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S U M M A R Y
The detection and characterization of signals of interest in the presence of (in)coherent ambient
noise is central to the analysis of infrasound array data. Microbaroms have an extended source
region and a dynamical character. From the perspective of an infrasound array, these coherent
noise sources appear as interfering signals that conventional beamform methods may not
correctly resolve. This limits the ability of an infrasound array to dissect the incoming wavefield
into individual components. In this paper, this problem will be addressed by proposing a high-
resolution beamform technique in combination with the CLEAN algorithm. CLEAN iteratively
selects the maximum of the f/k spectrum (i.e. following the Bartlett or the Capon method) and
removes a percentage of the corresponding signal from the cross-spectral density matrix. In
this procedure, the array response is deconvolved from the f/k spectral density function. The
spectral peaks are retained in a ‘clean’ spectrum. A data-driven stopping criterion for CLEAN
is proposed, which relies on the framework of Fisher statistics. This allows the construction of
an automated algorithm that continuously extracts coherent energy until the point is reached
that only incoherent noise is left in the data. CLEAN is tested on a synthetic data set and is
applied to data from multiple International Monitoring System infrasound arrays. The results
show that the proposed method allows for the identification of multiple microbarom source
regions in the Northern Atlantic that would have remained unidentified if conventional methods
had been applied.

Key words: Atlantic Ocean; Spatial analysis; Time-series analysis.

1 I N T RO D U C T I O N

Sensor arrays are used in various geophysical disciplines for a de-
tailed study of signals that are part of a complex wavefield. The
use of arrays allows for an enhanced detection of signals in the
presence of incoherent noise, as the signal-to-noise ratio (SNR) is
improved by summation across the array elements. In addition, ar-
rays can be used to estimate the directivity of incoming wave fronts,
and therefore can be used as spatial filters by steering the array
towards the direction of interest. This has led to applications in
the fields of seismology (Harjes & Henger 1973; Husebye & Ruud
1989; Schweitzer et al. 2002), acoustics (Billingsley & Kinns 1976;
Michel et al. 2006) and astronomy (Jansky 1932; Garrett 2013).

In this article, array detection of inaudible low-frequency sound,
or infrasound, is discussed. The detection of infrasonic sources over
long distances depends on the spectral content of the source, the at-
mospheric propagation conditions along the source–receiver path,
as well as the local noise conditions near the array. The vertical

temperature and wind structures determine the propagation paths
while absorption affects the amplitude and frequency contents of
the received signal (Waxler & Assink 2019). Because attenuation
is strongly dependent on the acoustic frequency, lower frequency
signals can propagate over significantly longer distances when com-
pared to higher frequencies (Sutherland & Bass 2004). The local
noise conditions are determined by the turbulent motions in the
atmospheric boundary layer, near the array (Smink et al. 2018).

The International Monitoring System (IMS) is in place for the
verification of the Comprehensive Nuclear-Test-Ban Treaty (CTBT)
and monitors the atmosphere globally for infrasonic signals from
nuclear tests, using microbarometer arrays. Currently, 51 out of
60 microbarometer arrays provide real-time infrasound recordings
from around the world. The IMS has played a central role in the
characterization of the global infrasonic wavefield and the localiza-
tion of infrasound sources, which include earthquakes, lightning,
meteors, (nuclear) explosions, colliding ocean wave–wave and surf
(Campus & Christie 2010). The infrasonic wavefield is complex
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and often consists of interfering acoustic signals in overlapping
frequency bands, in the presence of incoherent noise. The acous-
tic signals take the form of transients, (quasi-)continuous signals
or a combination of both. From the perspective of an array, co-
herent noise sources appear as interfering signals that clutter the
array detection bulletins and may obscure detections from signals
of interest.

Most infrasound processing routines, including those that are
used for real-time processing of the IMS infrasound arrays, are de-
signed to only detect the dominant acoustic signal in a given time
segment and frequency band. However, various beamform tech-
niques exist in the literature that allow for the detection of signals
from multiple spatially distributed sources (Viberg & Krim 1997;
Rost & Thomas 2002). The capability of detecting and classifying
interfering sources relies on the beamform resolution as quantified
by the array response, which is determined by the beamform tech-
nique and the array layout. A low beamform resolution could lead
to the dominant source masking subdominant sources.

In this study, the CLEAN algorithm (Högbom 1974) is applied
for high-resolution array processing of infrasound data. CLEAN is a
post-processing method that iteratively selects the main contribution
in the f/k spectrum and removes a percentage of the corresponding
signal from the cross-spectral density matrix. In this procedure, the
array response is deconvolved from the resolved f/k spectral den-
sity function. The spectral peaks are retained in a ‘clean’ spectrum.
This iterative process continues until a stopping criterion is reached.
The beamform techniques proposed by Bartlett (1948) and Capon
(1969) can be used to compute the f/k spectrum. Previous studies
(Clark 1980; Sijtsma 2007; Gal et al. 2016), have shown that the
application of CLEAN provides a superior beamform resolution.
Moreover, it has been shown that the performance critically de-
pends on the setting of two parameters: the percentage of removal
and the stopping criterion. In this work, the use of Fisher statis-
tics is proposed and applied as stopping criterion for the iterative
CLEAN procedure. This statistical framework has been established
for significance testing of multivariate data (Fisher 1948), and has
applications in geophysical signal processing (Melton & Bailey
1957; Shumway 1971; Smart & Flinn 1971).

