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by Martin LI

In recent years, the rapid advancements in big data, machine learning, and
artificial intelligence have led to a corresponding rise in privacy concerns.
One of the solutions to address these concerns is federated learning. In
this thesis, we will look at the setting of vertical federated learning based
on tree models. We have built a system that can do both entity resolution
through private set intersection (PSI) and vertical federated learning (VFL).
In this system, we have implemented an optimisation to pre-sort the data per
feature before the start of VFL. We have also created a privacy framework,
where we define four levels of privacy. This optimisation did not affect the
privacy level of the system. In our results, we have seen that pre-sorting the
data lowers the overall training time. How much depends on the number of
entities and features of the passive party. We observe from our results that
we estimate the speed-up to be 0.3654 seconds per feature and 0.2093 seconds
per 1000 entities.
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Chapter 1

Introduction

With the fast developments in the field of big data and machine learning in
the last decade, there is a rising concern regarding privacy, since a major por-
tion of the data that is used to train the machine learning models is from real
people. To combat these concerns many regulations have been implemented
on worldwide levels. Europe introduced the General Data Protection Regula-
tion [EU, 2018].

The GDPR is one of the most comprehensive privacy laws in the world, and
it has had a significant impact on the way that organizations collect, use, and
store personal data. The GDPR gives individuals more control over their data
and requires organizations to be more transparent about how they use data.

In 2017, Google was one of the first large corporations that introduced privacy-
preserving machine learning, and they called it Federated Learning [McMahan
and Ramage, 2017]. The main goal during the development of this technique
was to address privacy and data security concerns. The idea behind fed-
erated learning is that a model is trained via multiple independent parties,
where each party uses their local data. The local data will never have to be
sent, as plain text, to a different party or a central server.

Instead, each party trains a local model on their data and then sends the
updated model parameters to a central server. The central server then aggre-
gates the updated model parameters and creates a new, global model. This
new model is then sent back to the parties, who can then use it to update
their local models.

In Figure 1.1 you can see Google’s idea for federated learning. In step A, your
phone trains a model on your local data. Many users’ updates are aggregated
in step B. The aggregation is used to form a consensus change, in step C, to
the shared model. This process could be repeated indefinitely.

In traditional machine learning, data is gathered and stored on a central
server, which can raise privacy issues if sensitive information is exposed or
if the server becomes compromised. Federated learning, however, operates
differently by keeping the data on local devices, like smartphones or IoT de-
vices, and performing model training directly on these devices. Only the
model updates, rather than the raw data, are transmitted back to the central
server, ensuring user data remains private and secure.
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FIGURE 1.1: Google’s original figure for Federated Learning
(https://blog.research.google/2017/04/federated-learning-

collaborative.html)

There are three different variants of federated learning: Horizontal Federated
Learning, Vertical Federated Learning and Federated Transfer Learning.

In this thesis report, we will focus on the process ofVertical Federated Learn-
ing (VFL). In this variant, you can imagine tabular data that is split vertically.
This means that when we consider two datasets, from different data owners,
they have an overlap between the entities, but (almost) no overlap between
the features. In this case, only one party has the target feature, and when
training the model this party can leverage the extra features for each entity
from the opposing party.

FIGURE 1.2: VFL setting between a bank and credit bureau

A real-life example of the application of vertical federated learning could be
in the finance industry. VFL can be used to train a model for fraud detec-
tion, credit scoring, and risk assessment. A bank could collaborate with a
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credit bureau to train a model to detect fraudulent transactions. In figure 1.2,
you can see how the data is partitioned. The bank would provide data on its
customer’s transaction history, while the credit bureau would provide data
on consumer credit scores. Under most privacy and security laws these user
data is not allowed to be shared with other organisations. With federated
learning, this problem is largely solved, since no data is leaving the organ-
isation’s data silo unencrypted. The two parties can now train the model
without sharing any customer-specific data in plain text.

For vertical federated learning, however, there is a problem that needs to be
solved first: entity resolution. The bank and credit bureau need to make sure
that their entities are correctly aligned, such that the first row in the data of
the bank corresponds to the same first row in the data of the credit bureau.
The first row of both data must refer to the same entity.

The need for private entity resolution is necessary for the vertical setting of
federated learning. It ensures that data from different parties is correctly
aligned, enabling the model to learn from the combined information with-
out compromising privacy. Without entity resolution, the model would be
trained on misaligned data, leading to inaccurate predictions.

However, since we are dealing with preserving privacy, the two parties can’t
simply send each other their data. So we need to find a method that can solve
the entity alignment problem without compromising the data’s privacy. One
of the solutions for this problem is Private Set Intersection (PSI).

1.1 Problem Statement

Definition 1. Private Set Intersection is a secure multiparty computation
cryptographic technique that allows two parties holding sets to compare en-
crypted versions of these sets to compute the intersection. In this scenario,
neither party reveals anything to the counterparty except for the elements in
the intersection.

Definition 2. Vertical Federated Learning is a federated learning setting
where multiple parties with different features about the same set of entities
jointly train machine learning models without exposing their raw data or
model parameters.

Given are two parties A and B, where both parties have their local data ma-
trix {X ∈ Rn×d}. Each row i in the matrix is a data instance, denoted as
Xi∗ ∈ R1×d. The two parties A and B have a different set of features and each
party can hold a different set of data instances as well. Only one of the two
parties can hold the label y. The party with the label is often called the active
party, whereas the party without the label is called the passive party.

In this thesis, we will work with tabular data and vertical federated learning
based on tree models. Aligning entities and training a model are two se-
quential steps, where training the model can only start when the alignment
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is found. The goal of this thesis is to make the process of vertical federated
tree models computationally faster by efficiently pre-processing the data.

Making the process of VFL faster solves a few disadvantages and issues that
current systems deal with. These disadvantages include:

• Reduced productivity: The development and deployment might be de-
layed, and slow training speed leads to a limited ability to adapt to
changing requirements.

• Increased costs: On cloud servers, slower training speeds mean more
resource hours on the servers. On local servers, it means more energy
and electricity costs.

1.2 Research Questions

In this thesis, we will create a prototype system that can do entity resolution
through private set intersection and perform vertical federated learning. The
pre-processing step of the data before VFL should optimise the VFL step in
terms of execution time. Through this prototype, we will try to answer the
following research questions:

RQ1. How does pre-sorting the data per feature affect the computation time
of building vertical federated learning trees?
After researching the protocols behind vertical federated learning that are
built around tree models, we have analysed the tree-building properties. I
found that one of the steps in the algorithm is sorting the data per feature.
This is done to find the local optimal split for each feature. In this thesis,
we will conduct experiments to gain insights into how pre-sorting the data
and removing the step for sorting affects the overall training speed of the
algorithm.

RQ2. Do we maintain the level of privacy during PSI and VFL while intro-
ducing modifications to the system?
This question is a bit more complicated. Privacy is a complex concept and
it is challenging to measure it precisely. For privacy, there is no universal
agreed-upon metric. However, many researchers and experts in the field
have developed frameworks and methodologies to assess and evaluate pri-
vacy in many different contexts. In this thesis, I will do the same. I will create
a small framework which will follow my own assumptions and interpreta-
tion of privacy. The system that I will develop will then be tested against
this framework to see whether and how the changes and modifications affect
privacy.
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1.3 Thesis Goals

The following points encapsulate the goals of this thesis:

G1. Optimise the pre-processing of data to reduce the computation time to
build VFL trees.
Efficiently pre-processing the data before building VFL trees is a pivotal goal
for this thesis, as it would reduce the overall training time. To fulfil this goal
we examine the tree-building properties. One of those methods that we will
specifically look at for this thesis, is by feeding the VFL process pre-sorted
the data. By feeding it pre-sorted data, the sorting step for tree-building will
be eliminated, which would reduce the overall training time.

G2: The level of privacy and security should not be reduced by the intro-
duction of any modifications in the system
Privacy and security are, as mentioned earlier, not easy to quantify. There
is no standard that we can use to tell whether the level of privacy has been
increased or decreased. So in this thesis, we will define our interpretation.
Based on our framework, we should conclude whether the introduced changes
will affect the level of privacy.

G3: Create a proof-of-concept system that performs ER and VFL.
This last goal is a necessity that needs to be done to fulfil goals 1 and 2. A
system needs to be built that can perform ER and VFL. I will not create these
two processes from scratch, but instead, I will use existing frameworks and
extend them.

1.4 Outline

In the next chapter (2), we will have a look at the preliminaries of this thesis.
The chapter will tell you everything you will need to know before we head
into the technical side of the thesis. In chapter 3, we dive into the state-of-the-
art regarding private set intersection and vertical federated learning. In chap-
ter 4 we present the implementation and architecture of our system. This sys-
tem includes the optimisation of pre-sorting the data during pre-processing.
In chapter 5, we describe the experimental setup, show the results and dis-
cuss said results. And in the last chapter (6), we will conclude this thesis
by answering the research questions, and propose the future directions this
thesis can take.
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Chapter 2

Preliminaries

2.1 Classic Tree-based Machine Learning

In classical machine learning, tree-based models constitute a category of su-
pervised learning algorithms used for both classification and regression tasks.
These models construct a tree-like structure to determine the class or value
of the target variable based on the input features. Tree-based algorithms are
widely employed in the prediction of tabular and spatial/GIS datasets, mak-
ing them a popular choice in the field of Machine Learning.

