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Modeling the surface topography 
dependence of friction, adhesion, 
and contact compliance
Martin H. Müser*  and Lucia Nicola

The small-scale topography of surfaces critically affects the contact area of solids and thus 
the forces acting between them. Although this has long been known, only recent advances 
made it possible to reliably model interfacial forces and related quantities for surfaces with 
multiscale roughness. This article sketches both recent and traditional approaches to their 
mechanics, while addressing the relevance of nonlinearity and nonlocality arising in soft- and 
hard-matter contacts.
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Introduction
In his pioneering work on kinetic friction between solids, 
 Coulomb1 argued that its physical cause must originate from 
either the interlocking (l’engrenage) of asperities—which 
can only be released through deformation, rupture, or by the 
raising of some summits over others—or by the coherence 
that interfacial molecules adopt due to their proximity and 
therefore needs to be overcome to produce motion. Coulomb’s 
assessment certainly contains the most information in the few-
est words on the microscopic processes occurring in tribologi-
cal contacts and largely summarizes how friction mechanisms 
are still categorized.2 However, it cannot be used to quantify 
interfacial forces, not even to predict trends such as whether 
roughness increases or decreases friction. More roughness 
generally leads to more plastic and viscoelastic deforma-
tion and thus to more energy loss, but it can also reduce the 
contact area and adhesive or capillary forces, which lowers 
friction. A qualitative picture cannot explain either why the 
three empirical solid friction laws are so frequently observed 
and what causes their breakdown when they fail. According 
to them, solid friction is approximately (1) proportional to 
load, but (2) independent of the apparent contact area and 
kinetic friction is less than static friction, but otherwise (3) 

independent of velocity.3 The simplicity of these laws, which 
can be augmented with the Archard–Reyes Law of wear stat-
ing that the volume of removed debris is proportional to the 
work done by friction,4 should not be taken as a sign that there 
are universal reasons for their validity or their breakdown. 
Nonetheless, it turns out that the surface topography of the 
bodies in contact and their change with load and sliding are 
indeed crucial. Hence, a proper characterization of surface 
topographies is essential;5 see also the recently posed surface 
topography challenge.6

The (average) height spectrum of many freestanding sur-
faces,7–9 in particular those obtained after fracture or sand-
blasting,10 can be cast as

where C(q) is the absolute square of the Fourier transform 
h̃(q) of the surface height, q is a wave vector, q its magnitude, 
and qr is the so-called roll-off wave vector. H is called the 
Hurst exponent. It generally lies between zero and one, usu-
ally H � 1 . At very large q, C(q) must be cut off, ultimately 
because nature truncates roughness at the atomic scale. The 
approximate power-law dependence of the height spectra for 

1C(q) ∝
{

1+ (q/qr)
2
}−1−H
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qr � q < qatomic makes the surface topography self-similar 
on small length scales. Surface profiles then look statistically 
similar to the eye when rescaling the height with a magnifying 
factor ζ 1/H  when in-plane coordinates are magnified with ζ , 
as shown in Figure 1. In real space, the squared height devia-
tion from a given point r increases with increasing distance 
according to �{h(r)− h(r +�r)}2� ∝ �r

2H  . A process closely 
related to randomly rough surfaces is the random walk lead-
ing to Fick’s diffusion, which can be described with a Hurst 
exponent of H = 0.5.

It is rather straightforward to exploit the mathematical 
description of self-similar surfaces in models describing their 
contact mechanics. This has been achieved with great success 
for linearly elastic, nonadhesive bodies. However, systematic 
extensions to topographies not obeying the random-phase 
approximation remain scarce. Likewise, attempts to account 
rigorously for nonlinearity and nonlocality as they arise due to 
plastic deformation of nominally flat surfaces or the coupling 
between viscoelasticity and adhesion are rather new. Some 
of the recent developments will be detailed in the following 
sections after a brief review of the state of the art of contact 
models and their limitations.

