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A B S T R A C T

In case of railway disruptions, traffic controllers are responsible for dealing with disrupted traffic
and reduce the negative impact for the rest of the network. In case of a complete blockage when
no train can use an entire track, a common practice is to short-turn trains. Trains approaching the
blockage cannot proceed according to their original plans and have to short-turn at a station close
to the disruption on both sides. This paper presents a Mixed Integer Linear Program that com-
putes the optimal station and times for short-turning the affected train services during the three
phases of a disruption. The proposed solution approach takes into account the interaction of the
traffic between both sides of the blockage before and after the disruption. The model is applied to
a busy corridor of the Dutch railway network. The computation time meets the real-time solution
requirement. The case study gives insight into the importance of the disruption period in com-
puting the optimal solution. It is concluded that different optimal short-turning solutions may
exist depending on the start time of the disruption and the disruption length. For periodic
timetables, the optimal short-turning choices repeat due to the periodicity of the timetable. In
addition, it is observed that a minor extension of the disruption length may result in less delay
propagation at the cost of more cancellations.

1. Introduction

In railway operation unplanned events such as infrastructure failures, rolling stock breakdown, and incidents are recurrent and
unavoidable. As a result, a part of a railway track might be unavailable for several hours. In such cases, the traffic controllers have to
deal with the disrupted traffic. Short-turning is a common practice to isolate the disrupted area. This measure suggests that those
train services that are heading towards the disrupted area, short-turn in an earlier station and provide service in the opposite
direction. In this way, some services can still be offered in the opposite direction and the trains do not queue up in the stations close to
the disrupted area. Consequently, the disrupted area can be isolated from the rest of the network.

To improve the performance during the disruption, traffic controllers commonly use pre-defined solutions called contingency
plans. Each contingency plan is manually designed for a specific disrupted area given a specific timetable. These plans resemble if-
then scenarios: if a certain part of the infrastructure is out of service, then specific disruption measures should be pursued. The main
input for designing contingency plans are the original timetable (basic hourly pattern) and the infrastructure layout around the
disrupted location. The contingency plan then provides the disruption timetable structure that includes the cancelled services, op-
erating services, and short-turned services. For each short-turned service, the arrival, departure, platform track and the train line
numbers are indicated. The advantage of these contingency plans is that they provide some guidelines and consensus when there is a
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need for a fast action to deal with the disruption Ghaemi et al. (2017b).
During disruptions the level of service decreases and remains so until the cause of disruption is solved and the original operation

can be resumed. From this perspective the traffic level during a disruption resembles a bathtub as shown in Fig. 1. Corresponding to
the bathtub, the disruption period is divided into three phases. The first and third phases are called transition phases as they represent
the transition of operation from the original timetable to the disruption timetable in the second phase and vice versa. The first phase
starts as soon as the blockage starts. Usually there are some irregularities (e.g. different short-turnings) before a stable and reduced
timetable (disruption timetable) can be observed.

There are several processes during the first phase including receiving the disruption notification, announcing the disruption in the
online system, identifying the exact disrupted location, selecting the relevant contingency plan and finally executing the plan. A study
by Zon and Wink (2014) on 452 disruption cases of the Dutch railway network reports that the first phase can take on average around
40min. In this study it is also shown that the longest process relates to selecting the relevant contingency plan and adjusting it which
can take on average around 16min. The third phase starts when it is known that the blockage is going to be resolved shortly and the
train services can resume operating in the previously disrupted area. However it might take some time to recover from the disruption
timetable to the original timetable as is shown in Fig. 1. For detailed processes during each phase see Ghaemi et al. (2017b).

Besides being static and inflexible, the main drawback of the contingency plans is that they do not provide any support for
handling the transition phases. Having fast and smooth transition plans is essential for quickly resuming the disruption timetable in
the second phase and recovering the original timetable in the third phase. The existing contingency plans are not able to provide any
support for the execution of the transition phases, since they do not take into account the disruption period. After all, different causes
of disruption can lead to different disruption lengths (Zilko et al., 2016). This leaves the traffic controllers without any support for
making decisions in the transition phases. Besides the fact that the existing contingency plans do not suggest the optimal solution,
with each update in the infrastructure or operation, the contingency plans need to be manually updated. Moreover, certain disruption
may not have a corresponding contingency plan. A slight difference between the timetable in operation and the one used for de-
signing the contingency plan may make the latter invalid.

