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Abstract

Abstract— Bidirectional neural recording ICs faces the challenge of simultaneous stim-
ulation and recording. The recording IC should endure large stimulation artifacts while
capturing weak neural signals excited by the stimuli. The stimulation artifacts can be as
large as hundreds of millivolts, which can saturate the recording front end. Conventional
neural-recording ICs use a low-noise-amplifier (LNA), a programmable-gain amplifier
(PGA) followed by an analog-to-digital converter (ADC), leading to low power consump-
tions and great noise performances. However, the dynamic range (DR) is usually limited
to 50 dB. State-of-the-art recording ICs using direct-conversion ADCs have been intro-
duced to increase the DR. However, the typical power and area consumption for these
architectures are exceeding the requirements for next-generation brain-computer inter-
faces. This work proposes a novel neural-recording IC system architecture with satu-
ration prevention in presence of large stimulation artifacts. The proposed architecture
consists of an AC-coupled boxcar sampler, switched-capacitor low-pass filter followed
by a 10-bit asynchronous SAR ADC. The integrated voltage at the output of the boxcar
sampler is sampled by the ADC andmonitored by a level-cross detection block. Based on
the output of the level-cross detection block, the integration time, and thus the gain, can
be tuned to different configurations pre-defined in a look-up table (LUT). The additional
noise penalty due to noise-folding from decreasing the integration time is compensated
by oversampling and averaging. The proposed system architecture is partially imple-
mented at transistor level while the ADC and digital blocks are modeled using verilog-A
as a proof-of-concept. The analog front-end achieves a DR of 69.5 dBwith a peak-to-peak
maximum input amplitude of 180mVPP and a typical ENOB of 8.01 bits.

Remy Zhang
Delft, October 2023

Keywords—Bidirectional neural interface, artifactmitigation, wide dynamic range (DR),
boxcar sampler, asynchronous successive approximation register (SAR), analog-to-digital
converter (ADC), saturation prevention, automatic gain control
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1
Introduction

1.1. Background

1.1.1. Stanford Artificial Retina Project

Over the past few decades, brain-computer interfaces (BCI) have enabled treatment of neu-
rological disorders like epilepsy and Parkinson’s disease [1]. A remarkable advancement by
the Stanford Artificial Retina team aim to restore vision in blind individuals [2] by using a
novel architecture. Figure 1.1 illustrates the fundamental principle behind this breakthrough.

Figure 1.1: Illustration of the Stanford Artificial Retina Project. Source: [2]

The process begins with a camera capturing a digital image of an object, followed by soft-
ware translating this image into electrical signals. These signals are then utilized to stimulate

1
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the neurons located near the inner surface of the retina, known as retina ganglion cells (RGCs),
via microelectrode arrays (MEAs). These ganglion cells respond to the stimulation by exciting
neural spikes, allowing the brain to recreate the original object’s perception. However, acti-
vating cells in close proximity to the electrode during stimulation may result in an imprecise
object representation, since the RGCs comprise of varied cell types which represents different
types of visual information. To accurately translate an image captured by the camera to the nat-
uralistic neural code, the Stanford Artificial Retina proposed the system illustrated in Fig. 1.2.
The initial step of the system involves calibrating the location and the cell type of the avail-

Figure 1.2: Illustration of the system-level overview of the Stanford Artificial Retina.
Source: [3]

able RGCs through the recording of spontaneous cell activities. This dictionary outlines the
probability of exciting a neural spike in the recorded RGCs. Ultimately, the neurons that can
be accessed are stimulated in accordance with the camera’s image during runtime. To produce
meaningful visual signals, the electrode array requires at least 104 channels [4].

1.2. State of the art

1.2.1. Stimulation Artifacts

To perform the operations aforementioned, a bi-directional neural interface is required. One
of the the main challenges of a bi-directional neural interface is to withstand the stimulation
artifacts. In Fig. 1.3, the origin of stimulation artifacts is illustrated. During stimulation, the
currents flowing through the electrodes result in a voltage potential drop, resulting in a direct
stimulation artifact. After stimulation, the charge remaining at the interface will result in a
gradual-decaying potential, defined as the residual artifact.

Notably, the amplitude of the stimulation artifacts can be order of magnitudes larger than the
neural responses as illustrated in Fig. 1.4. Due to the finite range of the amplifier, the resulting
artifacts will saturate the front-end device. Even after stimulation, the slow-decaying residual
artifacts can last several milliseconds [6], which could also saturate the front-end and blind
the neural spike recording, thereby missing important neural information. In [7], it has been



1.2. State of the art 3

Figure 1.3: Illustration of the origin of stimulation artifacts: (A) Simplified bi-directional
neural interface with linear ETI model;(B) a biphasic charge-balanced current stimulus
waveform; (C) Amplifier output with infinite dynamic range and with a limited dynamic

range indicating saturation of the device. Source: [5]

shown that 27% of the spikes are lost when the front-end is saturated for 2ms after stimulation.
Missing neural spikes result in loss of information which cannot

Figure 1.4: An example recording during microstimulation. Stimulation artifacts are several
order of magnitudes larger than the neural spike. (a) Stimulation artifacts. (b) Underlying

neural spike. Source: [8]

1.2.2. Artifact Mitigation

Figure 1.5 illustrates several stimulation artifact mitigation techniques in the signal chain of
bi-directional neural interfaces. The only way to reduce the stimulation artifact at the ETI is
to apply artifact mitigation techniques at the stimulation site. Front-end mitigation techniques
can be used to prevent saturation of the recording interface. The back end artifact mitigation
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technique can be applied if the front-end properly digitizes the artifact to recover the recorded
neural information.

Stimulation mitigation techniques

Stimulation site mitigation techniques include waveform shaping and charge balancing. A
novel stimulation artifact reduction technique has been developed to construct a stimulation
waveform that can maximally reduce the residual artifact duration and therefore achieving fast
artifact recovery [9]. The efficacy of this algorithm is heavily reliant on precise modeling of
the electrode-tissue interface. This algorithm assumes that the ETI impedance is linear time-
invariant. In reality, the ETI impedance is non-linear and time-variant and should be modelled
as accurate as possible to minimize the recovery time.

In contrast to widely accepted opinions [10], it has been shown that a perfect charge-balanced
stimulation waveform does not result in charge-balancing at the electrode[11]. Therefore,
charge-balanced stimulation does not necessarily reduce the residual artifact and thus does
not necessarily improve the recovery time.

Figure 1.5: Possible stimulation artifact mitigation techniques in the signal chain of a
bi-directional neural interface. Source: [5]

Front-End mitigation techniques

Blanking: A straightforward approach to avoid saturation is the blanking technique. This
technique disconnects the recording channel from the electrode during stimulation by using
a switch [12]. In presence of a residual artifact, the switch must be disconnected even after
stimulation. The precise reconnecting timing is difficult to predict since the residual artifact can
vary depending on stimulation waveforms and ETI. Furthermore, all the information from the
electrode are lost during blanking. Therefore, this technique in combination with fast artifact
recovery time is required to prevent loss of neural information immediately after stimulation.