Rough contact models and their limitations
Greenwood and Williamson (GW)13 pioneered the attempts 
to account for the effect that microscopic random roughness 
has on the mechanics of nominally flat surfaces. Their model 
assumes asperities to have a given radius of curvature and a 
Gaussian height distribution and, most critically, to act inde-
pendently of each other. Once an asperity touches a (rigid) 
counterface, it deforms according to single-asperity character-
istics (e.g., Hertzian contact mechanics in the original elastic 
GW model, but later modifications included  adhesion14 and 
perfect  plasticity15). The respective laws are then used to relate 
the deformation of the asperity, the force acting on it, and its 
true contact area with the counterface.

An intriguing prediction of many GW-inspired “bearing-
area models” when applied to random, nonadhesive surfaces 
is that their real contact area often turns out to be (quasi) lin-
ear in the load L at small ratios of true and nominal contact 
areas, ar = A/A0 , irrespective of the local asperity law (elastic 

or elastic-perfectly plastic) so that the mean pressure in true 
contact, pc = L/A , is approximately constant. Despite their 
generic failures, which will be touched upon further below, 
rigorous simulations of rough, elastoplastic, and nonadhesive 
contacts using J2 plasticity,16 as well as dislocation dynamics 
simulations,17 confirm that A is linear in L at small ar . Cor-
rections are at most logarithmic in L, as long as the true con-
tact contains a statistically significant number of microscopic 
contact patches.

Assuming the local interfacial shear stress τs to increase 
linearly with local pressure p squeezing two surfaces against 
each other,

leads to Amonton’s Law (i.e., to the linearity between the fric-
tion force F = τsA and normal load L). Here, τ0 and α are 
system-dependent parameters, in addition to the proportional-
ity factor linking A and L. Thus, under the given assumption, 
the friction coefficient µ ≡ F/L assumes a constant value of

at small ar , where pc is the load-insensitive ratio of load and 
true contact area.

To what extent Equation 2 is reasonably accurate or highly 
flawed certainly depends on the system of interest. The behav-
ior of simple boundary lubricants (i.e., very thin layers of 
lubricants), keeping hard surfaces from intimate mechanical 
contact turns out to be consistent with Equation 2, as can be 
seen from simulations of generic bead-spring polymers con-
fined between atomically smooth  surfaces18 or from experi-
ments of single-asperity contacts, in which the adhesion 
between two curved mica surfaces is screened through the 
use of appropriate electrolytes.19

In these cases, τ0 can be loosely associated with an adhe-
sive (offset) stress and α can be given a geometric interpreta-
tion in terms of hard-sphere interactions. However, Bowden 
and Tabor’s3 original use of Equation 2 in their attempt to 
rationalize friction coefficients for metal-on-metal contacts 
may be too simplistic.20 They related τs and pc to the shear 
strength and flow strength (or hardness) of the two metals 
in contact, respectively. This poorly reflects the scale depen- 
dence of plasticity and real hardening laws, even if the hard-

ness of materials and its dependence on grain 
size allows important guidelines for the fric-
tion coefficient in contact between metals to be 
rationalized, as Chandross and Argibay neatly 
summarized recently.20 Other nonlocal dissi-
pation mechanisms such as viscoelastic losses 
cannot be reconciled with Equation 2 either, as 
will be discussed in the section/paragraph on 
nonlocal effects. Nonetheless, Amonton’s Law 
may still hold when Equation 2 is violated. One 
explanation would be that the increase of con-
tact area with load at small nominal pressures is 
mainly due to a rescaling of the prefactor of the 

2τs = τ0 + αp,

3µ = α+ τ0/pc
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Figure 1.  Computer generated, self-similar surface with Hurst exponent H = 0.8 at 
different magnifications and a root-mean-square gradient of ḡ = 1 at the finest scale. 
The inset shows experimental data of a H ≈ 0.75 surface, which was produced for 
Reference 5. Great Britain’s west coast has the same fractal dimension as a one-
dimensional, H ≈ 0.75 surface.11,12
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contact-patch-size distribution rather than to the extension of 
its tail to larger patch areas. Thus, predicting contact-patch 
distributions correctly is a critical requirement for a quantita-
tive contact mechanics approach.