There are multiple forms of tree-based machine learning models:

1. Single Estimator: e.g. Decision Tree

2. Ensemble Methods and Bagging: e.g. Random Forest

3. Boosting: Adaptive and Gradient Boosting Machine: e.g. AdaBoost

4. Extreme Gradient Boosting: e.g. XGBoost

2.1.1 Single Estimator

The simplest form of a tree-based algorithm is a Decision Tree. A decision tree
has a flowchart-like structure in which each internal node represents a test
on an attribute (e.g. true or false), each branch represents the outcome of the
test and each leaf node represents a class label. A decision tree could look
like this:

2.1.2 Ensamble Methods and Bagging

One of the most popular ensemble learning algorithms is Random Forest. En-
semble learning methods are made up of a set of classifiers, e.g. decision
trees, and their predictions are aggregated to identify the most popular re-
sult. So, the idea behind random decision trees is to combine the output
of multiple decision trees to reach a single result. Random forest is an ex-
tension to the random decision trees, by combining the original algorithm
with Breiman’s "bagging" [Breiman, 1996] and random selection of features
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FIGURE 2.1: Decision Tree

to construct a collection of random decision trees with controlled variance.
By majority vote of all trees, a final answer will be constructed.

FIGURE 2.2: Random Forest

2.1.3 Boosting

The random forest algorithm creates several separate decision trees at the
same time. Each of these models is independent of the others. In Tree Boost-
ing, the trees are created sequentially. The first tree learns from the dataset.
The second tree also learns from the same dataset and the inaccuracies of
the first tree. Then the third tree learns from the same dataset and the in-
accuracies of the previous tree and so forth, until it has reached the number
of user-specified trees. Generally speaking, boosting has a higher accuracy
than random forest, because each base model gets to learn from the original
dataset and the inaccuracies from the previous trees.
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FIGURE 2.3: Tree Boosting

2.1.4 Extreme Gradient Boosting

Extreme gradient boosting, also known as XGBoost, is an optimised version
of gradient boosting. XGBoost, like regular boosting, is built by creating
multiple decision trees sequentially. The most significant difference is that
XGBoost includes L1 (Lasso) and L2 (Ridge) regularization techniques. The
two techniques help control the model complexity and it reduces overfitting.
Other differences include parallel processing, handling missing data and tree
pruning.

FIGURE 2.4: Extreme Gradient Boosting

Given a data set X ∈ Rn×d with n samples and d features, XGBoost (Chen
and Guestrin, 2016) predicts the output by using K regression trees.

ŷi =
K

∑
k=1

fk(xi) (2.1)

To learn the set of regression tree models used in equation 2.1, it greedily
adds a tree ft at the t-th iteration to minimize the following loss.

L(t) ≃
n

∑
i=1

[l(yi, ŷi
(t−1)) + gi ft(xi) +

1
2

hi f 2
t (xi)] + Ω( ft) (2.2)

where Ω( ft) = γT+ 1
2 λ ∥ w ∥2, gi = ∂ŷ(t−1) l(yi, ŷ(t−1)) and hi = ∂2

ŷ(t−1)
l(yi, ŷ(t−1)

When constructing the regression tree in the t-th iteration, it starts from the
tree with a depth of 0 and adds a split for each leaf node until reaching the
maximum depth. In particular, it maximizes the following equation to deter-
mine the best split, where IL and IR are the instance spaces of left and right
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tree nodes after the split.

Lsp =
1
2
[

(∑i∈Il
gi)

∑i∈Il
hi + λ)

+
(∑i∈IR

gi)

∑i∈IR
hi + λ)

+
(∑i∈II

gi)

∑i∈II
hi + λ)

]− γ (2.3)

After it obtains an optimal tree structure, the optimal weight w∗j of leaf j can
be computed by the following equation, where Ij is the instance space of leaf
j.

w∗j = −
∑i∈Ij

gi

∑i∈Ij
hi + λ

(2.4)

2.1.5 Summary

Tree-based machine learning models can be found in different variants. You
have the very simple standard decision trees, and the complex gradient boost-
ing decision trees, such as XGBoost. Each variant has its up- and downsides.
The standard decision tree is very fast but the accuracy might be very low.
XGBoost is known to score very high accuracies in a lot of machine learning
competitions, but training a model can take a very long time. The fundamen-
tal idea for tree models does stay the same for every variant: to learn a set
of rules that can be used to classify or predict the target value of a new data
point. The decision-making process is represented as a tree-like structure,
with each node representing a decision or evaluation of a feature variable
and each branch leading to one of the possible outcomes. The ultimate re-
sults, represented by the tree’s leaves, are the predicted target values.

2.2 Private Set Intersection

Private Set intersection (PSI) is a cryptographic technique for computing the
intersection of sets held by two or more parties. The intersection is found
without revealing the elements that are not in the intersection. Apart from its
theoretical significance, this secure multiparty computation has seen several
real-life use cases:

• Finding Contacts - Many messaging services (e.g. WhatsApp, Telegram)
rely on phone numbers, stored locally on your mobile phone, to find
other contacts that are using the same service. PSI allows users to share
their contacts with these messaging providers without sharing their
complete list of contacts.

• Covid-19 Contact Tracing - During the COVID-19 pandemic, PSI was
used in most government mobile apps to track whether people came
into close contact with someone who was infected with the coronavirus
without revealing the person’s location history.
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For real datasets, the unique common identifiers would serve as the input for
private set intersection. By using these identifiers, the active and passive par-
ties can compute the intersection privately. By verifying which identifiers are
in the intersection, they can determine which entities they have in common.

The most common setup for PSI is the server-client setup. In this scenario, the
client wants to request the intersection between their local data and the data
stored on the server. For the client the input is X = x1, ..., xn and the server’s
input is Y = y1, ..., yn. The output for the client is X ∩ Y and the output for
the server is ∅. Note: the client only learns the intersection of the two sets,
none of the server’s data points outside of the intersection is revealed to the
client.

Let’s have a look at an example:

• The client has the following elements in their data: [2, 10, 4, 7, 13, 9]

• The server has the following elements in their data: [3, 13, 10, 6, 7, 5]

• These two lists will be the input for PSI

• The output given to the client will be: [10, 7, 13]

FIGURE 2.5: Venn Diagram of PSI

To understand how our protocol of PSI computes an intersection privately,
some concepts need to be explained first: cuckoo hashing, oblivious transfer
and pseudo-random functions. These are our building blocks for securely
finding an intersection between two sets.

2.2.1 Cuckoo Hashing

Cuckoo hashing is a table data structure used for fast key-value storage and
retrieval. It is designed to address some of the limitations of traditional hash
tables, such as collisions and the need for resizing. The name is derived from
a cuckoo bird’s behaviour, where it sometimes kicks its cuckoo chicks out of
their nests when new eggs hatch. Analogously, inserting a new value into a
cuckoo hashing table may kick an older value out of the table.
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In Cuckoo hashing, there are typically two hash functions, H1 and H2, and
two separate hash tables, T1 and T2. When inserting a value k, it will apply
H1(k) and H2(k) which will result in a position in T1 and T2, respectively. If
the cell is empty in T1, we can simply insert k into this cell. In the case that the
cell is not empty, it will look at the cell in T2 and place it there if it is empty.

If both cells are occupied, the current value k′ in T1 will be kicked out and k
will be inserted in T1. k′ will be hashed again using H1 and H2 and look for
an empty cell. It will again kick out any current occupants, and this process
will be repeated until an empty cell is found. An infinite loop may occur. In
this case, all elements will be removed from the tables, and everything will
be rehashed using new hash functions.

2.2.2 Oblivious Transfer

Oblivious transfer (OT) is a two-party protocol involving a sender and a re-
ceiver. In this protocol, the sender transfers information to the receiver while
remaining completely unaware of the specific information that the receiver
ultimately acquires.

FIGURE 2.6: Oblivious Transfer

In this example, Alice has two values W0 and W1. Bob wants to learn one
of the two values, but he does not want Alice to know which of the two he
learns. Alice generates a public and private key and sends to Bob two ran-
dom values X0, X1 and the public key (n, e). Bob chooses Xb, where b is either
0 or 1. Bob will send V back to Alice, where V is equal to (Xb + re) mod n.
Alice can now calculate the two values Kb, where b is 0 and 1, and where
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Kb = ((V − Xb)
d) mod n. Now Alice calculates two values W ′0 = W0 + K0

and W ′1 = W1 + K1 and send them over to Bob. Bob can now learn the value
that he wanted to learn at the very beginning by calculating Wb = W ′b − r.

2.2.3 Pseudo-Random Functions

Pseudo-random functions (PRF) are, as the name suggests, functions that
give a pseudo-random answer. Meaning it’s a deterministic function that ap-
pears to produce a random output, even though it is entirely deterministic
and predictable when given the same input. One of the inputs for such func-
tions is usually a seed or key and the output is constructed in such a way that
it appears indistinguishable from truly random data. Some key properties of
pseudo-random functions include:

• Deterministic: PRF’s produce the same output for the same input every
time

• Pseudorandomness: The output of a PRF should be statistically indis-
tinguishable from true randomness to an observer who doesn’t know
the secret key used as input

• Efficiency: PRFs should be computationally efficient to calculate, espe-
cially in practical cryptographic applications

2.2.4 Oblivious Pseudo-Random Functions

When combining Oblivious Transfer and Pseudo-random Functions, we get
Oblivious Pseudo-Random Functions (OPRF). OPRF is a protocol between two
parties, where one party has the key k for a secure pseudo-random function
F. The other party has an input x for the function F, and at the end of the
protocol, it learns F(k, x) and nothing else.

2.2.5 Summary

The building blocks for our PSI protocol consist of cuckoo hashing, oblivious
transfer and pseudo-random function. They are all necessary for creating the
protocol that can securely compute the intersection between two datasets.
We only look at the common unique identifiers of the datasets. By extracting
that column from both datasets, we have two lists of id’s. By using those
two lists as input for our PSI protocol, each party will receive the intersection
without knowing which other id’s there were in the opposing dataset.

