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Abstract: Accurate and continuous estimation of surface albedo is vital for assessing and understand-
ing land–surface–atmosphere interactions. We developed a method for estimating instantaneous
all-sky at-surface shortwave upwelling radiance and albedo over the Tibetan Plateau. The method
accounts for the complex interplay of topography and atmospheric interactions and aims to miti-
gate the occurrence of data gaps. Employing an RTLSR-kernel-driven model, we retrieved surface
shortwave albedo with a 1 km resolution, incorporating direct, isotropic diffuse; circumsolar diffuse;
and surrounding terrain irradiance into the all-sky solar surface irradiance. The at-surface upwelling
radiance and surface shortwave albedo estimates were in satisfactory agreement with ground observa-
tions at four stations in the Tibetan Plateau, with RMSE values of 56.5 W/m2 and 0.0422, 67.6 W/m2

and 0.0545, 98.6 W/m2 and 0.0992, and 78.0 98.6 W/m2 and 0.639. This comparison indicated an
improved accuracy of at-surface upwelling radiance and surface albedo and significantly reduced
data gaps. Valid observations increased substantially in comparison to the MCD43A2 data product,
with the new method achieving an increase ranging from 40% to 200% at the four stations. Our
study demonstrates that by integrating terrain, cloud properties, and radiative transfer modeling,
the accuracy and completeness of retrieved surface albedo and radiance in complex terrains can be
effectively improved.

Keywords: land surface albedo; at-surface upwelling radiance; Tibetan Plateau; rugged terrain

1. Introduction

The land surface albedo is defined as the proportion of the total incident solar irradi-
ance reflected in the 0.2–5 µm wavelength range in the viewing hemisphere [1–4]. It is a
primary factor controlling the land surface radiation balance and significantly influences
water and heat balances at the interface of the Earth’s surface and the atmosphere. The
spatial and temporal variation of land surface albedo introduces perturbations in radiative
forcing, which drives land cover conditions, regional to global climate and environmental
changes [3]. Accordingly, it is a crucial land surface property in both climate and land
surface processes models [5]. The literature documents the accuracy of albedo required
for climate modeling, e.g., ±0.05 according to [3] and ±0.02 according to [6]. The Tibetan
Plateau is the world’s highest plateau and mountain area, with a mean elevation of ap-
proximately 4500 m.a.s.l. (meters above sea level). It is the third-largest reservoir of water
ice in the world and is often referred to as the Water Tower of Asia. As a high-elevation
heat and water source, the energy balance of the Tibetan Plateau significantly influences
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both regional and global weather and climate [7]. Investigating the spatial and temporal
variations of land surface albedo and better understanding the intricate climate–surface
albedo feedbacks in the Tibetan Plateau is of great importance in the context of regional
and global climate [8].

(a) Current approaches to retrieving land surface albedo and limitations due to cloud cover

Currently, satellite data offer a practical technique to estimate albedo at larger scales,
and numerous algorithms and products on surface albedo have been developed over
several decades. Since the launch of the Terra (1999) and Aqua (2002) satellites carrying the
Moderate Resolution Imaging Spectroradiometer (MODIS), the estimation of land–surface
albedo using remote sensing data has advanced significantly [9]. The MODIS retrieval
system of the MCD43 product generates multiple BRDF data products [10]. The most
accurate and reliable retrieval description of the BRDF is obtained by fitting the Ross Thick-
Li Sparse (RTLSR) BRDF model to available cloud-free observations within each 16 day
window (referred to as “full model inversion”).

The retrieval of land surface albedo from polar-orbiting satellite data includes three main
steps: estimation of the at-surface reflectance, modeling of the bidirectional reflectance dis-
tribution function (BRDF), and narrow-to-broadband conversion of albedo [9,11]. MCD43A
Version 6 (V006.1) is the newest daily MODIS surface albedo product. The MODIS albedo
algorithm uses cloudless atmospherically corrected bidirectional reflectance data (BRF, i.e., the
MODIS level-2 surface reflectance product) as input and takes into account the quality flag to
select observations in the spectral bands 1 through 7 (i.e., from 620 nm to 2155 nm) of MODIS
level 1B data, which has been calibrated and geolocated using at-aperture radiances [9] The
MODIS surface reflectance product is corrected for the effects of atmospheric gases and aerosol
only, i.e., it applies to clear sky conditions over flat terrain.

A semiempirical kernel-driven model, i.e., the RossThick-LiSparseR (RTLSR) kernel-
driven BRDF model, is used in the MODIS BRDF/albedo product algorithm to describe the
BRDF as a linear combination of three kernels: isotropic scattering, volume scattering, and
geometric optics scattering [10]. This requires three kernel-weighting coefficients, which
are least-squares estimates using clear-sky at-surface reflectance. At least seven clear-sky
observations during a 16-day period are required in the full model inversion, in which a
linear RTLSR kernel-driven bidirectional reflectance distribution function (BRDF) model
is fitted using least squares to obtain the BRDF parameters [11,12]. The semiempirical
kernel-driven model reconstructs the BRDF for any illumination and view geometry. If
the results of the full model inversion are unsatisfactory, or if the number of clear-sky
observations are insufficient (4 ≤ number of observations < 7 in the MODIS Collection
V004 and V005 BRDF/albedo product, and 2 ≤ number of observations < 7 in the MODIS
Collection V006 BRDF/albedo product), the magnitude inversion method is used. This
magnitude inversion uses the available multi-angle clear-sky observations to adjust the a
priori BRDF parameters to update the RTSLR parameters to be consistent with the actual
surface conditions [11,12]. If the results of the magnitude inversion are unsatisfactory, or if
the number of observations are less than the minimum number of observations required as
mentioned above, no retrieval results are available, and the pixel is assigned a value using
a global BRDF database.

Despite using 16 days of accumulated surface reflectance data, it is at times not possible
to gather the sufficient clear-sky multi-angular observations of surface reflectance to fulfill
the minimum requirements of the BRDF model due to cloud coverage [13]. From 2000 to
2009, annually, approximately 20% to 40% of global land pixels lack daily valid retrievals
sufficient to meet the requirements of the BRDF model [14]. Particularly in the Tibetan
Plateau region, the MODIS albedo product struggles to gather sufficient valid retrievals.
Due to cloud cover, atmospheric contamination, sensor malfunction and variations in
surface topography, there are many gaps in the land surface albedo data set [9,15].

Cloud cover is the primary factor that impacts the retrieval of albedo, as it limits the
number of clear-sky observations. This scarcity of clear-sky multi-angular observations
affects the quality of albedo retrieval, sometimes even preventing successful retrieval.
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Given the importance of spatial and temporal continuity of the observations required for
various applications, algorithms designed for gap-filling are essential to filling in missing
data. Enhancing input data quality for surface albedo estimation and filling gaps in existing
albedo products are key strategies to improve current albedo datasets [14,16–19].

(b) Terrain effects on irradiance and reflected radiance

Terrain effects have a significant impact on both incoming solar radiance and outgo-
ing reflected radiance, ultimately playing a substantial role in the estimation of surface
albedo. Surface albedo changes with the illumination and viewing geometries, particularly
in mountain areas, due to the combination of effects at the observed target and on the
surrounding terrain. The change in surface albedo with the direct and diffuse irradiance,
the evolution of the surface cover type, especially rapid and short-lived changes due to
snowfall, and the topographic effect regulating the direct, diffuse and terrain-reflected
radiation [20] need to be accounted for in the retrieval of land surface albedo.

