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Abstract
In the field of quantum information theory, it is well-known that the purely quantum phe-
nomenon called quantum entanglement can boost the capacity of a quantum channel, which
is called the superadditivity of the capacity. Shor showed in his breakthrough paper on
the equivalence of additivity conjectures that this superadditivity is equivalent to the sub-
additivity of the minimum output entropy of quantum channels, and Hastings gave a high-
dimensional and probabilistic counterexample to the minimum output entropy additivity
conjecture. Since then, researchers have endeavored to classify which quantum channels
have subadditive minimum output entropy and to find deterministically constructed quan-
tum channels with subadditive minimum output entropy. It is well-known that determining
the minimum output entropy of an arbitrary quantum channel is a hard problem (in fact, it
has been shown to be NP-complete), which in turn makes it difficult to determine whether a
quantum channel has subadditive minimum output entropy.

In this thesis, we utilize the representation theory of compact (partition) quantum groups
to construct so-called covariant Clebsch-Gordan quantum channels and analyze their min-
imum output entropy. We review the work of Brannan and Collins in the case of the free
orthogonal quantum groups O+

N , and introduce a similar analysis for the quantum permuta-
tion group S+

N . Afterwards, we specialize to the subfamily of lowest-weight Clebsch-Gordan
channels, and we show that, in the case where one embeds the fundamental representation
of O+

N in the tensor product of two irreducible representations of O+
N , the associated lowest-

weight quantum channels have sufficient additional structure to analytically compute their
minimum output entropy in terms of a recurrence relation.

Lastly, we present an analysis of certain numerical methods that can be utilized to bound
the minimum output entropy from below and from above in low dimensions: we use ε-covers
for lower bounds, and we use a modified version of the derivative-free optimization method
called Particle Swarm Optimization over the unit sphere, hybridized with gradient descent, to
find upper bounds. We show a proof-of-concept by applying the ε-cover to three S+

N channels
with small input dimensions, but also note that the exponential scaling of ε-covers with the
input dimension makes them intractable with higher input dimensions. We benchmark the
Particle Swarm Optimization enriched with gradient-descent on the highest-weight Clebsch-
Gordan channels for which it can be shown that the minimum output entropy is zero, and
we see that the optimization technique performs adequately. We also apply the optimiza-
tion scheme to the tensor product of two S+

N -channels, but do not find any violation of the
minimum output entropy additivity conjecture.
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1
Introduction

Since Feynman’s conjecture that quantum computers can be programmed to simulate quan-
tum systems, sizable advancements have been made in the fields of quantum computation
and quantum information theory towards scalable quantum computation and a fully func-
tional quantum internet. Many parties across the globe, both academic and commercial, are
working towards this goal. Among them is QuTech, a collaborative research institute between
The Delft University of Technology and the Netherlands Organisation for Applied Scientifc
Research (TNO). Although numerous obstacles remain on the road towards a fully functional
quantum internet, it is imperative to consider the theoretical possibilities of future quan-
tum networks now, so that we can utilize these quantum technologies to their theoretical
limitations once they are scalable and functional. As these technologies will communicate
using quantum information, a theory of quantum information is necessary to describe the
communication between quantum systems. To develop such a theory, we draw inspiration
from the classical information theory, where questions such as at what rate can we send
information reliably with negligible risk of losing information? have been satisfactorily an-
swered: Shannon proved that classical channels can not exceed a certain maximal rate, the
so-called channel capacity, and gave a method to calculate these capacities. However, when
we consider quantum channels, a truly quantum phenomenon invalidates the same analysis:
quantum entanglement. Suddenly, it might be possible to entangle the quantum information
over multiple channel uses (modelled by taking tensor products of the quantum channels),
which could possibly boost the overall capacity of the quantum channel. In turn, this would
have a tangible influence on our choice of quantum internet protocols that we deploy on the
quantum communication channels.