2.3 Federated Learning Settings

Federated Learning (FL) is a special form of machine learning. In classical
machine learning, all data that is required is stored in one place. A model
can access this data and train itself using the data. In the past, when two
organisations collaborated with each other they could send all of their data
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to one big data silo. A model could then be trained on this big data silo as
seen in 2.7.

FIGURE 2.7: Traditional Machine Learning

In the past, when organizations A and B collaborated to train a model, they
could merge their data into one big data silo without much concern for data
security or privacy. All data, whether it was sensitive or not, would often be
stored in plain text, easily accessible by anyone with access to the data silo.
This approach did allow for seamless data integration and it would greatly
facilitate the training of models with large, diverse datasets.

FIGURE 2.8: Federated Learning

However, nowadays, when organizations A and B collaborate on model train-
ing, they must adhere to privacy regulations, such as the GDPR. Data must
be treated with the utmost care, and encrypting data is no longer an option
but a necessity. This kickstarted organizations to employ techniques like fed-
erated learning, where data remains decentralized, and models are trained
collaboratively without the need to share raw, sensitive data.

Federated learning allows organizations to benefit from each other’s data
while respecting regulations. Instead of sending data to a central data silo,
models are trained on local data. Only model parameters and/or gradients
are exchanged. This approach preserves the privacy of individual data points
while still allowing for the collective improvement of the models.

There are three settings of federated learning: horizontal, vertical (Yang et
al., 2019) and federated transfer learning (Liu, Chen, and Yang, 2018). These
three are characterised by how the data is partitioned.
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2.3.1 Horizontal Federated Learning

In Horizontal Federated Learning (HFL), the dataset is partitioned horizon-
tally, meaning that the feature space overlaps, but there are (almost) no sam-
ples that can be found in both datasets. In figure 2.9, we see a dataset that
is partitioned horizontally. Dataset 1 has information about entities U1, U2
and U3. Dataset 2 has information about U4, U5 and U6. Although the two
datasets have information about different entities, they do keep track of the
same features. They also both have information about the target value. The
"virtual dataset" on the right of the figure gives an impression of how the
dataset would look if it were to be combined. In horizontal federated learn-
ing, the sample space will be increased

FIGURE 2.9: Horizontal Federated Learning

2.3.2 Federated Transfer Learning

In the setting of Federated Transfer Learning (FTL), there are not a lot of
samples and features that overlap. Transfer learning can then be applied in
a federated manner. In Figure 2.10, we see that there is some overlap in the
entities as well as in the features, however, there will be some values missing,
since there is no information. In the figure, these cells are filled with black.
This is where transfer learning is used. Transfer learning reuses a pre-trained
model on a new problem. The model exploits the knowledge gained from a
previous task to improve generalization about another. In federated transfer
learning, we can increase the feature and sample space.
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FIGURE 2.10: Federated Transfer Learning

2.3.3 Vertical Federated Learning

In Vertical Federated Learning (VFL), the dataset is partitioned vertically. The
samples in both datasets have a lot of overlap, but the two datasets have dif-
ferent features. In Figure 2.11, you can see that both datasets have informa-
tion about entities U1, U2, and U3. However, the datasets have different fea-
tures, meaning they track different information about the same entities. Also,
only dataset 1 has the target label (Y). This is what makes VFL challenging
since the party without a target label has to find a way to contribute to the
model without compromising the data. Vice versa, the same challenge also
applies to the party with the target label. Leaking the target label might lead
to a serious violation of privacy. In vertical federated learning, the feature
space will be increased.

In VFL the data is based on features rather than individual data points as
seen in Figure 2.12. This means that each participating party in the vertical
federated learning process holds only a subset of the features for the same set
of data points, and the objective is to collaboratively train a machine learning
model without sharing the raw data. By vertically partitioning the data, each
party retains control over their data while still contributing to the model’s
training.

No confidential information is allowed to be shared directly between the par-
ties. Each party has a local model and only encrypted intermediate results
are allowed to be exchanged. In every iteration, the two parties will collabo-
ratively update the global model. The global model will then be the starting
point as the local model for each party. These iterations will continue, as long
as the parties want, since new data can be added.
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FIGURE 2.11: Vertical Federated Learning

FIGURE 2.12: VFL Setting

Many different underlying machine learning models can be used for VFL,
such as neural networks and tree-based models. In this thesis, we will focus
on tree-based models. Tree-based models are a class of machine learning
algorithms used for both classification and regression tasks. These models
are based on the concept of decision trees, which mimic human decision-
making processes by making a series of decisions based on input features to
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reach an outcome.

In traditional machine learning with a tree-based model, all features and data
are available in plain text. This makes it easy to calculate the optimal split
point for each feature. But, in a VFL setting, the passive parties don’t have
access to the target label. To overcome this challenge, VFL relies on privacy-
preserving techniques such as secure multi-party computation, homomor-
phic encryption, or differential privacy. These techniques allow the parties to
perform computations on the shared features while keeping the target labels
hidden. In this way, the different parties can collaborate with each other to
build a decision tree without revealing their data.

2.3.4 Summary

Federated learning is a powerful protocol in a world where privacy and se-
curity around data are extremely important. Federated learning is still a rel-
atively new technology, but it has the potential to revolutionize the way that
machine learning is used in a variety of industries. It is particularly well-
suited for applications where data privacy and security are important, such
as healthcare, finance, and government.

Vertical federated learning is a variant of federated learning where multiple
parties with different features about the same set of entities jointly train ma-
chine learning models. In the setting of VFL, each participant has a unique
subset of features for the same set of entities. Often, only one party has the
target label. For example, one party might have demographic data, such as
age and gender, while another participant might have behavioural data, such
as purchase history, website visits and the target label to predict how likely
someone will buy a certain product. By combining their data, participants
can train a more accurate machine learning model than they could on their
own.

2.4 Homomorphic Encryption

Homomorphic Encryption (HE) is a specialised form of encryption that al-
lows computations on encrypted data without decrypting it. In traditional
encryption schemes, it is not possible to correctly manipulate encrypted data.
It needs to be decrypted first before any correct computations are possible.
This means that through HE you can keep your data secure while computa-
tion on the encrypted values is still possible.

You can encrypt your data and then perform computations on the encrypted
data. The results of the computations will also be encrypted, but you can
then decrypt the results to get the final answer. An example of homomorphic
encryption would be:

• Let x be the number "10"

• Let y be the number "20"
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• Now we encrypt x and y homomorphically

• [[.]] denotes the encrypted value

• We get [[x]] and [[y]], respectively

• It is now possible to add these two encrypted values together

• [[x]] + [[y]] = [[x + y]] = [[10 + 20]] = [[30]]

• After decrypting [[10 + 20]], we correctly get 30

Suppose you have two numbers, x and y, and you want to add them together.
You can encrypt x and y using homomorphic encryption. Then, you can per-
form the addition operation on the encrypted data. The result of the addition
operation will also be encrypted. Finally, you can decrypt the result to get
the final answer, which is the sum of x and y.

There are three types of HE and it depends on the necessary context:

• Partially Homomorphic Encryption: Supports one type of mathemati-
cal operation, either addition or multiplication, on encrypted data.

• Somewhat Homomorphic Encryption: Supports both addition and mul-
tiplication operations on encrypted data but has limitations on the num-
ber of operations or the depth of computation that can be performed.

• Fully Homomorphic Encryption: Supports an arbitrary number of ad-
dition and multiplication operations on encrypted data, making it the
most versatile but also the most computationally intensive form of ho-
momorphic encryption.

2.4.1 HE application for FL

Homomorphic encryption is a cryptographic scheme that is used in several
federated learning systems. In federated learning, the gradient exchange be-
tween the users and the server may leak private information. Homomorphic
encryption can solve this problem very well, it can deal with the encrypted
model without affecting the training results of the model. This is impor-
tant for federated learning because it allows participants to participate in the
training of the model without having to worry about their data being com-
promised. It allows participants to keep their data private, which is impor-
tant for sensitive data. Some benefits of using HE in a federated learning
setting:

• Privacy: Homomorphic encryption ensures that the data of each partic-
ipant remains private, even from the central server that is training the
model. This is important for sensitive data, such as healthcare data or
financial data.

• Security: Homomorphic encryption also helps to protect the security
of the federated learning system. If an attacker can gain access to the
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encrypted data, they will not be able to decrypt it and view the original
data.

2.4.2 Summary

Homomorphic encryption is a form of cryptography that allows for the com-
putation of encrypted data. Data that is homomorphically encrypted can
still be used for mathematical operations, such as additions and multiplica-
tions. There are three different types of HE: partially homomorphic encryp-
tion, somewhat homomorphic encryption, and fully homomorphic encryp-
tion. There is no "best" type since it depends on your own system’s needs
and each type has its drawbacks and benefits. Homomorphic encryption is
also used in federated learning systems. HE protects the intermediate data
that is transferred between parties. Participants of FL can assume that their
data stays secure and private, while still contributing to improving a collab-
orative model. Some benefits of using HE in an FL setting include privacy,
security and scalability.
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Chapter 3

Related Work

3.1 PSI Protocols

Private Set Intersection (PSI) allows two parties to compute the intersection
of their set in a privacy-preserving way. In this scenario, neither parties re-
veal their full set to the other party except for the elements in the intersection.
There are many variants of PSI, all based on different encryption methods,
such as Rivest-Shamir-Adleman (RSA) (De Cristofaro and Tsudik, 2010) and
Diffie–Hellman (DH) (Huberman, Franklin, and Hogg, 1999).