Land surface albedo can then be retrieved once the BRDF is established. The semiem-
pirical kernel-driven model is used to describe how reflectance varies with illumination
and view angles, which is applied to each spectral channel of the instrument. There has
been growing consideration of terrain effects in the remote-sensing-based surface albedo al-
gorithms in recent years. Gao et al. [21] proposed an improved retrieval method by adding
a topographic factor to the MODIS Bidirectional Reflectance Anisotropy of Land Surface
model. However, this method did not address the correction of land surface reflectance
in obstructed pixels in rugged areas and ignored the reflected sky diffuse irradiance. Wen
et al. [22] proposed an extended multi-sensor combined BRDF inversion model to charac-
terize subpixel-scale effects, which performed well compared to the ground measurement.

(c) All-sky retrieval of surface albedo

In some studies [23–25], researchers delved deeper into estimating downwelling so-
lar radiation in alpine regions under all sky conditions and worked towards improving
the accuracy of retrieved surface albedo. Efficiently and accurately estimating radiation
under cloudy skies is crucial due to the substantial influence of cloud cover on the data
acquired by optical remote sensors. Previous studies have used numerous satellite-based
parameters as inputs for complex radiative transfer models [26,27]. These models incor-
porate detailed descriptions of physical processes, but they are resource-intensive due to
numerous variables and the high computational burden limits the spatial resolution of
the outcomes [28]. A possible solution is to use lookup tables generated offline. LUTs are
created through the application of atmospheric radiative transfer models across numerous
scenarios. These model outputs are then resampled to develop LUTs for downwelling
solar radiation estimation. The advantage of LUT-based methods is their avoidance of
complex input parameters at the retrieval stage [29]. As regards the treatment of radiative
transfer under cloudy conditions, parameterization methods have been established [30–32].
Many parameterization schemes are spectrum-dependent [33,34]. Van Laake and Sanchez-
Azofeifa et al. [33] applied the cloud parameterization model of Stephens et al. [30] to
estimate photosynthetically active radiation (PAR) using MODIS atmospheric products.
Huang et al. [35] used a broadband parameterization to estimate solar surface irradiance
(SSI) inspired by the cloud parameterization model of Fu et al. [32].

Modern techniques and methodologies, like those used in the Satellite Application
Facility on Climate Monitoring (CM-SAF) all-sky data, effectively simulate cloud reflectance
and attenuation effects on radiative flux, despite cloud complex microphysical and optical
properties. Several estimation approaches exist, including empirical relationships, physical
principles, optimization techniques, and machine learning models [36–41].

(d) Overview of the new approach

Recognizing the limitations of current approaches, especially under all-sky and rugged
terrain conditions, this study aims to introduce an innovative method for estimating
surface albedo and at-surface upwelling radiance over the Tibetan Plateau using MODIS
data. We have been able to estimate the components of surface solar irradiance and of
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upwelling radiance: direct, isotropic and circumsolar diffuse, and terrain irradiance over
rugged terrain under cloudy sky [42]. The approach proposed in this paper aimed to
substantially reduce the occurrence of data gaps and improve the quality of the estimated
albedo. Notably, in an earlier study, we focused on the estimation of the surface solar
irradiance (SSI) and its four components, i.e., direct, isotropic diffuse, circumsolar diffuse,
and surrounding terrain irradiance, factoring in the actual terrain geometry derived from
DEM data [42]. Under cloudy conditions, our model integrates cloud properties, such as
cloud cover fraction and cloud reflectance and transmittance, to improve the estimation of
SSI and at-surface upwelling radiance. This method allows for an estimation of bidirectional
surface reflectance even under cloudy conditions, improving the continuity of input data
for BRDF modelling and the retrieval of surface albedo. As in the MODIS algorithm, the
anisotropy of the bidirectional reflectance of the land surface is described using the RTLSR-
kernel-driven BRDF model in our study. The semiempirical kernel-driven model is applied
to reconstruct the BRDF, but the reflectances are calculated for the four components of
surface solar irradiance under all sky conditions. Ultimately, the surface albedo is calculated
as the ratio of the total reflected radiance to the total incident solar irradiance, aligning with
the fundamental definition of surface albedo. Our method enables daily albedo estimation
in a region critically important for global climate dynamics.

2. Description of Study Area and Data
2.1. Study Area and In Situ Radiation Observations

The Tibetan Plateau is encompassed by formidable mountain ranges: the Inner Hi-
malayas to the south, the Arkin Qilian Mountains to the north, the Karakorum Mountains
to the west, and the Hengduan Mountains to the east, as illustrated in Figure 1. This plateau,
the largest in China and the highest globally, spans an approximate area of 2.05 million km²,
accounting for a quarter of China’s landmass. The average elevation of the plateau exceeds
4500 m above sea level (m.a.s.l.).
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The ground measurements were obtained from radiation balance stations located on
the Tibetan Plateau (Table 1 and Figure 1), namely the NamCo Monitoring and Research for
Multisphere Interactions Station (NAMORS), the Dali Station, Muztagh Ata for Westerly En-
vironment Observation and Research Station (MWWORS), and Qomolangma Atmospheric
and Environmental Observation and Research Station (QOMS). The four stations—with
MAWORS in the westerly zone and QOMS, NAMORS, and Dali in the monsoon zone—are
geographically and climatically positioned to represent different terrain conditions, ecosys-
tem types (land cover types, ranging from desert, alpine steppe to cropland), and climate
zones on the Tibetan Plateau (Table 1). Each station provides unique insights into dif-
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ferent atmospheric and environmental aspects, enhancing the overall representativeness
of the study. MAWORS is located in the westerly climate zone and has a dry and cold
climate. This site provides essential data on the impact of westerly driven weather [43].
The QOMS is located in a semi-arid plateau monsoon climate [44] at 4298 m.a.s.l. and
30 km from the northern boundary of Mt. Everest. It is dominated by alpine Gobi desert,
relatively flat and open terrain characterized mainly by bare ground and sparse and short
vegetation. MAWORS is located close to Muztagh Mountain and Karakuli Lake and lies at
3668 m.a.s.l. The NAMORS is situated on the southeast bank of Namco Lake, surrounded
by the Nyenchen Tanglha Mountains and has an elevation of 4730 m.a.s.l. It is classified
as an alpine meadow and belongs to the semi-arid plateau monsoon climate zone. The
Dali Station, situated at 1999 m.a.s.l., nestles between the Cangshan Mountains to the west
and Erhai Lake to the east. This location allows sampling a crucial water vapor transport
channel in Hengduan Moutains on the southeastern edge of the Tibetan Plateau. Dali
station is located in the windward zone of the Southwest Monsoon of the Bay of Bengal,
belonging to the subtropical highland monsoon climate type. Detailed information about
the locations and the instruments for Dali NAMORS, MWWORS, and QOMS stations can
be found in [45,46].

Table 1. Geographic characteristics of the four stations with radiation measurements over Tibetan
Plateau (30 m resolution slope and aspect derived from 30 m resolution ASTER-GDEM2; 1 km slope
and aspect resampled from 30 m resolution slope and aspect).

Station
Name Latitude Longitude Elevation

(m.a.s.l.)
Slope

(30 m/1 km) Aspect (30 m/1 km) Land Cover Soil Type

MAWORS 38.42◦N 75.03◦E 3668 5◦/19◦ 119◦/106◦ Alpine desert Sand and gravel
NAMORS 30.77◦N 90.96◦E 4730 3◦/5◦ 256◦/155◦ Alpine steppe Sandy and loam

QOMS 28.36◦N 86.95◦E 4298 7◦/8◦ 45◦/172◦ Alpine desert Sand and gravel
Dali 25.72◦N 100.19◦E 1990 3◦/3◦ 309◦/109◦ Farmland Paddy soil

We used time-averaged observations with a temporal resolution of 30 min at QOMS,
MAWORS and NAMORS station and or 1 h at Dali station. Every station provides distinct
observations on various atmospheric and land surface processes. The surface radiation
components include the incoming and outgoing shortwave and longwave radiations. The
ground measurements of surface shortwave albedo were obtained as the ratio of shortwave
upwelling radiation to shortwave downwelling radiation.