Analog template subtraction: Analog template subtraction is another technique used to sup-
press the artifact [13]. This technique generates an artificial template of the stimulation artifact.
and is subtracted from the input during every stimulation cycle. In case of differences between
the template and the actual stimulation artifact, the result of the subtraction can still saturate
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the front-end, especially since the residual artifact is difficult to predict. Figure 1.6 illustrates
this stimulation artifact cancellation technique using a hybrid hardware and software approach
as proposed in [13] to cancel the direct stimulation artifact and to optimize the cancellation of
residual artifact.

Figure 1.6: An example of an artifact mitigation technique using analog template subtraction.
Source:[13]

Gain/Pole Shifting: Gain shifting implies that during the amplification stage, the gain is varied
with respect to time. This technique can be applied to avoid front-end saturation of direct
artifact by adapting the gain during stimulation. Pole shifting implies that the high-pass cut-off
frequency of the filter implemented in the front-end are shifted to a higher frequency. However,
if the frequency of the stimulation artifacts reside in the same bandwidth of interest as the
neural spike, which is the case for action potentials [14], implementing pole shifting will be
ineffective.

Direct-ADC: Direct ADCs, such as a sigma-delta converter, can be used to directly convert
the input neural signal into a digital output. Figure 1.7 illustrates a potential implementation
of a direct ADC architecture. The direct ADC integrates the amplifier directly inside the body
of the ADC. At the input of the amplifier, the input voltage Vin is subtracted by the previous
sample, preventing the front-end from being saturated.

Figure 1.7: An example of a direct ADC architecture. Source:[15]
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Back-end mitigation techniques

If the artifact can be recorded by a high dynamic range front-end, digital back-end techniques
can be used to mitigate the artifacts.

Data reconstruction: A simple method to mitigate stimulation artifacts is to identify and re-
move the artifact segments and reconstruct the data using interpolation as illustrated in Fig. 1.8.
This technique relies on the accurate peak detection algorithm of the stimulation artifact as the
data between the start and end of the artifact are removed [16], [17]. Therefore, this method
is suitable for low frequency neural signals such as local field potentials. For high frequency
neural signals such as an action potential, the discarding of data could result in important in-
formation being lost [10].

Figure 1.8: Back-end mitigation using digital reconstruction. Source:[10]

Digital subtraction: Another technique is to use digital template subtraction as illustrated in
Fig. 1.9. Similar to analog template subtraction, an artificial template is generated and can be
subtracted from the recorded data [18]. Since the subtraction is performed in the digital domain,
high accuracy recovery can be obtained if the front-end records the stimulation artifact without
distortion.

Figure 1.9: Back-end mitigation using digital subtraction. Source:[10]

Component Decomposition: Component decompositionmethods such as ensemble empirical
mode decomposition or independent component analysis can be used to separate the recorded
waveform into artifact and non-artifact components to reconstruct the underlying neural signal
[19]. Figure 1.10 illustrates the idea behind the component decomposition method. Intensive
computational resources required for the reconstruction results in a highly complex on-line
integration.
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Figure 1.10: Back-end mitigation using digital decomposition. Source:[10]

1.3. Problem Statement

In the context of the Stanford Artificial Retina project, it is noteworthy that the relevant neural
spikes always occur after the stimulation phase. This temporal difference enables the possi-
bility of recording direct artifacts and neural spikes distinctively. Given the significant differ-
ence in amplitude between direct artifacts and neural spikes, the front-end must amplify the
relatively weak neural signals while withstanding the artifact during the stimulation process.
To achieve the objectives set forth by the Stanford Artificial Retina project, it is essential to
develop a compact and low-power analog front-end solution to achieve a single-cell resolution.
Moreover, a key aspect for the recording front-end is to obtain a high dynamic range, which is
essential for capturing large stimulation artifacts and neural signals accurately to allow the pos-
sibility to apply back-end stimulation artifact techniques. Meanwhile, recording artifacts with
high accuracy allows a profound study into the time-varying and non-linear ETI impedance,
which in turn can be used to reduce the stimulation artifact when applying mitigation tech-
niques that are reliable on the accurate modelling of the ETI impedance. Therefore, the aim
of this work is to propose a compact and low-power novel system architecture that can record
during and after stimulation, without saturating the front-end in presence of the stimulation
artifacts.

1.4. Neural Recording Interfaces

Illustrated in Fig. 1.11 are the current front-end recording architectures consisting of a neu-
ral amplifier and ADC [20]–[22] or a direct-conversion ADC that has an amplifier integrated
inside [23]–[26]. The following section briefly discuss the possible amplifier and ADC archi-
tectures targeted for neural recording interfaces.

1.4.1. Recording Amplifiers

As mentioned previously, several factors should be considered while designing an amplifier:
sufficient gain, high signal-to-noise ratio (SNR), wide DR, low power consumption and a com-
pact device. In this part, three architectures for the recording amplifier are discussed.
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Figure 1.11: (a) Block diagram and (b) SNR analysis of the conventional neural recording
IC. (c) Block diagram and (d) SNR analysis of the direct ADC based neural-recording IC.

Source:[22]
.

AC-Coupled Amplifiers

The electrode DC-offset (EDO) and the flicker noise introduced by the amplifier can signifi-
cantly impact the performance of the front-end recording. The offset voltage can saturate the
front-end amplifier and can be orders of magnitude larger than the neural signal. Therefore, a
capacitively-coupled instrumention amplifier (CCIA), as shown in Fig. 1.12 is typically used
to remove the EDO while providing sufficient gain [20], [27]. The input capacitors block the
EDO and the feedback capacitor in combination with the feedback resistor together create a
high-pass pole in the signal transfer to reduce the flicker noise.

The main disadvantage of this architecture is the large area consumption. The feedback ca-
pacitor Cf is determined by the requirement for a high-pass pole, which is usually at very
low frequency. Since the resistor is limited to several hundreds of M𝛺 in IC technology, the
feedback capacitor cannot be minimized to save area. Furthermore, the input capacitor Cin is
determined by the gain requirement shown in Equation 1.1.