The remainder of this article is organized as follows. Section 2
introduces the beamform techniques, CLEAN as post-processing
method and the proposed CLEAN parametrization. The perfor-
mance of CLEAN, as tested using synthetic data, is presented in
Section 3. In Section 4, CLEAN is applied to IMS infrasound array
data and it demonstrates that multiple microbarom source regions
can be resolved in the Northern Atlantic. Finally, the results are
discussed and summarized in Section 5.

2 D E S C R I P T I O N O F T H E A L G O R I T H M

2.1 Frequency-domain beamforming

Consider an array of N omnidirectional receivers, with N ≥ 3
(Fig. 1). Each array element has position rn, ..., N = (xn, yn, zn), of
which the absolute value is the distance between the element and a
reference distance, for example, the geometrical centre of the array.
Often an array exists of elements close to the geometrical centre to
resolve the high frequencies of the wave front, and elements that lie
further away to resolve the low frequencies. In the case of interest,
it is assumed that the array is situated in the far-field. Therefore, the
wavefield can be represented as a superposition of 3-D planar wave

fronts, propagating with phase speed c. The goal is to estimate the 3-
D wave-front parameters as a function of time t and frequency f. For
this purpose, it is useful to consider a plane-wave decomposition of
the incoming wavefield, in terms of a frequency–wavenumber (f/k )
spectral density G( f, �k):

G( f, �k) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
G( f, �r )ei(�k·�r )dx dy dz, (1)

here, �k = (kx , ky, kz) and G( f, �r ) represent the 3-D wavenumber
vector and the Fourier transformed array recordings, respectively.
Beamforming can be used to separate the coherent and incoherent
parts of G( f, �k).

Most infrasound arrays are ground-based planar arrays (Edwards
& Green 2012), in which case the integral in eq. (1) can be reduced
to a two-dimensional integral over x and y. This also implies that
only the horizontal component of �k can be directly estimated in the
beamforming process. The vertical component, kz, is typically in-
ferred through the dispersion relation, |�k| = 2π f /c and an estimate
of the phase speed c, that is, the speed of sound near the array. The
wavenumber vector �k can be expressed in terms of a slowness vector
�p by scaling with the angular frequency, ω = 2π f. The horizontal
component of �p can be related to the apparent velocity capp and
backazimuth θ as follows:

capp = 1

|�px,y | θ = arctan
px

py
.

The apparent velocity corresponds to the horizontal propagation
speed of a wave front, that is, as would be measured by the ground-
based array. The backazimuth relates to the horizontal incidence
angle, with respect to the north.

To beamform the array data, a cross-spectral density matrix C(f)
is to be estimated:

C( f ) = 1

L

L∑
l=1

Gl ( f, �r )G∗
l ( f, �r ), (2)

here, ∗ denotes the conjugate transpose. The off-diagonal elements
of matrix C(f) contain the phase delays between each sensor pair,
while the diagonal elements contain the power spectral density of
each element. It is common to estimate the cross-spectral density
matrix C(f) by averaging over L snapshots within one single time
window of waveform data, Gl ( f, �r ). The averaging using snapshots
is crucial for the application of Capon’s method (Capon 1969), as the
beamform weights rely on the matrix inverse of C(f). To ensure that
the inverse exists, C(f) must be full-rank and therefore L needs to be
sufficiently large, that is, L ≥ N (Viberg & Krim 1997). Assuming
that the mathematical representation of the signal of interest and
noise are statistically independent, the cross-spectral density matrix
can be factored into a signal and noise co-variance matrix:

C( f ) = E{GG∗} = E{Gs G∗
s } + E{Gu G∗

u}, (3)

where E{} indicates the statistical expectation, E{Gs G∗
s } indicates

the signal co-variance matrix and E{Gu G∗
u} the noise co-variance

matrix. Noise has a common variance σ 2 and is assumed to be
uncorrelated between all sensors. This decomposition is useful in the
development of the CLEAN stopping criterion as will be discussed
in Section 2.3.

With the definition of C(f), the f/k spectrum P( f, �k) can be com-
puted by multiplying with beamform weight factor w(�k):

P( f, �k) = w∗(�k)C( f )w(�k). (4)
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Figure 1. Array locations and layouts of IS18, IS26, IS42, IS43 and IS48.

