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Abstract

Hand gestures play a crucial role in communication, especially in social interac-
tions. This research investigates the viability of using coding schemes to describe hand
gestures and how accurately they can be classified in crowded environments by using
fine-tuned visual transformers such as VideoMAE. The dataset used during training
is based on the Conflab dataset and contains top-view video recordings of social interac-
tions in a crowded social setting. The videos are manually annotated for gesture phases
(preparation, hold, stroke, recovery) and gesture units. The two classifiers obtain high
accuracies after fine tuning, with an overall accuracy of 95% for the gesture phase
classification and 93% for classifying whether a clip is a gesture unit or not. These
findings suggest that the proposed approach is effective in crowded environments and
can be adapted for real-time applications.

1 Introduction

Human communication is a complex process, and words are only one aspect of it. The
link between non-verbal communication and human interactions is a field which is still
researched to this day, but studies indicate that a significant part of human interaction is
conveyed through non-verbal cues [16].

Navarro [14] is just an example of books which try to provide a map for human body
language. Considering that the main aim of the behavior analysis field is to deduce the
semantic meaning of gestures by analyzing patterns in human interactions, it appears to be
a scenario where Machine Learning models could excel.

This paper addresses the research question: "How accurately can we classify distinct
gesture phases within a Gesture Unit, using as input a top-view video footage captured in
a crowded social setting?"

Accurately classifying hand gesture phases in a crowded environment based on a specific
coding scheme provides a foundation for further research into behavior analysis in natural
settings. While extensive research exists on hand gesture classification, most of the studies
focus on a setup that involves a single person being recorded from a front view angle. The
purpose of the research is to determine whether the single person approaches can be adapted
for a crowded environment setup, recorded from a top-view angle.

If gesture phase classification proves to be effective, the classifier can be used to further
build a recognizer. Being able to recognize gesture phases in a crowded, natural setup
opens the door for further analysis of interactions between people. For example, some hand
gestures, such as shaking hands or giving a thumbs-up, often occur as reactions to the
interlocutoras gestures. This responsiveness can allow for deeper semantic research into
gesture interactions, such as studying how a handshake can signify agreement or closure, or
how a thumbs-up can indicate approval.

Additionally, we can consider the benefits that gesture recognition can bring to the
field of video understanding. A crucial task in video understanding involves comprehend-
ing human actions and interaction which are depicted in videos, making behavior analysis
techniques essential for achieving effective video understanding and interpreting the content
[28]. Demonstrating that coding schemes can be adapted for crowded environments with
suboptimal camera angles opens the door to implement them to comprehend human actions
depicted in videos.

Identifying and understanding people’s gestures during a social interaction can provide
major insights in the way humans interact. The semantic meaning of gesture can help us



understand nuances in speech without actually hearing what is being communicated. This
would contribute to the ongoing work on privacy-sensitive approaches to social behavior
analysis that rely on body language and less on audio, where the recording of private con-
versations can be considered too invasive [24].

2 Background and Related Work

The following section provides an overview of the fundamental concepts and previous
research that form the basis for our study on gesture classification and analysis. This
includes various approaches to representing gestures, the frameworks used for annotating
and categorizing these gestures, and methodologies for training models to recognize and
classify gestures accurately.

2.1 Gesture Representation

To classify or recognize gestures, a clear definition of what constitutes a gesture is needed.
Scholars have developed multiple approaches to describe them.

McNeill [12] describes 4 categories of hand gestures: beat, diectic, iconic and metaphoric.
Beat gestures refer to rhythmic movements of the hand, diectic movement regards gestures
in which you indicate something, iconic gestures bear a close relationship to the semantic
content, and lastly, metaphoric gestures which symbolize an abstract idea or concept [12].
While this method provides an ability to capture the rich and varied nature of hand gestures
in communication, its implementation becomes complex since multiple gestures are usually
overlaid upon one another.

Lausberg and Sloetjes [10] introduces the concept of Neurogens, which consists of three
modules: kinetic, bimanual relation and functional. The kinetic module describes the dy-
namics and trajectory, bimanual relation coding focuses on the relation between the two
hands, and the functional module focuses on the practical aspect of the gesture, such as
to describe emotion, to emphasize and so on [10]. While this method is a comprehensive
approach to analyzing hand gestures, the ambiguous separation between the three modules
can make the annotation process labor-intensive and time-consuming.