ACL = Cin
Cf

(1.1)

To overcome this issue, pseudo-resistors are typically used to obtain resistances in the range
of 10G𝛺 to keep the capacitors as small as possible [28]. However, pseudo-resistors are very
sensitive to PVT variations and suffers from non-linearity. Other methods such as switched
resistors (SR) and segmented SR have been proposed to obtain a large equivalent resistance
for the high-pass pole implementation [29]–[31].
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Figure 1.12: Differential CCIA architecture including feedback resistors to implement a
high-pass pole

Boxcar Integrator

Another potential architecture is the boxcar integrator shown in Fig. 1.13. The output current
Iout of the operational transconductor (OTA) is integrated on the capacitor over a fixed time
window. With the finite output impedance ro taken into consideration, the voltage over the
capacitor is defined as:

VC = gmro[1 − eTint/roC] (1.2)

Here, gm is the transconductance of the OTA and TINT is the time period in which the output
current of the OTA is integrated over the capacitor. Due to its open-loop architecture, the gain
is only dependent on the OTA and therefore it suffers from process variations. Nonetheless, the
elimination of the feedback capacitors will be appealing for compact AFEs. This architecture

Figure 1.13: A Gm-C integrator

is popular in ADCs that require anti-aliasing filters, since the fixed time window integration
creates a sinc-filter with nulls at 1/Ts, where Ts is the sampling period of the ADC. This
results in minimum penalty from noise folding when sampling [32] by achieving an equivalent
noise bandwidth (ENBW) of fs/2, where fs is the sampling frequency at the output of the
integrator. Figure 1.14 shows the transfer function |H(f)| of the boxcar sampler with finite
output impedance. Away from the nulls, the transfer function simplifies to the equation shown
in (1.3).

|H(f)| = (1 − Ts
roC)gmTs

C |sin (πTsf)
πTsf

| (1.3)
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Figure 1.14: The transfer function of a boxcar sampler with finite output impedance [32].

1.4.2. Analog-to-Digital Converters

Oversampled ADC

Oversampled ADCs use a sampling frequency (fs) considerably higher than Nyquist frequen-
cies (fnyquist). Assuming that the quantization error of a N-bit ADC can be approximated as
white noise, the noise power will therefore be spread out over a larger frequency range, which
can be filtered to obtain a higher SNR. If the signal bandwidth is fixed, the SNR increases by:

ΔSNR = 10 log10( fs
fnyquist

) = 10 log10 (OSR)

(a)
Figure 1.15: Basic architecture of a

sigma-delta modulator

(a)
Figure 1.16: Noise shaping characteristic of

a sigma-delta converter.

This indicates that oversampling by a factor of four increases the effective resolution by one bit.
In sigma-delta converters as shown in Fig. 1.15a, oversampling in combination with feedback
and integration in the signal path is utilized to obtain noise-shaping characteristics as shown in
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Fig. 1.16a, where quantization noise is pushed towards higher frequencies. For an n-th order
noise shaping, this results in an in-band SNR increase of:

ΔSNR = 20 log10(OSR(n+0.5)√2n + 1
πn ) (1.4)

Oversampled ADCs are widely used [22]–[24], [26], [33], [34] in neural interfaces to con-
vert raw neural signals directly into digital codes with an amplifier integrated inside the ADC
to avoid saturation due to large simulation artifacts, significantly improving the DR. How-
ever, to meet the input-referred noise (IFR) requirement over a neural signal bandwidth, high-
resolution ΣΔ modulators are usually used [33], [34]. For example, in [33], a third-order cas-
cade of integrators were implemented which consumes significant power and area. Although
in [23], a first-order modulator was implemented which minimizes power consumption, the
resolution obtained (ENOB of 9.4) over a bandwidth of 250 Hz does not allow recording of
action potentials. Furthermore,ΣΔmodulators usually requires chopping and input capacitors
to suppress the flicker noise and the EDO.

Another type of oversampled converter is theΔ-modulator. In [26], theΔ-modulator has been
implemented for an neural interface. The advantage of using a Δ-modulator for a neural inter-
face is the suppression of DC offset without using passive components, therefore eliminating
the necessity of input capacitors.

The neural interface presented in [26] implements clock-boosting and auto-ranging to record
during stimulation without being blinded by the direct artifacts. The sampling frequency is
boosted to cope with the transient speed of the artifact while the quantization step sizes is
relaxed using radix-2 exponential auto-ranging algorithm.

SAR ADC

Successive approximation register (SAR) ADC has gained its popularity for neural recording
interfaces due to its medium to high resolution and high power efficiency. Fig. 1.17 illustrates
the basic architecture of a SAR ADC. The analog input voltage Vin is sampled and held using
a sample-and-hold circuit. The conversion starts by comparing the sampled voltage with the
DAC output VDAC. The DAC voltage is adjusted depending on the comparison result and
the approximation is further refined based on a binary search algorithm. Fig. 1.18 shows an
example of a 4-bit SAR ADC conversion.

The integration of SAR ADCs within multichannel neural recording systems presents a chal-
lengemainly focused on the design of an area-efficient capacitor DAC array. The DACmodule
typically consumes substantial on-chip area. To address this issue, various neural applications
have explored sharing the SARADCs across multiple channels to reduce the die area [35], [36].
Although compact capacitor array implementations have been proposed for conventional SAR
ADCs [37], [38], their integration into neural recording interfaces has not been studied to date.
Figure 1.19 shows the die photo of the ADC in [37]. With an effective area of 0.0013mm2,
this approach holds considerable promise for future integration within neural applications.
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Figure 1.17: Block diagram of a SAR ADC.

Figure 1.18: A 4-bit SAR ADC conversion example

Figure 1.19: Die photo and layout of the SAR ADC proposed in [37]
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AFE Comparison

To fairly compare AFE architectures for neural interfaces, the combined performance of the
front-end amplifier and the ADC should be taken into account. The performances of some
state of the art works that have either SAR or an oversampled ADC integrated in the recording
front-end are listed in Table 1.1.

The objective of this work is to develop a neural recording system able to capture stimulation
artifacts. While oversampled ADCs tend to achieve high DR levels, the associated area over-
head makes this architecture less suitable for large-scale array implementation. If a SAR ADC
is chosen, the use of a front-end amplifier to amplify weak neural spikes is necessary. How-
ever, to prevent front-end saturation due to stimulation artifacts, the gain must be adaptable.
One feasible approach to achieve this is an AC-coupled amplifier with variable capacitors to
program the closed loop again. However, a substantial area should be allocated to these ca-
pacitors in this approach. As an alternative, a Gm-C integrator could be used to adapt the
gain by adjusting the integration time. This method could potentially fulfill the need to adjust
amplification while also reducing the amount of area required.

Table 1.1: Performance of the state of the art works.

