ISOVIST FINGERPRINTING AS NEW WAY OF INDOOR LOCALISATION

Georgios Triantafyllou #5381738 1st Supervisor: Ir. Edward Verbree 2nd Supervisor: Prof. Azarakhsh Rafiee Co-reader: Prof. Lucía Díaz-Vilariño Delegate : Prof. John Heintz

PRESENTATION OVERVIEW

- Key concepts definition
- Brief Introduction & Problem definition
- Relevance and motivation
- Methodology
- > Implementation
- ➢ Results
- > Conclusions
- Applications and Future prospect
- > Reflection

KEY CONCEPTS DEFINITION

https://toolbox.decodingspaces.net/tutorial-2d-and-3d-isovists-for-visibility-analysis/

INTRODUCTION & PROBLEM DEFINITION

Ancient times

- Relative position based on stars (Sailors)
- Relative position based on what visible around

Today

- GNSS provides exact position with coordinates
- Outdoors: Mostly accurate
- Indoors: No signal and bad reception

Positioning VS Localisation

- Exact position with coordinates
- Approximate and Contextual information

http://www.weems-plath.com/About/History-of-Navigation.html

https://leica-geosystep/s.com/nl-nl/products/gnss-systems

ŤUDelft

INDOOR LOCALISATION TERRA INCOGNITA TO BE DISCOVERED

There is not one 'silver bullet'

► "We now use the term 'silver bullet' to refer to an action which cuts through complexity and provides an immediate solution to a problem. The allusion is to a miraculous fix, otherwise portrayed as 'waving a magic wand'."

There is a need for indoor localisation.

Not only 'point positioning' but meaningful 'place localisation': "Where am I?"

Also meaningful indoor '3D mapping':
"I am here".

WHY INDOOR LOCALISATION?

People spend most of their time indoors

Easy to lose orientation (complex buildings, absence of significant landmarks)

Bad GNSS reception

Emergency situations

Efficient management

WHY ISOVIST?

No need of locally deployed infrastructure

Lower Cost than other methods (Wi-Fi, Bluetooth)

Basis for navigation **WITH** better Visibility

LiDAR on smartphones makes it more accurate & approachable

ASSUMPTIONS AND LIMITATIONS

- This research topic it is just an initial investigation to form a proof of concept for Isovist Fingerprinting
- Does not end to a fully integrated and functional application
- Cannot and will not become the "Silver Bullet"
- No automatic integration between all the steps
- It is mainly manually implemented now with some small automation and prospect to fully automation in future
- It tests and concludes important information regarding all related factors of the topic

METHODOLOGY

- Point Clouds
 - iPhone 12 Pro with LiDAR sensor for the user part
 - > PIX4Dcatch app used with iPhone
- Assumption
 - Point Cloud must be gathered from entrance of the room mainly

Point Cloud to 2D drawing

Manual Implementation
 Import to Cloud Compare
 Dowsampling (3.88 cm distance between points)
 Statistical Outliers Removal
 Slicing in height with most objects (60-120 cm)
 Export in .dxf and drawing the

Point Cloud to 2D drawing

Algorithmic Implementation
 Reading and loading the point cloud in .ply format
 Voxel downsampling of the point cloud
 Statistical outlier removal
 Conversion of point cloud into 3D array

- > 2D Drawings (AutoCAD)
 - Acquire of BK floorplans (Synthesis Project 2021" Building rhythms: Reopening the workspace with indoor localization"
 - > Modification of BK floorplans and creation of one united curve
 - > Specific Layer allocation to simplify the data
 - > Addition of furniture and other unique characteristics

SPACE SYNTAX MEASURES

- Isovist Analysis in DeCodingSpaces Toolbox for Grasshopper of Rhino7
- > Assumptions:
 - User's point chosen manually in the entrance of the rooms in the 2D info \triangleright extracted by the point clouds
 - Direction, Range and other factors are also chosen manually \triangleright

ISOVIST PARAMETERS

- Area : Expresses the area of all space visible from a vantage point in space
- Perimeter : Expresses the length of the edge of all space visible from a location
- Drift : Expresses the distance from a subject point to the center of gravity of its isovist
- Compactness : Expresses the shape property (relative to a circle) of all space visible from a location.

SPACE SYNTAX MEASURES

- Import the modified 2D drawings (Building's floorplans & Point Clouds)
- Grasshopper algorithm/script for Isovist analysis
 - Calculation of Isovist Polygons and 17 Parameters
 - Visualising the Isovist Polygon
 - Normalising the data of Isovist Parameters
 - > Distance Algorithm between the user's Isovist Parameters and the Database ones
 - Localisation visualisation
 - Storing and exporting the Calculations in .csv

Delft

ISOVIST MATCHING

		l
	⊢	l
	_	l

- **1.** Creation of a grid to the whole area & calculation of thousands isovists for the area (One Isovist per grid cell)
- 2. Calculation of 10 sets of Isovist on each entrance of rooms of interest

- **1.** Calculation of one isovist each time from a moving vantage point in space
- **2.** Calculation of one Isovist on the entrance of rooms by acquired Point Clouds

Analysing and Normalising the set of 17 Isovist parameters

Matching the single Isovist with the database by using Distance algorithm

ISOVIST MATCHING

Single Isovist from Point-Cloud

Set of 10 Isovists of an Entrance

TEST RESULTS

Isovist Parameters Analysis

TEST RESULTS

Distance Algorithms Testing

Euclidean Distance Algorithm

Manhattan Distance Algorithm

ŤUDelft

Best ----> Worst

Localisation Tests

Empty room

With Furniture Room

Best ----> Worst

CONCLUSIONS

- Data Acquisition with smartphone supporting LiDAR were great accuracy for the topic's purpose
- Rhino's capabilities gave big space for testing
- Area, Perimeter and Drift Angle Highest importance
- Variance and Skewness is the least
- Euclidean Distance better choice
- Depending the environment results are not good
- Can support Indoor Localisation

APPLICATIONS AND FUTURE PROSPECT

- Promising method for the future especially in Combination with other methods
- Basis for navigation by using better visibility options
- Locating expensive machines (Hospitals, Factories)
- Use them for continuous update of the database

REFLECTION

- Topic can extend fields of Geomatics and Indoor Localisation
- High impact in society
- Lots of work and research still needs to be done
- Not the best time management
- Learned a lot during the process
- Covid-19 Pandemic Limitation
- Keep Going!

Thank you for your attention !!!