Although the four stations are sparsely distributed, their strategic locations in diverse
ecological and climatic settings across the Tibetan Plateau, coupled with the comprehensive
analysis of daily atmospheric conditions over a year at the MODIS Aqua and Terra overpass
time, provide a robust and representative dataset for our study. We believe that our
evaluation covered the solar irradiance variability across this unique and complex region.

2.2. Satellite Data

The Terra and Aqua satellites utilize MODIS sensors to capture images in 36 spectral
bands ranging from 0.62 µm to 14.385 µm. These images have a broad ground swath
of approximately 2330 km and different spatial resolutions of 250 m, 500 m, and 1 km
depending on the spectral band. The MODIS level 1B data undergo radiometric calibration,
while the level 2 data are atmospherically corrected and formatted in an ungridded orbital
swath, resulting in a product that spans five minutes. The Terra and Aqua products will
be referred to collectively with the identifiers “MOD” and “MYD”, respectively. For this
study, MODIS Aqua and Terra data were employed, and the atmospheric products (e.g.,
MOD04/MYD04 L2, MOD05/MYD05 L2, MOD06/MYD06 L2, and MOD07/MYD07 L2)
and the calibrated radiance product (MOD021KM/MYD021KM) from Table 2 were used
as input data. The first seven spectral bands of MOD021KM/MYD021KM are used to
estimate shortwave TOA radiance in this study. The instantaneous MODIS TOA spectral
radiance was converted to TOA total shortwave radiance according to narrowband-to-
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broadband conversion method [47]. The study utilized eight variables—namely, aerosol
optical depth (AOD), precipitable water content, ozone optical depth, surface pressure,
cloud top pressure, cloud fraction, and cloud optical depth, all obtained from MODIS
atmospheric data products—to estimate atmospheric transmittance. The MOD03/MYD03
provided the geolocation of the observations. The MODIS BRDF/Albedo MCD43A3 C6.1
dataset, available from the NASA Land Processes Distributed Active Archive Center (LP
DAAC), produces albedo quantities at a resolution of 500 m in a sinusoidal projection. The
MODIS MCD43A2 C6.1dataset is BRDF/Albedo) quality dataset is produced daily using
16 days of Terra and Aqua MODIS data at 500 m resolution for the corresponding 16-day
MCD43A3 BRDF/Albedo dataset. The MCD43A2 contains individual band quality and ob-
servation information for the MODIS land bands 1–7, along with the overall BRDF/Albedo
quality information. These quantities have been produced daily since 2000 with a synthesis
period of 16 days, using data from both the Terra and Aqua satellites.

Table 2. MODIS level 2 data products and DEM data used in this study.

Product Short Name Product Name Spatial
Resolution

Temporal
Resolution Data Type

MOD021km/MYD021km Calibrated Radiance 1 km 5 min EV_250_Aggr1km_RefSB
EV_500_Aggr1km_RefSB

MOD03/MYD03 L2 Geolocation dataset 1 km 5 min Longitude/latitude

MOD04/MYD04 L2 Aerosol optical thickness 10 km 5 min Corrected optical depth land

MOD05/MYD05 L2 Total precipitable water vapor 5 km 5 min Water vapor NIR retrieval

MOD06/MYD06 L2 Cloud 1 km or 5 km 5 min

Surface pressure
Cloud top pressure

Cloud fraction
Cloud optical thickness

MOD07/MYD07 L2 Atmosphere profile 5 km 5 min Total ozone

ASTER-GDEM2 DEM 30 m - DEM

The ASTER-GDEM2 dataset was used for calculating topographic parameters, i.e.,
slope, aspect, SVF (sky-view factor) and TVF (terrain-view factor) [48,49], which is one
of the most widely used high-resolution digital topographic datasets to date. The 30 m
resolution ASTER-GDEM2 data were averaged to estimate the mean elevation of each
1 km × 1 km grid, i.e., the same spatial resolution as the MODIS surface reflectance data.
The slope, aspect, SVF and TVF of the terrain were retrieved at a 30 m resolution from the
DEM generated using the data acquired by ASTER-GDEM2 data and then averaged to
1 km resolution.

3. Method

In this study, we retrieved surface albedo by calculating first all the relevant radiative
fluxes under all sky conditions, taking into account the terrain effects on both the incoming
and the reflected radiant energy. The procedure includes four steps: (1) estimating instan-
taneous surface solar irradiance (SSI) and its four components under all sky conditions
over rugged terrain using a physically-based model [42,50] (see Section 3.1); (2) estimat-
ing the instantaneous at-surface upwelling directional radiance under all sky conditions
in rugged terrain [24,51] (see Section 3.2); (3) estimating land surface reflectance under
clear and cloudy sky on a rugged surface (see Section 3.3); and (4) estimating the surface
albedo of rugged terrain [52] (see Section 3.4). The workflow used to retrieve the surface
albedo is illustrated schematically in Figure 2. The detailed methods are described in the
following sections.
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3.1. Estimation of Surface Solar Irradiance under Full Sky Conditions over Rugged Terrain

Over rugged terrain, the temporal and spatial distribution of surface solar irradiance
(SSI) is the result of complex interactions among the incoming solar beam, the atmosphere,
and the surface. At the bottom of the atmosphere (BOA), the SSI on a rugged terrain
element includes four components, i.e., direct irradiance (Edc, W/m2), isotropic diffuse
irradiance (Eiso, W/m2), circumsolar diffuse irradiance (Ecir, W/m2) and terrain irradiance
(Et, W/m2) [42,50] and can be described as:

Etotal = Edc + Ecir + Eiso + Et (1)

where Etotal (W/m2) is the at-surface solar irradiance (SSI); Edc (W/m2) is the solar radiation
directly reaching the surface through the atmosphere in rugged terrain; Ecir (W/m2) is
the scattering of direct sunlight in the atmosphere, and the effect of topography can be
modeled using the same method used for direct irradiance; Eiso (W/m2) is a function of
the proportion of the sky hemisphere not obstructed by the topography; Et (W/m2) is the
irradiance reflected by the terrain surrounding the observed facet. We have proposed a
method of estimating the four components in Equation (1) under full sky conditions over
rugged terrain [51]; a brief description is given below.

3.1.1. SSI under Clear Sky Conditions over Rugged Terrain

Under clear sky conditions, the direct solar irradiance is influenced by the slope and
azimuth of the observed terrain facet and of the surrounding terrain. Solar radiation is
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absorbed by water vapor, ozone and other uniformly mixed gases, while aerosols either
scatter or absorb radiation [53]. In mountainous regions, two primary factors influence
the irradiance onto the observed facet: the orientation of the observed facet relative to the
Sun beam and the impact of the facet orientation combined with the surrounding terrain.
Part of the radiation scattered in the atmosphere can reach the rugged surface as diffuse
irradiance. The direct irradiance (Edc, W/m2), anisotropic circumsolar diffuse irradiance
(Ecir, W/m2), isotropic diffuse irradiance (Eiso, W/m2), a function of the proportion of the
sky hemisphere not obstructed by the topography) and terrain irradiance for a tilted facet
under clear sky conditions (Et, W/m2), a complex term, as it consists of both the direct
and diffuse irradiance reflected from surrounding terrain [54,55]) can be described by the
following equations:

Edc = ΘEd
cosθi
cosθs

(2)

Ecir = E f k
cosθi
cosθs

(3)

Eiso = E f (1 − k)Vd (4)

Et =
(

Ed + E f

)
Vtρadj (5)

where Θ is a binary coefficient introduced by [45] that controls the cast shadows and is set
to zero for a facet in the shadow and to one for a sunlit facet. θi is the solar incident angle
between the normal to the facet and the Sun line of illumination (LoI). Both θi and Θ are
derived from ASTER-GDEM2. θs is the solar zenith from MOD03/MYD03 products. k is
the ratio of direct irradiance on a flat surface (Ed, W/m2) to the irradiance at the top of the
atmosphere, which is also called Hay’s anisotropy index [56]; ρadj is the surface reflectance
of the adjacent objects. Vd is the sky view factor (SVF), which is defined as the ratio of the
sky portion seen from a specific facet to that on an unobstructed horizontal facet. Vt is the
terrain view factor (TVF), defined as the portion of hemisphere overlying the observed
facet and obstructed by the surrounding terrain. The sky view and terrain view factors are
calculated using the analytical algorithm developed by [48]. The sky view and terrain view
factors are also derived from the ASTER-GDEM2.