Ekman and Friesen [3] takes an approach in which they describe a non-verbal behavior
by taking into consideration the origin, usage, and coding. Thus, Ekman and Friesen pro-
posed categorizing gestures in five different categories: emblems, illustrators, manipulators,
regulators, and emotional expressions. While the detailed nature of the framework allows
for a nuanced understanding of behavior from a linguistic perspective, it does not appear to
be the best candidate automated solution for gesture classification due to the overlapping
nature and potential ambiguity of the 5 gesture categories.

Rohrer et al. [20] employs a multimodal methodology to dissect the significance of a
gesture into three distinct dimensions: form, prosody, and meaning. The form aspect fo-
cuses on the nature of the movement, the prosody regards the organization structure of a
gesture, and the latter regards the semantic and/or pragmatic meaning associated with the
movement. An important advantage of this structure is the fact that there is little overlap
between the three classes.



2.2 Gesture Classification Methods

Video understanding is heavily researched due to the rapid growth of online video content
and the need for advanced tools to interpret it [21]. One of the most crucial tasks in video
understanding involves comprehending human actions depicted in videos, making behavior
analysis techniques essential for achieving effective video understanding and interpreting
the overall video content.[28] Thus, the machine learning models considered as a possible
solution for the classification of hand gesture phases in this report are some of the most
popular approaches in the video understanding field.

A possible option for the classification problem is the usage of 3D Convolutional Neural
Networks (3D-CNNs). Hedegaard and losifidis [8] introduces the concept of Continual 3D
Convolutional Neural Networks where videos are being processed frame-by-frame rather
than by clip. One of the possible usage scenarios mentioned for this approach is real time
surveillance camera processing, which is similar to the top-view footage scenario used in the
paper. Molchanov et al. [13] uses 3D-CNNs for hand gesture recognition and shows them to
be performant for such use cases. Thus, considering the successful experiments conducted
using 3D-CNNs in the two cases, they can be considered a plausible option for the scenario
of hand gesture recognition in crowded environments.

Yu, Qin, and Zhou [27] proposes a different approach, one where 2D convolutional Neural
Networks are combined with feature fusion to achieve dynamic gesture recognition. While
3D-CNNs consider both spatial and temporal features, the complexity of the networks can
lead to low efficiency of algorithm. To address the limitation of 2D-CNNs in understand-
ing temporal dynamics, they incorporate optical flow key-frames, thus the model captures
motion information. Therefore, the solution they propose consists of using optical flow key-
frames and dual-channel 2D CNNs with Squeeze-and-Excitation blocks. The solution seems
promising, achieving high accuracy while ensuring low network complexity on the Cam-
bridge Hand Gesture dataset and Northwestern University Hand Gesture. Nevertheless,
their experiment does not consider at all a crowded environment as in our use case. Thus,
the viability of this solution for hand gesture recognition in a crowded environment remains
an assumption until proven effective.

Tong et al. [22] introduces VideoMAE, where the concept of masked autoencoders is
expanded from images to videos. The model is designed to be a data-efficient learner for
self-supervised video pre-training, achieving strong performance even on relatively small
datasets. Performance-wise, the paper shows that VideoMAE achieves 87.4% on Kinetics-
400 and 75.4% on Something-Something V2, without using any additional data beyond the
training set.

3 Approach

In the previous subsection, a few of the possible solutions to the three subproblems of
the hand gesture classification problem were presented. This section will explain the chosen
approach to solving each problem.

3.1 Gesture Representation

For the purpose of the project, M3D was chosen as a gesture scheme. It’s little to no
overlap between the three dimensions allowed our research group members to split them one
each and research its viability to be used to build a hand gesture classifier. An important



factor that contributes to choosing M3D as our gesture scheme is the existence of an extensive
training program on how to annotate each aspect of a gesture depending on the dimension.
This proved very helpful in building a dataset with consistent annotations.

My chosen dimension was prosody, due to its focus on the structure of the gesture itself
rather than its interpretation. The prosodic dimension consists of the following concepts:
Gesture Units, Gesture Phases and rhythmic properties. Due to the time constraint of 9
weeks to conclude the research, I choose to focus on classifying gesture phases and gesture
units. Thus, Rohrer et al. [20] lists the following 4 phases which can be found in a gesture
unit: preparation, hold, stroke and recovery. Intuitively, preparation refers to the movement
done to reach the start of the stroke, the stroke represents one hand movement purposed to
be a gesture, hold represents a small pause during a gesture unit, and recovery refers to the
movement done to go back to the rest position. A Gesture Unit starts at the moment when
the person breaks the rest position until the moment it goes back to rest.