One reason why bearing-area models (BAMs) are problem-
atic is that they neglect the elastic coupling between asperities 
(i.e., they ignore that surface points near the highest peak are 
pushed down much more than distant points). As a conse-
quence, BAMs overestimate the mean gap between solids and 
predict contact to be too localized near high peaks, as revealed 
in Figure 2. It compares the contact topography formed by an 
elastic solid and a rigid, randomly rough, computer-generated 
surface as obtained in (a) a rigorous boundary-element method 
(BEM), (b) an experiment bringing an elastomer in contact 
with a 3D printed version of the surface, and (c) a generic 
BAM assuming the highest 3% of the indenter points to be in 
contact. The generic BAM misses many of the small patches 
revealed both experimentally and in rigorous simulations, in 
particular to the right of the black circle. Moreover, BAM 
leads to distincly less rugged contact edges than numerically 
rigorous approaches.

A new approach to contact  mechanics22 (see Persson’s sum-
mary of his theory in this  issue23) also finds contact area to be 
linear in load at small ar , but it remains accurate beyond the 
linear regime. Specifically, for frictionless elastic surfaces, it 
predicts contact area to obey

where E∗ = E/(1− ν2) is the contact modulus of the solid 
(when both bodies are deformable, their inverse contact mod-
uli add, as in a series coupling of springs), E is the Young’s 
modulus, ν the Poisson’s ratio of the elastic material, and ḡ 
is the (combined) root-mean-square (rms) height gradient of 
the surfaces. Although the theory was originally derived for 
ideal random roughness (see Equation 5), it makes astonish-
ingly accurate predictions on the relative contact area if ḡ is 
averaged only over the true contact area,24 even in the limiting 
case of single-asperity contacts, which are the polar opposite 
to ideal random roughness.

Although Persson’s contact mechanics theory is not exact, 
it generally predicts central interfacial properties much more 
accurately than BAMs. For instance, the probability of hav-

ing contact a distance q−1

s
� �r � q

−1

r
 

away from a point of contact, decays 
with 1/�r

1+2H  in Persson’s theory.25 
This agrees with numerical results of 
a rigorous BEM, whereas a generic 
bearing-area model finds a faster decay 
according 1/�r

2+2H.26 Another example 
for the accuracy of Persson’s theory is 
its ability to predict how the mean gap, 
ūg , decreases with increasing load.27 This 
was also revealed in the contact mechan-
ics challenge, where Persson’s prediction 
agreed with the results of numerically 
rigorous BEMs, whereas GW-inspired 
models agreed with each other, but not 
with the correct reference, as demon-
strated in Figure 3a. Rescuing BAMs is 
possible,28 but requires the elastic cou-
pling between contact spots as well as 
their coalescence to be included, which 
is arguably a more complex task than to 
simply code or run a BEM.

Failing to predict the mean gap as a 
function of load is particularly detri-
mental for the estimation of leakage, as 
described by the Reynolds thin-film equa-
tion, which assumes the local resistance 
to fluid flow to increase with the inverse 
third power of the gap. Traditional BAMs 
easily overestimate leakage by several 
orders of magnitude even far away from 
the percolation threshold, as can be seen 
in Figure 3b.29 In contrast, the Reynolds 
flow can be estimated quite accurately 

4ar = erf {
√
πp/(E∗

ḡ)},

a b c

Figure 2.  Gap and contact topographies obtained at relative contact area at ≈ 3% in the 
contact-mechanics challenge.21 Panel (a) shows the gap obtained using a boundary-element 
method (BEM), (b) contact lines obtained experimentally with a total internal reflection 
method using a printed, scaled-up surface, and (c) the gap deduced from a generic bearing-
area model (BAM). White color indicates contact in (a) and (c), whereas black circles highlight 
a detail of the contact area to facilitate comparison. Reproduced with permission from Refer-
ence 21 except for panel (c), which was drawn for this article.
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Figure 3.  (a) Mean gap as a function of pressure for three bearing-area models (BAMs, 
red symbols), Persson’s contact mechanics theory (gray line), two rigorous boundary-ele-
ment methods (BEMs, blue symbols), and a scaled-down all-atom model (open diamonds). 
Adapted from Reference 21. (b) Relative leakage current j/j0 versus relative contact area ar 
for topographies computed with a BAM and a BEM. Symbols represent full solutions of the 
Reynolds equations, whereas lines assume an effective medium approximation (EMA) to it. 
Adapted from Reference 29.
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using an effective medium theory taking the gap distribution 
function from either BEM, Persson’s theory, or even experi-
mental data, acquired, for example, via digital image correla-
tion,30 as input.

