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Summary

Maintenance of aero-engines is essential for safe, reliable and cost-effective air-
craft operations. Operational aero-engines deteriorate over time. This affects
their mechanical and aero-thermodynamic performance and reduces engine
safety, reliability and efficiency. However, maintenance is a major component
of the cost per fired hour of a gas turbine. Because the engines are a relatively
expensive component of an aircraft, aero-engine maintenance is an important
subject for cost reduction.

Cost-effective maintenance of gas turbine aero-engines is achieved by com-
bining two strategies: maintenance at fixed intervals and condition-based main-
tenance. Whereas maintenance at fixed intervals is specified by the engine
manufacturer, condition-based maintenance is scheduled by the engine oper-
ator, which enables them to potentially optimize this process. Regular in-
spections, engine condition monitoring and performance diagnostics methods
are used to establish the degree of deterioration for scheduling condition-based
maintenance.

An important element in the maintenance process is engine overhaul. Dur-
ing this process an aero-engine is removed from the aircraft, disassembled,
cleaned, inspected, repaired as necessary, and finally tested. Detailed knowl-
edge of engine condition prior to overhaul provides engine operators and engine
repair shops with the necessary information to plan overhaul work scopes and
to help ensure a cost-effective process.

Condition monitoring methods can be used during engine tests and during
in-flight operation. Traditional methods are capable of estimating the condition
of the overall engine, but lack the ability of component-level condition estima-
tion. A much better understanding of the actual condition per component can
be obtained from detailed analysis of the complete engine gas path.

The goal of this research was to solve challenges encountered with the ap-
plication of gas path analysis in the aero-engine maintenance process. Gas
path analysis (GPA) is a performance diagnostic method that can identify en-
gine modules responsible for engine performance problems without the need
for engine removal or disassembly. It relates variations of measured engine per-
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formance parameters resulting from engine deterioration to the condition of its
gas path components. The earliest GPA methods, which used linearized rela-
tions between condition parameters and performance parameters, were not suf-
ficiently accurate for maintenance application. Advancements in performance
modeling methods, numerical methods and computer platform technology have
resulted in more accurate GPA methods that can be divided into two cate-
gories: empirical GPA methods and model-based GPA methods. Empirical
GPA methods use measurements obtained from the field or experiments to
correlate component condition to engine performance data, and use the inverse
of those correlations to assess engine condition from measured performance.
Model-based GPA methods, on the other hand, use thermodynamic principles
to link measured engine performance parameters to gas path component con-
dition. Even though empirical and model-based GPA methods are different
in many aspects, all GPA methods require sufficient measured performance
data and an accurate relation between gas path component condition and per-
formance parameters to provide accurate results. In practice, limited engine
operational data, inaccurate GPA tools and the absence of an information sys-
tem means that often GPA is not used effectively or not used at all in the
maintenance process.

This work is focused on three subjects. First, improving the accuracy and
reliability of a non-linear, model-based GPA tool. Second, more effectively
using available engine performance data for GPA. Third, developing an infor-
mation system concept for GPA applications. Results were obtained by using
both simulated gas turbine performance data as well as field data measured
during engine performance tests and during in-flight operation. The Gas tur-
bine Simulation Program (GSP) was used for performance simulation. GSP is
a component-based performance simulation tool with a library of component
sub-models that represent aero-thermodynamic gas path components, mechan-
ical components and engine control components. GSP has a generic adaptive
modeling (AM) capability that can be used for model-based GPA.

The first important element of this work has been improving the accuracy
and reliability of model-based GPA results. Even though changes in component
condition from a performance perspective cannot be directly measured, they
can be modeled. More importantly, deterioration effects can be observed by
changes in performance parameters. GPA tools calculate deviations of an en-
gine’s gas path component condition relative to a reference engine. Model-based
GPA tools use gas turbine performance models to calculate these deviations.
Two sources that affect the accuracy of model-based GPA are the accuracy of
the performance model and the reference engine used.

Gas turbine performance models use the thermodynamic laws of conserva-
tion of mass, energy and momentum to simulate the interaction among gas
path components. To simulate the behavior of individual gas path components
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at various operating conditions, so-called component maps are used. Because
component maps describe the behavior of actual gas path components, the
accuracy of gas turbine performance models is strongly dependent on the accu-
racy of these component maps. However, gas turbine manufacturers consider
such detailed data proprietary and as a result the required component maps
for creating accurate performance models are not available outside the man-
ufacturers’ domain. The common alternative is to use component maps that
are available in the public domain and scaling them such that they sufficiently
represent the desired component. However, scaled component maps, which are
usually scaled relative to a single operating point, are not sufficiently accurate
for GPA. To overcome this challenge, a more detailed scaling method was in-
vestigated that used large volumes of on-wing measured performance data of
recently overhauled engines. By using large volumes of engine performance
data available for a wide operating range, the component maps could be tuned
with more detail. The tuned maps captured the behavior of the real gas path
component more accurately and thereby improved the accuracy of GPA results.

Additional improvements to the accuracy and reliability of GPA were ob-
tained by using multiple reference engines to calculate the condition of an
engine. Because operational engines with a good overall condition, which can
serve as a reference engine, still show significant component condition devia-
tions relative to each other, selecting the right engine is important for obtain-
ing reliable GPA results. Because every engine has its own deterioration and
maintenance history, selecting a reference engine by considering only its overall
condition may not be sufficient. Using multiple reference engines for estimating
the condition of a single engine takes this engine-to-engine variation into ac-
count and improves the reliability of the GPA results. Because each reference
engine provides slightly different component condition estimations, the varia-
tion of multiple reference engines provides a way to visualize the uncertainty
of the estimated component condition.

The second important element has been the development of methods to
more effectively use GPA in the aero-engine maintenance process. Tradition-
ally, engine performance after overhaul is tested during mandatory performance
acceptance tests. Because those tests are expensive and time-consuming few
engines are tested before being overhauled. As a result, maintenance work
scopes are often planned without knowing the detailed condition of gas path
components. Because efficient gas turbine operation is the result of a fine-tuned
balance among the performance of its gas path components, knowing their con-
dition is essential for effective maintenance. On-wing measured performance
data would provide an excellent opportunity to obtain that information. By
analyzing those data with GPA, detailed in-flight component condition data
can be obtained, which provides an excellent alternative to performance tests
prior to engine overhaul at minimal additional cost and time.
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The third important element of this work was the development of an infor-
mation system concept for GPA application. It includes a relational database,
which contains data available from the aero-engine maintenance and opera-
tional processes. This database was coupled to the GSP GPA analysis tool and
has been used for demonstrating the added value of systematically using GPA
in the aero-engine maintenance process.

The results of this research work led to the development of new methods
that were implemented in GSP. The added value has been demonstrated on
a large fleet of commercial turbofan engines. In the competitive field of gas
turbine maintenance, repair and overhaul accurate engine condition monitoring
and performance diagnostic tools may provide a technological advantage over
competitors who can provide similar maintenance and overhaul services at lower
rates. These developments are a step towards systematically using GPA in
the aero-engine maintenance process and thereby help to further improve safe,
reliable and cost-effective airline operations.



Samenvatting

Onderhoud van vliegtuigmotoren is essentieel voor veilige, betrouwbare en ren-
abele luchtvaart. Operationele motoren slijten. Dit beïnvloed de mechanische
en aero-thermodynamische prestaties van de motor en heeft een nadelig effect
op de veiligheid, de betrouwbaarheid en het rendement. Onderhoud dat nodig
is om de effecten van slijtage tegen te gaan is een belangrijk element van de
totale kosten per vlieguur. Daarom wordt het onderhoud van vliegtuigmotoren
gezien als een belangrijke kandidaat voor mogelijke kostenreductie.

Een kosteneffectief onderhoudsproces van vliegtuigmotoren kan worden ge-
realiseerd door onderhoud op vaste intervallen te combineren met onderhoud
op basis van conditie. Hierbij word het onderhoud op vaste intervallen door
de motorfabrikant bepaald, terwijl de motorgebruiker zelf het onderhoud op
basis van motorconditie kan bepalen. De motorgebruiker moet zelf routine-
matige inspecties, conditiebewaking en diagnostische methodes gebruiken om
de motorconditie te bepalen en tijdig het benodigde onderhoud uit te voeren.

Een belangrijk onderdeel van het onderhoudsproces is volledige revisie. Ti-
jdens dit proces wordt de motor van de vleugel gehaald, grotendeels ontman-
teld, schoongemaakt, geïnspecteerd, daar waar nodig gerepareerd en uitein-
delijk getest. Gedetailleerde kennis van de motorconditie vóór de revisie stelt
de motorgebruiker en de werkplaats instaat alleen het onderhoud dat werkelijk
nodig is in te plannen. De kennis van de motorconditie is daardoor belangrijk
voor een kosteneffectief onderhoudsproces.

Conditiebewakingstechnieken kunnen zowel tijdens een motortest als tijdens
de vlucht worden gebruikt. Traditionele technieken kunnen de conditie van de
motor als geheel bepalen, maar zijn niet in staat om de conditie van de indi-
viduele gaspadcomponenten te bepalen. Door het complete gaspad met meer
detail te analyseren kan de werkelijke conditie op componentniveau worden
bepaald.

Het doel van dit onderzoek was het minimaliseren van beperkingen die
zich voordoen bij het gebruik van gaspadanalyse in het onderhoudsproces van
vliegtuigmotoren. Gaspadanalyse (GPA) is een diagnosemethode die in staat is
om motormodules die de aero-thermodynamische motorprestatie verslechteren
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te identificeren zonder dat de motor van de vleugel moet worden verwijderd
of ontmanteld. Deze methode relateert variaties van motorprestatieparame-
ters als gevolg van slijtage aan de conditie van de gaspadcomponenten. In
de oude generatie gaspadanalysemethodes werden de relaties tussen de mo-
torprestatieparameters en conditieparameters gelineariseerd waardoor deze on-
voldoende nauwkeurig waren voor een effectieve toepassing in het onderhoud-
sproces. De ontwikkelingen in gasturbinesimulatiesoftware, numeriekemeth-
odes en de rekenkracht van computers hebben geleid tot nauwkeurigere GPA-
methodes die in twee categorieën kunnen worden onderverdeeld: empirische
GPA-methodes en model-gebaseerde GPA-methodes. Empirische methodes
maken gebruik van metingen verkregen van echte motoren en experimenten
om de benodigde relaties te bepalen tussen de conditie van de motor en geme-
ten prestatieparameters. De inverse van deze relaties wordt dan gebruikt om
de motorconditie te bepalen op basis van gemeten prestatieparameters. De
model-gebaseerde methodes gebruiken de thermodynamische behoudswetten
om gemeten prestatieparameters te koppelen aan de conditie van gaspadcom-
ponenten. Hoewel de empirische en op model-gebasserde GPA-methodes veel
verschillen, zijn alle GPA-methodes afhankelijk van zowel voldoende gemeten
prestatieparameters en nauwkeurige kennis van de relaties tussen de geme-
ten prestatieparameters en conditieparameters om nauwkeurige resultaten te
behalen. Door de beperkte beschikbaarheid van gemeten prestatieparameters,
onvoldoende nauwkeurige GPA-programma’s en het ontbreken van geïtegreerde
informatiesystemen wordt GPA in de praktijk niet of inefficiënt toegepast in
het onderhoudsproces.

Dit onderzoek is gericht op drie onderwerpen. Ten eerste, verbetering van
de nauwkeurigheid en betrouwbaarheid van een niet-linear, model-gebaseerd
GPA-programma. Ten tweede, effectiever gebruik maken van beschikbare mo-
torprestatiegegevens voor GPA. Ten derde, het ontwikkelen van een infor-
matiesysteemconcept voor GPA-toepassing in het motoronderhoudsproces. Dit
onderzoek is gedaan door gebruik te maken van zowel simulatiedata als van
prestatieparameters gemeten tijdens motortesten en tijdens het vliegen. Si-
mulatiedata werden verkregen met behulp van het ‘Gas turbine Simulation Pro-
gram’ (GSP). Dit is een simulatieprogramma waarin een gasturbine modulair
kan worden opgebouw uit een bibliotheek van beschikbare componentsubmod-
ellen die gaspadcomponenten, mechanischecomponenten of motorregelingcom-
ponenten kunnen simuleren. GSP heeft ook een generieke adaptive modeling
functie dat gebruikt kan worden voor model-gebaseerd GPA.

Het eerste belangrijke onderdeel van dit onderzoek was het verbeteren
van de nauwkeurigheid en de betrouwbaarheid van model-gebaseerde GPA-
resultaten. Hoewel de conditieparameters van gaspadcomponenten vanuit een
motorprestatieperspectief niet direct gemeten kunnen worden, kunnen ze wel
worden gemodelleerd. Daarentegen kunnen de effecten van conditieveranderin-
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gen in het gaspad wel worden waargenomen als veranderingen in motorprestatie-
parameters. GPA-programma’s berekenen de afwijkingen van motorcondi-
tieparameters ten opzichte van een referentiemotor. Model-gebaseerde GPA-
program-ma’s bepalen deze afwijkingen door gasturbineprestatiemodellen te
gebruiken. Twee effecten die de nauwkeurigheid van model-gebaseerde GPA-
resultaten beïnvloeden zijn de nauwkeurigheid van het motormodel en de keuze
van de referentiemotor.

Gasturbineprestatiemodellen maken gebruik van de thermodynamische be-
houdswetten om de interactie tussen de gaspadcomponenten te simuleren. Om
het gedrag van de individuele gaspadcomponenten te simuleren onder verschil-
lende operationele condities worden zogenaamde component maps gebruikt.
Omdat de component maps het gedrag beschrijven van de werkelijke gaspad-
componenten, is de nauwkeurigheid van een gasturbineprestatiemodel sterk
afhankelijk van de nauwkeurigheid van de component maps. Vliegtuigmotor-
fabrikanten beschouwen deze gedetailleerde informatie echter als bedrijfseigen-
dom waardoor de benodigde component maps voor nauwkeurige motorsimu-
latiemodellen nagenoeg niet beschikbaar zijn buiten het bedrijf.

Om toch gasturbineprestatiemodellen te bouwen worden component maps
die wel beschikbaar zijn in het publieke domein geschaald zodat ze het gedrag
van het betreffende gaspadcomponent voldoende nauwkeurig beschrijven. In
veel gevallen worden component maps geschaald ten opzicht van slechts één
bedrijfspunt. Het resultaat is daardoor in veel gevallen onvoldoende nauwkeurig
voor GPA-toepassingen. Om deze beperking te omzeilen is een component
map-afstellingsmethode onderzocht die gebruik maakt van een grote hoeveel-
heid motorprestatiedata van recent onderhouden motoren gemeten tijdens de
vlucht. Door gebruik te maken van veel motorprestatiemetingen over een ruime
bandbreedte van motorbedrijfspunten kunnen de beschikbare component maps
met meer detail worden afgesteld dan veelgebruikte schalingsmethodes. Deze
aangepaste component maps beschrijven het gedrag van de werkelijke gaspad-
componenten nauwkeuriger wat tot betere GPA-resultaten leidt.

Andere verbeteringen van de nauwkeurigheid en betrouwbaarheid van GPA
werden behaald door gebruik te maken van meerdere referentiemotoren om de
conditie van een motor te bepalen. Operationele motoren kunnen ook die-
nen als referentiemotor. Doordat operationele motoren met een goede con-
ditie onderling ook significante verschillen vertonen in conditieparameters, is
het kiezen van de juiste motor belangrijk voor het verkrijgen van betrouwbare
GPA-resultaten. Omdat iedere motor een andere onderhouds- en gebruikshis-
torie heeft, is de globale motorconditie als enige selectiecriterium voor een re-
ferentiemotor onvoldoende. Door meerdere referentiemotoren te gebruiken bij
het bepalen van de conditie van een motor kan de onderlinge componentcon-
ditievariatie van de referentiemotoren in acht worden genomen. Dit leidt tot
betrouwbaardere GPA-resultaten. Hoewel de berekende gaspadconditieparam-
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eters ten opzicht van iedere referentiemotor enigszins zullen verschillen, kan de
variatie bij het gebruiken van meerdere referentiemotoren de onzekerheid van
de GPA-resultaten zichtbaar maken.

Het tweede belangrijke onderdeel van dit onderzoek was de ontwikkeling
van methodes om beter gebruik te maken van GPA in het vliegtuigmotoron-
derhoudsproces. Door middel van prestatietesten die onder gecontroleerde
omstandigheden op een testbank worden uitgevoerd kan de werking van een
vliegtuimotor in detail worden geanalyseerd. Hoewel deze testen verplicht zijn
na een revisie, worden ze vanwege de benodigde voorbereidingstijd en kosten
zelden uitgevoerd vóór motorrevisie. Hierdoor worden onderhoudswerkzaamhe-
den voor motorrevisie vaak gepland zonder gedetailleerde informatie over de
werkelijke conditie van de gaspadcomponenten. Omdat de effiënte werking
van een gasturbine het resultaat is van een nauwkeurig op elkaar afgestelde
interactie van de gaspadcomponenten, is de informatie over hun conditie essen-
tieel voor effectief onderhoud. Een alternatief voor het verkrijgen van motor-
prestatiedata door deze te testen op een testbank is het gebruiken van motor-
prestatiedata gemeten tijdens de vlucht. Door deze zogenaamde on-wingdata
te gebruiken voor GPA kan de motorconditie nauwkeuriger in de gaten worden
gehouden tijdens de vlucht en is de gaspadconditie bekend voor motorrevisie
tegen minimale extra tijd en kosten.

Het derde belangrijke onderdeel van dit onderzoek was de ontwikkeling van
een informatiesysteemconcept voor GPA-toepassing in het onderhoudsproces.
Een relationele database, met daarin motorprestatiedata en informatie over
het onderhoudsproces vormde een essentieel onderdeel. Deze database werd
gekoppeld aan GSP GPA-tool en is gebruikt om de toegevoegde waarde van
het systematisch gebruiken van GPA in het vliegtuigmotoronderhoudsproces te
demonstreren.

Dit onderzoek heeft geleid tot de ontwikkeling van nieuwe methodes die
in GSP zijn geïmplementeerd. De toegevoegde waarde is gedemonstreerd met
behulp van een grote vloot turbofanmotoren. Er is veel concurrentie in de
wereld van gasturbineonderhoud, reparatie en revisie. Systematisch gebruik
maken van nauwkeurigere conditiebewakingsmethodes en diagnostische tools
is nodig om een technologisch voorsprong te behouden ten opzicht van concur-
renten die in staat zijn om vergelijkbare onderhoudsdiensten te leveren tegen
lagere kosten. De ontwikkelingen die in dit onderzoek zijn beschreven zijn
een stap richting het systematische gebruik van GPA in het onderhoudsproces
van vliegtuigmotoren en helpen daarbij om de veiligheid, betrouwbaarheid en
kosten-effectiviteit van luchtvaartmaatschappijen te verbeteren.



Contents

Summary vii

Samenvatting xi

1 Introduction 1

1.1 Aero-engine deterioration 4

1.2 Aero-engine maintenance 8

1.3 Condition monitoring and diagnostics 9

1.4 Experience with GPA so far 11

1.5 Research scope and objectives 12

1.6 Thesis outline 13

2 Gas path analysis 15

2.1 The GPA concept 17

2.2 Gas turbine performance modeling 18

2.3 Gas path analysis methods 24

2.4 Requirements for a GPA tool from a gas turbine MRO perspective 31

2.5 GSP adaptive modeling methodology 34

2.6 Conclusion 36

3 Gas path analysis with GSP 39

3.1 Application to turbofan engines 40

3.2 Potential for maintenance and condition monitoring 44

3.3 GPA challenges for the MRO industry 57

3.4 Conclusion 61

4 Improving GPA reliability 63

4.1 Uncertainty effects 64

4.2 Component map tuning 69



xvi CONTENTS

4.3 Performance model calibration 77

4.4 Average reference data set definition 86

4.5 Conclusion 98

5 Expanding GPA benefits for maintenance 101

5.1 Additional benefits from test cell performance data 102

5.2 On-wing component condition monitoring using GPA 109

5.3 Conclusion 124

6 Information system concept 127

6.1 Data storage for effective GPA 128

6.2 Relational database model 131

6.3 Information analysis 134

6.4 Conclusion 140

7 General conclusions 143

Nomenclature 147

Bibliography 151

Acknowledgements 157

Curriculum Vitae 159



CHAPTER1
Introduction

G
as turbine engines play an important role in aviation and power genera-
tion. Continuous development since the introduction of the gas turbine
by Sir Frank Whittle have resulted in today’s powerful and efficient

engines which dominate the aircraft propulsion industry [36]. Jet propulsion
enabled much faster and more efficient transport of larger aircraft over longer
distances than propeller propulsion driven by piston engines. These develop-
ments made air transport financially accessible to the general public and led
to a significant growth of the aviation market. In addition, the high thermal
efficiency of gas turbines in a combined heat and power cycle configuration
(CHP) makes these machines attractive for electric power generation. Micro-
turbines are another promising application of the gas turbine engine. These
miniaturized gas turbine engines may become widespread in distributed power
and CHP applications as well as being a promising technology for powering
hybrid electric vehicles.

The first gas turbine configuration used for aircraft propulsion was the tur-
bojet engine. In this configuration all air that enters the engine inlet is expelled
in a single high-velocity, high-temperature exhaust jet. Advances in gas turbine
engine technology have resulted in several engine configurations for different
aero-engine applications. The turbofan engine, which powers the majority of
all commercial aircraft, is the most common gas turbine engine. The turbofan
is essentially a turbojet with a large fan in the front and an extra turbine in
the back. In this configuration some of the air that enters the engine via the
fan passes through its core where it is further compressed, combusted and ex-
panded before being expelled as a high-velocity jet. The rest of the air only
passes through the fan and bypasses the core engine before being expelled at
a slightly higher velocity. Because the addition of the fan increases the thrust
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significantly while requiring only a small amount of extra fuel compared to the
fuel used by the core engine, the turbofan is a very fuel efficient engine.

Safety, reliability and cost-effective operation are essential for aero-engine
applications. While the level of safety perceived by the public determines
whether people will fly with a certain aircraft, engine reliability and cost-
effective operation affect flight operations. A good example how engine reliabil-
ity affects flight operations is the introduction of Extended Operations, better
known as ETOPS[1]. When it was introduced, this rule allowed twin-engine
aircraft to fly long-distance routes over water that previously required aircraft
with more than two engines for additional reliability in case of engine failure.
This way, improvements in turbofan reliability have contributed to more direct
routes available for these twin-engine aircraft. Among other benefits, fewer
engines reduced weight, fuel consumption and maintenance cost.

Civil aircraft
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Figure 1.1: Typical direct operating cost breakdown of a commercial air-
craft powered by turbofan engines. This figure gives an indication of the cost
fraction of fuel, maintenance, and financing for a modern turbofan engine
in relation to the DOC of an aircraft. Source: Marinai et al. [42]

Gas turbines are expensive to operate. The costs of supplying airline ser-
vices are an essential input to many decisions taken by airline operators. The
method of operational cost breakdown used by airline operators depends on the
information that is necessary for decision support. Figure 1.1 shows an example
of the direct operating cost (DOC) breakdown of a commercial aircraft with
turbofan engines. Although the exact DOC breakdown fractions are affected by
several factors including aircraft usage and the number of installed engines, the
figure shows the relative importance of fuel and maintenance costs compared to
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other cost components. In figure 1.1 maintenance and fuel account for roughly
8% and 9% of the total aircraft DOCs. Cost reduction, often focused on main-
tenance cost and fuel cost, have always been important innovation drivers in
the gas turbine field.

Figure 1.2(a) shows the total fuel and non-fuel expenses of the International
Air Transport Association (IATA) commercial airline members1. Whereas both
fuel and non-fuel expenses have been increasing during the past decade, fuel
expenses have risen faster. In fact, the fraction of fuel expenses in 2013 have
doubled since the year 2000. Figure 1.2(b) shows that fuel expenses have
increased from 15% in 2000 to more than 30% in 2012. This figure also shows
the trend of the yearly average crude oil price for the same period. The close
correlation between the relative fuel expenses and crude oil price indicates how
the oil price has a direct impact on fuel expenses which have become the single
largest expense of airline DOCs.
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Figure 1.2: Global airline fuel and non-fuel expenses. Values for 2012 and
2013 are expected and forecasted respectively. Data source: IATA [22].

Combined, the data in figures 1.1 and 1.2 show that engine DOC’s are
significantly affected by fuel expenses. Because airline operators cannot re-
duce crude oil price and because engine financing and depreciation are long
term aspects that are bound by contracts, maintenance has been perceived
as a major target for cost control in the aviation industry. From an oper-
ational cost perspective, effective maintenance is important for two reasons.
First, it can partially compensate for the increasing fuel expenses by reducing
maintenance-related DOC’s, and second, it helps reduce fuel consumption by
ensuring efficient engine operation. Efficient engines use less fuel and produce

1IATA represents some 240 airlines that comprise 84% of the total air traffic [22].
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fewer emissions. This latter aspect is also important when considering global
climate change to which man-made emissions appear to have considerable con-
tribution.

1.1 Aero-engine deterioration

Efficient performance of gas turbine engines is the result of a carefully tuned
interaction among the compressors, combustors, and turbines; commonly re-
ferred to as gas path components. Figure 1.3 shows the configuration of gas
path components of a typical two-shaft turbofan engine. In this configuration
the fan and booster are driven by the low pressure turbine (LPT), and the high
pressure compressor (HPC) is driven by the high pressure turbine (HPT). The
latter two components combined are often referred to as the core engine. The
airflow passing all turbomachinery components is referred to as the core flow
and the air passing only the fan is called the by-pass flow. In modern turbofan
engines used in civil aviation most of the thrust, around 80%, is generated by
the cold by-pass flow. The remainder is generated by the hot core exhaust
flow. The air mass flow ratio of by-pass flow to core flow affects the propulsive
efficiency and the noise generated by the engine’s exhaust. The purpose of the
core engine is to generate the required gas power that the LPT converts into
mechanical power for driving the fan.

During operation gas path components are susceptible to a variety of phys-
ical problems. These include problems such as fouling, erosion, corrosion, for-
eign or domestic object damage, tip clearance increase, worn seals, combustor
damage, and many others [55]. These physical problems have the tendency to
change surface quality, aerodynamic shape, flow patterns and pressure gradi-
ents. When present, they reduce the component’s ability to function efficiently,
thereby affecting gas path component interaction and lead to degraded engine
performance. Because component deterioration also reduces the ability to with-
stand the loads that gas path components are subjected to, it affects engine
safety, reliability and cost-effective operation.

1.1.1 Mechanical deterioration

During operation gas turbine components are subjected to various loads such
as centrifugal, thermal, vibration, and pressure loads. Most of these loads
have a repetitive nature because they originate from engine start-stop cycles,
engine power setting changes, small rotating unbalances and other repetitive
sources. If the repeated loads are above a certain threshold they can lead to
fatigue damage. This damage mechanism initiates as small (micro) cracks in
components that grow with each loading cycle. When not detected in time,
these cracks may lead to catastrophic component failure.
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Low pressure turbine (LPT)

High pressure turbine (HPT)

High pressure compressor (HPC)

BoosterFan

2 3 4 95

Figure 1.3: Engine configuration of a typical two-shaft turbofan engine.
The numbers indicate the standard gas turbine station numbers and relate
to the temperature-entropy diagrams shown in figure 1.4.

Fatigue damage is classified as either low cycle fatigue (LCF) or high cycle
fatigue (HCF). Depending on the magnitude and nature of the repetitive load,
component design, and material properties, failure resulting from LCF may
occur in the range of 103 and 106 cycles. This translates to possible failure
in terms of months or years. In gas turbines, the main source of LCF is the
engine’s start-stop cycle, which induces repetitive thermal loads. The main
source that may lead to HCF are vibrational loads resulting from rotating mass
unbalance or rapid pressure fluctuations across airfoils. Failure occurs typically
in the range of 106 and 109 cycles. Because of the high frequency of vibrational
loads that induce HCF the time between crack initiation and component failure
may be very short; sometimes a matter of minutes. Although careful structural
design can minimize unwanted vibrations, HCF is often initiated by external
factors such as foreign or domestic object damage that cause mass unbalances
and pressure fluctuations.

Another type of mechanical deterioration is creep: a slow, high-temperature
deformation process during which parts undergo plastic deformation. Turbine
blades are exposed to a combination of high temperatures and high centrifugal
loads for extended periods during engine operation. This may lead to creep
damage. At high temperatures, this deterioration process is very sensitive
to temperature changes. When not detected in time, creep may also lead to
component failure.

While fatigue and creep are examples of mechanical deterioration that af-
fect gas turbine safety and reliability, their effect on engine thermodynamic
performance, if any at all, is much smaller than other degradation mechanisms.
Material deposits caused by fouling and changes to the airfoil geometry and
surface finish caused by erosion and corrosion alter the aerodynamic perfor-
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mance of gas path components. Consequently, these deterioration mechanism
are more likely to have a larger effect on engine performance compared to the
aforementioned deterioration mechanisms.

1.1.2 Performance deterioration

From a thermodynamic perspective the effects of performance deterioration
can be explained using the temperature entropy diagram, commonly referred
to as the T-s diagram. This diagram is used in thermodynamics to visualize
the changes in temperature (T) and specific entropy (s) of a fluid during a
thermodynamic cycle. The curved lines in the T-s diagram are isobars, i.e.,
lines of constant pressure. The T-s diagram in figure 1.4(a) shows the open
Brayton cycle that represents the idealized thermodynamic cycle occurring in
gas turbine engines.
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Figure 1.4: Temperature-entropy (T-s) diagrams showing the thermody-
namic gas turbine cycle. Figure 1.4(a) shows healthy engine performance
and the direction of the thermodynamic cycle, and figure 1.4(b) shows the
effects of degraded engine performance, which leads to reduced power output
(P’out).

The Brayton cycle in its ideal form consists of two isobaric (constant pres-
sure) processes and two isentropic (constant entropy) processes. The real ther-
modynamic process in a gas turbine engine is neither isobaric nor isentropic;
the specific entropy increases during compression and expansion and pressure
loss occurs during combustion. The numbers in these figures correspond to
the gas path stations that are shown in figure 1.3. When the thermodynamic
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effects of the engine inlet are neglected, air entering the cycle at station 2 is
compressed from pressure P2 to P3. Combustion at nearly constant pressure
raises the temperature from T3 at station 3 to T4 at station 4. Expansion in
the turbine reduces the pressure from P4 at station 4 to P5 at station 5 where
it further expands in the exhaust nozzle and leaves the cycle at station 9.