[39] [40] [41] [22] [26]
Architecture LNA + SAR ADC LNA + PGA + SAR Delta Modulator LNA + PGA + ΣΔ-ADC Delta Modulator
DR (dB) 48.6 53.5 86 99.5 79

Input Range 6.4mVPP 700mVPP 110mVPP 1600mVPP 200mVPP
Artifact Rejection Method No Adaptive IIR Filter Adaptive Digital Filter Adaptive Gain Autoranging + Clock boosting

Power/Ch (µW) 2.7 4.3 3.21 9.8/13.6 1.1/10.8
Area/Ch (mm2) 0.018 0.66 0.0025 0.72 0.018
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2.1. Architecture Definition
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Figure 2.1: Proposed neural recording system architecture

Figure 2.1 illustrates the proposed neural recording system architecture. AnAC coupled boxcar
sampler with input capacitorsCIN and a feedback resistorRHPF is implemented to remove the
DC offset and to implement a high-pass pole which cut-off frequency is defined as:

fL = gmro
2πRHPFCIN

(2.1)

14
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The boxcar sampling minimizes the noise penalty due to folding. The boxcar output integrated
on capacitor CINT is sampled on the CDACof the SARADCduring TS to implement a switched
capacitor low-pass filter (SC-LPF) with a cut-off frequency described in (2.2).

fSC−LPF = 1
2πReqCDAC

= CINT
2πCDAC

1
TINT + TS

(2.2)

Here, TINT is the time elapsed from the integration of the output of the OTA on CINT and TS
is the sampling period of the ADC.

If only the pole of the SC-LPF is taken into account, at fSC−LPF, the signal is attenuated by
−3 dB. However, the sinc response of the boxcar sampler introduces additional attenuation.
The −3 dB frequency of a sinc function is calculated as follows:

sin (TINTf)
TINTf = 1√

2

TINTf = 0.443

Therefore, the −3 dB frequency of the boxcar sampler is given as:

fboxcar = 0.443
TINT

The values ofCINT andCDAC are determined by solving the following equation for the desired
cut-off frequency f−3dB of the system :

sin (TINTf−3dB)
TINTf−3dB

⋅ 1
√1 + (2πf−3dB(TINT + TS)CDAC

CINT
)2

= 1√
2

(2.3)

For example, solving equation (2.3 for f−3dB = 5 kHz gives the capacitors ratioCINT/CDAC =
2.9 for TINT = 48µs and TS = 1µs.

Under normal condition, when only low amplitude action potentials are present at the input,
the boxcar sampler integrates for a fixed time period of TINT. This allows a sufficient am-
plification of the input signal before being converted by the ADC. However, during and after
stimulation, the stimulation artifacts will saturate the front-end. To avoid this, the input am-
plification should be reduced. In order to achieve this, TINT can be reduced to shorten the
integration time which decreases the gain of the boxcar sampler. The decreased gain results in
an increased noise level from the ADC when referred to the input of the system. Furthermore,
the ENBW of this system described in (2.4) increases due to reduction in TINT, resulting in
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additional noise folding when sampled on the boxcar.

ENBW = 1
TINT

(2.4)

To compensate for this, the ADC can be oversampled whenever the integration time is reduced,
as long as it satisfies (2.5).

N ⋅ TINT < Tsystem − TS − TR (2.5)

Here, N is the oversampling ratio and Tsystem is the data output period of the system. The
output of the ADC will be accumulated and then averaged to increase the in-band SNR as
explained in Section 1.4.2.

A level-cross detection block, illustrated in Fig. 2.2 is implemented to detect large amplitude
input signals. It sends an out-of-range (OOR) flag to the clock generator of the boxcar sam-
pler whenever the voltage over CINT, VINT, crosses the threshold of the level-cross-detection
block. The clock generator iterates through a pre-defined look-up table (LUT) containing mul-
tiple configurations of gain (Av) and integration time (TINT) as illustrated in Fig. 2.3. Upon
the detection of an out-of-range condition, the clock generator stops the ongoing integration
process at the next iteration of the LUT. This procedure ensures fixed integration times and
synchronization with the subsequent blocks of the system. If the system stops the boxcar inte-
gration immediately after the OOR is flagged instead of using a pre-defined LUT, TINT must
be exactly known to recompute the gain, which requires a very high speed and a high reso-
lution timer. Furthermore, this results in an infinite number of possible gain settings and an
asynchronous system which complicates the digital signal processing afterwards. Therefore, a
LUT of finiteTINT settings is implemented. The values ofTINT are designed such that during
oversampling, the numbers of samples taken corresponds to 2n, where n is an integer. This is
necessary to avoid complex digital averaging techniques.

VH

VINT,P

VINT,N

VL

VINT,P

VINT,N

OOR

-VH

-VL

Figure 2.2: Schematic of the level-cross detection block

Figure 2.4 illustrates the timing characteristics of the proposed system architecture. In pres-
ence of a high-amplitude signal, the integrated voltage on the capacitor VINT crosses the OOR



2.1. Architecture Definition 17

Figure 2.3: An illustration of the look-up table iteration process.

VINT

VH

VL

OOR

VIN

TINT,N

TINT,i
TINT,N

TS TR

Figure 2.4: Timing diagram of the proposed system where the response to large and small
amplitude signals is shown.

threshold, causing the integration to stop at the subsequent iteration of the LUT. This specific
gain configuration is locked for the duration equal to Tsystem, which corresponds to the data
output rate of the system, and is reset at the start of the next cycle. If the gain is not kept con-
stant during Tsystem, the system can adapt to all the possible gain configurations in the LUT
depending on the input signal, resulting in an asynchronous and unpredictable system. In that
case, the digital reconstruction block after the ADC should recompute the data according to
the gain after every ADC conversion, before being accumulated, which results in more com-
plexity and power consumption. Thus, by locking the gain configuration during Tsystem, the
ADC samples can be accumulated before the recomputation block as all the samples have the
same gain configuration. Therefore, the power and timing constraints within the following
digital blocks are relaxed. If the threshold of the level-cross detectors remain uncrossed for
low-amplitude signals, TINT reaches the final iteration TINT,N, which can be expressed as:

TINT,N = Tsystem − TS − TR

The presented architecture for neural recording systems automatically control the gain in pres-
ence of large amplitude signals by adapting the integration time according to the input signal
magnitude. Therefore, large amplitude signals can be kept within the input range of the ADC.
This increases the upper limit of input range, which results in an increase of the DR, while
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targeting for a compact low-power design. The targeted specifications and the corresponding
justifications [42] are shown in Table 2.1.

Table 2.1: Targeted specifications for the proposed closed-loop neural recording interface

Parameter Value Justification
Input referred noise < 10 uVrms To distinguish the EAP from the noise.
Input voltage swing 200 mVpp To withstand the stimulation artifact.
Variable Gain 1 - 100 V/V To prevent front-end saturation while providing sufficient gain to the EAP.
Bandwidth 300 - 5 kHz Frequency range of the EAP.
ADC Resolution 10 bits To distinguish different EAPs.

2.2. System Analysis

This section describes the system transfer function and the noise analysis.