3.2 Annotation Tools

One of the most popular annotation tools for temporal segments is ELAN. ELAN is
focused on providing the user the possibility to add any textual annotations to audio and/or
video recordings [25]. Rohrer et al. [20] recommends the usage of this framework for a single
person and a front view video recoding scenario, as in the examples provided in the M3D
annotation training.

Covfee is another annotation tool focused on providing a proper experience for continuous
video annotation. By continuous annotation, they mean offering the possibility to annotate
while watching the video. Covfee specializes in continuous media annotation, but it lacks
some basic features of image annotation like bounding box or polygon annotation, which
can be hard to do it as a user on a live video feed [18].

Dutta and Zisserman [2] proposes VGG Image Annotator (VIA) built for video and audio
annotation. Even though the M3D training provided by Rohrer et al. [20] recommends using
the ELAN annotation tool, I considered VIA to be more suitable for the gesture classification
use case due to the nature of the video recordings from the dataset. While ELAN can be
promising for the annotation of gestures on videos where only one person is being recorded,
VIA allows describing gestures through temporal labels, while also associating them to a
spatial region described by a bounding box.

The bounding boxes can help solve two possible issues during training. The first issue
is that to train some ML models, videos have to be cropped so that only the person doing
the gesture remains in the clip. Thus, the bounding boxes can be used to ease the clip
creation procedure. The second issue is that if the full frames are used for training, with
multiple people who are doing multiple gestures, the model might need a large amount of
data to properly understand whose person’s movement is annotated. Thus, by associating
each gesture to a bounding box, the training process could be improved. Bellow, Table
1 presents the key similarities and differences between the three annotation frameworks
mentioned throughout the paper.

While the two issues could be solved using the skeleton annotation provided by the Con-
flab dataset, I considered the usage of bounding boxes more accessible if the dataset will be
expanded further using automated or semi-automated solutions. The skeleton annotations
lead to accurate person identification but are complex to manually annotate. The bounding
box annotation of the persons could be done by using an ML model such as YOLO [9].
Yang [26] showcases how YOLOvV5 can be used to detect the bounding box of people in a



Feature ELAN | Covfee | VIA
Multi-tier Annotations v X v
Audlo—Vldeo . v v v
Synchronization

Live Annotation v v v
Time Segment annotation v v v
Spatial §egment y « v
annotation

Table 1: Comparison of annotation frameworks: ELAN, Covfee, and VIA

multi-person video recording. Therefore, even though bounding boxes need to be manually
annotated for the experiment, demonstrating that bounding boxes are enough for accurate
gesture classification will ease future work, enabling the use of automated methods for larger
datasets. Additionally, we opted for manual annotation because the created dataset is small,
and we considered that it was not worth the time and effort to configure and fine-tune YOLO
for this initial phase.

3.3 Gesture Classification Model

Throughout this project, the chosen model to fine-tune my gesture classifier is the one
introduced by Tong et al. [22], VideoMae. Besides the high accuracy on video understanding
datasets, the vast documentation on this visual transformer was another reason to choose
it for the experiment. MCG-NJU [11]| provides a Jupyter notebook which showcases how
VideoMae can be fine-tuned on an openly available video understanding dataset [22]. Thus,
the open-source code available on GitHub, along with a detailed guide on the fine-tuning
process, made VideoMAE an optimal model choice for this project.

Compared to 3D-CNNs, VideoMAE has some clear benefits. 3D-CNNs are good at
capturing local features in videos and are commonly used for action recognition, but they
often need large sets of labelled data and preprocessing. On the other hand, VideoMAE
uses transformers to understand global context and long-range patterns, making it effective
even with smaller datasets. Considering that the gesture annotation is done manually,
opting for a data-efficient option seems the proper choice. However, it should be noted that
VideoMAE needs more computational power and is more complex to set up compared to
3D-CNNs, which are usually simpler and faster to train. Nevertheless, since the model was
only fine-tuned, the computational power required was not a significant concern.

4 Experiment

The following section describes how the previously described methods were employed for
the training of the classifiers. The code developed for annotation parsing, data preprocessing
and fine tuning is uploaded on Github at Grigore [5].