This formulation allows for the comparison of various beamform
weights. In this paper, the Bartlett and Capon weights and corre-
sponding f/k spectra are compared. For the Bartlett, or ‘classical’
f/k spectrum, the signal power in P( f, �k) is maximized by summing
the phase-aligned spectral values. The Bartlett weight wB(�k) has
been derived as

wB(�k) = a(�k)√
a∗(�k)a(�k)

, (5)

where a(�k) = e−i(�k·�r ) represents the steering vector. The calculation
of the f/k spectra occurs over a vector space spanned by those
steering vectors, which is dependent on the used slowness grid.
Fig. 2 shows the design of the slowness grid, which consists of a
360◦ ring grid plus a rectangular grid. The ring grid is a linear grid
in backazimuth and apparent velocity, ranging from 0◦ to 360◦ and
285 to 500 m s−1 with steps of 1◦ and 1 m s−1, respectively. This ring
grid is, however, nonlinear in the slowness domain. The rectangular
grid consists of linearly spaced values between −0.005 and 0.005 s
m−1. This grid is added to ensure that energy from outside the ring
grid does not clutter on its boundaries, which would result in biased
outcomes.

Capon’s method is derived as a maximum likelihood filter. The
filter design is determined by the inverse of cross spectral density
matrix C(f) and steering vector a(�k). With this design, the noise
in the power spectrum is optimally suppressed while keeping a
constant gain in the direction of interest. For Capon’s method, wC (�k)

Figure 2. The applied slowness grid, consisting of a 360◦ ring grid (between
275 and 475 m s−1 with steps of 1 m s−1 every 1◦), and a 2500-point
equidistant squared grid (between 200 and 10 000 m s−1).

has been derived as

wC (�k) = C−1( f )a(�k)

a∗(�k)C−1( f )a(�k)
. (6)

To study the spectral properties of these beamform techniques, it
is instructive to evaluate the array response. It is defined as the f/k
spectrum P( f, �k) for a monochromatic wave with unit amplitude
or G( f0, �k0) = (1/N ) · ei�k0·�r , for which k0 = 2π f0/c. The array re-
sponse function may consist of several maxima. The absolute max-
imum is found at �k = �k0 and corresponds to the main lobe. Several
side lobes may appear that are a consequence of the spatial sampling
of the wavefield with a discrete number of array elements. A higher
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resolution array, for example, better peaked absolute maximum, can
be obtained by modifying the locations of the array elements or by
adding elements to the array. (Evers 2008).

Fig. 3 shows the Bartlett and Capon array responses for IMS
Infrasound array IS48, for a monochromatic wave with f0 = 0.3 Hz
and k0 = 0 m−1. The array layout of IS48 is shown in Fig. 1.
Capon’s array response has a much sharper main lobe when com-
pared to Bartlett’s response, which reflects its well-known high spa-
tial resolution property. Moreover, it can be noted that the side lobes
in Capon’s spectrum are significantly reduced, when compared to
Bartlett’s response. This gain in resolution comes at a computa-
tional cost, because of the matrix inversion of C(f). In addition,
some temporal resolution (e.g. transient signals) is lost because of
the necessary averaging process, as described by eq. (2). When us-
ing Bartlett it is harder to distinguish between two closely located
sources in the f/k spectrum, due to resolution. This favours the use
of Bartlett’s method for the analysis of transient signals, as it mer-
its higher temporal resolution analyses. Whereas Capon’s method
is more suited for the analysis of (quasi-)continuous signals with
longer time windows, such as microbaroms.

2.2 CLEAN

In the processing of real data, the f/k spectrum often consists of
multiple maxima with varying amplitude. In such a convoluted
spectrum, it can be difficult to distinguish interfering sources and
identify concurrent, subdominant sources from the side lobe of a
dominant source. It is the objective here, to design a method that
can unravel the f/k spectrum in terms of individual contributions
to the f/k spectrum, while being able to distinguish between main
lobe and side lobes. For this purpose, the CLEAN method can be
applied.

CLEAN (Högbom 1974) is a post-processing method that can be
applied to conventional beamform methods, for example, Bartlett
and Capon as introduced in the previous subsection. CLEAN iter-
atively removes phase and amplitude information associated with
the strongest contribution in the f/k spectrum, Pmax, from the cross-
spectral density matrix (Sijtsma 2007; Gal et al. 2016). A partly
cleaned cross-spectral density matrix, Cclean, is obtained:

C j+1
clean( f ) = C j

clean( f ) − φP j
maxwmaxw

∗
max, (7)

with wmax = w(kmax) the beamform weight for which Pmax, with
wavenumber kmax, was resolved, C j

clean the cross-spectral density
matrix at jth iteration and φ the parameter that determines the frac-
tion of removed power. Note that the subtraction in eq. (7) involves
a convolution of the array response function with Pmax. This ensures
that the array response pattern is suppressed in the (j + 1)th beam-
form iteration, following eq. (4). It is precisely this deconvolution
operation that allows for the identification of subdominant f/k spec-
tral density peaks. Such peaks could otherwise have been masked
due to spatial aliasing of the dominant source in the beamforming
process.

The CLEAN algorithm has a relatively high computational cost
because of the potentially large number of beamform iterations
in lieu of one single beamforming run. The number of iterations is
controlled by the φ value. A small value will result in resolving more
subdominant sources at the cost of a larger number of iterations and
therefore a higher computational load, while a larger value leads to a
faster algorithm but may be less accurate in resolving subdominant
sources. Gal et al. (2016) stated that the optimal value for φ depends
on the combination of array layout, frequency range of beamforming

and the SNR. In general, a small φ value is recommended when
processing data from arrays with a small number of elements and/or
data with low SNR values.