The rescheduling domain in case of disruptions specially at the microscopic level is relatively unexplored, as Cacchiani et al.
(2014) and Ghaemi et al. (2017b) conclude. Since disruptions of complete blockages can have a huge impact on the network it is
necessary to consider bigger areas as opposed to the disturbances that perturb a timetable locally. The microscopic approaches, such
as Pellegrini et al. (2014) or Caimi et al. (2012), can only include relatively small areas due to the magnitude of the modelled details.
Despite techniques such as the one developed by Samá et al. (2017) to reduce the number of route choices, considering several
stations at the microscopic level can lead to long computation times. Thus the focus of this literature is on the macroscopic re-
scheduling models that can handle disruptions. Zhan et al. (2016) apply a rolling horizon approach to take into account the un-
certainty of disruption length for rescheduling in case of the partial blockage. Xu et al. (2017) developed a rescheduling model for
disruptions caused by temporary speed restrictions. Since there is no blockages short-turning is not considered as a rescheduling
measure. Coor (1997) investigates the impact of the short-turning strategy on the passenger waiting time on a high-frequency single
transit line and concludes that in case of severe delays it is more beneficial than in case of small delays. In another study by Shen and
Wilson (2001) different strategies such as short-turning, holding and stop skipping are examined. It is concluded that the combination
of short-turning and holding strategies can reduce the mean passenger waiting time considerably. Ghaemi et al. (2016) model short-
turning exclusively as a main measure to handle disruptions during the second phase. Only one side of the disruption is considered
and the impact of the transitions are discarded. Its focus is on the trade-off between cancellation and delays by selecting different
cancellation and delay penalties. Ghaemi et al. (2017a) extend the microscopic rescheduling model developed by Pellegrini et al.
(2014) with the short-turning model presented in Ghaemi et al. (2016). Louwerse and Huisman (2014) develop a MILP model to
compute the disruption timetable by maximizing the service level. Similarly Binder et al. (2017) develop an ILP model to compute a
disruption timetable with three objectives of passenger satisfaction, operational costs and deviation from the original timetable.
Veelenturf et al. (2017) developed a heuristic to adapt the timetable during disruption. To find the best adaptation, a list of alter-
native timetables are evaluated in terms of rolling stock and passenger flow and the one with the least consequences is selected. These
references focus on the second phase of the disruption and neglect the transition phases. There are a few models that address the
recovery from a disruption such as Jespersen-groth et al. (2009), Meng and Zhou (2011), Narayanaswami and Rangaraj (2013), Zhan
et al. (2015). However, they do not provide any support for the second phase of the disruption. There are a few references such as
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Fig. 1. The service level during disruptions (Ghaemi et al., 2017b).
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Nakamura et al. (2011) and Veelenturf et al. (2016) that provide a disruption timetable and implicitly take into account the recovery
phase. The model developed by Nakamura et al. (2011) does not optimize the timetable but instead the solution is provided by
performing specific steps. These steps identifying the cancelled and short-turned services, assigning rolling stock to each scheduled
departure and finally resolving the mismatch for scheduled departures that need rolling stock to operate. Veelenturf et al. (2016)
extends the model by Louwerse and Huisman (2014) which maximizes the service level taking into account three resources; open
track, station track and rolling stock. However this model only allows short-turning in the final station before the disruption and the
possibility of short-turning in the preceding station due to the limited capacity is not included. In their approach services from the
affected lines are divided into three parts from which the second part are those that are scheduled to operate in the disrupted area. In
case these services are cancelled, then the first part or third part might also be cancelled. Moreover it is assumed that the third phase
takes a specific amount of time. The research on the first phase is indeed limited. Chu and Oetting (2013) provide insight into the
processes during the first phase and recommend to take into account the extra time while designing the contingency plans. Hirai et al.
(2006) also focus on the first phase by proposing an algorithm to compute the stopping stations for the disturbed train lines.

In case of disruptions the rolling stock circulation is rescheduled based on the rescheduled timetable, as Jespersen-groth et al.
(2009) highlight. Thus many rolling stock rescheduling models such as those proposed by Nielsen et al. (2012), Cacchiani et al.
(2012) and Wagenaar et al. (2017) assume a predefined timetable.

To the best of our knowledge, the existing literature on optimal rescheduling and short-turning does not concretely address the
three phases of disruption and specially the traffic interaction from both sides of the blockage upon the disruption resolution while
accounting for rolling stock. For a review of the related literature see Ghaemi et al. (2017b).

This paper presents a macroscopic rescheduling model which is an extension of the model introduced by Ghaemi et al. (2016).
The macroscopic rescheduling model computes a three-phase disruption timetable, including the recovery plan for the case of a
complete blockage given a certain disruption length. The main contributions of the paper are as follows:

• A macroscopic MILP model is developed to compute the disruption timetable and the transition plans given a certain disruption
period.

• Allowing for short-turning at multiple stations while taking the platform track occupation into consideration.

• Accounting for the traffic on both sides of the disrupted location during the three phases.

• Demonstrating how the disruption length affects the optimal periodic short-turning solution of the second phase.

The structure of the paper is as follows. The three-phase rescheduling problem is elaborated in Section 2. Section 3 presents the
mathematical formulation of the MILP model. In Section 4 the results of the application of the model on a Dutch railway corridor are
discussed. Finally, the conclusions are given in Section 5.

2. Problem description

In case of large disruptions, the rescheduling decisions are usually made by the traffic controllers located in the centralized traffic
control center who monitor and control the entire network. If there is no relevant contingency plan, the traffic controllers have to
quickly respond and devise a feasible plan for short-turning train services that are heading towards the disrupted location. The train
services that are running towards the disrupted location are referred to as approaching train services throughout this study. The
traffic controllers have to decide how to assign the approaching train services to the scheduled departures in the opposite direction.
Having multiple train services that need to be short-turned on both sides of the disrupted location and communicating the plan with
other traffic controllers to reach a consensus would take a long time and might postpone the recovery. Hence an algorithm that can
quickly compute the optimal short-turning solution on both sides of the blockage as well as the transition to the original timetable can
speed up the process. Before defining the problem, it is necessary to explain how a service is defined in this study. Fig. 2 illustrates the
time-distance diagram for two opposite trains from station a to station d (downwards) and from station d to station a (upwards). Each
service vl n

i
, is characterized with three indicators: l identifies the line number that determines the stopping stations, n represents the

operation time of the service and i indicates the sequence of the service within line l. In this way each service is recognized as a trip

Fig. 2. Service definition.
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between two consecutive stations. Hence the following service from station a to b that is performed by the rolling stock of service vl n
i
,

from the same line is denoted by +vl n
i
,

1. As shown in Fig. 3 the next service of the same line from station a to b is denoted by +
+vl n

i
, 1

1 where
+n 1 indicates that this service operates in the following cycle.
In case there is a disruption in station c, the approaching trains cannot proceed further and they have to short-turn before the

disrupted area. In Fig. 3 an approaching train vl n
i
, has to short-turn the latest at station b. The blockage results in cancellation of the

services from station d to c and from c to b. Thus the services from b to a and from a upwards have to be performed by the short-
turning trains. As is illustrated with the red short-turning arcs, there are two scheduled departures possible from station b to −a v; l m

j
,

1

and +
−vl m

j
, 1

1 . If the capacity is not sufficient for short-turning all approaching trains, then the trains can also short-turn a station earlier
to scheduled departures vl m

j
, or +vl m

j
, 1. Thus each approaching train has multiple short-turning possibilities in different stations. The

optimal choice of short-turning is the main problem in the second phase of the disruption. The traffic scheduling decisions during the
first and third phases directly depend on the start and end times of the disruption period. Note that the optimal short-turning choice
in the second phase is dependent of the disruption period. The first phase deals with the services that depart towards the disrupted
location before the start of the disruption. Logically these services need to short-turn in the next stations even if the initial schedule
did not include this stop. The third phase starts when train services can start again using the previously blocked section and lasts until
the original timetable can be resumed. In order to plan for the third phase, it is assumed that the end of the disruption is known in
advance.