There are many different implementations for a private set intersection pro-
tocol. Each with a slight variation on how they compute the intersection. In
this chapter, we will have a look at different underlying concepts.

3.1.1 Homomorphic Encryption-based PSI

Just as in VFL, there are private set intersection protocols based on the imple-
mentation of homomorphic encryption [(Acar et al., 2018)]. Some protocols
rely on additive and multiplicative HE [(Will and Ko, 2015; Cheon et al.,
2017)]. One of the papers that based their PSI protocol on HE is "Fast Private
Set Intersection from Homomorphic Encryption" [Chen, Laine, and Rindal,
2017]. They use fully HE to construct a fast PSI protocol. In the setting where
one set is much smaller than the other one, that is where their work shines
the most. The execution speed is drastically reduced, due to a smaller com-
munication overhead in comparison to other PSI protocols.

The protocol is based on the observation that given two sets of data en-
crypted using HE, it is possible to compute the intersection of the two sets
without ever revealing the underlying data and the output has no other data
other than the intersection itself.

3.1.2 Bloom Filter-based PSI

There are also PSI systems based on Bloom Filters [Inbar, Omri, and Pinkas,
2018], where a lot of the communication overhead can be reduced. A Bloom
Filter [Patgiri, Nayak, and Borgohain, 2018] is a space-efficient probabilistic
data structure that tests whether an element is present in a set. This is done
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by hashing. A hash function takes input and outputs a unique identifier of
fixed length which is used for identification of the input. Because of the prob-
abilistic nature of the data structure, the filter may generate false positives,
meaning that the filter says that a certain element is in the set, while it is not.
For PSI this is not ideal, since we expect an exact set for the intersection.

3.1.3 State of the Art

As mentioned in 2.2.4, the state of the art uses a combination of cuckoo hash-
ing, oblivious transfer and pseudo-random function ((Pinkas, Schneider, and
Zohner, 2018)). In this protocol, a receiver has an input r. The sender gets
an output s and the receiver gets F(s, r), where F is a pseudo-random func-
tion and s is a random seed. The hashing is done with cuckoo hashing. One
of the main advantages of cuckoo hashing is its ability to resolve hash col-
lisions efficiently. The combination of these concepts results in a private set
intersection protocol that is both fast and secure.

3.2 Federated Learning

Federated learning (FL) (Zhang et al., 2021) is a kind of encrypted distributed
machine learning technology, in which participants can build a model with-
out disclosing the underlying data so that the self-owned data of each en-
terprise does not leave the local database. Through the parameter exchange
under the encryption mechanism, a virtual common model is established.
With FL a machine learning model is trained without sharing data, thus al-
lowing to address critical issues such as data privacy, data security, data ac-
cess rights and access to heterogeneous data. Formally, it is assumed that N
parties {P1, ..., Pn} own their own database {D1, ..., D2}. Each party can not
access the data from the other parties. Federated learning is to learn a model
by collecting training information from each party. The basic steps are:

1. The server sends the initial model W ′ to each participating party.

2. Each party Pi trains the model with their local data Di.

3. The server aggregates the collected local models {W1, ..., Wn} to the
global model W ′

4. The server sends the updated global model W ′ to each party.

5. The parties replace their local model with the updated global model.

Although none of the local data leaves the party, there are still measurements
needed to not leak the data. In the past, anonymised data from Netflix could
be broken (Narayanan and Shmatikov, 2006), and local models for FL could
be reverse-engineered to be exposed as the initial data.
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3.2.1 FL Models

Neural Network Models

A neural network (Hopfield, 1982) is a series of algorithms that endeav-
ours to recognize underlying relationships in a set of data through a pro-
cess that mimics the way the human brain operates. In this sense, neural
networks refer to systems of neurons, either organic or artificial. Neural net-
works have been applied in training unmanned aerial vehicles, commonly
known as drones, in a federated manner (Zeng et al., 2020). Normally train-
ing one drone using a neural network is not a problem, but training a group
of drones is harder, because of the lack of continuous communication be-
tween the ground base group and the drones. Federated learning can be
applied here by assigning one of the drones as the leading drone. Each drone
can then train its local model and send its updates to the main drone. The
main drone can then update the global model, which then can be distributed
between all drones.

Linear Models

The three main categories for federated linear models are linear regression,
ridge regression and lasso regression. Since linear models are the more "sim-
ple" models, the accuracy of models in a federated manner is already the
same as non-private solutions (Du, Han, and Chen, 2004). For ridge regres-
sion, a federated system (Nikolaenko et al., 2013) has been proposed based
on homomorphic regression and Yao’s protocol (Lindell and Pinkas, 2009)
that can almost get the same result as traditional models.

BlindFL [Fangcheng Fu, 2022] is a paper that introduces a state-of-the-art
VFL system that is based on linear algebra models. They found that current
VFL frameworks either support limited kinds of input features or suffer from
potential data leakage during the federated execution. This paper provides
a solution for the limited kinds of input by introducing federated source lay-
ers. It efficiently supports dense, sparse, numerical and categorical features.
This paper also proposes a new security method by combining homomorphic
encryption with secret sharing.

Secret sharing is a cryptographic technique for dividing a secret into multiple
shares, such that the secret can only be reconstructed by combining a suffi-
cient number of shares. Secret sharing is often used to distribute encryption
keys so that no individual can compromise the entire key. In this paper secret
sharing is used to protect sensitive data.

Tree-based Models

Federated Learning can be used to train one or multiple decision trees, such
as random forests and gradient-boosting decision trees. Gradient Boosting
Decision Trees (GBDT) is a widely used method in the field of machine learn-
ing, due to its great performance in classification and regression tasks. The
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first federated system that utilised this was mentioned in (Zhao et al., 2018).
The system was used for data mining, and its security was based on Differ-
ential Privacy.

One of the reasons to create a vertical federated learning system based on
tree models for this thesis is its good performance on tabular data. The paper
"Why do tree-based models still outperform deep learning on tabular data?"
(Grinsztajn, Oyallon, and Varoquaux, 2022) explains why tree-based models
are still the preferred model for tabular data: Tree models are better at learn-
ing irregular patterns in data. Uninformative data affect deep learning a lot
more and tabular data is non-invariant by rotations, and so are tree models.

3.3 Tree-based Vertical Federated Learning

This chapter will have a deeper focus on tree-based vertical federated learn-
ing systems and their underlying security protocols since it is the main focus
of this thesis. We will have a look at the current state-of-the-art system re-
garding tree models in a vertical federated setting.

SecureBoost One of the first tree-based vertical federated frameworks is Se-
cureBoost [Cheng et al., 2019] which utilises XGBoost [Chen and Guestrin,
2016] to train their model. In their paper, they let different parties securely
collaborate on building decision trees. By analysing the math behind XG-
Boost, they figured out that only certain values from the target column need
to be encrypted to find the optimal split points for each feature from the pas-
sive parties.

The system’s security protocol relies on homomorphic encryption. The sensi-
tive data that is communicated between the two parties is homomorphically
encrypted, such that computations are still possible.

This is also the system on which we will build upon in this thesis. In chapter
4.1.1, we will dive deeper into the algorithm behind this system.

FederBoost The paper Federboost [Tian et al., 2020] proposes a vertical fed-
erated GBDT algorithm. They claim their approach doesn’t need any crypto-
graphic operations. Their security protocol is based on the concept of Differ-
ential Privacy (DP).

DP [Dwork, 2008] is a relatively new concept first proposed in 2006 to solve
the problem of privacy disclosure in statistical databases. With DP, the results
from the calculation of the database are insensitive to the changes of a specific
record. A single record in the dataset or not in the dataset has little impact
on the calculation result. Therefore, the addition of a single record will not
increase the risk of privacy disclosure. Also, the risk can be controlled in
a very small and acceptable range. An attacker cannot obtain accurate in-
dividual information by observing the calculation result. It tries to achieve
the same as adding noise to data for traditional machine learning and deep
learning. In practice, Lacplace mechanisms and exponential mechanisms are
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used to achieve differential privacy protection. Two aspects needs to be bal-
anced, protection and validity. Adding too much noise affects the validity
and adding too little decreases the level of protection.

VF2Boost VF2Boost [Fu et al., 2021] is a paper that builds upon SecureBoost
and it introduces two optimisations. The first one is concurrent training.
They found that while either party is encrypting their data, the other party
is idle. Since they are using homomorphic encryption this could take a very
long time. They introduce a blaster-style encryption method, which reduces
the time that either party is idle. The second one is a customised cryptogra-
phy algorithm which speeds up the encryption and decryption.

The underlying security technique is still the same as SecureBoost. The sys-
tem makes use of homomorphic encryption to safely communicate sensitive
data between the involved parties.
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Chapter 4

Approach

The approach consists of two parts: private set intersection and tree-based
vertical federated learning. Before training a model through vertical fed-
erated learning between two parties, the data has to be aligned between
them. We will use private set intersection to find the intersection between
two datasets. For our approach, we assume the following setting:

• Two parties

• Active party: The party’s dataset has the class label

• Passive party: The party’s dataset does not have the class label

• Tabular data

• Data between the parties have overlapping entities

• Data between the parties have almost no overlapping features

4.1 Tree-based VFL

4.1.1 The Protocol

The prototype is based on the implementation of the paper: "SecureBoost: A
Lossless Federated Learning Framework" (Cheng et al., 2019). SecureBoost is
a lossless vertical federated learning system based on the XGBoost algorithm
(Chen and Guestrin, 2016).