An important property to deduce from the dependence of 
the mean gap on pressure is the contact compliance defined as 
χ = −∂ ū/∂p , or its inverse the better-known contact stiffness. 
χ turns out to be proportional to first estimates of the interfa-
cial resistance to heat flow and electric current, as well as to 
the interfacial shear compliance.31,32 This is because for elastic 
solids the mentioned properties can be calculated in similar 
ways from similar second-order partial differential equations 
so that proportionality coefficients are merely products or 
ratios of materials constants.

The complete system can be seen as a series coupling of 
solid A, the interface, and solid B, whose respective compli-
ances or resistances add up to a combined value. However, 
corrections are needed to obtain accurate estimates for the 
conductivities. Radiative heat transfer, mainly through evanes-
cent waves, add to the heat conductance, while oxide layers 
or other layers adsorbed on top of metals, increase the electric 
resistance.32 Estimating the pertinent corrections requires the 
gap distribution or the contact area to be known, which can 
be deduced from quantitative theories and simulations or even 
from experiments.

Thus, although bearing-area models provide an intuitive 
framework with which trends can be rationalized, Persson’s 
theory is quantitative. However, Persson’s theory has been 
rigorously tested predominantly on elastic solids and indent-
ers with “ideal” random roughness. Although we expect it 
to be applicable (potentially with appropriate modifications) 
to other systems, the need for quantitative tools remains. 
At present, computer simulations are our best chance to 
model rough interfaces with a small number of uncontrolled 
approximations.

Computational approaches to roughness
To model surface topography effects numerically, height pro-
files must be acquired first. Ideally, though unlikely, a friendly 
experimentalist willingly shares artifact-free data defined on a 
large matrix. In the real word, modelers fall back to computer-
generated virtual surfaces, which can have the advantage to be 
periodic thereby allowing finite-size or (hyper-) surface effects 
to be minimized. There are many different ways to generate 
height functions, h(r) , representative of randomly rough sur-
faces, the simplest one being to set their (complex) Fourier 
coefficients to

where w(q) is an independent, uniform random number on 
[0, 1].

Surfaces generated with Equation 5 produce, on average, 
a Gaussian height distribution. However, machined or worn 
surfaces, as those described in the accompanying article by 
Aghababaei et al.33 tend to have skewed height distributions, 

5h̃(q) ∝
√

C(q) exp{2π iw(q)},

because tops get flattened while valleys are less affected 
by plasticity. To reproduce simultaneously height distribu-
tions and spectra, a surface can be set up producing the cor-
rect spectrum, then the nth highest point be assigned the 
height that the nth highest point (of a discretized surface) 
is supposed to have, where n runs through all point indices. 
The resulting surface is Fourier transformed, its spectrum 
rescaled to the target spectrum, and the procedure iterated 
until deviations from the target are tolerable.34 Other con-
straints violating the random-phase approximation can cer-
tainly be realized in a similar fashion.

In the simplest interaction model, surfaces are assumed 
to be impenetrable, or alternatively, one can use a quickly 
increasing overlap potential emulating finite-range repulsion 
and, if applicable, adhesive interactions. Next, the surface 
displacements must be related to the stresses acting on the 
surface. A point force acting normally onto a surface of a 
semi-infinite, linearly elastic solid leads to a displacement 
that decays as 1/r from the point of action. This dependence 
can be expressed quantitatively through the equation