Figs. 4 and 5 show two time-distance diagrams for a disruption with same start time and two different disruption lengths. In this
example, station c is disrupted. The train services need to short-turn either at stations b and d or those preceding them, namely
stations a and e.

The two vertical lines represent the start and end times of the disruption. Note that each short-turning is the assignment of an
arriving train to a scheduled departure in the opposite direction. Consequently, the short-turning trains on one side of the disrupted
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Fig. 3. Different short-turning possibilities.
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location correspond to the scheduled departures of the short-turnings on the other side of the disrupted location. For example, if the
train service vl n

i
, (or +vl n

i
,

1) short-turns in station a (or b), then +vl n
i
,

4 (or +vl n
i
,

5) needs to be performed by a short-turning in station d (or e).
The train services that are affected by the blockage are those that run towards disruption with the scheduled arrival at station c

and those that are scheduled to depart from station c within the disruption period. In Figs. 4 and 5, the approaching train services are
shown by arrows. Moreover, the scheduled departures on the other side of the disruption corresponding to the approaching train
services are also depicted by arrows.

The number of approaching train services for short-turnings on each side of the disruption may either be equal or unequal. Thus,
depending on the disruption period there can be either symmetrical (equal) or asymmetrical (unequal) condition. Figs. 4 and 5 show
disruption scenarios with symmetrical and asymmetrical conditions, respectively.

In a symmetrical condition, an equal number of approaching train services on both sides of the disrupted location also implies
equal approaching train services and scheduled departures on each side. As is shown in Fig. 4 there are two approaching train services
on each side. In this case, the train services +vl n

i
,

1 and +
+vl n

i
, 1

1 from one side and train services −vl m
j
,

4 and +
−vl m

j
, 1

4 from the other side are
approaching stations b and d. These train services need to short-turn at or prior to stations b and d. Note that the model can also
suggest early short-turnings of the corresponding services ( +v v,l n

i
l n
i

, , 1 and −
+

−v v,l m
j

l m
j

,
5

, 1
5 ) in stations a and e. By short-turning the train

services +vl n
i
,

1 and −vl m
j
,

4, the services +vl n
i
,

2 and −vl m
j
,

3 need to be cancelled. These cancelled services are represented using solid grey lines.
Similarly, the train services +

+vl n
i
, 1

1 and +
−vl m

j
, 1

4 short-turn.
In an asymmetrical condition, an unequal number of approaching train services implies that on one side of the disruption, there

are more approaching train services than scheduled departures in the opposite direction and vice versa on the other side. Fig. 5 is an
example where there are two approaching train services −vl m

j
,

4 and +
−vl m

j
, 1

4 in station d (or −vl m
j
,

5 and +
−vl m

j
, 1

5 in station e) and one ap-
proaching train service +vl n

i
,

1 in station b (or vl n
i
, a). Since there are two approaching train services in station d and only one possible

scheduled departure in the opposite direction, only one short-turning can take place and the second approaching train has to wait
until the disruption is over and it can continue towards station a. In case of an asymmetrical condition, the recovery service is the
successive service corresponding to the final approaching train service on the side with more approaching train services. In this case
the recovery services +

−vl m
j
, 1

3 can only depart with some delay.
In the third phase, there might be congestion resulting from the train services that are waiting for the end of the disruption period

until they can start running towards the other side of the previously blocked section.

3. Mixed-integer linear programming formulation

Before defining the variables and constraints of the Mixed Integer Linear Programming model, it is necessary to introduce the
assumptions and construct the relevant sets. Section 3.1 lists the underlying assumptions. The sets are defined in Section 3.2 followed
by the MILP model in Sections 3.3 and 3.4. Finally Section 3.5 describes how different phases of disruption are measured.

3.1. Model assumptions

The model in its current formulation addresses the disruption cases where a station is completely blocked for a certain disruption
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period. However with some minor adjustments, the model can be applied for complete blockages of open track sections. The main
assumptions of this model are that the disruption length is known upon occurrence and the original timetable is cyclic. Literature
proposes several models to predict the disruption length from which we refer to the model by Zilko et al. (2016) that is based on
Copula Bayesian Network. It is also assumed that each service can only short-turn to replace a service from the same line. Thus the
possibility of short-turning an intercity train and replacing a service from the local line is excluded to avoid complications in rolling
stock circulation. The proposed MILP problem is a macroscopic model and does not provide microscopic solution that determines the
utilization of every track detection section. Instead a minimum headway is considered to avoid any conflict between the operating
services. In addition, the running, dwell and short-turning times are assumed as input.

3.2. Preprocessed sets based on the disruption period

The notation is listed in Table 1. For notation simplification, the approaching train services are shown as ′v and those services that
are scheduled to approach the disrupted station are denoted by ″v . Finally, those services that are scheduled to move away from the
disrupted area are denoted as ‴v regardless of their line specifications. Before formally defining these sets, an example is used to make
a better distinction between them.

