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Tunable Superconducting Coupling of Quantum Dots via Andreev Bound States in
Semiconductor-Superconductor Nanowires
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Qutech and Kavli Institute of Nanoscience, Delft University of Technology, Delft 2600 GA, Netherlands

(Received 3 March 2022; revised 18 May 2022; accepted 23 November 2022; published 20 December 2022)

Semiconductor quantum dots have proven to be a useful platform for quantum simulation in the solid
state. However, implementing a superconducting coupling between quantum dots mediated by a Cooper
pair has so far suffered from limited tunability and strong suppression. This has limited applications such as
Cooper pair splitting and quantum dot simulation of topological Kitaev chains. In this Letter, we propose
how to mediate tunable effective couplings via Andreev bound states in a semiconductor-superconductor
nanowire connecting two quantum dots. We show that in this way it is possible to individually control both
the coupling mediated by Cooper pairs and by single electrons by changing the properties of the Andreev
bound states with easily accessible experimental parameters. In addition, the problem of coupling
suppression is greatly mitigated. We also propose how to experimentally extract the coupling strengths
from resonant current in a three-terminal junction. Our proposal will enable future experiments that have
not been possible so far.

DOI: 10.1103/PhysRevLett.129.267701

Introduction.—Semiconductor quantum dots [1–3] have
proven to be a useful platform for quantum simulation in
the solid state [4–6]. Controlling dot levels and the transfer
of single electrons between dots [7–10] allows us to
engineer synthetic Hamiltonians such that the desired
functionality is achieved, for example, allowing for spin
qubit operations [11–16], or simulating the Fermi-Hubbard
model [17–19] or exotic magnetism [20–25].
Adding a superconducting coupling between quantum

dots, i.e., a coupling mediated by a Cooper pair instead of
single electrons only, would extend the range of possible
Hamiltonians tremendously. Examples include operations
on Andreev qubits [26–30], or implementing exotic super-
conducting systems such as a topological Kitaev chain
[31–33], which might be utilized to implement topological
quantum computation [34–41].
The basic building block for such a simulation is the

coupling between two quantum dots. In fact, the coupling
between two quantum dots mediated by a Cooper pair is of
an intrinsic interest for fundamental physics itself: used as a
Cooper pair splitter, the electrons of the Cooper pair are
separated in space while maintaining quantum entangle-
ment [42–47], which can be used to perform the Bell
inequality test [48–50] and has potential applications in
quantum teleportation [51] and quantum cryptography
[52,53]. Despite much experimental progress [54–70],
the splitting efficiency of Cooper pair splitters nowadays
is still not high enough for the Bell inequality test. In addi-
tion, a sufficient control of the superconducting coupling
between two quantum dots, the prerequisite for quantum
simulation, has not been demonstrated experimentally. To
proceed, a method of controlling superconducting and
single electron coupling independently is dearly needed.

In most of the existing proposals and experiments, the
couplings between quantum dots are mediated by the quasi-
particle continuum of the superconductor [31,42,44,46,71].
The disadvantage of this approach is the limited tunability,
as the electronic properties of the superconducting con-
tinuum cannot be controlled experimentally. Moreover, the
coupling strengths between dots are strongly suppressed
when using metallic superconductors.
In this Letter, we propose to mediate tunable effective

couplings via Andreev bound states in a semiconductor-
superconductor nanowire connecting two quantum dots,
based on the fact that control over hybrid nanowires has
been demonstrated experimentally, e.g., by tuning a nearby
electrostatic gate [72]. We show that in this way it is
possible to individually control both the coupling mediated
by Cooper pairs and by single electrons by changing the
properties of the Andreev bound states with easily acces-
sible experimental parameters. In addition, the problem of
coupling suppression is greatly mitigated. Finally, we
propose how to experimentally extract the coupling
strengths from resonant current in a three-terminal junction,
allowing for an experimental verification of our theory [73].
Model and Hamiltonian.—The system consists of two

quantum dots connected by a semiconductor-superconductor
nanowire, see Fig. 1(a). The Hamiltonian is

H ¼ HS þHD þHSD;

HS ≈ E1γ
†
1γ1 þ E2γ

†
2γ2;