In the classical situation, the channel capacity is additive: when we use two channels to
send information from A to B, the capacity is the sum of the individual capacities of the chan-
nels. In the quantum world, it was first conjectured that the classical capacity of a quantum
channel was also additive, which would directly imply that entanglement between channel
uses could not boost the channel capacity. After Shor showed in his breakthrough paper
[Sho04] that this conjecture was equivalent to three other quantum additivity conjectures,
among them the additivity conjecture of the minimum output entropy (from now on: MOE),
proving any of these four conjectures false would prove that the classical capacity of a quan-
tum channel was not necessarily additive. Hastings provided definitive proof that all these
conjectures were false by constructing a counterexample to the MOE-additivity conjecture
[Has09]. However, his proof used a random construction of a quantum channel that has a
non-zero probability of violating the additivity conjecture – to this day, we have not found a
deterministic description of any quantum channel that violates this additivity conjecture.

These additivity conjectures have not only resulted in theoretical research such as effi-
cient methods of determining quantum capacities [ON00], but have also attracted the atten-
tion of experimental researchers, who have found coherent information additivity violations
[YMP+20] and proof of superadditive quantum coding gain for small codes [FTMS03].
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In general, computing the minimum output entropy of a quantum channel is a very hard
problem (it is, in fact, NP-complete [BS07]), which makes it difficult to investigate whether
quantum channels violate MOE additivity. Therefore, we could try to find families of quan-
tum channels that have particular useful properties that allow us to calculate or approximate
their MOE. A natural source of such quantum channels is the representation theory of mathe-
matical objects such as (compact) groups: these quantum channels retain the symmetries of
their underlying group to a certain degree, which allows us to exploit the group structure to
calculate information-theoretic quantities of the quantum channels, such as their MOE. This
method dates back to at least 2005, when Holevo proved the equivalence of MOE-additivity
and χ-additivity for what he calls irreducibly covariant quantum channels [Hol05]. For spe-
cific groups, these quantum channels have been investigated: Al Nuwairan studied the convex
set of SU(2)-irreducibly covariant channels, in particular their extreme points, the so-called
EPOSIC (extreme points of SU(2)-irreducibly covariant ) channels [Nuw14, Nuw13]. This tech-
nique can also be carried out for so-called compact quantum groups, an active mathematical
research subfield of operator algebras and functional analysis that looks at non-commutative
generalizations of the C∗-algebras of continuous functions on compact groups. The use of
compact quantum groups allows us to capture the non-commutativity that is a recurring
theme in quantum mechanics on a more fundamental level, namely inside the structure
from which we build the quantum channels in the first place. Consensus has been reached
on the basic concepts of compact quantum groups, and their representation theory is well-
developed, which allows us to consider covariant quantum channels. Brannan and Collins
introduced the quantum channels associated to the free orthogonal quantum group O+

N in
[BC16b], and they also computed asymptotically sharp bounds on the MOE of these quan-
tum channels [BCLY20]. The lower bounds on the MOE of these quantum channels grow
relatively quickly with the dimensions of the input and output Hilbert spaces, which allows
us to investigate whether the MOE of the tensor product of these channels could be strictly
smaller than the sum of their respective MOE’s. Furthermore, although computing the MOE
is NP-complete, we will consider the possibilities of utilizing numerical methods to compute
the MOE of these covariant quantum channel for low input and output dimensions.

Both the exploration of the symmetries of covariant quantum channels and the investi-
gation of numerical methods for computing their MOE are important building blocks and
techniques that we can apply to find deterministic descriptions of quantum channels that
are strictly MOE-subadditive. This leads us to pose two questions in this thesis:

1. Can we apply the construction of Brannan and Collins to other compact quantum
groups, such as quantum permutation group S+

N , to yield a family of covariant chan-
nels? And in this case, how do the MOE bounds of Brannan and Collins generalize to
this other quantum group?

2. Can we numerically approximate the MOE of these covariant quantum channel in low
dimensions to satisfactory accuracy?

In this thesis, we seek to understand the mathematical construction of Brannan and
Collins that is foundational to these quantum channels. Afterwards, we give an affirmative
answer to the first question by introducing quantum channels associated to the quantum
permutation group S+

N , and we derive similar lower bounds for the MOE of these quantum
channels.

To answer the second question, we propose the use of ε-covers to bound the MOE from
below. We show a proof-of-concept for low dimensions applied to the S+

N -quantum channels,
and investigate how their size grows with the input dimension of these quantum channels.
To approximate the MOE from above, we must solve a difficult optimization problem (concave
minimization over a convex set), and we investigate whether the derivative-free optimization
method called Particle Swarm Optimization (enriched with gradient-based descent) can be
deployed to find good minimums for the MOE.