Federated Tree Building

By analysing the math behind XGBoost, which can be found in 2.1.4, the
authors make the following observations:

1. The evaluation of split candidates and the calculation of the optimal
weight of a leaf only depends on gi and hi

2. The class label can be inferred from gi and hi.

Following the first observation, passive parties can find their local optimal
split for each feature with gradient gi and hessian hi. According to equation
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2.3, the optimal split can be found if gl = ∑i∈Il
gi and hl = ∑i∈hl

hi are calcu-
lated for every possible split. However, according to the second observation,
gi and hi are sensitive data since the class label can be inferred from them.
The active party is therefore required to keep these values confidential by
encrypting them before sending them to the passive party. The encryption is
possible with homomorphic encryption, such that we can do computations
with the values.

First, the passive party computes Enc(gl) and Enc(hl) for all possible splits
locally. These values will be sent to the active party. The active party can then
decipher all Enc(gl) and Enc(hl) and calculate the global optimal split by
adopting the approximation scheme used by the original XGBoost algorithm:

Algorithm 1 SecureBoost’s Aggregate Encrypted Gradient Statistics

Input: I, instance space of current node
Input: d, feature dimension
Input: {Enc(gi), Enc(hi)}i∈I
for k = 0 to d do

Propose Sk = {sk1, sk2, . . . , skl} by percentile of feature k
end for
for k = 0 to d do

Gkv = ∑i∈{i|sk,v≤xi,k>sk,v−1} Enc(gi)

Hkv = ∑i∈{i|sk,v≤xi,k>sk,v−1} Enc(hi)

end for
Output: G ∈ Rd×l, H ∈ Rd×l

Algorithm 2 SecureBoost’s Split Finding Algorithm

Input: I, instance space of current node
Input: {Gi, Hi}m

i=1, aggregated encrypted gradient statistics from m parties
g← ∑i∈I gi
h← ∑i∈I hi
for i = 0 to m do

for k = 0 to di do
gl ← 0, hl ← 0
for v = 0 to lk do

get decrypted values Dec(Gi
kv) and Dec(Hi

kv)

gl ← gl + Dec(Gi
kv), hl ← hl + Dec(Hi

kv)
gr ← g− gl, hr ← h− hl

score← max(score, g2
l

hl+λ + g2
r

hr+λ + g2

h+λ )

end for
end for

end for
Output:
Partition current instance space according to the selected attribute’s value
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The split finding algorithm remains largely the same as XGBoost. However,
due to separation of features between the parties, the passive party should
keep a lookup table. The table should contain split thresholds for each fea-
ture: [feature k, threshold value v] and a unique id r. The unique id is used
for indexing the table, to look up split conditions during inference. In Figure
4.3, you can see such a lookup table. The dataset has two features: "Age" and
"Height". After computing the threshold values for both features, the data
owner will save a local lookup table.

FIGURE 4.1: Lookup Table

Meanwhile, the active party has their features locally. For the active party to
know which passive party to deliver an instance to, as well as instruct the
passive party which split condition to use at inference time, it associates ev-
ery tree node with a pair (party id i, record id r). The optimal weight of leaf j,
only depends on ∑i∈Ij gi and ∑i∈Ij hi. The idea for finding the optimal weight
follows a similar process as split finding. Once a leaf node is reached, the pas-
sive party sends Enc(∑i∈Ij

gi) and Enc(∑i∈Ij
hi) to the active party. The active

party can then decipher the values and compute the corresponding weight
through equation 2.4.

Federated Inference

The prediction process of SecureBoost is orchestrated by the active party. By
referring to the record of the root, it will say [party id: x, record id i]. Party x
will retrieve the corresponding attribute from its lookup table. It will find the
threshold value, and decide on whether to go to the left or right child. This
process will continue until a leaf is found.

In Figure 4.2 you can find a simplified illustration of vertical federated XG-
Boost. In this example, there are two parties with each their dataset. Together
they have collaboratively built a decision tree. The active and passive parties
can only see the threshold values for the nodes with their features.
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Let’s have a look at what happens when a new entry comes in with the fol-
lowing values: {ID: X5, F1: 42, F2: 70, F3: 531, F4: 30, F5: 80}. It will first look
at the root note. F1 is a feature from the active party. The active party sees
that the value for F1 from the incoming data is 42, which is more than 40, so
we go to the left. Note: in decision trees, it is the convention to go to the left
child whenever the test is true. The next node is a feature from the passive
party. The active party will ask the passive party what to do. The passive
party will use his lookup table and see that for F3, 533 is less than 542, so we
go to the right child node. F2 is again a feature from the active party, so they
see that 70 is less than 72, so we go to the right leaf, which is 1. That is also
the prediction for this new data.

FIGURE 4.2: Vertical Federated XGBoost
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4.2 Private Set Intersection

For data alignment between the active and passive party, we use the pri-
vate set intersection implementation of the paper "Efficient Batched Obliv-
ious PRF with Applications to Private Set Intersection" (Kolesnikov et al.,
2016).

For our private data alignment protocol, we only need the column that al-
lows us to find a match between two datasets, such as an "ID" column. This
column can be extracted from both datasets, and the values in those two sets
will be used as input for our PSI protocol.

FIGURE 4.3: Extract the ID column for PSI

In the underlying algorithm of the PSI algorithm, the two parties will first
hash their elements using the cuckoo hashing methods as described in chap-
ter 2.2.1. The hashing function is an agreed-upon pseudo-random function
F. With oblivious transfer, it is possible to exchange these two hash tables.
The two parties look up each element of their set in the cuckoo hash table.
If the element is found in the cuckoo hash table, then the element is in both
sets. Otherwise, the element is not in both sets.

After the intersection is found, the two parties will exactly know which el-
ements are in the intersection. They can then drop every entity from their
dataset that is not in the dataset.
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4.3 My Approach

The fundamental idea behind all tree models is finding the optimal split point
for each feature. The process of finding the optimal split relies on calculating
the split "score" for every possible split. For classification tasks, this could
be done by calculating the Gini Impurity or Entropy. For regression tasks,
the method of Mean Squared Error could be used. One of the steps in the
XGBoost [Chen and Guestrin, 2016 is its split finding algorithm which enu-
merates all the possible splits on all the features. You can imagine that for
large datasets with a lot of features, this can take a very long time. Inside this
split-finding algorithm is a step where each feature gets sorted. The idea is to
extract this step by providing the split algorithm pre-sorted data. By doing
this, the overall time of building a decision tree will be reduced.

For XGBoost and the other three-based algorithms, data needs to be sorted.
The idea is to pre-sort the data during the pre-processing phase. In this case,
that means during data alignment. When the parties are performing private
set intersection, the features should already be sorted per feature such that
the time needed for building SecureBoost trees can be decreased.

FIGURE 4.4: PSI Input and Output

A possible data structure for saving this sorted list is to use a skip list. A
skip list is a probabilistic data structure that allows for fast search, insert, and
delete operations. It is based on a linked list, but it also maintains a series
of "skip pointers" that allow it to skip over large sections of the list when
searching. Skip lists are well-suited for use in XGBoost and other tree-based
algorithms because they allow for fast splitting of the data. To split the data
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on a given feature, the algorithm simply needs to start at the beginning of the
list and follow the skip pointers until it finds a value that is greater than or
equal to the split point. The algorithm can then split the list at that point.

In an ideal world each organisation that participates in collaboratively build-
ing a tree model, should have their data sorted at all times. Unfortunately,
this is not something we can expect from all organisations.

This means for our PSI protocol that extra computation is necessary after the
intersection itself is found. Each party has to put their whole dataset into the
PSI protocol. After finding the intersection, for each feature, we will need to
sort the data and output the ID’s in ascended order according to their value.

For our VFL protocol, we won’t have to change much. We will only need to
alter the split-finding algorithm. Since the data is already sorted, we can skip
that step. Everything else can stay the same.

4.3.1 System Architecture

In this chapter, we will have a closer look at the individual components that
make up the whole system.

Data Flow

We first have a look at the flow of the data in Figure 4.5. The input is the
dataset from the active and passive parties. The data will first go through the
private set intersection process and the output will be the intersection and
the sorted list per feature. The output of the PSI process will then be used as
input for the vertical federated learning process. The final output will be the
XGBoost trees, collaboratively built by the two parties.

FIGURE 4.5: Dataflow
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Private Set Intersection

The PSI architecture can be found in Figure 4.6. For private set intersection,
we need both parties to extract their ID column. Both parties will apply
cuckoo hashing locally on their set. With the help of oblivious transfer, the
datasets will be exchanged between the two parties. Then the two parties
can both look up which elements are in the intersection. The intersection
that both parties get should have an equal size. Now that both parties know
the intersection, per feature the datasets should be sorted. This sorted list
should use the skip list data structure.

FIGURE 4.6: PSI Architecture
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VFL

For the VFL flow in Figure 4.7, we use the output of PSI. Both parties need
to create a lookup table with threshold values by finding the optimal split
point for each feature. The active party can do this easily since it has access
to the target label. The passive party will receive the encrypted gradient and
hessian from the active party. The passive party will now send every possible
split to the active party. The active party can then find the optimal split point
by finding the split that gives the highest split score.

FIGURE 4.7: VFL Architecture
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Complete System

Figure 4.8 depicts the complete high-level architecture of the system. At the
top of the system, you can see the complete flow of the data and how it is
manipulated. Zoomed in you can see the underlying algorithm for Private
Set Intersection and Vertical Federated Learning.

The system works as follows:

1. We start with two datasets belonging to two different data holders.
Only one party holds the target label, called the Active Party. The other
party is called the Passive Party. The two datasets will be the input for
PSI.

2. In the PSI protocol, the data will first be hashed using cuckoo hashing.
Via pseudo-random oblivious transfer, the two parties can compute the
intersection and both parties can sort the data per feature.