2.2.1. Transfer function

CIN
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Gm CINT
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SAR
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 _
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ΦS

VDAC,N
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 _
b[8:0]

Boxcar Sampling Passive LPF

VIP

VIN

VADC,P

VADC,N

Figure 2.5: Part of the system architecture of which the transfer function is derived.

To have a better understanding of the proposed system, the transfer function of the circuit
shown in Fig. 2.5 should be derived. In this case, the input of the ADC is considered as the
transfer function output to simplify the derivation. Equation 1.3 already described the transfer
function of the boxcar sampled Gm-C integrator. However, this OTA also includes a feedback
resistor and input capacitors to implement a high-pass filter with a cut-off frequency shown in
(2.1). The gmro term is introduced by applying Miller’s theorem to the feedback resistor.

After the boxcar sampling, the signal is further filtered using a passive LPF consisting of
switched capacitors. Here, CINT is reused as a switched-capacitor resistor [43]. Therefore,
the location of the pole due to the SC-LPF can be described by (2.2).

By combining the transfer functions, a simplified model of the system can be derived as shown
in Fig. 2.6. From the transfer functions, it becomes evident that the low-pass pole of both the
boxcar sampler and the SC-LPF will exhibit a shift in response to integration time adjustments.



2.2. System Analysis 19

Input Output

Boxcar SamplerRC-HPF SC-LPF

Figure 2.6: Part of the system architecture described with transfer functions.

Figure 2.7 illustrates the magnitude characteristics of the overall transfer function of the black
box representation in two extreme cases of TINT. It is evident that as TINT is reduced, the
system’s gain decreases, aligning with the system requirements. However, this reduction in
TINT also results in a displacement of the low-pass pole to a higher frequency, the consequences
of which are discussed in Section 2.2.2.
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Figure 2.7: Frequency response of the black box model

2.2.2. Noise analysis

The noise characteristics of the system should be investigated to understand how these changes
impact the fidelity of the input signal. For the targeted application, only one input node is con-
nected to the signal while the other functions as a reference node. Therefore, the noise analysis
is performed single-ended. However, due to the symmetry of the system, the differential input
noise can be calculated by scaling the single-ended noise by a factor of 2. The noise sources
discussed in this section are highlighted in Fig. 2.8.

The noise exhibited by the OTA is directly referred to the input and is strongly dependent on
its circuit architecture. For now, assume that the input-referred noise power spectral density
(PSD) of the OTA is equal to that of a single transistor as defined in (2.6).

V2
n,OTA = 4kBTγ

gm,OTA
[V2 Hz−1] (2.6)
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Figure 2.8: Part of the system architecture with the noise sources highlighted in red.

Again, by applying Miller’s theorem to RHPF, the input-referred noise PSD of the resistor can
be described as in (2.7).

V2
n,RHPF

= 4kBTRHPF
(gm,OTAro)2 [V2 Hz−1] (2.7)

The level-cross detection instance consists of two continuous-time comparators with inputs
connected to CINT. As the output of the LCD is a digital signal, the LCD noise does not affect
the output unless the noise is significantly larger than the threshold voltage of the comparators.
Therefore, the noise contribution of the LCD is ignored. The boxcar integrator introduces
sampling noise which is equal to:

V2
n,rms,BC = kBT

CINT
[V2] (2.8)

The sampling voltage noise resulting from the boxcar is attenuated by CINT
CINT+CDAC

due to charge
sharing of CINT and CDAC.

The sampling noise of the passive LPF is defined as:

V2
n,rms,LPF = kBT

CDAC
[V2] (2.9)

where CDAC is the single-sided total capacitance of the SAR DAC.

Referring all the noise sources to the input gives the equation shown in (2.10)

V2
n,rms,in = V2

n,OTA ⋅ BW +
V2

n,rms,BC ⋅ (CINT
CINT+CDAC

)2

A2v
+ V2

n,rms,LPF
A2v

(2.10)
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Here,BW is the system bandwidth andRon is the on-resistance of the SC-LPF sampling switch.
Av is the voltage gain at the output of the boxcar The system bandwidth is directly related to the
integration time and from the transfer function analysis in section 2.2.1, it was concluded that
the bandwidth changes with the integration time TINT. Therefore, more noise will be folded
into the bandwidth of interest at the input of the ADCwhen decreasingTINT. Furthermore, the
reduction ofTINT results in a lower gain. Therefore, the sampling noises of the boxcar and the
SC-LPF become more dominant as the gain decreases. Overall, the reduction of integration
time lead to increased input-referred noise. During normal operation, the noise of the OTA is
the most dominant at the ADC input, as this is amplified by A2

v, the sampling noises can be
neglected. As the integration time decreases, the sampling noises become consistently more
dominant.

2.2.3. Variable Gain Configuration

The system is configured to have multiple gain configurations to adapt to varying input ampli-
tudes. To achieve this, TINT is adjusted by the clock generator to limit the current integrated
over CINT. The voltage gain from the input to VINT is defined in (2.11).

Av = VINT(t)
Vin(t) = gmro(1 − e−TINT/roCINT) (2.11)

with TINT|max = 48µs. Using the parameters in Table 2.3, the gain of integrator is simulated
and illustrated in Fig. 2.9. Due to the large integration capacitor, the gain is not fully settled
at TINT|max. However, this is necessary to obtain a low gain at small integration times. For
TINT << roCINT, the gain can be approximated as:

Av ≈ gmTINT
CINT

The system uses a pre-calibrated look-up table to store the gain value for each configuration
and is shown in Table 2.2. The ratios of the highest gain configuration with respect to the
lower gain configurations are calculated, such that the digital processing stage can recompute
the input by multiplying this ratio with the output data. This requires dividers to recompute
the gain. If the gain can be calibrated to be multiples of two as illustrated in Fig.2.10, only a
logic shifter is required. However, the exponential part of the boxcar gain settling results in a
non-linear gain configuration. To obtain gains in power of two, a very high resolution timer
in the order of 1 ns is required, which would require an external clock of 1GHz. Therefore, a
divider is implemented for the proposed system.

Table 2.2: Gain configuration with different integration times.

TINT [µs]) 0.2 0.4 0.8 1.6 2.8 8 48
Av [V/V] 0.99 1.98 3.92 7.69 13.06 32.96 90.83
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Figure 2.10: Digital processing requirement of the output stage

The design parameters used to verify the analysis are shown in Table 2.3. These parameters are
chosen such that the targeted specifications of the system is met. The mathematical analysis
performed in this chapter verifies the potential adaptation of this system architecture for the
target application in theory.
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Table 2.3: Design parameters used to simulate the transfer function of the system

Parameter Value Justification
gm 4µS To meet the input-referred noise requirement and the desired gain.
ro 25M𝛺 To meet the desired gain and the OTA settling speed.