In this study, the number of iterations is not pre-defined but
depends on a stopping criteria (Section 2.3). CLEAN beamforming
with φ values between 5 and 15% provided similar results. Since
this study deals with a low number of array elements and a low
SNR, a φ value of 10 per cent has been chosen (following Gal et al.
2016).

For each processed frequency f, the maximum of the f/k spectral
density as well as the corresponding wavenumber vector �k j is stored
in a CLEAN power spectrum:

Pclean( f, �k) =
Q∑
j

φP j
max( f, �k j ), (8)

where Q is the total number of CLEAN iterations. The CLEAN
process continues until reaching a stopping criterion. Because the
array response function is deconvolved, the smearing of energy in
the original f/k power spectrum P( f, �k) has been reduced. As a
result, Pclean( f, �k) has a sharper and cleaner appearance, which is
useful in obtaining an enhanced insight in the diversity of acoustic
sources around the array.

The individual contributions P j
max( f, �k j ) in Pclean( f, �k) are char-

acterized by a new and clean, Gaussian point spread function (PSF;
Sijtsma 2007). Every PSF has a standard deviation of three times the
spatial f/k spectral resolution. Hence, sources are distinct if the dis-
tance between the maxima of two PSFs is greater than two standard
deviations.

2.3 Fisher statistics as CLEAN stopping criterion

As CLEAN is an iterative beamforming procedure, a maximum
number of iterations is to be defined after which the procedure
stops. Hitherto, setting of this parameter has been user defined
(Clark 1980; Sijtsma 2007; Gal et al. 2016), which is impractical
for application to large data sets, for which the number of iterations
may be strongly dependent on the analysis window. Here, the use
of Fisher statistics and the F-ratio a test statistic (Fisher 1948) is
proposed for the definition of a data-driven stopping criterion.

The processing of data from a ground-based infrasound array
corresponds to a bi-variate analysis problem where the pressure
fluctuations are modelled as a random process. Within each anal-
ysis window, the variance of the (phase-shifted) pressure signals
between the array elements is compared with the variance of the
pressure values at each individual element (Melton & Bailey 1957).
The F-ratio compares both measures of variance. In the associated
statistical test, the null hypothesis is tested that these variances are
not significantly different. In other words: the null hypothesis cor-
responds to the case that no coherent signal is present. The F-ratio
deviates from unity if the variances are not equal, which corresponds
to a probability that a coherent signal is present in the data. Fisher’s
test statistic is evaluated for every steering vector that is considered
in the beamforming procedure. This procedure allows an evaluation
of the significance of detection on each steering vector of interest.

The probability density of the F-ratio is described by an F-
distribution. The particular shape of the distribution is dependent on
the statistics of the data samples as well as the degrees of freedom
of the data set. In the beamform application, the degrees of freedom
are a function of the number of samples points T and array ele-
ments N. If the samples points follow the statistical distribution of
Gaussian white noise, the resulting F-ratio statistic follows a central
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(a) (b) (c)

(d) (e) (f)

Figure 3. Array response of infrasound array IS48 at 0.3 Hz, following the Bartlett (a) and Capon (d) beams. The array response improves after applying the
Fisher statistics for Bartlett (b) as well Capon (e). The side spectra (c and f) show the improvement of the Fisher ratio (red curve) with respect to the array
response in terms of normalized power (black curve) at py = 0.

F-distribution F(ν1, ν2). The degrees of freedom in the time-domain
Fisher analysis, ν1 and ν2, are given by ν1 = Tt − 1 and ν2 = Tt(N −
1) (Evers 2008). In the frequency domain, the degrees of freedom
are given by: ν1 = 2Tf and ν2 = 2Tf(N − 1) (Shumway 1971). The
mean of the central distribution is F = 1. The F-ratio statistic fol-
lows a non-central F-distribution F(ν1, ν2, λnc) in the case where a
signal with a certain SNR is present. The non-centrality parameter
λnc is determined by the SNR of the signal as: λnc = ν1 · SNR2

(Shumway 1971).
The statistical properties of the F-ratio allow for the estimation

of the missed event and false alarm probabilities, given a specified
confidence level. Likewise, a probability of detection can also be
quantified. Therefore, the Fisher’s test statistic is a robust and effi-
cient method for the detection of coherent signals in the presence of
incoherent noise. Besides, representing the spectra in terms of the
F-ratio sharpens the main lobes, as can also be seen in Fig. 3.

The relation between the F-ratio and the SNR has been derived
by Melton & Bailey (1957).