3. The intersection and sorted data will be used as the input for the VFL
protocol. By working together, where the active party provides the
encrypted gradients and hessians, the passive party can construct a
lookup table to compute the best possible split for each feature. These
split points will then be used for each node in the tree.

4. The output of this system, will be a vertical federated xgboost algorithm
that can predict new data that is available at both the active and passive
party.

In our system, we use a private set intersection protocol to combine the two
datasets without revealing any sensitive information. This allows us to train
a model on the combined dataset without compromising the privacy of the
individual datasets. We use a vertical federated learning algorithm to train
a tree model on the combined dataset. VFL allows us to train the model
without sharing the data between the different parties involved.

By combining the current state-of-the-art for private set intersection and ver-
tical federated learning for tree models, we have created a complete system
that can train a model and predict new data. In this thesis, we implemented
an optimisation for vertical federated tree models, by providing it pre-sorted
data. This allows the algorithm to converge more quickly and efficiently,
without compromising the accuracy of the system.
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FIGURE 4.8: System Architecture

4.4 Privacy

One of the goals of this thesis is to not reduce the level of privacy while intro-
ducing the pre-sorting of data step into the system. Since there is no universal
agreed-upon metric for privacy, I will create my framework based on my in-
terpretation of privacy. I will test the system before pre-sorting is applied
against this framework to figure out to which level the system belongs. We
will then have a look at whether pre-sorting the data has any effect on the
level of privacy.

4.4.1 Levels of privacy

Below you can find my definitions for the levels of privacy

• Level 0 - At this level, there are no privacy mechanisms. All commu-
nications between different parties happen over plain data. The data
that is being sent between the parties is not encrypted and each party
receives the data in plain text.

• Level 1 - At this level, the data that is being exchanged between parties
is kept separate, but not encrypted. Local gradients can then still be
calculated through global gradients from the data. This allows for, for
example, target values to be calculated from backpropagations.
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• Level 2 - At this level, the data that is being exchanged is encrypted,
but in such a way that computations are still possible. An example
would be homomorphic encryption. When data is homomorphically
encrypted, raw values are not available. Mathematical operations are,
however, still possible on the data. Computations are therefore still
available and somewhat still at risk if applied on data

• Level 3 - At this level, all data that is being exchanged is encrypted and
no one can decrypt it except for the sender. This will be the last level,
but in terms of usability for communication between different parties,
this is not really helpful.

4.4.2 Privacy analysis before pre-sorting

First, we will have a look at the "baseline" ER and VFL systems. The ER
system is built upon a private set intersection protocol. The used PSI proto-
col has two steps. In the first step, the parties use cuckoo hashing to hash
their elements. All parties use the same agreed-upon hash function F. In the
second step, the two hash tables will be exchanged through pseudo-random
oblivious transfer to find the intersection.

I would argue that this process belongs to Level 2. The way this protocol is
designed makes it possible for only specific elements can be retrieved from
the exchanged hash tables, namely the elements that are in intersection. By
cleverly, extending the oblivious transfer protocol to include pseudo-random
functions. the system works well in hiding the elements that are not in the
intersection. As a side note on why only simply hashing the elements is not
safe, imagine we use phone numbers to find the intersection. Phone numbers
have a fixed length, which means that the space to look for is limited. A
malicious user could brute force this by simply putting all available phone
numbers as their input. The user will then receive all phone numbers that
the other party has.

The VFL system is based on the SecureBoost algorithm. In this algorithm, the
target value for each feature that is being exchanged between the parties is
homomorphically encrypted. For all passive parties to find the optimal split
point of their features, they need the target value from the active party. Since
the target value is considered as sensitive data, it will be homomorphically
encrypted. The reason why this algorithm is chosen for homomorphic en-
cryption is that it allows the passive party to do the computations necessary
to find the optimal split. During the inference step, when the complete trees
are built, one part of the communication that is being exchanged without
any encryption is whether the value for a specific feature is higher or lower
than the threshold value. This could potentially be a vulnerable point of the
system.

I would still consider the VFL part to be in Level 2. During the building phase
of the algorithm, all data that is exchanged is homomorphically encrypted.
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Specifically, it uses the Paillier cryptosystem. The Paillier system is unique
in the sense that it uses non-deterministic encryption. That means that the
same plain text could be encrypted into two different cypher texts. This adds
another layer of security.

All computations happen locally. As long as there is no vulnerability found
in the encryption, the data will stay safe. As for during the inference step fig-
uring out the threshold value for each feature from the passive party might
be possible, but I wouldn’t think this is a huge deal, since it only is an esti-
mate from the subset of the passive party. It is much more important to keep
the target values safe.

Overall, I would put the entire system in Level 2.

4.4.3 Privacy analysis after pre-sorting

The optimisation that is introduced in this thesis happens directly after find-
ing the intersection, but before starting the VFL phase. Between those two
phases, each party sorts their data per feature. This process happens locally
and no exchange of data has to be communicated between the parties.

Since the introduced changes happen locally, I would argue that the system
stays in Level 2. The changes don’t expose any additional data to the other
parties. So, any information that they could get before stays the same. This
ensures that the privacy guarantees of the VFL framework remain the same,
as no additional data is exposed beyond what is already available in the in-
tersection data.

Instead of unsorted data, each party receives the sorted data, but this data is
already available in each party’s local data. The pre-sorted data is only used
to eliminate the sorting step of the SecureBoost algorithm. So, in conclusion,
sorting the data doesn’t affect the privacy level of the system.
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Chapter 5

Evaluation

5.1 Experimental Setup

All experiments are running locally on a MacBook Pro (2021) with the fol-
lowing specifications:

• M1 Pro

• 8-core CPU @ 3.22 GHz

• 14-core GPU @ 1.29 GHz

• 16 GB RAM

• MacOS 13.5.2

• Python 3.8.13

For each experiment, we will be using the same default model configuration
as specified in the original SecureBoost framework:

• Task type: Binary classification

• Number of trees: 5

• Learning rate: 0.3

• Subsample feature rate: 0.8

• Number of bins: 32

The conducted experimented should give an insight into the training speed
with and without pre-sorting. For our baseline experiments, we measure the
training speed by simply putting the result of the found intersection as the
input for vertical federated learning. We will compare the baseline results
with the results of the experiments where we did implement pre-sorting.

Our analysis focuses on the training time. By comparing the training with
and without pre-sorting, we will gain a deeper understanding of the impact
of pre-sorting on the performance of vertical federated tree building. This
understanding will inform future strategies for optimizing vertical federated
learning algorithms and frameworks based on tree models.
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For all our experiments, we consider party A to be the active party and party
B to be the passive party.

5.2 Datasets

For our experiments, we will use a combination of real and synthetic datasets.
Synthetic datasets offer several advantages for conducting experiments in
machine learning research. Synthetic data generation allows for precise con-
trol over the properties and characteristics of the generated data. In our case,
we can generate data and manipulate the number of entities and features.
In our experiments, we want to look at how different configurations react to
pre-sorting the data.

We will also make use of synthetic datasets generated by scikit-learn’s make
gaussian quantiles1 function. With these functions, it is possible to generate
datasets by taking a multi-dimensional standard normal distribution and
defining classes separated by nested concentric multi-dimensional spheres.
The inputs that will be used are: n_samples, to determine the number of
samples; n_features, to determine the number of features and set n_classes
to 2, so the task will always be binary classification. In Table 5.1, you can find
the datasets where each party has the same number of features that will be
used for our experiments.

Dataset Size Features
Party A Party B

Dataset 1 1000 5 5
Dataset 2 1000 10 10
Dataset 3 1000 15 15
Dataset 4 1000 20 20
Dataset 5 2000 5 5
Dataset 6 2000 10 10
Dataset 7 2000 15 15
Dataset 8 2000 20 20
Dataset 9 5000 5 5
Dataset 10 5000 10 10
Dataset 11 5000 15 15
Dataset 12 5000 20 20
Dataset 13 50000 5 5
Dataset 14 50000 10 10
Dataset 15 50000 15 15
Dataset 16 50000 20 20

TABLE 5.1: Synthetic datasets with an equal number of features
per party

1https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_gaussian_quantiles.html
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We will also conduct experiments on the datasets in Table 5.2 which have
unequal numbers of features per party. By studying unequal numbers of fea-
tures, we will see how they differ from the experiments with equal numbers
of features. We will also see if there are any differences when the active or
passive party has the larger portion of features.

Dataset Size Features
Party A Party B

Dataset 1 1000 20 5
Dataset 2 1000 5 20
Dataset 3 2000 20 5
Dataset 4 2000 5 20
Dataset 5 5000 20 5
Dataset 6 5000 5 20

TABLE 5.2: Synthetic datasets with unequal number of features
per party

Alongside the synthetic datasets, will also make use of real datasets. Real
datasets are a reflection of the real world. By using real datasets, we can ver-
ify whether the optimisations also work with real-life data. It will also allow
us to verify any insights obtained from the synthetic datasets. To save time
and energy, we will make use of the online available real datasets, instead of
collecting the data ourselves. These datasets are also designed for a binary
classification task, similar to the synthetic datasets.

We will make use of the following real datasets:

• Breast Cancer Detection2

• A9A3

The first dataset is from scikit-learn. It is a binary classification dataset with
a dimension of 569x30. As the name of the dataset suggests, it tries to pre-
dict whether a person has breast cancer. A9A is a dataset from the LIBSVM
data repository. Every feature is a numeric type and the target column is a
boolean.

The datasets have the following properties:

Dataset Size Features
BREAST CANCER 569 30
A9A 48,842 123

These datasets are normally used in classical machine learning, so we need to
split the datasets vertically to prepare the datasets for our experiments. With
two parties, we split the feature space in half. The first party gets the first
half of the features and the second party gets the other half of the features.