In Equations (2)–(5), Ed (W/m2) is the direct irradiance on flat surface and E f (W/m2)
is the diffuse irradiance on flat surface, and they are calculated as:

Ed = E0·cos (θs)·TB (6)

E f = E0·cosθs·TD (7)

where E0 (W/m2) is the extraterrestrial solar irradiance, TB is the direct beam transmit-
tance, and TD is the diffuse transmittance under clear sky introduced by [57]. They are
calculated as:

E0 = S0·SEd (8)

TB = τo·τw·τg·τr·τa (9)

TD = 0.5τo·τw·τg·(1 − τa·τr) (10)

where S0 (W/m2) is the solar constant (1367 W/m2). SEd is Sun–Earth distance. Transmit-
tance factors (τr, τa, τo, τw, τg) introduced by [57] are influenced by five radiation-damping
processes under clear sky conditions: (1) Rayleigh scattering, (2) aerosol extinction, (3) ozone
absorption, (4) water vapor absorption, and (5) permanent gas absorption.

The input variables for calculation of transmittance factor (τr, τa, τo, τw, τg) are the
surface pressure, precipitable water, optical thickness of the ozone layer, ozone thickness,
and AOD, which can be obtained from MODIS data products (Table 2).
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3.1.2. SSI under Cloudy Sky Conditions over Rugged Terrain

Under cloudy conditions, cloud tops reflect a fraction of the solar radiation back
into space while allowing the rest to pass through. In this study, the influence of clouds
on radiation is modeled using a parameterization method described in detail in [30,58].
This method categorizes the solar shortwave range into two broad bands: 0.30–0.75 µm
and 0.75–4 µm, and is designed to estimate the reflection, transmission, and absorption
of radiation by clouds within these bands. The direct irradiance (Edc

′, W/m2) is direct
irradiance in the cloud-free fraction of a pixel. The isotropic diffuse irradiance (Eiso

′, W/m2)
in a pixel is composed of three components: the isotropic diffuse irradiance in the cloudless
fraction, the isotropic diffuse irradiance transmitted by the clouds, and the isotropic diffuse
irradiance scattered by the clouds. The circumsolar diffuse irradiance (Ecir

′, W/m2) in
a pixel is composed of the circumsolar diffuse irradiance in the cloudless part and the
circumsolar diffuse irradiance scattered by the clouds.

Under cloudy conditions, the direct irradiance (Edc
′, W/m2), anisotropic circumsolar

diffuse irradiance (Ecir
′, W/m2), isotropic diffuse irradiance (Eiso

′, W/m2), and terrain
irradiance for a tilted facet under cloudy sky conditions can be described by the following
equations [43]:

Edc
′ = (1 − c f )× Edc (11)

Eiso
′ = E f (1 − c f )(1 − k)Vd + TB

′E0c f cosθsVd + (1 − TB)Eisoc f (12)

Ecir
′ = E f (1 − c f )k

cosθi
cosθs

+
(
1 − TB

′) Ecirc f (13)

Et
′ =

(
Edc

′ + E f
′
)

Vtρadj (14)

E f
′ = TB

′E0 cosθic f + (1 − c f )E f (15)

TB
′ = τo·τw

′·τg
′·τr

′·τa·τc (16)

where τc is the cloud transmittance according to [30]. τc is estimated from cloud optical
thickness from MOD06/MYD06; c f is the cloud fraction from MOD06/MYD06, defined as
the fraction of each pixel covered by clouds and determines the impact of the clouds on
the solar radiation. Edc

′ is estimated as a proportion of clear-sky direct irradiance under
cloudy sky conditions. Eiso

′ is the isotropic diffuse irradiance under cloudy sky conditions.
Ecir

′ is circumsolar diffuse irradiance under cloudy sky. Et
′ is the terrain irradiance under

cloudy sky conditions. E f
′ is the diffuse component of irradiance on a horizontal surface

under cloudy sky conditions. TB
′ is the total transmittance under cloudy conditions.

Transmittance factors (τw
′, τg

′, τr
′) under cloudy conditions were introduced by [42].The

input variables for estimation of transmittance factors (τw
′, τg

′, τr
′) under cloudy conditions

include not only the surface pressure, precipitable water, optical thickness of the ozone
layer, ozone thickness, and AOD from the MODIS data product but also cloud top pressure
provided by MOD06/MYD06 product (Table 2).

3.2. At-Surface Upwelling Radiance under Clear and Cloudy Sky in Rugged Terrain

In this study, at-surface upwelling radiance was estimated and then used to obtain
the bidirectional surface reflectance, which is the key radiative variable in the estimation
of at-surface reflectance as Ross–Li model input data for retrieving surface albedo. The
surface reflected radiant exitance was divided by the SSI to derive surface reflectance in a
specific direction towards the sensor (see Section 3.1). The at-surface upwelling radiance
LBOA (W/m2/sr) was estimated from the at-satellite TOA radiance (W/m2/sr) by taking
into account the effects of the atmosphere described above.

3.2.1. At-Surface Upwelling Radiance under Clear Sky in Rugged Terrain

Terrain characteristics not only affect SSI but also radiance reflected by the surface
under different atmospheric conditions. We used a simple model to remove the reflected ra-
diance of the surrounding terrain irradiance by surface following previous study [21]. This
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model estimates the at-surface upwelling radiance in rugged terrain, taking into account
topographic influence. Under clear sky conditions, the at-sensor TOA radiance from a
target pixel observed by MODIS (provided by the MYD02/MOD02 products) is composed
of (1) the at-surface upwelling radiance of the pixel (LBOA) attenuated by the atmosphere,
(2) the irradiance from the surrounding terrain that is reflected by the observed facet and
attenuated by the atmosphere (surrounding terrain contribution (LTOA, topo_neighbor), and
(3) the atmospheric contribution (LP) and is expressed as:

LTOA = (TB + TD) cosθv LBOA + LTOA, topo_neighbor + LP (17)

where LTOA (W/m2/sr) is the observed at-sensor TOA radiance made available in the
MYD02/MOD02 product, LTOA,topo_neighbor (W/m2/sr) is the TOA value of the irradiance
from the surrounding topography that is reflected by the observed pixel surface, and
Lp (W/m2/sr) is the path radiance along the satellite observation direction under clear
sky conditions as estimated using MODTRAN. The spectral TOA radiance (W/m2/sr) in
MOD02/MYD02 is converted into shortwave TOA radiance according to [47]. θv is the
satellite observation zenith angle from the MOD03/MYD03 product. Assuming that at
TOA, the proportion of the terrain irradiance to the total surface solar irradiance is the same
as the proportion of terrain radiance to observed radiance at BOA, LTOA, topo_neighbor can be
estimated as:

LTOA, topo_neighbor =
Et

Etotal
·
(

LTOA − Lp
)

(18)

Therefore, under clear sky conditions, the at-surface upwelling radiance of the pixel,
LBOA, is calculated by deducting the contributions from surrounding terrain and the
atmosphere (combining Equations (17) and (18)) and expressed as:

LBOA =

(
LTOA − Lp

)
(TB + TD)cosθv

− Et

Etotal

[ (
LTOA − Lp

)
(TB + TD)cosθv

]
(19)

The first term of Equation (19) is the surface reflected radiance at observation angles
at the bottom of atmosphere after atmospheric correction. The second term of Equation (19)
is the irradiance from surrounding topography reflected by the observed surface facet.