Gas turbines generate a net power output because the hot gas expansion
from the pressure at station 4 to station 9 delivers more power than necessary
for compression of the cold air from the pressure at station 2 to station 3. This
phenomenon is the result of the divergent isobars of the T-s diagram. The
required compression power, indicated by the black, vertical dashed lines in
figure 1.4(a), is the same as the expansion power extracted between station
4 and station 5. The remaining expansion power from station 5 to station 9
is converted to shaft power in a turboshaft configuration or to jet power in
turbojet or turbofan configurations.

Effects of gas path component deterioration

The effects of gas path component deterioration can be explained by means
of a T-s diagram. Deterioration reduces the ability of gas path components
to perform their function. For example, a deteriorated compressor operating
at fixed rotational speed (RPM) may deliver compressed air at slightly higher
temperature but lower pressure (P3′) compared to the same compressor with no
deterioration operating at the same operating conditions. This is shown in fig-
ure 1.4(b) at station 3’. This results in a slight increase of required compression
power compared to the original Brayton cycle. A fixed temperature increase
during combustion leads to a higher turbine inlet temperature at station 4’.
Because of the slightly lower compressor delivery pressure, less power can be
extracted from expansion between 4’ and 9’. Combined, the increased compres-
sion power and the reduced expansion power lead to reduced net output power
from Pout to P’out.

Because an aircraft requires a certain amount of thrust to perform its func-
tion, turbofan engines are equipped with a control system which ensures that
for each power setting the desired thrust is generated despite the effects of
component deterioration. To compensate for the effects of deterioration, the
control system increases the fuel until the required thrust is generated. How
the engine reacts depends on the control logic, engine limits and the levels of
deterioration of each gas path component. In general the effects of deteriora-
tion are often (but not always) increased core engine speed, changes in pres-
sure ratios, increased gas path temperatures and fuel consumption. Increased
gas path temperatures combined with increased centrifugal loading resulting
from increased rotational speeds may also accelerate some deterioration mech-
anisms such as creep and hot corrosion. These, in turn, change the geometry
of gas path components and thereby affect their performance. This description
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shows that gas path component deterioration is a complex process where phys-
ical deterioration mechanisms and the resulting changes in engine performance
mutually affect each other; always in an unwanted manner.

1.2 Aero-engine maintenance

Maintenance is necessary to restore the effects of mechanical and aero-thermodynamic
performance deterioration. Because maintenance has such an impact on an air-
craft’s DOC, as suggested by figure 1.1, it has always been an important target
for improvements. Over time, this has resulted in several maintenance strate-
gies [59] that may be categorized as: reactive, preventive, and condition-based
maintenance. These strategies have evolved over time with increasing opera-
tional experience and knowledge about component deterioration and material
properties, development of new inspection methods and diagnostic tools, and
requirements for cost-effective airline operations. However, all approaches have
their own set of advantages and disadvantages.

Using a reactive maintenance strategy means that maintenance is applied
after failure occurs. Although this strategy maintains high output levels until
failure occurs, it is not always desirable. Failure may occur at an inconvenient
time and place, and it may result in additional damage to components that may
otherwise have been in good condition. These added circumstances always lead
to unnecessary inconvenience and additional cost.

Cost-effective maintenance can be achieved by balancing maintenance cost
on one hand and engine safety, reliability and availability on the other hand.
While reactive maintenance maximizes an engine’s operational hours, it ulti-
mately leads to suboptimal safety, reliability, and availability. An approach
for reducing unexpected failure and improving engine safety and reliability is
applying preventive maintenance. This approach is based on the prediction of
the average lifespan of components and the inspection, repair or replacement
of those components before the end of their lifespan. Because components do
not always fail at regular intervals, however, this strategy does not yield the
maximum possible reliability and availability. The following three problems
may lead to suboptimal preventive maintenance [15].

• Unexpected failure; component failure may occur between maintenance
sessions.

• Unnecessary maintenance; good components might be disassembled and
inspected. Moreover, in addition to unnecessary disassembly, the condi-
tion after reassembly might be worse than before overhaul.

• Long overhaul; because gas turbines consist of many small components,
inspection of the large number of possible faulty components is time-
consuming.
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To minimize maintenance costs, a condition-based maintenance strategy can
been employed. This strategy–also known as on-condition maintenance–uses
no fixed intervals for engine removal. Instead, engine health is derived from
condition monitoring techniques and inspections at pre-determined intervals.
Maintenance is planned if there is proof of deterioration.

In practice, turbofan engine maintenance is based on a combination of pre-
ventive and condition-based maintenance [8, 55]. With this approach on-wing
maintenance and engine removal are driven by gas path deterioration, physical
deviations, usage of life-limited parts (LLPs) or other mechanical causes such
as increased vibration levels. Because this approach leads to almost complete
consumption of the service life of components, it may lead to significant cost-
benefits compared to other methods. However, condition-based maintenance
can only be used for components where signs of deterioration can be detected at
an early stage. While condition-based maintenance offers substantial benefits
for the maintenance process, unnecessary part replacements can still occur be-
cause in real aero-engine operations the maintenance intervals of preventive and
condition-based maintenance do not necessarily line-up. For this reason much
effort is put into developing effective diagnostic methods aimed at improving
condition-based maintenance.

1.3 Condition monitoring and diagnostics

To detect and quantify the effects of mechanical and aero-thermodynamic per-
formance deterioration diagnostic methods are used. Existing diagnostic meth-
ods may be grouped in four categories: mechanical integrity analysis, oil de-
bris analysis, vibration analysis and performance analysis [15]. Information
obtained through diagnostics is useful for engine removal planning and for es-
timating the required maintenance work scope.

Mechanical problems are generally identified through mechanical integrity
analysis and oil debris analysis. Mechanical integrity ranges from external in-
spection of leaks, security of pipes, accessories, and control linkages to internal
borescope inspection for detecting cracks, blade rubs, burns, deposits, and other
signs of deterioration. Although very effective to identify and quantify the de-
gree of deterioration, these diagnostic techniques are often time-consuming and
require opening of covers, partial disassembly, specialized tools, and sometimes
even engine removal to access the necessary engine components and parts.

For smooth operation of rotating gas turbine components their motion is
restricted by rolling bearings and they are balanced with respect to their ro-
tating axis. As bearings wear down and small mass imbalances develop due
to non-axisymmetric deterioration in rotating gas turbine components, their
vibration levels increase. Analyzing vibration patterns and identifying the root
cause is called vibrational analysis. While in theory this diagnostic technique
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is very powerful, in practice it requires complex analysis. In addition, the avail-
able information regarding component vibration is limited to a few frequency
filtered measurements. As a result of such limitations, only basic vibration
analysis is used for monitoring vibration amplitudes at specific frequencies and
warn when limits are exceeded. Upon exceeding vibration amplitude limits,
visual inspection methods are used to locate the root cause.

1.3.1 Gas path analysis

Although the diagnostic techniques mentioned so far enable estimating an en-
gine’s mechanical state, they provide no information regarding its aero- thermo-
dynamic performance. Gas turbine performance is determined by the perfor-
mance of its gas path components and their interaction. Performance-related
problems can be detected by measuring and monitoring parameters along the
gas path such as pressures and temperatures. Since the objective of gas tur-
bine maintenance is to restore engine performance and ensure safe, reliable,
and cost-effective operation, and because maintenance of gas path components
is both time-consuming and expensive, performance diagnostics should be an
integral part of the maintenance process.

However, the complex aero-thermodynamic interaction among gas path
components makes it difficult to detect the root-cause of performance-related
problems. Even though the effects of gas path component deterioration can be
observed by monitoring measured performance parameters, these parameters
are also affected by changes in power setting and operational conditions, and
by measurement error. Moreover, when comparing performance of different
engines of the same make and model, small differences among engines may
also lead to notable variations in measured performance parameters. Because
all these factors occur simultaneously, reliably identifying the underlying root
cause is difficult and usually impossible without additional analysis.

Gas path analysis (GPA) is a method that relates variations of measured
engine performance parameters resulting from engine deterioration to the con-
dition of its gas path components [60, 67, 68, 74]. GPA is a useful addition
to existing gas turbine diagnostic methods that are used for condition-based
maintenance. It enables component-level condition analysis without the ne-
cessity of engine disassembly, provides diagnostic information that cannot be
obtained with other techniques, and provides more detailed information than
existing performance monitoring techniques. These benefits may lead to sub-
stantial maintenance cost reduction. When used systematically in the aero-
engine maintenance process, GPA offers substantial potential for anticipating
the need of maintenance and guide the work scope definition process.
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1.4 Experience with GPA so far

Developments in the field of GPA by the original equipment manufacturers
(OEMs) in the late 70’s and early 80’s led to commercial GPA tools such as
TEMPER [13] and COMPASS [53]. However, the accuracy and reliability of
these tools was limited because of the linear approximation methods used for
gas path diagnostics at that time as well as other factors such as measurement
uncertainty and engine-to-engine differences. As a result, improving diagnostic
accuracy has been the focal point for developing better GPA techniques [24,
38, 42]. This has led to many new GPA methods of which some directly use
performance models and are referred to as model-based GPA or differential
GPA [13, 53, 61, 62, 74], whereas others use machine-learning techniques in
combination with large volumes of performance data and are referred to as
empirical GPA or artificial intelligence based GPA [14, 29, 49, 77].

Despite the useful diagnostic capabilities and the improvements made in the
past decades, GPA is not widely used in the aero-engine maintenance process or
its application is limited to the analysis of performance data that are measured
during mandatory performance acceptance tests after engine overhaul. While
using GPA this way provides useful information when engines exhibit poor post-
overhaul performance, it provides little added value to the overall maintenance
process. The added value of GPA for the maintenance process can be further
exploited when GPA is integrated in the maintenance process.

The limited use of GPA for aero-engine maintenance may be attributed to
several factors of which diagnostic accuracy and reliability are two important
ones. While developments in this field have led to more reliable and accu-
rate techniques, no single GPA technique addresses all issues satisfactory [42].
For example, some methods are capable of accurately quantifying component
condition deviations but need to know which component is deteriorated. In
practice, this information is not available. Other methods do not need this
a-priori information but do require specific engine data that are proprietary
to the engine manufacturer. Without such data the GPA tool may not prop-
erly consider all aspects that affect observed engine performance and lead to
inaccurate component condition estimations.

Another factor that limits systematic use of GPA is the absence of generic
GPA tools. Often GPA tools are developed and demonstrated for a specific
engine type and an available set of measured performance parameters. As a
result, GPA tools may not be capable of analyzing multiple engine types. Gas
turbine operators and engine shops usually work with multiple engine types,
each of which may have different sets of measured performance parameters.
Modifying an existing tool for different engine types and measured data set
may not be possible or may require too much time and money. From that
perspective generic GPA tools offer a significant advantage over engine-specific
tools for MRO shops.
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Apart from engine-specific GPA solutions, the absence of an integrated and
flexible information system as part of a GPA tool for storing and retrieving mea-
sured and analyzed data may be considered as another limitation. In practice,
the performance data that are necessary for GPA may have multiple sources
(in-flight or test cell), each of which may have a different format as well as
a different set of measured performance parameters for different engine types.
When all these possible variations require manual user actions they may have a
discouraging effect for using a tool and potentially introduce errors. Therefore,
integrating and systematically using GPA in an existing maintenance process
requires an integrated and flexible information system.

Finally–and this may be considered as a strong argument against using
GPA–poor engine performance is not always the primary reason for engine re-
moval and overhaul. Life-limited parts and other mechanical problems also
trigger engine removal. Gas turbine life-limited parts are those engine rotat-
ing and major static structural parts whose primary failure is likely to result
in a hazardous engine effect and for which the operational life is limited to
a total life counted in hours, cycles, landings, or by calendar. When LLPs
trigger engine overhaul and GPA is not used in the condition-based strategy
for assessing gas path condition, some gas path components might receive very
limited maintenance based on component condition estimations obtained via
other inspection methods. However, maintaining a gas turbine engine with-
out knowing the condition of its gas path components may result in incorrect
maintenance and poor performance after overhaul and cause the engine to fail
its mandatory post-overhaul performance acceptance test. Thus, regardless of
the removal reason of any gas turbine aero-engine, GPA should be an integral
part of the maintenance process to ensure a cost-effective maintenance process.

1.5 Research scope and objectives

When considering practical limitations of existing gas path analysis methods
and tools as well as current implementations of this diagnostic tool in the aero-
engine maintenance process there still is room for improvement. The objective
of the research work presented in this thesis is to study how GPA can be used
more effectively in the aero-engine maintenance process and whether challenges
that currently limit GPA can be overcome with available data and methods.
The main research question addressed by this thesis is:

How can gas path analysis be more effectively used in the mainte-
nance process of gas turbine aero-engines?

The research and development challenge lies in improving the accuracy and
reliability of GPA and achieving this by using only data available to gas tur-
bine MRO shops rather than data from gas turbine manufacturers. Another



1.6 Thesis outline 13

important factor to more effectively use GPA in existing maintenance processes
is to include a system that enables interaction between measured engine per-
formance data, the maintenance process and a GPA tool.

The approach used in this work is to first identify the main challenges
that limit systematic application of GPA in the maintenance process. This
research project uses NLR’s Gas turbine Simulation Program (GSP) [46], a
component based performance simulation tool that can model virtually any
gas turbine engine configuration [72]. An adaptive modeling (AM) capability
was developed at Delft University of Technology that has been implemented
in the generic component based simulation environment of GSP [73, 74]. This
AM component has been in use as a technology demonstrator at KLM Engine
Services since 2004 for post-overhaul gas path component diagnostics of the
CF6-50, CF6-80, and CFM56-7B engine families.

When the main limitations are identified, the aim is to conceptually develop
and implement the necessary improvements into the existing adaptive modeling
component of GSP. The added benefits of systematically using GPA in the
aero-engine maintenance process are demonstrated by using large volumes of
measured performance data that were obtained from a fleet of gas turbine aero-
engines. In addition, an information system is developed for better connecting
available performance data to the AM tool.

The benefits of integrating gas path diagnostics in the aero-engine main-
tenance process may not be limited only to the aero-engine itself. Indeed,
knowing the condition of gas path components before maintenance may help
planning engine overhaul and determining what maintenance actions are nec-
essary. Such an application of GPA will likely result in better post-overhaul
performance. But by relating component condition information to maintenance
actions, the effectiveness of the aero-engine maintenance process itself may be
quantified.

This study attempts to develop knowledge applicable to any gas turbine
engine operator by using a non-OEM GPA tool as well as engine performance
data that would be available to engine operators. Although it is primarily
focused on the GPA application for civil gas turbine aero-engine maintenance,
the methods, results, and conclusions presented herein apply to maintenance of
gas turbines in general. They are readily applicable to other gas turbine fields
such as land-based power generation, marine, and military applications.

1.6 Thesis outline

This thesis is structured as follows.

• Chapter 2 describes the gas path analysis concept and how it is used for
detecting gas path component deterioration. A comprehensive overview
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of existing GPA methods and latest developments are presented, includ-
ing an assessment of their strengths and weaknesses. This chapter also
describes in detail the GPA tool used for this research.

• Chapter 3 presents the investigation of the current GPA use in an aero-
engine maintenance environment. While there are many challenges re-
lated to GPA, the wide range of GPA methods that exist today were
mainly developed to address the mathematical inverse problem. From
the available literature, it appears that the other challenges have received
little attention. By analyzing the strengths and weaknesses of GPA in
relation to the needs of aero-engine maintenance, an attempt is made to
uncover hidden GPA potential and identify necessary improvements.

• Limited accuracy and unreliable performance parameter measurements
are considered a major obstacle in systematically using GPA. Chapter 4
presents the methods for improving accuracy of model-based GPA and
dealing with measurement uncertainty.

• Chapter 5 is concerned with the application of the enhanced GPA tool
to aero-engine maintenance process. It synthesizes the work presented in
chapters 3 and 4 and demonstrates how the added potential of GPA can
be beneficial to the aero-engine maintenance process. The focus is both
on post-overhaul test cell engine diagnostics as well as on-wing component
condition monitoring. Several case studies are used to demonstrate both
applications.

• Although both accurate GPA tools as well as accurate performance data
are necessary for reliable diagnostics of gas path components, effectively
integrating GPA into the aero-engine maintenance process requires an
information system: a system that enables interaction between engine
performance data, performance engineers, maintenance process, and a
GPA tool. Chapter 6 describes the requirements and necessary develop-
ment steps for a dedicated GPA information system. Finally, chapter 7
presents concluding remarks.



CHAPTER2
Gas path analysis

Abstract

Diagnostic tools are essential for effectively using the condition-based main-
tenance approach for gas turbine aero-engines. Gas path analysis (GPA) is
a method that can isolate and quantify the relative severity of problems that
affect engine performance. This chapter describes how measured performance
parameters are used for detecting component deterioration. It provides a gen-
eral overview of existing GPA methods that have been developed over the years
and describes their strong and weak characteristics. The focus is on model-based
GPA and the zero-dimensional performance modeling technique that form the
basis of model-based GPA. This chapter also addresses the adaptive modeling
technique that was used for GPA in this research as well as the Gas turbine
Simulation Program GSP which has an embedded adaptive modeling capability.
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F
rom a thermodynamic perspective, efficient performance of gas turbine
engines is the combined result of individual gas path component perfor-
mance as well as their mechanical and aero-thermodynamic interaction.

During their operational life gas path components are susceptible to various
physical problems such as fouling, erosion, corrosion, partially damaged or
missing blades, foreign or domestic object damage, tip clearance increase, worn
seals, combustor damage, and many others. The deteriorated performance
caused by these wear and tear mechanisms leads to a new but suboptimal
equilibrium operating points among gas path components. While the exact
behavior of a deteriorated engine depends on the type and severity of the de-
terioration and the components that are deteriorated, the bottom line is that
a deteriorated gas turbine delivers less power for a certain amount fuel mass
flow or requires more fuel to deliver a certain amount of power.

Changes to the condition of gas path components can be described in several
ways. From a thermodynamic perspective the condition of gas path compo-
nents is quantified in terms of isentropic efficiency (η), mass flow capacity (Wc)
and pressure ratio (PR). The isentropic efficiency is defined as the ratio of work
between the ideal process and real process that occur in the gas path compo-
nents of a gas turbine engine. Using the concept of total specific enthalpy
(ht), the isentropic efficiency of a compressor and turbine in a gas turbine are
described respectively as:

ηcompressor =
htexit,is − htin

htexit
− htin

(2.1)

ηturbine =
htin

− htexit

htin,is − htexit

(2.2)

The mass flow capacity, or flow capacity, is the corrected mass flow passing
through a gas path component. The corrected mass flow is defined as:

Wc =
ṁ

√

R · Ttin

Ptin
D2

(2.3)

It is the actual mass flow (ṁ) that is corrected for gas properties represented
by the specific gas constant (R), thermodynamic state described by pressure
and temperature (P and T), and a parameter representing the cross sectional
flow area of that component (D).

The pressure ratio is the ratio between the inlet and exit pressure of a gas
path component and is defined as:

PR =
Pexit

Pin

(2.4)

The severity of component deterioration can be represented by the differ-
ence between the actual component condition parameters and their baseline
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values. This difference is referred to as the condition delta or component con-
dition deviation. Large condition deltas represent more severe deterioration.
Deterioration always results in reduced isentropic efficiency of any gas path
component but it may lead to increased or decreased mass flow capacity and
pressure ratios. Even though the effects of gas path component deterioration
may be quantified this way, these component condition parameters cannot be
measured directly. Instead the effects of component deterioration can produce
observable changes to measurable performance parameters such as pressure,
temperature and rotational speeds. By analyzing the changes to the mea-
surable performance parameters while taking into account the effects engine
operating conditions and power settings, the presence of component deterio-
ration can be implicitly detected. This technique is referred to as gas path
analysis.

2.1 The GPA concept

Figure 2.1 shows a schematic of the relation between physical degradation
mechanisms, independent component condition parameters, and dependent and
observable engine performance parameters. The relation shown in this figure
can be used in several ways. One widely applied method that makes use of this
relation is gas path performance monitoring. These systems enable monitoring
of measured performance parameters and calculated parameter groups. For
each monitored parameter thresholds can be specified. Parameter threshold
exceedances may lead to maintenance actions to further investigate or solve a
potential problem. Even though these systems can detect the effects of changed
component condition on engine level by observing gas path performance pa-
rameters such as fuel flow, temperatures, pressures, rotor speeds, or others,
they are unable to quantify the independent component condition parameter
changes.

Physical problems:

•Erosion
•Corrosion
•Fouling
•F.O.D. / D.O.D
•Worn seals

Deteriorated compo-
nent performance:

•Pumping capacities
•Compressor e!ciencies
•Temperature pro"le
•Turbine e!ciencies
•Exhaust nozzle areas

Changes in measured 
parameters:

•Spool speeds
•Fuel #ow
•Temperatures
•Pressures
•Power output

Result in Produce

Permit 
correction of

Allow 
isolation of

Figure 2.1: Relation between physical degradation mechanisms, component
condition changes, and observable engine performance parameters. Source:
[67]
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Because gas path component deterioration also affects component interac-
tion, the effect of deterioration is usually observed by simultaneous changes
to several performance parameters [67]. In addition, these effects are further
complicated because gradual component deterioration usually occurs simulta-
neously in multiple components. Because changes in power setting and atmo-
spheric conditions at the engine inlet also affect engine performance parameters
identifying the root cause of the degraded engine performance requires addi-
tional analysis.

Another way to exploit the relation shown in figure 2.1 is by means of
differential gas path analysis. This method uses computer models for relating
measured engine performance parameters to component condition parameters.
It attempts to identify component condition deviations by comparing observed
performance parameters to baseline engine performance and using either the
known underlying thermodynamic relations or known fault signatures.

The objective of a practical differential GPA tool is to detect as many of
the physical gas path problems as possible by means of available measured
engine performance parameters. Problems such fatigue cracks in the rotor
disks or blades, corrosion that only affects the metallurgical characteristics, or
a mass imbalance resulting in excessive vibrations may not be detected with this
technique and require other diagnostic methods. While some problems have a
purely mechanical origin and do not affect engine performance, many have a
direct effect on engine performance and are best diagnosed using performance
measurements [41]. Therefore, cost-effective gas turbine maintenance requires
an integrated approach in which GPA is used together with other diagnostic
techniques [67].

Apart from the complex interaction between measurable performance pa-
rameters and component condition parameters mentioned so far, the accuracy
of any GPA technique is also affected by measurement uncertainty, the avail-
ability of measured performance parameters and the accuracy of the GPA tech-
nique itself. Attempting to overcome these challenges has led to the develop-
ment of several GPA methods that can be classified as either model-based GPA
methods or empirical GPA methods. Before these methods are further charac-
terized in section 2.3, the basic concepts of gas turbine performance modeling
are discussed.

2.2 Gas turbine performance modeling

Gas turbine performance models are used in almost all phases of the gas turbine
life cycle. Performance modeling can be divided in two categories: design point
performance modeling and off-design performance modeling [47].

Design point performance modeling is used for optimizing engine configu-
ration, component design, and cycle parameters such that the required overall
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engine performance is met at specific operating conditions. For aero-engines
the fitness of a design is assessed by characterizing engine performance param-
eters such as net thrust, specific thrust, and specific fuel consumption. Every
change to the input parameters during this calculation procedure requires a
different engine geometry at a fixed operating condition. Basic cycle calcula-
tions, which are covered in detail in texts on gas turbine theory [57, 75], are
used for design point performance analysis.

Once the geometry of all gas path components has been selected and the de-
sign of an engine is fixed, off-design performance modeling is used to determine
whether the interaction among gas path components and the engine control
system at different operating conditions results in satisfactory performance.
When performance limitations are exceeded at this stage, off-design perfor-
mance analysis can be used to determine which modifications are necessary to
the engine design such that satisfactory performance is achieved. In addition
to simulating steady state engine performance, off-design performance models
can also include time-dependent processes such as component acceleration or
deceleration thereby allowing for transient off-design engine performance anal-
ysis.

Spatial discretization, which may range from zero-dimensional (0-D) to full
three-dimensional (3-D), is another aspect of off-design performance models. 0-
D, or parametric, models are the most widely used for gas turbine performance
analysis. These models do not use spatial discretization but instead calculate
the averaged gas properties at discrete locations along the gas path. Individual
gas path components such as compressors, combustion chamber, and turbines
that form the engine are considered as a set of black boxes. This 0-D approach
requires relatively simple calculation methods to solve a reduced number of
unknowns for modeling [47]. 1-D performance models operate in a similar
fashion, but usually apply a spatial discretization along the mean flow path
which represents the average gas path trajectory from inlet to exhaust. Gas
properties are also calculated along this mean flow path within each component.
Even though this generates more detailed information than 0-D models, it
requires more information to set up. 2-D and 3-D models increase the number
spatial dimensions. While multi-dimensional model are capable of calculating
gas properties in more detail, it requires detailed geometric data of all gas path
components, which are hard to obtain, and a much higher computational load.

Because the objective of GPA is to estimate condition deviations on compo-
nent level, additional spatial discretization is not necessary. GPA methods use
0-D, steady state performance models. Moreover, pressure and temperature
sensors required for GPA are usually located along the gas path at the compo-
nent interfaces, i.e., the location in the gas path where one component ends and
another begins. Figure 2.2 shows an example of a typical twin-spool turbofan
engine configuration including the major engine modules or components.
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Low pressure turbine (LPT)
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High pressure compressor (HPC)
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Figure 2.2: Layout of a typical twin-spool turbofan engine. The dashed
arrows indicate the bypass and core flow path.

2.2.1 Component performance maps

On engine level, performance models simulate steady state off-design perfor-
mance by using the laws of conservation of mass, energy, and momentum to
obtain equilibrium operation among the gas path components of the gas tur-
bine model. Off-design performance prediction on component level requires a
different approach compared to performance prediction on engine level. For
relatively simple gas path components such as inlet and exhaust components,
fixed losses relative to design performance are sometimes used. Instead of
solving the Navier-Stokes equations to estimate detailed fluid properties and
deduce off-design component performance, 0-D performance models use compo-
nent maps (or component characteristics) for estimating off-design performance
of turbomachinery components such as compressors and turbines. The compo-
nent maps, which are often in tabular form, describe component behavior in
terms of corrected performance parameter groups. Estimating off-design per-
formance of each gas path component in a performance model is achieved by
interpolating the necessary component maps.

Performance of gas path components depend on the geometry, inlet condi-
tions, and other design characteristics such as rotational velocity for rotating
components. Turbomachinery component performance can be described by us-
ing 8 parameters [57]. For a compressor the following functional relation may
be used for expressing its performance.

Compressor performance = f(D, N, m, Pt1, Pt2, RTt1, RTt2, ν)

In this functional relation D is a characteristic linear dimension of the compo-
nent, N its rotational speed, m the mass flow through the component, P the
pressure, RT temperature, and ν the viscosity. The subscript t1 and t2 refer to
total (or stagnation) inlet and outlet conditions respectively. The temperature
T here is associated with the gas constant R such that the combined parameter
RT has the dimensions of velocity squared. For modeling purposes, however,
it is convenient to minimize the number of performance parameters required
to describe component performance. This facilitates the numerical calculation
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and enables quick and easy analysis.
Dimensional analysis is used to reduce these 8 parameters down to the 5

non-dimensional parameter groups shown in the center column of table 2.1.
This topic is covered extensively in other literature such as [25, 57, 75]. In
general, non-dimensional parameter groups reflect the dynamic processes that
occur in gas path components. For a specific engine configuration, the pa-
rameter groups can be normalized to ambient atmospheric conditions. These
corrected parameters, shown in the right column of table 2.1, are not dimen-
sionless. Because of this normalization, at standard conditions, the values for
the corrected mass flow and shaft speed are identical to the actual values.

Strictly speaking the Reynolds number is required for full specification of
component performance. It is a measure of the ratio of inertia forces to viscous
forces and quantifies the relative importance of these two forces for given flow
conditions [25]. The greatest effect of Reynolds number variations, as a result
of altitude changes, is on component efficiency. However, performance effects
due to Reynolds number variations are small and therefore neglected in most
cases.

Non-dimensional Corrected
parameters parameters

mass flow ṁ
√

R·Tt1

Pt1D2
ṁ

√
θ

δ

shaft speed N ·D√
R·Tt1

N√
θ

pressure ratio Pt1

Pt2

Pt1

Pt2

efficiency η η

Reynolds number Pt1·D√
R·Tt1·µ

δ·D√
θ·µ

Table 2.1: Non-dimensional and corrected parameters used for component
performance where θ = T

Tamb
and δ = P

Pamb
.

The working medium in a specific gas turbine configuration is fixed. There-
fore, the universal gas constant R, shown in the non-dimensional group of the
mass flow and shaft rotational speed, is often omitted. If a specific compressor
design is analyzed, the characteristic geometry D will remain constant and can
therefore be omitted.

Component characteristics contain the correlation between these parameter
groups that describe component performance in discrete tabular form. These
tables are often shown graphically and are therefore commonly referred to as
component maps. An example of a compressor map is shown in figure 2.3. Be-
cause of the relations between corrected parameter groups, any two parameter
groups are sufficient for specifying the operating point of a component.
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Figure 2.3: An example of a compressor map. The figure shows the cor-
relations between the corrected parameter groups that form the compressor
map.

Since engine performance depends on individual component performance,
accurate component maps are key for obtaining correct off-design performance
simulation results. While original component maps would be desirable, these
are often proprietary and are usually not available outside the engine man-
ufacturer’s environment. Alternatively, component maps available for similar
components are generally used instead [31]. Although for most gas path compo-
nents the correlation between parameter groups are established experimentally,
computational fluid dynamic tools or other methods are also used for estimating
component maps [30, 33].

2.2.2 0-D component matching method in GSP

0-D performance modeling tools calculate valid steady state performance by
iteratively solving the basic conservation equations and obtain equilibrium per-
formance among all gas path components. Off-design component performance
is estimated by interpolating the component maps of each gas path component.

To perform these calculation steps in GSP, the engine operating point is
numerically represented by the model state vector. The operating state of a
single component is defined by state variables. Because of physical connections
and continuity requirements some components have common state variables.
Examples are mass flow of adjacent gas path components and shaft rotational
speed of components that are mechanically connected. The state variables
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together form a state vector, which contains all information to specify the model
state and thus the engine operating point. Equation 2.5 shows an example of a
state vector for a basic turbojet model that contains five gas path components
and requires four state variables to specify the model state.