2https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_breast_cancer.html
3https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/binary.html
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We end up with the following dataset structure:

Dataset Size Features
Party A Party B

BREAST_CANCER 569 15 15
A9A 48,842 62 61

5.3 Results

In this section, we will present the results from the experiments for the sys-
thetic and real datasets.

5.3.1 Synthetic datasets

The first experiments were conducted on synthetic datasets, which provides
a controlled environment for evaluating the performance of our algorithm.
These datasets were generated with varying numbers of entities and features
to study the impact of these factors on the training speed.

We will first present the results of the experiment where the tables are grouped
by the number of entities. By keeping the number of entities fixed, it will give
us an idea on how the number of features affect the training speed. First we
have the results for 1000 entities with equal number of features per party:

#Features A #Features B Baseline (sec) Optimisation (sec) Time Diff. (sec)
5 5 20,4193 18,0059 2,4134
10 10 35,1062 31,2279 3,8783
15 15 47,4432 42,1878 5,2554
20 20 59,5872 52,5231 7,0641

TABLE 5.3: 1000 entities

FIGURE 5.1: 1000 entities
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We have the results for 2000 entities:

#Features A #Features B Baseline (sec) Optimisation (sec) Time Diff. (sec)
5 5 35,9133 33,1749 2,7384
10 10 54,5797 50,4216 4,1581
15 15 75,0203 68,5529 6,4674
20 20 95,4971 87,5973 7,8998

TABLE 5.4: 2000 entities

FIGURE 5.2: 2000 entities

We have the results for 5000 entities:

#Features A #Features B Baseline (sec) Optimisation (sec) Time Diff. (sec)
5 5 77,0485 73,9276 3,1209
10 10 116,0294 110,979 5,0504
15 15 149,9158 143,3239 6,5919
20 20 187,4538 179,4423 8,0115

TABLE 5.5: 5000 entities

FIGURE 5.3: 5000 entities



46 Chapter 5. Evaluation

We have the results for 50000 entities:

#Features A #Features B Baseline (sec) Optimisation (sec) Time Diff. (sec)
5 5 699,1740 687,8609 11,3131
10 10 985,7825 972,0544 13,7281
15 15 1270,3210 1254,2578 16,0632
20 20 1544,4057 1525,8692 18,5365

TABLE 5.6: 50000 entities

FIGURE 5.4: 50000 entities

A notable observation is that pre-sorting consistently improves the algorithm’s
speed across all experiments. We also observe that everytime we increase the
number of features, the time reduction becomes larger. This makes sense,
since in our algorithm there are now more features that don’t have to be
sorted anymore. Consequently, this means we save time in the overall train-
ing speed.
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In the tables below, we present the results of the experiment where the tables
are grouped by the number of features. By keeping the number of features
fixed, we can see how the number of entities affect the training speed. We
present the results for the following number of features: 5, 10, 15 and 20.
They are the same number of features that we have used before.

We first start with the results for 5 features:

Entities per party Baseline (sec) Optimisation (sec) Time diff. (sec)
1000 20,4193 18,0059 2,4134
2000 35,9133 33,1749 2,7384
5000 77,0485 73,9276 3,1209
50000 699,1740 687,8609 11,3131

TABLE 5.7: 5 features

FIGURE 5.5: 5 features
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We have the result for 10 features:

Entities per party Baseline (sec) Optimisation (sec) Time diff. (sec)
1000 35,1062 31,2279 3,8783
2000 54,5797 50,4216 4,1581
5000 116,2294 110,6790 5,5504
50000 985,7825 972,0544 13,7281

TABLE 5.8: 10 features

FIGURE 5.6: 10 features

We have the result for 15 features:

Entities per party Baseline (sec) Optimisation (sec) Time diff. (sec)
1000 47,4432 42,1878 5,2554
2000 75,0203 68,5529 6,4674
5000 149,9158 143,3239 6,5919
50000 1270,3210 1254,2578 16,0632

TABLE 5.9: 15 features

FIGURE 5.7: 15 features
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We have the result for 20 features:

Entities per party Baseline (sec) Optimisation (sec) Time diff. (sec)
1000 59,5872 52,5231 7,0641
2000 95,4971 87,5973 7,8998
5000 187,4538 178,4423 9,0115
50000 1544,4057 1525,8692 18,5365

TABLE 5.10: 20 features

FIGURE 5.8: 20 features

Again, one of the first observations is that pre-sorting the data improves the
algorithm’s speed for all numbers of entities. We also observe that the time
difference increases as the entities per party increases.

We will also have a look at the results from the experiments where the parties
have an unequal number of features. The results can be found in Table 5.11.

Entities #Features A #Features B Baseline Optimisation Time Diff. (Sec)
1000 5 20 59,7328 52,7942 6,9386
1000 20 5 21,6056 19,3017 2,3039
2000 5 20 95,7685 87,9697 7,7988
2000 20 5 36,3885 2,8624 8,1295
5000 5 20 190,6992 182,5697 8,1295
5000 20 5 78,3519 75,1992 3,1527

TABLE 5.11: Unequal number of features

A quick observation tells us that the optimisation results and the total train-
ing time heavily rely on the number of features for both the active and pas-
sive parties.
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5.3.2 Real Datasets

In the first experiment, we look at the time it costs to train a model in seconds.
We use the real datasets: Breast Cancer Detection, A9A and Gisette. We first
run the baseline experiments. This is the standard protocol of SecureBoost
without any optimisations. The results from this experiment, we will use
as the baseline. Then we will feed the system the pre-sorted data. We will
compare our approach to the baseline to see how the optimisations perform.
The results can be found in Table 5.12.

Dataset Experiment Time (s)

Breast Cancer Detection

Baseline #1 29,5156
Baseline #2 29,4328
Baseline #3 28,7942
Baseline #4 28,8045
Baseline #5 28,5636
Baseline Avg. 29,0221
Optimisation #1 23,1921
Optimisation #2 22,6360
Optimisation #3 23,8732
Optimisation #4 22,9643
Optimisation #5 23,5523
Optimisation Avg. 23,2436

A9A

Baseline #1 3186.4961
Baseline #2 3227.0975
Baseline #3 3205.3597
Baseline #4 3199.5252
Baseline #5 3197.4737
Baseline Avg. 3203,1904
Optimisation #1 3141.9522
Optimisation #2 3160.6200
Optimisation #3 3184.6824
Optimisation #4 3163.5258
Optimisation #5 3179.0982
Optimisation Avg. 3165,9757

TABLE 5.12: VFL experiments with real data

Once again, as expected, we see that pre-sorting the data for real datasets
also speeds up the training time. For both datasets, we ran the experiments
a couple of times and took the average. We observe for that for the Breast
Cancer detection we realise a speed-up of around 5.7786 seconds. For the
A9A dataset, we observe a speed-up of around 37.2147 seconds.
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5.4 Discussion

In this section, we will discuss the results found from the experiments for
synthetic and real datasets.

5.4.1 Training speed

Pre-sorting data in every experiment for VFL reduces the training time com-
pared to the baseline. This improvement is consistent across different num-
bers of features and entities, indicating that the optimization effectively elim-
inates the sorting process for each feature. The impact of pre-sorting becomes
more noticeable as the number of features and/or entities increases, as there
are more opportunities to skip the sorting step.

The consistent improvement in training time highlights the effectiveness of
pre-sorting data in VFL. This optimization can enhance the performance of
VFL algorithms based on tree models, particularly when dealing with a large
number of entities and/or features. By eliminating the need for sorting dur-
ing each experience, pre-sorting can significantly reduce the computational
overhead and accelerate the overall training process.

Opposed to a percentage-based approach, it is more meaningful to evaluate
this optimization’s impact in terms of absolute time reductions. The opti-
misation gives a flat amount of time that reduces irrespective of the model
configuration. If we analyse the algorithm, we always reduce the training
time by the same flat amount of seconds for the same number of entities and
features, regardless of the model configuration. If we increase, for example,
the number of trees in our model configuration, the whole training process
will take longer, but the flat time reduction stays the same. Since sorting data
is an independent operation from the rest of the algorithm, it doesn’t scale
with model parameters. Evaluating its time reduction as a percentage of the
overall training process would therefore be an inaccurate comparison.

We have also observed the results from the experiments when parties have
an unequal number of features. One of the observations is that the total train-
ing time also relies on how the features are divided. More features and en-
tities for the passive party means a longer training time since more crypto-
graphic computations need to be done. Consequently, that means that our
pre-sorting optimisation also relies on the division of features. We see simi-
lar results when we compare the experiments where we take the same num-
ber of features for the passive party with the experiments where we have an
equal number of features for both parties.

In Table 5.13 below you can see that the optimisations with different divisions
of features. x/y in the table means that the active party has x amount of
features and the passive party has y amount of features. When comparing the
result we see that the optimisation that we can expect from a certain dataset
size relies on the number of features from the passive party, e.g. 5/5 has
roughly the same speed-up as 20/5.
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Entities Div. feat. #1 Time diff. (sec) Div. feat. #2 Time diff. (sec)
1000 5/5 2,4134 20/5 2,3039
1000 20/20 7,0641 5/20 6,9386
2000 5/5 2,7384 20/5 7,7988
2000 20/20 7,8998 5/29 2,8624
5000 5/5 3,1209 20/5 8,1295
5000 20/20 8,0115 5/20 3,1527

TABLE 5.13: Time difference of different divisions of features

5.4.2 Accuracy

The assumption is that pre-sorting does not affect the accuracy of the model.
The same optimal split point would be found, regardless of whether we ap-
ply pre-sorting or not.