F = N · SNR2 + 1. (9)

In the derivation of this relation, it is assumed that the signal is
identical over all array elements while the noise can be modelled
as uncorrelated Gaussian white noise. Smart & Flinn (1971) have
shown that the F-ratio in the frequency domain can be defined using
the following estimates of signal power on the beam Pmax, and total

power Pt:

F( f, �k) = Pmax( f, �k)

Pt ( f ) − Pmax( f, �k)
(N − 1). (10)

Here, Pt(f) represents the total f/k spectral power as a normalized
sum of the diagonal elements of the cross-spectral density matrix:

Pt ( f ) = 1

N

N∑
n=1

Cnn( f ). (11)

By evaluating the Fisher ratio at every CLEAN iteration, the
probability of detection and the SNR of the detected signal can
be estimated. Moreover, this framework allows us to determine a
CLEAN stopping criterion from a statistical perspective. Indeed, as
the Fisher ratio approaches unity, the likelihood of a false alarm
increases and the iterative procedure can be stopped, as no coherent
signal is likely to be left in the cross-spectral density matrix. The
effectiveness of this method will be demonstrated using synthetic
data in the following section.

3 S Y N T H E T I C DATA

Three different synthetic waveform tests are discussed in this sec-
tion. The tests have been designed to (1) evaluate the use of Fisher
statistics as a CLEAN stopping criterion, (2) compare the Bartlett
and Capon beamform techniques and (3) evaluate the performance
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of the proposed CLEAN algorithm in the processing of infrasound
array data. The synthetic waveforms are generated given the array
element locations of infrasound array IS48 (Fig. 1). The temporal
sample rate of the waveforms is 20 Hz, which corresponds to the
actual sample rate of this IMS array.

3.1 Fisher threshold testing using uncorrelated Gaussian
white noise

To demonstrate the use of Fisher statistics in the determination of a
CLEAN stopping criterion, a Monte Carlo simulation is performed.
The Monte Carlo simulation consists of 500 Capon beamform runs
on synthetic waveform data that consists of uniform Gaussian white
noise. The beam forming analysis is carried out in the frequency
band ranging from 0.1 to 0.3 Hz. Smoothing is applied by averaging
power estimates for Z adjacent frequencies around a frequency of
interest, which is defined by the amount of steps within the fre-
quency band. To satisfy the degrees of freedom in the time domain
and the frequency domain, smoothing should avoid overlapping
frequencies. For each run, each with a duration of 1000 s, data are
beamformed. The Fisher ratio is computed for every beam. Fig. 4(a)
shows an example f/k spectrum.

The resulting distribution of calculated Fisher ratios is plotted
in Fig. 4(b) as a histogram. The histogram distribution follows a
central F-distribution, which would be expected as the data samples
follow the statistical distribution of Gaussian white noise. The F-
distribution is characterized by the degrees of freedom which are
specified by N = 7 and Tf = Z + L = 10 + 40 = 50, which
indicates the number of sample points that are used, depending on
the smoothing and the number of snapshots, L, within one window.
The distribution is plotted with a solid black line in Fig. 4(b). The
95 percentile is found at F = 1.28 and is indicated by the dotted
line. For this particular choice of processing parameters, the Fisher
threshold should be set to 1.28 in order to have a 95% confidence
for avoiding false-alarms. More generally, this test demonstrates
the use of Fisher statistics in the estimation of a CLEAN stopping
criterion.

3.2 Slowness estimates for multiple, interfering sources of
coherent noise

Two additional synthetic data sets are constructed in order to test
the ability to accurately discriminate between interfering sources
within one analysis window. The synthetic waveforms are generated
for each of the array elements, by adding Gaussian white noise
with a specified amplitude as described in Table 1. The synthetic
waveforms for each element are coherent, but shifted in time with
respect to one another, according to the array layout and the imposed
directivity of signal m. Each source is continuous, to represent
ambient noise. Table 1 shows the characteristics of data set A. The
applied bandpass filter has corner frequencies of 0.1 and 0.3 Hz.
Note that the three sources are continuously interfering throughout
the record.

The time-shift for each array element is computed using the
steering vector a(�km) and wavenumber vector parameters:

kx,m = 2π f

capp,m
sin(θm) ky,m = 2π f

capp,m
cos(θm).

The individual signal contributions are added up per element,
thereby generating a complex signal that is composed of several in-
dividual signals. Finally, uncorrelated Gaussian white noise with

amplitude 0.5 Pa is added to each of the array element wave-
forms, individually. As this signal is incoherent between the ar-
ray elements, it represents the noise level. Hence, a theoretical
signal-to-noise power ratio and Fisher ratio can be estimated from
eq. (9).

Fig. 5 shows the initial f/k spectra before and after application of
CLEAN. Three features should be noted. First, CLEAN improves
the resolution of both spectra, as can be seen in the sharpening of
the main lobes. This enables to resolve two closely located sources
within the f/k spectrum. The highest resolution is obtained by com-
bining Capon and CLEAN. Gal et al. (2016) earlier stated that a
high-resolution initial f/k spectrum with a sharp main lobe is benefi-
cial to the performance of CLEAN. Second, with Capon the sources
are better identified than with Bartlett, as can be seen from the
coincidence of the lobes with the circles, which have their centre
points at the expected source locations and a radius of ±1.5◦. This
is a consequence of the lower resolution of Bartlett. Last, the low
spatial resolution of Bartlett leads to various spurious peaks in the
f/k spectrum, after application of CLEAN.

The θm and capp parameters that correspond to the maxima of the
resolved f/k spectral densities after CLEAN has been applied are
tabulated in Table 1. In case of Capon in combination with CLEAN,
a close agreement between the source parameters and the resolved
values is noted. This is not the case when applying Bartlett’s method,
due to the low resolution of the initial f/k spectra.