in terms of the Fourier transforms or coefficients of stress, 
σ̃ (q) , and surface displacement field, ũ(q) . Equation 6 can 
be generalized in many different ways so that in addition to 
normal displacement and stresses, other  effects35 can be con-
sidered such as those due to finite  thickness36 and viscoelastic-
ity.37 Polonsky and  Keer38 pioneered the fast Fourier transform 
(FFT)-based solution of contact problems by exploiting the 
sparseness of the stress–displacement coupling represented 
in Equation 6. In their original approach, the stresses at the 
nodal points in real space were continuously adjusted to yield 
a value of zero in noncontact while satisfying the nonoverlap 
constraint. Later  investigations35–37 assume the displacements 
to be dynamic degrees of freedom that either relax to the mini-
mum in the fastest possible way, or propagate according to vis-
coelastic properties, which can be achieved by coupling each 
ũ(q) mode to an appropriate set of Zener or related rheologi-
cal elements.37 Although BEMs are typically limited to linear 
(visco-) elasticity, they can be coupled to discrete dislocation 
dynamics (DDD) allowing plasticity, as described in DDD, to 
be included effectively.39 Moreover, a recent reformulation 
of the Mindlin fundamental solution in a Fourier representa-
tion allowed continuum plasticity to be described at a similar 
complexity as with Fourier-accelerated BEMs, that is, with a 
numerical complexity scaling as O(N lnN ) , where N is the 
number of surface grid points.40

The type of questions that can be addressed within the pre-
viously described methods include (1) do two rough surfaces 
deform elastically so that they—using Coulomb’s words—form 
a coherence that needs to be overcome to initiate sliding, (2) 
what contact stiffness κ does a mechanical interface produce, 
or (3) at what point does roughness “kill” adhesion? Succinct 
answers in the framework of linearly elastic bodies and ideal 
random roughness would be (1) yes, but if elastic asperity 

6σ̃ (q) = −qE
∗
ũ(q)/2
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interlocking were the only friction mechanism, friction coef-
ficients would be tiny;41,42 (2) κ would be approximately linear 
in the nominal pressure p at small p and increase roughly expo-
nentially with p at large p27,43—these trends can be deduced 
(in parts visually) from the data shown in Figure 3a—and 
(3) when the reduced surface energy γ̃ = γ /vfl

ela
 falls below 

approximately 0.5,44 where γ is the surface energy and vfl
ela

 is 
the elastic energy in full contact per unit area.44

Answer (3) may require additional explanation. The transi-
tion between high and low adhesion is rather abrupt only for 
short-range adhesion and precise values remain difficult to 
predict.44,45 However, it can be noted that true contact at zero 
or marginally tensile loads occurs dispersed across a nominally 
flat interface if γ̃ � 0.5 , but typically only in the vicinity of 
the highest peak when γ̃ � 0.5.44 We leave it up to the reader, 
so to speak as a bonus problem, to demonstrate that the latter 
finding is consistent with the observations that large asteroids, 
which are made up of (large!) fractured rubble particles having 
a density close to that of silicate rocks (i.e., ≈ 2 t/m3 ) have a 
natural upper spinning period exceeding 2.3 h. An elaborate 
master solution to the problem is given in Reference 46.

Similar questions as those just answered for ideal elasticity 
still wait for an answer when the contacting bodies are more 
complex, for example, when their energy dissipation occurs 
internally and not only in the immediate vicinity of the contact 
or in a boundary lubricant.

A critical challenge: Nonlocal effects
As already mentioned, a point force acting on the surface of a 
semi-infinite, linearly elastic body, be it normal or parallel to 
the surface, leads to a displacement, which merely decays with 

the inverse distance from that 
point. This long-range defor-
mation is at the root of many 
complications, including the 
inappropriateness to formulate 
contact mechanics as a theory 
of variables that can be defined 
as averages of local quantities 
such as rms height h̄ or rms 
height gradient ḡ  . Whereas 
the contact area of repulsive, 
linearly elastic contacts can be 
estimated reasonably well from 
Equation 4 having the (resolu-
tion-dependent) ḡ as the only 
topographic parameter, the 
elastic energy is a (weighted) 
sum or integral over wave vec-
tors. Such sums are needed 
when calculating, for exam-
ple, vfl

ela
= (E∗/4)

∑

q
q|h̃(q)|2 

(valid for a frictionless contact) 
or the load–displacement rela-
tion in Persson’s theory.47 They 

cannot be reduced to averages over locally defined variables 
such as h̄2 or ḡ2 , for which the prefactor E∗/4 in the vela sum 
would have to be omitted and the term q in the summand be 
replaced with 1 and q2 , respectively.