A simple experiment has been conducted with the breast cancer detection dataset.
If we don’t apply pre-sorting, we get an accuracy of 97.37%. When we do ap-
ply pre-sorting, we also get the same 97.37% accuracy. This means that our
optimisation is lossless since we don’t alter the accuracy of the model.

5.4.3 Analysis of realised speed-up

The speed-up that we have seen from the real datasets is not unexpected. If
we look at the results from the synthetic datasets we can estimate how much
time we reduce per feature and entity.

First, we have a look at the result from the perspective of fixed entities and
how features impact the training time:

FIGURE 5.9
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From the results, we can calculate the average slope of the results, which is
around 0.3654 seconds per feature. So, we save around 0.3654 seconds per
feature for each feature that the passive passive has.

We can do the same from the perspective of fixed features and observe how
entities impact the training time:

FIGURE 5.10

We can again calculate the average slope of the results and this time it is
around 0.000209334 per entity. So around 0.2093 seconds per 1000 entities.

If we look at the results from earlier from the breast cancer detection dataset,
we see pre-sorting the data results in, on average, 5,7786 seconds. The breast
cancer detection dataset per party has a size of 569 entities and 15 features. So
the expected speed-up is (15 ∗ 0.3654) + (0, 569 ∗ 0.2093) = 5.6006, which is
close to the actual speed-up.

We can do the same for the A9A dataset. The passive party has the parti-
tioned dataset with 49,842 entities and 61 features. The actual speed-up was
37,21472 seconds. The expected speed-up is (61 ∗ 0.36543425) + (48.842 ∗
0.2093) = 32.5141. For this experiment, the actual and expected speed-up
are a bit more off. This could be explained by a rather small sample size and
a high variance. From the five experiments that we have conducted, there
are around 40 seconds between the fastest and slowest training time. For a
better estimate, two things need to be done: more experiments with synthetic
to get a better estimate and more experiments with the real dataset to get to
the true average.
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Chapter 6

Conlusion and Future Work

In this chapter, we conclude the research for this thesis by answering the
research questions and we explore follow-up ideas for future work.

6.1 Conclusion

The ultimate goal in the bigger picture is to make the process of vertical fed-
erated learning based on tree models computationally faster. However, that
scope is way too broad for a master’s thesis. Instead, we will research a
smaller part of the algorithm and gain insight into how this part affects the
whole process. The part that was researched was the sorting process of the
data per feature when training a vertical federated tree model and how this
can be optimised.

The optimisation idea was to pre-sort the data per feature to eliminate the
sorting process. But while designing this optimisation, we have to take pri-
vacy into account. Federated learning evolved from machine learning with
a heavy emphasis on privacy. So, while we do want to speed up the total
process, we should not violate any privacy properties.

A prototype system that can perform private set intersection, pre-sorting,
and vertical federated learning has been created for this thesis. With this
system, experiments can be conducted to answer the research questions.

6.1.1 How does pre-sorting the data per feature affect the com-
putation time of building vertical federated learning
trees?

After researching the vertical federated version of XGBoost (SecureBoost), we
analysed the algorithm behind this protocol. One of the steps that we found
was that it sorts the data per feature. This process is necessary for finding the
optimal split point for a feature. The idea was to remove this sorting process
by providing the tree-building protocol pre-sorted data.

Sorting the data can happen any time before the start of the tree-building
process, as well as during the process of private set intersection. In our sys-
tem, we use PSI to find the intersection between the dataset of two parties
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privately. This is necessary, because otherwise the data wouldn’t be correctly
aligned, i.e. the entity of the first row of the active party is a different entity
from the first row of the passive party.

In our experiments, we run the system with and without pre-sorting. The
baseline is the system without pre-sorting, and we compare results with the
system where we do apply pre-sorting. We have conducted experiments on
various numbers of entities and features.

We have used real datasets and synthetic datasets. A synthetic datasets gen-
erator allowed us to generate datasets with specific numbers of entities and
features. We could then use these datasets for our experiments and observe
in the results how different numbers of entities and features affect the train-
ing speed in combination with the pre-sorting optimisation.

The real datasets we have used are normally used in classical machine learn-
ing settings. We had to vertically partition the datasets ourselves, such that
both parties had common entities but a different subset of the features.

With our experiments, we have gained the following insights:

• The first trivial insight is that pre-sorting lowers the training time of
the system. This makes sense since we removed the sorting step with
hardly any drawbacks. The improvement can be observed across all
different numbers of features and entities, for both synthetic and real
datasets.

• The realised speed-up has to be viewed as a fixed value, rather than
a percentage of the training process. This is because the total training
time also depends on the model parameters. By increasing, for exam-
ple, the number-of-trees parameter, the training time will increase. But
the speed-up from pre-sorting will stay the same, which means it is not
a fair comparison if we look at it from a percentage perspective.

• The total training time and speed-up of the pre-sorting optimisation de-
pends on the number of features at the passive party. The passive party
is the one that does the heavy computations with homomorphic en-
cryption and the results of the experiments with unequal feature sizes
reflect this.

• The system’s accuracy during inference is not affected by the pre-sorting
optimisation. Regardless of whether the system receives unsorted or
sorted data, the system will still find the same optimal split point for
each feature.

• It is possible to estimate the actual speed-up. We have seen that from
the results with synthetic datasets, we can save around 0.3654 seconds
per feature and around 0.2093 seconds per 1000 entities. These numbers
are calculated from the limited experiments that we have done so far,
but for the true estimates, a lot more experiments with various sizes
need to be run.
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6.1.2 Do we maintain the level of privacy during PSI and
VFL while introducing modifications to the system?

In Chapter 4.4, we have made our framework to determine where our system
fits in. Privacy is a difficult matter to quantify and everyone has their judge-
ment and interpretation. Therefore, we have created our own framework.

In this framework, there are four levels. In the first level, level 0, there are
no privacy constraints, all data that is being communicated between differ-
ent parties are the raw values for everyone to see. In level 1, data is being
kept separate, but global gradients are still available for local gradient cal-
culations. In level 2, the data that is being exchanged between parties is
encrypted, but in such a way that computations are still possible. Homomor-
phic encryption is an example of a protocol that belongs in level 2. The last
level, level 3, consists of protocols where all data, that is being exchanged, is
encrypted and no one, except for the sender of the data, can decrypt it.

The baseline system consists of private set intersection, through cuckoo hash-
ing and oblivious pseudo-random transfer, and the SecureBoost protocol, a
vertical federated version of XGBoost. In our judgment, we have placed this
system on level 2.

In our analysis, we have looked at the system in two different parts: the
entity resolution and the machine learning. Both of these systems were put
into level 2.

For entity resolution through private set intersection, we see that the ele-
ments are hashed. But with oblivious pseudo-random transfer, a party can
find the elements from the other parties only if they own the same element in
their set as well. Through this protocol, the intersection can be privately com-
puted, where each party can only see the elements that are in the intersection,
and nothing else.

The machine learning part uses SecureBoost, a protocol for vertical federated
XGBoost. The data that is being exchanged between the parties are the target
values for each entity. This data is homomorphically encrypted such that the
optimal split point can be found without revealing the actual target value.

The optimisation was to apply the pre-sorting of data for each feature. The
pre-sorting happens locally and no additional data has to be exchanged be-
tween the parties. We, therefore, judged that pre-sorting the data does not
affect the privacy constraints from the baseline system. This means that we
do maintain the level of privacy, while we pre-sort the data, under the as-
sumptions of our privacy framework.

6.2 Future Work

Federated learning is a relatively new specialised form of machine learning.
Vertical federated learning is a setting inside the federated learning protocol.
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In this thesis, we have looked very specifically at the sorting process of a
vertical federated learning protocol based on tree models.

This means that there are still a lot of opportunities for research and improve-
ments since it is such a young research topic.

Let’s first have a look at vertical federated learning based on tree models.

In this thesis, we have researched the sorting process of the training part. We
have optimised this in the training process by removing sorting altogether
by pre-sorting the data during the entity resolution process.

The training and inference sections, however, consist of way more parts, such
as tree-building, encryption, and communication. Each of these parts has its
challenges, and future research can investigate these challenges and identify
areas for improvement.

In my experiments, I initially had a third real dataset that I wanted to use.
The Gisette dataset. This dataset has 13,500 entities and 5000 features. Unfor-
tunately, my laptop couldn’t handle such a large dataset. Some future work
could include larger datasets and verify whether the expected speed-ups still
hold.

Additionally, in this thesis, we solely focused on numerical values in our
datasets. It would also be a good idea to see what pre-sorting would look
like for different types, such as booleans and strings.

If we look at vertical federated learning in general, there is a process that is
specific to the vertical setting of federated learning, as opposed to horizontal
federated learning. That is entity resolution.

Entity resolution is necessary for vertical federated learning since we need to
make sure that every participating party owns the correct subset of entities
before we can start vertical federated learning. But most of the available
research doesn’t pay a lot of attention to this part. Most of the papers mention
that they use private set intersection. A downside of this protocol, however,
is that it needs a unique identifier that both parties use. In the real world,
that might be hard to find. If we are talking about toys, two different stores
could internally refer to the same toy. However, they use different identifiers,
which means that private set intersection does not find this element in the
intersection while both identifiers refer to the same toy.

Private set intersection is an exact algorithm that always finds the exact in-
tersection, but it comes with the cost of high computation time. A possible
research opportunity could be to look at different exact and approximate pri-
vate entity resolution methods to find the intersection.

In conclusion, a lot of research and improvements are possible in the field
of vertical federated learning and federated learning in general. While this
topic is very young, I expect a lot of new papers in the coming years that will
try to improve this.
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