This example shows three operating lines k l m( , , ) in one direction. Thus the approaching services to station a b, , and c each consist
of three sets that are shown distinctively in each column,

′ = ′ = ″ =

′ = ′ = ″ =

′ = ′ = ″ =

+
+

+
+ +

+
+

+
+

+
+ +

+
+

+
+

+
+ +

+
+

V v v V v v V v v

V v v V v v V v v

V v v V v v V v v

{ , }, { , }, { , },

{ , }, { , }, { , },

{ , }. { , }. { , }.

a k k n
z

k n
z

b k k n
z

k n
z

c k k n
z

k n
z

a l l n
i

l n
i

b l l n
i

l n
i

c l l n
i

l n
i

a m m n
p

m n
p

b m m n
p

m n
p

c m m n
p

m n
p

, , , 1 , ,
1

, 1
1

, ,
2

, 1
2

, , , 1 , ,
1

, 1
1

, ,
2

, 1
2

, , , 1 , ,
1

, 1
1

, ,
2

, 1
2

Similarly the services that move away from the disruption and depart from station d and e each consist of three sets that are shown
distinctively in each column,

‴ = ‴ =

‴ = ‴ =

‴ = ‴ =

+
+

+ +
+

+

+
+

+ +
+

+

+
+

+ +
+

+

V v v V v v

V v v V v v

V v v V v v

{ , }, { , },

{ , }, { , },

{ , }. { , }.

d k k n
z

k n
z

e k k n
z

k n
z

d l l n
i

l n
i

e l l n
i

l n
i

d m m n
p

m n
p

e m m n
p

m n
p

, ,
4

, 1
4

, ,
5

, 1
5

, ,
4

, 1
4

, ,
5

, 1
5

, ,
4

, 1
4

, ,
5

, 1
5

In the preprocessing step, the following sets are defined.

• The set of lines l that are planned to operate in the disrupted area during the disruption,

Table 1
The notation of the input used in the macroscopic model.

S The set of all stations s
L The set of all lines l
V The set of all scheduled services

⊂V Vl n, The nth set of ordered services in line l
⊂v Vl n

i l n, , The ith service in set Vl n,

Ps vl n
i, ,

The set of platform tracks for service vl n
i
, in station s

⊂S Svl n
i
, The departure and arrival stations ( )s s,

vl n
i

d
vl n

i
a

, ,
of vl n

i
,

⊂S S0 The disrupted station (x)
⊂S S1 The first surrounding stations (b and d) around the disrupted station x
⊂S S2 The secondary surrounding stations (a and e) around stations in S1

⊂S Sl The set of possible short-turning stations for line l

dl n
i
, The scheduled departure time of service vl n

i
,

al n
i
, The scheduled arrival time of service vl n

i
,

θ
vl n

i
min

,
The minimum short-turning time needed for service vl n

i
,

τ
vl n

i
run

,
The running time of service vl n

i
, between two stations

+τ
vl n

i vl n
i

dwell
, , ,

1 The dwell time between service vl n
i
, and service +vl n

i
,

1 in the station

τ
vl n

i vw zu
h

, , ,
The minimum headway time between two train services vl n

i
, and vw z

u
,

ω
vl n

i
c

,
The penalty for cancelling service vl n

i
,

ω
vl n

i
z

,
The penalty for delaying the arrival of service vl n

i
,

t s The start time of disruption
te The end time of disruption
M A large constant
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= ∈ ∃ ⊆ ⩽ ⩽L l L i n S S S t a t{ | , , { , }, }.Dist v
s

l n
i e

1 0 ,l n
i
,

• The set of all approaching services vl n
i
, to station ∈ ∪s S S1 2 from line l for which the service +vl n
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• To compute the optimal short-turnings, all the possible pairs of approaching train services and scheduled departures in the
opposite direction in the relevant stations are defined by the following sets,
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• Since the disruption period is assumed to be known in advance, in the preprocessing step the services in the first phase can be
predetermined. Considering the first phase starting with a reduction in the traffic level, the approaching services in the first phase
are denoted as ′Vs l red, , . This set consists of the approaching services to station s from line l that depart before the start of the
disruption and arrive within the disruption period. They are a subset of the approaching services ′Vs l, that already departed from
their possible short-turning station and they have to short-turn in the final station before the disruption. They are defined by the
following set,
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i s l

Dist, , , , ,

• Similarly the scheduled departures in the opposite direction in the first phase are denoted as ‴Vs l red, , . This set consists of the first
scheduled departures from station s and line l in the opposite direction for which there is no rolling stock available and thus can be
performed by short-turning the approaching train in the first phase. The scheduled departures in the opposite direction in the first
phase are defined by the following set,
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• Based on the defined sets in the first phase, the short-turning couples of the first phase are denoted as shtred and defined by the
following set,
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• Likewise, the services of the third phase can be predetermined. The services that may use the blocked section after the disruption
is over, are called recovery services and are denoted as ″Vs l rec, , . The recovery service is defined as the last service on those lines
which have a greater number of approaching services than scheduled departures in the opposite direction:
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3.3. Decision variables

The decision variables are formulated as either continuous or binary variables. The continuous decision variables represent time
and are non-negative:
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The decisions regarding occupying a platform track, cancelling a service, and the choice of short-turning are represented by
binary decision variables:
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3.4. Objective function and constraints

The objective function includes two terms, penalized cancellations and delay,
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Minimum running and dwell times are considered by constraints (2) and (3). The departures should respect the schedule. Con-
straints (4) enforce this restriction. To avoid double penalties for cancelled services, their operations are modelled on time. Con-
straints (5) make sure that the departures of cancelled services are the same as the schedule. Constraints (6) measure the arrival
delays. The recovery services can only operate after the end of the disruption. Constraints (7) ensure this restriction.

