured, breakpoints are set on key locations
at which the DUT’s saves and restores its state.
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Figure 4.4: Overview of the interaction between the components used
by the energy budget finder test.

The energy budget finder is a test inside the DIPS+ console on the computer,
which hosts multiple automated tests such as the profiler or memory restoration
test. The energy emulator can emulate approximately the amount of energy for
the DUT specified by the test inside DIPS+ console. How the energy is emulated
is discussed in Section 4.2.1. The debugger sets the appropriate breakpoints and
informs both the DIPS+ console and the emulator when a breakpoint is hit. An
overview of the interaction is given in Fig. 4.4.

4.2.1 Energy Approximation

To simulate an intermittent energy source, the simplest method is to turn the
power supply to the DUT on and off according to a predefined pattern. How-
ever, this approach only provides a rough approximation of the energy specified
by the automated test as it does not consider the current consumption of the
MCU. Consequently, devices with different power requirements, such as those
with multiple LEDs or none at all, would have the same on/off time. We can
use a sampled current to account for the different power usages and obtain
an approximated energy for the DUT to achieve forward progress. The rela-
tionship between the energy and the voltage and sampled current is defined as
E = u

∫
i(t)dt ≈ u

∑t
it, where E is the energy, u is the voltage, i(t) is the

continuous current and it is the sampled current. The energy approximation
calculation is performed for each period that the power supply to the DUT is
on. The highest energy budget needed by the DUT of all periods is chosen as
the final result, which is the minimum energy budget. It is important to note
that this approach assumes a constant voltage throughout the process.

The virtual capacitor, which is already present in DIPS [19], is a more advanced
energy approximation tool that runs inside the Energy Emulator. The virtual
capacitor simulates a physical capacitor by measuring the current and voltage
output and adjusting the output voltage to match the behaviour of a phys-
ical capacitor. The energy approximation of the virtual capacitor is defined
as E = 1

2C(V 2
thresH − V 2

threshL), where E is the energy, C is the capacitor of
the DUT, VthresL is the voltage threshold that is used to save the state of the
DUT and VthresH is the voltage threshold that is used to restore the state of
the DUT. By calculating the energy in a capacitor, it is clear that the capacit-
ance correlates directly with the energy. The relationship between capacitance
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and energy makes it possible to directly control the approximate energy sent to
DUT. By setting the input current parameter to zero of the Energy Emulator’s
virtual capacitor, we can instantly ”charge” the virtual capacitor by updating
the voltage to VthresH. By varying the capacitance, we can precisely control the
amount of energy being delivered to the DUT.

4.2.2 Search Algorithm

The search algorithm plays a crucial role in controlling the energy released by
the emulator and determining the minimum energy required for forward pro-
gress. When exceeding the value, it will always have forward progress as long
as it does not encounter any bugs. The search algorithm runs on the DIPS+
console, which sets the energy budget on the Energy Emulator of DIPS+. When
the energy budget runs out, the Energy Emulator resets automatically after a
short delay.

There are several challenges associated with selecting the right algorithm. One
significant challenge is the uneven distribution of checkpoints or varying task
durations, which may vary in energy requirements. Another limitation is that
DUTs cannot be reset easily to their default state due to the persistent nature
of the device. Moreover, a program does not always have a defined start and
end. Hence, the algorithm used inside the minimum energy budget finder must
always consider individual tasks instead of the whole program. This approach is
also much quicker as the whole program can have thousands of tasks that must
be executed.

Multiple algorithms are available to find the actual minimum energy budget:
sequential search, binary search, bisection method, or random search. To illus-
trate the limitations of these algorithms, all algorithms are discussed through
examples. In the examples, we have a task set with five tasks, t1 to t5, that
will be executed consecutively. All tasks except t4 take 10 J to complete, while
t4 requires 20 J. The energy budget is determined again after each attempt to
execute a task.

A sequential search starts with an energy budget of zero for the DUT and
increases linearly until a task of the DUT executes entirely. In the example, t1
will fail until the Energy Emulator’s energy budget set for the DUT is larger
than 10 J. As the energy is completely depleted, the Energy Emulator will reset
the energy budget to 10 J. After t1 is passed, t2 and t3 will also pass with the
energy budget being reset by the Energy Emulator. t4 will fail until the energy
budget is increased to 20 J. t5 will also pass as it only requires 10 J, which is
larger than the set Energy Budget. So the sequential search deals well with
varying task sizes, but it takes many attempts to figure out the minimum en-
ergy budget. The reason for the many attempts is that the sequential search
algorithm only increments the energy budget with the resolution of the energy
budget finder after each failed attempt to execute the task. If the resolution of
the energy budget finder is very high, e.g. 0.01 J, it can take quite a while to
forward progress.
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On the other hand, binary search takes a more efficient approach by dividing
the set of possible energy budgets that achieve forward progress in half at each
step. With an initial low and high energy budget, it calculates the midpoint. If
the task succeeds, the high energy budget is set to the current midpoint. If the
task fails, the low energy budget is updated. In our example, t1 might succeed
on the first try with 20 J. t2 will pass with 15 J. t3 will fail with 7.5 J and
then actually succeed with 11.25 J. t4 will never succeed because the solution is
removed from the search space. Hence, this highlights the need for an algorithm
that never excludes higher energy budgets. Another algorithm to find minimum
energy for the minimum energy budget is the bisection search. Similarly to the
binary search, bisection search also tries to reduce the solution space for higher
energy budgets. This makes it unsuitable as an algorithm to find the minimum
energy budget.

The last possible algorithm to find the minimum energy budget is the ran-
dom search, which tries random solutions. The problem is that it can mask
certain energy requirements. For example, both t1, t2, and t3 will pass the ran-
dom values 14 J, 15 J and 14 J. t4 will pass with the random value 22 J. Hence,
the algorithm will finish with the wrong conclusion that 14 J is the minimum
amount of energy.

Hence, a sequential search is used as it is the only suitable algorithm. This
algorithm needs some adjustments, as it is not feasible to determine the energy
budget after each executed task. The reason is that there might be some ran-
domness to the boot time. Hence, the DIPS+ Console checks if the time elapsed
exceeds the maximum task duration. If this is the case and no forward progress
has been made, the energy budget increases. When there is forward progress
for at least the minimum test duration, the algorithm finishes. An overview of
the algorithm is given in Algorithm 1.