S̄ =









s1

s2

s3

s4









=













W
Wdes

N
Ndes

βc

βc des

βt

βt des













(2.5)

Because the state variables represent values that may differ several orders
of magnitude, they are normalized to avoid instability problems during the
numerical iteration process. The variables in the state vector are normalized
with respect to the model reference point performance levels. Therefore the
state vector defines the model state relative to this reference point.

The conservation laws necessary for calculating a model state are established
by defining error equations among the components. In other words, the error
equations define the relations between the various component state variables of
the gas turbine model. To have a fully determined system of equations an equal
number of state variables and error equations is required. The error equations
combined with the state variables form a set of non-linear differential equations.

Ei = ṁinlf(s1) − ṁcompf(s2, s3) (2.6)

An example of an error equation is shown in equation 2.6, where the mass
flow through the inlet component, as a function of state variable s1, is related
to the mass flow through a compressor component, with state variables s2 and
s3. This error equation represents the conservation of mass, since the air flow
through the compressor component must first pass the inlet component. A non-
zero error indicates a deviation from a physical relation between components
and thus an invalid solution.

2.2.3 Iterative solution method

For a design point calculation, all design parameters such as mass flows and
pressure ratios are defined and the engine model is sized to those parame-
ters. This means that dimensions such as the nozzle throat area are fixed. At
this point, all error equations are defined and the state variables are set to 1.
An iterative solution method is used for calculating valid off-design operating
points. Although the set of error equations, which define the model, may be
solved separately through local iterative methods, the usual approach is simul-
taneously solving the set of equations with a multi-variable Newton-Raphson
method [47]. The Newton-Raphson method is a numerical method capable of
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finding the roots of an arbitrary function. Apart from this iterative solution
methodology for solving the system of equations, interpolation and extrapola-
tion methods are necessary for estimating off-design component performance
from discrete tabular data, and numerical integration methods are used for
transient simulations.

Even though the Newton-Raphson method is often used for gas turbine
performance calculations, it does have some weak points. For instance, starting
from the same initial point will always lead to the same solution, i.e. the same
root, even if there are multiple solutions. To find all roots, multiple starting
points would be necessary. Another common problem is that of local minima.
If a local minimum of a system of equations has a positive value, the Newton-
Raphson method may get stuck in this minimum and will not converge to a
solution. In practical applications of the Newton-Raphson method, corrective
measures are taken to mitigate disadvantageous characteristics of this method.
Discussing these measures is outside the scope of this thesis.

2.3 Gas path analysis methods

GPA is based on the analysis of measured performance parameter deviations
relative to their nominal or baseline values. Because gas turbine performance
depends on ambient condition, power setting, and component condition, a GPA
tool should be able to differentiate between nominal performance variations,
and performance deviations resulting from component deterioration. One way
of realizing this capability is by using performance models that simulate steady
state gas turbine behavior. With the model-based approach the effects of am-
bient condition and engine power setting on performance parameters can be
included.

2.3.1 Model-based gas path analysis

In 1973 Louis Urban published an article [67] in which he introduced GPA
as a method ‘which permits the isolation of single or simultaneous multiple
engine faults, with a quantitative assessment of their relative severity’. The
GPA method he suggested was an improvement on the Fault Coefficient Matrix
(FCM) method that was more widely known at that time.

The FCM method statistically determined the most likely single fault by
comparing measured performance parameters to tables that contained precal-
culated expected performance parameter deviations for various possible compo-
nent condition deviations. Although the FCM method had demonstrated value
when properly applied to single fault situations, its inability to handle multiple
fault cases, which are more likely to develop in operational gas turbines, was a
serious disadvantage. This stems from the fact that in gas turbines a limited
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set of measured performance parameters coupled to an extensive list of possible
faults can often result in questionable interpretations. Moreover, a single fault
may have virtually the same effect on measured performance parameters as
multiple faults occurring simultaneously, and different sets of multiple faults
may also have the same effect on measured performance parameters.

Instead of using precalculated relations in tabular form, the GPA method
that Urban had introduced used a gas turbine performance model that was
derived by using the basic laws of thermodynamics and variations of specific
heats, as well as engine specific characteristics such as pressure losses, com-
ponent maps, and nozzle flow coefficient and unchoking effects. In absence
of measurement uncertainty a gas turbine engine may be mathematically de-
scribed as follows:

p̄ = g(c̄, ō) (2.7)

In this equation the output vector p̄, which represents the measured perfor-
mance parameters, is a non-linear function g() of the input vectors c̄ and ō,
which represent respectively component performance characteristics such as
efficiencies and flow capacity, and engine operating conditions such as local
atmospheric conditions and power setting. In presence of measurement uncer-
tainty in the form of sensor noise and bias, equation 2.7 becomes:

p̄ = g(c̄, ū) + b̄ + n̄ (2.8)

where vectors b̄ and n̄ represent respectively sensor bias and sensor noise. Vec-
tor ū represents the measured operating conditions, which is a combination of
the true operating conditions ā that are also affected by sensor noise and bias,
i.e., ū = ā + b̄a + n̄a.

The differential GPA method that was introduced by Urban used a set of
equations that were linearized at a given steady state operating point. This
linearized set of equations can be expressed in matrix form as:

∆p̄ = G∆c̄ (2.9)

This equation relates component condition deviations (∆c̄) to measurable per-
formance parameter deviations (∆p̄). Matrix G is often referred to as the influ-
ence coefficient matrix (ICM). For illustrative purposes, the effects of measure-
ment uncertainty are omitted in this equation. Inverting this linearized system
of equations leads to equation 2.10, which is the basic matrix equation for GPA.
The inverse of the ICM, G

′, is often referred to as the fault coefficient matrix.
If the ICM is invertible and the vector ∆p̄ is free of uncertainties, equation
2.10 directly relates measurable performance parameter changes to component
condition changes.

∆c̄ = G
′∆p̄ (2.10)
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Linear model-based GPA applications have been described extensively in sci-
entific publications [13, 15, 42, 53, 60, 67]. Apart from describing the basic
method, several improvements, and its applications, these and other authors
also emphasized some limitations that have sparked the development of other
GPA methods that are described in this chapter.

To be invertible the ICM must be a square matrix [37]. In other words,
the system of equations in 2.10 requires an equal number of component con-
dition parameters and measured performance parameters. For many turbofan
engines, limited measured performance parameters are available. Moreover,
the measured performance parameters may not be sensitive to all condition
parameters [28, 48, 68]. Both aspects may limit the number of component
condition parameters that can be calculated for a given combination of engine
configuration and measured parameters.

Because of measurement uncertainty, the vector ∆p̄ is not free of uncer-
tainties. To handle the effects of measurement uncertainty, improvements were
made to the basic GPA method by including techniques such as weighted-least-
squares and Kalman filters. Although these improvements reduced the effects
of measurement uncertainty, the GPA results were still not sufficiently reliable
[38]. In some cases, the improved linear GPA methods introduced a smearing
effect, where the root cause of measured performance deviation is distributed
over multiple components.

This method is based on the assumption that a linear relation exists be-
tween condition parameters and performance parameters. In reality this is not
the case and the accuracy of a linearized model-based GPA method is accept-
able in a narrow range of performance parameter deviation for a specific ICM.
Moreover, because deterioration of one gas path component may affect the per-
formance of other gas path components, the ICM that was established for a
specific operating point may not be valid.

Non-linear model-based GPA

To capture non-linear gas turbine behavior and improve GPA accuracy, non-
linear model-based GPA methods have been developed. These GPA methods
use similar principles as linear GPA. The main difference is the improved per-
formance prediction accuracy at operating points different from a reference
operating point. These differences are caused by variations in operating con-
ditions and component deterioration. This effect is visualized in figure 2.4.
Consequently, when non-linear performance models are used for GPA they of-
ten produce more accurate component condition estimations compared to linear
models [26].

A technique that uses non-linear performance models for GPA is Adaptive
Modeling [35, 61, 74]. This technique works by adapting a performance model
until simulated performance parameters match measured performance param-
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Figure 2.4: Accuracy comparison of linear GPA to non-linear GPA. For
increasing performance deltas, the modeling error of linear GPA methods
increase to similar orders of magnitude as the condition delta they try to
calculate. This effect is much smaller for non-linear GPA methods.

eters. Model adaptation is realized by adapting the component performance
characteristics. The degree of component adaptation necessary to match mea-
sured performance parameters gives an indication of the level of component
deterioration.

The non-linear performance modeling method that is explained in section
2.2 uses component maps for simulating off-design component performance.
This way, two component characteristic parameters are necessary for specify-
ing any operating point in a component map, e.g., efficiency and corrected flow
parameter values to specify a compressor operating point. As shown in figure
2.1, component deterioration affects those characteristic parameters. Map mod-
ifiers are used for scaling the component performance characteristics during the
AM calculation. A map modifier (MM) is defined as the ratio of the adapted
component characteristic value, which is necessary for matching the measured
steady state operating point, and the reference component characteristic value
[74]. Equation 2.11 shows the MM definition for compressor efficiency. In the
AM process, MMs are defined for each component performance characteris-
tic that is included in the calculation. The difference of a MM relative to its
reference value of 1 is referred to as the component condition deviation or con-
dition delta. For example, a condition deviation of +4% originates from a MM
value of 1.04 which in turn means that the adapted component characteristic
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parameter value is 4% larger than its reference value.

MMη =
ηadp

ηref

(2.11)

To add an adaptive modeling functionality to a performance model, addi-
tional equations are necessary for relating measured performance parameters
to simulated performance parameters. Both equation sets may be solved simul-
taneously, thereby solving the model equations and model adaptations in one
session. This requires additional terms are added to the existing performance
model equations to ensure that the effects of adapted component characteristics
are included in the basic performance model. Alternatively, the set of adapta-
tion equations may be defined as a minimization problem where an objective
function is solved iteratively with appropriate numerical methods. While both
approaches may lead to the same solution, the latter requires additional calcu-
lation loops to ensure that adaptations to the model characteristics are taken
into account in the basic model equations.

2.3.2 Empirical gas path analysis methods

Numerical solvers used for model-based GPA methods often lead to rapid con-
vergence. However, occasionally a solution may not converge. Convergence
problems are often caused by derivation problems of ill-conditioned matrices
or relative extrema in the solution space. While precautions can be taken to
mitigate those problems, they are not always effective for every situation. An-
other effect that influences GPA results is measurement uncertainty. It tends to
obscure the otherwise predictable effects of ambient conditions, engine power
setting, and component deterioration on engine performance. As a result, it
makes diagnosing condition deviations more difficult.

Gas turbine performance models are deterministic, which means that ran-
dom variations are not considered when calculating the output. A given input
will therefore always lead to the same output. When measurement uncertainty
affects the input, the uncertainty propagates to the output. Because model
based GPA methods have no internal mechanism to handle these effects, the re-
sulting calculated output may be less reliable. This aspect makes model-based
GPA methods less suitable for handling measurement uncertainty. Depend-
ing on the magnitude of the possible measurement uncertainty, model-based
methods may lead to inaccurate GPA results.

A way of differentiating between nominal performance variations and per-
formance deviations resulting from component deterioration is by using em-
pirical GPA methods. Advancements in computer sciences have led to using
so-called artificial intelligence (AI) methods for GPA. AI methods are defined
as methods that ‘solve problems in a way which, done by humans, requires
intelligence’ [20]. Because these methods use experimental or simulated engine
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data rather than the underlying thermodynamic principles they are referred to
as data-driven or empirical GPA methods in this thesis.

While many empirical GPA methods have been investigated, a detailed
analysis of each method is beyond the scope of this thesis. Instead, I will focus
on the basic principles of empirical GPA methods by describing the principles
of Genetic Algorithms, Neural Networks, and Expert Systems.

Genetic algorithms

Genetic algorithms (GAs), which were introduced by John Holland in the early
1970’s [10], are a class of evolutionary algorithms that mimic some of the evolu-
tionary processes observed in nature. From a mathematical perspective, GAs
are optimization algorithms that use evolutionary principles for finding solu-
tions to numerical problems. Rather than attempting to find a single solution
to a set of equations, GAs use a population of possible solutions and use evolu-
tionary mechanisms of selection, cross-over and mutation to reach an optimal
solution of a problem.

This approach has some distinctive features that make it suitable for GPA
applications [77]: no derivatives are necessary during iteration, constraints are
handled effectively by means of penalty functions, and probabilistic methods
are used in the process of calculating new populations.

In the field of gas turbine diagnostics GAs have been analyzed in various
research projects [56, 77]. These algorithms performed well in the estimation of
engine faults, even in the presence of sensor noise and bias [42]. For practical
applications there are some drawbacks of this approach. Although multiple
fault isolation is possible, fault prediction accuracy decreases with increasing
degrees of freedom or fault components [77]. Repeated fitness evaluations for
complex problems, such as gas turbine diagnostics, is often a time consuming
and forms the limiting aspect of the application of GAs.

Artificial Neural Networks

Inspired by the biological central nervous system, an Artificial Neural Network
(ANN) is a pattern classification algorithm. A trained ANN will produce a
certain output pattern when presented with an input pattern. This method
is generally implemented in parallel which makes it capable of high processing
speeds, an ideal characteristic for practical GPA applications. Two of the most
significant properties of ANNs are their ability to learn and generalize[51].
Programming all possible patterns of a set of sensors would however require an
impractical amount of time. Instead, an ANN is given a small number of input
patterns for which the outputs are known. These patterns are used to train
the network to provide the correct response. When operational, ANNs have–to
a certain extent–the ability to interpret characteristics of similar but unknown
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input patterns and provide the correct estimated output. This property is
called generalization. This approach is far more efficient that programming
each pattern a priori. Ideally, an ANN provides a correct output even when
the input is not explicitly taught. Several different types of ANNs have been
successfully used for gas turbine diagnostics [38, 42, 77].

However, these algorithms have some drawbacks when used for GPA. The
main drawback of ANNs used for GPA is the complicated network structure
that is necessary to solve complex, real-world problems [77]. Another impor-
tant drawback is the time required for training ANNs; they are slow learners.
Pattern classification methods can only recognize known patterns; a trained
ANN is optimized for the training data set that was used. Although gas tur-
bines are manufactured with tight tolerances, the large number of interacting
components means that despite these tight tolerances there are noticeable per-
formance differences among healthy engines [67]. Engine-to-engine differences
can introduce variations that require additional training data and time. Ob-
taining data for the training phase of an ANN is also a challenge.

Expert systems

Another empirical approach for relating measured performance data to compo-
nent condition deviations is by using expert systems (ESs) [12, 14, 65]. The ES
concept was developed as an attempt to capture and store expert knowledge
and imitate the decision-making process of a human expert [23].

At the core of an ES are a knowledge base and an inference engine. The
knowledge base contains the expert knowledge in a practical format. The infer-
ence engine is the computer program that tries solve a problem by interrogating
the knowledge base. Because expert knowledge may not always be captured
in precise terms, probabilistic and fuzzy logic methods have received consider-
able attention. For example, different combinations of deteriorated gas path
components and levels of deterioration may lead to the similar deteriorated
performance.

The main benefit of using ESs for gas path diagnostics is the additional
support for interpreting diagnostic data from multiple diagnostic tools simul-
taneously. This could increase the effectiveness of of specific diagnostic systems
considerably. While a great feature of ESs is their ability of being updated con-
tinuously by adding new rules or cases to the knowledge base, it is at the same
time also a downside. Updates to the knowledge base change the system com-
pletely, thereby potentially changing its response to known problems. This
implies that each change to an ES requires validation of the complete system.
In addition, like other empirical GPA methods ESs rely on large volumes of
field data for correct configuration. To develop robust ES system for gas path
diagnostics a large number of examples of deteriorated engines are necessary;
these are not available.
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2.4 Requirements for a GPA tool from a gas

turbine MRO perspective

The differences between model-based and empirical GPA methods have been
extensively documented in scientific articles. A few comprehensive review arti-
cles [38, 42] compared GPA methods in general. They discussed their relative
strengths and weaknesses by comparing characteristics such as model complex-
ity, computation speed and the ability to deal with measurement uncertainty.
Others focused more on specific methods such as comparing the accuracy of
linear and non-linear model-based GPA methods [26], or highlighted the ben-
efits of one particular method in relation to others such as the development of
a genetic algorithm optimization method for GPA [77].

Benchmarking GPA methods is mostly done relative to other methods. Be-
cause operational turbofan performance data are hard to obtain, most studies
on this topic are based on scarcely available real engine data or on simulated
data. In fact, many published GPA methods are applied to different engine
platforms, with different levels of complexity, addressing different problems,
and using different parameters for evaluating performance [58]. This makes
an objective comparison of available GPA methods difficult. To help address
these inconsistencies, a recent benchmarking study was performed by the NASA
Glenn Research Center [58]. However, this study too was based on simulated
data.

Other research [24, 66] addressed GPA developments from the broader en-
gine health management (EHM) perspective. Apart from focusing solely on
gas path diagnostics, their review also considered other methods used for en-
gine diagnostics. Although they recognized that a good overall EHM solution
requires advancements in system architecture, EHM functionalities, and diag-
nostic algorithms, they noted that the developments in this field were mostly
focused on the latter two functional areas.

The criteria used for selecting a GPA tool for the gas turbine maintenance,
repair, and overhaul (MRO) industry may be different than for selecting a tool
for

From a maintenance, repair, and overhaul (MRO) perspective additional
characteristics may be necessary. Indeed, calculation time is an important
characteristic of a GPA tool regardless of its application. If GPA is used to an-
alyze data from the post-overhaul performance acceptance tests and an MRO
shop annually maintains about 300 engines, one minute per analysis should
results in approximately 5 hours of calculation time per year. That should not
be a problem. However, if GPA is used for analyzing on-wing measured perfor-
mance data the time requirements change. A fleet of 100 engines of long-haul
aircraft that perform approximately 2.5 flights a day1 each of which generate

1assuming 8-hour flights and 90-minute turn around time
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two snapshots per flight, one during take-off and one during cruise, generates
approximately 15000 performance snapshots each month. Assuming 1 minute
per data set, results in 250 hours calculating time. Conversely, analyzing all
15000 snapshots in 5 hours each month, implies 1.2 seconds per snapshot. While
some GPA methods such as linear, non-linear, and neural networks are very
fast, genetic algorithms require considerable more time to obtain a solution.

Another important characteristic that is frequently used for comparing GPA
methods is accuracy. False alarms and undetected faults resulting from incor-
rect diagnoses may have financial consequences for an MRO shop. Once poor
component condition is correctly identified, it will be partially or entirely dis-
assembled. Each part is subsequently cleaned, inspected for deviations and
finally repaired if necessary. Part repair is determined according to the engine
repair manual and is not affected by findings from performance diagnostics.
Therefore, from an MRO perspective, correctly identifying faulty components
is more important than accurately estimating the level of condition deviation.
Particularly because GPA results are calculated relative to baseline engine per-
formance.

A typical MRO shop has turbofan overhaul capabilities for multiple engines
types from several manufacturers. Turbofan OEMs do offer advanced condition
monitoring and diagnostic software specifically designed for their engines to the
engine operators and MRO shops. However, this requires sharing operational
data. From both the engine operator and MRO shop perspective, this may lead
to unwanted insight into company operations. Additionally, the tool may not
allow detailed insight in the calculation process leading to diagnoses, and it is
available only for engines from that particular manufacturer. For many MROs
this would require multiple gas path diagnostic systems, each with its own
capabilities, limitations, and associated expenses. Therefore, a single generic
GPA tool would be a practical solution.

For MRO shops that develop an in-house gas path diagnostic tool additional
aspects are worth considering. For instance, turbofan engines are extremely
durable. Because of strict safety requirements imposed by aviation authorities,
any fault leading to unexpected failure receives individual root cause analysis.
Problems are systematically solved for existing engines and the knowledge is
used in the design process of new engines. As a result, the time on-wing of
turbofan engines has increased continuously. Modern turbofan engines may
remain installed on-wing in excess of 30,000 hours, which amounts to several
years without overhaul.

The consequence of those developments is that only a fraction of the in-
stalled engines undergo complete overhaul for any given period; a fraction that
is shared among competing MRO shops. This fact is highlighted by figure 2.5,
which shows the engine MRO shops in western Europe that overhaul the same
engines as AFI/KLM Engineering & Maintenance. Because each engine type
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Figure 2.5: An overview of competing MRO shops in western Europe that
overhaul the same engine types as those overhauled by AFI/KLM Engineer-
ing & Maintenance. Sources: respective MRO shop websites.
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needs a dedicated GPA tool as well as sufficient data for creating and validating
a GPA tool, the number of engines being maintained affects the choice of GPA
method that is used for engine diagnostics.

In a similar way in which information fusion may result in improved di-
agnoses for EHM applications, combining gas path diagnostic data with work
scope information may provide additional value for the MRO industry. Cor-
relating maintenance actions to component level condition provides feed back
about the effectiveness and quality trends of the maintenance process. Be-
cause maintenance-related information may differ among MROs, and because
the number of measured parameters may vary among engine types, a flexible
information system is key for such applications.

2.5 GSP adaptive modeling methodology

The GPA results described in this thesis were obtained using the Adaptive
Modeling (AM) component of the Gas turbine Simulation Program (GSP).
GSP is a component-based performance simulation tool capable of modeling
virtually any gas turbine configuration [72]. The generic AM component was
developed at Delft University of Technology and has been implemented in the
component based simulation environment of GSP [73, 74]. This AM component
can be embedded in any GSP model thereby converting it into a non-linear
diagnostic model for gas path analysis purposes without the need for additional
coding.

During an AM calculation the performance model is adapted until it matches
measured engine performance[74]. Because the performance model is adapted
by adapting its gas path component characteristics, the required adaptation is
a measure of the component condition deviations between a measured and a
reference performance data set. Section 2.3.1 described how map modifiers are
used for matching a performance model to measured data. Figure 2.6 shows the
effect of the corrected mass flow map modifier on the constant speed lines of a
compressor map. Similarly, map modifiers are used for adapting the isentropic
efficiency during the AM calculation.

One step of the adaptive modeling calculation is model calibration. This
step is necessary for removing residual model-reference measurement devia-
tions. Calibration factors scale model performance parameters to match refer-
ence engine performance. These factors remain constant during AM calcula-
tions.

For the AM calculation GSP combines the numerical modeling methods
described in section 2.2 with the AM concept described in section 2.3.1. It uses
an integral approach, where the performance model equations are solved simul-
taneously with the additional non-linear differential equations necessary for the
adaptive model. This way the effects of adapted component characteristics on
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Figure 2.6: This figure shows an example of a compressor map adapted
by a flow capacity map modifier. Component characteristics are adapted
such that a steady state operating point is obtained that matches measured
engine performance. For the compressor map the measured values used for
adaptation are pressure ratio, corrected mass flow and corrected compressor
rotational speed.

model performance are taken into account. The resulting set of equations take
the form of equation 2.12 [74]. In this equation, f1 to fn in the upper-half are
the error equations that represent the reference engine, and fm1 to fmm in the
lower-half represent the additional equations necessary for the AM calculations.
s1 to sn are the unknown model states that need to be solved, and sc1 to scm

are the scalars that represent the condition parameters that need to be solved.
ǫ1 to ǫn are the relative equation tolerances for which the model states need
to be solved to satisfy the conservation laws and are close to zero, and ǫm1 to
ǫmm represent measurement tolerances for solving the additional AM equations
and states. These measurement tolerances are specified separately in the AM
component. GSP uses a Newton-Raphson-based method for solving the set of
non-linear differential equations.
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The component-based modeling capability of GSP and the generic AM com-
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ponent that can convert any GSP model into a diagnostics model together form
a flexible model-based GPA tool. In contrast to GPA tools developed by the
engine manufacturers, it is not restricted to engines from a single manufac-
turer. Most performance data necessary for creating a performance model for
GPA applications is available to the aero-engine MRO shops. This includes the
design point performance data such as component efficiency, mass flows, and
fan bypass ratio. Occasionally off-design performance data may also available
for specific engine power settings. However, off-design component performance
data are usually not available. Therefore, specific engine data such as com-
ponent maps and variable geometry control schedules are approximated by
data available from other engines, or by reverse engineering using measured
off-design performance data.

2.6 Conclusion

• GPA is an effective method for assessing engine condition on component
level without the need for engine removal or disassembly. This makes it
a good addition to the existing gas turbine diagnostic methods that are
used for on-condition maintenance strategy.

• Gas turbine performance models are important for developing any GPA
method. Whether they are used directly in model-based GPA methods
or for developing and training empirical GPA methods, improving per-
formance model accuracy will have a direct impact on the accuracy of
the GPA method.

• In theory empirical GPA methods have characteristics that are beneficial
to the reliability of the results. They are better equipped to handle mea-
surement uncertainty effects compared to model-based methods, some
methods are capable of solving large complex problems in very short
time, and they are capable of finding the optimal solution. However, a
large number of data sets of faulty engines are necessary for creating a
robust diagnostic tool. Without sufficient data empirical GPA methods
cannot reliably detect engine faults. Because data sets of engines with
particular faults are scarce, developing robust empirical GPA methods is
mostly limited to gas turbine manufacturers.

• Empirical GPA methods such as artificial neural networks and expert
systems are abstract and are best approached by end users as a black
box. Although for end users the empirical approach removes the need
for understanding the complex gas turbine behavior, it makes it very
difficult–if not impossible–to verify the GPA results.
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• Gas turbine part repair or replacement is dictated only by the engine
repair manual. Specialized diagnostic methods are used for determin-
ing if a specific part must be replaced or repaired. This is not based
on findings from performance diagnostics. Therefore, correct root cause
identification with GPA is more important than accurately estimating
the degree of component condition deviation. The added value of GPA
in the maintenance process is to better estimate the maintenance work
scope and limit premature repair of components that still show adequate
performance.

• GPA is a mature technology. Despite the advances made in this field,
there are some fundamental aspects that were not tackled by the devel-
opment of additional GPA algorithms: performance measurements will
always contain some error, detailed design data of operational engines
will remain proprietary, and there will always be a shortage of measured
parameters. Therefore, enhancing the added value of this diagnostic tech-
nology is likely to occur by making smarter use of available information
for improving accuracy as well as integrating GPA into the aero-engine
maintenance process.

• Selecting the right GPA tool for integrating into the aero-engine main-
tenance process depends on more than calculation speed and diagnostic
accuracy. While these aspects are important for operational GPA tools,
creating a practical GPA tool is the first step to be taken. For aero-engine
maintenance applications where the development of a GPA tool and tun-
ing it to specific engine models is done by the MRO shop rather than
the engine OEM, reasonably small data sets are necessary for creation
and validation. For those applications, generic, model-based methods are
better suited for integrating GPA into the maintenance process.
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CHAPTER3
Gas path analysis with GSP

Abstract

Advanced model-based diagnostic techniques enable component condition esti-
mation without the need for engine disassembly and are an essential addition to
the on-condition maintenance process. However, several aspects limit system-
atic use of these techniques in the maintenance process. This chapter presents
the experience of using GSP GPA in an aero-engine maintenance process. It fo-
cuses on the potential of GPA to enhance the process. GPA capabilities in rela-
tion to the needs of the aero-engine maintenance process are analyzed, improved
and extended for new application areas. Several case studies are presented in-
cluding a feasibility study of using on-wing measured performance data instead
of test cell performance data, and a study on on-wing exhaust gas temperature
margin assessment by means of gas path analysis.

The content of this chapter is based on:

Verbist, M.L., Visser, W.P.J., van Buijtenen, J.P., and Duivis, R., Model-based gas tur-
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T
urbofan engines are complex machines that require regular mainte-
nance to ensure safe, reliable and cost-effective operation. Engine diag-
nostic methods and maintenance strategies are as old as the gas turbine

itself and have evolved considerably over time. Gas path analysis (GPA) is a di-
agnostic method that can isolate and quantify the relative severity of problems
that affect engine performance. GPA has several benefits that may enhance
preventive and condition-based maintenance strategies that are commonly used
for turbofan maintenance. Research on this topic in the late 70’s and early 80’s
have lead to the development of several GPA tools from the gas turbine orig-
inal equipment manufacturers (OEMs) such as TEMPER [13], developed by
General Electric, and COMPASS [53], developed by Rolls Royce. While these
methods were a considerable step forward in the field of gas path diagnostics,
their accuracy was not always sufficient for maintenance applications. Since
then the research in this field has been mainly focused on improving the accu-
racy of GPA methods.

Even though the benefits of GPA for gas path component diagnostics are
widely accepted, few articles describe field experience with GPA in the aero-
engine maintenance process. This lack of publications suggest that despite its
potential for enhancing the maintenance process GPA is not used systemati-
cally in the MRO industry or the experience obtained by MROs is not shared
with the gas turbine community. To fill that gap, this chapter presents the
experience of using GSP GPA in an aero-engine maintenance process.

The GSP adaptive modeling component that is used for GPA is being used
since 2004 for the analysis of several CF6 and CFM56 engine families that are
maintained at KLM Engine Services [3, 4, 11, 18, 50, 64, 69]. In addition, the
GPA capability of this tool has also been successfully demonstrated for the
Rolls-Royce GEM42 turboshaft engine operated by the Royal Dutch Navy [45,
52], the Pratt&Whitney PW120A turboprop engine maintained at Standard
Aero [45], and the Honeywell GTCP 131-9B auxiliary power unit maintained
at the EPCOR [76]. By analyzing the GPA capabilities in relation to the needs
of the aero-engine maintenance process, this study presents new and improved
GPA methods and application areas for improving the maintenance process.

3.1 Application to turbofan engines

After overhaul, turbofan engines are subjected to a mandatory performance ac-
ceptance test to verify that the required performance levels are achieved without
exceeding engine limits. To determine engine performance during these post-
overhaul acceptance tests, parameters are measured that indicate the energy
in- and outflow, the engine’s mechanical operation and the state of the work-
ing medium at several locations along the engine gas path. These parameters,
shown in figure 3.1, are collectively referred to as the performance parameters.
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Figure 3.1: Schematic of a typical turbofan engine including the rough
location of the performance parameters observed during a typical post-
overhaul acceptance test. The component condition parameters (∆η and
∆Wc) resulting from GPA are also shown.

Because measured performance parameters are affected by the combined
deterioration level of each gas path component as well as changes in atmospheric
condition, engine power setting and possible measurement errors, the deviation
of any performance parameter by itself is not necessarily an indication of gas
path component deterioration. To reveal the hidden information contained in
measured performance data additional analysis is required. There are several
methods to achieve this.