While a particularly good agreement is noted for the backaz-
imuth and the resolved apparent velocity in case of Capon and
CLEAN, the resolved Fisher ratio is biased low compared to the
theoretical Fisher ratio, which will be further explained in the
discussion.

Based on the comparative performance of the beamform tech-
niques, the last synthetic test is performed with Capon’s method
only.

The parameters used in the construction of data set B are sum-
marized in Table 2. Data set B represents the case of an increasing
number of interfering, continuous sources with time. The synthesis
of the signals is otherwise equal to the method described earlier in
this section. Fig. 6 shows the f/k spectra and the resulting θm and
capp as function of time. The circles indicate the expected source
positions and the colour rings indicates the expected apparent ve-
locity of the signals. Again, a close agreement between the source
parameters and the resolved values is noted. The numerical values
are summarized in Table 2.

Since the input and output of both data sets are in good agreement,
we conclude that the proposed Fisher ratio as a stopping criterion and
the PSF in combination with the two standard deviation distribution
are robust parameters. Both enable CLEAN to be data-driven and
reliable.

4 R E A L DATA E X A M P L E

The proposed CLEAN method is applied to infrasound measure-
ments recorded on 2011 January 17 on the IMS infrasound arrays
IS48 (Tunisia), IS42 (Açores), IS26 (Germany), IS43 (Russia) and
IS18 (Greenland).

This analysis builds on an earlier study by Assink et al. (2014)
in which two simultaneous infrasound sources were identified in
the microbarom frequency band using a beamform technique using
Bartlett’s method and Fisher statistics. It was hypothesized that the
detections corresponded to microbarom activity in the Northern
Atlantic and Mediterranean Sea.
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(a) (b)

Figure 4. Outcome of the Monte Carlo runs on randomly generated data. (a) The f/k beamforming result of a randomly generated data set. (b) Histogram
F-ratio outcome of 500 Monte Carlo runs. The grey line indicates the central F-distribution. The dotted line is the 95 percentile, F0.95 = 1.28.

Table 1. Input source parameters for data set A and its estimated parameters using the CLEAN algorithm, following Bartlett’s and Capon’s method. The
amplitude of the added incoherent white noise is 0.5 Pa. The expected F-ratio is computed using eq. (9).

Input Output Bartlett Output Capon

θm capp, m (m s−1) sm (Pa) Exp. F-ratio θm capp (m s−1) F-ratio θm capp (m s−1) F-ratio

300 340 1.0 29 294 335 28 300 339 27
90 340 0.8 19 93 330 14 90 340 20
280 340 0.6 11 277 324 7 280 338 7

(a) (b)

(c) (d)

Figure 5. Beamform results of IS48 between 0.1 and 0.3 Hz on synthetic data set A (Table 1). Panels (a) and (b) show the results of the Bartlett beamformer
before and after CLEAN has been applied. Panels (c) and (d) show the results when Capon has been applied. The circles indicate where sources are expected
in the f/k spectrum. The red ring indicates the apparent velocity, capp = 340 m s−1. Note that the apparent sources in frame (b) correspond to side-lobes due to
Bartlett’s method.
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Table 2. Similar as Table I, but now for data set B, which features three different sources that are active during different time intervals. In this case, the CLEAN
method is used with Capon’s method, only.

Input Output

θm capp (m s−1) sm (Pa) Exp. F-ratio Time (s) θm capp (m s−1) F-ratio

300 360 1.0 29 100–4000 300 359 28
90 320 0.8 19 1100–4000 89.8 319 17
280 280 0.6 11 2100–4000 279.6 278 9

(a)

(b)

(d)

(e)

(c)

Figure 6. Result of Capon beamforming with CLEAN on waveforms of
data set B, Table 1. The f/k spectra of window 1 (a), window 2 (b) and
window 3 (c) after CLEAN has been applied. The circles indicate where
sources are expected, and the coloured rings indicate the apparent velocity
capp (green, capp = 360 m s−1; blue, capp = 320 m s−1; and red, capp =
280m s−1). Panels (d)–(e) show the CLEAN results plotted as a function of
time, for the three windows considered. The lines indicate expected results
regarding backazimuth and apparent velocity, colour of the dots indicates
the Fisher ratio.

The two sources had an overlapping frequency content around
0.2 Hz, but the Mediterranean microbaroms were found to be co-
herent up to 0.6 Hz while the North Atlantic microbaroms are
coherent up to 0.3 Hz.

Fig. 7 shows the f/k spectra of the IMS arrays for the first 2000 s
of data on 2011 January 17, before and after CLEAN has been ap-
plied and by using the 95 percentile Fisher threshold (Section 3.1).
In these spectra, multiple sources are resolved in the 0.1–0.3 Hz
frequency band. It should be noted that subdominant sources can be
identified, which would have been obscured in traditional infrasound
processing schemes that only report on the dominant source. Fig. 8
shows the processing results of IS48 for the entire day. Figs 8(a)

and (b) show the dominant source per time window, using Bartlett’s
and Capon’s method, respectively. Fig. 8(c) lists all the resolved
sources by using Capon in combination with CLEAN. The con-
ventional beamforming methods detect two sources intermittently,
while CLEAN continuously resolves three sources.