4.1 Conflab Dataset

The project is built around the Conflab dataset provided by Raman et al. [19]. This
dataset contains video recordings of a 16-minute conference from five cameras placed at



different corners of the room, all showing top-down views. Around 50 people come and go
during the recording, talking to each other. The dataset also includes skeleton annotations
of the people and low-frequency audio recordings of their conversations. Figure 1 shows a
frame from the footage with the skeleton annotations.

Figure 1: A top-view image from the Conflab dataset with skeleton annotation [19].

4.2 Data Annotation
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Figure 2: Temporal segment annotation for gesture phases
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Figure 3: Temporal segment annotation for a gesture unit

The dataset creation for the fine-tuning of VideoMAE is done manually. Using VIA,
three aspects are annotated: the space region where the person starts doing the gesture, the
gesture phases and the gesture units. Each gesture phase that is annotated is linked to a
bounding box that selects the area where the person is moving. Consecutive gesture phases



that do not end in a rest position and that happen at a time distance of maximum 2 seconds
are grouped in the same Gesture Unit. Additionally, it might be decided to split gesture
phases in different gesture units if it makes more sense from a semantic perspective. Bellow,
Figure 2 represents an example of gesture phase annotation of a gesture unit that lasts for
about 11 seconds. It contains 1 preparation, 12 strokes, 4 holds and 1 recovery. Figure 3
presents an example of how that exact gesture unit is annotated as a single time segment.

The videos contain multiple people performing gestures concomitantly. Each gesture
phase is associated with a bounding box representing the person that performs it. Thus,
Figure 4 shows how the preparation phase is associated with the bounding box around
Person 1, while also associating it to the gesture unit it is part of.

persontv| [g-unitv| |[preparation

Figure 4: Bounding box annotation at the beginning of a preparation phase

4.3 Preprocessing

The project consists of training two classifiers, one that classifies the phases of a gesture
and one that classifies if a clip segment represents a gesture unit or not.

4.3.1 Classifier of Gesture Phases

The first classifier is for gesture phases, and it has the following labels: preparation,
stroke, hold, recovery and unknown. While the first four classes are annotated, there is no
annotation for the unknown label.

Therefore, the dataset of unknown gestures is built by selecting clips whose lengths are
random values, in seconds, from the interval [5, min(10, T)|, where T is the length of the
gap segment in seconds between two consecutive gesture units.

The clips should not contain frames which are part of a gesture unit. The length is
decided randomly in the given interval to prevent bias while training. If there is a gap of at
least 5 seconds between two gesture units, then a clip is generated from the end of the first
gesture. If the gap is longer than 7 seconds, then another clip is generated from the end of
the second gesture. The length of the additional clip is a random value, in seconds, from
the interval |5, min(10, T-1)], where T is the length of the gap segment in seconds between
two consecutive gesture units.

The -1 comes into play to ensure that the two clips are not identical. In order to get a
clip that only contains the person doing the unknown gesture, the video is cropped around a
new bounding box, designed so that it fits both the bounding boxes of the prior and ulterior
gesture phases.



The clips for preparation, stroke, hold and recovery are generated by using the annotated
time segments. By using the bounding box associated with each gesture phase, the videos
are cropped so they only show the person doing that exact gesture.

4.3.2 Classifier of Gesture Units

The second classifier is used to determine whether a clip represents a gesture unit (g-
unit) or not. Thus, we have two labels for the model: g-unit and nothing. The g-unit clips
are generated by cropping the annotated time segments, while the non-g-units are generated
by cropping the gap segments between two gesture units. The gap segments should be at
least 2 seconds long so that they can have a similar length to a g-unit.

4.4 Model Training

After generating the clips for both classifiers, the dataset is built into training data sets
using the 70-15-15 rule as follows: 70% training, 15% validation and 15% testing.

4.4.1 Classifier of Gesture Phases

The dataset consists of 1455 clips, which are split into 1015 for training, 216 for validation
and 224 for testing. Figure 5 presents the label distribution over the dataset. As we see in
the figure, there is an imbalance between labels due to two factors. Firstly, the strokes are
the only mandatory gesture phase for a gesture unit, so a gesture unit might not contain
preparation, recovery or hold. Secondly, strokes are much more frequent than other phases,
as can be seen in the dataset distribution presented in Figure 5.

Label Distribution in Train, Validation, and Test Sets

Train Set Val Set Test Set
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Figure 5: The video distribution on train validation and test subsets, for each label

The training set is augmented using the following transformations: Random Short Side
Scale, Random Crop and Random Horizontal Flip.