4.3 Debugger

After establishing methods to measure both overhead and energy efficiency,
the next challenge was to ensure these methodologies could be applied to the
popular MSP430 MCU [58]. MSP430 support ranges from simply reading out
registers to debugging while in ultra-low power mode. To do this, we will try to
determine a debugger’s minimum viable requirements. Table 4.1 gives an over-
view of the necessary functionalities with the status of their implementation for
DIPS+. The architecture used to implement these features will be discussed in
Section 4.3.1

One key aspect of a debugger is to read out the current state of the DUT.
This requires the DUT to read registers and memory. As it could be beneficial
also to alter the state of the device, writing the registers and memory is neces-
sary. The CPU must be controlled to read the state of the DUT. Otherwise, the
device keeps changing its memory and registers constantly. Hence, halting and
resuming the CPU is a requirement. To halt and resume the CPU more pre-
cisely, functions such as breakpoints and step functionality are helpful. These
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Algorithm 1: Sequential minimum energy budget search algorithm.

Input:
Emin: Initial energy budget
tnow: Current time
E: Allowed remaining energy that the DUT can deplete
∆E: Energy depleted since the last time the variable is used
ttaskmax

: Defined maximum duration of a task
ttestmin : Minimum test duration

Output:
Ebudget: Energy budget

▷ All code is executed inside the DIPS+ debugger with two exception
Ebudget ← Emin

tcheckpoint = tnow
while true do

while E > 0 do
▷ The next line is executed inside the DIPS+ energy emulator

E = E −∆E
if checkpoint reached then

tcheckpoint = tnow
end

end
if E == 0 then

▷ The next line is executed inside the DIPS+ energy emulator
Delay
E ← Ebudget

end
if tcheckpoint > ttaskmax

then
Ebudget + +
ttimeout ← tnow

end
if ttimeout > ttestmin

then
exit

end

end
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Table 4.1: Necessary functionalities of MSP430 MCU [58] to be imple-
mented for a fully-operational hardware debugger.

Command
Attach/
detatch

Register
reads/writes

Memory
reads/writes

Halt/
resume

Break
points

Implemented Yes Yes Yes Yes Yes

Command Stepping
LPM1-
LPM4

Watchpoints LPMX.5

Implemented Yes Yes No No

functions map the instructions to the source code that the program is written
in. Functionalities like watchpoints are also helpful but can easily be replaced
by a breakpoint on multiple places. Hence, watchpoints are not implemented
here. One prerequisite of a debugger is that it can get the CPU in a state where
it can be debugged. This is done through attaching.

Multiple frameworks use the Low Power Mode (LPM) of MSP430, for example,
waiting for the power supply voltage of the DUT to exceed a certain threshold.
There are multiple low-power modes of MSP430 which turn off various compon-
ents on the MCU. It starts from LPM0, and with LPM1 to LPM5, the LPMs
gets progressively more energy efficient. LPM4 turns off the CPU and all clocks,
which means only external interrupts can wake the device up. Intermittent
frameworks often make use of LPM4 for waiting on a voltage threshold being
exceeded (e.g. [36, 52]); hence, it needs to be supported by DIPS+. LPMX.5
turns off the CPU, RAM, JTAG interface, and the Embedded Emulation Module
(EEM), which contains all the debug logic [58]. On wake-up, the CPU core is
reset completely, meaning the debug connection must be reestablished manually.
Hence, LPMX.5 is not supported, as the DUT will require a debug reconnection
to the DIPS+ hardware debugger.

4.3.1 Architecture of the Debugger of DIPS+

The traditional way of debugging a MSP430 is to use Code Composer Studio
(CCS), which makes use of a fork of GCC called MSP430-GCC [61]. CCS dir-
ectly interfaces with the Texas Instruments (TI) debug engine, which connects
to the MSPFET tool. The MSPFET tool, in turn, communicates with the DUT
through JTAG of Spy-By-Ware (SBW). However, a significant drawback of this
setup is the lack of compatibility with the feature-rich GDB client [27]. There is
an alternative method, luckily. When using open-source tools like mspdebug [17]
or MSP430GDBProxy [54], these tools act as intermediaries, converting GDB
commands from the client into inputs for the proprietary TI Debug Library.
This library, in turn, communicates with the MSPFET tool. However, the issue
with this approach is that the main debug logic is located inside the PC rather
than in the probe. This causes low-level and fine-grained operations, such as
reading a specific register, to be executed at the high-level debug tools on the
PC. Since the communications speed between the PC and probe is limited, it
hinders performance.
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Figure 4.5: Various approaches on how to implement debugging sup-
port for the MSP430. The right-most solution describes the imple-
mentation of DIPS+.

The implemented solution in this thesis is to have DIPS+ receive GDB com-
mands and talk directly to the DUT through SBW. The main benefit of this
method is that it is fast and unlocks the already-developed tests. An overview
of this approach and the approaches of the alternative solutions are given in
Fig. 4.5.

4.4 Testing Existing Frameworks

A framework cannot be directly tested using a debugger, as a framework is only
a foundational structure or template to build applications. It cannot be directly
compiled into an actual program that can run on a MCU. Rather, only applic-
ations can be tested with a debugger at run-time. An application can apply the
framework to deal with the intermittent nature. As the usage of applications
varies widely in the field of intermittent systems, it is beneficial to use generic
applications that represent a similar workload. Hence, benchmarks are used as
representative workloads to evaluate and describe the performance of a frame-
work. In order to compare results, it is important to normalise the results to
their non-instrumented counterparts.

A selection of benchmarks is required to compare existing frameworks designed
for intermittent systems. Among all found frameworks, 44 unique benchmarks
were found inside their corresponding paper. On average, each framework used
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three benchmarks to assess its capabilities. Important to note is that real-life
applications are excluded from this benchmark set. The reason is that they
often require specific peripherals, such as an e-ink screen, or specific capabilities
from the intermittent system, such as event/interrupt support.

Among the identified benchmarks, the top seven most popular ones, ranked
in descending order, are Rivest-Shamir-Adleman (RSA) (with a prevalence of
53%), Activity Recognition (AR) (50%), Cuckoo filtering (CF) (38%), Bitcount
(BC) (38%), Cold-chain Equipment Monitoring (CEM) (26%), Cyclic Redund-
ancy Check (CRC) (23%), and Blowfish (BF) (19%).

RSA, an encryption algorithm, uses a fixed key and fixed plain text to encrypt
data. It primarily uses modular exponential operations and modular multiplic-
ations. The algorithm is an older encryption algorithm that can be used by
battery-free devices to encrypt data. CF stores pseudo-random numbers and
then performs filtering the recover the sequence. This benchmark would be rep-
resentative of some signal-processing applications. BC benchmark focuses on
counting the number of set bits inside a random variable with seven different
algorithms One of the algorithms also covers recursion, which is not always sup-
ported for intermittent frameworks (e.g. [32]). The benchmark does not make
many memory calls (such as load and store operations) [30]. This makes it a
good benchmark to capture overhead from tasks/checkpoints, rather than vari-
ables that need to be stored or loaded to NVM. CEM stores and logs data from
a sensor or pseudo-random number generator. These values are also losslessly
compressed. CRC is an error-detection algorithm commonly used in data com-
munication BF is an encryption algorithm where a string and key are defined.
It is a secure encryption algorithm, which makes it possible that batter-free
devices will use it to encrypt data.