Furthermore, the frequency band of processing can highlight
different sources, which is illustrated in Fig. 9. Fig. 9 shows that
the microbaroms from the Atlantic Ocean have a lower centre fre-
quency than those of the Mediterranean Sea. The Atlantic Ocean
microbaroms are most coherent to the north–west in the frequency
range of 0.1–0.3 Hz, those from the Mediterranean Sea appear from
the east between 0.3–0.6 Hz. This is consistent with the earlier
analysis by Assink et al. (2014).

Microbarom source regions are identified by cross-bearing local-
ization, in which the detections at multiple IMS arrays are combined.
In this procedure, it is assumed that there is an atmospheric duct in
all directions, and that the propagation of microbarom signals is not
strongly influenced by cross-winds or other along-path meteoro-
logical conditions (Smets & Evers 2014). The source locations are
compared with microbarom source regions that have been predicted
using the microbarom source model described by (Waxler et al.
2007), following the implementation described in Smets (2018). As
an input for this model, the two-dimensional wave spectra (2DFD)
obtained from the European Centre for Medium-Range Weather
Forcast (ECMWF) deterministic high-resolution ocean wave model
Cycle 36r1 (HRES-WAM) analysis (ECMWF 2008, 2016) have
been used.

Figs 10(a) and (b) show the results of this approach for the fre-
quency ranges of 0.1–0.3 and 0.3–0.6 Hz. For both frequency bands
CLEAN resolved several subdominant sources, which could have
been missed when applying conventional beamforming methods.
Because of this, the same microbarom sources are resolved at differ-
ent IMS stations, resulting in better microbarom source localization
based on IMS observations. In case of the lower frequency band
more microbarom sources are resolved in the region of the Atlantic
ocean, the higher frequency band highlights two sources towards
the Mediterranean sea. For both ranges of frequency, the resolved
microbarom source regions are in a particularly good agreement
with the microbarom prediction model.

5 D I S C U S S I O N A N D C O N C LU S I O N

In this study, a CLEAN array processing algorithm is presented that
has been inspired by earlier work (Sijtsma 2007; Gal et al. 2016).
CLEAN is a post-processing method that can be applied to conven-
tional beamform techniques, such as Bartlett and Capon. Because
contributions to the total f/k spectrum are iteratively removed in
this procedure, subdominant sources can be identified. Moreover, a
more peaked f/k spectrum is obtained because the array response is
deconvolved in the process. The performance of CLEAN is found
to be dependent on the beamform resolution, which is in line with
earlier work by Gal et al. (2016).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7. The f/k spectra of IS18 (a and b), IS26 (c and d), IS42 (e and f) and IS48 (g and h) before and after CLEAN, between 0.1 and 0.3 Hz for the first
2000 s of data on 2011 January 17. The blue ring indicates the speed of sound at standard sea level (15 ◦C and 1.225 kg m−3), capp = 340 m s−1.

Moreover, the use of Fisher statistics for signal detection and
the determination of a CLEAN stopping criterion is proposed. This
stopping criterion has been identified in earlier work as a critical
parameter for the performance of CLEAN (Clark 1980; Sijtsma
2007; Gal et al. 2016). The efficiency of the method is demonstrated
using a Monte Carlo simulation with uniform Gaussian white noise.
From this test, it can be concluded that the central F-distribution
can be used as guidance to estimate a CLEAN stopping criterion.
The probability of false alarms can be estimated when it is assumed
that the remainder of the cross-spectral density matrix consists of
(incoherent) white noise after beamform iterations.

Furthermore, synthetic tests have been performed to simulate the
detectability of multiple continuous infrasound sources surround-
ing an array. The tests show that the backazimuth and the apparent
velocity are accurately resolved. Based on this, it is concluded that
that the PSF in combination with the two standard deviations distri-
bution is adequate for distinguishing multiple sources. The Capon
method has been found to provide more accurate results when com-
pared to the Bartlett method, which is related to the higher spectral
resolution of the former method.

It has been shown that the properties of Fisher statistics can be
used to discriminate between coherent and incoherent signals. As a
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Figure 8. Infrasound detections on 17 January 2011 in the 0.1–0.3 Hz frequency band. Panel (a) shows the maximum contribution of the Bartlett f/k spectrum
without CLEAN. (b) The maximum contribution of the Capon f/k spectrum without CLEAN and panel (c) reveals the outcome after application of the proposed
CLEAN algorithm on the Capon f/k spectra. The dotted lines indicate the mean backazimuths that are associated with the observed microbaroms throughout
the day. The dots are coloured coded by the Fisher ratio.