HD ¼ εld
†
lηdlη þ εrd

†
rσdrσ;

HSD ¼ −tlc
†
xlηdlη − trc

†
xrσdrσ þ H:c: ð1Þ
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Here, HS is the Hamiltonian for the hybrid nanowire of
length L ¼ xr − xl. In the short-wire limit where the level
spacing is larger than the superconducting gap, we consider
only two normal states closest to the Fermi energy (which
form a Kramers’ pair in the presence of time-reversal
invariance). With an induced s-wave pairing, the normal
states are gapped and become two Andreev bound states de-
fined as γ†i ¼

P
x;s¼↑;↓½uiðxsÞc†xs þ viðxsÞcxs�, where the

wave functions and excitation energies are obtained by solv-
ing the Bogoliubov–de Gennes equation hBdGðxÞðui; viÞ⊺ ¼
Eiðui; viÞ⊺. HD describes two quantum dots. In the limit of
strong Zeeman splitting and Coulomb interaction, i.e.,

εl;r < gdotμBB;U; gdotμBB < δEdot; ð2Þ

each quantum dot accommodates only a single spin-
polarized level near Fermi energy [3,74], with the polari-
zation axes of the two dots being the same and parallel to a
globally applied magnetic field. Here, a large dot level
spacing δEdot guarantees that adjacent levels are spin-up and
spin-down states from the same orbital. The spin indices η, σ
in Eq. (1) can be either ↑ or ↓, but no summation is taken on
them because the dots are in the spin-polarized regime.HSD
describes the spin-conserved electron tunneling between
dots and the ends of the nanowire at x ¼ xl;r.
Such setups of two normal dots coupled by a proximi-

tized nanowire segment, i.e., a proximitized central quan-
tum dot, have been studied before experimentally and
theoretically in the context of Cooper pair splitting, e.g., in
Refs. [65,75]. In contrast, our focus will be on using the
Andreev bound state in the central segment to control the
effective coupling of the outer dots.
Effective couplings between dots.—In the tunneling limit

tl;r < Δ, we can apply a Schrieffer-Wolff transformation to
obtain an effective Hamiltonian for the coupled quantum
dots. That is, Heff ¼ HD þHinterdot, with

Hinterdot ¼ −PHSD
ð1 − PÞ
HS þHD

HSDPþOðt3l;r=Δ2Þ

¼ −ΓCAR
ησ d†lηd

†
rσ − ΓECT

ησ d†lηdrσ þ H:c: ð3Þ

Here, P is the projection operator onto the ground state of
the uncoupled dot-superconductor system. ΓCAR

ησ and ΓECT
ησ

are the Andreev bound states-mediated effective couplings
between two spin-polarized dot levels, with

ΓCAR
ησ ¼ tltr

Δ

X

m¼1;2

umðxlηÞv�mðxrσÞ − umðxrσÞv�mðxlηÞ
Em=Δ

;

ΓECT
ησ ¼ tltr

Δ

X

m¼1;2

umðxlηÞu�mðxrσÞ − vmðxrσÞv�mðxlηÞ
Em=Δ

: ð4Þ

Here, ΓCAR
ησ is a superconducting effective coupling, and

physically is induced by a coherent crossed Andreev

reflection (CAR) process, where an incoming electron
with spin σ from the right dot is reflected nonlocally into
a hole with spin η in the left dot [Fig. 1(b)]. On the other
hand, ΓECT

ησ is a normal effective coupling, and is induced
by elastic cotunneling (ECT), where a single electron hops
from the right dot to the left via the Andreev bound states
[Fig. 1(c)]. Equation (4) is the most general expression. In
what follows, we will define Pa

ησ ¼ jΓa
ησΔ=ðtltrÞj2 to

characterize the coupling strength, and analyze its depend-
ence on the physical parameters of the Andreev bound
states. As we will see, Pa