The combination of benchmarks is necessary as it is not known beforehand
what kind of problem the eventual application will solve. These benchmarks
cover 4 out of 6 application types [30]: automotive, industrial, network, secur-
ity, and telecommunication. Consumer and office applications, which focus on
text multimedia or multimedia, are not included. Hence, for the evaluation in
this thesis, the combination of RSA, CF, BC, CEM, CRC, andBF is used.
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Chapter 5

Implementation

In this chapter, we focus on the technical implementations of the ideas discussed
in Chapter 4. We first describe the profiler, followed by the minimum energy
budget finder, the challenges of porting and details about the testing procedure,
and finally the implementation of MSP430 for the support is discussed. We also
highlight the changes done to the recommended/reference code to increase the
performance of the debugger.

5.1 Profile Mode

The profile mode introduced in Section 4.1 needs an accurate timer in order
to measure overhead of frameworks. The DIPS+ debugger is based around
the STM32F103RET6 chip, which has multiple 16-bit timers and a maximum
clock speed of 72 MHz [53]. A 16-bit timer could have a maximum resolution
of 13.8 ns, with the longest interval being 910 µs. If the longest interval is 1 s,
the resolution would be 15.2 µs. Both options do not meet the design criteria
specified in Section 4.1. Hence, two 16-bit timers are used to obtain a resolution
of 910 µs and the longest interval of 59.6 s. The timers are coupled through a
gated mode, which means that one timer acts as the input of the next timer
(Fig. 5.1). Other approaches would introduce significant overhead, such as using
an interrupt to handle the overflow of the fastest timer and writing to a variable.
For approaches that use an interrupt to handle the overflow, the context needs
to be switched and interrupt handled every 59.2 µs.

Starting and stopping the timer is controlled by the DUT. The timer can be
directly controlled by the timer through three simple macros: TIMER START,
TIMER STOP, and PROFILE SET PIN DIR. An overview of all available mac-
ros is given in Table 5.1. The TIMER START and TIMER STOP macros work
by either setting or clearing an IO pin connected to the debugger. The debugger
registers these changes through an interrupt and starts or stops timer.

The achievable resolution in practice would be less than the theoretical max-
imum due to the latency in starting and stopping the timer, which is caused
by two factors. Firstly, the debugger must register and process the interrupt
caused by the IO pin. In an ideal case, this takes at least 12 cycles [66] and with
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Table 5.1: The overview of the C Macros to interact with DIPS+.

C API Description
PROFILE SET PIN DIR Configures the pins of the DUT
PROFILE WAIT UNTIL READY Wait until the debugger is connected
TIMER START Starts the profiler timer of the debugger
TIMER STOP Stops the profiler timer of the debugger

a clock speed of 72 MHz for the debugger, this takes at least 166 ns. However,
since the debugger’s code uses a Hardware Abstraction Layer (HAL) library and
does not do bare register operations, this is increased even further. The second
reason for the error in the profiler is the need to read out the current timer
register and write it to a variable. These extra instructions also take at least
13 ns each. As the timer needs to start and stop to register the time, one would
expect that the delays mentioned above are cancelled out.

To prevent the debugger from executing code before establishing a debugger
connection after intermittency, the DUT waits with PROFILE WAIT UNTIL-
READY macro. The macro continuously polls the IO pin that indicates that

the DUT is fully connected. Before the MSP430 debug connection is fully es-
tablished, the MCU reboots thrice. By default, the ready signal is given by the
debugger after the last reboot. The macro itself is placed after disabling the
watchdog and configuring the pins of the profiler.

5.2 Minimum Energy Budget Finder

The minimum energy budget finder directly controls the output voltage of the
emulator. Control of the output voltage of the emulator requires that the DIPS+
console can receive and interact with the emulator through the emulator’s pro-
tobuf [29] interface. Protobuf is a programming language-agnostic data serial-
isation format to transfer data between software systems. Using the protobuf
interface of the emulator, we can enable modes such as the virtual capacitor or a
square wave. The interface also allows the DIPS+ console to gather information
about the measured voltage and current outputted by the emulator.
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The debugger is not able to instantly connect to the device and set the rel-
evant breakpoints. The time spent at connecting and setting breakpoints is the
overhead of debugging. The emulator can ignore the overhead’s energy usage as
long as it knows exactly when the DUT can execute its program code. In order to
enable this functionality, we use the macro PROFILE WAIT UNTIL READY
of the profiler to prevent executing the code before actually being able to check if
breakpoints are reached. Otherwise, forward progress might be unjustly ignored.
The second, and optional, feature is the ability to let the DUT communicate
to the emulator through an IO pin. With this extra information, energy spent
while the DUT cannot execute code is ignored. This increases precision at the
cost of requiring code changes to the DUT.

5.3 Debugger

In DIPS+ MSP430 support is added to the open-source debugger BMP [9].
Since MSP430 uses an entirely different architecture, it is also essential to de-
scribe the differences and limitations of debugging.

To describe the changes needed for MSP430 support in DIPS+, it is useful to
shortly discuss the current architecture of BMP. The components of the debug-
ger can be split into four distinct components: main debug logic, device scan-
ner, Device Abstraction Layer (DAL), and Protocol Translation Layer (PTL)
(Fig. 5.2). The main debug logic parses GDB commands and manages all high-
level functionalities. This component can also search for DUTs through the
device scanner. It can also interact with the DAL through basic operations
such as writing registers or setting breakpoints. The scanning and device layer
sends device-specific instructions and data to the PTL. This layer transforms
the instructions into binary data and sends it at an appropriate speed to the
DUT. This layer also transforms the response of the DUT back and sends it to
the device scanner and DAL. To fully offer support of MSP430, major changes
are needed to the device scanner, DAL, and the PTL, which we describe below.

5.3.1 PTL: Protocol Translation Layer

The PTL converts device-specific instructions into a binary stream according
to a certain protocol. ARM uses either JTAG directly or Serial Wire Debug
(SWD) through a proprietary 10-pin connector. DIPS+ has a 10-pin connector
to connect to ARM devices easily. However, to add MSP430 support, the pro-
tocol SBW needs to be supported. As SBW only uses four pins and an adapter
is required (See Fig. 5.3).

Not only is an adapter needed, but actual support for the SBW is needed. The
implementation of this protocol is based on the specifications of TI [59] and a
reference application [56]. The specifications, however, mention a clockspeed
frequency of 18 MHz. Sending instructions at that clockspeed does not work
reliably as instructions are sporadically ignored or return inaccurate informa-
tion. When using a clock frequency of 500 kHz, as obtained from the reference
application, SBW works reliably.
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Figure 5.2: High level-overview of the components of the DIPS+ de-
bugger and the typical interactions that the components have with
each other. The components of the DIPS+ debugger are already
present in BMP [9], however, changes were applied to all compon-
ents to support MSP430.