One approach is to correct observed performance parameters for known
power setting, atmospheric effects and component losses. This way, important
performance parameters are defined such as exhaust gas temperature (EGT),
specific fuel consumption (SFC) and corrected engine speed that can be com-
pared to operational limits defined by the engine OEM. This is referred to as
performance monitoring or trending. The differences between corrected per-
formance parameters and their limiting values defined by the engine OEM are
so-called performance margins. When observed over time, these performance
margins provide useful information about the change of engine condition and
fuel efficiency. Even though this approach provides an effective way of mon-
itoring engine performance and its condition, it cannot be used to determine
the root cause when an engine exhibits poor performance.

Another approach is to use GPA for estimating the condition of individual
gas path components. This approach enables root cause identification when
poor engine performance is observed. Post-overhaul engine performance tests
provide accurate and sufficient performance data for detailed GPA. Depending
on the available measured performance parameters and engine configuration,
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component condition parameter deviations (∆η and ∆Wc) can be estimated
for some or all gas path components of a gas turbine engine.

A valuable application of GPA is troubleshooting engines with poor per-
formance. Maintenance work scopes are customized for each engine. While
the majority of overhauled engines successfully pass the post-overhaul accep-
tance test, occasionally engines fail this test. When this occurs it often results
in increased maintenance costs and time. Depending on the specific mainte-
nance contract with the engine operator, this may result in significant reduction
or complete loss of the profit margin for that particular engine. When poor
performance is the reason of failure, the component level condition estimation
obtained by means of GPA point at the root cause of the observed performance
problem. The repair work scope for the failed engine can then be based on the
actual component condition. This minimizes the additional maintenance work
and time.

3.1.1 Case study: troubleshooting a rejected engine

The example presented in this section demonstrates how GPA can be used for
troubleshooting poor engine performance. A maintenance work scope for a
CF6-80C2 engine was agreed with the engine operator that should result in a
specified EGT margin. The work scope included a full overhaul of the HPC
and HPT, which should restore sufficient engine performance. Despite the work
scope however, this engine failed its post-overhaul performance test because of
a low EGT margin. The measured performance data of the failed performance
tests are shown in table 3.1. The location of performance parameter measure-
ments is illustrated in the turbofan schematic in figure 3.1.
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Figure 3.2: GPA results using performance data of the rejected perfor-
mance test. While the HPC condition is better than the reference condition,
the remaining components show slightly below average condition.
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Table 3.1: Measured and calculated performance parameters of the rejected
and accepted performance test, and reference data used for GPA.

Parameter Unit Failed Accepted Reference

FN margin kN 5.080 5.009 4.626
EGT margin K 23 31 39
N2 margin rpm 194 171 60
N1 rpm 3569 3525 3525
N2 rpm 10490 10353 10537
FN kN 256.16 257.37 255.56
Wf kg/s 2.72 2.68 2.69
Tt49 K 1139 1102 1123
Tt2 K 293 284 289
Tt25 K 394 384 389
Tt3 K 846 822 838
Tt5 K - - -
Ps13 bar 1.384 1.386 1.420
Pt2 bar 1.002 1.005 1.007
Ps2 bar 0.744 0.746 0.746
Pt25 bar 2.571 2.604 2.593
Ps3 bar 32.432 32.877 32.063
Pt49 bar 7.687 7.775 7.612
Pt2 bar 1.007 1.010 1.011
RH % 52.66 84.88 78.93

GPA result of with the performance data of the failed acceptance test are
shown in figure 3.2. The reference data used for GPA are shown in the rightmost
column of table 3.1. Based on the initial work scope and inspection after the
failed performance test, a restoration work scope was planned. GPA results
indicated an increased booster mass flow capacity relative to the reference
engine. Based on these GPA results and to avoid additional rework on the
high pressure compressor, it was decided to restore booster clearances to gain
some extra EGT margin. The booster is more readily accessible compared
to the high pressure compressor. After additional repair the engine condition
improved, indicated by the EGT margin increase of 7K shown in table 3.1, and
the engine successfully passed the acceptance test.

Figure 3.3 present the results of the GPA run after additional repairs. It
shows the improved condition relative to the rejected engine condition. The
performance deltas shown by the bar chart in figure 3.3(a) indicate, for instance,
that engine had reduced EGT (Tt49) and fuel flow (Wf)for the same corrected
fan speed after additional repair. The condition deltas shown in figure 3.3(b)
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Figure 3.3: GPA results after additional repairs. The bar charts show the
performance and condition condition deltas of the repaired engine. These
deltas are relative to engine performance before the additional repairs.

suggest that the most significant component condition changes were realized
in the LPC bypass flow capacity (LPC Wcbp) and the HPC efficiency (HPC
η). Even though the HPC did not receive additional repair work, its efficiency
did improve. This improvement is most likely caused by aero-thermodynamic
component interaction where the outflow conditions of the LPC core better
matched the HPC for those operating conditions.

This case study is an example of a GPA application for aero-engine main-
tenance process. Although in this particular case the engine condition only
showed small improvements after additional maintenance resulting in a 7K in-
crease of the EGT margin, it demonstrates how GPA results can help planning
maintenance work scopes. Such information is most valuable for the mainte-
nance process before overhaul.

3.2 GPA potential for aero-engine maintenance

and condition monitoring

As mentioned in the previous section, typical GPA applications include post-
overhaul component condition monitoring and troubleshooting engines with
poor performance. For such applications it could suffice to use GPA on a
case-by-case basis. However, embedding GPA in the maintenance process and
systematically using it for every measured performance data set could offer
substantial benefits for the aero-engine maintenance process in terms of cost
reduction and enhanced maintenance effectiveness.

Figure 3.4 shows a simplified representation of the maintenance process that
a turbofan engine repeats several times during its operational lifetime. While
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Figure 3.4: GPA embedded in a simplified representation of the turbofan
maintenance process. The necessary performance data would be obtained
from measurement during on-wing operation as well as during performance
tests. Knowledge of the estimated component condition obtained by means
of GPA could be beneficial for on-wing maintenance, overhaul and for the
additional rework when a engine fails its post-overhaul performance test.

installed on-wing, engine performance monitoring is used to observe the con-
dition deterioration process over time and to assist the on-wing maintenance
process. When engine removal is required either due to poor performance or
triggered by life-limited parts, available performance trends can be used to de-
termine the necessary maintenance work scope. While some engine operators
systematically use a dedicated performance test prior to overhaul to help esti-
mate the necessary work scope, this is not done by all operators. When GPA
would only be used on a case-by-case basis for troubleshooting engines with
poor performance after overhaul, the maintenance process only receives useful
information from GPA when an engine fails the post-overhaul performance test
or when an inbound test run is performed, neither of which occur regularly.

The aero-engine maintenance process could benefit from the additional in-
formation if GPA were embedded in the maintenance process and used sys-
tematically. By using performance data measured during on-wing operation
as well as from engine tests for GPA, detailed component condition informa-
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tion would be available at all times during its operational life. In addition to
providing more detail of the condition deterioration process, this information
would be useful for planning work scopes by knowing the actual engine condi-
tion. Because component condition information would be available before and
after the maintenance work, the effectiveness of the maintenance would also
become measurable. This knowledge, in turn, could be used optimize mainte-
nance effectiveness and possible predict the impact of a work scope. That way,
engine repair shops could provide their customers with predictions about the
costs related to performance restorations.

3.2.1 Adapted-model performance analysis

One GPA application that has been successfully used in the aero-engine mainte-
nance process is adapted-model performance analysis. It is a method whereby
the performance of an engine is compared to the performance of an engine
model that has been tuned to more accurately represent that engine than the
baseline performance model. The baseline model is adapted by using the com-
ponent condition parameter deviations obtained by means of GPA. Adapted-
model performance analysis can be used to verify the performance and condi-
tion of an engine with a known initial condition over a period during which its
condition should remain unchanged but where performance measurements sug-
gest otherwise. When too few measured performance parameters are available
for GPA, adapted-model performance analysis can offer more insight than per-
formance parameter trending. This method has been proven useful for analysis
of engines with abnormal on-wing performance that had been recently over-
hauled but had too few on-wing measured performance parameters for detailed
GPA.

Normally there are small performance differences between different engines.
This is the result of small variations in the manufacturing, deterioration and
maintenance processes. Because not all gas path modules are overhauled dur-
ing a shop visit, engine-to-engine performance variation increases as they age.
During overhaul gas path components may undergo different maintenance work
scopes depending on their condition. This could result, for instance, in en-
gines that have overhauled HPC and HPT modules but largely untouched fan,
booster, and LPT modules. Because of such differences, engine performance
changes during its operational life and simulation models that have been devel-
oped for new engine performance may not accurately represent every engine.
By adapting a baseline performance model to the condition of a particular
(overhauled) engine, existing performance differences are minimized. This al-
lows more accurate analysis of small performance deviations.
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3.2.2 Case study: On-wing EGT margin validation

An example case for which adapted-model performance analysis was used at
KLM ES was the analysis of EGT margin abnormalities of an CFM56-7B en-
gine. The CFM56-7B is a relatively small two-shaft turbofan engine used for
the Boeing 737 aircraft series. In general the hot day EGT margin, i.e., the
EGT margin corrected for hot day operating conditions, is a good indicator of
overall engine condition from a performance perspective. As the condition of an
engine deteriorates over time, its hot day EGT margin reduces. Consequently,
the hot day EGT margin is an important parameter for engine operators, which
often demand a minimal EGT margin after engine overhaul. A relatively low
EGT margin is an indication of poor engine condition and suggest a shorter
time between consecutive overhauls from a performance perspective.

This case study describes a situation in which there were several overhauled
CFM56-7B engines for which the on-wing hot day EGT margin deviated signifi-
cantly from hot day EGT margin that was established during the post-overhaul
acceptance test. Also, for some engines severe scatter of the hot day EGT mar-
gin was observed during on-wing operation. Figure 3.5 shows a schematic of
the CFM56-7B engine and the measured performance parameters. The en-
gines were overhauled at KLM ES and successfully passed the post-overhaul
acceptance test. The EGT margins determined during the acceptance test
were as expected for an overhauled engine. Upon closer inspection of KLM’s
own CFM56-7B fleet, no maintenance-related cause was identified that could
explain this unwanted behavior [18].
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Figure 3.5: CFM56-7B performance parameters measured during test cell
and on-wing operation.

Even though GPA is an excellent method to investigate this discrepancy, the
CFM56-7B engines for which performance data were available for analysis were
equipped with a sensor package that provided too few on-wing measured per-
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formance parameters for detailed GPA. Instead, adapted-model performance
analysis was used.

By using this method the performance parameters that were measured on-
wing could be compared to simulated engine performance parameters that were
obtained for identical operating conditions. This approach works as follows.
For every engine analyzed, the post-overhaul performance data were used to
adapt the GSP engine model. The adapted model therefore represented an
engine with specific and constant post-overhaul condition. Next, the adapted
model was then used for simulating engine performance at engine power setting
(N1) and ambient conditions (TT0, PT0) that were measured during the 15 first
on-wing take-offs. During the initial period on-wing after overhaul, gas turbines
show a relatively rapid loss of EGT margin due to seal run-in. Because this
period of relatively rapid EGT margin loss can take up to 1000 engine flight
cycles [7], however, it was assumed that no significant changes should occur
during the first 15 take-offs.

The performance parameters used for comparison were core engine speed
(N2), fuel flow (Wf ), and EGT (Tt49). The results of the performance simula-
tions are shown in figure 3.6. The close match of the measured and simulated
fuel flow and EGT, shown in figure 3.6(a) and figure 3.6(b) respectively, indi-
cate that the on-wing measured engine performance thermodynamically corre-
sponds to the simulated engine with a constant condition. Any small deviations
that remained may be because of model inaccuracies and additional effects not
measured such as customer bleed and power off-take.

Moreover, these deviations are an order of magnitude smaller than the EGT
margin variation. A gas turbine with a constant condition should have a con-
stant corrected EGT margin. Instead, the hot day EGT margin that was
observed during the first 15 take-offs after engine overhaul varied significantly.
This is shown in figure 3.7(b). The hot day EGT margin values of figure 3.7
were obtained by the engine condition monitoring software from the engine
OEM. Similar results were obtained for several engines.

Power setting, operating conditions, customer bleeds, accessory drive loads,
and other installation losses affect the EGT. Consequently, the calculated EGT
margin should be corrected for those effects. If performed correctly, variations
of the hot day EGT margin should be only because of component deteriora-
tion and thereby reflect overall engine condition. Based on the results of this
analysis it was concluded that the cause of the hot day corrected EGT margin
deviation and scatter were not the result of engine deterioration or measure-
ment error. More importantly, these results suggest that the hot day EGT
margin calculations are inaccurate or based on false input data.

This case study shows how GPA still enables verification of on-wing perfor-
mance and condition when too few measured performance data are available for
detailed GPA. This application improves the information flows between the off-
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Figure 3.6: Comparing results of adapted-model performance analysis and
on-wing measured performance data for fuel flow (figure 3.6(a)) and exhaust
gas temperature (figure 3.6(b)).
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Figure 3.7: Hot day EGT margins of an engine with severe scatter 3.7(a)
and the EGT margin observed during the 15 first take-offs of engine used
for the study 3.7(b).
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wing maintenance process and on-wing performance. Not only does it provide
additional insight of on-wing engine behavior, it also provides a cost-effective
alternative to performance test runs.

3.2.3 On-wing component condition monitoring

Another practical application of GPA in the aero-engine maintenance process
is component condition monitoring using on-wing measured performance data.
In section 3.1, several examples were discussed regarding the use of gas path
analysis at KLM ES. Those GPA applications all used performance data that
are measured after engine overhaul. Although useful, GPA results can become
much more effective for the maintenance process if they were available before
maintenance. Performance tests prior to engine maintenance provide such an
opportunity. Unfortunately, the additional costs for these in-bound perfor-
mance tests ensure minimal use of this opportunity. Another source of engine
performance data is performance data that are measured during on-wing opera-
tion. If on-wing measured performance data could be used for GPA, this would
eliminate the need for performance tests prior to engine maintenance. More-
over, analyzing on-wing measured performance data with GPA tools would
provide a much more detailed view of the engine condition and deterioration
trends.

Conventional Engine Condition Monitoring (ECM) systems and Engine
Health Management (EHM) systems record measured performance data during
engine operation and alert the operators when a parameter shift or exceedance
occurs. Without additional analysis of the observed data, such systems can-
not identify the root cause of a parameter shift or exceedance. Using GPA
for additional analysis of the on-wing measured performance data would allow
root cause analysis of observed parameter shifts and exceedances. It would
then become possible to determine whether a parameter shift or exceedance is
caused by sudden deterioration of a single component, the combined effect of
multiple component deterioration or the result of sensor error.

Hypothetically, when used in combination with airline operational data,
such techniques could have far reaching benefits for airline operations. If com-
ponent condition deterioration could be correlated to flight routes, there would
be an opportunity to optimize aircraft deployment to maximize engine on-wing
time. Additionally, on-wing component condition monitoring would enable en-
gine health prognostics. Such capability could be very beneficial for mainte-
nance work scope planning.

3.2.4 Fewer on-wing measured performance parameters

An important condition for successfully using on-wing measured performance
data for GPA is the availability of sufficient measured performance parame-
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ters. During performance tests in a test cell, gas turbines have more sensors
installed for performance measurements than during on-wing operation. To cer-
tify engines for on-wing operation after overhaul, detailed engine performance
assessments are required. Therefore, engines are equipped with the necessary
sensors to determine their performance to the required level of detail during
the post-overhaul acceptance test. While a minimum set of sensors is required
for control purposes during on-wing operation, installing additional sensors de-
pends on the engine operator. Adding extra sensors is a consideration between
the added cost of additional sensors and their maintenance, and the value of
the additional performance data that can be measured during on-wing opera-
tion. Because extra costs are more tangible than the perceived value of extra
engine performance data, often only the sensors necessary for control purposes
are installed during on-wing operation. In addition, some performance param-
eters cannot be measured during on-wing operation. As a result, the on-wing
measured performance parameters are often insufficient for detailed GPA.

One performance parameter that cannot be directly measured on-wing is en-
gine thrust. Engine thrust represents the thermodynamic state of the core and
bypass nozzles. During post-overhaul acceptance tests in a test cell, load cells
are used to accurately measure engine thrust. Because thrust measurements
are not possible on-wing, an alternative parameter is required to represent the
thermodynamic state of the nozzles. For high bypass turbofan engines a large
fraction of the thrust, in the order of 85% of the total thrust, is generated by
the bypass flow. The pressure ratio over the fan bypass nozzle governs the
thrust generated by the bypass flow. Therefore, the fan bypass outlet pres-
sure represents the state of the bypass nozzle, which makes this performance
parameter a good alternative to the thrust parameter.

A comparative analysis has been performed to verify the use of fan outlet
pressure as an alternative parameter to represent the thermodynamic state
of the exhaust nozzles. Of the performance parameters measured during the
performance acceptance test of the CF6-80 engine in the KLM Engine Services
test cell, 14 parameters can be used for GPA purposes including engine thrust
and fan outlet pressure.

Table 3.2 provides the list of the available measured performance parame-
ters. Tt0, Pt0 and RH define the atmospheric condition, and N1 defines the
engine power setting. The 10 remaining parameters represent the thermody-
namic state of the engine. However, using the thrust and the fan bypass outlet
pressure simultaneously in the AM calculations results in an ill-conditioned sys-
tem. Therefore, from the available set of performance parameters 9 component
condition parameters can be determined simultaneously. For the comparative
analysis, the performance test data from recently overhauled engines was used.
The AM calculations were done twice; first with the direct thrust measurement
and subsequently with the fan bypass outlet pressure.
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Table 3.2: Measured performance parameters that were available for GPA.

Parameter Description

Tt0 Ambient temperature
Pt0 Ambient pressure
RH∗ Relative humidity
N1 Fan shaft speed
Ps14 Fan bypass static outlet pressure
Tt25 Booster outlet total temperature
Pt25 Booster outlet total pressure
Tt3 HPC outlet total temperature
Ps3 HPC outlet static pressure
N2 Core shaft speed
Tt49 HPT outlet total temperature
Pt49 HPT outlet total pressure
Wf Fuel mass flow
FN∗ Engine thrust
∗ parameter not measured during on-wing operation.

The results of this analysis are presented in figure 3.8. The top bar chart
shows the performance parameter variations necessary to adapt the engine
model to measured performance of a particular engine for both simulation runs.
This chart illustrates that for the first AM calculation, measured thrust (FN)
was used, whereas for the second AM calculation the fan outlet pressure (Ps14)
was used. The bottom two charts illustrate component condition deviations
relative to the reference engine condition. The results indicate only a minimal
differences in the diagnostic outcome. Similar results were obtained for other
engines. These results validate the use of fan outlet pressure for GPA of on-wing
data as a suitable alternative for thrust measurements.

3.2.5 Reference engine condition

Model-based diagnostic tools compare measured engine performance to refer-
ence engine performance, both operating at matching operating conditions.
Because the condition of a reference engine has a direct effect on GPA results,
knowledge about that condition is important for validating GPA results. To
understand this concept consider the following thought experiment. A per-
formance data set of an engine requiring maintenance is analyzed two times
by means of GPA. The first analysis is done by using a reference data set of
an engine with best possible performance, i.e., the highest possible EGT mar-
gin for that engine type. The second analysis is done by using a reference
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Figure 3.8: GPA results showing the effects of using fan outlet pressure
(Ps14) as a proxy for the direct thrust measurements (FN) that are not
available during on-wing operation.

data set of an engine with poor performance, i.e., zero EGT magin. The GPA
results of those two cases will be wildly different. The results obtained with
new-engine performance as reference will likely exhibit significant negative con-
dition deviations on most, if not all, gas path components. This would suggest
that all gas path components should be overhauled and provides little informa-
tion for estimating a realistic maintenance work scope. Maximum performance
restoration will only be achieved when all engine components are overhauled.
But due to financial considerations this usually does not occur in practice. In
contrast, the GPA results obtained with a zero-EGT-margin reference engine
will likely show significant positive condition deviations. Those results could
suggest that most, if not all, gas path components are in good condition. That
too would provide little information for estimating a maintenance work scope.
Thus, using a representative reference engine is essential when GPA result are
used for estimating maintenance work scope. The rule of thumb used in the
MRO industry is that engine overhaul may result in up to 80% of new engine
performance.

The GSP performance models and reference engines used for GPA have been
developed and selected by KLM. The selected reference engines are engines of a
particular model and type with average performance after a gas path overhaul
or performance restoration at the MRO facility. Insight into performance model
accuracy and reference engine condition enables fair judging of the results and
provides a more realistic view on the possible component condition restoration.

3.2.6 Measurement uncertainty

As with other GPA methods, the results of model-based GPA are affected by
measurement uncertainty. The uncertainty of a measured quantity arises due to
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random and systematic measurement errors and reflect incomplete knowledge
of the quantity being measured. In the case of GPA measurement uncertainty
perturbs the true values of measured performance parameters and therefore
any subsequent analysis based on those parameters [38, 42].

To better understand the effects of measurement uncertainty on GPA re-
sults, the effects of random sensor noise were studied with GSP. For this anal-
ysis, component deterioration was simulated for the high pressure compressor
and high pressure turbine of a CF6-80C2 engine. The simulated deterioration
levels are shown in the boldface printed column in table 3.3. To simulate the
effects of sensor noise, random variations were added to simulated performance
parameters, with the exception of the shaft RPM. Because shaft rotational
speed measurements are generally accurate, noise effects on these parameters
are neglected in this analysis. Four levels of sensor noise are used, namely:
±0.5%, ±1%, ±2% and ±4%. For each level of simulated sensor noise, 20 sets
of perturbed performance parameters were generated by using the MATLAB R©

randn function. GSP’s adaptive modeling component was used to analyze both
the unperturbed and noise affected performance data.

The results of this study are presented in box-and-whisker plots in figure
3.9. The results show that relatively small performance parameter variations
that may be caused by sensor noise can have significant effects on the diagnostic
outcome. For example, performance parameter perturbations within the ±1%
range lead to condition parameter deviations of several percent. This effect
appears to increase for increased levels of simulated sensor noise. The results
also show that effects of sensor noise are not equal for all condition parameters.
Some component condition parameters shown much larger deviations for a
specific noise level in comparison to other condition parameters. In addition,
the condition deviation extrema increase for increasing levels of sensor noise.
Based on these characteristics, sensor noise appears to be disastrous for GPA.
Especially when few data points are available for GPA.

However, for each flight at least one performance data set is recorded. Fur-
thermore, gas path component deterioration is in the majority of cases a slow
and steady process. This means that over a period of several flights the condi-
tion of gas path components usually do not change noticeably. Therefore, the
availability of many on-wing performance data points recorded consecutively
permits averaging of the results affected by sensor noise. In this study mean
component condition deviations were determined by using 20 data points per
parameter for each level of simulated sensor noise. These results are presented
in table 3.3. They show that averaging the results affected by random error
leads to reasonable approximations of the actual component condition devia-
tion. For all levels of simulated sensor noise, the GPA results still captured
those components with poor condition, albeit less accurate for increasing lev-
els of sensor noise. Thus GPA results affected by random sensor error can be
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averaged to approximate the true component condition provided that the per-
formance data are obtained in a short period during which the condition of the
engine should not change noticeably.

Table 3.3: GPA results of simulated sensor noise analysis. The column
printed in boldface shows the simulated engine condition. The remaining
columns show the mean values of the GPA results for the different levels of
simulated random sensor noise.

Condition Simulated
Parameter Deterioration 0.0% 0.5% 1.0% 2.0% 4.0%

LP Cc∆η 0.0 0.0 -0.1 -0.8 0.8 2.2
LP Cc∆W c 0.0 0.0 -0.1 0.0 0.0 -0.3
LP Cbp∆η 0.0 - - - - -
LP Cbp∆W c 0.0 0.0 -0.1 -0.2 -0.2 -1.2
HP C∆η -2.0 -2.3 -2.4 -1.8 -1.4 -0.9
HP C∆W c 2.0 2.1 2.1 2.4 2.5 1.3
HP T ∆η -3.0 -3.0 -2.9 -3.3 -2.6 -3.7
HP T ∆W c -1.0 -0.7 -0.6 -0.7 -0.8 -1.0
LP T ∆η 0.0 -0.1 -0.1 0.0 -0.6 -0.1
LP T ∆W c 0.0 0.3 0.4 0.7 -0.2 0.3

3.2.7 Case study: GPA with on-wing measured perfor-

mance data

GPA with on-wing measured performance data was attempted for three General
Electric CF6-80C2 engines installed on the same aircraft of the KLM fleet.
Because the GPA model including the component maps are tuned to test cell
standard take-off conditions, take-off performance snapshots were used to assess
the application of on-wing GPA. For each engine, 25 consecutive on-wing take-
off snapshots were available. These take-off snapshots were recorded 50 seconds
after commencing take-off mode in the Flight Management System (FMS).

The engines used for this study were equipped with an extended sensor
package that measured 12 different parameters. In addition to 3 performance
parameters required to observe atmospheric conditions and power setting, 9
additional performance parameters were available for GPA. Table 3.2 provides
a list of the on-wing measured performance parameters. With these 9 per-
formance parameters, 9 component condition parameters could be determined
by means of GPA. For each engine, performance data from the last test cell
acceptance test was used as reference for model calibration.

Figure 3.10 shows the GPA results for the three CF6-80C2 engines. The
scatter observed in these graphs was likely caused by the combined effects of
measurement uncertainty and model error. When these results are compared
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Figure 3.9: Results of a measurement uncertainty study showing the effect
of simultaneously increasing measurement noise levels on each component
condition parameter.
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to the results obtained from simulated random uncertainty shown in figure 3.9,
they suggest that the combined effect of measurement uncertainty and model
error is less then ±1% of the observed performance parameter.

While the results of this feasibility study looked promising, closer inspection
revealed some unwanted correlations. The LPC core flow capacity deviation,
which was shown in chronological order in figure 3.10(b), is shown in figure
3.11 as function of corrected fan speed. A second degree polynomial fit super-
imposed on the data points highlights the correlation between the component
rotational speed and the estimated component condition deviation. Because
the fan rotational speed is directly related to engine power setting, this result
suggests that the condition of the LPC core depends on the power setting. In
fact component condition parameters should be independent of engine power
setting and ambient conditions and should only indicate how component con-
dition is affected by deterioration. While they are not shown for all condition
deviations, similar results were also obtained for other compressor components.

This unwanted correlation is caused by inaccurate component maps used for
the performance model that forms the basis of the GPA method. The adaptive
modeling method used for GPA determines component condition deviations
by operating the performance model at the same operating conditions as the
measured data and subsequently adapts the condition parameters to match
the other measured performance parameters. If a difference exist between the
engine and the performance model, this shows up as component condition de-
viations. Thus instead of identifying component deterioration effects only, the
GPA results appear to capture model inaccuracies also. Although GPA with
on-wing measured data seems possible, model inaccuracies render the results
useless. Therefore, using GPA for on-wing measured performance data requires
more accurate models. This aspect is covered extensively in chapter 4.

3.3 GPA challenges for the MRO industry

Component-level condition information obtained from GPA is beneficial for
an aero-engine maintenance process. It is particularly useful when an engine
failed its post-overhaul performance test or shows unexpected behavior while
installed on-wing. But using model-based GPA in practical applications poses
several challenges. These challenges, in part, prevent systematic use of GPA in
the maintenance process.

The performance models used for model-based GPA introduce some chal-
lenges. Although creating a turbofan performance model is in principle a rela-
tively straight-forward process, the accuracy necessary for GPA makes this pro-
cess more challenging. GPA applications need additional information such as
engine-specific sensor locations and geometric data for correctly relating mea-
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Figure 3.10: GPA results using 25 consecutive on-wing performance snap-
shots measured during take-off showing flow capacity (graphs a, b, d, f, h)
and efficiency deviations (graphs c, e, g, i).
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Figure 3.11: LPC core flow capacity deviation as function of correct shaft
speed

sured performance parameters to simulated parameters. Cycle calculations,
necessary for the adaptive modeling calculations, require total (or stagnation)
properties. However, at some stations in a gas turbine, static pressure is mea-
sured instead of total pressure. Cross flow area information is then necessary
to approximate the total properties from the measured static properties. Thus,
creating a performance model for GPA purposes requires additional informa-
tion that would otherwise not be necessary.

One model-related challenge that was encountered was the location of the
high pressure turbine temperature sensor of the CFM56-7B. In this engine type
the exhaust gas temperature (EGT) sensor is embedded in the nozzle guide vane
stage following the first low pressure turbine rotor instead of at the high pres-
sure turbine exit, which is often the case. Because GSP is a 0-D performance
model, the state of the working medium is calculated only at component inlet
and outlet planes. Consequently, performance parameters measured inside a
component cannot be used in the adaptive modeling calculation to determine
the component condition parameters. The solution was to split the low pres-
sure turbine, and model it as two separate turbine components that share the
same shaft.

The absence of accurate component maps introduces another model-related
challenge. Depending on the application, performance model accuracy is not
only important at a single operating point, but over a wider range of off-design
operating points also. An example is using on-wing measured performance
data for GPA. Because the engine power setting is affected by aircraft weight,
it varies from one flight to another. For reliable GPA results, the performance
model should accurately simulate those varying power settings. Component
maps, which are to a large extent responsible for off-design model accuracy, are
proprietary to the original equipment manufacturer and generally not avail-
able to third parties. In section 3.2.3 it was observed how using alternative
component maps affect the GPA results.

Another challenge is related to the absence of measured performance pa-
rameters. While some gas path performance parameters are always measured
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for engine control purposes, others may be optional or are not measured at all.
For on-wing condition monitoring applications several sensors may be installed
in the gas path. Because of the additional cost related to this optional func-
tionality, some operators do not include these sensors. Additionally, placing
a sensor in the gas path may cause unwanted performance issues or may not
guarantee long term reliable measurements. When this occurs, the performance
model must be set up to handle missing measured performance parameters.

A required adaptation was related to the model layout of the low pressure
compressor section. Both the CF6 and the CFM56-7B engine families have
a compressor configuration that consists of a fan, a low pressure compressor
(booster), connected to the low pressure turbine shaft, and a high pressure
compressor, connected to the high pressure turbine shaft. Unfortunately, no
performance parameters are measured at the fan-booster interface. As a result,
isolation of the fan core and booster performance was not possible. Because
both turbomachinery components share the same shaft, they are modeled as a
single component in the GSP model. Consequently, the number of condition
parameters are reduced, thereby enhancing GPA iteration stability. This re-
quired a new component map that combined the performance characteristics
of both components together.