4.4.2 Classifier of Gesture Units

The dataset consists of 196 clips, which are split into 136 for training, 28 for validation
and 32 for testing. The label distribution over the dataset is also quite unbalanced, with
g-units being more predominant than the nothing clips, a fact shown in Figure 6. The
difference between the two classes is caused by the fact that gesture units can follow each
other after less than 2 seconds, which will lead to a gap segment not fit to be labeled as
"nothing".

Label Distribution in Train, Validation, and Test Sets

Train Set Val Set Test Set

82
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Figure 6: The video distribution on train validation and test subsets, for each label

Similarly to the gesture phase classification task, the training set is augmented using the
following transformations: Random Short Side Scale, Random Crop and Random Horizontal
Flip.

5 Result and Limitations

The following section will present and discuss the accuracies of both models, as well as
their limitations.

5.1 Gesture Phase classification

Label Accuracy
Hold 1.0
Preparation 0.43
Recovery 0.89
Stroke 0.98
Unknown 0.93

Table 2: Per label accuracies for the classifier

For the Gesture Phase model, the fine-tuning process led to a model with an overall
accuracy of 95% on the test set, with a per-label accuracy shown in Table 2. The model, its



parameters and its test results are uploaded on Hugging Face and are available at Grigore
[6]. This model was fine-tuned for 10 epochs, using a batch size of 8 and a learning rate
of 1-e5. The evolution of the train loss and validation loss over multiple epochs is shown
in Figure 7. The figure shows a steady decrease in both losses, indicating effective learning
and generalization and suggesting that the model does not overfit.

Training and Validation Loss Over Epochs

1.24 ®—8-® Training Loss

114 ©-9-% Validation Loss

Loss

Epochs

Figure 7: Validation and Training loss during the training of gesture phases classifier

With an average accuracy of 95%, the results of the model are above baselines such as
Uniform Distribution Baseline, which is 20% or Majority Class Baseline, which is 70%, as
shown in Figure 8. Uniform Distribution Baseline assumes that each class has a similar
probability to be chosen, which leads to 20% accuracy. Majority Class Baseline is a model
that always predicts that a clip is a stroke, and the accuracy of 70% is due to the imbalance
between strokes and other gesture phases.

Comparison of Model Accuracy with Baselines

95%

Accuracy (%)

Uniform Majority ours
Model

Figure 8: Accuracy of our model, Uniform Distribution and Majority Class

Based on these results, we can conclude that four out of the five gesture phases are
classified with high accuracy. The preparation phase has a low accuracy of 0.43, but it
still surpasses the 0.20 performance of the Uniform Distribution baseline. Bellow, Figure 9
contains the results of the model on the test dataset as a confusion matrix.

As it can be seen, preparation gestures are often recognized as strokes. A possible cause
is the similarity between the movements. A movement for rest position towards upwards
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can be easily mistaken as a less powerful stroke movement, even by a human evaluator. The
distinction between the two is that the preparation gesture is preceded by no other phase
within the gesture unit it belongs to. The model does not take into account the previous
gestures phases, thus it cannot distinguish them properly from one another.

Confusion Matrix

140

hold 28 0 0 0 0

120

preparation 0 3 o 4 o
100

recovery 0 0 17 2 0 80

True label

60

stroke 2 o 0 156 1

a0

unknown o 0 0 2 26

hold preparation recovery stroke unknown
predicted label

—Lo

Figure 9: The confusion matrix results of the phase classifier

5.2 Gesture Unit classification

For the Gesture Unit model, the fine-tuning process led to an overall accuracy of 93%
on the test set, with per-label accuracy shown in Table 3. All the details regarding the
model are also available on Hugging Face at Grigore [7]. The model was built by fine-tuning
VideoMae for 5 epochs, using a batch size of 8 and a learning rate of 5e-5.

Label | Accuracy
G-unit 0.86
Nothing 1.0

Table 3: Per label accuracy for the classifier

The 93% average accuracy obtained by the model is above baselines such as Uniform
Distribution Baseline, which is 50%, or Majority Class Baseline, which is 60%, as shown in
Figure 11.

Following those results, we can assess that the model manages to recognize if a video
does not represent a gesture unit, but sometimes it labels gesture unit videos as nothing.
Figure 10 contains the results of the model on the test dataset as a confusion matrix.