The just-mentioned nonlocality is at the root of why dissipa-
tive or irreversible processes are frequently also nonlocal and 
moreover scale-dependent, in which case a frequently stressed 
argument for the validity of empirical friction laws, specifically 
Equation 2, can be problematic. For example, in an initially 
elastic description of contact between two metals, maximum 
shear stresses, or rather maximum deviatoric stresses, max(J2) , 
occur a certain distance away from the interface, so that plastic 
deformation—assuming J2 plasticity to be valid—is not trig-
gered by the deviatoric stresses J2 at the interface but in the 
bulk.48 A potential reason for meaningful deviations from clas-
sical friction and wear laws can arise when the superposition 
of subsurface stress fields of adjacent contact spots becomes 
significant (i.e., large enough to trigger the deep propagation of 
subsurface cracks), as observed in atomistic simulations during 
the transition from mild to severe wear.49

When a detailed plasticity description is needed at scales 
too small for continuum plasticity to be applicable, it must 
be kept in mind that plastic deformation in crystalline met-
als is carried by dislocation glide, which has two important 
implications. First, plasticity requires not only J2 to exceed 
a critical value, but also the presence of defects serving as 
dislocation sources. It is the random distribution of these 
defects in the body that can lead to a nonsymmetric plastic 
response, even when the loading is symmetric. Second, the 
Peach–Koehler force drives dislocations away from the region, 
where they were generated.17 As a consequence, plastic defor-
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Figure 4.  Examples of processes leading to dissipation outside the interface. (a) A metal crystal indented 
by a rough, rigid surface: plastic shear bands, broader than the contact areas, extend deep into the mate-
rial. Black T-symbols represent dislocations. The rough indenter is stretched in the z-direction by a factor 
10 to better visualize its roughness. Adapted from Reference 17. (b) A sinusoidal adhesive indenter sliding 
past a viscoelastic foundation. The sliding velocity increases from top to bottom, while the viscoelastic 
response of the foundation transitions from short- to long-ranged. Courtesy of N. Menga and G. Carbone.
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mation is not confined to the region where high stresses occur 
and can result in complex shear bands, as those depicted in 
Figure 4a. Their generation requires energy, whereby they 
contribute to dissipation during indentation, but also dur-
ing sliding. Interaction between extending shear bands 
leads to additional superposition of subsurface stress fields, 
and increases the risk of crack nucleation at the intersection 
between bands, where dislocations form strong junctions and 
stress release through plasticity is hindered.

When contacts are soft and adhesive, nonlocal effects arise 
due to the interplay between adhesion and viscoelasticity. In 
adhesive soft-matter  rolling50 or sliding,51 dissipation is due 
to the difference between the energy gained when the contact 
closes at its leading edge, and the energy lost when the contact 
opens at its trailing edge. Depending on the loading speed, 
significant dissipation can take place far away from the contact 
edges,52 which can be viewed as crack tips. This is because 
the viscoelastic solid acts like a soft elastic solid both in the 
immediate vicinity of the crack and far away from it, while 
the viscous response dominates at intermediate distances from 
the crack tip,52–54 which led de Gennes to coin the term vis-
coelastic trumpet.55 The transition from short- to long-ranged 
viscoelasticity can be observed on the contact profile of the 
viscoelastic foundation in Figure 4b, where a sinusoidal tip 
slides at increasing velocities from top to bottom.

An important consequence of the dissipation due to a slid-
ing adhesive contact is that the relaxation time of the system 
can be dramatically enhanced compared to the elastomer’s 
intrinsic relaxation times, in particular when the adhesion is 
short-ranged. This effect causes large demands on simulations, 
because reproducing the bulk viscoelasticity and crack dissipa-
tion simultaneously would require small interaction ranges and 
thus extremely fine discretization.