Because of limited measured performance parameters, component condi-
tions can not be determined for all turbomachinery components. For the engine
families analyzed at KLM Engine Services, special adaptations to the models
were necessary to use the available measured performance data. The generic
modeling capability of GSP is particularly advantageous to accommodate the
required adaptations.

Relating component condition deviations to physical engine problems is an-
other challenge. Maintaining any mechanical device generally means cleaning,
repairing, or replacing a defective part. Gas path components consist of a great
number of parts, each of which has an important contribution to the overall
component performance. If GPA identifies poor efficiency of a gas path compo-
nent, which of the many parts that form that component needs maintenance?

Finally, possibly the most significant challenge is the absence of integration
in the existing data infrastructure. The GSP GPA tool used at KLM is a stand-
alone system that was designed to import the required data from post-overhaul
test-cell performance reports. The results could subsequently be saved as a
report in a portable document format for future reference. Although this format
is independent of application software, hardware, and operating systems, and
thereby easy for distribution to clients, further analysis was not possible in a
systematic way. Therefore, both importing measured performance data and
comparing GPA results of different engines were manual and time-consuming
processes. Consequently, the information flows to and from the GPA tool were
not optimal for systematic application in the maintenance process.
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3.4 Conclusion

This chapter described the experience of using GPA for turbofan diagnostics at
an MRO shop. Although GPA allows much more information to be obtained
from standard post-overhaul performance acceptance tests, its use is mostly
limited to post-overhaul fault diagnostics. The limited availability of in-bound
performance data, mainly caused by the additional cost, means that detailed
component condition generally cannot be obtained before maintenance.

Several feasibility studies were done to see whether GPA could have more
applications within an existing aero-engine maintenance process where engine
performance data may be limited and affected by measurement uncertainty.
Results of those studies have led to the following conclusions:

• On-wing GPA with GSP has shown good results for turbofan engines with
sufficient on-wing measured performance parameters. When GPA results
vary due to the effects of random sensor error the arithmetic mean of
several component condition parameter deviations can approximate the
true component condition provided that the available performance data
are measured over a short period during which component condition does
not change noticeably as a result of gradual deterioration mechanisms.

• Using on-wing measured performance data for GPA has been identified
as a good alternative when measured performance data prior to overhaul
are not available. When on-wing measured performance data are used
for GPA, however, the GPA tool must provide accurate results over a
wider operating range compared to a GPA tool used for analyzing engine
performance measured in a controlled engine test cell. This is necessary
to account for de-rated take offs.

• When too few on-wing measured performance parameters are available
for detailed GPA, adapted-model performance analysis can be used to
analyze engines that show abnormal performance. This way GPA is used
indirectly for analysis of measured performance parameters that are avail-
able.

While results of the feasibility study have demonstrated additional GPA
applications that are beneficial for the aero-engine maintenance process, bot-
tlenecks have been identified that need to be resolved for embedding and sys-
tematically using GPA in the maintenance process.

• For model-based GPA in general accurate component maps enable more
accurate component condition estimations. However, accurate compo-
nent maps are essential for reliable GPA results when using on-wing per-
formance data with varying engine power settings. Without sufficiently
accurate component maps, GPA results obtained with on-wing measured



62 Gas path analysis with GSP

performance data represent a combination of component deterioration,
model error and measurement uncertainty. Such results offer little value
to aero-engine maintenance.



CHAPTER4
Improving GPA reliability

Abstract

This chapter presents methods for improving the accuracy and reliability of
GPA results. First the major sources of uncertainty are discussed and the ef-
fects of random measurement uncertainty are quantified by means of the Monte
Carlo method. To improve performance model accuracy a component map tun-
ing method is presented that requires an approximate component map, on-wing
measured performance data and the adaptive modeling capability of GSP. There-
after the importance of correct model calibration on GPA results is discussed
and an off-design model calibration method is presented. Finally, the problem
of selecting reference data from operational engines for GPA application is dis-
cussed. Two methods are presented that use multiple reference data sets to
obtain a better estimate of the actual component condition and the correspond-
ing uncertainty of this estimate.
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A
ccurate and reliable GPA results are essential when GPA is used in
the aero-engine maintenance process. When incorrect diagnostic infor-
mation obtained by means of GPA is used for planning maintenance

work scopes, the resulting performance improvement may be less than expected.
This imposes financial risks for an engine repair facility that uses GPA in its
maintenance process.

Model-based GPA tools use a gas turbine performance model and measured
engine performance parameters for estimating gas path component condition
deviations relative to baseline condition. Because there may be differences
between the performance model and the engine being analyzed, a model cali-
bration step is necessary. The GSP adaptive modeling (AM) component that
is used for this study can use arbitrary reference engine data sets for this cal-
ibration step prior to model adaptations. However, the engine model and the
performance data may contain errors that propagate through the AM calcu-
lation [43]. Depending on the type of error present, GPA results may contain
random errors and systematic errors—an off-set relative to the true but un-
known value being measured. This reduces the accuracy and reliability of a
GPA tool.

This chapter discusses several issues that affect model-based GPA results.
It presents methods for improving the accuracy and reliability of model-based
GPA results such that they can be used for systematic application in the aero-
engine maintenance process.

4.1 Uncertainty effects

An important aspect affecting GPA accuracy and reliability is measurement un-
certainty. Measurement uncertainty may be classified into two groups: random
uncertainty and systematic uncertainty. Effects of random uncertainty can be
revealed by means of repetitive measurements and can be characterized with
statistical analysis[63]. Sensor noise, unstable engine operation resulting from
small changes in inlet flow conditions, variable geometry settings, and thermal
expansion of components are sources of random uncertainty. Systematic un-
certainty is a form of measurement uncertainty where the measured value has
a consistent error (offset) with respect to the true but unknown value. Such
errors may be caused by sensor bias, incorrect sensor position, and model er-
rors. The study presented in this section focuses solely on the effects of random
uncertainties.

Gas turbine performance models use deterministic algorithms [47]. For
model-based GPA this means that a particular input always generates the
same output, that is, a given performance model and a given performance data
set always yield the same GPA results. If the input data contain uncertainties,
the output too will contain those uncertainties. Therefore, performance data
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from a single snapshot are not sufficient to assess the effects of sensor error on
GPA results through statistical analysis.

4.1.1 Unsteady engine performance

Gas turbine performance models are used for steady-state and transient per-
formance prediction. Although GPA has been demonstrated with transient
performance data [27, 34, 39], most GPA tools are developed for analysis of
steady-state performance data.

Steady-state performance in a controlled test environment is achieved by
operating a turbofan engine at constant power until all measured performance
parameters are stabilized. The performance data obtained at those steady-state
conditions are excellent for GPA. However, during take-off a turbofan engine
operates at a take-off power setting for a few minutes during which the aircraft
first accelerates from stationary conditions followed by an increase in altitude
at an approximately constant climb speed. To conserve the engine life time,
power is then reduced when a certain altitude and speed are reached. These
variations prevent the engine to reach true steady state performance during
this operational phase. When steady-state conditions are assumed but are
not achieved, small performance deviations may lead to component condition
estimation errors.

4.1.2 Secondary flow effects on adaptive modeling

Turbofan engines are designed such that a fraction of the compressed core en-
gine flow, often referred to as bleed air, is redirected from the core flow path
for cooling and pressurization applications. A distinction can be made be-
tween compressor bleed air used for engine-related applications such as turbine
cooling, and so-called customer bleed air that is used for aircraft-related ap-
plications such as cabin pressurization and air conditioning. While most of
the bleed air for turbine cooling purposes returns to the main flow path before
or during expansion in the low pressure turbine, customer bleed-air does not
return to the gas path. Depending on the amount of customer bleed air, this
can be a significant loss of energy from the thermodynamic process occurring
in the turbofan.

Measurements or flow schedules for bleed air are not available for opera-
tional engines. However, the engine Type Certificate Data Sheet (TCDS) spec-
ifies maximum limits for several bleed flow locations. This information, which
is shown in table 4.1, was used for creating a CF6-80C2 model that included
internal cooling flows and customer bleed flows. This model was created by
iteratively varying the cooling mass flow fractions to match performance data
measured in a test cell. Because the internal cooling flows are not actively
controlled, they were modeled as fixed mass flow fractions. During operation
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in a test cell, customer bleed flow ducts are closed. The effects of customer
bleed on engine performance were analyzed after values for the internal cooling
flow were established.

Table 4.1: This table lists the maximum permissible mass fractions of
high pressure compressor bleed flows for the CF6-80C2 engine. Different
limits are defined for engines with a Full Authority Digital Engine Control
(FADEC) and engines with a Power Management Control (PMC).

CF6-80C2 CF6-80C2
Bleed location FADEC PMC

Stage 7 HPC - -
Stage 8 HPC 8.8% 8.8%
Stage 11 HPC 1.5% 1.5%
Stage 14 (CDP):

Steady state @ TO rating 5.0% 5.0%
Steady state @ MC or below 10.0%
Transient @ MC or higher 7.0%
Steady state between 80% N2 and MC 10.0%
During accelerations @ 80% N2 7.0%
Operating at 80% N2 or below 12.0%

To analyze the effects of customer bleed flows and turbine cooling flows
on the adaptive modeling calculation, several mass fractions of customer bleed
were simulated. Mass fractions for the cooling flows remained constant. The
resulting performance parameters were analyzed with a diagnostic model for the
CF6-80C2 that contained no bleed and cooling flows. The results for several
levels of customer bleed are shown in figure 4.1a. These results show that
customer bleed flow significantly affected the adaptive modeling results when
bleed flows were not taken into account.

Effects of customer bleed flows were analyzed with a simulated HPC de-
terioration also. For this analysis an HPC efficiency deterioration of -4% was
simulated. The results presented in figure 4.1b show that the value of the
simulated component deterioration was still correctly identified for low levels
of customer bleed. However, for increasing levels of customer bleed flows the
simulated HPC deterioration blended into the incorrectly estimated component
condition deviations that resulted from the customer bleed. The effects of tur-
bine cooling flows can also be observed in figure 4.1. At 0% customer bleed flow
both figure 4.1a and figure 4.1b show small component condition deltas. But
these deviations are much smaller than those resulting from customer bleed
flows.

For an accurate estimate of engine condition parameters, all factors that
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significantly affect measured performance parameters should be included in
the analysis. When information regarding those effects is neglected, results
of the adaptive modeling procedure may still match measured engine perfor-
mance. But the resulting condition parameter deviations will compensate for
the omitted factors that affect performance parameters. Therefore, neglecting
significant factors such as customer bleed may lead to incorrect component
condition estimations.
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Figure 4.1: Customer bleed effects on estimated component conditions
for increasing bleed air mass fraction. Figure (a) contains results for an
engine with no deterioration. Figure (b) contains results for an engine with
simulated HPC efficiency deterioration; ∆ηHP C = −4%.

4.1.3 Measurement error

When random uncertainties are known for a set of measured performance pa-
rameters, the Monte Carlo method can be used to obtain statistical information
about the effects of random error propagation. Statistical data available for the
sensors were used as input for this analysis. A list of this sensor information is
presented in table 4.2. The indicated errors represent a 95% confidence inter-
val, i.e., 2σ. A set of performance parameters was generated for an engine with
no condition deterioration. Based on the available sensor information and the
simulated performance parameters, the MATLAB R© randn function was used
to generate a 1500 data sets with a normal distribution.

To analyze the effects of sensor error propagation, simulated sensor errors
were added to measured performance parameters of the engine used for analysis.
Gas path analysis was used for quantifying the effects of the simulated sensor
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Table 4.2: Sensor error accuracies that were used for the error propagation
analysis [17].

Sensor Range 2σ

Barometer pressure 11-16 psi ± 0.02%

Pneumatic pressure ± 1 psid ± 0.15%

± 5 to ± 750 psid ± 0.05%

Thermocouples 0-1000 ◦C ± 0.5◦C

RTD -50 to +200 ◦C ± 0.2◦C

Frequency 1 to 100 kHz ± 0.2%, >400 Hz

Fuel flow 400-40000 pph ± 0.25%

errors. The unperturbed set of measured performance parameters served as
reference engine performance for these calculations. This approach eliminated
any potential systematic errors that may otherwise affect the GPA results.

Component condition parameter deviations were determined for each set
of perturbed performance parameters. The convergence of the Monte Carlo
analysis was observed by analyzing the development of the sample mean (x̄n)
and standard deviation (σn) in relation to the number of trials. The lowest
rate of convergence was observed for the isentropic efficiency deviation of the
fan core flow (∆ηLP Cc

). Graphs of the sample mean and standard deviation of
∆ηLP Cc

are presented in figure 4.2. The graphs show that both (x̄n) and (σn)
converge within the 1500 trials used for this analysis. Figure 4.3 presents the
probability distributions obtained from the Monte Carlo analysis. Additionally
it also presents the values for x̄n and σn for each condition parameter.

The results of the error propagation analysis presented in figure 4.3 show
that the values for sample mean converge to zero deviation for all component
condition parameters calculated, that is, x̄n ≈ 0. This corresponds with the
performance parameters used for the Monte Carlo analysis of an engine with no
condition deterioration. The narrow probability distributions shown in figure
4.3 suggest that the effect of random sensor errors on the adaptive modeling
calculation results are relatively small. The exception was the standard devi-
ation for ∆η LPCc with σ∆ηLP Cc

= 0.5%. The reason for this relatively large
standard deviation was the lack of a temperature measurement in the fan by-
pass outlet duct or a pressure measurement at the LPT outlet. Consequently,
the numerical procedure could not estimate a value for ∆η LPC with similar
accuracy compared to the other components.
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Figure 4.2: The graphs show the convergence of standard deviation (σn)
and sample mean (xmean) of the LPC core and HPC efficiency estimation
for an increasing number of trials. These results suggest that between 500
and 1000 trials are sufficient for reliable σn and xmean estimates

4.2 Component map tuning

Gas turbine performance models use the conservation equations of energy, mass
and momentum for obtaining equilibrium operating points. Component maps
are used to describe off-design behavior of individual gas path components in
performance models. These maps are a description of the aero-thermodynamic
behavior of a gas path component. This behavior is captured in correlations
between performance parameters such as pressure ratio and rotor speed, and
mass flow and rotor speed. The accuracy of component maps has a direct effect
on the performance model accuracy. Component maps contain within them a
complete performance description of the component they belong to, which is
directly linked to the component design. Consequently, original equipment
manufacturers (OEMs) consider them proprietary and the maps are usually
not available outside the OEM environment.

In academia and the industry, performance models are often developed inde-
pendent of the OEMs. Because component maps are not usually available, sev-
eral methods have been developed to reverse-engineer these maps from existing
maps and operational performance data. Generally, as a first approximation,
maps for similar gas turbine components available in the public domain are
scaled to a known reference operating point [31, 61]. Performance simulation
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Figure 4.3: This figure shows the probability density functions (PDFs) for
the condition parameters obtained by means of the Monte Carlo method.
All PDFs have a normal distribution with a zero mean (µ), which confirms
no condition deviations in the simulated data. The standard deviation (σ)
indicates the sensitivity to the effects of random uncertainty.
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accuracy depends on how well the scaled maps represent the correlations of the
actual components for which they are used. Therefore, often additional map
tuning is required to better match component performance. Several map modi-
fication techniques are currently in use. Some methods take the laws of physics
into account [31–33], while others use different approaches such as neural net-
works, genetic algorithms, and morphing techniques [30]. The scaling methods
all aim to approximate the unknown off-design performance of a component as
close as possible.

In addition to condition monitoring, adaptive modeling has been used also
for improving model accuracy at reference performance [40, 61]. Component
map tuning through adaptive modeling was identified in earlier work published
by Lambiris et al. [35]. By fine-tuning the engine design parameters to match
a specific engine operating point, model accuracy can be improved.

This section presents a component map tuning procedure that combines the
adaptive modeling capability of the Gas turbine Simulation Program (GSP)
[46] with on-wing measured performance data. It builds on concept of model
tuning using adaptive modeling presented by Lambiris et al. [35] by extending
the concept to off-design engine performance. The objective of this study was
to tune available component maps to a level of accuracy such that on-wing
measured performance data can be used for GPA.

4.2.1 On-wing measured performance data

For this study, on-wing take-off performance data of CF6-80C2 engines were
used. Although performance data measured in a controlled test cell environ-
ment would be of better quality, insufficient test cell performance data were
available. Several engines would then be necessary to collect sufficient perfor-
mance data. Since each engine would have a slightly different condition, this
would add an additional uncertainty factor to the tuning process. Therefore,
we decided to use on-wing measured performance data. Because on-wing per-
formance data were available from the first flight after overhaul, the on-wing
engine condition could be compared to the engine condition estimated with its
test cell data.

However, during performance acceptance tests in an engine test cell, turbo-
fans are operated at 4 specific corrected power settings to verify correct per-
formance: ground idle, flight idle, maximum continuous, and take-off power.
Because of this approach, performance data from the test cell were available
only at these discrete power settings. In contrast, during on-wing operation,
atmospheric conditions and power setting may vary considerably among flights.
De-rated take-offs are frequently used to conserve the remaining engine life. Air
temperature between take-offs may vary in excess of 30 Kelvin also. Conse-
quently, depending on the necessary take-off power, the corrected shaft speeds
may vary in excess of 10%. These variations provided measured performance
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Figure 4.4: This figure shows the measured performance parameters avail-
able for adaptive modeling with test cell and on-wing performance data. The
objective of GPA is to estimate the changes of η and W c for as many pa-
rameters as possible. Note that during on-wing performance thrust (FN)
and relative humidity (RH) are not measured.

data over a wider range of power settings and operating conditions during take-
off compared to test cell performance. This way, the use of on-wing measured
performance data enabled map tuning over a wider range of power settings
compared to engine performance measured in a test cell.

The CF6-80C2 engines used for map tuning procedure were equipped with
an extended condition monitoring sensor package. The approximate sensor
locations are shown in schematic of a turbofan in figure 4.4. During on-wing
operation relative humidity (RH) and engine thrust (FN) are not measured.
When direct thrust measurements are not available, fan bypass static outlet
pressure (Ps14) serves as a good alternative to determine overall engine power
[70]. Because relative humidity was not measured during on-wing operation,
standard day conditions are assumed for the analysis of on-wing performance
data, i.e., RH = 60%. The effects of relative humidity variation on sea level
take-off performance are relatively small and are not considered in this study.

The engines for which on-wing performance data were available were in-
stalled on Boeing 747-400 aircraft. For those aircraft the auxiliary power unit
takes care of air conditioning to maximize available power during take-off. For-
tunately, this is also the flight phase during which the on-wing performance
measurements are recorded. The customer bleed flows could, therefore, not
affect the map tuning procedure.

4.2.2 Tuning procedure

When model-based GPA is used to estimate component condition, it is assumed
that the engine model–and corresponding component maps–are accurate and
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that gas path component deterioration is the sole cause of estimated condi-
tion parameter deviations. However, for the component map tuning procedure
presented in this section the inverse was assumed. Now it was assumed that
the available performance data were from engines with known and constant
condition, and that any estimated condition parameter deviation is caused by
model errors.

The adaptive modeling calculation used for this study can be described as
a series of two calculation steps. First, to obtain an accurate baseline model,
the engine model is tuned to measured performance data of a reference engine.
During this step the reference model reference point is matched to measured
performance parameters with so-called calibration factors. In the second step,
map modifiers are used to adapt the baseline reference model to the measured
performance parameters of the engine that is analyzed. A detailed description
of this procedure is given by Visser et al. [74]. The resulting component
condition parameter deviations are therefore always relative to the performance
of the reference engine.

For the map tuning process on-wing measured performance data were used
from engines that had undergone overhaul and were equipped with an ex-
tended sensor package. Therefore, apart from detailed post-overhaul test cell
performance data, on-wing performance data were available also. The available
on-wing performance data allowed engine condition estimation with the same
level of detail compared to test cell data. Moreover, on-wing performance data
were available from the first flight after maintenance. This allowed detailed
engine condition monitoring while installed on-wing. Depending on the engine
type, turbofan engines can operate on-wing for a period of approximately two
up to more than seven years. During that time gradual component deteriora-
tion occurs. However, to operate on-wing for a long period of time, component
condition deterioration should be minimal in a relatively short time interval.
Therefore, as long as the period for which data were available was not too long,
the constant engine condition assumption is valid. In addition, by using perfor-
mance data from the initial flight after maintenance, no condition deviations
could occur between test cell engine test and on-wing operation.

The component maps were tuned such that the estimated component con-
ditions were both equal to the known condition, and constant for the available
performance data. Moreover, it was assumed that other error sources had mini-
mal effect on estimated component condition deviations compared to inaccurate
component maps. To substantiate this assumption, the effects of compressor
bleed flows and measurement uncertainty were analyzed. These aspects, which
were suspected to have the biggest impact on the map tuning procedure, were
covered earlier in this chapter.

Component maps were tuned by re-labeling constant speed lines. Speed
line re-labeling modified the correlations that existed between shaft speed and
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corrected mass flow, and isentropic efficiency and corrected mass flow. The
modified correlations affected the component map interpolation results that
form an integral part of steady state operating point calculations in gas tur-
bine performance models. This led to different off-design model performance,
thereby affecting the estimated component conditions of the adaptive model-
ing calculation. The tuning procedure was performed by iteratively re-labeling
individual speed lines and calculating the effect on the estimated component
conditions. From the results of each re-labeled speed line, the root mean square
(RMS) value was determined. For each speed line, the RMS values were plot-
ted against the speed line label. By curve-fitting a second order polynomial
through the RMS values for each speed line, an optimal speed line was deter-
mined, that is, a speed line that yielded a minimum RMS value. This iterative
routine was performed manually for each speed line that affected the off-design
model performance. The original maps were tuned until the RMS value of each
component condition, estimated with on-wing performance data, converged to
a minimum value.

4.2.3 Results and discussion

Compressor maps were tuned by using a technique called speed-line re-labeling.
This section present the results of the tuning procedure that was done for three
compressor maps of an engine model representing the General electric CF6-
80C2 engine. For the engine used, on-wing take-off performance data were
available for a period of 55 days. In total, 93 consecutive take-off snapshots
were used to tune the compressor maps.
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Figure 4.5: The RMS values and the corresponding best-fit curves plotted
against the speed line label for the combined fan core and booster compo-
nent. These graphs indicate that a minimum error would be obtained for
normalized speed line labels of 0.87 and 0.94.

The map tuning procedure was performed iteratively. After a speed line
was re-labeled, the condition deviations were determined with the adaptive
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modeling procedure. For each set of condition deviations an RMS value was
calculated. In figure 4.5, the RMS values are plotted against the corresponding
speed line. To determine the speed line values that resulted in the optimal
RMS value, a best fit curve was generated. The position on the horizontal
axis for which the first derivative of the best-fit curve was 0, was chosen as
the optimal speed line label for the iteration step. This procedure performed
for each speed line that affected the adaptive modeling calculations with the
on-wing performance data. It was repeated until the optimal value for each
speed line converged.
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Figure 4.6: Fan core and fan bypass mass flow capacity condition devia-
tions graphed against the corrected LPC (N1) shaft speed. o-markers show
the results obtained with original maps, +-markers represent the results ob-
tained with the tuned maps.

Adaptive modeling results with on-wing measured performance data for the
original and tuned map are presented in figures 4.6 and 4.7. Figure 4.6 contains
the results for the flow capacity deviations (dWc) for the combined fan core
and booster flow (LPCc) and the fan bypass (LPCbp) flow. Figure 4.7 contains
the results for the flow capacity deviations (dWc) for the HPC. The o-markers
indicate the results of the adaptive modeling calculation with the original maps.

The flow capacity deviations for the LPC core and bypass flow show a
strong correlation with the corrected LPC shaft speed (Nc LPC) in figure 4.6.
A similar correlation was observed between the HPC flow capacity deviation
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Figure 4.7: HPC mass flow capacity condition deviations graphed against
the corrected HPC (N2) shaft speed. o-markers show the results obtained
with original maps, +-markers represent the results obtained with the tuned
maps.
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Figure 4.8: LPC core and bypass mass flow capacity condition devia-
tions graphed in order of measurement. o-markers show the results obtained
with original maps, +-markers represent the results obtained with the tuned
maps.
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and the HPC shaft speed (Nc HPC) in figure 4.7. While small deviations are
possible when estimating gas path component condition from performance data
obtained at different power settings [44], strong correlations as those observed
in figures 4.6 and 4.7 should not be present. These correlations suggest that
the flow capacity condition parameter depends on the shaft speed. Component
condition parameter deviations should indicate how the component condition
deviates relative to the reference engine used. These, and other condition
parameter deviations, should be independent from engine power setting, and
ambient conditions. The correlation between the flow capacity deviation and
corrected shaft speed indicated that the correlations between the corrected
mass flow and shaft speed in the compressor maps do not accurately represent
the CF6-80C2 components.

The +-markers illustrate the results obtained with the tuned compressor
maps. The flow capacity condition deviations obtained with the tuned maps
show no clear correlation with the corrected shaft speed of the component. The
improvements resulting from the tuned compressor map are more pronounced
for the LPC than for the HPC. The reason for this was that the original com-
pressor map that was used for the CF6-80C2 HPC was a compressor map for
the HPC of an older CF6 engine. The compressor maps for the LPC bypass and
LPC core were obtained from the public domain. The initial maps for the LPC
did not accurately represent the correlations that exist between the corrected
mass flow and the shaft speed. The tuned maps have a better representation
of these correlations.

Although the general pattern improved, significant scatter remains present
in the calculated component conditions shown in figures 4.6 and 4.7. Fine
tuning the compressor maps did not reduce the amount of scatter. In figure
4.8 the component deterioration is shown in chronological order also. These
results show that the remaining scatter of flow capacity deviations was not
caused by time dependent component deterioration during the period for which
the on-wing measured data were available. The graph remains essentially flat,
suggesting constant component condition.

4.3 Performance model calibration

Component condition deviations are calculated relative to a reference (or base-
line) engine. Differential GPA methods use a performance model to calculate
the effects of condition parameter deviations on performance parameters. The
performance differences between the reference engine and the engine being an-
alyzed, both operating at the same power setting and atmospheric conditions,
are caused by component condition deterioration, measurement error, engine-
to-engine variation and model error. This section focuses on model error and
the reduction thereof by means of model-calibration.
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When differences remain between model performance parameters and refer-
ence engine performance parameters, these propagate through the calculations
and introduce errors in the estimated component condition deviations. That
is, condition deviations that are not caused by actual component deterioration,
but by model error. To remove this source of errors, a model calibration step is
used for eliminating any differences between the reference engine and the per-
formance model. This calibration step is also useful to compensate for inherent
engine-to-engine variations when different reference engines are used for GPA.

Two methods used for performance model calibration are single-point cali-
bration and multi-point calibration. The single-point calibration method, which
is implemented in GSPs AM component, uses performance data from a single
operating point as a reference for performance model calibration. The multi-
point calibration method [19, 62, 73] uses multiple off-design operating points
for model calibration. If a gas turbine performance model closely matches real
engine performance within the desired operating range, the accuracy obtained
through single-point calibration is sufficient for practical GPA applications. In
the remainder of this thesis, single-point model calibration that is used in this
study is referred to as model calibration.

fci
=

Piref

Pimod

(4.1)

In the AM calculation used for this research work, model calibration is done
in the following way. The performance model is operated at the same ambient
conditions as the reference engine. The ratio between model performance and
reference engine performance is used for calculating Calibration Factors (CFs)
as shown by equation 4.1. During the calibration step this is done for all
measured performance parameters. Piref

is a performance parameter of the
reference engine and Pimod

is the same performance parameter of the model.
The CFs are subsequently used in the AM calculation process for scaling each
measured performance parameter prior to the actual model adaptation step.
Figure 4.9(a) shows a graphical representation of the model calibration step.

When off-design performance data are used as reference, the resulting CFs
often deviate from 1 because of small differences between the reference engine
and the performance model, especially for the power setting calibration factor.
The model calibration method used up to this point assumed that reference per-
formance data were always measured at, or close to, model design point power
setting. This assumption is valid when performance data are measured in con-
trolled test facilities where the gas turbine is operated at constant corrected
power settings and allowed to reach steady state performance. An important
consequence of this assumption is that calibration factors are also calculated
for the engine power setting parameter. This way, differences between per-
formance parameters are eliminated regardless if the differences resulted from
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Figure 4.9: These figures show the effect of design point model calibration
when the model power settings and the reference engine power setting are
equal 4.9(a) and when they differ 4.9(b). Although model calibration leads to
a good match between the engine model (dashed lines) and reference engine
(solid line) for equal power settings, the results for different power settings
shows significant differences when the power settings used during model cal-
ibration are different. While the calibration factor (CFp) in figure 4.9(b)
may be small when compared to figure 4.9(a), the power setting calibration
factor 6= 1 leads to incorrectly calibrated model.

different engine power setting or small differences between the model and ref-
erence engine. While this approach leads to reasonable results for small power
setting differences, larger differences lead to incorrect model calibration, which
may result in incorrect GPA results. This effect is shown graphically in figure
4.9(b).

Using the design point model calibration method with off-design reference
data can lead to the following scenario. Assume that performance data, mea-
sured at 95% power setting, are used as reference, whereas the model was de-
signed and tuned at 100% power. Because of the different power setting, most
CFs differ from 1 and a CF of 0.95 is obtained for the power setting parame-
ter. Now, assume the data set that need be analyzed are measured at 101%
power. During the actual AM calculation step, each performance parameter
of the data set is first scaled with their respective CF. While an exact match
between the model and reference data will be obtained for the calibrated power
setting, errors may result at other power settings. This is effect is shown by
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the mismatch between the calibrated model and reference engine performance
in figure 4.9(b). For the power setting parameter in this example it means
that the actual power setting used for the analysis is: 0.95 · 1.01 ≈ 0.96. In
other words, the AM calculation will try to match the measured performance
parameters from 101% power to model performance at 96% power level, which
leads to incorrect component condition estimations. Thus design point model
calibration can only be used reliably when both the performance model and
the reference engine operate at the same ‘design’ power setting. In reality this
is hard to achieve and there are always differences between the performance
model and performance data used as reference for model-based GPA.

4.3.1 Off-design model calibration

To use reference data sets of a wider range of power settings an off-design model
calibration method has been developed and implemented in the AM component.
For this method, the assumption that the reference data were always measured
at, or close to, model design point power setting was discarded. Instead, with
this approach the model is calibrated at the same ambient conditions and power
setting as the available reference data set. The off-design calibration method
is shown graphically in figure 4.10. This capability is useful for the analysis
of on-wing measured performance data obtained during take-off. In addition,
it provides a flexibility in selecting healthy engines for which operational data
are available to serve as reference.