Lastly, we discuss and implement both the DPS hierarchy (named after its inventors Do-
herty, Parrilo and Spedalieri, [DPS02]) and its modification, the DPS∗ criterion, which are
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methods that indicate whether a quantum state is separable or entangled. We utilize these
methods to investigate whether certain O+

N -quantum channels are entanglement-breaking, as
quantum channels with that property cannot violate the MOE additivity.

The numerical tools gathered and developed in this thesis can be publicly accessed at
qittoolbox on GitHub .

We briefly discuss the outline of this thesis. In Chapters 2 and 3 we will cover the necessary
mathematical and physical background. We hope that these chapters can be useful refer-
ences for the reader whenever further chapters utilize theory that is unfamiliar to the reader.
In Chapter 4, we discuss the theory of compact quantum groups, in particular the compact
matrix quantum groups, together with the Tannaka-Krein duality, which is necessary to un-
derstand how a compact matrix quantum group is in a certain sense fully characterized by
the category of its representations. In Chapter 5 we specialize to the O+

N and S+
N quantum

groups, and discuss their representation theory in more detail. This chapter also lays the
foundation of the S+

N -quantum channels that we introduce in this thesis. In Chapter 6 we
show how one constructs quantum channels out of the representation theory of the compact
quantum groups discussed in the previous chapter(s), and we note some results on the MOE
of the S+

N -channel.
Afterwards, we specialize our attention to the so-called “lowest-weight” quantum chan-

nels which have the smallest input dimension (without being trivial) in Chapter 7. There,
we strengthen some of the results on positive partial transpose and entanglement-breaking
properties as found in [BCLY20] for the lowest-weight quantum channels, and we show a
surprising result which allows us to calculate the MOE exactly in the smallest case where we
embed the fundamental representation in a larger tensor product of representations.

Lastly, we turn our attention to the numerical approximations and implementations to find
bounds on the MOE of quantum channels in Chapter 8. We discuss the continuity of the von
Neumann entropy, the ε-covers which provide a lower bound on the MOE, the Particle Swarm
Optimization algorithm which provides an upper bound on the MOE, and the DPS hierarchy
and the DPS∗ criterion to determine whether a quantum channel is entanglement-breaking.

We conclude our findings in Chapter 9.

https://github.com/SamvPoelgeest/qittoolbox


2
An introduction to universal

C∗-algebras and partition theory
As this thesis deals with a topic that heavily relies on both mathematics and quantum in-
formational physics, it is imperative to sketch a broad background of both the physical and
mathematical tools involved in the project. We expect at least an undergraduate mathemati-
cal maturity level (e.g. , the reader is familiar with vector spaces, groups and some elementary
results from group theory, and elementary set theory), but we will discuss relevant mathe-
matical theory (such as C∗-algebras).

Let us commence with some notation and terminology. We denote the natural numbers
starting from 1 by N, and will write N0 if we wish to include 0. Similarly, Z, R and C denote the
integers, real numbers and complex numbers.By Sn−1 we denote the (n−1)-sphere embedded
in Rn (or embedded in Cn, which will be clear from context). The sesquilinear forms on a
complex vector space V are usually denoted by ⟨·|·⟩ : V × V → C, and we define them to be
conjugate-linear in the first coordinate, and linear in the second – this choice is made to be
consistent with the Dirac bra-ket notation, which is omnipresent in quantum information: in
a Hilbert space H, vectors ξ ∈ H are sometimes also written as |ξ⟩ ∈ H. In this case, η∗ ∈ H∗,
i.e. the linear map η∗ : H → C by η∗(ξ) = ⟨η|ξ⟩ , is also denoted by ⟨η| := |η⟩∗ ∈ H∗. Then,
notation like ⟨η| |ξ⟩ corresponds with the inner product ⟨η|ξ⟩. If H and K are Hilbert spaces,
H⊗K denotes the Hilbert space tensor product of H and K. If A and B are C∗-algebras, A⊗B
denotes the minimal C∗-tensor product.