5.3.2 DAL: Device Abstraction Layer

The DAL transforms requests from the main debug logic to device-specific in-
structions. Luckily, some reference code for simple operations exists, provided
by SBW specification [59] or the MSPDebugStack [62]. For more complex oper-
ations, such as settings breakpoints or halting the DUT, MSPDebugStack offers
less guidance as the codebase is very complex and poorly documented. It is
unclear when and how the TI Debug Engine calls which function precisely. By
reverse engineering the MSPFET, we were able to add DAL support for the
MSP430. The functionalities of the debugger can be split up into four parts:
basic connectivity, reading and writing memory and registers, continuing and
halting, and breakpoints. Each part is discussed separately.

Using the reference code [56], we were able to put the MCU in debug mode.
After successfully establishing the basic connectivity, the next step involved re-
writing functions for memory and register read/write operations. To ensure
accuracy and validate the functionality, traces of communication between the
probe and DUT were recorded and compared to a MSPFET with CCS. This
comparison enabled us to verify and adjust timing and delays within the func-
tions.

The resuming and halting capabilities were implemented once the essential read
and write functionalities functioned correctly. At this stage, the MSPDebug-
Stack becomes significantly less helpful. The MSPDebugStack streams specific
values and addresses from the TI Debug Engine during runtime. Such beha-
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viour is not visible at all using static code analysis alone. As a result, a lot
more needed to be reverse-engineered. To verify the functionality, the debug
connections underwent hot-swapping. Hot-swapping was done by starting the
debug process in MSPFET with CCS and moving the DUT in a specific state,
e.g. stopped in a breakpoint. Afterwards, the data lines of the MSPFET were
swapped to those of the DIPS+. This allows for easy verification of individual
functions.

The final and most challenging phase is implementing setting and clearing
breakpoints. The features are barely mentioned at all in the documentation.
For instance, the user manual spends only six pages describing the features that
complex EEM has [57]. The EEM controls all crucial topics related to the de-
bugger, such as breakpoints and clock control. One would expect much more
documentation on how to use it. Moreover, there is no information on how
to set the breakpoints. This required significant reverse-engineering by analys-
ing prerecorded traces of setting and removing breakpoints through CCS using
MSPFET.

During the validation of the breakpoints, an interesting quirk was found regard-
ing breakpoints and intermittency. When the GDB function break is called, a
breakpoint is not immediately set. Instead, the breakpoint is stored within the
debugger and the GDB client. It is only actually set after a continue command.
On a breakpoint or interrupt, all breakpoints are cleared from the memory of
the DUT. Additionally, setting a breakpoint on the exact address where the
program is currently halted is impossible. Otherwise, it might lead to race
conditions where DUT continuously halts on the same breakpoint without ex-
ecuting other code. Instead, GDB sets all other breakpoints, performs a step,
and then sets the remaining breakpoint (see Fig. 5.4 for a flowchart). However,
this process can fail if there is a power interrupt during the step, preventing
the remaining breakpoint from being set. On boot, DIPS+ only restores the
remaining checkpoints. Hence, the device must be halted to ensure that GDB
sets the breakpoints as expected.
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Figure 5.4: An overview of the interaction and the procedure of the
GDB client used in combination with an MSP430, called msp430-elf-
gdb, to set a breakpoint on a DUT.

5.3.3 Intermittency Support

As DIPS+ is a debugger for intermittent systems, it also needs specific support
for the intermittent behaviour of the MSP430 DUT. Luckily, the code for in-
termittency support is mainly inside the main debugging logic, which is mostly
platform-agnostic. Hence, adding intermittency support is trivial for MSP430,
besides a few bug fixes.

A significant difference between MSP430 and ARM is that ARM is always en-
tirely in control. That is, after intermittency occurs, the CPU of the ARM chip
will not execute any code of the application. This is unlike the MSP430, which
requires the connection to be reestablished manually. It sounds minor, but it
has a significant impact when used for profiling code.

5.3.4 DIPS+ Optimizations

The basic variant of the debugger of DIPS+ supports all features specified in
4.3. However, there is room for improvement as the (re)connecting the DUT to
DIPS+ takes around 1.2 s. Another bottleneck is the amount of code executed
while reconnecting the debugger to the DUT. Four changes, described below,
were performed to the debugger to increase performance.

Architecture awareness: The first change is to make the main debug logic
of DIPS+’s debugger architecture-aware. Doing a SWD scan for MSP430 and
vice versa makes no sense. This sped up the reconnecting process significantly.
The initial scan for DUTs still needs to do all kinds of scans, as the debugger is
unaware of which architecture is being attached.

Remove unnecessary functionality and support: Certain features of the
debugger are unnecessary and outside the debugger’s scope of normal operation,
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as defined in Section 4.3. One of those features is support for attaching to a
MSP430 in LPM5 mode. Another example is a backup method for connecting
the debugger to the DUT, where you can connect by sending a specific code
sequence called a magic pattern. Both these features are in the critical path for
reconnecting to the DUT and are time-consuming. By removing these features,
the reconnect time can be decreased significantly.
Adjust and shorten delays: Delays used in the reference code or spe-

cifications are sometimes quite long. The exact delays are now experimentally
determined to reduce connection overhead.
More precise control of emulator supply: Although not directly related

to the performance, errors were caused by letting the emulator know too late
that the device was inside a breakpoint. The previous approach waited before
detecting and fetching the state was finished, after which the debugger let the
emulator know it was inside a breakpoint. We improved this by letting the
emulator know as soon as possible.

5.4 Testing Existing Frameworks

Certain benchmarks we selected for the evaluation, such as CEM or BF, pose
specific challenges due to their requirement for large arrays or variables. On em-
bedded systems, like the MSP430, the RAM is limited and these benchmarks
exceed the available memory. Luckily, all frameworks extensively use the NVM.
Hence, it can be argued that the non-instrumented code also uses the NVM
for certain benchmarks. Important to note that the default approach is that
variables are placed inside the RAM until it does not fit anymore.

The experiments will be conducted at a clock frequency of 1 MHz, which allows
for a precise measurement of code duration compared to the default 8 MHz.
Furthermore, operating at this frequency eliminates the need for wait states in
the FRAM.