ησ is proportional to the experi-
mentally measurable current Iaησ .
Energy and angle dependence.—We first consider a

time-reversal invariant hybrid nanowire. Physically, this
corresponds to a situation where the induced Zeeman
splitting in the hybrid segment is negligible compared to
the spin-orbit interaction or induced superconducting gap.
The excitation energies of the degenerate Andreev bound
states are E1;2 ¼ En ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2n þ Δ2

p
with ξn ¼ εn − μ being

the normal-state energy. The Bogoliubov–de Gennes
wave functions are u1ðxσÞ ¼ u0ψnðxσÞ; v1 ¼ v0ψ �̄

n, and
u2 ¼ −u0ψ n̄; v2 ¼ v0ψ�

n, where ψn;ψ n̄ are the normal-state
wave functions, and u20 ¼ 1 − v20 ¼ 1=2þ ξn=2En are
coherence factors. From Eq. (4), we then obtain

PCAR
ησ ¼ C0ðξn=ΔÞjψnðxlηÞψ n̄ðxrσÞ − ψnðxrσÞψ n̄ðxlηÞj2;

PECT
ησ ¼ E0ðξn=ΔÞjψnðxlηÞψ�

nðxrσÞ þ ψ n̄ðxlηÞψ �̄
nðxrσÞj2;

ð5Þ

where C0ðzÞ ¼ ½2u0v0=ðEn=ΔÞ�2 ¼ ðz2 þ 1Þ−2, E0ðzÞ ¼
½ðu20 − v20Þ=ðEn=ΔÞ�2 ¼ z2ðz2 þ 1Þ−2 with z ¼ ξn=Δ.
Equation (5) shows that Pa has a separable dependence
on the energy ξn and on the wave functions ψn;n̄ of the
bound states. In particular, the energy dependence is
universal because it only depends on the coherence factors
u0 and v0. This is a consequence of time reversal symmetry
and holds for any hybrid structure, thus not only for one-
dimensional wires. As shown in Fig. 2(a), C0ðzÞ of crossed
Andreev reflection has a single peak centered at z ¼ 0

(a)

(b)

(c)

FIG. 1. Left: (a) Schematic of the device. Two separate
quantum dots are connected by a short hybrid nanowire, which
hosts Andreev bound states. Right: (b) Schematic of cross
Andreev reflection and (c) elastic cotunneling. The red (black)
horizontal line denotes the Andreev bound state (dot level), and
the gray line represents the Fermi energy of the superconductor.
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(ξn ¼ 0) and decays as z−4 at large jzj, while E0ðzÞ of
elastic cotunneling has double peaks located at z ¼ �1, and
decays as z−2 at large jzj. Interestingly, E0ðzÞ has a dip at
z ¼ 0 due to destructive interference between two virtual
paths with a π-phase shift. The strikingly different profiles
of C0ðzÞ and E0ðzÞ is the first main finding in this Letter,
which indicates that one can vary the relative CAR and
ECT amplitudes by changing the chemical potential of
the Andreev bound state. For the wave function part in
Eq. (5), time-reversal invariance, i.e., ψ n̄ðxσÞ¼T ψnðxσÞ¼
−iσyψ�

nðxσÞ, gives the following symmetry relations
between different dot-spin channels:

Pa
↑↑ ¼ Pa

↓↓; Pa
↑↓ ¼ Pa

↓↑; ð6Þ
for both CAR and ECT. Thus, we will focus on only two
spin channels ↑↑ and ↑↓ in the following discussions.
If spin-orbit field is the only spinful field in the hybrid

nanowire and has a constant direction, we can find the
angle dependence in Pa explicitly. In the specific case of a
one-dimensional Rashba spin-orbit interaction with
strength αR [76], the wave functions take the form of
ψnðxÞ ¼ ϕnðxÞe−iksoxσsoð1; 0Þ⊺, where ϕnðxÞ is the eigen-
function in the absence of spin-orbit interaction, kso ¼
mαR=ℏ2 is the spin-orbit wave vector, and σso ¼ cos θσz þ
sin θσx is the spin-orbit field which has an angle θ from the
magnetic field. Here, without loss of generality, we fix the
magnetic field (i.e., dot spin axis) along z and rotate the
spin-orbit field in the xz plane. Plugging the wave functions
into Eq. (5), we obtain