3.4.2. Short-turning constraints
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The short-turning constraints are better explained by the time distance diagram shown in Fig. 3. Every approaching service to the
disrupted area has to short-turn in a station preceding the blockage. Assuming the arrival station of vl n

i
, to be station ∈a S2, then it

implies that service +vl n
i
,

2 has to be cancelled due to the blockage unless +vl n
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,

2 can wait in the final station and then arrives at station c
which was disrupted. In case service ∈ ″+v Vl n

i
s l,

2
, is cancelled then vl n

i
, or +vl n

i
,

1 has to short-turn. Otherwise the approaching train can
continue as the recovery service. Constraints (8) enforce this relation. There should be a train assigned to each scheduled departure in
the opposite direction. Thus, there are three options for each scheduled departure in the opposite direction. If there is no available
train that can operate this service, it needs to be cancelled. Otherwise either an approaching train service or the recovery train service
from the other side of disruption is assigned. This possibility is present through Constraints (9). Each early short-turning leads to two
cancelled services. To give an example, if service vl n

i
, is short-turned as service vl m

j
, in a station upstream of the closest station to the

blockage, then the following service +vl n
i
,

1 will be cancelled. Likewise the preceding service of −v v,l m
j

l m
j

, ,
1, will be cancelled. These

cancellations are considered in constraints (10) and (11). Constraints (12) make sure that if service +vl n
i
,

1 is cancelled due to a short-
turning in an earlier station a (or e), the relevant pairs should not be selected in the last station b (or d). For each short-turning there
should be a minimum short-turning time between the arrival of the approaching train service and the scheduled departure in the
opposite direction. Constraints (13) ensure the minimum short-turning time. If a departing service from stations a (or e) that runs
away from the disruption is cancelled, then the following services need to be cancelled. Constraints (14) guarantee these cancellations
for the remaining services of the line. The short-turning couples of the first phase that are defined in the preprocessing step are
realized by imposing their short-turning variables through Constraints (15). (see Fig. 6)

3.4.3. Platform constraints
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Constraints (16) guarantee a platform assignment for each arriving service. Figs. 7 and 8 visualize the constraints (17) and (18).
Constraints (17) make sure that in case train service ′v is being short-turned as service ‴v using platform track q then any next arriving
service vw z

u
, should wait until the minimum headway time after the departure of ‴v if it uses the same platform track q. Similarly,

constraints (18) ensure the platform occupation is unique to only one train service at a time for those services that do not short-turn.
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Fig. 6. Different lines operating in one direction.
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3.5. Postprocessed measures of disruption phases

To measure the lengths of each phase of disruption, there should be a distinction between phases. The phases are measured within
the short-turning stations. In this approach the first phase starts as soon as the disruption starts. It is acknowledged that in practice the
first phase may take longer due to the time needed for communication and reaching an agreement on how to proceed with the
decisions made by the traffic controllers. The end of the first phase, which is also the start of the second phase, is defined as the time
that (fewer) trains operate regularly again and no more irregularities caused by the first phase are observed. The regular operation
includes short-turnings that repeat every cycle. If the services of the first phase can short-turn on time, then the first phase ends as
soon as the latest service of the first phase departs after short-turning. In case the short-turnings of the first phase cause delay, then
the end of the first phase is measured at the latest arrival at the short-turning stations. The second phase lasts until the earliest
departure of the recovery services from the short-turning stations. This time point is the beginning of the third phase which lasts until
the latest arrival of the recovery services at the short-turning stations.

4. Case study

The model is applied to a mainly double-track railway corridor from Utrecht (Ut) to ’s-Hertogenbosch (Ht) in the middle of the
Netherlands. The model is implemented in MATLAB R2016b and solved by Gurobi. The toolbox YALMIP (Löfberg, 2004) is used to
construct the MILP model. The optimal solutions are achieved with zero gaps. The corridor is illustrated in Fig. 9 and includes 13
stations and 7 lines with each a frequency of two services per hour in each direction. So 14 trains per hour per direction operate in
this corridor. The case study considers a disruption that takes place at station Geldermalsen (Gdm). There are different intercity and
local train lines operating in this corridor. These lines are colored differently in Fig. 9. The original timetable for this corridor is
illustrated in Fig. 10. Two intercity lines IC800 (in light green1) and IC3500 (in dark green) and two local lines (called sprinters (SPR)
in Dutch) SPR16000 (in orange) and SPR6000 (in blue) run through Geldermalsen. The local line SPR36700 (in purple) provide
services to Geldermalsen. The intercity lines have scheduled stops only at stations Utrecht (Ut) and ’s-Hertogenbosch (Ht). Thus, in
case of a disruption in Geldermalsen, the IC train services need to short-turn in these stations. The SPR train services SPR16000 and
SPR6000 have scheduled stops at Utrecht Lunetten (Utl), Houten (Htn), Houten Castellum (Htnc), Culemborg (Cl), and Geldermalsen.
From Geldermalsen, SPR6000 runs towards the east to station Tiel Passewaaij (Tlpsw) and SPR16000 operates towards the south to
Zaltbommel (Zbm) and ’s-Hertogenbosch. The short-turning stations to the south of Geldermalsen for the SPR services are Zbm or Ht,
and for IC services only Ht. The short-turning stations to the north of Geldermalsen are Cl or Htnc for SPR services. The two lines
IC3600 (in light blue) and SPR4400 (in pink) are not affected by the disruption in Gdm. However since they stop in Ht, they are
included in the model. The IC services short-turn in Ut which due to its complexity is not included in this case study. The stations
Beesd and Tiel Passewaaij are not frequently served. So the short-turnings in these stations can be performed on schedule without
introducing any delay, thus their short-turnings are excluded in the case study. Table 2 lists the stops for each line.

Fig. 7. The platform occupation constraint for short-turning services.

Platform q

vu
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vu
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Fig. 8. The platform occupation constraint for the non short-turning services.