To test the frameworks that are compile-able, the frameworks need to be ap-
plied to each benchmark selected in Section 4.4. Luckily, some frameworks
have already applied their methods to a benchmark. For example, bitcount
did not need to be ported to any framework. However, BF must be ported to
InK, QuickRecall, AllocatedState, and ManagedState. Similarly, both RSA and
CEM needed to be ported to InK, QuickRecall, AllocatedState, and Managed-
State. The CF only needed to be ported to InK. Additionally, the benchmarks
must also need to have an uninstrumented version. As QuickRecall, Allocated-
State, and ManagedState are all JIT checkpointing frameworks, it is as easy as
copying uninstrumented code.
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Chapter 6

DIPS+ Evaluation

In this chapter, we evaluate the performance of DIPS+ and its associated auto-
mated tests. Instead of directly using a benchmark, our evaluation is centred
around a simple program. The pseudocode of this program is shown in Code 6.1.
The program boots inside main() with initialising the ports, enabling pins ne-
cessary for DIPS+. The program continues inside a while loop. Inside this
loop, the program will reach two dummy functions: restore and checkpoint.
The checkpoint and restore function toggle dedicated IO pins in order to be
able to analyse the behaviour with a logic analyzer. It also has a wait loop
where an IO pin called work is toggled continuously. This pin indicates that the
program is executing code. The logic analyzer is a Saleae Logic 8 [50].

6.1 Debugger

The basic functionalities are implemented and tested using the dummy program
(Code 6.1). By setting breaking points, stepping, reading registers etc., we
verified that all the functionalities, defined in Section 4.3, are working correctly.
The performance and effect of the changes defined in Section 5.3.4 are discussed
in section 6.1.1 and 6.1.2.

6.1.1 Connection Speed

As discussed in Section 5.3.3, the debugger does not always control the MSP430
MCU. The debugger must reestablish the connection each time the DUT ex-
periences intermittency. This connection process involves three main phases:
enabling JTAG access, getting the CPU under JTAG control, and disabling the
Memory Protection Unit (MPU). A reset is executed after each phase before
achieving full connection. During reestablishing the debug connection, it is im-
possible to halt the execution for breakpoints as they have not been set. This
means that user code or work is executed before being fully connected.

The amount of user code executed before achieving full control can be meas-
ured using a logic analyzer to analyze the work IO pin. The IO pin work is
described in Code 6.1. The actual connection time is measured from when the
power crosses the CPU-on threshold until full control is established, including
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Listing 6.1: Dummy program for DIPS+ evaluation

1 main ( ) {
2 i n i tP o r t s ( ) ; // I n i t a l i s e s the por t s and p ins used by DIPS+
3 enab l eA l lP ins ( ) ; // Sets a l l i n i t a l i s e d p ins to high
4 toggleBootPin ( ) ; // Toggle the IO pin a s s o i c a t ed with boot
5

6 whi le ( ) {
7 // Dummy func t i on that r e s t o r e s the s t a t e
8 r e s t o r e ( ) ;
9

10 f o r ( i n t i = 0 ; i< 1000 ; i++){
11 delay ( ) ;
12

13 // Toggle the IO pin a s s o i c a t ed with work
14 toggleWorkPin ( ) ;
15 }
16

17 // Dummy func t i on that saves the s t a t e
18 checkpo int ( ) ;
19 }
20 }

the final toggle of the IO boot pin. Before implementing the proposed changes
suggested in Section 5.3.4, reconnecting took nearly 1200 ms with DIPS before
being halted and achieving complete control. Additionally, almost over 1000
ms of code execution occurred before the debugger was connected fully. This
defeats the purpose of the intermittent debugger, as most code can be executed
before being connected.

Our changes reduced the connection time to under 175 ms, which is 11 times
faster than the DIPS+ without the improvements to the debugger. How-
ever, this is around a factor of 2 slower than the reconnection time that DIPS
achieved for ARM chips [33]. Notably, there is no difference in connection time
between initial connections and reconnections for the MSP430, making the pro-
cess quicker for initial connections. Using the logic analyzer on the work IO
pin of the dummy program, it is determined that 7.6 ms of user code is per-
formed before being fully connected. Even though 157 times less user code
is executed, it cannot be reduced any further as it is a limitation of the MSP
framework.

6.1.2 Control of the Emulator

In our design, the debugger informs the emulator when the code of the DUT is
not executed. There are three types of non-executing code: initial connection,
reestablishing the connection, and during a breakpoint. To quantify the effect-
iveness of the changes proposed in Section 5.3.4, we compare DIPS+ with and
without the changes.

During the connection and reestablishing the connection phase, the debugger
connects to the DUT and by the DUT actually executes user code until the con-
nection process is fully finished. For initial connects, no optimisation is done
and it does not relay to the emulator that code is not executed. The reason is
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that it simply is irrelevant, as connecting to a DUT is a prerequisite to start an
automated test in the console. The reconnection time is, however, necessary as
ignoring it would give an inaccuracy of 157 µs in the duration that the DUT is
performing program code after each power outage. For example, this inaccuracy
causes the minimum energy budget finder to always overestimate the required
minimum energy to maintain forward progress. With adjustments in the DAL,
the debugger can now detect and relay in 8.0 ms that the debugger is reestab-
lishing the connection, which is 18 times faster compared to DIPS+ without
the improvements to the debugger.

Accurately determining when the DUT is inside a breakpoint requires: detect-
ing when the DUT leaves the breakpoint and when it encounters a breakpoint.
As the debugger instructs to DUT to leave the breakpoint and the device will
continue instantly after the command, the breakpoint exit can be detected and
relayed to the emulator within 4.2 µs. Detecting and relaying the encounter of
a breakpoint is slower as the debugger has to poll the DUT whether there is
a breakpoint. With the default debugger implementation, it takes around on
average 10.7 ms to relay that the DUT is halted. By increasing the interval
between polls of the debugger to the DUT, it takes on average 2.1 ms to relay
a breakpoint to the emulator. This is 4 times faster compared to DIPS+
without the improvements to the debugger. This reduction becomes even more
significant when considering that the step function, called after each GDB con-
tinue command when there are multiple breakpoints, is also just a breakpoint
with the breakpoint address being on the next line. Increasing the breakpoint
polling interval is unfortunately impossible with the current clock frequency
used by SBW, as the interval cannot be shorter than the polling instruction. A
higher breakpoint could be possible by using a different SBW clock speed for
that specific operation, reducing the duration of the polling instructions.

6.2 Profiling

Profiling can measure the time of the DUT’s program fragments. This should
happen as accurately as possible. Rather than measuring the overhead of the
dummy program, the delay time is measured inside the program. This is done by
adding the relevant macros inside the dummy program around the delay func-
tion. By measuring the communication pin between the debugger and DUT,
the logic analyser can measure with an accuracy of 4 ns [50].

The mean average error between the logic analyser and DIPS+ is around 113 ns.
Hence, the theoretical accuracy calculated in Section 5.1 is far from achieved.
When 95% accuracy is required, the accuracy is around 2.26 µs. This is still 928
times more accurate than without the profile mode. This accuracy represents
around 18 instructions on the MSP430 and 162 instructions on the ARM cortex
M0, assuming one cycle per instruction.