CIN 1.1 pF To meet the input impedance requirement for the target application.
RHPF 75G𝛺 To implement a high-pass pole at the desired frequency.
CINT 400 fF To meet the desired gain and settling within time window and to implement a SC-LPF.
CDAC 128 fF To implement a SC-LPF 1.
TINT 200 ns -48µs To meet the variable gain requirement.
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Figure 3.1: Proposed system architecture with color indicating the level of implementation.

This chapter describes the circuit implementation of the proposed system architecture. For
proof-of-concept, the ADC (except the DAC) and the digital blocks are designed in Verilog-A
while the remaining blocks are implemented in transistor-level. The main design challenge
of the proposed system is the OTA, as it should maintain linear over a wide input range (∼
±100mV)while consumingminimum area and power. The level-crossing comparators should
be designed according to the timing requirements of the clock generator.
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Figure 3.2: Schematic of the implemented inverter-based OTA.

An inverter-based OTA is used for this system as this architecture can achieve a low noise
efficiency factor (NEF) [44]. Figure 3.2 shows the schematic of an inverter-based OTA with
self-biasing resistor and common-mode feedback1. The gain of this OTA is described in (3.1)
and the input-referred thermal noise PSD is described in (3.2). The OTA should be designed
to have an input-referred noise of 10µVrms.

Av = −(gm,n + gm,p)(ro,n||ro,p) [V/V] (3.1)

Vn,OTA = 2 ⋅ 4kBT(γn + γp)
gm,n + gm,p

[V2 Hz−1] (3.2)

Assuming that γn = γp and gm,n = gm,p, the equation in (3.2) simplifies to (3.3).

Vn,OTA = 8kBTγn,p
gmn,p

[V2 Hz−1] (3.3)

1The common-mode feedback circuit is implemented by a finite gain and finite BW Verilog-A op-amp model
with resistive sensing.
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The flicker noise of the OTA is described in (3.4)

V1/f,OTA, = ( 2Kn
Cox,nWL + 2Kp

Cox,pWL) ∫ df
f [V2 Hz−1] (3.4)

OTA Design

The OTA is designed using the gm/ID methodology [45]. As the output current of the OTA
is integrated over CINT with different integration times, the worst case scenario should be
considered. The maximum input voltage at which the OTA must be linear is 100mV, while
the minimum integration time is 200 ns. Therefore, the slew-rate of the OTA should be larger
than:

SR = Iout
CINT

= ΔV
Δt = 0.5Vµs−1 (3.5)

To achieve this, the output current of the OTA should be 200 nA. Therefore, the circuit should
at least be biased above 200 nA. Hence, the OTA is biased at 250 nA. To maximize the noise
efficiency, the gm/ID-ratio should be chosen to be 25SA−1, which will bias the transistors in
weak inversion. Therefore, the gm of the each transistor in the inverter is 3.125µS. The supply
voltage is set to VDD = 1.8mV to comply with the wide input range.
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Figure 3.3: gds vs gm/ID for 1.8 V nmos and pmos devices computed using pre-generated
LUT.

As illustrated in Fig. 3.3, the length of the nmos and pmos devices, Ln and Lp, at a given
inversion level can be computed for the given DC gain. However, choosing the lengths for the
desired gain will lead to short devices. Since the flicker noise is dominant at low-frequencies,
short devices will introduce large amount of flicker noise. Therefore, the length is increased
every iteration to meet the input-referred noise requirement while the other parameters are



3.1. OTA 27

recomputed again. The width of the device can then be computed by the current density JD vs
gm/ID plot as illustrated in Fig. 3.4 using equation (3.6).

JD = ID
W (3.6)
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Figure 3.4: JD vs gm/ID for 1.8 V nmos and pmos devices computed using pre-generated
LUT.

Table 3.1 shows the design parameters and the OTA sizing according to the gm/ID design
methodology and the actual sizing after fine-tuning.

Table 3.1: Inverter OTA sizing using pre-computed LUT

Device L [µm] W [µm] gm[S] gm/ID[SA−1]
M1p 1 3.5 3.13 24.7
M1n 1 3 3.19 24.7

OTA Performance

Figure. 3.5 illustrates the voltage transfer curve of the OTA. With the common mode set at
850mV, the OTA achieves a linear input range of ±200mV.

The AC magnitude plot is illustrated in Fig. 3.6. As shown, the open loop gain of the OTA
exceeds the system specification of 40 dB due to the W/L of the devices. However, the gain
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Figure 3.5: Voltage transfer curve of the inverter-based OTA.

of the boxcar sampler will be lower due to time-limited integration. The high-pass pole is
achieved by usingCin of 1.1 pF andRf of 75G𝛺 using pseudo-resistors. The−3 dB bandwidth
of the OTA is located at 1MHz.
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Figure 3.6: AC magnitude plot of the inverter-based OTA.

Figure 3.7 illustrates the transient simulation of the OTA with sine wave input at VIP. After
complete settling, the gain of the OTA corresponds to the AC simulation.

The output noise performance of the OTA without filtering is illustrated in Fig. 3.8. As ex-
pected, the flicker noise is dominant in the bandwidth of interest. The noise integral of the
OTA is illustrated in 3.9. Without filtering, the noise introduced by the OTA cannot meet the
desired noise specifications.
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Figure 3.7: Transient simulation of the inverter-based OTA with initial settling from 0 to
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Figure 3.8: Noise PSD of the inverter-based OTA with high-pass filter.

Figure 3.10 illustrates the noise performance after filtering using the boxcar sampler and the
SC-LPF. Due to the discrete-time components, a transient noise analysis is performed over a
time interval of 10ms and the RMS value of the noise at node VINT is calculated 2. Hence,
the input-referred noise of the OTA after filtering is calculated as:

Vn,in,rms = Vn,int,rms
Av

= 10.22µVrms

2The SC-LPF samples and holds the noise for a certain period, which would require a very long transient
simulation to increase the randomness to obtain an accurate representation of the actual RMS noise. Since the
sampling noise of the CDAC is negligible compared to the OTA noise, the RMS noise at VINT is calculated
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Figure 3.9: Noise integral of the inverter-based OTA.

The obtained RMS noise is within the margin of the required noise specification.
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Figure 3.10: Transient noise simulation of the inverter-based OTA with boxcar sampler and
SC-LPF.

3.2. Level-Crossing Comparator

The level-crossing comparator is used to generate an out-of-range flag for the clock gener-
ator to stop the integration. Therefore, the differential voltage VINT must be continuously
monitored and compared to a reference voltage. Two comparators are required to account
for both positive and negative voltages. The differential architecture of the system requires a
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continuous-time comparator that compares the differential input with a reference voltage. An
architecture used in [46] meets this criteria and is illustrated in Fig. 3.11. The continuous-time
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VDD

VSS VSS

Vbias

VSS
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Vout
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M1N M1N

M1P

M2N
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Figure 3.11: Schematic of the continuous-time comparator used for the level-cross detection.

comparator consists of a two-stage open-loop amplifier followed by an inverter. This is similar
to a conventional two stage open-loop comparator. However, the two extra current branches
are introduced to compare the differential reference voltage to the differential input. The clock
generator reads the OOR flag every Tcycle = 100 ns. Therefore, the delay of the comparator
Td should be designed such that Td << Tcycle.