A possible cause is that a gesture unit is not only defined as a person doing a movement.
It has to be considered as having a meaning for the conversation. Movements such as
scratching their head or putting their had in the pocket are not considered a gesture phase,
and the clips that only contain such movements are labeled as nothing. Thus, the relatively
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Figure 11: Accuracy of our model, Uniform
Distribution and Majority Class
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Figure 10: The confusion matrix results of
the gesture unit classifier

small dataset could make the model consider gesture units that only contain one or few
strokes as just movements without meaning.

Figure 12a shows the evolution of the validation for the 5 epochs classifier and for another
classifier trained for 10 epochs with a learning curve of 1-e5. Figure 12b shows the evolution
of a configuration of 20 epochs, with a learning curve of 1-e5. The model trained for 10
epochs got an overall accuracy of 90% and the model trained for 19 epochs gives an accuracy
of 95%. In Figure 12a, we can see that there is a discrepancy between the evolution of the
training loss compared with that of validation loss. In both cases the final validation loss
is higher than the training loss, which indicates that the model could be overfitting. To
try to solve this problem, a 19 epochs classifier was fine-tuned, but, as it can be seen in
Figure 12b, the validation is fluctuating, which indicates that the model is now severely
overfitting. Considering this and that we have a classification problem between only two
labels, a possible conclusion could be that the dataset is too small to consider the obtained
accuracies reliable. Nevertheless, the first two classifiers indicate that there is potential in
using the current technique for the gesture unit classification task.

5.3 Limitations

The project encountered two main limitations: the need to manually annotate the Con-
flab dataset and the dataset imbalance between classes for both classifiers.

Regarding building the dataset gesture phase and gesture unit datasets upon Conflab
recordings, manual annotation was necessary due to the lack of a pre-annotated dataset.
Besides the process taking several weeks, the amount of annotation that one person can
produce is limited.

While the dataset for the gesture phase classifier appears to perform well on the current
size of almost 1.5k videos, expanding the dataset could help mitigate the per-class imbal-
ance problem. Strokes appear more often than any other phases. Thus, they represent a
large part of the current dataset. If we have more videos, we can gather more samples for

12



Training and Validation Loss Over Epochs for two Classifiers
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Figure 12: Comparison of training and validation losses between three classifiers

underrepresented labels such as "preparation", "recovery" and "hold" and generate more
"unknown" labeled clips. By doing so, we can assess if the assumption that the mislabeling
of "preparations" as "strokes" is truly caused by the fact that we do not consider what
phase precedes the gesture we try to classify. Another possible option could be that the
"preparation" clips are just underrepresented, and by increasing their number, the problem
will disappear.

Regarding the gesture unit classification task, as explained in the previous subsection, it
appears that the dataset of gesture units is a bit too small to get a model that generalizes
well on unseen data. Thus, expanding this dataset would offer a more accurate assessment
of the performance of the classifier.

Another possible limitation could be that the Conflab dataset consists of 5 recordings
of 16 minutes each from different camera angles, but from the same conference. Thus, to
ensure that the classifier is able to generalize properly, the videos used to expand the dataset
could be recorded in a different environment.

6 Conclusions and Future Work

The following are some of the conclusions that can be drawn from our experiments and
a discussion on what are the direction in which we could proceed with future work.

6.1 Conclusions

The paper addresses the viability of classifying gestures, described through coding schemes
and recorded in crowded environments. The project consists of two classifiers, both obtained
by fine tuning the visual transformer VideoMae described in Tong et al. [22].

The first one classifies hand gesture phases, and the gesture coding is based on the
prosodic dimensionality of a gesture described by Tutuncubasi et al. [23]. The accuracy
obtained with this approach was high, of 95%, while also getting high per label accuracies
for each phase, exception making the preparation phase. The adaptation of the Tutuncubasi
et al. [23] one-person gesture coding to the crowded environment scenario was done by
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associating each gesture annotation to bounding boxes around the person doing it. Upon
cropping around the bounding box, the problem was reduced to a one-person gesture coding
annotation. With a high overall accuracy and a converging training loss and validation loss,
the experiment appears to be a success.

The second classifier decides whether a video represents a gesture unit or not. It is also
based on the prosodic dimensionality of a gesture described by Tutuncubasi et al. [23], where
consecutive and continuous gesture phases are grouped into gesture units. The accuracy of
the classifier was also high, of 93%, while also getting 100% in correctly classifying non-
gesture units and 86% on gesture units. Similar adaptation from one-person gesture coding
to multi-person was used in this task as well. Should be considered that the discrepancy
between the validation loss and training loss described in Section 5 raised questions regarding
the ability of the model to generalize on unseen data. Based on the results obtained, a
possible solution could be to expand our gesture unit dataset.