The profile mode also enables faster communication of the device being in-
side a breakpoint to the emulator. The time that the debugger, with imple-
mented changes, takes to relay a breakpoint hit takes on average 2.1 ms (See
Section 6.1.2). With the profile mode, the relay delay is only 1.6 µs as it is not
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polling-based anymore. This is 1311 times faster than using the regular mode
on DIPS+. While using the profile mode does not affect the connection time,
no new code is executed until the connection is fully established, as expected.

It is important to consider the impact of the profiling macros on the performance
of the DUT. To assess the impact of these macros, IO pins are toggled before
and after each individual macro, and the time between these toggles is measured
using a logic analyzer. The results are both 3321 ns for TIMER START as well
as for TIMER STOP. In reality, the overhead will be even lower because IO pins
used for measuring are not set atomically. Nevertheless, this concludes that the
profile macros’ overhead is insignificant in a realistic application/program.

6.3 Minimum Energy Budget Finder

The minimum energy budget finder is a tool to find the minimum energy budget,
regardless of how the tasks are ordered or how much energy they require. It can
operate in regular mode or, with code changes of the DUT, in profile mode.

The accuracy of the minimum energy budget finder with the sampled current
energy approximation, defined in Section 4.2.1, can be determined by letting
the tool find a known duration task. This known duration task can be specified
in the dummy Code 6.1. This is done for small tasks of 15 ms to larger task
to 1000 ms. As the impact of an error increases as the task duration becomes
smaller, it makes sense to talk about the relative error. This normalises the
error according to the true pre-programmed task size.

The energy budget finder in regular mode shows a relative error below 5%
for task durations of 250 ms to 1000 ms (Fig. 6.1). The relative error rises rap-
idly when the task duration is smaller than 60 ms. For 10 ms, the relative error
even approaches 50%. A task of 64 µs seems to be more accurate than a task
of 124 µs. The difference in relative error could be attributed to a small outlier
measurement. The effect of the outlier measurement is enlarged as the task
duration is smaller; hence, the relative error increases.

The profile mode of the energy budget finder reduces the relative error sig-
nificantly (Fig. 6.1). For the same range of task durations, the relative error is
halved. The sub-5% relative error can be achieved for five times smaller tasks
than the regular mode. However, the same trend occurs where the relative error
increases as the task duration becomes shorter. For a task of 10 ms, the relative
error is 24%.

Diving deeper into the sources of these errors, the DUT and measuring cir-
cuit acts like a capacitor. Additionally, the voltage signals of the debugger
signals charge the device. These phenomenons require that the emulator fully
charges and discharges the DUT before the CPU turns on or off. This affects
the timing of the emulator and minimum energy budget finder. The source of
this error can be primarily explained by the lack of IO pin’s driving power.
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Figure 6.1: Relative error in measuring the minimum energy budget
for a range of task durations. The energy approximation used by the
minimum energy budget finder is the sampled current approximation
as described in Section 4.2.1. Both the regular and profile mode are
used.
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Chapter 7

Evaluation of Frameworks
for Intermittently-Powered
Systems Using DIPS+

In Section 3.2, we state that most frameworks developed in literature are not rep-
licable. From those that were re-plicable, we selected the following frameworks
for further evaluation: Alpaca [42], Chain [12], Dino [41], Ink [64], QuickRe-
call [36], AllocatedState [52], ManagedState [52]. Using the benchmarks chosen
in Section 4.4, the three categories of overhead, as defined in Section 4.1, are
measured. These measurements give an indication of the efficiency of the frame-
work.

7.1 Performance Measurement Using DIPS+

7.1.1 Runtime Overhead

Below are the RTOs of each benchmark discussed and analysed. Suppose a
paper of a framework mentioned a framework with either a normalised RTO
or the execution time of the framework combined with an absolute time of the
uninstrumented code. In that case, it is included in the analysis. Unfortunately,
the relative comparisons of frameworks to only the performance of other frame-
works, often mentioned in intermittent papers as stated in Section 1.1, cannot
be used in the analysis.

Bitcount: The RTO causes that BC takes around 1.5 to 11 times longer than
the instrumented code (Fig. 7.1a). It is clear that JIT frameworks perform sig-
nificantly better as the overhead is limited to 1.05 and 2 times longer compared
to the uninstrumented code. The reason there is any overhead, even though
the frameworks only execute code, is explained by the fact that every variable
is stored in FRAM. This is fast but not as fast as the volatile memory inside
the CPU. The difference between QuickRecall and ManagedState or Allocated-
State cannot be explained. For task-based systems, InK performs the best but
is closely followed by Dino and Alpaca. Chain takes almost ten times as much
as the uninstrumented code.
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The findings of Alpaca, Chain and Dino line up with the RTO mentioned in the
paper of Alpaca [42]. However, the measured overhead is consistently slightly
larger for all benchmarks than the mentioned overhead. This could be explained
by the fact that the paper of Alpaca uses an internal timer of the MSP430 DUT,
which is less accurate than the timer used by the profiler of DIPS+. Moreover,
when the internal timer of DUT overflows, an interrupt routine resets the timer
and increments an overflow variable. Handling this interrupt and writing the
overflow variable does not happen instantly and can cause inaccuracies in meas-
uring the RTO.

Blowfish: The RTO of BF benchmark causes the runtime takes around 30%
to 11052% times longer (Fig. 7.1b). Surprisingly, Alpaca is the most efficient
algorithm, even though it is a task-based system. One reason is that alpaca
might very efficiently select which variables are placed inside the FRAM and
which ones are not. This is more efficiently done than the uninstrumented code.
The JIT frameworks share second place at a 50% increase in runtime. Chain
takes 110 times (!) longer to complete than the uninstrumented code. That
Chains’ overhead is larger than Dino or Alpaca is also mentioned in the paper
of Alpaca [42]; however, the measured overhead is ten times larger than the men-
tioned overhead. This discrepancy between the measured result and the result of
Alpacas’ paper [42] for Chain cannot be explained and requires further research.

CEM: Frameworks take between 3% and 8000% longer for the CEM bench-
mark. JIT systems have a very little RTO. AllocatedState and ManagedState
are the most efficient as they only take .8% longer, as opposed to the 1.6% for
QuickRecall. The high efficiency can be explained by the fact that the dictionary
variable, which is often called, is also stored in FRAM for the uninstrumented
version. Again, Alpaca scores the best of the task-based systems with an in-
crease of 600%. Other frameworks take around 20-87 times longer than the
instrumented code. Dino has a measured overhead roughly twice the size of the
mentioned overhead of Dino in the Alpaca paper [42].

Cuckoo: The impact of RTO is that it takes between 3% and 1264% when
testing on the CF benchmark. Even though the uninstrumented code does not
store any variables in the FRAM, it got similar performance for the JIT frame-
works. Hence, FRAM usages cannot explain this difference. The task-based
frameworks show a similar trend to those of CEM: Alpaca is the most efficient,
and other implementations take around 23 to 87 times longer than the unin-
strumented version.