To achieve low-latency, small lengths should be used for the all the input transistors of both
stages. To achieve sufficient amplification, the input pairs should be sized for large widths.
The mismatch of the input pairs will introduce an input-referred offset which will leads to an
inaccuracy when comparing the voltage levels. This creates a trade-off between the settling
speed and the input-pair offset.

The effect of randomvariations in the device areamismatch should be accounted for. Therefore,
a localMonte-Carlo simulation is performed to verify the offset performance of the comparator.
Illustrated in Fig. 3.12, the design is shown to be relative robust against random mismatch
variations as at 3σ, the offset is still 5x smaller than the reference voltage, which is set to
±100mV. Additional fingers in combination with switches can be connected at the input pairs
to introduce an imbalance at the input pairs to compensate for the mismatch-induced offset or
the comparator can be auto-zeroed to minimize the offset [46].

Figure 3.13 illustrates the delay of the comparator when different input voltages are applied.
For large amplitudes, the comparator delay is within the margin of requirements. However,
when small amplitudes are applied, the decision time of the comparator can cause the clock
generator to miss an OOR flag when the actual voltage already crossed the threshold. Never-
theless, it is only necessary for the comparator to generates an OOR flag in case of stimulation
artifacts with large amplitudes. Since the input signal is continuous-time and either ramping up
or down in amplitude rapidly, the speed of the comparator is sufficient for the clock generator.
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3.3. Clock Generator

The clock generator is used to generate all the clock signals for the switches and operates with
a master clock at 10MHz. The flowchart of the clock generator is illustrated in Fig. 3.14.

As mentioned in chapter 2, the clock generator iterates through a look-up table to determine the
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Figure 3.14: Flowchart of the clock generator

integration time. The clock generator starts the integration after reset and increases the counter
every clock cycle. If there is no stimulation, the clock generator is set in spike mode with
TINT = 48µs as the system output rate is 20 kHz. If there is stimulation, the clock generator
checks iterates through the LUT. When the counter reaches the corresponding integration time,
the sampling clock is activated forTS = 1µs. After sampling, reset is activated forTR = 1µs.

During stimulation, the integration time configuration is locked for every 10µs as the output
rate of the system during stimulation is 100 kHz, which is required to properly reproduce the
stimulation artifact. The configuration is locked when the level-cross comparator generates an
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OOR flag. Furthermore, the number of samples taken every 10µs is also locked. Table 3.2
shows the number of samples corresponding to the different integration times. If OOR is not
flagged, integration is continued until the last iteration of the LUT is reached. Note that during
stimulation, the last iteration LUT[N] corresponds to 8µs due to the higher system output rate.
When this configuration is reached, the clock generator will only be set in spike mode if the
stimulation flag is off. This is necessary to account for the positive to negative transition of
the stimulation artifact, as during the transition, the amplitude of the artifact crosses zero, if
the integration only comprise of low amplitude signals, the system assumes that there is no
artifact present anymore.

Furthermore, the spike mode is not immediately activated after stimulation, as the residual
artifact could saturate the front-end when using a high-gain configuration. From the flowchart,
it can be derived that the OOR flag should not be triggered after stimulation, before going into
spike mode. This indicates that the residual artifact has decreased to a sufficient low level,
before the highest gain configuration can be used. Hence, the overall implementation of this
clock generator improves the robustness of the system.

Table 3.2: Integration time configurations with the corresponding samples taken every 10µs.

Tint (us) 0.2 0.4 0.8 1.4 3.8 9 49
Samples 8 4 4 4 2 1 1
Av [V/V] 2.64 5.12 10.41 18.03 48 91 202



4
System Implementation

This chapter focuses on the implementation of the system architecture illustrated in Fig. 3.1.
A simplified black-box diagram of the system is illustrated in Fig. 4.1. The circuits designed
in chapter 3 are integrated in the system. To verify whether the system meets the specifica-
tions listed in Table 2.1, different tests are performed. Section 4.1 presents the input dynamic
range of the system. Section 4.2 presents the step response of the system under different input
conditions. In section 4.3, sine waves with varying input amplitudes are reconstructed. Fur-
thermore, an artificial stimulation artifact and a neural spike is generated at the positive input
of the system to show the reconstructed signal.

Level-Cross
Detection

Clock Generator

Digital 
Averaging

OTA + HPF ADC
Boxcar 

sampling

VIP

VIN
DOUT[12:0]

CFG[2:0]

Fclk,ext Fsys

Figure 4.1: Simplified black-box representation of the system architecture
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4.1. System input range

The input range of the system is limited by the ADC input range and the boxcar gain config-
urations. The reference voltage of the ADC is set to VREF = 200mV. Therefore, the input
range of the ADC is defined as:

−VREF ≤ ADCIN ≤ VREF

The lowest achievable gain: Av,min = 2.64VV−1 is obtained at TINT = 200 ns. Due to
charge sharing properties of the SC-LPF, the sample on VINT is attenuated after sampling on
the CDAC, by approximately:

Av,SC = 1 − CDAC
CINT + CDAC

= 0.85

Therefore, the largest input signal that will saturate the ADC is defined as:

VIN,PP = 2 ⋅ VREF
Av,minAv,SC

= 89.1mV

To verify the dynamic range of the system, multiple 2 kHz sine-waves with varying amplitudes
are applied to the positive input of the system, the negative input is not used and kept at a
steady DC reference voltage 1. Figure 4.2 illustrates the frequency response with the signal-to-
noise and distortion ratio (SNDR) of the system output when 2 kHz sine-waves with multiple
amplitudes are applied to the input.

For this system, the frequency response of a full-scale input sine wave is illustrated in Fig. 4.2d.
The noise introduced by the system degrades the signal-to-noise ratio (SNR) by approximately
10 dB as an ideal 10-bit ADC with quantization noise only results in an SNR of ∼63 dB when
a full-scale sine-wave input is applied. The SNR is defined as:

SNR = 20 log10( A√
2Vn,rms

)

where A is the peak amplitude of a sine-wave and Vn,rms the RMS noise voltage, both at the
input of the ADC.