Finally, it should be noted that a total of 1455 videos were used to build a gesture phase
classifier, while 196 videos were used to build a gesture unit classifier. Both of them used a
train-validation-test split approach of 75-15-15.

6.2 Future Work

One aspect for future work includes expanding both the dataset of hand gesture phases to
correct the unbalanced class distribution. By doing so, our assumption described in Section 5
regarding the mislabeling of "preparation" gestures as "strokes" can be verified. On the note
of expanding the dataset, it appears that it would also help with improving the performance
of the gesture unit classifier, which appears to encounter problems in generalizing on unseen
data.

Another aspect would regard experimenting with different models such as 3D-CNNs
or some adaptations of 2D-CNN, which were described in previous sections. Due to the
time constraints, it was not possible to implement and assess their performance, but the
promising results obtained in Hedegaard and Iosifidis [8] and Molchanov et al. [13] make
CNN a possible solution for the classification problem.

Focusing on the M3D annotation procedure, further research could be focused upon
classifying gestures by the other two dimensions explained in Tutuncubasi et al. [23], more
exactly the form of the gesture and its meaning. Additionally, the prosodic dimension has
another interesting aspect which can be researched, the rhythmic properties of the gesture.

Lastly, after the promising results obtained by fine tuning VideoMae, a clear direction
would be to build a recognizer for gesture phases and gesture units. Such a recognizer could
be employed for live recognition in video streams.

Nevertheless, the directions in which the project can extend are endless. The high
accuracies obtained by the two classifiers prove that there is potential in using coding schemes
to identify and classify gestures. Thereby, this opens the opportunity for further research
into gesture recognition based on coding schemes which are not only for hand motions, but
also full body movements.

7 Responsible Research
This section outlines the practices withheld during the project to ensure that the research

is conducted responsibly. The main focus is on ethical data collection, privacy, reproducibil-
ity, and the usage of language models.
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7.1 Data Collection and Privacy

An important ethical aspect, considering the nature of the project, is ensuring that
the dataset on which the model is trained is obtained ethically, with the consent of the
participants. This matter was already addressed by the researchers who built the Conflab
dataset. Additionally, the training of the model should be done on a platform whose data
policies align with the informed consent given to the participants. In our case, the training
is performed using the Delft Blue Supercomputer, which meets these criteria.[1]

7.2 Ethical Considerations

Ethical considerations are crucial in ensuring the integrity and fairness of research. To
avoid racial bias in the machine learning models used for classification, it is essential to use
a diverse dataset. The current version of the dataset addresses this issue when selecting the
persons whose movements are to be annotated, but it should also be considered if and when
the dataset is extended.

Participant identities are protected by using pseudonyms. Within a video, individuals
are identified as "Person index". The pseudonym of an individual changes from one video
to another to further ensure anonymity.

7.3 Reproducibility

Reproducibility is fundamental to ensuring that results can be consistently obtained
and verified by other researchers. Therefore, the entire code used in this project is openly
available on GitHub. Additionally, the model, its parameters, and results are freely available
on HuggingFace for anyone who wishes to test them. The only aspect of the project that
is not publicly accessible is the Conflab dataset and the manual annotations built for the
fine-tuning process, due to the agreement signed with the volunteers who were recorded.

7.4 Usage of LLMS

Throughout the project, LLMs were used as a way to gather information about diverse
topics. Additionally, GitHub Copilot was also used for programming purposes [4]. The main
tools used for information gathering are Perplexity and ChatGPT [17][15]. The scenarios in
which these models were used are the following:

e Search for papers on a certain subject. An example of a prompt would be: "Can you
find me some research papers that showcase coding schemes for hand gestures?"

e Explain concepts. A prompt example is: "Can you explain what data splits are optimal
for the fine tuning of a visual transformer model?"

e Explain results from an experiment. A prompt example is: "Can you explain what it
means if my accuracy on the training set is high, but on the testing set it is low?"

e Explain how certain python libraries work. A prompt example is: "Can you explain
how I can train a model using PyTorch?"

Finally, it should be mentioned that for all the answers provided by LLMs where either
manually tested or fact-checked from various sources to ensure that they are valid.
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