RSA: The effect of RTO causes the RSA benchmark to be around 8% to 2323%
slower executed for frameworks compared to the uninstrumented counterpart.
JIT based systems take around 8% longer. This is in line with the other bench-
marks where the uninstrumented code uses FRAM. Alpaca and Ink are quite
efficient for a task-based system with just 60%-100% overhead. Other systems
take around 7 to 20 times longer. The measured overhead of QuickRecall is
roughly the same as the overhead mentioned in the paper of QuickRecall [36].
Furthermore, the findings of Alpaca, Chain and Dino line up with the RTO
mentioned in the paper of Alpaca [42].
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7.1.2 Startup Overhead and Shutdown Overhead

The startup varies widely, from an average from 102 µs to an average from 500 µs
(Fig. 7.2a). The trend is that task-based systems are more efficient than JIT
frameworks. A notable exception is InK, which takes the longest startup time.
This can be explained by the fact that InK has a complex scheduler that even
supports threads. Of the JIT frameworks, the order of shortest SUO is Quick-
Recall, AllocatedState, and ManagedState.

SDO is not applicable for non-JIT systems as the state saving is periodic and
not coupled to a voltage interrupt. When it is not zero, the SDO varies between
120 and 1900 µs (Fig. 7.2b). QuickRecall is the most efficient as it just stores
the register values of the CPU. AllocatedState and ManagedState take longer
as they not only store the register values but rather also save various snapshots
of the stack and metadata. Notably, the SDO is consistent for the selected
benchmarks.
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Figure 7.1: Normalised run-time overhead measured with DIPS+ for the chosen frameworks for the selected
benchmarks. The results are compared with the claims of the Alpaca paper [42] and QuickRecall paper [36].
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(a) Startup Overhead for each selected intermittent frame-
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(b) Shutdown Overhead for each selected intermittent frame-
work.

Figure 7.2: Startup Overhead and Shutdown Overhead for the chosen
frameworks aggregated over all selected benchmarks.
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7.2 Stability of Frameworks

One bug that was found during the evaluation is highlighted in this section. In
other frameworks, no bugs were found with the selected benchmarks defined in
Section 4.4. The found bug can only be replicated automatically using DIPS+
as the DUT needs to experience a power outage multiple times at the right
time, as explained below. Finding the bug cannot be done with DIPS [19] as it
does not support MSP430. It cannot be replicated with only EDB [11] as that
debugger cannot trigger a power outage.

While profiling the SUO of InK during CF, the bug was found. The bench-
mark did not finish multiple times and required a reflash of the firmware before
the benchmark could work again as expected. To understand the bug, first,
the program needs to be described. The CF has various tasks and steps. Of-
ten, a hardcoded task is returned to specify the next tasks. Two tasks have an
exception to this: task generate key and task calc indexes. The next task is de-
termined through the variable v next task, which is set in a previous task. We
can see which functions call those shared tasks and what they set their next task
variable to. However, if the device reboots every second time a task has been
executed but not committed yet, the next task variable is not updated even
though the task continues. This invalidates the result of the Cuckoo filtering
and moreover points to a bug in the kernel of InK with regards to storing the
state of the DUT.

A possible kernel bug of InK would mean that other applications can be af-
fected. However, it is only apparent for CF that the v next task variable is
used to select the next task. As this variable is corrupted or stored incorrectly,
the CF program will be in an endless loop. The other selected frameworks do
not have such a variable that causes the DUT to end up in an infinite loop.
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Chapter 8

Discussion and Future
Work

One of the significant findings of this research is the substantial overhead en-
countered in Runtime Overhead (RTO) and task-based systems. With the large
RTO of task-based systems, it seems unlikely they will become ever more effi-
cient than Just-In-Time (JIT) systems. The large Shutdown Overhead (SDO)
and Startup Overhead (SUO) of the JIT systems show that they are not useful
for short bursts of energy. These findings have significant implications for the
development and usage of these battery-free systems.

As we consider the future trajectory of this research, four main areas of fo-
cus emerge:
Quality of Software: A significant limitation encountered is the poor state of
software for battery-free systems, as illustrated by the artifact survey. This lim-
itation, which caused substantial difficulties in compiling and using the frame-
works, suggests a pressing need for better maintenance and user support in soft-
ware repositories within this field. It is beneficial if publishers, such as ACM,
require software artifacts for each paper. For these artifacts, the guidelines for
documentation should be more stringent. A specific check for dependency doc-
umentation would ensure that the result is reproducible. At the same time,
a review of usage documentation would ensure that the work can be used for
further research and real-life applications.

Debugger Improvements: Although the MSP430 support of DIPS+ is
improved, it can be further optimised. One main bottleneck is the relatively
low clock speed that drives Spy-By-Ware (SBW). With more research, it could
be determined if instructions can be safely performed with a higher frequency.
Improve Emulator Performance: Currently, the minimum energy budget

detection is only reliable from 10 us. The main reason for this limitation is the
capacitance in the measuring setup. The accuracy can be significantly improved
with a higher IO pin driving strength. This will allow more applications to be
tested and even benchmarks directly.
Testing Real-world Applications: Benchmarks are only a representat-

ive workload and hence can only be used as an indication. Evaluating actual
intermittent applications would give more valuable insights.
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Chapter 9

Conclusions

This research addresses the absence of uniform testing tools and the lack of
a broad and honest evaluation of the performance of battery-free frameworks.
Existing debuggers are also limited by their design to specific architectures and
do not support the most commonly used platforms. To achieve this, we op-
timised and extended the platform support of the existing debugger DIPS [19].
Moreover, an automated hardware test was developed to find the minimum
energy budget to have forward progress. Finally, the performance of selected
frameworks is analysed and compared.

The changes to the debugger allow for a significantly better performance by
connecting 11 times faster while executing 157 times less code on the
Device Under Test (DUT) before being fully connected. Using profile mode, we
can detect a breakpoint 928 times faster.

The evaluation of the frameworks showed, in addition to one bug in a frame-
work, an enormous overhead. The RTO causes task-based frameworks for cer-
tain frameworks and benchmarks to take up to 110 times longer to execute
compared to their uninstrumented counterpart. For JIT-based systems, have
the SDO and SUO more impact than RTO.

Overall, this research has shed new light on the performance of intermittent,
battery-free frameworks, while also suggesting that comprehensive run-time ana-
lysis can evaluate the performance and reliability.

47



48



Bibliography

[1] ACM. https://www-acm-org.tudelft.idm.oclc.org/publications/

policies/artifact-review-and-badging-current, 2020. Last accessed:
June 29, 2023.