Methodology

To study the fitness of both model calibration methods for practical GPA ap-
plication, simulated performance data were used. Using simulated data instead
of real engine data eliminated unwanted effects such as model inaccuracies and
measurement uncertainty that also influence the GPA results. This way, the
effect of the model calibration method was isolated which allowed for correct
analysis.

With the performance model of the CF6-80C2 engine, performance data
were generated in a range representing take-off power. From the available on-
wing data for several engines it was observed that the power setting, indicated
by the observed fan speed, varied between 2990 and 3610 RPM. Since ambient
conditions are taken into account during the calibration step, varying the inlet
temperature, pressure, and relative humidity for the simulated data set was
not necessary. Thus, performance data were simulated for an engine without
deterioration operating at standard day atmospheric conditions and a fan speed
range between 2985 and 3615 RPM.

The CF6-80C2 performance model was designed using reference engine per-
formance data measured in a controlled engine test cell. The reference engine
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Figure 4.10: Graphical representation of the off-design model calibration
method. The overlap between the calibrated model (dashed lines) and the
reference engine (solid line) shows that by calibrating the model at the same
ambient conditions and power setting as the reference data set, a close match
can be obtained over a relatively wide range of power settings.

calibration method
power setting [rpm] design point off-design

3110 case 1 case 4
3285 case 2 case 5
3525 case 3 case 6

Table 4.3: Overview of the six cases that were used to analyze the effects
of design point and off-design model calibration

fan speed from that data set was 3525 RPM, or 107.47 % of the design fan
speed. The generated data set was analyzed six times, using the two cali-
bration methods, design point and off-design calibration; and three different
reference engine power settings expressed as 3120, 3280, and 3525 fan rpm.
These speeds correspond to 95 %, 100 %, and 107 % of the design fan speed.
The 107% power setting was used to ensure that design point calibration was
executed at the same power setting for which the performance model was tuned.
An overview of the six different cases is shown in table 4.3.
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4.3.2 Results and discussion

Because take-off performance of CF6-80C2 model without component deteri-
oration was simulated, the GPA results from those data should contain no
condition deviations. Analysis of the six cases shown in table 4.3 generated 12
condition deviation trends for each gas path component. The calibration fac-
tors that were calculated for each case are presented in table 4.4. To limit the
number of graphs, the differences of both calibration methods are illustrated for
the core engine components only. Correctly estimating these component condi-
tion deviations is important because in practice these components deteriorate
the most and are often the main cause of engine performance degradation.

Design point model calibration results

Cases 1, 2, and 3 were analyzed with the design point model calibration method.
The calibration factors of these three cases are presented in the first three data
columns of table 4.4. The deviating calibration factors for cases 1 and 2 indicate
that the reference data and the engine model do not match.

The GPA results, presented in figure 4.11, show the HPC and HPT effi-
ciency and flow condition deviation trends. Those results show that only case
3 correctly reflects the simulated engine condition, i.e., no condition deviations.
Case 1 and case 2 both resulted in non-zero condition deviations.

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

N1 0.888 0.932 1.000 1.000 1.000 1.000
Ps14 0.915 0.952 1.008 1.007 1.008 1.008
Tt25 0.930 0.957 1.001 1.002 1.001 1.001
Pt25 0.795 0.871 1.003 1.006 1.005 1.003
Tt3 0.911 0.943 1.002 1.003 1.002 1.002
Ps3 0.726 0.818 1.007 1.010 1.009 1.007
N2 0.925 0.949 0.999 0.999 0.999 0.999

Tt45 0.891 0.926 0.999 0.999 0.999 0.999
Pt45 0.720 0.812 1.001 1.004 1.004 1.001
Tt5 0.898 0.926 0.997 0.997 0.997 0.997
Wf 0.646 0.750 0.989 0.991 0.991 0.989

Table 4.4: This table present the calibration factors obtained for the three
reference data sets that were calibrated with two calibration methods.

The condition estimation error for the HPC was much larger than the es-
timation for the HPT. The reason for this effect may be explained as follows.
Because of choked flow in the HPT during maximum power, the operating point
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in the HPT component map is fixed, that is, both the pressure and the cor-
rected flow are constant. Consequently only small HPT condition variations
will lead to thermodynamically feasible steady state operating points. This
leads to smaller estimated component condition deviations.

The results of cases 1 and 2 demonstrate that off-design reference data in
combination with the design point calibration method may lead to incorrect
component condition estimations. Moreover, the condition estimation error
increases for increasing power setting difference between the reference engine
data set and the data set used for analysis. This behavior can be explained
by considering figure 4.9(b). Even though the resulting calibration factors may
deviate significantly from 1, for power settings close to the calibrated point the
model does match engine performance. As power settings move away from this
point, model error introduces differences that appear as component condition
deviations in the GPA results, leading to incorrect condition estimations.

Off-design model calibration results

For cases 4, 5, and 6 the same reference data were used as for cases 1 to 3,
but calibration was done using the off-design model calibration method. The
corresponding calibration factors, presented in the last three data columns of
table 4.4, indicate only minor variations between the reference data sets and
the engine model. All calibration factors are close to 1.

The results, presented in figure 4.12, show the HPC and HPT efficiency and
flow condition deviation trends superimposed on the results of cases 1, 2, and
3. While small differences are present in the results of cases 4, 5, and 6, they all
correctly estimate zero component condition deviation for both components.

Although the results obtained with the off-design model calibration method
all provide a reasonable match to the simulated condition, small errors remain.
An example is the small shift observed in the HPC ∆η and ∆Wc parameter
trends around data point 30. These errors, which likely originate from rounding
error in the numerical process, are at least an order of magnitude smaller than
the condition deviations that are necessary for gas path diagnostics. Therefore,
they are not investigated any further.

This model calibration study has demonstrated that model-based GPA that
implements a design point model calibration method only functions correctly
when the reference data are at the same power setting for which the model
has been defined. When off-design reference data are used, calibration factors
deviate from 1. This results in model errors that increase for power settings de-
viating from the calibrated power setting. This may lead to incorrect estimated
condition deviations. With off-design model calibration, the AM calculation
leads to the same results that were obtained through design point calibration
using the design point reference data set. With that method, the operating
point of the reference engine does not affect the GPA results.
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Figure 4.11: The graphs show the GPA results of a single simulated data
set containing no component deterioration that was analyzed using three dif-
ferent reference operating points. In cases 1 and 2 the performance model
was calibrated with off-design reference data but the design point calibra-
tion method. Whereas the results of case 3 correctly indicate no condition
deviations, the results from cases 1 and 2 incorrectly suggest condition de-
viations.
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Figure 4.12: The graphs show the GPA results of a single simulated data
set containing no component deterioration that was analyzed using three dif-
ferent reference operating points. In cases 4 and 5 the performance model
was calibrated with off-design reference data and the off-design calibration
method. The GPA results that were obtained using the off-design calibra-
tion method all correctly estimate no condition deviation. Moreover, the
estimated component condition deviations of the three cases overlap each
other, suggesting a perfect agreement.
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4.4 Average reference data set definition

The off-design model calibration method presented in section 4.3 ensures model
calibration when different reference performance data sets are used. Although
this eliminates the model calibration error, the resulting component condition
deviations are based on comparing a single measured data set to a single refer-
ence data set. When a poor reference data set is used for performance model
calibration, GPA results may not reflect the correct condition deviation. This
could potentially lead to incorrect maintenance actions.

Reference engines are engines with good overall condition and from which
performance data are used for performance model calibration. A good reference
engine for GPA applications is an engine for which the condition of all gas path
components closely match design conditions. Engines with near-zero operating
hours would be good reference engine candidates. Unfortunately, performance
data from engines with near-zero operating hours and design condition for all
gas path components are rarely available outside the engines OEM environ-
ment. In practice operational engines are used instead. However, this means
that a potential reference engine may have clocked thousands of operational
hours and may have been subjected to one or more maintenance cycles before
its performance data are measured in a test facility.

A criterion for selecting good reference engines from a fleet of operational
engines is the EGT margin. Engines with good overall performance have a high
EGT margin. However, a high EGT margin is no guarantee that individual
gas path components of an engine have a good condition. The EGT margin
is a single metric resulting from the combined gas path component condition
and interaction. A below-average condition of one component may be partially
compensated by an above-average condition of another component. This effect
is not captured by system-level engine condition indicators such as the EGT
margin.

4.4.1 Condition variation among reference engines

Component condition deviations of engines with high EGT margins should
exhibit minor variations. To study the variation among engines with relatively
high EGT margins, the top ten engines of two CF6-80C2 thrust ratings were
analyzed using the GSP AM component. The EGT margins of the selected
engines are shown in table 4.5. The performance data set that was used for
creating the baseline performance model also served as the reference data set
for this study. Therefore, this data set closely matches the baseline performance
model and the resulting model calibration factors are approximately 1.00.

Figure 4.13 shows the GPA results for both thrust ratings. Even though
the high EGT margins are a measure of good overall performance, considerable
variation is observed. While for some condition parameters the variation is
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Table 4.5: The top 10 exhaust gas temperature margins of the CF6-
80C2A5 and CF6-80C2B1F engines available in the data base.

EGT margin [K]
CF6-80C2A5 CF6-80C2B1F

44 90
43 83
42 81
42 80
40 80
40 79
38 78
38 77
38 77
38 76

around 2%, other parameters vary more than 10%. This result suggests that the
EGT margin criterion only may not be sufficient for selecting a good reference
engine.

The observed variation is the combined effect of measurement uncertainty
and engine-to-engine variation. Moreover, certain performance parameters are
not measured, which may lead to extra component condition variation. The
effects of measurement uncertainty were studied in section 4.1. The results of
that study suggested that the variation of condition parameter deviations due
to random measurement uncertainty is in the order of ±1%. Because some
condition parameter variations observed in figure 4.13 are much more than
±1%, it is unlikely that random measurement uncertainty is the main cause of
this variation.

Effect of engine-to-engine variation

For gas path components that are restored to design condition during engine
overhaul, variations within specified geometric tolerances may result in small
engine-to-engine performance differences. These small variations may have
observable effects on gas path component condition and their interaction during
operation. However, in practice not all gas path components are restored to
design condition during overhaul. Whether or not a component will be fully
restored depends on the condition of that component as well as other factors
such as financial and logistic factors. As a result, a larger condition variation
is expected among recently overhauled engines with good overall performance.

The difference among engines with the top 10 EGT margins listed in table
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Figure 4.13: GPA results obtained using the baseline reference data set.

4.5 indicates that some variation in engine condition is likely. While this could
be a reason for the variation observed in figure 4.13, some condition parameter
deviations are much larger than the expected engine-to-engine variation among
healthy engines. This means different mechanisms must be at work.

Effect of missing pressure and temperature measurements

Another possible cause of the observed variation could be that pressures and
temperatures are not measured at all engine stations. While the data sets
used for this study contained all measured performance parameters shown in
figure 4.4, there were no measured data for the turbine inlet conditions(Tt4;
Pt4), fan outlet temperature (Tt14), and low pressure turbine (LPT) outlet
pressure (Pt5). Instead, fuel flow (Wf ) and thrust (FN) are used to specify the
thermodynamic cycle.
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Apart from FN and Wf , additional estimated performance parameters are
necessary for specifying the thermodynamic cycle. These are either constant
values or variables that depend on off-design component performance described
by component maps. Small errors in the component maps and assumed con-
stants combined measurement uncertainty may lead to larger uncertainty in
the cycle compared to direct pressure and temperature measurements.

Consider for instance the conditions at station 4: the HPT inlet. If the
temperature and pressure would have been measured the uncertainty can be
described by:

Tt4meas = Tt4 ± δT t4 (4.2)

Pt4meas = Pt4 ± δP t4 (4.3)

Because these parameters are not measured, they can be described by the
following relations:

Tt4 = Tt3 +
ηcc · LHV · Wf

ṁa · Cpg

(4.4)

Pt4 = Pt3 − ∆Pcc (4.5)

Although the simplified combustion equation in equation 4.4 is not used in the
performance model, it can be used for demonstrating the effect of uncertainty
propagation and amplification. Including the uncertainties for the measured
values in these relations while assuming that ηcc, LHV , Cpg, and ∆Pcc are
known constant values results in:

Tt4est ± δT t4 = (Tt3 ± δT t3) +
ηcc · LHV · (Wf ± δWf

)

(ṁa ± δṁa
) · Cpg

(4.6)

Pt4est ± δP t4 = (Pt3 ± δP t3) − ∆Pcc (4.7)

Rewriting these relations and neglecting the products of the relative uncertain-
ties results in:

Tt4est ± δT t4est
= Tt3 +

ηcc · LHV · Wf

ṁa · Cpg

± δT t4est
(4.8)

Pt4est ± δP t4est
= Pt3 − ∆Pcc ± δP t4est

(4.9)

where

δT t4est
≈ δT t3 +

ηcc · LHV

Cpg

(

δWf

|Wf |
+

δṁa

|ṁa|

)

(4.10)

and
δP t4est

= δP t3 (4.11)
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Comparing δT t4 to δT t4est
and assuming that Tt4 has a similar uncertainty

as Tt3, it follows from equation 4.10 that δT t4est
> δT t4. On the other hand,

assuming no error in the combustion chamber pressure loss factor (δ∆Pcc
≈ 0)

it follows that δP t4 ≈ δP t3. Thus, because Tt4 and Pt4 are not measured,
the uncertainty associated with the calculated alternatives is larger. A similar
derivation can be performed for Tt14 and Pt5. This effect is shown graphically
for several parameters in the T-s diagram in figure 4.14.
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Figure 4.14: Temperature-entropy diagram for a turbofan engine. Fuel
flow (Wf ) and (total) engine thrust (FNt) are used for specifying the ther-
modynamic cycle instead of the missing pressures and temperatures: Tt14,
Tt4, Pt4, and Pt5. Total engine thrust (FNt) is the sum of the fan thrust
(FNbp) and core engine thrust (FNc). This results in larger uncertainty for
performance parameters that are not directly measured.

For accurately estimating efficiency and flow capacity deviations of a gas
path component, pressure and temperature data are necessary for the inlet
and outlet of that component. When proxy parameters are used instead, the
uncertainty of inlet and exit condition predictions may be larger than the mea-
sured values. This may be the cause of the relatively large variations of the
LPCbp ∆η and LPT ∆Wc values in figure 4.13 for engines with good overall
performance suggested by their high EGT margins.
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4.4.2 Using multiple reference engines

Because in practice the condition of reference engines is not known in detail
and because the issues discussed in the previous section cannot be eliminated,
a single reference data set may not be sufficient for reliably evaluating GPA
results. An alternative approach is to use multiple reference engines for esti-
mating the condition of a single engine. When n reference engines with good
overall performance are used for GPA, the AM calculation is performed n times.
The idea of this approach is that the average of those n sets of GPA results
may provide a more reliable result than those obtained by means of a single
reference data set.

To analyze this concept, average condition deltas were calculated for two
engines with relatively good EGT margins. Two engines of the same type but
with different thrust ratings were selected for this study: one CF6-80C2A5
and one CF6-80C2B1F engine. The EGT margins of the selected engines are
shown in table 4.6. Compared to the engines with highest EGT margins in table
4.5, this shows that both engines had relatively high EGT margins for their
respective thrust rating, which should result in minor condition deviations. Ten
reference engines of the corresponding thrust rating with good overall condition
were used. As before, the EGT margin was used as selection criterion and the
resulting top 10 engines for each thrust rating are shown in table 4.5.

Table 4.6: EGT Margin of the CF6-80C2A5 and CF6-80C2B1F engines
that are used for estimating an average condition deviation based on multiple
reference engines.

Thrust rating EGT margin [K]

CF6-80C2A5 37
CF6-80C2B1F 74

The GPA results of this analysis are presented in figure 4.15. The markers
indicate the condition delta variation for individual reference engines. The bar
chart shows the average condition deviations. The variation observed relative
to the average results can be considered an indication of the validity of the esti-
mated average. For some condition parameters this variation is relatively small
suggesting higher confidence for those parameters, while for other parameters
it is large in relation to the average results.

In the previous section it was mentioned that the reliability of GPA results
depends on measurement uncertainty effects, engine-to-engine differences, and
the availability of performance parameters measurements. While none of those
effects can be eliminated for operational engines, using multiple reference en-
gines gives an indication of this inherent uncertainty. Adding the limits of the
observed variation as confidence intervals is a useful method for judging the
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(b) CF6-80C2B1F

Figure 4.15: GPA results obtained using multiple reference data sets of
engines with good overall performance. The EGT margin was used as cri-
terion for selecting reference engines.

validity of GPA results when they are used in a maintenance process.

4.4.3 Average reference data set

While averaging GPA results obtained from multiple references generates use-
ful confidence intervals, it requires repeated adaptive modeling calculations
followed by estimating the average and corresponding variation. Instead of
using multiple reference engines, a single reference data set can be calculated
that produces the same averaged condition deviations. This average reference
data set represents the average performance of the reference engines used for
calculating it. The confidence intervals obtained while creating this data set
may be superimposed on the GPA results.

Figure 4.16 shows the two steps–model calibration and model adaptation– of
the adaptive modeling calculation process. The difference between the baseline
model performance and a reference engine performance is used for estimating
the calibration factors, and the calibrated performance model is adapted such
that it matches the measured data set.

To determine an average reference data set and corresponding calibration
factors based on the results of multiple reference engines the following steps
are necessary:

1. Take the average GPA result for each condition parameter of an engine
(Engine A) that are obtained from a series of AM sessions with different
reference data sets.

2. Run a performance calculation with the baseline model at the same op-
erating conditions as Engine A.
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(a) Model calibration

(b) Model adaptation

Figure 4.16: Figure (a) shows how calibration factors are used to elim-
inate the error between the baseline model performance and the reference
engine performance to obtain a calibrated model. Figure (b) shows how
the calibrated model is subsequently adapted such that the error between the
adapted model and measured data are minimized.

3. This is followed by a performance calculation with a deteriorated model at
the same operating conditions as Engine A. The simulated deterioration
is the averaged condition parameter deviation obtained from step 1.

4. Calculate the corresponding calibration factors by dividing each measured
performance parameter from Engine A by the corresponding parameter
of the deteriorated model:

fci
=

Pi(meas.)

Pi(det.model)

5. Calculate the new reference data set by multiplying the calibration fac-
tors from step 4 with the the corresponding parameter of the baseline
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performance model:

Pi(ref.) = fci
· Pi(base.model)

.

4.4.4 Case study

To verify that the average reference data set generates the same GPA result as
the result obtained with multiple reference engines, a case study is presented.
Condition deviations for an CF6-80C1B1F engine with a relatively low EGT
margin of 25 Kelvin are calculated two times. First with all the top 10 reference
engines, and then with the average reference data set. The results of these
calculations are presented in figure 4.17 and table 4.7.
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Figure 4.17: Comparing GPA results obtained with the average reference
data set to the results obtained with multiple reference engines.

Figure 4.17 shows that the results obtained from both calculations are in
agreement. Although there appear to be a small difference for some condition
parameters, the differences are well within the confidence intervals. The confi-
dence intervals for the analysis with multiple reference engines are based on the
variation observed among the reference engines. For the results obtained with
the average reference data set the confidence intervals are based on the varia-
tion observed while creating the reference data set. They are superimposed on
the GPA results. Comparing the positive and negative errors in table 4.7 shows
that the differences between calculated and estimated confidence intervals are
relatively small.

This case study has shown that a single average reference data set that
is obtained from multiple reference engines can be used for GPA instead of
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Table 4.7: Comparison of GPA results and confidence intervals obtained
with the average reference data set to the averaged results obtained with mul-
tiple reference engines. ǫ+ and ǫ− are respectively the positive and negative
error.

Avg. ref. data set Multi. ref. engines

Cond.Par. ∆ ǫ+ ǫ− ∆̄ ǫ+ ǫ−

LPCc η -0.56 2.51 2.07 -0.53 2.95 2.08
LPCc Wc 0.84 0.60 0.63 0.96 0.68 0.68
LPCd η 7.07 4.69 6.23 7.92 4.99 7.54
LPCd Wc 1.53 0.84 1.26 1.97 0.94 1.35
HPC η 0.29 0.90 2.20 0.81 1.36 1.83
HPC Wc -4.06 1.81 1.92 -3.16 1.89 2.27
HPT η -0.47 2.99 2.58 -0.39 3.21 2.72
HPT Wc -1.02 1.73 2.42 -0.96 1.79 2.42
LPT η -5.33 1.79 2.69 -5.50 1.92 2.60
LPT Wc -7.24 5.08 3.88 -7.23 4.87 3.71

multiple reference engines. In addition, the confidence intervals belonging to
the average reference data set show good agreement with those calculated for
this case study. This suggests that the pre-calculated confidence intervals are
a good estimate for those based on multiple reference engines.

4.4.5 Different reference data sets for each thrust rating

Turbofan engines of the same type may be used for different aircraft types,
each with its own thrust requirements. Instead of designing engines for each
application, the engine control system enables this multi-aircraft flexibility by
adjusting maximum take-off thrust accordingly. Table 4.8 shows the maxi-
mum take-off thrust for a few thrust ratings of the General Electric CF6-80C2
turbofan. Even though engines with different thrust ratings are geometrically
identical, at maximum take-off thrust they operate at different operating points
from a thermodynamic perspective.

Analysis has shown that errors may occur when GPA results for an engine
are obtained with reference data of an engine with a different thrust rating.
This effect, which is caused by off-design model inaccuracies, can be corrected
by model calibration. Table 4.9 shows the calibration factors belonging to the
average reference data sets that were derived in section 4.4.3. These reference
data sets were based on a selection of engines with the best overall performance
for the thrust rating. While the differences between the resulting calibration
factors appear small, using calibration factors of a different thrust rating for
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Table 4.8: A short list of some CF6-80C2 thrust ratings and the corre-
sponding maximum thrust at sea level conditions. Source: [16].

Thrust rating Max thrust [kN]

CF6-80C2A2 233.4
CF6-80C2B1F 254.3
CF6-80C2B6F 267.0
CF6-80C2A5 267.3
CF6-80C2D1F 270.0

GPA can magnify these errors. In worst case the errors are of the same order
of magnitude as the performance deviations caused by component condition
deterioration.

For example, consider a performance model calibrated for the CF6-80C2B1F
thrust rating being used for analyzing a data set from an CF6-80C2A5 engine.
The performance parameter deviations resulting from this ‘incorrect’ calibra-
tion can be estimated with equation 4.13. This is only an estimate because the
difference in operating conditions affects these results. For an AM calculation
these performance deviations are considered effects of component condition
deterioration and result in non-zero condition deviations. The effect of this
‘incorrect’ calibration is shown in figure 4.18. Figure 4.18(a) shows the per-
formance parameter deviation between the average reference data set of the
A5 and the B1F engines. The resulting condition deviation with confidence
intervals is shown in figure 4.18(b).

EPi(cal.model)
≈

fci(B1F ) · Pi(base.model) − fci(A5) · Pi(base.model)

fci(A5) · Pi(base.model)
(4.12)

EPi(cal.model)
≈

fci(B1F ) − fci(A5)

fci(A5)
(4.13)

While calibration factors at one operating point cancel residual model er-
rors, the differences in operating points between the two thrust ratings counter-
acts model calibration and amplifies existing model errors. Under these circum-
stances, the resulting condition deviations may originate from both model error
and actual component deterioration. This would not occur if the performance
model would be accurate over a wider operating range.

Unfortunately, the component map tuning method discussed in section 4.2
could not be applied to improve model accuracy. Despite the large volume
of performance data for engines of several thrust ratings, only single data sets
were available for each engine. Therefore, these results suggest that to minimize
model-related error effect on GPA results, a reference data set is necessary for
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Table 4.9: Model calibration factors belonging to the average reference data
sets of the CF6-80C2A5 and CF6-80C2B1F thrust ratings. The calibration
factors for Tt2, Pt2, RH, and N1 are 1.0, which indicates that simulated
performance occurs at the same operating conditions as the reference data
set. The remaining calibration factors cancel performance differences be-
tween the model and reference data.

Parameter CF6-80C2A5 CF6-80C2B1F

Tt2 1.0 1.0
Pt2 1.0 1.0
RH 1.0 1.0
N1 1.0 1.0
Tt25 0.998 1.002
Pt25 0.979 1.004
Tt3 1.001 1.002
Ps3 1.009 1.026
N2 1.001 1.003
Tt49 1.001 0.986
Pt49 0.981 0.991
Tt5 1.011 1.005
Wf 0.998 1.009
FN 0.992 1.011

each engine thrust rating that differs significantly with respect to other thrust
ratings.

Multi-point calibration

An alternative solution to using separate reference data sets for each thrust
rating would be using the concept of multi-point calibration [19, 62, 73] and
use a single reference data set in combination with calibration functions. How-
ever, because it was shown that the condition of engines with good overall
performance may exhibit significant variation, this would require several steps.
The first step would be estimating the average condition for each thrust rating
and defining average reference data sets that are based on those results. Sub-
sequently, a functional dependency must be established for each calibration
factor. This has the potential of introducing additional complexity as these
functions can principally depend on several operating condition parameters,
including inlet conditions, power setting, and installation effects such as power
off-take and compressor bleeds [73]. Because the additional work and complex-
ity were thought to outweigh the benefits, the choice was made not to pursue
this path in this thesis.
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Figure 4.18: Performance and condition deviation results obtained by per-
forming an AM calculation where the condition of the average CF6-80C2A5
reference data set is compared to the average CF6-80C2B1F data set. It
shows the effects of calibrating the performance model for a different thrust
rating.

4.5 Conclusion

Performance model accuracy, measurement uncertainty, and the availability of
performance measurements along the gas path can greatly affect the reliability
of GPA results. In addition, the results are highly dependent on the fitness of
the reference data used for GPA. While in theory some errors may be reduced
to less significant levels, in practice this is not feasible outside the engine OEM
environment. Without detailed design information from engine manufacturers,
improving model accuracy by using performance data from operational engines
can be done up to a certain level. The objective of the work discussed in this
chapter was improving reliability of GPA results and quantifying important
error sources.

• Installing additional sensors in the gas path for better condition moni-
toring and gas path diagnostics is not possible for operational turbofan
engines. At best, known error sources can be quantified and included in
the GPA results. It was demonstrated that the effects of measurement
uncertainty can result in relatively wide confidence intervals for some
condition parameter deviations. Particularly when proxy parameters are
used as an alternative for unavailable pressure or temperature measure-
ments in the gas path.

• Component maps that were tuned using a combination of adaptive mod-
eling and on-wing measured performance data improved model accuracy
at off-design operating points necessary for on-wing GPA. With this ap-
proach component maps available from the public domain were adapted
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with more detail than just scaling relative to a reference point. The
tuned compressor maps provided more realistic correlations between the
corrected mass flow and the shaft speed. This method improved the
accuracy of gas path analysis with on-wing measured performance data.

• The remaining scatter of flow capacity was not the result of customer
bleed. When customer bleed flows are active while measuring engine
performance parameters but their effect is not taken into consideration
when using these performance data for GPA, the results may indicate non-
existent component condition deviations. Under those circumstances,
GPA results should not be trusted.

• Incorrect model calibration may lead to significant errors. With the off-
design model calibration method any off-design operating point can be
used as reference data set.

• Although the methods presented in this chapter helped reducing model
errors, effects of measurement uncertainty remained. Effects of random
sensor errors are relatively small compared to errors originating from in-
correct model calibration and missing gas path pressure and temperature
measurements.

• When considering the challenges discussed in this chapter a useful ap-
proach is to base GPA results on multiple reference data sets. While this
may be achieved by means of separate GPA runs for each reference data
set and calculation of an average result, defining an average reference data
set is a more time-efficient way of achieving this goal. Especially when this
approach is applied in the aero-engine maintenance process. Defining an
average reference data set based on multiple reference engines with good
overall performance was demonstrated as an effective approach. Basing
GPA results on multiple reference data sets allows visualization of oth-
erwise unknown uncertainty in condition parameters and provides a way
for judging the validity of the results.



100 Improving GPA reliability



CHAPTER5
Expanding gas path analysis

benefits for maintenance

Abstract

Gas path analysis (GPA) is widely applied on engine test rig data to isolate
components responsible for performance problems, thereby offering substantial
cost-saving potential. Additional benefits for the aero-engine maintenance may
be obtained by systematically using GPA for analysis of performance data mea-
sured during both test cell and on-wing operation. This chapter synthesizes the
work discussed in chapters 3 and 4 and presents the experience with model-
based GPA on large volumes of measured performance data obtained from the
operational environment. Case studies demonstrate some of the benefits for the
aero-engine maintenance process.

The content of this chapter is based on:

Verbist, M.L., Visser, W.P.J., and van Buijtenen, J.P., Experience with gas path analysis

for on-wing turbofan condition monitoring. Journal of Engineering for Gas Turbines
and Power 136(1), GTP-13-1212 (Oct 25, 2013)
Copyright c©2013 by American Society of Mechanical Engineers
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T
he GSP adaptive modeling component has been used for gas path anal-
ysis of several different gas turbine engine configurations [4, 11, 45, 50,
52, 54, 64, 69, 76]. Because it enables estimating gas path compo-

nent condition from a performance perspective, GPA can help to determine
necessary maintenance actions for restoring poor engine performance. This
information also helps preventing unnecessary engine disassembly and part re-
placements. This way, GPA may offer substantial cost-savings for gas turbine
maintenance.

Most studies that demonstrated the GPA capability of the GSP AM com-
ponent were focused on individual engine cases. The scope of those studies was
limited because the objectives were proof of concept studies for a particular
engine type or demonstrating GPA benefits to a gas turbine MRO. However,
there were other reasons that limited the scope of these studies also. In some
cases engine design and performance data that are necessary for GPA were not
readily available and good baseline performance was not defined. In other cases,
insufficient performance parameters were available for practical GPA applica-
tion. In almost all cases performance data necessary for GPA were measured
after maintenance. As a result, much time was spent on finding the necessary
data for GPA and when results were obtained they were of limited use for the
maintenance process of the engines in question.

To benefit from GPA in the maintenance process, the results should be
reliable and GPA need to be used systematically. Although GPA results are
most valuable for individual engines prior to maintenance, the additional costs
of pre-overhaul (or inbound) performance tests limits this approach. Chapter
3 has demonstrated that on-wing measured performance data may be a good
alternative to these in-bound performance tests. By combining the GPA accu-
racy improvements presented in chapter 4 with the information system concept
presented in chapter 6 additional benefits can be realized. These benefits are
not limited to individual engine cases, but also apply to the maintenance pro-
cess in general. This chapter includes a few case studies for demonstrating the
benefits of systematically using GPA in the maintenance process.