P̃CAR
↑↑ ¼ C0ðzÞ gðθÞ; P̃CAR

↑↓ ¼ C0ðzÞ fðθÞ;
P̃ECT
↑↑ ¼ E0ðzÞ fðθÞ; P̃ECT

↑↓ ¼ E0ðzÞ gðθÞ; ð7Þ
where fðθÞ ¼ p2 þ q2 cos2 θ and gðθÞ ¼ q2 sin2 θ. Here,
p ¼ cosðksoLÞ and q ¼ sinðksoLÞ characterize the amount

of spin precession through the nanowire due to spin-orbit
interaction, with p2 þ q2 ¼ 1. Note that in Eq. (7), we have
defined a renormalized P̃a

ησ ¼ Pa
ησ=jϕ2

nðxlÞϕ2
nðxrÞj. The de-

tails of the orbital wave function ϕnðxÞ (and thus, e.g.,
details of the potential landscape or disorder) determine the
overall coupling strengths but do not affect the relative
CAR and ECTamplitudes. As a result, the renormalized P̃a

relies only on the general properties of Andreev bound
states, i.e., coherence factors u0, v0, spin-orbit coupling kso,
and induced Zeeman spin splitting EZ. As shown in
Figs. 2(b) and 2(c), P̃a has a sinusoidal dependence on
the angle θ. In particular, CAR-↑↓ and ECT-↑↑ are more
favorable channels with fðθÞ ≥ p2. By contrast, CAR-↑↑
and ECT-↑↓ vanish at θ ¼ 0 or π due to spin conservation.
Hence, in order to have CAR and ECT couplings simulta-
neously finite in a particular dot spin channel, it is crucial to
have a finite spin-orbit field misaligned with the magnetic
field. More surprisingly, although P̃a

ησ has a strong energy
dependence, the ratio of angle-averaged P̃a in unfavorable
and favorable channels depends only on the amount of spin
precession, i.e.,

hP̃CAR
↑↑ i

hP̃CAR
↑↓ i ¼

hP̃ECT
↑↓ i

hP̃ECT
↑↑ i ¼

sin2ðksoLÞ
2 − sin2ðksoLÞ

; ð8Þ

with hP̃a
ησi ¼ ð2πÞ−1 R 2π

0 dθ P̃a
ησðθÞ. This provides a new

way to extract the strength of induced spin-orbit coupling in
the hybrid nanowire.
Effect of Zeeman spin splitting.—We now consider the

effect of induced Zeeman splitting in the hybrid segment.
This relaxes the assumption of time-reversal invariance,
provides an additional experimentally accessible parameter
to tune the profiles of CAR and ECT, and allows for an
additional comparison between experiment and theory. The
direction of the Zeeman field is parallel to the spin-
polarization axis in dots, i.e., EZσz, because we have
assumed a globally applied magnetic field in the system.
However, the magnitude of the Zeeman energy may be
different between dots and the hybrid segment because of
renormalization effects due to the metallic superconductor
[77]. We assume weak spin-orbit interaction kSOL ≪ 1 and
EZ < Δ. Under these assumptions, the energies of the
Andreev bound states become E1;2 ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2n þ Δ2

p
� EZ,

while the wave functions remain the same as those in
the time-reversal invariant scenario [74]. We thus obtain

P̃CAR
↑↑ ðδÞ ¼ P̃CAR

↓↓ ðδÞ ¼ ðz2 þ 1 − δ2Þ−2 q2sin2θ;
P̃CAR
↑↓ ðδÞ ¼ P̃CAR

↓↑ ðδÞ ¼ ðz2 þ 1 − δ2Þ−2 ðp2 þ q2cos2θÞ;

P̃ECT
↑↑ ðδÞ ¼ P̃ECT

↓↓ ð−δÞ ¼ ðpz − δ0Þ2 þ q2cos2θ ðz − δÞ2
ðz2 þ 1 − δ2Þ2 ;

P̃ECT
↑↓ ðδÞ ¼ P̃ECT

↓↑ ðδÞ ¼ q2z2 þ δ2cos2θ ð1 − pÞ2
ðz2 þ 1 − δ2Þ2 sin2θ;

ð9Þ

(a)

(b)

(c)