[2] Mikhail Afanasov, Naveed Anwar Bhatti, Dennis Campagna, Giacomo
Caslini, Fabio Massimo Centonze, Koustabh Dolui, Andrea Maioli, Erica
Barone, Muhammad Hamad Alizai, Junaid Haroon Siddiqui, and Luca
Mottola. Battery-less zero-maintenance embedded sensing at the mith-
ræum of circus maximus. In Proceedings of the 18th Conference on Embed-
ded Networked Sensor Systems. ACM, November 2020.

[3] Saad Ahmed, Naveed Anwar Bhatti, Muhammad Hamad Alizai, Jun-
aid Haroon Siddiqui, and Luca Mottola. Efficient intermittent comput-
ing with differential checkpointing. In Proceedings of the 20th ACM SIG-
PLAN/SIGBED International Conference on Languages, Compilers, and
Tools for Embedded Systems. ACM, June 2019.

[4] Khakim Akhunov and Kasim Sinan Yildirim. AdaMICA. Proceedings of
the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies,
6(3):1–30, September 2022.

[5] Abu Bakar, Alexander G. Ross, Kasim Sinan Yildirim, and Josiah Hester.
REHASH. Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies, 5(3):1–42, September 2021.

[6] Domenico Balsamo, Alex S. Weddell, Anup Das, Alberto Rodriguez Arre-
ola, Davide Brunelli, Bashir M. Al-Hashimi, Geoff V. Merrett, and Luca
Benini. Hibernus: A self-calibrating and adaptive system for transiently-
powered embedded devices. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 35(12):1968–1980, 2016.

[7] Gautier Berthou, Tristan Delizy, Kevin Marquet, Tanguy Risset, and Guil-
laume Salagnac. Peripheral state persistence for transiently-powered sys-
tems. In 2017 Global Internet of Things Summit (GIoTS). IEEE, June
2017.

[8] Naveed Anwar Bhatti and Luca Mottola. HarvOS. In Proceedings of the
16th ACM/IEEE International Conference on Information Processing in
Sensor Networks. ACM, April 2017.

[9] Black Magic. Black magic debug: The plugplay mcu debugger. https:

//black-magic.org/, 2023. Last accessed: Aug. 21, 2023.

49

https://www-acm-org.tudelft.idm.oclc.org/publications/policies/artifact-review-and-badging-current
https://www-acm-org.tudelft.idm.oclc.org/publications/policies/artifact-review-and-badging-current
https://black-magic.org/
https://black-magic.org/


[10] Michael Buettner, Benjamin Greenstein, and David Wetherall. Dewdrop:
An Energy-Aware runtime for computational RFID. In 8th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 11), Bo-
ston, MA, March 2011. USENIX Association.

[11] Alexei Colin, Graham Harvey, Alanson P. Sample, and Brandon Lucia. An
energy-aware debugger for intermittently powered systems. IEEE Micro,
37(3):116–125, 2017.

[12] Alexei Colin and Brandon Lucia. Chain: tasks and channels for reliable
intermittent programs. In Proceedings of the 2016 ACM SIGPLAN Interna-
tional Conference on Object-Oriented Programming, Systems, Languages,
and Applications. ACM, October 2016.

[13] Alexei Colin and Brandon Lucia. Termination checking and task decom-
position for task-based intermittent programs. In Proceedings of the 27th
International Conference on Compiler Construction. ACM, February 2018.

[14] European Comission Cordis. https://cordis.europa.eu/article/id/

430457-up-to-78-million-batteries-will-be-discarded-daily-

by-2025-researchers-warn, 2021. Last accessed: June 29, 2023.

[15] Tuan Dang, Trung Tran, Khang Nguyen, Tien Pham, Nhat Pham, Tam Vu,
and Phuc Nguyen. ioTree. In Proceedings of the 28th Annual International
Conference on Mobile Computing And Networking. ACM, October 2022.

[16] Tuan Dang, Trung Tran, Khang Nguyen, Tien Pham, Nhat Pham, Tam
Vu, and Phuc Nguyen. Iotree: A battery-free wearable system with biocom-
patible sensors for continuous tree health monitoring. In Proceedings of the
28th Annual International Conference on Mobile Computing And Network-
ing, MobiCom ’22, page 769–771, New York, NY, USA, 2022. ACM.

[17] Daniel Beer. Mspdebug. https://github.com/dlbeer/mspdebug, 2022.
Last accessed: Jul. 8, 2023.

[18] Jasper de Winkel, Carlo Delle Donne, Kasim Sinan Yildirim, Przemys law
Pawe lczak, and Josiah Hester. Reliable timekeeping for intermittent com-
puting. In Proceedings of the Twenty-Fifth International Conference on
Architectural Support for Programming Languages and Operating Systems.
ACM, March 2020.

[19] Jasper de Winkel, Tom Hoefnagel, Boris Blokland, and Przemys law
Pawe lczak. Dips: Debug intermittently-powered systems like any embed-
ded system. In Proceedings of the 20th ACM Conference on Embedded Net-
worked Sensor Systems, SenSys ’22, page 222–235, New York, NY, USA,
2023. ACM.

[20] Jasper de Winkel, Vito Kortbeek, Josiah Hester, and Przemys law
Pawe lczak. Battery-free game boy. Proceedings of the ACM on Interactive,
Mobile, Wearable and Ubiquitous Technologies, 4(3), sep 2020.

[21] Jasper de Winkel, Vito Kortbeek, Josiah Hester, and Przemys law
Pawe lczak. Battery-free game boy. Proceedings of the ACM on Interactive,
Mobile, Wearable and Ubiquitous Technologies, 4(3):1–34, September 2020.

50

https://cordis.europa.eu/article/id/430457-up-to-78-million-batteries-will-be-discarded-daily-by-2025-researchers-warn
https://cordis.europa.eu/article/id/430457-up-to-78-million-batteries-will-be-discarded-daily-by-2025-researchers-warn
https://cordis.europa.eu/article/id/430457-up-to-78-million-batteries-will-be-discarded-daily-by-2025-researchers-warn
https://github.com/dlbeer/mspdebug


[22] Jasper de Winkel, Haozhe Tang, and Przemys law Pawe lczak.
Intermittently-powered bluetooth that works. In Proceedings of the
20th Annual International Conference on Mobile Systems, Applications
and Services, MobiSys ’22, page 287–301, New York, NY, USA, 2022.
ACM.

[23] Jasper de Winkel, Haozhe Tang, and Przemys law Pawe lczak.
Intermittently-powered bluetooth that works. In Proceedings of the
20th Annual International Conference on Mobile Systems, Applications
and Services. ACM, June 2022.

[24] Ericsson. Ericsson Mobility Report. Technical report, Ericsson, November
2022.

[25] Joakim Eriksson, Fredrik Østerlind, Niclas Finne, Nicolas Tsiftes, Adam
Dunkels, Thiemo Voigt, Robert Sauter, and Pedro Josê Marrôn. Cooja/m-
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