1 For interpretation of color in Figs. 9-19, the reader is referred to the web version of this article.
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4.1. Parameters and experiment settings

To test and demonstrate the impact of the disruption on the optimal short-turning solution, four experiments are performed with
different disruption periods. In the first experiment, it is shown that with the same disruption length, there could be different optimal
solutions depending on the start time of the disruption. This is the result of the different first phase. In the second experiment, it is
shown that with the same disruption start time, the third phase could differ due to different disruption lengths. In the third ex-
periment, the three phases of disruption for two scenarios are measured. In the fourth experiment, the optimal solution and the
performance of the model with in particular the relation between the cancellation and delay are investigated under various disruption
periods. In the experiments the duration of each phase is measured. The delay and cancellation for intercity services are penalized
more than the delay and cancellation of local train services. The exact parameters’ values and the number of platform tracks in the
short-turning stations are detailed in Tables 3 and 4.

4.2. Experiment one: Different start time of disruption and fixed disruption length

In this experiment, station Gdm is disrupted for 30min. Two scenarios with respect to different disruption start time are con-
sidered. In the first scenario (Fig. 11), the disruption starts at 09:45 and in the second scenario (Fig. 12) it starts at 10:00. In these
figures, different train lines are identified by different colors which correspond to those used in Fig. 9. The cancelled services are
colored in grey. In this experiment there is an equal number of approaching train services from line SPR16000 (in orange) and
SPR6000 (in blue) on both sides of the disruption (one approaching train service and one scheduled departure in the opposite
direction). The intercity train services from lines IC3500 (in dark green) and IC800 (in light green) have to short-turn in Ht. However,
in Fig. 11 it is shown that the service from IC3500 (in dark green) departs from Ht before the start of disruption. Thus, this service is
part of the services within the first phase of the disruption and has to short-turn in the following station which is Zbm although this
line does not have any stops until Ut. Similarly on the other side of the disruption, the service from IC800 should have short-turned in
Ut. However the disruption starts after the departure of this train from Ut. So this service is short-turned in station Cl. The short-
turnings that are part of the first phase are shown by the horizontal green line. The other horizontal lines that connect an arriving
train service to a scheduled departure in the opposite direction, are the optimal short-turning solutions within the second phase.

Table 2
Lines.

Line Stops

IC800 Ut Ht
IC3500 Ut Ht
IC3600 Hto Ht Tb
SPR36700 Bsd Gdm
SPR4400 Hto Ht Vg
SPR6000 Ut Utl Htn Htnc Cl Gdm Tlpsw
SPR16000 Ut Utl Htn Htnc Cl Gdm Zbm Ht Tb

Table 3
Parameters.

Parameter Notation Value

Short-turning time θ
vl n

i
min

,
5 (min)

Headway time τ
vl n

i vw zu
h

, , ,
3 (min)

Big M M 50,000
IC cancellation penalty ∀ ∈ ∈ω v V l, , {

vl n
i

c
l n
i

,
, IC800, IC3500, IC3600} 10000

SPR cancellation penalty ∀ ∈ ∈ω v V l, , {
vl n

i
c

l n
i

,
, SPR36700, SPR4400, SPR6000, SPR16000} 1000

IC delay penalty ∀ ∈ ∈ω v V l, , {
vl n

i
da

l n
i

,
, IC800, IC3500, IC3600} 10

SPR delay penalty ∀ ∈ ∈ω v V l, , {
vl n

i
da

l n
i

,
, SPR36700, SPR4400, SPR6000, SPR16000} 1

Table 4
platforms.

Station Htnc Cl Gdm Zbm Ht

Number of platform tracks 2 2 4 2 5
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Station Cl has two platform tracks that are occupied by the services from line SPR6000 (in blue) and IC800 (in light green). Hence,
there is no platform track available for the short-turning of service from SPR16000 (in orange) in Cl. So the optimal solution suggests
an early short-turning for this line in station Htnc. On the other side of the disruption, the short-turning of the service from line 16000
(in orange) in Zbm, corresponds exactly to those in station Cl. It is also observed that the same occurs to the short-turning of IC800 (in
light green) in both stations Cl and Ht. Zbm has two platform tracks, which are occupied by services from line IC3500 (in dark green)
and SPR16000 (in orange). So the next service from line SPR16000 (in orange) can arrive with some delay which is the result of the
minimum headway. This delay is the difference between the dashed line which is the scheduled train path and the solid line which is
the computed path. Obviously, in this scenario, the third phase includes some delays.

Fig. 12 shows the result for the disruption that starts at 10:00, and reveals different optimal short-turning solutions on both sides
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Fig. 11. Optimal short-turning solution for disruption from 9:45 to 10:15.
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of the disruption. In this scenario the train service from line SPR6000 (in blue) short-turns in Htnc, due to the fact that both platforms
of station Cl are occupied by short-turning services from line SPR16000 (in orange) and IC3500 (in dark green). On the other side of
the disruption, a departure delay of one minute is observed after the short-turning of train service SPR16000 (in orange) at station
Zbm caused by the minimum short-turning time of 5min. In this scenario, the third phase is executed smoothly without any delay.

Table 5 shows the results of the first experiment. The second column reports the affected train services (including the cancelled
and delayed services) over the total services. In both scenarios, there are 29 cancelled services. Note that each service is defined as a
trip between two consecutive stations. There are two cancelled services resulting from early short-turning due to the IC services of the
first phase in both scenarios. The remaining 27 cancelled services include the services in the disrupted area (between Cl and Zbm) and
those related to the short-turning of the IC services in the first phase. The delay is measured for each arrival while the reported delay
is computed by adding all the arrival delays. In the first scenario, there are 7 delayed services of line SPR16000 from Ht to Ut. The
large delay for SPR16000 is caused by the limited platform track capacity due to short-turnings. Thus in total there are 36 affected
train services in the disruption between 9:45 and 10:15. In the second scenario, there are two delayed services of line SPR16000
which are caused by respecting the minimum short-turning time. So there are 31 affected services in the second scenario. Due to a
smaller delay in the second scenario, a lower objective function value is attained. The computation time of both scenarios are less
than a second.