5.1 Additional benefits from test cell perfor-

mance data

During post-overhaul performance testing several gas path performance param-
eters are measured and used for verifying that engine performance requirements
are met. The objective is to identify engines with poor overall performance.
Because operating conditions affect engine performance, measured performance
parameters are corrected for those effects and for known losses. The resulting
corrected performance parameters then are affected by engine condition and
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power setting only.

However, despite these parameter corrections there are no unique signatures
for specific gas path component condition deterioration. Therefore, corrected
performance parameters are used to create parameter groups that provide more
information about the engine as a system. Examples are specific fuel consump-
tion (SFC), exhaust gas temperature (EGT), and corrected thrust (FNK). The
engine OEM specifies the maximum permissible limits for these performance
parameter groups. The difference between the system parameter values and the
corrected value at specific operating conditions is defined as the performance
margin. These performance margins provide valuable information about the
overall engine condition.
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Figure 5.1: EGT margin and thrust margin trends for a fleet of CF6-
80C2B1F engines.

Trending performance margins is useful for monitoring engine performance
as well as for monitoring maintenance effectiveness. It allows identifying engines
with deviating performance relative to an engine fleet average. In addition, pa-
rameter trends are useful for observing long-term engine-related performance
changes such as aging of a fleet, or performance changes resulting from grad-
ual test facility performance drifting. Figure 5.1 shows two examples of EGT
margin and thrust margin trends over time. Despite the useful information on
engine fleet condition, they provide limited information about the root cause
of an observed trend.
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5.1.1 Correlating system parameters to component con-

dition

Performance margins would be more informative if they could be related to
component condition. More specifically, if correlations between performance
margins and component condition deviations can be observed they may help
identifying specific components responsible for low performance margins. This
information can be valuable for verifying the effectiveness of the maintenance
process. For example, if an engine has a low EGT margin and poor HPT
condition, and there exists a positive correlation between EGT margin and
HPT condition, the best course of action for performance restoration could be
additional repairs of the HPT.

EGT margin

Two important performance margins are the EGT margin and the SFC margin.
The EGT margin is a measure of overall engine condition. As gas path com-
ponent condition deteriorates, more fuel is necessary for generating the same
thrust. For a constant thrust setting, this leads to temperature increases in the
turbines and a reduction of the EGT margin. Therefore, a low EGT margin is
an indication of poor overall engine condition. Gas turbine MROs often guaran-
tee minimum post-overhaul EGT margins as part of a maintenance agreement
with the engine owner or operator. Occasionally post-overhaul EGT margins
are lower than expected. When this occurs additional repairs are necessary or
financial penalties are paid by the gas turbine MRO.

Figure 5.2 component condition deviations as function of the hot day EGT
margin for approximately 200 CF6-80C1B1F engines. The performance data
of these engines were measured during their post-overhaul performance accep-
tance test. To obtain the best possible GPA result, only data sets were selected
that included an LPT out temperature (Tt5). Component conditions devia-
tions for each data set were calculated with GSP’s AM component. An average
reference data set was used for the AM calculation. This average reference data
set was defined using the ten engines with the best overall condition according
to their EGT margin. Chapter 4.4 describes the method for defining an average
reference data set by means of multiple reference engine data sets. The EGT
margins are calculated from observed performance parameters with equations
and correction factors specified by the engine OEM.

Several interesting phenomena can be seen in the scatter plots in figure
5.2. First, strong correlations are observed between the EGT margin and both
HPC condition parameters. These correlations stand out in comparison to the
condition parameter deviation trends in the other scatter plots. The strong
correlations suggest that the EGT margin is more sensitive to the condition
of the HPC than other gas path components. In addition, the gradient of
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Figure 5.2: Component condition parameter trends as function of EGT
margin. Each scatter plot contains data of approximately 200 CF6-
80C2B1F engines.
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the linear line passing through the points for the HPC flow capacity is larger
for the HPC flow capacity deviation than for the HPC efficiency deviation.
This suggest that the HPC flow capacity is slightly more important than the
efficiency. However, in practice this difference is not very useful as there is no
way of independently affecting individual condition parameters of a gas path
component.

Two other observations in figure 5.2 are the large scatter for some condition
parameters, and clustered distributions for the LPT flow capacity and HPT
efficiency. Chapter 4.4 demonstrated that the absence of direct pressure and
temperature measurements in the gas path is the likely cause of the large
scatter. In figure 5.2(g) and figure 5.2(j) the data points in the scatter plots
appear to be clustered in two groups. While this clustered distribution could
be the result of different maintenance work scopes, similar results are not seen
for the other condition parameter of the HPT and LPT. If the maintenance
work scope caused this clustering, both condition parameters of a gas path
component are expected to exhibit a similar distribution.

Alternatively, the clustering may also be the result of multiple solutions
for the numerical problem in combination with the relative high uncertainty of
some condition parameters due to missing performance parameters. Because
Tt14 and Pt5 are not measured, there may be multiple solutions for the fan
bypass efficiency and LPT flow capacity deltas, which cause the relative large
scatter.

Because the largest step in performance restoration, in terms of EGT margin
gain, can be obtained from overhauling core engine components—the HPC and
HPT—low pressure components such as the fan, booster, and LPT often receive
minimal to no maintenance. However, that choice depends on their condition
and the remaining life of life limited parts. Due to the uncertainty associated
with the estimated LPT flow capacity, this clustered distribution can also be
observed for the HPT efficiency. Because of the scatter and the clustered
distribution, correlations between those condition parameters and the EGT
margin are not visible.

SFC margin

The other important performance margin, the SFC margin, is a measure of
overall fuel efficiency. A low SFC margin is a sign of poor engine performance.
Fuel efficient engines are important from both an environmental as well as a
financial point of view. While complete engine overhaul would likely result in
good fuel efficiency, the corresponding maintenance costs would be very high.
Knowing which components are responsible for poor fuel efficiency of a specific
engine is the first step in determining the necessary maintenance actions to
ensure efficient engine performance at acceptable maintenance costs.

Figure 5.3 shows scatter plots of the component condition deviations as
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Figure 5.3: Component condition parameter trends as function of SFC
margin. The scatter plots contain data of approximately 200 CF6-80C2B1F
engines.
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function of the SFC margin for approximately 200 CF6-80C1B1F engines. As
with the EGT margin trends, the SFC margins are calculated from observed
performance parameters with equations and correction factors specified by the
engine OEM also. Even though some similarities are observed between figures
5.2 and 5.3, different correlations emerge from the scatter plots.

The fan bypass flow capacity delta and the HPC efficiency delta have a
slightly positive correlation with the SFC margin. But the most notable corre-
lation is observed between the HPT flow capacity and the SFC margin. This
correlation suggests that a low HPT flow capacity is beneficial for overall fuel
efficiency. While this cannot be realized without affecting other condition pa-
rameters, it does show the importance of this condition parameter for overall
fuel efficiency.

The HPT flow capacity is mainly dictated by shape and cross-sectional
area of the high pressure nozzle guide vanes (NGVs) located at the combustor
exit. The total NGV cross-section area is an important parameter that is
carefully measured and documented upon engine re-assembly. Several NGV
sections together form the NGV component. The sections are selected such
that the overall NGV area is within the margins specified by the OEM. The
NGV component receives the hot gas flow from the combustor and its function
is to turn and accelerate the gas flow to meet the first stage of the HPT rotor
blades. If the speed and angle with which the accelerated gas flow meet the
HPT rotor blades are not in perfect agreement along the radial direction of the
rotor blades, the energy conversion process becomes less efficient. For a given
temperature drop across the turbine less energy can be extracted for driving
the compressor. While the interaction leading to a power balance between the
HPC and HPT is quite complex, in essence it means that more fuel would be
necessary to for extracting the required energy. Therefore, the knowledge that
the NGV area also has a relatively strong effect on the SFC may help decide
how to select the individual NGV sections from a fuel efficiency standpoint in
addition to the OEM specifications.

Other parameter correlations

The examples used in this section gave a brief demonstration of the useful in-
formation that can be obtained when GPA is used systematically for analyzing
post-overhaul performance data. A similar approach can be used for searching
other useful correlations between performance margins and component condi-
tion parameters.

A database that contains relevant data is an important aspect for effec-
tively implementing such a capability. Apart from measured performance data
and GPA results, the database used for this study also contained calculated
performance margins. If other data such as information about maintenance
work scopes or engine geometry are also systematically stored, other param-
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eter correlations may be discovered that can help improve the maintenance
effectiveness.

5.2 On-wing component condition monitoring

using GPA

Reliable turbofan operation is critical for successful airline operation. During
on-wing operation, performance parameters such as exhaust gas temperature
(EGT) margin are monitored and used as an indicator for overall engine con-
dition. Gas path component deterioration leads to component performance
degradation, which normally results in a reduced EGT margin. With GPA, in-
dividual gas path component performance degradation can be determined, pro-
viding a much more detailed indication of the engine condition and root cause
of EGT margin reduction. This offers a significant potential to enhance safety,
reliability, availability and the maintenance process. At the post-overhaul per-
formance test, GPA helps to isolate the root cause of performance problems,
saving costs by avoiding unnecessary disassembly and part replacement.

Using steady-state performance data obtained from engines equipped with
all available sensors provides the best opportunity to assess engine condition.
Ideally, GPA is applied before overhaul, offering assessment of individual com-
ponent condition and an effective method to determine the required work scope
for each gas path component to ensure sufficient EGT margin after engine over-
haul. Unfortunately, because of the additional cost associated with inbound
test runs these are rarely conducted. However, with GPA applied to on-wing
measured performance data, the objective of component condition assessment
prior to overhaul can also be realized.

This section describes the application of model-based GPA on large volumes
of on-wing measured performance data. Background information is given about
the GPA tool used and issues with using on-wing measured performance data
for GPA are discussed. Two cases studies are used to demonstrate GPA with on-
wing data monitoring component condition and detecting sudden component
condition changes and sensor problems.

5.2.1 GPA with on-wing measured performance data

For the study described in this section, on-wing measured performance data
of a CF6-80C2 fleet are used. These engines are equipped with an extended
condition monitoring sensor package. As a result, the same performance pa-
rameters are measured along the gas path during both test cell and on-wing
operation. The approximate sensor locations are shown in the schematic of a
turbofan in figure 5.4. During on-wing operation relative humidity and engine
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thrust are not measured. If direct thrust measurements are not available, fan
bypass static outlet pressure (Ps14) is a good proxy to represent engine thrust
[71]. Because relative humidity was not measured during on-wing operation,
dry air conditions are assumed for the analysis of on-wing performance data.
Because the actual relative humidity will differ, the effect will manifest itself
as an uncertainty of the GPA results [43]. However, the effects of relative hu-
midity variation on sea level take-off performance are relatively small and were
therefore ignored.

Tt25
Tt3 Tt5

Tt49Ps14
Pt25

Ps3
Pt49

N1

N2

Wf

FN *

Pt2

Tt2

RH *

Ps2

Figure 5.4: Sensor locations in the GE CF6-80C2 turbofan engine. *
Parameters that are not measured during on-wing operation.

In real-life scenarios operating conditions may vary considerably between
consecutive performance snapshots. In addition, performance degradation oc-
curs simultaneously in all components but at different rates. These variations
all affect engine performance and the accuracy of GPA results. Accurate GPA
is challenging when performance data are affected by variable operating con-
ditions and measurement uncertainty. Consequently, the results of GPA with
on-wing measured performance data contain significant scatter. All these ef-
fects make GPA with on-wing measured performance data more challenging
than GPA with data measured in a controlled test cell environment.

Table 5.1: Maximum permissible customer bleed flow mass fraction at
steady state take-off power.

Bleed location Mass fraction

Stage 8 8.8 %
Stage 14 5.0 %
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On-wing installation effects

Apart from variable operating conditions, on-wing engine performance is af-
fected by several types of installation effects. Customer bleed flows cause the
most significant installation effect since they can account for a significant frac-
tion of compressor airflow. Table 5.1 shows the maximum permissible bleed
flow fractions during take-off. Depending on the engine power setting, cus-
tomer bleed is extracted from the 8th or the 14th high pressure compressor
stage. However, during performance testing the customer bleed flow ducts are
closed. Since the performance models used for GPA were based on test cell per-
formance data, customer bleed flow effects were not taken into account. Due
to bleed flow extraction the state of the gas at the compressor exit is differ-
ent. When the models are used for GPA with on-wing data, these bleed flows
should be taken into account. To demonstrate the effect of neglecting active
bleed flows, a simple experiment was conducted. A performance model was
created that included bleed flows. This model was used for generating several
performance parameter sets for different levels of bleed flow. These were sub-
sequently analyzed with an identical model apart from the bleed flows. Figure
5.5 shows the effect on GPA results when active bleed flows are not taken into
account. Increased customer bleed leads to increased condition deviations for
all components. These results show that neglecting active customer bleed can
lead to incorrect GPA results. However, during the critical take-off operating
condition, customer bleed usually is minimal. But since bleed flows are not
measured, this could not be verified directly.
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Figure 5.5: Effects of increasing customer bleed flow on GPA results when
these are not taken into account in the model.

A second installation effect originates from different inlet and exhaust noz-
zles. During a performance acceptance test a turbofan is equipped with a
different inlet nacelle and sometimes also with different exhaust nozzles. In a
test cell, bell mouth inlets are used for optimal inlet airflow with minimal losses.
However, during on-wing operation the inlet airflow can be distorted by many
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factors. Ensuring stable engine inlet flow while also maintaining the capability
to handle large inlet angles of attack requires specially designed inlets. These
have sizes and efficiencies different than their test cell counterparts. Similar
to customer bleed flows, not taking these effects into account may compromise
GPA results.

A third installation effect is resulting from the mechanical power taken from
one of the engine shafts to drive accessories such as generators and fuel and
oil pumps. On the test rig, power off-take (‘PTO’) by accessory components is
minimal, but on-wing, electric power off-take is unknown. However, compared
to the total power delivered by the turbines, the accessories consume a relatively
small fraction of the power; total PTO is typically ≈300 hp (≈0.4% of the HPT
power delivered during take-off). These effects on GPA results can therefore
be neglected. Because the PTO is not measured, a constant value is assumed.

And finally a significant effect may also be caused by variations in shunt
factors. In turbofan engines, sensors are connected to the engine control unit
(ECU). The ECU converts the sensor input signal to a parameter value that
can be read by an observer such as the cockpit crew. To provide a consistent
parameter value with different engines types on the same aircraft for example,
factors can be imposed on the actual sensor readings. Shunt factors may be
different for test cell and for on-wing operation. The effects can be eliminated
by using a reference data set from the same source (i.e. on-wing reference for
on-wing GPA, and test-bed reference for test-bed GPA). This is a must if the
shunt factors are unknown.

Measurement uncertainty

Measurement/sensor error may significantly affect GPA results. This is because
GPA is based on analysis of small deviations (usually <10%) in performance
parameters values. Consequently, the effect of measurement error on the devi-
ations is large. For most sensors used, uncertainty information can be derived
from general guidelines and be used for an overall GPA uncertainty analysis.

A source of GPA uncertainty comes from variable operating conditions dur-
ing take-off. Whereas steady state performance is confirmed during engine per-
formance testing before measurements are recorded, this is not possible during
on-wing take-off performance. During take-off, inlet conditions change and
full steady state operation is never achieved when the performance snap shot
is taken. This is another source of measurement uncertainty that affects the
GPA results with on-wing performance data.

The distribution of the errors and deviations affecting GPA uncertainty
mentioned in the previous sections is mostly unknown. Therefore, according to
Taylor[63] the combined effect of these uncertainties can be assumed to have a
Gaussian distribution. This assumption is important for the statistical analysis
of the GPA results.
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Reference engine for on-wing GPA

The goal of GPA with on-wing measured data is identification and quantifi-
cation of component condition parameter changes over an extended period.
This requires an initial reference condition from which to measure change. As
mentioned earlier, reference engine performance data are necessary for the AM
calculation. For on-wing GPA there are two options for choosing a reference
engine.

The first option is using test cell performance data measured during the
most recent post-overhaul acceptance test. This seems a logical choice because
the controlled operating conditions during engine testing ensure accurate per-
formance data. However, because of installation and shunt factor effects, the
same engine operating on-wing may well generate notably different measured
performance data. Consequently, using the most recent test cell performance
data as reference for GPA with on-wing data will result in condition deviations
starting from the first take-off. This effect is shown in figure 5.6 for the HPT
efficiency and flow capacity deviations.
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Figure 5.6: The effect of using reference data measured in a test cell or
on-wing. Although the trends of the estimated HPT component condition
deviations are very similar for both reference data sets, the offset observed
when using test cell reference data incorrectly suggests a deteriorated com-
ponent.

The second option is using the first on-wing measured data set after overhaul
as reference. Because both reference engine data and the subsequent on-wing
performance data points contain the same installation and shunt factor effects,
those effects on the GPA results are minimal. Moreover, the model calibration
step of the AM calculation compensates for unknown installation effects. As
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a result, the estimated condition deviations show a similar amount of scatter,
but initially centered on a zero mean. Consequently, using the first on-wing
snapshot as reference for GPA with on-wing data produces a better initial
estimation and allows for easier identification of long term condition changes
(see ‘on-wing reference’ trends in figure 5.6(a) and figure 5.6(b)).

Statistical analysis

Because measurement uncertainty, variable operating conditions, and compo-
nent deterioration affect on-wing turbofan performance, measured performance
parameters show significant scatter. Consequently GPA results obtained from
on-wing performance data also show significant scatter making the task to draw
the right conclusions, isolating the major component condition deviations dif-
ficult.

Condition deviations caused by gradual deterioration mechanisms can be
isolated from higher frequency fluctuations caused by measurement uncertainty
and variable operating conditions (varying with each take-off). An exponen-
tially weighted moving average (EWMA) was used to filter these higher fre-
quency fluctuations and expose the lower frequency component condition dete-
rioration. An EWMA assigns exponentially decreasing weights as observations
get older. The EWMA is defined by equations 5.1 and 5.2, where xi is the
current observation; Ai and Ai−1 are respectively the current and previous
smoothed value. The coefficient α is the smoothing constant that has a value
between 0 and 1.

Ai = α · xi + (1 − α)Ai−1 (5.1)

A1 = x1 (5.2)

For smoothing the component condition deviation trends a value for al-
pha was chosen such that the residual errors between the smoothed and the
observed value have a zero mean and approach a normally distributed prob-
ability density function. Figure 5.7 shows an example of the EWMA trend
line where α= 0.135. The probability density function of the residual errors
for the smoothed trend is shown in figure 5.8. The PDF has a zero mean
(x̄ = −0.103) and a standard deviation of 3.5 (σ= 3.525). With this infor-
mation, the uncertainty of an observed deviation can be determined for each
component condition parameter.

5.2.2 Case study: component condition monitoring

The first case study shows the additional information that can be obtained
when GPA is used for on-wing component condition monitoring. While op-
erating on-wing, performance monitoring techniques are used for trending pa-
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Figure 5.7: Hot day exhaust gas temperature margin trend from approxi-
mately 600 sequential take-off snapshots.
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Figure 5.8: Probability density function of the residual errors between the
smoothed and observed value.

rameters such as the exhaust gas temperature (EGT) margin and specific fuel
consumption (SFC) margin. Figure 5.7 shows an example of an EGT hot day
(HD) margin trend for an engine with a steady deterioration rate. Parameters
like this only provide system level engine condition information. Although the
gradual EGT hot day margin reduction observed during the first 300 take-off
indicates engine deterioration, the root cause cannot be identified this way.
After a small upward shift, the EGT margin is again gradually consumed. The
small upward EGT margin shift indicated by the arrow in figure 5.7 is typically
the effect of water washing.

Results from GPA with the on-wing measured performance parameters are
shown in figure 5.9. The shift observed in the EGT margin trend, which was
attributed to the effect of water washing, was also observed in the HPC ∆η
trend in figure 5.9(a). These results suggest that HPC efficiency loss can be
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Figure 5.9: HPC (figures a and b) and HPT (figure c) and LPT (figure
d) component condition trends. An exponential weighted moving average
(EWMA) is used to for smoothing the observed trend.
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partially recovered by water washing.
The water wash effect is not visible in the ∆η trend of the HPT or the ∆Wc

trend of the LPT. These condition parameter trends suggest a slow but steady
rate of component condition deterioration. The higher rates of the component
condition changes observed in figure 5.9(c) and figure 5.9(d) for the first 30 take-
offs is also typical for a recently overhauled turbofan engine. After overhaul,
there is a so-called run-in period during which seals, shrouds and other newly
fitted parts show a short period of rapid change after which they settle on
a low rate of deterioration. This case study shows that GPA applied to on-
wing measured performance data is able to identify the dominant component
condition change due to water washing that leads to EGT margin gain, which
is the HPC efficiency.

5.2.3 Case study: effects of sudden parameter shifts

For the second case study GPA is applied to on-wing measured data of an
engine that experienced two sudden EGT margin shifts. Figure 5.10 shows a
scatter plot of the EGT HD margin for a period of approximately 500 take-
offs. This graph shows the two shifts marked by the arrows: a relatively small
increase around the 130th take-off, and a large drop around the 380th take-off.
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Figure 5.10: Hot day exhaust gas temperature margin trend from approxi-
mately 500 consecutive take-off snapshots. The arrows indicate the observed
EGT hot day margin shifts.

Handling sensor errors

Similarly to the previous case study, the first EGT margin shift could be the
effect of a water wash. However, closer inspection of the measured performance
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data around the time of the first EGT HD shift revealed a systematic sensor er-
ror. Figure 5.11 shows some of the observed temperatures and pressures along
the gas path that have been corrected for inlet conditions, and the corrected
shaft speeds for the same period as the EGT HD margin trend. A significant
shift was observed for Pt25, the booster outlet total pressure, around the same
time as the first EGT shift. If sudden component deterioration would cause
such a pronounced change of Pt25, the effect should be visible in other parame-
ters also. However, no other parameter showed any shift during the time frame
of the first EGT margin shift. Therefore, we concluded that the observed Pt25

shift resulted from a faulty sensor.

The sudden downward shift of the pressure sensor suggests some sort of
blockage. Because this happened around the small upward EGT margin shift,
which could be the result from water washing; it is possible that the sensor
got blocked during the water wash. Unfortunately, no information about that
event was available to verify this hypothesis.

Because of the significantly lower Pt25sensor reading, the AM calculation
could not converge. The pressure was too low to achieve a thermodynamically
feasible operating point. This converge problem indicated that the Pt25 pres-
sure reading was conflicting with the engine cycle thermodynamics (in terms
of conservation of energy).

Although the Pt25 trend in figure 5.11(d) shows a significant change, it
does not directly indicate sensor failure. Moreover, it also contained certain
features (peak values) that were observed in the parameter trends for Tt25/Tt2

and Ps3/Pt2. We attempted to compensate the suspected Pt25 error by adding
a constant offset value to the sensor reading.

To determine the constant offset value we first corrected the observed Pt25

values for ambient temperature and pressure. Linear trend lines were created
for the data before and after the shift. The offset value was estimated such that
the trend lines matched where the Pt25 shift occurred. Figure 5.12 shows the
original Pt25 parameter data and the data with the offset value. With an offset
corrected Pt25 sensor, the AM calculation converged while using the on-wing
performance data measured after the shift.

The second EGT HD margin shift, which occurred around the 380th take-
off, was also accompanied by a sudden Tt5 shift. The sudden shifts that were
observed in multiple measured parameters suggested a change of engine con-
dition. Because of the large decrease of Tt5, which was in the order of 200
Kelvin, GSP could not converge to a valid (measurement adapted) operating
point. Unlike the Pt25 shift, the large Tt5 shift showed a rapid change in a
short time span. Because the observed large downward shift seemed unlikely,
especially when the corrected Tt45 temperature remained constant, it was an
indication that the Tt5 sensor malfunctioned.

Convergence of GPA applied to the on-wing measured data after the large
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(a) Corrected Tt25 temperature trend.
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(b) Corrected Tt45 temperature trend.
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(c) Corrected Tt5 temperature trend.
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(d) Corrected Pt25 pressure trend.
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(e) Corrected Ps3 pressure trend.
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(f) Corrected Pt45 pressure trend.
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Figure 5.11: Corrected performance parameter trends.
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Figure 5.12: This figure shows the original Pt25 parameter data including
the downward shift, and the data corrected with the offset value.

EGT HD margin drop was only possible by disregarding the Tt5 sensor data. To
account for one less measured parameter, the LPCbp ∆η condition parameter
was also removed from the analysis [74]. Because of the modifications necessary
for dealing with this on-wing measured performance data set, analysis was done
in three intervals:

• Interval 1: take-off 1 to take-off 129: GPA with all available data up to
the Pt25 sensor shift.

• Interval 2: take-off 130 to take-off 380: GPA with an offset value to
compensate for the P25 shift.

• Interval 3: take-off 381 onward: GPA with the Pt25 off-set but without
Tt5 and LPCbp ∆η.

Results and discussion

For this analysis, the first on-wing data set was used as reference. The GPA
results are shown in figures 5.13 and 5.14. The results of GPA applied to the
on-wing data of interval 1 showed approximately constant condition deviations
with scatter of a few percent for most components. GPA results from data
of the second interval indicated condition deviations for the compressors, but
almost no change for the turbines. The increase observed for both condition
parameters of the HPC could be the result of water washing. But, because an
offset value was added to the faulty Pt25 measurement, the estimated condition
deviations could also result from using an incorrect offset value. However, when
comparing the GPA results for the HPC to the results of the previous case study,
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similar characteristics emerge. Both compressors display a positive increase of
isentropic efficiency deviation which is followed by a slow decrease over time.
The ∆Wc condition trend shows the same behavior. The difference between
both cases is the amount of observed scatter in the GPA results. The increased
levels of scatter for this case could have resulted from the larger uncertainty
related to the constant offset value that was used.

Analyzing the performance data from the third interval required excluding
the Tt5 sensor. To verify that excluding this sensor would result in similar
condition estimations compared to when Tt5was included, analysis of the sec-
ond interval was performed two times; one time with Tt5 included and one
time without Tt5. The gray markers in figures 5.13 and 5.14 show the GPA
results obtained without the Tt5sensor. The close match observed for most
condition parameters confirmed that without the Tt5 sensor almost the exact
same condition deviations result from the AM calculation.

However, there were some exceptions. The most noticeable difference was
observed in figure 5.13(e) for the LPT ∆η around the 350th take-off snapshot.
Although the ∆Wc of the combined fan core and booster and fan bypass also
showed small differences between GPA results with and without the Tt5 sensor
for the same interval, the estimated LPT ∆η went beyond normal values. The
LPC bypass ∆η in figure 5.13(a) exhibited the same extreme behavior. The
GPA results for these condition parameters showed good agreement for approx-
imately 200 take-offs after the first EGT margin shift, but started to deviate
near the 350th take-off. Because this deviation started before the second EGT
margin shift, it is likely that those were the first signs of component deterio-
ration. Although GPA could not isolate the actual root cause immediately, it
appeared to capture early signs of a developing problem before this resulted in
a shift of the EGT HD margin. Upon closer inspection of the EGT HD margin
around the 350th take-off in figure 5.10, a short upward trend is visible that
could be the early indication of a problem. However, increased EGT margins
generally suggest an improvement of overall engine condition which could result
from on-wing maintenance actions such as engine water washing. An increased
EGT margin does not suggest engine deterioration and will normally not set
off condition monitoring alerts.

GPA results of the on-wing data from the third interval indicated sudden
condition changes for several components. The HPT showed a sudden decrease
of a few percent in both the efficiency and flow capacity condition parameters,
whereas the LPT only has a sudden decrease of flow capacity ∆Wc. However,
normal turbine deterioration generally manifests itself as an increase of ∆Wc.
Due to erosion, corrosion, and blade rubs, the effective turbine flow cross-area
increases which results in an increased flow capacity. An example of this can be
seen in figure 5.9(d). The sudden ∆Wc decrease observed for both components
suggest a different component deterioration mechanism.
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Figure 5.13: Estimated efficiency deviation trends (figures a, c, e) and
flow capacity deviation trends (figures b, d, f) for the fan bypass, the com-
bined fan core and booster, and the high pressure compressor.
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Figure 5.14: Estimated efficiency deviation (left) and flow capacity devi-
ation (right) for the HPT and LPT.
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Visual inspection after engine removal revealed that the engine suffered
from combustor damage. A large section of the combustor liner was broken
off, most likely in small increments, which damaged both the HPT and LPT as
the combustor liner pieces exited the engine through the exhaust nozzle. The
observed damage to the turbine blades, which was more severe for the HPT,
explained the reduced flow capacity that was observed for both components.

This case study demonstrates the ability of on-wing GPA analysis to isolate
the root cause of sudden EGT margin shifts. For this particular case, GPA was
also able to identify a problem before this was visible in the EGT HD margin.
Moreover, sensor error can be identified by manually manipulating suspect
measured data, based on observed shifts in the trend.

5.3 Conclusion

The benefits of GPA for gas turbine diagnostics have been demonstrated exten-
sively. However, GPA accuracy and reliability issues and the lack of systematic
application limited the demonstration of potential benefits for the maintenance
process. This chapter demonstrated some GPA benefits for the maintenance
process by presenting a few case studies. It combined the GPA accuracy im-
provements presented in chapter 4 with the information system concept pre-
sented in chapter 6. Based on the results presented in this chapter the following
conclusions were made.

• Apart from diagnosing engine condition from a performance perspective,
GPA may offer substantial benefits for the maintenance process. One way
of extracting useful information is by correlating performance margins to
component condition. This approach enables establishing the relative im-
portance of particular components on specific performance margins and
may affect the maintenance work scope definition. This way, systemati-
cally using GPA for analyzing post-overhaul performance data provides
useful information for the maintenance process.

• Even though variable operating conditions and measurement uncertainty
affect the results of gas path analysis with on-wing performance data,
the GSP AM component is capable of estimating component condition
from on-wing measured engine data with sufficient accuracy for detailed
condition monitoring. Because individual component condition param-
eter trends can be monitored while engines are installed on-wing, GPA
with on-wing measured performance data has the potential for enhanc-
ing safety and providing valuable information for the maintenance process
prior to engine removal. However, for reliable GPA results with on-wing
measured performance data, sufficient performance parameters must be
measured.
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• GSP on-wing gas path analysis is an effective method for diagnosing
engine problems and component failures before their effects become severe
enough for detection by shifts in EGT margin trends.