(a) (b)

Figure 9. CLEAN f/k spectra of IS48 between (a) 0.1–0.3 Hz and (b) 0.3–0.6 Hz for the first 2000 s of data on 2011 January 17.

result, the Fisher ratio shall be used as the CLEAN stopping crite-
rion. Nonetheless, in the estimation of SNR levels, it has been found
that the resolved Fisher ratio is not always in agreement with the
theoretical value that would be expected from the SNR conditions
and the degrees of freedom in the data set. The bias is attributed to
the fact that the noise cannot longer be considered as uncorrelated
Gaussian white noise when multiple coherent signals are present

in the array recordings. Further research is needed to understand
the noted bias between the theoretical and the resolved Fisher ra-
tio, in the case of multiple sources. This is further elaborated on in
Appendix S1.

CLEAN has been applied to infrasound data recorded on multi-
ple IMS arrays that are located around the Northern Atlantic. The
results show that multiple microbarom sources can be resolved,
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Figure 10. Microbarom source region predictions for frequencies between 0.1 and 0.3 Hz (a) and between 0.3 and 0.6 Hz (b) from 2011 January 17 00:00
UTC till 00:30 UTC (Waxler & Gilbert 2006; Smets 2018). IS48, IS42, IS26, IS43 and IS18 are indicated by blue diamonds. Backazimuth projections of
all resolved sources are indicated by solid arrows (Fig. 7), the black solid arrow indicates the dominant source. Transparent circles indicate possible source
locations found by cross-bearing.
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including regions that would have been obscured if conventional
processing methods would have been used. Microbarom source lo-
cations are obtained by cross-bearing localization and are in agree-
ment with simulated microbarom source regions. It should be noted
that the effects of propagation conditions are neglected in the cur-
rent approach which, in combination with the dynamic nature of
the microbaroms, explain some variation in backazimuth with time.
Such effects could be accounted for by back projecting using a ray
theoretical approach (Smets & Evers 2014).

Although the use of CLEAN beamforming allows for the de-
tection of concurrent sources around an infrasound array, the
method is computationally expensive compared to methods in which
only the dominant source is to be detected. Moreover, the per-
formance of CLEAN depends on the setting of various parame-
ters that require careful tuning. This includes the choice of the
beamforming weights and the setting of the φ value, the per-
centage of source removal per iteration. The setting of φ de-
pends on the combination of array layout, processing frequency
and the SNR. Therefore, it is important to analyse the sensi-
tivity of the beamforming results to the choice of processing
parameters.

Conventional beamforming algorithms can only confidently de-
tect the most dominant source in each processing window and can-
not confidently distinguish other concurrent sources from side lobes.
The CLEAN implementation by Gal et al. (2016) iteratively resolves
more sources. However, without a statistical framework, the num-
ber of iterations, which is pre-defined, is arbitrary and there is no
certainty in the process with regard to true or false sources. In the
presented implementation, a Fisher statistics framework is used to
define a stopping criterion so that there is statistical certainty that
the resolved sources are real. In the case of IS42 the initial f/k spec-
trum is ‘smeared’ over almost 360◦. This is because IS42 is located
on an island with sources all around it, including perhaps local and
weaker sources that are not resolved in the microbarom model. The
model averages microbarom source activity over a period of 6 hr.
Therefore sources that are active for only a small fraction of that pe-
riod are suppressed. However, a processing window of 2000 s with
CLEAN can resolve such local, short duration sources. Addition-
ally, IS42 is located relatively close to North-Atlantic microbarom
source regions highlighted in the model (Fig. 10). Thus, it can sep-
arate the source region into more subsources that are two standard
deviations apart in the f/k spectrum.

Previous studies have discussed other beamforming algorithms to
identify multiple sources within the same frequency band (e.g. MU-
SIC; Schmidt 1986). den Ouden et al. (2018) compared the CLEAN
and MUSIC algorithms, and discussed the benefits of CLEAN over
MUSIC. CLEAN does not require source knowledge while the MU-
SIC algorithm needs the user to define the number of sources. If
this number is incorrect, the outcome of the algorithm is incorrect.
Furthermore, MUSIC can only resolve as many sources as array
elements.

The enhanced beamforming resolution of CLEAN improves the
capabilities of infrasound as a monitoring technique. This comes
to the benefit of infrasonic monitoring of nuclear tests as well as
natural hazards, such as volcanoes, earthquakes and hurricanes. In
addition, high-resolution microbarom observations can be useful in
the assessment of microbarom source models (Waxler et al. 2007)
as well as in the remote sensing of the middle and upper atmo-
sphere, for which microbarom signals have been used in previous
research (Donn & Rind 1972; Smets 2018). Besides the applica-
tion to infrasound arrays, the algorithm can be applied to improve
on the limited f/k spectral resolution of arrays with a low number

of elements, such as the IMS hydro-acoustic triplet arrays that are
deployed in the world’s oceans.
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S U P P O RT I N G I N F O R M AT I O N

Supplementary data are available at GJI online.

Figure S1. The theoretical central and non-central F-distribution
based on synthetic data set A (Table 1). The red curve indicates
the central distribution, the grey curves the theoretical non-central
distribution for each source. The dotted lines are the resolved mean
Fisher ratios, while the orange histograms determine the outcome of
the Monte Carlo runs. The observed differences between histograms
and theoretical distributions can be explained by the coherence of
the background noise.
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