3.2.2. At-Surface Upwelling Radiance under Cloudy Sky in Rugged Terrain

Under cloudy sky conditions, the at-sensor TOA radiance includes the radiation
reflected by the land surface and transmitted by clouds, path radiance, the radiation
scattered by the surroundings of the observed target and the radiation reflected by clouds.
In order to increase the number of valid retrievals of surface reflectance, we estimated the at-
surface shortwave upwelling radiance under cloudy sky conditions (LBOA

′, W/m2/str) as:

LBOA
′ =

(
LTOA − Lp

)
Tall

′ − Et

Etotal


(

LTOA − Lp −
Ec f
π

)
Tall

′

 (20)

Tall
′ =

[
(TB + TD)(1 − c f ) + TB

′c f
]
cosθv (21)

Ec f = E0ρcld × c f (τozτr)
2τccosθv cosθs (22)

where Tall
′ is atmospheric transmittance under cloudy sky at observation angle θv. Ec f (W/m2) is

the cloud reflected radiative flux observed by a satellite at TOA. ρcld is the cloud reflectance
from [30].
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3.3. Estimating Land Surface Reflectance under Clear and Cloudy Sky Conditions on a
Rugged Surface

At-surface reflectance is the ratio of at-surface upwelling radiant exitance at given
incident and observation angles to SSI. The at-surface reflectances under clear and cloudy
sky conditions are:

ρBOA =
LBOA π

Edc + Ecir + Eiso + Et
(23)

ρBOA
′ =

LBOA
′ π

Edc
′ + Ecir

′ + Eiso
′ + Et

′ (24)

where ρBOA is the shortwave surface reflectance under clear sky and ρBOA
′ is the shortwave

surface reflectance under cloudy sky.

3.4. Retrieval of Surface Albedo over Rugged Terrain

Rugged terrain alters the ratio of direct, diffuse, and terrain-reflected radiations [59].
The actual surface albedo quantifies the fraction of the sunlight energy reflected by the
surface of the Earth.

We used two complementary methods to retrieve the surface albedo: (1) if there are at
least three observations with cf ≤ 50% within a 16-day window, we construct the BRDF
using the same method as in the MODIS MCD43 BRDF/albedo algorithm; (2) if there are
fewer than three observations with cf ≤ 50% within a 16-day window (cloudy conditions),
we estimate the surface albedo as the ratio of the at-surface upwelling radiant exitance to
the SSI.

In the first method, the surface albedo (α) of rugged terrain can be written as:

α =
Edcρdh(θi , φi ; θv, θφv, 2π) + (Ecir + Eiso)ρhh(θi , φi , 2π; 2π) + Etρhh + (Ecir + Eiso)ρhd(θi , φi , 2π; θv, φv)

Etotal
(25)

where ρdh(θi, φi; θv, φv, 2π), also called the black-sky albedo (BSA), is the directional-
hemispheric reflectance, which is the hemispheric integral of the radiance reflected by
a surface into the view hemisphere when illuminated by a point-like direct illumination
source. ρhd(θi, φi, 2π; θv, φv) is the reflectance for the hemispheric irradiance in a specific
direction of observation (line of sight, LoS) and is an integral of the bidirectional reflectance
over all incidence angles and is equal to the hemispherical directional reflectance fac-
tor (HDRF). ρhh(θi, φi, 2π; 2π) is the bi-hemispheric reflectance, also called the white-sky
albedo (WSA). Although ρdh(θi, φi; θv, φv, 2π) and ρhd(θi, φi, 2π; θv, φv) are defined from
different perspectives of reflectance measurement, their values can be considered ap-
proximately equivalent under many practical circumstances due to their similar roles in
characterizing the reflective properties of the surface [60].

The ρdh(θi, φi; θv, φv, 2π) and ρhh(θi, φi, 2π; 2π) are as follows:

ρdh(θi, φi; θv, φv, 2π) = fiso
(

g0iso + g1isoθ2 + g2isoθ3)
+ fvol

(
g0vol + g1volθ

2 + g2volθ
3)

+ fgeo
(

g0geo + g1geoθ2 + g2geoθ3) (26)

ρhh(θi, φi, 2π; 2π)= fisogiso + fvol gvol + fgeoggeo (27)

where fk (k = iso, vol, geo) is BRDF model kernel weights in kernel-driven BRDF model.
gjk (j = 0, 1, 2; k = iso, vol, geo) and gk coefficients are taken from [10].

The BRDF quantifies the angular distribution of radiance reflected by an illuminated
surface [61]. We used an RTLSR-kernel-driven BRDF model that linearly combines three
kernels: isotropic scattering, volume scattering, and geometric optics scattering according
to the algorithm of the MCD43 BRDF/albedo product [62]. The Ross–Li kernel-driven
BRDF model equation is:

R(θi, θv, φi, φv) = fiso + fvolkvol(θi, θv, φi, φv) + fgeokgeo(θi, θv, φi, φv) (28)
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where R(θi, θv, φi, φv) is the at-surface bidirectional reflectance, fiso is the coefficient of the
isotropic term, kvol is the volume scattering term from the Ross–Thick kernel, kgeo is the
geometrical optical scattering term of the Li–Ross kernel, fvol is the coefficient of kvol , and
fgeo is the coefficient of kgeo.

Given the at-surface reflectance ρBOA at specific incident and view angles obtained
from Equations (23) and (24) under clear and cloudy sky conditions, we can derive analytical
solutions for the model parameters fk in Equation (28) by minimizing a least squares error
function as applied in the MCD43 BRDF/albedo algorithm (when applying ∂e2

∂ fk
= 0):

e2 =
1
d

n

∑
i=1

[ρBOA,i(θin, θvn, φin, φvn)− Ri(θin, θvn, φin, φvn)]
2

ωi
(29)

where n is the number of observations (the minimum number of observations is taken
as 3 in our method), d is degree of freedom (number of observations minus number of
unknown parameters), and ωi is a weight given to each respective observation. ρBOA is
estimated by Equations (23) and (24).

If the number of observations with cf ≤ 50% within a 16-day window is insufficient
to determine the parameters of the BRDF model, we apply the second method to esti-
mate the surface albedo as the ratio of the at-surface upwelling radiance to the SSI from
Equations (23) and (24).

Once all the components in Equation (25) are estimated through the above procedures,
land surface albedo over rugged terrain under clear and cloudy sky conditions is obtained.

3.5. Validation Approach

We used four error metrics for the evaluation of our retrievals by comparison with in
situ observations: the bias (Bias), root mean square error (RMSE), mean absolute percentage
error (MAPE), and correlation coefficient (R), which are calculated as follows:

Bias = ∑n
i=1(xi − yi) (30)

RMSE =

√
1
n ∑n

i=1 (xi − yi)
2 (31)

MAPE =
1
n ∑n

i=1

∣∣∣∣ xi − yi
xi

∣∣∣∣ (32)

R =
∑n

i=1(xi − x)× (yi − y)

∑n
i=1 (xi − x)2 × (yi − y)2 (33)

where xi is the in situ observation value, yi is the value estimated using the method
developed in this study, x is the average observation value, y is the average estimated
value, and n is the number of estimates and measurements.