FIG. 2. Energy and angle dependence of Pa for a time-reversal
invariant hybrid nanowire. (a) CAR (orange) and ECT (blue)
profiles as a function of the normal-state energy z. The gray line
denotes the excitation energy Em=Δ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ 1

p
of the Andreev

bound states (for better visual effect we shift Em=Δ → Em=Δ−
1=2). Right panels: angle dependence of Pa in favorable (b) and
unfavorable (c) channels, with θ the angle between the spin-orbit
field in the hybrid nanowire and the global magnetic field. Here,
q2 ¼ sin2ðkSOLÞ characterizes the amount of spin precession
through the nanowire due to spin-orbit interaction.
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where δ ¼ EZ=Δ < 1 and δ0 ¼ δðp cos2 θ þ sin2 θÞ. As
shown in Fig. 3, P̃CAR

↑↑ , P̃CAR
↑↓ , and P̃ECT

↑↓ all increase with
EZ, with their profiles remaining symmetric about z ¼ 0,
while P̃ECT

↑↑ becomes asymmetric, with one peak being
lifted and the other suppressed. In addition, the green dots
in Fig. 3 show where P̃CAR ¼ P̃ECT for particular values of
δ, corresponding to the sweet spots in a minimal Kitaev
chain. Such a sweet spot can be found in general because
ECT is larger than CAR at large jzj and goes to zero near
z ¼ 0, guaranteeing the crossing of the two curves in most
experimentally relevant parameter regimes.
Extracting Γa experimentally.—To reach the optimal

parameter regime for the desired application, it is necessary
to be able to extract the strengths of the effective interdot
couplings experimentally. For this purpose, we propose a
three-terminal junction, where two quantum dots are now
connected with two external normal electrodes, respec-
tively [Figs. 4(a) and 4(b)]. The strengths of ΓCAR=ECT can
be extracted from resonant current.
Our considerations and calculations follow those in

Refs. [42,43], which focused on the current due to crossed
Andreev reflection in a similar setup. Compared to the
previous works, the differences made in our calculations
include the following. (1) We now consider Andreev bound
states instead of quasiparticle continuum in the super-
conducting segment. (2) Spin-orbit interaction in the hybrid
segment breaks spin conservation. (3) Currents become
spin selective. (4) We generalize the calculations to elastic
cotunneling scenarios.
The total Hamiltonian for the three-terminal junction,

as shown in Fig. 4, is Htot ¼ H þHL þHDL. H is the
dot-superconductor-dot system introduced by Eq. (1).
HL ¼ P

k ðεk − μlÞa†lkηalkη þ ðεk − μrÞa†rkσarkσ are the

normal leads, which are conventional Fermi liquids with
electrons filled up to the Fermi energy μl;r. HDL ¼
P

k ð−t0ld†lηalkη − t0rd
†
rσarkσÞ þ H:c: describes the dot-lead

tunneling. The relevant parameter regime for generating
resonant current is [42,43]

ΓDL; kBT < δμ < Δ; gdotμBB;U;

εl; εr;ΓSD < ΓDL: ð10Þ

Here, δμ is the applied bias voltage, with δμ ¼ μS − μl;r >
0 for generating CAR current [Fig. 4(a)], and δμ=2 ¼
μr − μS ¼ μS − μl > 0 for ECT [Fig. 4(b)]. Bias voltage is
smaller than the induced gap Δ, dot charging energyU, and
dot Zeeman splitting gdotμBB, such that undesired proc-
esses such as local Andreev reflection and inelastic
cotunneling would be suppressed, and that the current
become spin selective. On the other hand, the bias voltage
window should be large enough to include the full width of
the broadened dot states, i.e., δμ > ΓDL ¼ πνðjt0lj2 þ jt0rj2Þ
with ν being the lead density of states. The dot-lead
coupling should be stronger than the superconductor-dot
coupling ΓDL > ΓSD ≈ tlntrn=Δ, such that the quick inter-
dot tunneling process maintains coherence. Additionally,
dot energies need to be tuned close to the superconducting
Fermi energy to make dot levels on resonance. Once all
these criteria are met, resonant current will flow between
source and drain leads.
The resonant currents are calculated using the rate

equation altogether with the T-matrix approach
[42,43,74,78]. When μS > μl;r, Cooper pairs from the
superconducting lead would split into two electrons, which
flow to two separate normal leads via dots, respectively,
giving the following spin-selective CAR current