Since the disruption lengths of these scenarios are short, only a few short-turnings of the first phase are taking place. This
conclusion is made by observing the irregularities of IC short-turnings in station Cl and Zbm. Thus, the first phase is defined from the
beginning of the disruption until the latest departures of the IC services (IC800 from Cl and IC3500 from Zbm). On both sides of the
disruption these IC services wait for a long time to short-turn to the next scheduled departure. These long short-turnings of the first
phase, postpone the second phase. Due to the short disruption period, the third phase starts before a reduced and regular timetable for
the second phase can be operated. In the first scenario, the third phase starts with the departure of the recovery service from Ht and
lasts until the arrival at station Htnc. In the second scenario, there is no recovery service, so the third phase has a length of zero. This
experiment demonstrates that the optimal solutions proposed by the model may differ for the scenarios with the same disruption
length but different start times of the disruption. In other words, the impact of disruptions of the same lengths in terms of the delay
can differ if they have different start times.

Table 5
The results of experiment one.

Disruption period Affected/total services # Cancelled services Delays (s) Obj. function Comp. time (s)

9:45 to 10:15 36/210 29 1260 192,260 0.12
10:00 to 10:30 31/210 29 120 191,120 0.08

09
:5

0

10
:1

0

10
:3

0

10
:5

0

Time

Vg

Ht

Zbm

Gdm

Cl

Htnc
Htn
Utl

Ut

D
is

ta
nc

e

Disruption from: 10:00:00 to 10:40:00

Fig. 13. Optimal short-turning solution for disruption from 10:00 to 10:40.
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4.3. Experiment Two: Fixed start time of disruption and different disruption lengths

In this experiment the start time of the disruption is kept fixed whereas different disruption lengths are considered. This ex-
periment is hence devised to explore the role of the disruption length on the optimal solution, specially during the third phase. Fig. 13
shows the optimal short-turning solution for the scenario with a disruption between 10:00 and 10:40. The approaching train service
from line SPR6000 (in blue) has to wait for 17min in station Htnc, until it can proceed and use a platform track in station Cl. The
reason that the optimal solution does not suggest the early short-turning for this line is that it would have resulted in more cancelled
services. As illustrated, more delay is observed in the third phase in comparison with experiment one. The main reason is that in this
scenario, there is an unequal number of approaching train services from line SPR16000 (in orange) and scheduled departures in the
opposite direction in station Cl. To be specific, there are two approaching train services and one scheduled departure in the opposite
direction. Thus, the second approaching service is recognized as the recovery service and has to wait in Cl until the disruption is over
by the time it arrives at Gdm and then it can resume the original train path with some delay. Similarly on the other side of disruption,
there are two approaching train services from line IC800 (in light green) and one scheduled departure in the opposite direction in
station Zbm. Thus, the second approaching train service has to depart from Zbm with some delay to arrive at Gdm after the disruption
is over. In order to improve the third phase, it might be beneficial to resume the original timetable later so that the symmetrical
condition is achieved. Fig. 14 shows the optimal short-turning solution for the scenario where resuming the original timetable occurs
13min after the end of disruption. In this scenario, due to the equality between the number of approaching train services and the
number of scheduled departure in the opposite direction, the third phase is rather smooth.

The results of experiment two are listed in Table 6. From the results, it is concluded that by resuming the original timetable later,
the number of cancelled services is increased by 57% and the delay is reduced by 52%. Note that the cancelled services are limited to
those computed by the model between Cl and Zbm, nonetheless the delay can propagate to stations located outside of the control
area. Specially if there are alternative modes of transport in the disrupted area, cancelling a few more services might be more
preferred by the train operator than introducing a delay to the network due to the asymmetrical condition. At the same time, different
penalties could be considered to provide train operators with alternative solutions. Similar to the previous experiment the model
computes the optimal solution quickly.

From this experiment it is concluded that in the proposed model which encompasses the transition phase back to normal op-
erations, the disruption length plays an important role in determining the delay introduced in the final transition phase. The
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Fig. 14. Optimal short-turning solution for disruption from 10:00 to 10:53.

Table 6
The results of experiment two.

Disruption period Affected/total services # Cancelled services Delays (s) function Obj. Comp. time (s)

10:00 to 10:40 59/245 42 4020 292,980 0.19
10:00 to 10:53 74/281 66 1920 481,920 0.31
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disruption period can determine whether there is a symmetrical or asymmetrical condition. It is observed that by resuming the
original timetable later, it is possible to reach the symmetrical condition and hence the delay can be decreased at the cost of
increasing the number of cancellations.

4.4. Experiment three: Measuring the three phases

The three phases of disruption can better be distinguished with longer disruption periods. In this experiment two scenarios
(90min and 100min) are defined to show how different phases are measured.

The optimal short-turning solutions for the three phases are illustrated in Figs. 15 and 16. In both scenarios, the first phase lasts
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Fig. 15. Optimal short-turning solution for disruption from 10:30 to 12:00.
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Fig. 16. Optimal short-turning solution for disruption from 10:30 to 12:10.
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until the latest departure of the first phase short-turnings. Thus, first phase ends with the departure of a service from line IC800 (in
light green) from Zbm to Ht. The second phase starts at the same time point. During the second phase the services from lines
SPR16000 (in orange), SPR6000 (in blue), IC3500 (in dark green), and IC800 (in light green) short-turn regularly. The second phase
ends with the start of the third phase. Due to the symmetrical condition in the first scenario, there are no recovery services and thus
the second phase ends at the end of the disruption. In this scenario the recovery is immediate.