4. Results

The method proposed in Section 3 and the data introduced in Section 2 were applied
to estimate both instantaneous at-surface upwelling shortwave radiance and surface albedo
taking into account the coupled effects of the topography and atmosphere at 1 km spatial
resolution on the Tibetan Plateau. The method was evaluated against in situ daily mea-
surements recorded daily at the Dali, NAMORS, MAWORS, and QOMS stations on the
Tibetan Plateau in 2018. This validation revealed that at-surface upwelling estimates and
the surface albedo retrieval are in satisfactory agreement with the ground observations
(Sections 4.2 and 4.3) and our approach clearly improved the spatial and temporal coverage
of the albedo retrievals (Section 4.4).
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4.1. Number of Valid Observations in the Improved Method versus MODIS Product

Both our surface albedo retrieval method and the MODIS albedo algorithm (MCD43A3)
require at least 4 valid surface reflectance observations every 16 days to construct the BRDF
for surface albedo inversion. The MODIS MCD43A2 product provides the BRDF/Albedo
band quality and information on the days of valid observation of surface reflectance within
each 16-day period for MODIS bands 1 to 7. The advantage of our method over the MODIS
surface albedo algorithm can then be best documented by comparing the number of valid
surface reflectance observations. This comparison was made for the Dali, MAWORS,
NAMORS, and QOMS stations (Figure 3). For the MODIS MCD43A2 product, the number
of valid observations is the sum of the number of valid daily surface reflectance (clear sky)
observations that can be used to successfully retrieve daily surface albedo within each
16-day moving window in each month. For our method, we calculated the number of valid
observations in each month in the same way but used the conditions of the cloud fraction
less than 50% (other than totally clear sky as required by the MODIS algorithm), taking into
account the accuracy in the estimating cloud reflectance and transmittance (see Section 4.2).
The number of valid observations with our method was, as expected, much higher than
with the MODIS algorithm, i.e., 200% higher at Dali, 66% higher at QOMS, 100% higher
at MAWORS, and 40% higher at NAMORS station. This difference is that this lacks the
advantage of estimating the at-surface upwelling radiance under cloudy conditions as our
method does. The performance of this advantage of our method is evaluated in the next
Section 4.2. At Dali Station, the absence of days, with zero cloudy days in July and the
presence of clear sky conditions only on certain days in August, highlighted the limitations
of the MODIS algorithm in providing more effective albedo retrievals. The situation at
QOMS Station mirrors that at Dali Station.
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Figure 3. Comparison of the monthly distribution of the sum of the number of valid daily surface
reflectance observations (ValObs) between our method and MODIS MCD43A2 that can be used for
successful retrieval of daily surface albedo within each 16-day moving window at the four stations
on the Tibetan Plateau in 2018: (a) Dali Station, (b) MAWORS Station, (c) NAMORS Station, and
(d) QOMS Station.



Remote Sens. 2024, 16, 1723 14 of 26

4.2. Evaluation of Retrieved At-Surface Upwelling Radiance

Our method relies on the estimation of the at-surface upwelling radiance under all
sky conditions, which requires the estimation of cloud reflectance and transmittance, in
addition to atmospheric absorption and scattering and to terrain irradiance (see Section 3.2).
We compared our estimation of at-surface upwelling radiance with a set of ground ob-
servations at the four stations on the Tibetan Plateau in 2018. We used time averaged
observations of a temporal interval of 30 min (QOMS, MAWORS, and NAMORS) or 1 h
(Dali). We applied four error metrics—BIAS, MAPE, RMSE, and R—calculated using
Equations (30)–(33). Better estimates of the at-surface upwelling radiance were obtained
for MAWORS, NAMORS, and QOMS than for Dali when the cloud fraction (CF) of the
pixel at the ground site measured by MOD06/MYD06 was less than 50% (Figure 4).
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The estimates of at-surface upwelling radiance at MAWORS, NAMORS, QOMS, and
Dali stations were also evaluated at different cloud fractions (Figure 5). Five cloud fraction
bins were considered: CF = 0%, 0% < CF ≤ 20%, 20 < CF ≤ 50%, 50% < CF ≤ 75%,
and 75% < CF ≤ 100%. Under clear sky conditions (CF = 0%) and low cloud fraction
(0% < CF ≤ 20%), all stations have relatively low MAPE values, indicating the higher
accuracy of the estimates. As the cloud fraction increases (20% < CF ≤ 50% and 50%
< CF ≤ 75%), all stations show varying increases in MAPE, indicating that the presence
of clouds makes the estimates of at-surface upwelling radiance more challenging. At the
highest cloud fraction level (75% < CF ≤ 100%), there is a significant increase in MAPE for all
stations, particularly for QOMS and NAMORS. This indicates that estimation errors increase
significantly with high cloud coverage, suggesting that the current parameterization of
cloud reflectance and transmittance should be improved to better deal with nearly complete
cloud cover conditions.
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Using the method described here, we estimated instantaneous at-surface upwelling
radiance corresponding to the overpass time applied to the MODIS orbital products, i.e., a
spatial map was produced every 5 min with a spatial resolution of 1 km. Figure 6 shows an
example on 2 January 2018, with large cloud cover over the Tibetan Plateau, to demonstrate
the ability of our method to provide more valid estimates of at-surface upwelling radiance.

4.3. Evaluation of Retrieved Surface Albedo

We compared our shortwave surface albedo with the shortwave WSA and BSA of
MODIS (MCD43A3) and with ground measurements of surface albedo at four stations
on the Tibetan Plateau: Dali, MAWORS, NAMORS, and QOMS (Figure 7). The MODIS
retrievals apply to clear sky only, and the MODIS albedo products do not include blue-sky
albedo retrievals. In general, the blue-sky albedo is computed by linear interpolation
of WSA and BSA on the basis of the fraction of diffuse skylight [63], but as shown in
Section 3.4, the blue-sky albedo depends nonlinearly on BSA and WSA in a rugged terrain.
We compared our broadband albedo retrievals with both MODIS WSA and BSA (Figure 7)
with the ground measurements. Our method led to a significant reduction in RMSE at
the four observation sites when compared to the RMSE of MODIS WSA and BSA data
(Figure 7). The best performance for the MODIS WSA, BSA, and our retrievals was achieved
at the Dali station, with RMSE values of 0.0585, 0.0640, and 0.0422, respectively. At the
MAWORS site, the RMSE values for our retrievals were 34% and 31% lower than for WSA
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and BSA, respectively (Figure 7). Our algorithm includes the calculation of the effect
of terrain on at-surface irradiance and at-surface upwelling radiance and also retrievals
albedo for all sky conditions. The average cloud coverage in 2018 at the four stations Dali,
NAWORS, MAWORS, and QOMS was 53.9%, 55.7%, 61.0%, and 38.3%, respectively. The
four error metrics (Table 3) provide further evidence on the satisfactory performance of our
proposed method. The terrain slopes at the four stations—Dali, NAWORS, MAWORS, and
QOMS—are 3◦, 3◦, 5◦, and 7◦, respectively. It should be noted that our estimates of albedo
apply to a plane facet parallel to a 1 km × 1 km terrain facet. The retrievals of surface
albedo are based on the mean slope and aspect of the terrain within each 1 km × 1 km grid,
determined by averaging slope and aspect calculated at a 30 m × 30 m spatial resolution
within each grid. If this facet has the same orientation as the terrain at the location of the
radiometer used to measure radiance value, the terrain geometry of our retrievals and in
situ measurements should be comparable. The footprint of an in situ radiometer, however,
is much smaller than the 1 km × 1 km pixel applied in our retrieval. Differences in aspect
have an impact when differences in slope are larger, as it is the case at MAWORS (Table 1),
which may explain the lower accuracy of our retrievals at this site. In addition, we noted a
few instances of less reliable in situ radiometric measurements, which led to a few outliers
with an impact on error metrics difficult to evaluate. The MAWORS site has the highest
cloud cover in 2018, with the slope being the second-largest of the four sites. Therefore, it
seems to have the greatest atmospheric and topographical influence.
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Figure 7. Comparison of clear day results of the estimated broadband surface albedo using the new
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albedo at Dali, MAWORS, NAMORS, and QOMS stations on the Tibetan Plateau in 2018.