Figure 4.3 illustrates the frequency response when large amplitude sine waves are applied at
the input. Due to the adaptive gain implementation, the signal level at the ADC input is within
the full scale, thus avoiding saturation. However, the frequency responses for Fig. 4.3c and
4.3d show harmonic distortions, which could be caused by the relative gain error between
the gain configurations. Even though the distortion results in a degradation in the SFDR, the

1The targeted application of this system uses one working electrode and one reference electrode for each
channel
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Figure 4.2: Frequency response of the total system with 2 kHz sine-wave input sampled at

20 kHz.

overall SNDR actually improves. This is due to the fact that the large input amplitude leads to
a lower gain configuration, resulting in a lower noise at the input of the ADC. This is illustrated
in Fig. 4.4, where the difference in the RMS noise voltage can be seen. Hence, as the signal
amplitude at the input of the ADC is close to full scale, while the RMS noise voltage is reduced,
the SNR improves. Furthermore, at lower gain configurations, the ADC is oversampled, which
also increases the SNR slightly. When reaching the limit of the linear input range of the OTA
(Fig.4.3c and 4.3d), the distortion becomesmore dominant and visible, leading to a degradation
in the SNDR.

Figure 4.5 illustrates the SNDR versus multiple input amplitudes. The upper-limit of the dy-
namic range is calculated from the input signal range with a SNDR > 50 dB. This results in an
overall dynamic range of 69.5 dB.
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Figure 4.3: Frequency response of the total system with 2 kHz sine-wave input sampled at

100 kHz.
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Figure 4.4: Transient noise measured at the output of the boxcar sampler.

4.2. System step response

The dynamic behaviour of the system results in the necessity of verifying its step-response. To
verify this, unit-step signals with varying amplitudes are applied at the positive input. Figure
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4.6a illustrates the step response of the systemwhen a 1mV step function is applied at the input
at t = 2ms. Due to the small amplitude, the system uses the largest gain configuration. After
∼3ms, the system reaches steady state. When a 10mV step input is applied, the system uses
three different gain configurations as illustrated in Fig. 4.6b. For lower gain configurations,
the system settles slower compared to higher gain configurations.
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Figure 4.6: Step response of the total system with 1mV input step.

4.3. System recording

Figure 4.7 illustrates the reconstructed signal when a 2 kHz sine-wave of 1mVpp and 180mVpp
is applied to the input. It is visible that at the extremes of the 180mV sine wave, the signal is
slightly distorted, which corresponds to the frequency response illustrated in Fig. 4.3d.
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Figure 4.7: Reconstructed input vs original input for 2 kHz sine waves.

The implemented system is targeted to record during and after stimulation. Therefore, an ar-
tificial data-set has been generated which includes the direct stimulation artifact with peak
amplitude of ∼100mV, the residual artifact and the neural spike. Figure 4.8 illustrates the
reconstructed input compared to the original input signal. The system adapts the gain during
stimulation and is therefore able to record the stimulation artifact without saturating the front-
end. After stimulation, the system automatically adapts the gain to the persisting residual
artifact. After the integration time reaches the highest gain configuration, the system remains
in this configuration such that the neural action potential can be recorded with the largest ampli-
fication. It must be noticed that the implemented high-pass pole attenuates the low-frequency
part of the AP. The effect of this can be seen in Fig.4.8b after 2.4ms.

(a) Artifact + spike (b) Zoomed on spike
Figure 4.8: Reconstructed input of a artificial stimulation and neural spike recording
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4.3.1. Power consumption

The power consumption of the OTA can be calculated by multiplying the OTA supply voltage
with its bias current:

POTA = VDD,2.5V ⋅ Ibias,OTA = 450 nW

The power consumption of the LCD, which consists of two comparators is calculated as:

PLCD = 2Pcomp = 2VDD,1.1V ⋅ (2Ibias,comp1 + Ibias,comp2) = 1.12µW

Here, Pcomp is the power consumption of one comparator of the LCD, Ibias,comp1 is the bias
current of two differential input pairs, Ibias,comp2 is the bias current of the second gain stage
of the comparator.

For the unimplemented blocks, an estimation can be performed. The SAR ADC proposed in
[37] achieves a Walden figure-of-merit (FoM) of 4.1 fJ/c.step. The Walden FoM is calculated
as:

FOM = PADC
2ENOB ⋅ fs

Here, PADC is the total power consumption of the ADC, ENOB is the equivalent number of
bits and fs is the sampling rate of the ADC. For this system, the ADC can be configured to
operate at 20 kHz during spike mode and at 1MHz when in stimulation mode. This results in
a power consumption of 43 nW during spike recording and 2.2µW when in stimulation mode.

As for digital blocks, which consists of the clock generator, digital averager (accumulator +
logic shifter) and the divider, it can be assumed that their power consumptions are not dominant
compared to the analog blocks.



5
Discussions and Conclusions

5.1. Future Work and recommendations

5.1.1. Power and area savings

The system should be implemented in transistor level to verify the power-saving and area-
reducing claim in this work. The architecture avoids capacitevely-coupled amplifier and a
programmable-gain amplifier as proposed in [22] to reduce the capacitor area budget. The
digital averaging filter, in constrast to a sigma-delta modulator, only consists of an accumulator
and a binary shifter. The area can therefore be significantly reduced by avoiding a moving
average filter. The CDAC of the SARADC can be implemented with the unit-length capacitors
approach proposed in [37]. By using an asynchronous ADC, power can be minimized during
neural spike recording [38].

5.1.2. Tuning design parameters

Different design parameters used in this work can be changed depending on the target specifi-
cations of the system. The capacitance of the integration capacitor CINT can be increased to
obtain a lower gain at the output of the boxcar sampler at the cost of additional area. The same
can be achieved by decreasing the shortest integration time, which in turn result in a smaller
gain with the penalty of additional noise folding, to be compensated by oversampling. Assum-
ing that the OTA maintains linearity, the input range of the system can be increased without

42
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saturating the ADC, resulting in a higher DR.

5.2. Conclusions

The aim of this work was to propose a novel system architecture that can record during and
after stimulation, without saturating the front-end in presence of the stimulation artifacts. The
proposed system architecture automatically adapts the gain of the boxcar sampler by adapting
the integration time according to the input amplitude and slew-rate by using continuous-time
comparators that generate an out-of-range signal for the clock generator to stop the integration
at the boxcar sampler. To avoid complex digital processing blocks, a LUT with fixed gain
configurations is implemented and remains fixed during the interval of time at which the output
of the system is updated. The ADC oversamples during lower gain configurations to minimize
the noise penalty introduced by the boxcar sampler. The output of theADC is then accumulated.
The system outputs a 3-bit signal corresponding to the gain configuration and a 13-bit data
correspnding to the output of the accumulator. The output of the system can be reconstructed
by averaging the data and recomputing the gain.

The system recording performance is verified in presence of large amplitude input sine waves,
large stimulation artifacts and neural spikes. By achieving a dynamic range of 69.5 dB, the
system is able to capture input amplitudes up to 180mVPP with an ENOB of 8.01 bits.
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