In the second scenario, due to the asymmetrical condition, there are recovery services from both sides of the disruption. The
second phase ends at the earliest departure of the recovery services which in this scenario is the departure of the recovery service
from line SPR16000 (in orange). As defined in Section 3.5, the third phase lasts until the latest arrival of the recovery services at the
short-turning stations. These measurements are listed in Table 7.

4.5. Experiment four: Increasing disruption lengths

In this experiment, the disruption start time is fixed and the disruption length is increased from one to five hours with intervals of
10min. Figs. 17 and 18 show the optimal short-turning solution for two selected disruption lengths of 180 and 190min, respectively.
It is observed that in the second phase the short-turning of the intercity train services IC800 (in light green) and IC3500 (in dark
green) at Ht and the local train service SPR16000 (in orange) in Zbm and Cl remain the same even though the disruption length is
increasing. However, the optimal short-turning of the local train services from lines SPR6000 (in blue) changes. The reason this
change for line SPR6000 occurs is that the disruption is located at the end of the line and the departures are scheduled slightly earlier
than the arrivals. Since there is no train service arriving from the other side after the disruption then some services should be
cancelled due to the lack of rolling stock in case there are more scheduled departures than approaching services.

In the symmetrical disruption scenarios, the departures would take place with some delay as the arrivals are after the scheduled
departures. In the asymmetrical disruption scenarios, where a scheduled departure should be cancelled, the optimal solution would
be to cancel the first scheduled departure so that the rest of departures can take place more on time. This results in alternation of the
short-turning choice as the disruption length increases.

With increased disruption length, the short-turnings of line SPR16000 in Cl as shown in Fig. 17 repeats every 30min (i.e.
disruption end times at minutes 0, and 30). In between each half an hour (with disruptions ending at minutes 10, 20, 40, and 50), the
short-turning choice shown in Fig. 18 occurs. The optimal solution for the third phase also repeats every half an hour. In other words,

Table 7
Lengths of the three phases.

Scenario First phase (s) Second phase (s) Third phase (s)

10:30 to 12:00 1560 3840 0
10:30 to 12:10 1560 4020 1560
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Fig. 17. Optimal short-turning solution for disruption from 10:00 to 13:00.
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the recovery plans for disruptions ending at minutes 10 and 40 are the same. This similarity is also valid for disruption periods ending
at minutes 20 and 50 as well as minutes 0 and 30.

The relation between the disruption length, delay and number of cancelled services is illustrated in Fig. 19. As expected, the
number of cancelled services (represented by red circles) steadily increases for increasingly longer disruptions. The delay, which is
plotted by the blue line, is also increasing with some oscillation. Interestingly, the extent of oscillation grows with disruption length.
The peaks in the delay line are the results of waiting for the end of the disruption that occurs in the third phase. It is therefore
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Fig. 18. Optimal short-turning solution for disruption from 10:00 to 13:10.
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Fig. 19. The relation between the disruption length, delay and number of cancelled services.
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concluded that in case of long disruptions corresponding to the peaks, by minor extension of the disruption length, the delay can be
reduced considerably at the cost of an increase in the number of cancellations.

The real-time applicability of the model depends on the computation time. Fig. 20 shows the computation time of the short-
turning model for given different disruption lengths. It is observed that computing the disruption timetable and the transition plans
for a period of three hours for such a busy corridor takes less than 10 s. The computation time of a new timetable for a disruption
period up to five hours takes less than two minutes.

5. Conclusion

In this paper, a MILP model is proposed to compute the disruption timetable and the transition plans for complete blockages based
on the disruption period. In this formulation, the rescheduling measures of short-turning, partial cancellation, and re-timing are
applied on the traffic on both sides of the disrupted location. Depending on the available rolling stock and infrastructure capacity, the
short-turnings can take place in multiple stations. Given the disruption period, different services might need to be short-turned on
each side of the blockage. The number of short-turning train services on both sides can be either equal (symmetrical) or unequal
(asymmetrical) depending on the disruption period. In the asymmetrical scenarios, the extra train services need to wait until the end
of the disruption and then proceed and operate on the recently resolved track section. This waiting will postpone the recovery back to
the original timetable.

The model is applied to a dense Dutch railway corridor. Several experiments revealed the importance of the disruption period (the
start time and the disruption length) in the optimal short-turning solution. The computation time is promising for real-time appli-
cation. It is concluded that different disruption periods can result in different optimal short-turning choices. Depending on the
disruption start time, different services might be affected during the first phase, which would result in different transition plans.
Given a certain disruption start time, different disruption lengths can also result in different transition plans for the third phase. The
optimal short-turning choice during the second phase can alternate depending on the disruption length. This alternation is due to the
symmetrical and asymmetrical conditions for the lines without traffic interaction from both sides of the blockage and those whose
scheduled departures are earlier than the arrivals at the short-turning stations. In addition, these choices repeat as the disruption
length increases. Since the original timetable is periodic, for a long enough disruption length a periodic pattern will emerge that fits in
the periodic timetable of the (undisrupted) rest of the network. The transitions between the three steady-states of the normal (1st and
3rd phase) and disrupted (2nd phase) period timetable will largely determine the periodic pattern during the 2nd phase, which in
turn depends on the start and end times of the disruption as shown in the fourth experiment. In asymmetrical scenarios, the delay can
be decreased by resuming the original timetable later than the end of disruption to reach the symmetrical condition. However,
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Fig. 20. The computation time of the short-turning model.
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resuming the original timetable later will lead to more cancelled services. Therefore a rule is necessary to make a trade-off between
the number of cancelled services and the delay.

Currently, the model cannot suggest the shortest time required after the end of disruption to reach the symmetrical condition.
Finding this time point given the disruption start time would be a next research direction. Another direction is to investigate the
optimal short-turning solutions with uncertain disruption lengths. With minor adjustments, the model can be applied on disruption
cases of open track blockages. It is also interesting to use a microscopic short-turning model to improve the accuracy of the capacity
allocation in the short-turning stations.
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