• Sensor error can be identified by manually manipulating suspect mea-
sured data, based on observed shifts in the measured performance pa-
rameter trend. This process can be automated if added to the adaptive
modeling calculation as an unknown fault variable.
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CHAPTER6
Information system concept

Abstract

GPA has been demonstrated as an effective tool for estimating gas path com-
ponent condition. However, effectively integrating GPA into an aero-engine
maintenance process requires a dedicated information system: a system that
enables the interaction between people, processes, data, and analysis tools. An
important element of an information system is the database. This chapter
presents a relational database concept for GPA applications.
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A
GPA tool uses measured performance data to estimate gas path compo-
nent condition deviations. That information helps to identify the root
cause of poor engine performance. While the value of GPA for estimat-

ing individual engine condition has been demonstrated, this method provides
additional benefits to the maintenance process when GPA is used systematically
and the results are combined with other maintenance-related data. Moreover,
when GPA is used for on-wing condition monitoring, engine condition can be
monitored with much more detail compared to performance parameter trend-
ing methods. In other words, when data measured at several locations in the
aero-engine maintenance and operational processes are analyzed and combined,
the resulting information provides added value for the aero-engine maintenance
process. To systematically use GPA and connect data from various locations in
the aero-engine maintenance and operational processes an information system
is essential.

An information system may be described as a system that enables inter-
action between people, procedures and technologies for collecting, storing and
processing data. Its objective is to store data for processing into useful in-
formation and knowledge that can be used to support the control, planning
and management processes in organizations. Most organizations or business
enterprises use computer-based information systems for enabling the necessary
information flows, but person-to-person interaction is also part of an informa-
tion system.

In the aero-engine maintenance, repair, and overhaul (MRO) industry, in-
formation systems fulfill an important role. Safety and reliability consider-
ations of aero-engines require that every step of the design, manufacturing,
and maintenance process must be well documented. During the operational
life of an aero-engine, all design modifications, remaining life, maintenance in-
spection results and many other aspects are continuously tracked to ensure
safe and reliable operation. The information system facilitates the information
flows to ensure that the aero-engine maintenance and operational processes run
smoothly.

6.1 Data storage for effective GPA

The embedded generic adaptive modeling (AM) functionality of GSP that is
used for GPA is being developed by Delft University of Technology since 2003.
An graphical user interface was created for demonstrating the capabilities of
the GSP GPA tool at KLM Engine Services [3, 4, 11, 18, 50, 64, 69]. The
GPA tool enables rapid performance data import from the test facility into
the AM component. While GPA results provide valuable information for indi-
vidual cases of poor engine performance, they were not systematically stored
or accessible for post-processing or future use. This aspect limited the added
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value of GPA for the maintenance process.

6.1.1 Text files for data storage

A data import routine for text files was implemented in the AM component.
This routine has been developed with a high degree of flexibility and was well
suited for proof-of-concept and demonstrating purposes. However, it required
individual performance data files of a particular text file format. Table 6.1
shows a conceptual view of the performance data in text (ASCII) file format
that is used for test cell performance reporting at KLM. A text file does not
refer to a standard, a technology or a language, it is just a general concept that
describes a style of data storage that is being used since the early development
of the modern computer. It has no automatic linking with other pieces of
information. Even though the format is solely designed for printing purposes,
it is often used for storing data records sequentially in an ad hoc format.

Parameter Power Power Power
name setting #1 setting #2 setting #3

par 1 value value value
par 2 value value value
par 3 value value value

Table 6.1: Example data structure used for demonstrating the GPA appli-
cation.

Advantages of using text files to store data are simplicity and the relatively
little storage space it requires. However, using individual text files for perfor-
mance data storage has some drawbacks that limit systematic application of
GPA. First, retrieving a desired data set requires a custom method for locating
the data. A commonly used method is to use a logical file and folder naming
convention. For instance, test result file names may contain the time and date
during which the test was executed, and files may be stored in separate folders
for each engine type. While this method may help to find a test result file
belonging to a particular test of an engine, it does not provide a mechanism to
find data using search criteria other that date and engine type.

Another drawback is that a single text file with the format shown in table
6.1 contains only a single performance data set of a specific power setting.
Although it can be extended to include multiple data sets for one power setting
by using different names in the column headers, this has its limits and is not
efficient when many data sets are available for an engine.

There is no mechanism that enforces constant and unique parameter names.
As performance data files may contain more information than only gas path
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performance parameters, parameter names may be used several times in one
file. For printing purposes this is no problem. However, ensuring that the
correct parameter values are located in a text file with duplicate or similar
parameter names requires additional coding of rules and exceptions that may
become rather complicated and error-prone.

Finally, text files have no mechanism to hold any relations between the
data tables included within them. This is an important limitation of using
text files for storing data for which the time of measurement and the object
it belongs to are essential. The absence of a mechanism to hold relations is
the main drawback of using text files and limits systematic use of GPA in the
aero-engine maintenance process at KLM.

6.1.2 Database storage

An alternative to storing data in text files is using a database. A database
may be defined as a logically structured collection of relational data that is
designed to effectively store, manage and retrieve the data. It is the central
element of an information system. The idea behind using a database is that a
user (or application) is not bothered with the physical data storage but only
with the logical characteristics of the data. Physical data storage is managed by
a database management system (DBMS); a software program that provides the
interface between users (or applications) and a database as well as ensuring
that a database remains a consistent state. The DBMS also controls data
redundancy resulting is less data duplication and saving data storage space.

The data in a database are updated (inserted, modified, or deleted) and
retrieved by means of queries. These are instructions presented to the database
in a predefined format. Many database management systems use the Structured
Query Language (SQL) for updating and retrieving data from the database.
The following shows an example of a simple query that retrieves all records from
two columns (column-1 and column-2) of table-1 where the value of column-1
must match CF6-80C2.

SELECT column-1,column-2

FROM table-1 WHERE column-1 = ‘CF6-80C2’;

In a similar way more complex queries can be set up for retrieving data
from multiple tables while satisfying several criteria. A powerful advantage
of using a database and SQL is that data cross-sections can be made. Cross-
sectional data refer to observations of many different individuals (engines) at a
given time, each observation belonging to a different individual. For example, a
query can be set up to retrieve measured performance data from all engines for
which only the core components were overhauled and failed the post-overhaul
acceptance test. The data may then be used for GPA to see if there is a
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connection between certain component condition deviations and poor post-
overhaul engine performance. This way, using cross-sectional data for GPA
may generate knowledge that may be valuable for the maintenance process.

Because data are stored in a single location with a fixed logical structure
and because data may be combined to create useful data cross-sections, us-
ing a database instead of text files is beneficial for systematically using GPA.
GPA results may also be added to the database for further analysis. When
connected to a database, the only information necessary for performing AM
calculations is a specific data set. This way a database becomes an integral
element of the AM component and enhances the generic functionality of the
GSP GPA tool. However, performance data from multiple sources in the aero-
engine maintenance and operational processes are not stored in the database
automatically. While custom routines remain necessary for importing relevant
data in a database, this task is managed outside the AM component.

6.2 Relational database model

The GPA database was created using the relational database model [6]. For-
mally, a relational database is a collection of related entities. Entities are the
logical things or objects for which available data are stored in the database,
e.g., engines, employees, books, etc. Entities are characterized by their at-
tributes. These are the characteristics that are used for describing an entity
such as, for instance, engine type, engine model, and engine serial number to
describe an engine entity. Each description of an entity that contains values
for its attributes is called an instance of that entity. An instance of an entity is
uniquely identified by the value of its primary key; an selected attribute that
is not allowed to have duplicate values.

From a user’s perspective a relational database is a collection of related
tables that store information about one or more entities. The fields (or columns)
of the tables contain the attributes that characterize the entities in the table.
Each instance of an entity is stored in a record (or row) of the table and contains
a unique primary key value. Figure 6.1 shows the database features that have
just been described. Although the remainder of this chapter will mainly use
the more familiar terms: tables, fields, and records, the formal definitions are
necessary for describing the principles of the relational database model.

In a relational database the relationship is a link between two tables that
share one or more attributes. Consider for example the engine table in figure
6.1 that is related to a table containing information about performance test
sessions. Possible relationships between tables are: one-to-one (1-1), one-to-
many (1-∞), and many-to-many (∞-∞). Because an engine is likely to undergo
several test sessions during its lifetime, the relation ship between the engine
entity and the test session entity will be a one-to-many relationship. Figure 6.2
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engine id serial # model

Fields

Records123456 CF6-80C21Instance

2 654321 CFM56-7B

Attribute ValuePrimary key

Figure 6.1: This database table example shows some characteristic features
of a relational database table.

shows the entity-relationship diagram of the engine entity and the test session
entity. One engine instance may be related 0, 1 or many test session instances.
However, one test session instance must be related to one and only one engine
instance. This aspect, which is called referential integrity, is a fundamental
rule of the relational database model that must never be violated.

6.2.1 Database normalization

Database entities and corresponding attributes may be grouped and related to
each other in more than one way. However, incorrectly grouping related entities
(in different tables) may cause conflicts during database manipulation. While
most conflicts can be prevented by using common sense during the database
design process, some are more difficult to identify.

Normalization theory is a formal description of certain commonsense prin-
ciples used for database design. It is used to effectively group the entities and
attributes into groups and relations that prevent data manipulation problems
[5, 21]. The theoretical rules that the design of the database relations meet are
called normal forms, each of which represents an increasingly stringent set of
rules.

When database relations are placed in the third normal form (3NF), most
common problems related to bad relational designs may be avoided [21]. Dis-
cussing the various normal forms in-depth is beyond the scope of this thesis.
However, because the relations of the GPA database concept are at least in
3NF, the first three normal forms shown in the following list are briefly dis-
cussed.

The first normal form states that all data are stored in two-dimensional

Test sessions Enginesbelong to
∞ 1

Figure 6.2: A one-to-many relation between the engine entity and the test
session entity.
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tables with no repeating groups. A repeating group is a field for which more
than one value in each record of the table may exist. Consider for example,
the Engine table. It may contain fields describing the engine serial number
(ESN), engine type, thrust rating and take-off thrust. However, an engine with
a unique ESN may be tested for different thrust rating, each with different
thrust levels. The engine rating and take-off thrust attributes therefore could
contain more than one value. This introduces two problems. First, there is no
way of telling which take-off thrust belongs to which thrust rating, and second,
searching engines with specific thrust ratings becomes difficult and inefficient.
Although a seemingly easy solution could be to use multiple records for the
same engine with different thrust ratings, this causes data duplication.

To be in the first normal form (1NF), all repeating groups are eliminated
from each table. For this example the solution would be splitting the En-
gines entity in two tables; one containing the ESN and engine type, and one
containing the thrust rating and corresponding take-off thrust. This leads to
a one-to-many relation between the two tables, that is, one engine can have
many thrust ratings.

Even though 1NF database relations prevent several problems by not having
repeating groups, other potential problems that may arise when the relations
are not in 1NF are: insertion anomalies, deletion anomalies, and modification
anomalies. These problem occur because a particular table may be in contra-
diction with the integrity principles of the relational database model. It is the
DBMS, which guards the integrity of a database, that prevents insertions and
deletions that violate the relational model. Modification anomalies originate
from unnecessary duplicated data. A detailed explanation of these anomalies
is beyond the scope of this thesis. The interested reader is referred to texts by
Harrington [21] or Date [9].

The second normal form states that in addition of being in 1NF, all non-key
attributes are functionally dependent on the entire primary key. A functional
dependency is one-way relationship between two attributes which states that
for each unique value of attribute A, there is only one value of attribute B
associated with it via the relationship. Consider for example, again the Engine
table in figure 6.1. A unique value for the ESN attribute is related to only
one value of the engine type attribute: the engine instance with ESN value
of 123456 is related to engine type value of ‘CF6-80C2’. In this relationship
the ESN is the determinant: the attribute that determines the value of other
related attributes. When all determinants are used as primary keys of the
database relations, the database is in 2NF.

Database manipulation problems may still arise when the relationships are
in 2NF. Consider for example the Engine table with three additional fields con-
taining information about the aircraft on which it is installed and the position
on the aircraft.
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Engine(ESN, engine type, aircraft registration, engine position, air-
craft type)

Although this relationship is in 2NF, there is an insertion anomaly: data about
the aircraft can only be inserted when an ESN is known, there is a deletion
anomaly: deleting the only engine on an aircraft deletes all information about
that aircraft, and there is a modification anomaly: for each additional engine
installed on one aircraft the aircraft registration information is unnecessary
duplicated. This table contains information about two related entities.

The third normal form, which is designed to handle situations just de-
scribed, states that in addition of being in 2NF, there are no transitive de-
pendencies. A transitive dependency is a functional dependency occurring in
relations with three or more attributes. Mathematically this may be described
as:

A > B and B > C; therefore A > C

The only reason that the aircraft type was functionally dependent on the ESN
was because the aircraft registration was functionally dependent on the ESN
and the aircraft type was functionally dependent on the aircraft registration.
However, the functional dependencies are:

ESN → engine type, engine position

Aircraft registration → aircraft type

The additional normal forms: the Boyce-Codd normal form, the fourth
normal form, and the fifth normal form are necessary for special relation ships
where anomalies may still occur when in 3NF. However, the GPA database con-
cept did not contain any special relationship for which additional normalization
was required.

6.3 Information analysis

Information analysis is the phase in the database design process to establish
aspects such as what data are available, the purpose of the database, and the
information that the database should deliver. This step will affect what data
will be stored, the structure of the database, and ultimately determines the
quality of the database.

Systematic use of GPA in the turbofan maintenance process requires mea-
sured performance parameters for gas path diagnostics, and maintenance-related
data to relate maintenance actions to gas path component condition. The nec-
essary data originates from different sources and must be stored in the database
in a consistent format. Additional data analysis may be used for discovering
valuable knowledge for the maintenance process. The flow chart in figure 6.3
shows this information flow and some components of the information system.
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Figure 6.3: Flow chart showing the information flows to and from a cen-
tralized database. The objective of collecting, storing and analyzing this
information is to generate valuable knowledge for the turbofan maintenance
process.

6.3.1 Engine performance data

During the operational life of a turbofan engine, performance data are recorded
on-wing (in-flight) for condition monitoring and on the ground in an engine test
cell usually after engine overhaul. Of these two performance data sources, the
test cell provides the most accurate performance snapshot. In addition to the
observed performance parameters, performance margins and other corrected
parameters are calculated that are indicative of overall engine condition, fuel
efficiency, and remaining performance life. Each post-overhaul performance
tests at KLM provided performance data at four different power settings.

For on-wing condition monitoring performance snapshots are recorded at
different moments during each flight; one at a high power setting during take-
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off and one during cruise. Although exact protocols are defined for on-wing
performance snapshots, the operating condition in which they are recorded
may vary between flights. Moreover, not all performance parameters that are
measured in a test cell may also be measured on-wing. This depends on optional
sensors that may or may not be installed for on-wing condition monitoring.

Because test cell and on-wing measured performance data come from the
MRO shop and the engine operator respectively, they may use different units
and parameter names. Moreover, the performance data may be available in
different formats. Indeed, at KLM the test cell and on-wing performance data
used different parameter names, units and data formats. However, the GPA
database used the standard gas path station naming convention and SI-units.
A data import tool was created for converting engine performance data from
both sources and import them into the database.
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Figure 6.4: One engine, may be related to many test sessions, each of
which may be related to many measured data sets.

All performance data measured in a test cell or on-wing ultimately belongs
to a specific engine with a specific engine serial number. Therefore, an Engines
entity was defined for storing all necessary information for describing an engine.
While the amount of observed performance parameters and power settings may
vary, both sources may be viewed as similar sessions during which measured
performance parameters are recorded. A Test Sessions entity was defined for
storing all data relevant to a test session. Each Test Session instance always
belongs to one engine instance. During each test session, one or more sets
of measured performance data are recorded; one data set for an on-wing test
session, and four data sets during a test sessions in a test cell. A Measurements
entity was defined to store all relevant measured performance parameters. Each
Test Sessions instance was related to one or more Measurements instances. The
relation between Engines, test sessions, and measurements are shown in figure
6.4
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6.3.2 Maintenance work scope data

Maintenance work scope data of engine overhaul was available from the engine
shop. It contains information about whether a specific engine module, assem-
bly, or part was maintained and states to what level it was maintained. For
the GPA database concept only maintenance work scope data of gas path com-
ponents was considered. Because on-wing maintenance actions usually do not
affect gas path component performance, data describing on-wing maintenance
actions was not considered at this point.

After overhaul an engine undergoes a mandatory performance test. For
some engines multiple test sessions are necessary to certify it for the potential
thrust ratings at which it may be operated. Consequently, the maintenance
work scope performed during a shop visit may be related to multiple test ses-
sions. Therefore, to store maintenance work scope data a Work Scopes entity
is defined. Work scopes instances must always be related to one or more Test
Sessions instances.

6.3.3 GPA data

Each record of measured performance parameters in the database may be used
for GPA. A GPA Results entity may be defined for storing all relevant infor-
mation generated with GPA. In principle each measurement set may lead to a
single GPA result. This would lead to a one-to-one relation between the Mea-
surements entity and a GPA results entity. However, to focus the diagnosis on
specific gas path components the dominant trend analysis method[2, 52] may
be applied. Using this method would result in multiple GPA results for a single
measurement set, each obtained from different subsets of a Measurements en-
tity. Implementing this method requires to a one-to-many relationship between
the Measurements entity and a GPA Results entity.

The objective of the database concept was storing information that was
relevant to the maintenance process. From a maintenance perspective, storing
a single correct GPA result is sufficient. Therefore, a one-to-one relation was
selected for the Measurements entity and a GPA results entity. Because of the
one-to-one relationship, both entities were stored in a single database table.

Performance model calibration is one step in the Adaptive Modeling (AM)
calculation that was used for GPA. Storing that information is important be-
cause it allows evaluating the validity of the GPA results. The Cal Factors
entity was defined to hold information relevant to the model calibration step
used in the AM calculation. Often a single measured data set of a specific
engine is selected as a reference, which is then used for obtaining GPA results
for multiple measured data sets. Therefore, a one-to-many relationship exists
between the GPA Results entity and a Cal Factors entity. However, as each
Cal Factor instance is obtained from a single measured data set, a one-to-one
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relationship exists between the Measurements entity and the Cal Factors entity.

6.3.4 GPA database tables and relations

1

Cal. factors

belong to

Work scopes

belong to

Test sessions

Engines belong to

GPA results

Measurements produce

1

1

∞
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based on

∞

1

1

1

Figure 6.5: GPA database entity-relationships diagram.
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Figure 6.6: An overview showing the tables, relations, and attribute groups
for the GPA database concept.

Figure 6.5 shows the entity-relationship diagram for the GPA database con-
cept. Although 6 separate entities were identified during the information anal-
ysis and data modeling step, the GPA database concept contains 5 related
tables. The one-to-one relationship that was identified between the Measure-
ments entity and the GPA Results entity means that both entities could be
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combined into a single table. The final database concept is shown in figure 6.6.
Not all attributes are specified for each table in this figure. Instead attribute
groups are used to represent actual attributes of each table. The attribute
groups are indicated by the curly brackets.

Figure 6.7: Database import user interface of the GSP AM component.

6.3.5 Implementation into the AM component

Based on the results of the information analysis step a single-user GPA database
concept was created. A specialized data importing tool was developed for
importing both test cell and on-wing measured performance data into the
database. A database connection was established between the GSP AM com-
ponent and the GPA database. SQL was used for updating the database and
retrieving performance data with specified criteria from the database. Figure
6.7 shows a screenshot of the window used for selecting performance data from
the database. To select the required data set, the user can use a pre-defined
query (figure 6.7) for which only data-specific criteria must be specified. The re-
quired SQL command was executed in the background. This option allows the
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user to focus on data specific information only. Alternatively, a fully customiz-
able query can be used. This option allows maximum flexibility but requires
the user to be familiar with the SQL syntax.

The interaction between the database and the AM component is not demon-
strated in this chapter. The database was used in chapter 4 for retrieving
performance data of engines with the best EGT margins. Those data were
used to create average reference engine data sets. In chapter 5 the database
was used for providing particular data subsets such as all engines of a spe-
cific thrust rating with all sensors installed, or all available on-wing measured
performance data from a specific engine. GPA results were inserted in the
database to create data cross-sections that showed interesting correlations be-
tween component condition deltas and engine performance margins. This work
demonstrated the potential of systematically using GPA in combination with
an effective information system.

6.4 Conclusion

GPA has been demonstrated as an effective method for estimating gas path
component condition. GPA tools are often stand-alone computer programs
with limited integration into the data of the aero-engine operational and main-
tenance processes. The GSP AM component that was used in this research
initially required text files for automatically importing measured performance
data sets or manual performance data input. No other maintenance-related
data were used for further analysis. GPA results could only be stored in sep-
arate report files. While this capability was effective for analyzing relatively
small data sets and reviewing the results, it limited the systematic use of GPA.

An information system concept was developed for the GSP AM component
for systematic use of GPA in an aero-engine maintenance process. It was de-
veloped for the performance data that were available for this project. This
concept, which implemented a relational database for storing relevant data
available from the aero-engine maintenance and operational processes, was suc-
cessfully coupled to the GSP AM component. It demonstrated the added value
of systematically using GPA in the aero-engine maintenance process. The in-
formation system concept was used for studies presented in chapters 4 and
5. Using a relational database for storing data instead of individual text files
offered benefits in terms of data accessibility and data analysis.

Better data accessibility was achieved by storing all data in a single rela-
tional database instead of being scattered among many individual text files.
Using a relational database made searching for data sets easier and faster. It
allowed the search to be based on any criteria that could be specified for the
data in the database. In addition, coupling the GSP AM component to the
database allowed for automated analysis of large data sets. This capability was
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particularly beneficial for analyzing large on-wing measured performance data
sets.

The database contained measured and calculated engine performance data
as well as GPA results. The ability of creating data cross-sections meant that
correlating GPA results with maintenance-related data or engine performance
data could point to otherwise hidden correlations that may be relevant to the
maintenance process. In addition, the relational database was important for
estimating an average reference data set and trending on-wing component con-
dition.

Perhaps the most important benefit of using a relational database is its
capability to be extendible without affecting existing data or relationships in
the database. While this may not lead to better GPA results, including data
from other relevant processes in the aero-engine maintenance process may offer
new and potentially valuable insights. Those insights may provide just the
right advantage in the competitive aero-engine maintenance business.
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CHAPTER7
General conclusions

T
his study was set out to investigate how gas path analysis can be more
effectively used in the maintenance process of gas turbine aero-engines.
Maintenance is an expensive but essential activity that ensures safe,

reliable, and cost-effective airline operations. To maximize an engine’s time
on-wing at minimal cost, condition-based maintenance is used. This mainte-
nance strategy requires regular inspections, engine condition monitoring and
other diagnostics methods to establish the degree of deterioration. GPA is
a method that can be used to identify engine modules responsible for aero-
thermodynamic performance-related problems. This makes it an excellent ad-
dition to the diagnostic methods used for condition-based maintenance. Despite
being recognized as a valuable tool by many in the gas turbine community and
in the maintenance, repair and overhaul industry, systematic use of GPA in the
aero-engine maintenance process remains limited.

The work presented in this thesis was focused on three main subjects. The
first subject was improving the accuracy and reliability of a non-linear, model-
based GPA tool. The second subject was more effectively using available engine
performance data for GPA. The third subject was developing an information
system concept for integrating GPA in an aero-engine maintenance process.
While this study used performance data of gas turbine aero-engines only, the
similarities with land-based and marine gas turbines in terms of operational
and maintenance concepts means that the methods, results and conclusions
presented herein apply to gas turbines in general. Chapters 2-6 contain detailed
conclusions on this work. Overall, the following can be concluded on the main
subjects covered in this thesis:

• Accuracy and reliability The effects of measurement error cannot be
eliminated from GPA results. However, the effects of random sensor er-
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rors are relatively small compared to errors originating from incorrect
model calibration and missing gas path pressure and temperature mea-
surements. When proxy parameters are used as an alternative for missing
pressure or temperature measurements in the gas path, measurement er-
rors can lead to high uncertainty for some condition parameter deviations.
The effects of systematic errors can be reduced significantly by correct
model calibration. It was demonstrated that despite the presence of both
random and systematic measurement error, component condition esti-
mations that are sufficiently accurate for maintenance application can be
obtained when GPA is used for an extended period.

Component maps available in the public domain that are tuned by using
a large volume of measured performance data are better suited for GPA
applications than those scaled relative to a single operating point. The
accuracy of model-based GPA results is strongly dependent on the used
reference data set and the correct model calibration method. Using a
single, fixed reference data set to analyze multiple engines of the same
model introduces errors. An effective approach for practical application in
the aero-engine maintenance process is to define an average reference data
set based on multiple reference engines with good overall performance. In
addition to providing a more accurate estimate of component condition
deviation, this method also allows visualization of otherwise unknown
uncertainty in condition parameters and thus enables judging the validity
of the results.

• Effectively using available engine performance data for GPA.

Using GPA for on-wing component condition monitoring provides much
more detail than performance monitoring methods that are often used for
monitoring commercial turbofan engines. In addition, when used system-
atically this approach provides valuable information for the maintenance
process prior to engine removal. When too few measured performance
parameters are available for detailed GPA, adapted-model performance
analysis can be used to analyze engines that show abnormal performance.
This way GPA is used indirectly for analysis of measured performance
parameters that are available.

• Information system concept for GPA application. Stand-alone
GPA tools limit systematic application in the condition monitoring and
maintenance processes of aero-engines. Storing measured performance
data as well as the GPA results in a single relational database instead of
many individual files made identifying relevant trends easier and faster.
The added value of the information system concept and systematically
using GPA in the maintenance process has been demonstrated on a
large fleet of commercial turbofan engines. One benefit of using a single
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database containing all relevant data was the ability to identify system-
atic performance measurement errors with a constant bias by comparing
long-term performance and condition monitoring data from multiple en-
gines.

It is important to keep in mind that gas turbine part repair and replace-
ment are dictated solely by the engine repair manual. While engine removal
and overhaul can be triggered due to performance loss, the findings from perfor-
mance diagnostics have little effect on whether or not parts must be replaced.
However, the unique ability of GPA to identify gas path components with poor
condition helps to reduce unnecessary repair of components that still perform
adequately. This implies that identifying to correct gas path components with
relatively poor performance is more important than accurately estimating the
degree of condition deterioration.

The results obtained from this study have demonstrated that GPA can
be used more effectively in the maintenance process of gas turbines when it is
used systematically to analyze operational and post-overhaul performance data.
This way engine condition can be monitored with more detail than traditional
performance monitoring methods. But more importantly, the GPA information
available prior to overhaul enables estimating cost-effective maintenance work
scope to restore engine performance to a desired level.

Maintenance is inevitable as a gas turbine aero-engine ages. Although mod-
ern turbofan engine models are newly built with large EGT margins, and engine
removals due to performance loss have been greatly reduced over the years, the
matter of guaranteeing post-overhaul engine performance levels remains a very
important issue in the engine overhaul business. Financial consequences of
failing to meet performance warranties can be very significant compared to the
cost of engine overhaul. It has demonstrated that GPA is a valuable addition
to existing diagnostic methods that are used in the maintenance process of gas
turbine aero-engines. Performance diagnostic methods are a fundamental part
of engine overhaul practices. When used systematically they help minimiz-
ing aero-engine maintenance cost and the risk of failing to meet post-overhaul
performance warranties.
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Nomenclature

Latin Symbols

∆Wc Flow capacity deviation [%]

fc Calibration factor [-]

ht Total specific enthalpy [Jkg−1]

D Characteristic diameter [m]

N1 Low pressure shaft rotational speed [RPM]

N2 High pressure shaft rotational speed [RPM]

Nc Corrected shaft speed [%]

P Pressure [bar]

P0,Pt Total/stagnation pressure [bar]

PR Pressure ratio [-]

Ps Static pressure [bar]

R Specific gas constant [J kg−1K−1]

RH Relative humidity [%]

T Temperature [K]

T0,Tt Total/stagnation temperature [K]

Ts Static emperature [K]

W,ṁ Mass flow [kg s−1]

Wc Mass flow capacity [-]

Wf Fuel mass flow [kg s−1]

Greek Symbols
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β Component map auxiliary coordinate [-]

δ Ratio of pressure and standard pressure P/Pamb [-]

∆η Efficiency deviation [%]

η Isentropic efficiency [-]

ν Viscosity [kg m−1s−1]

θ Ratio of temperature and standard temperature T/Tamb [-]

Subscripts

0 Ambient

14 Fan bypass exit

1 Inlet

25 Booster/intermediate compressor exit

2 Compressor inlet

3 High pressure compressor exit, combustor inlet

45 High pressure turbine exit

4 Combustor exit/high pressure turbine inlet

5 Low pressure turbine exit

9 Exhaust nozzle exit

c Core engine

d,bp Fan duct or bypass

Abbreviations

AFI Air France Industries

AI Artificial intelligence

AM Adaptive modeling

ANN Artificial Neural network

ASCII American Standard Code for Information Interchange

ASME American Society of Mechanical Engineers

CDP Compressor discharge pressure

CHP Combined heat and power

DBMS Database management system
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DOC Direct operating cost

ECM Engine Condition Monitoring

ECU Engine control unit

EGT Exhaust gas temperature

EHM Engine health management

EPCOR European Pneumatic Component Overhaul and Repair

ESN Engine serial number

ES Expert system

ETOPS Extended range operation with two-engine airplanes

EWMA Exponentially weighted moving average

FADEC Full Authority Digital Engine Control

FCM Fault coefficient matrix

FNK Corrected thrust

GA Genetic algorithm

GE General Electric company

GPA Gas path analysis

GSP Gas turbine simulation program

HCF High cycle fatigue

HD Hot day conditions

HPC High pressure compressor

HPT High pressure turbine

IATA International air transport association

ICM Influence coefficient matrix

ISABE International Symposium on Air Breathing Engines

KLM Royal Dutch Airlines

LCF Low cycle fatigue

LLP Life-limited parts

LPT Low pressure turbine

MC Maximum continuous thrust

MM Map modifier factor

MRO Maintenance, repair, and overhaul

NF Normal forms

NGV Nozzle guide vane

NLR National Aerospace Laboratory of the Netherlands

OEM Original equipment manufacturer
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PMC Power Management Control

RMS Root mean square

RPM Rotations per minute

RTD Resistive thermal device

SFC Specific fuel consumption

SQL Structured Query Language

TCDS Type certificate data sheet

TO Take-off thrust
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