Table 3. Validation metrics of the estimated surface albedo and comparison with MODIS WSA and
BSA under clear sky conditions.

Station Method R RMSE Bias MAPE

Dali
Our method 0.44 0.0422 −0.0109 16%
MODIS WSA 0.30 0.0585 0.054 25%
MODIS BSA 0.31 0.0640 0.061 28%

NAMORS
Our method 0.26 0.0992 −0.036 20%
MODIS WSA 0.21 0.1124 0.040 24%
MODIS BSA 0.20 0.1134 0.043 22%

MAWORS
Our method 0.20 0.0545 −0.035 25%
MODIS WSA 0.16 0.0830 0.041 23%
MODIS BSA 0.14 0.0794 0.049 25%

QOMS
Our method 0.42 0.0639 0.012 20%
MODIS WSA 0.16 0.0893 0.083 31%
MODIS BSA 0.21 0.0991 0.095 36%

Figure 8 shows the performance of the surface broadband albedo retrievals using
our method when compared with ground measurements under different cloud condi-
tions. As expected, the performance was best when the cloud fraction was 0% at Dali,
MAWORS, NAMORS, and QOMS. As the cloud fraction increased, the MAPE between
the estimated and observed surface albedo increased slightly, i.e., the uncertainty of the
estimates increased at Dali and NAWORS but not MAWORS and QOMS (Figure 8).

4.4. Spatial and Temporal Coverage of Retrieved Surface Albedo in Rugged Terrain

Our method improves significantly the spatial and temporal coverage of valid re-
trievals. The case of the MAWORS station, located in rugged terrain, documents this aspect
effectively (Figure 9). Our estimates of surface albedo achieve nearly full spatial coverage
(Figure 9f) and, in the cloud-covered areas, show texture characteristics consistent with the
surrounding terrain. The high-surface-albedo regions in the MCD43A3 products and our
retrievals appear to correlate with flatter areas. By examining areas of mismatch between
our results and MCD43A3 albedos, we noted that topography influences surface albedo
retrieval, where terrain features like ridges and valleys can cause significant variability
(Figure 9). Such terrain effect under cloudy conditions can be captured well by our method,
but retrieval with the MODIS albedo products failed (Figure 9d,e). The temporal cover-
age is also clearly improved by our method, as shown by a time series of the estimated
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broadband shortwave surface albedo by our method, the MODIS WSA and BSA, and the
ground-measured albedo throughout the year 2018 at MAWORS Station (Figure 10). Gaps
in MODIS retrievals from late January to early March were substantial (Figure 10), while
there are very few gaps in our retrievals. Moreover, the retrievals on cloudy days (as shown
by the gaps in the MODIS albedo time series) are consistent with retrievals on clear-sky
days, notwithstanding the larger error in albedo retrieval on cloudy days.
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white-sky albedo, and (f) our retrievals of surface broadband albedo on 2018.01.01.
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5. Discussion
5.1. Overall Evaluation of Results

Estimating the surface albedo is of great importance for the regional-scale surface
radiation budget and the global climate monitoring of the land–surface–atmosphere system.
Moderate-solution satellite data such as MODIS are valuable to generate global daily time
series of albedo data products [10]. The limitation in the retrieval of surface albedo relates
to a combination of limited available observations to evaluate and improve the retrieval
accuracy and the heterogeneity of the land surface.

There are three key issues that warrant further attention. First, this estimation of
broadband albedo from a set of narrowband reflectance with conversion coefficients does
not necessarily comply with the definition of surface albedo as the ratio of hemispheric
radiative fluxes [44,64,65]. This deviation arises because surface albedo, as implied by its
definition, has a nonlinear relationship with the incident and reflected narrowband radiance.
Moreover, the conversion coefficient set is sensor-specific and cannot be applied universally.
Second, the interaction of atmospheric and terrain effects is often oversimplified in the
process of estimating surface reflectance from at-satellite radiance at top of atmosphere
(TOA) or when estimations are limited to clear sky conditions [66–69]. In reality, optical
properties of clouds and aerosols and terrain effects jointly influence the solar radiation
reaching the surface. Radiative transfer models that consider the coupled interactions
between the rugged terrain and the atmosphere are helpful to improve the quality of
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both the derived surface properties (e.g., surface reflectance and albedo) and atmospheric
properties (e.g., aerosol loading and size distribution) [70,71] Third, most available albedo
products generated through this procedure also assume a flat and homogeneous land
surface, as seen in products generated with the data acquired by sensors like MODIS, the
multi-angle imaging spectroradiometer (MISR), and polarization and directionality of the
earth reflectances (POLDER) [10,72,73].

In this study, we developed a method for estimating instantaneous at-surface short-
wave upwelling radiance and surface shortwave albedo under all sky conditions, taking
into account the complex interactions between topography and atmosphere on the Tibetan
Plateau. This method aimed to reduce the occurrence of data gaps (e.g., due to clouds) and
improve the quality of the estimated albedo. Our retrieval method considers all compo-
nents of all-sky SSI, i.e., direct, isotropic diffuse, circumsolar diffuse, and irradiance from
surrounding terrain. This method rests on retrieving at-surface upwelling radiance under
all sky conditions to estimate BRF then using the RTLSR model to retrieve daily surface
albedo on the Tibetan Plateau at 1 km resolution.

The results show, as expected, that the accuracy of estimated instantaneous at-surface
upwelling radiance improves as the cloud fraction decreases, as illustrated in Figure 5. The
results also show that the method not only largely reduces the frequency of gaps encoun-
tered during albedo retrieval but also improves the surface shortwave albedo retrieval
accuracy under clear sky conditions. As expected, the number of valid observations with
our method was higher than that with the MCD43A2 product data at four stations on the
Tibetan Plateau (Figure 3). Although the R value of at-surface upwelling radiance at Dali
Station is relatively low, the model demonstrates small bias and a low RMSE (Figure 4).
This station is located in the southeastern Tibetan Plateau, i.e., within the transition region
between the Indian and East Asian summer monsoon circulations [74]. The Dali station
belongs to a frequently cloudy area, and the percentage of missing observations in the
MCD43A3 albedo data is up to 39%. The main reason for low R can be that the temporal res-
olution of the ground observations is too coarse for the instantaneous at-surface upwelling
retrievals at Dali station, where the temporal variability of clouds is very high.

The overall accuracy of estimating surface albedo also improves as the cloud cover
decreases (Figure 3). The study highlights that the proposed method for shortwave sur-
face albedo retrieval achieves a substantial increase in the number of valid observations
compared to the MODIS MCD43 product. This increase, reaching up to 200% at certain
locations, is due to the capability of the new method to estimate the at-surface upwelling
radiance under continuous non-clear sky conditions. Our method also improved signif-
icantly the spatial and temporal coverage of retrievals, with a high level of consistency
between retrievals under cloudy and cloud-free conditions (Figures 9 and 10).