(a) (b)

FIG. 3. Effects of Zeeman spin splitting on CAR (orange) and
ECT (blue) profiles in equal-spin (a) and opposite-spin (b) chan-
nels. P̃CAR

↑↑ , P̃CAR
↑↓ , and P̃ECT

↑↓ all increasewithEZ, with their profiles

remaining symmetric about z ¼ 0. The profile of P̃ECT
↑↑ becomes

asymmetric whenEZ > 0, with one peak being lifted and the other
suppressed. Green dots indicatewhere P̃CAR ¼ P̃ECT for particular
values of δ. Here,we chooseq2 ¼ 0.2 and θ ¼ π=2, corresponding
to the realistic device investigated in Ref. [73].

(a) (b)

(c) (d)

FIG. 4. (a) and (b) Schematic for the three-terminal junctions.
(c) and (d) Resonant current in the ðεl; εrÞ plane. The currents
have a Breit-Wigner resonance form, with the broadening width
being the dot-lead coupling strength ΓDL. CAR and ECT
current assumes the maximum value Iamax when εl ¼ �εr,
respectively. The strengths of the effective couplings can be
extracted by Γa ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

IamaxΓDLℏ=e
p

.
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ICARησ ¼ e
ℏ
·

Γ2
DL

ðεl þ εrÞ2 þ Γ2
DL

·
jΓCAR

ησ j2
ΓDL

; ð11Þ

with ΓCAR
ησ being the effective coupling defined in Eq. (4).

As shown in Fig. 4(c), in the ðεl; εrÞ plane CAR current has
a Breit-Wigner resonance form with broadening width ΓDL,
and reaches the maximum value along εl ¼ −εr due to
energy conservation. In exactly the same setup but with a
different bias voltage: μl < μS < μr, now a single electron
flows from one to the other normal lead, giving the spin-
selective ECT current

IECTησ ¼ e
ℏ
·

Γ2
DL

ðεl − εrÞ2 þ Γ2
DL

·
jΓECT

ησ j2
ΓDL

; ð12Þ

where ΓECT
ησ is defined in Eq. (4). The ECT current has the

same Breit-Wigner form, but now assumes the maximum
value when εl ¼ εr, as shown in Fig. 4(d). Equations (11)
and (12) indicate that resonant current is proportional to the
square of the corresponding interdot coupling strength.
Thus, experimentally one can extract the strengths using
the formula Γa ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

IamaxΓDLℏ=e
p

, where ΓDL is read off
from the resonance broadening width in gate voltage times
the lever arm, and Iamax is the current value along εl ¼ −εr
for CAR and εl ¼ εr for ECT.
Discussions.—We have given a proposal for mediating

tunable superconducting and normal couplings of quantum
dots via Andreev bound states. This provides an exper-
imentally accessible method for fine-tuning the physical
system into the desirable parameter regime. In particular,
the Cooper pair splitting efficiency now can be enhanced by
tuning the energy close to z ¼ 0 in Fig. 2(a), where the
crossed Andreev reflection is strengthened and simulta-
neously the unwanted elastic cotunneling processes are
strongly suppressed. On the other hand, a minimal Kitaev
chain, which is composed of two spin-polarized dots, now
becomes tunable and can host Majorana zero modes. In
practice, this tuning protocol can be implemented by
controlling the electrostatic gate near the semiconductor-
superconductor segment to change the chemical potential
therein, eliminating the need of noncollinear magnetic
fields [32]. This makes our proposal especially appealing,
since all the necessary ingredients, i.e., spin-polarized
quantum dots [79], gated hybrid nanowire with spin-orbit
interaction [72,80], are within reach of existing materials
and technologies. We thus expect that our proposal will
enable future experiments that have not been possible so
far. In fact, in a recent experiment we and our co-workers
have already shown a record high Cooper pair splitting
efficiency enabled by coupling through Andreev bound
states [73]. Also, a tunable Kitaev chain of two sites has
been experimentally realized [81], providing an exciting
platform for studying topological superconductivity and
non-Abelian statistics.
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