An additional nonlocal dissipation mechanism of rough sur-
faces arises from multistability (i.e., at a given mean relative 

distance between two solids, different microscopic surface 
configurations exist). A generic example would be a parabolic 
indenter with small-scale sinusoidal roughness.56 Individual, 
microscale asperities can discontinuously snap into or out of 
contact and they do not immediately jump back to their old 
position after tip velocity inversion. As for any other instabil-
ity, the energy loss is approximately the difference between the 
potential energy just before the instability and a short time after 
it, that is, after the instability-induced vibrations have calmed 
down.57 This mechanism can lead to significant dissipation dur-
ing quasistatic motion and, in the words of Coulomb, occurs 
whenever an interface has discontinuously adjusted the coher-
ence of relevant degrees of freedom, whether they are molecu-
lar or coarse-grained (e.g., asperity-sized in nature).

The difficulty in modeling adhesive multistability lies 
in the need for short-ranged adhesion,58 which entails the 
necessity for an extremely fine discretization to avoid spuri-
ous effects.59 Sanner and Pastewka found a rather compel-
ling solution to this problem for spherical indenters with 
small-scale  roughness60 by mapping it onto a crack-front 
model with quenched disorder,61 which can prove useful to 
describe the motion of a contact line of a liquid droplet on 
a substrate.62 To this end, they first exploited the possibility 
to express the elastic energy of a singly connected contact 
domain as a function of its contour.63 Second, they mapped 
the effect of surface roughness onto a local surface energy 
by using an effectively fractional and thus nonlocal height 
gradient. Specifically, they interpreted the inverse Fou-
rier transform of 

√
qE

∗/4 h̃(q) as the square-root of a local 
energy density. Using this crack-front approach, BEM-based 
solutions could be reproduced quite closely. More impor-
tantly, they found a rather flat force–displacement curve on 
retraction, as is characteristic for spherical indenters with 
small-scale roughness, which are retracted from a soft, adhe-
sive foundation,64,65 as seen in Figure 5.

a b

Figure 5.  (a) Comparison of the force–displacement relation as obtained in a crack-front model, the Johnson-Kendall-Roberts 
(JKR) solution, and a full boundary-element method (BEM). (b) Visualization of the contact contour and the effective surface 
energy. From Reference 60.
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Conclusions
Modeling phenomena involving surface topography-induced 
processes have come a long way, in particular, describing 
those that Coulomb envisioned to be responsible for the fric-
tion between solid bodies. What can be seen as particularly 
impressive is that there is an increasing number of accurate 
theoretical and computational tools that use as input mate-
rials properties, besides the surface topography, and give as 
output realistic predictions. This is certainly a breath of fresh 
air compared to the art of “post-diction,” where the modeling 
requires a significant fraction of the final result to be used as 
input. At present, not only the contact response of elastic bod-
ies can be predicted with accuracy, but important steps forward 
have been made also in the modeling of both soft- and hard-
matter contacts. The modeling of viscoelastic and of micro-
scale metal contacts has brought forward the importance of 
nonlocal effects, namely dissipation processes occuring at a 
distance from the interface, and thus the relevance of explicitly 
modeling the solids.

Unfortunately, we could only scratch the surface and had 
to omit quite a few success stories, such as the experimen-
tal study reproducing the displacement field of the contact 
mechanics challenge to within roughly 10% of the rms-gap,66 
detailed comparisons between theory or experiments of the 
elastoplasticity in spherical tips with microscale roughness,67 
or the leakage through seals, which was at least touched upon 
in an article in this issue of MRS Bulletin.23

Fortunately, we’re not done yet. Despite all progress, we 
are not aware of studies successfully reproducing adhesive 
hysteresis when viscoelasticity and roughness-induced multi-
stability both contribute substantially. It may sound simple, 
but we believe it to be a quite ambitious endeavor to not only 
match final displacement fields of real surfaces, but also their 
time dependence. Likewise, we are not aware of macroscale 
contact plasticity simulations where microscale effects are 
incorporated, and where the frictional response is an emer-
gent behavior. Finally, as detailed in the article by Aghababaei 
et al.,33 the modeling of surface evolution has just started. 
Modeling of and comparing to or even better predicting 
experiments monitoring simultaneously topography changes 
and friction forces, as Korres et al.68 achieved, represents the 
ultimate challenge.
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