The study also demonstrates that the MCD43A3 albedo model tends to underestimate
surface shortwave albedo when compared with ground measurements at four stations on
the Tibetan Plateau (alpine steppe and farmland) over sparsely vegetated areas, consistent
with the literature [75–77]. Using the increased number of valid observations under all
sky conditions and taking topography effect into account, our method shows a significant
improvement in RMSE values at the observation sites compared to the MCD43A3 data,
indicating a more accurate reflection of terrain and atmospheric influences on albedo.

5.2. Limitations of Our Method

Distinguishing between snow/ice and cloud cover in multispectral imagery can be
challenging due to their similar spectral properties [78]. Clouds typically exhibit higher
reflectance in the visible (VIS), near-infrared (NIR), and shortwave infrared (SWIR) bands
along with lower temperatures compared to the underlying Earth surface. Cloud detection
relies on well-defined characteristics, such as high reflectance in VIS and NIR/SWIR bands,
coupled with lower temperatures in thermal bands. Establishing accurate reflectance and
temperature thresholds facilitates the identification of diverse cloud types. Resolving spatial
heterogeneity of snowfall over the Tibetan Plateau is a challenge, impacting the accuracy
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of retrieved albedo. The misclassification of snow as clouds in the MOD06/MYD06 cloud
data product leads to inaccuracies in the retrieved albedo. The snow-covered surfaces have
high albedo, and mistaking these areas for clouds can result in inaccurate estimations of
the surface albedo.

In our calculation of at-surface upwelling radiance and surface albedo under cloudy
conditions, we assume that the cloud distribution within a pixel is uniform, plane-parallel,
and static. However, the validity of this assumption depends on the specific type of
cloud and its actual spatial distribution within the pixel, which can result in significant
discrepancies between our estimates and observations. In Stephens’s model [30] used in
this study, it is assumed that the clouds are liquid water clouds, and assuming the wrong
cloud type can lead to less accurate estimates of cloud reflectance and transmittance.

Terrain has multiple impacts on albedo across spatial scales [16]. Hao et al. [20] fo-
cused on a quantitative exploration of the topographic effect, elucidating that the BSA
exhibits a decreasing trend with an increase in mean slope. Moreover, an augmented solar
zenith angle accentuates the diminishing trend in BSA, particularly as mean terrain slope
increases. Gao et al. [21] proposed an improved method by removing the surrounding
topographic effect on land surface reflectance and considering the topographic effect in
retrieving land surface albedo. By considering the influence of the topography, our method
incorporates various critical factors such as the illumination angle, observing angle, effects
of shadowing, and the reflectance of radiation due to the surrounding terrain. Currently,
we can retrieve surface albedo with a spatial resolution of 1 km × 1 km. However, this
resolution restricts our ability to accurately capture the heterogeneity of land cover within
each 1 km × 1 km pixel. Such pixels may contain diverse land cover types, each with
distinct albedo properties, and this diversity can result in a generalized smoothing effect
that conceals minor variations. Our method may still be inadequate to reveal complex
terrain and land cover changes at the sub-pixel level. Wen et al. [79] illustrated the scaling
effects and the necessary corrections for surface albedo assessments in rugged terrain,
while Liu et al. [80] have provided insights into how sub-pixel details can refine our under-
standing of pixel-wide land surface albedo. Furthermore, Wen et al. [81] has introduced an
advanced multi-sensor BRDF inversion model, designed specifically to account for sub-
pixel topographic influences. These studies collectively underscore the value of integrating
sub-pixel topography and land cover data to enhance the accuracy of surface BRDF and
land surface albedo estimations, particularly in rugged terrain. Future advancements could
stem from accounting for the spatial variability of terrain at the sub-pixel level, utilizing
high-resolution DEM data and sophisticated downscaling methods. Such refinements are
anticipated to bridge the gap between current capabilities and the nuanced realities of
terrain effects on albedo measurements.

The tower-mounted radiometers used to measure radiative fluxes at the land-atmosphere
interface are typically installed horizontally on flat terrain, i.e., the field-measured shortwave
upward and downward radiation apply to a flat and horizontal plane. These conditions apply
to the radiometers installed at our four stations (i.e., QOMS, MAWORS, NAMORS and Dali;
see Table 1), where the slopes are about 5◦ or less (Table 1). On the other hand, our estimates
of shortwave upward and downward radiation apply to the plane parallel to a 1 km × 1 km
terrain facet. This means that the footprints captured by space-borne and in situ radiometers
may be inherently different. Radiometers on the ground are usually designed to measure
all-sky radiation from all directions.

In situ radiometers observe at-surface upwelling radiance from an entire hemisphere,
but mostly originating from a small area on the surface, and atmospheric conditions
have limited impact. However, satellite observations are more influenced by atmospheric
conditions, as they record radiation from a larger area and are impacted by highly variable
atmospheric factors, such as cloud cover and atmospheric aerosols. The accuracy of
estimating at-surface upwelling radiance using satellite data is more complicated due to
the limitations of satellite observation angles and distance. This makes it more difficult
to match in situ measurements of at-surface upwelling radiance. The study estimated
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at-surface upwelling radiance and surface albedo by averaging the slope and aspect of
the terrain within each 1 km × 1 km grid, calculated from 30 m × 30 m resolution data.
This approach ensures that the terrain orientation in the retrieval process aligns with
that at the radiometer location, providing comparable terrain geometry apply. However,
the radiometer’s footprint is significantly smaller than the 1 km × 1 km pixel used in
the retrieval.

In summary, our method has made certain advancements in estimating all-sky surface
albedo over rugged terrain on the Tibetan Plateau, but it also reveals several potential
limitations and directions for improvement. Future research should focus on enhancing
the model adaptability to complex terrains and varying climatic conditions, further im-
proving estimation accuracy and reliability. Through continuous validation, calibration,
and refinement, we anticipate further enhancing our understanding and representation of
the complex interplay between surface characteristics and atmospheric conditions on the
Tibetan Plateau.

6. Conclusions

The primary aim of this study was to introduce an innovative approach for the all-sky
retrieval of surface albedo across the Tibetan Plateau with consideration of the terrain
characteristics and atmospheric effects, particularly clouds. This method was designed
to significantly reduce the occurrence of data gaps mainly due to clouds and enhance the
accuracy of the estimated albedo. Notably, in a previous companion study, we addressed
the retrieval of surface solar irradiance and its four components, including direct, isotropic
diffuse, circumsolar diffuse, and surrounding terrain irradiance. Both surface solar irradi-
ance and at-surface upwelling radiance have been estimated by accounting for the actual
terrain geometry derived from DEM data. Under cloudy conditions, the radiative transfer
model incorporates cloud properties such as cloud cover fraction, reflectance, and transmit-
tance to estimate surface solar irradiance and at-surface upwelling radiance. The RTLSR
kernel-driven model is utilized to describe the BRDF of observed targets and to estimate
the reflectance for the four components of SSI in all sky conditions, which are subsequently
used to determine the total reflected irradiance within the viewing hemisphere. Ultimately,
the surface albedo is calculated as the ratio of the total reflected radiance to the total incident
solar irradiance, in alignment with the fundamental concept of surface albedo.

Our study demonstrates that by integrating terrain information and cloud properties
into radiative transfer modeling, the accuracy of estimating surface albedo and radiance in
complex terrains can be effectively improved. This method is significant for understanding
and monitoring the surface radiation energy balance in complex terrain areas like the
Tibetan Plateau and provides more accurate input data for climate modeling and analysis.
We anticipate that the outcomes of our research will offer a viable solution for accurate
estimation of surface albedo on a global scale and will have a positive impact on global
change research and environmental monitoring.
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