Having fixed the terminology and notation, we can move on to the mathematical tools we
will need to develop to understand compact quantum groups, their representations, and
quantum channels and their information-theoretic properties. As compact quantum groups,
contrary to what the name suggests, are not “groups” but rather C∗-algebras together with
a comultiplication and a compatibility axiom, we start with C∗-algebras. Conveniently, the
language of C∗-algebras is also the language in which quantum systems and quantum states
are described.

2.1. C∗-algebras
As we will exclusively deal with C∗-algebras over the complex field C in this thesis, for brevity
we will restrict our following definitions to the complex field, although one can easily general-
ize this to arbitrary fields F. As we can view a C∗-algebra as a vector space with a multiplica-
tion, norm, involution, and compatibility rules between these structures, in order to show the
interplay of mathematical structure we give a C∗-algebra, we first discuss those structures
separately. Two key examples of C∗-algebras will be C[0, 1], the continuous (complex-valued)
functions on the real interval [0, 1], and B(H), the set of all bounded linear operators on a

4



2.1. C∗-algebras 5

Hilbert space H. 1 Necessarily, the introduction will be short, and will be far from a complete
introduction to the basics of C∗-algebra theory. See [Mur14] for an excellent introduction.

Let us commence with a vector space A over C. We endow A with a C-bilinear multiplication
· : A × A → A that is associative, i.e. (ab)c = a(bc) for all a, b, c ∈ A. This turns A into a
C-algebra. If we have two such C-algebras A and B, a map φ : A → B is called an algebra
homomorphism if it is linear and respects products, i.e. φ(ab) = φ(a)φ(b). If A has an element
1A ∈ A which we call its unit such that 1Aa = a1A = a for all a ∈ A, then we say that A is
a unital algebra. For example, we can turn C[0, 1] into a unital algebra by considering the
product (f · g)(x) = f(x)g(x), and we can turn B(H) into a unital algebra by considering the
matrix product a · b = a ◦ b (composition of linear maps). Some algebras such as C[0, 1] have
the property that f · g = g · f for all f, g ∈ C[0, 1], and we call them commutative.

Our examples C[0, 1] and B(H) not only have algebraic structure, they also have topolog-
ical structure induced by a norm on the underlying vector space. To make both structures
compatible, we demand that the norm is submultiplicative, i.e. ∥ab∥ ⩽ ∥a∥ · ∥b∥. If a C-algebra
A has such a submultiplicative norm, we call A a normed algebra. For example, C[0, 1] can
be endowed with the sup-norm ∥f∥∞ := supx∈[0,1] |f(x)| and B(H) with the operator norm
∥a∥ = supξ ̸=0 ∥aξ∥/∥ξ∥ where the supremum ranges over all nonzero ξ ∈ H. The submultiplica-
tivity of the sup-norm follows directly, and it is a typical exercise to show that the operator
norm is submultiplicative. Hence, C[0, 1] and B(H) are normed algebras.

However, C[0, 1] and B(H) have the additional property that as normed vector spaces, they
are complete (i.e., a Cauchy sequence in this space always converges to a point in this space).
This turns a normed algebra into a Banach algebra.

Lastly, we need the structure of an involution: for example, a complex-valued function
f ∈ C[0, 1] can be conjugated by setting f∗(x) := f(x) (where z is the complex conjugate of a
complex number z), and an operator a ∈ B(H) has an adjoint a∗ ∈ B(H) (in Physics, this is also
often referred to as the hermitian conjugate, and denoted by a†). In general, an involution on
an algebra A is a C-antilinear map ∗ : A → A such that (a∗)∗ = a and (ab)∗ = b∗a∗ for all a, b ∈ A.
If A is endowed with an involution, we call A a ∗-algebra. A map φ between two ∗-algebras
A and B is called a ∗-homomorphism if it is an algebra homomorphism and φ(a∗) = φ(a)∗
for all a ∈ A. If A is a Banach algebra, we additionally demand that ∥a∗∥ = ∥a∥, and then
call A a Banach ∗-algebra. If we additionally demand that the C∗-identity ∥a∗a∥ = ∥a∥2 holds
for all a ∈ A, we call A a C∗-algebra. By Gelfand’s spectral radius formula, we in fact have
∥a∥2 = ∥a∗a∥ = sup{|λ| : a∗a− λ1A is not invertible}, hence the C∗-norm is defined by purely
algebraic structure, which also directly shows that at most one C∗-norm exists on a ∗-algebra.

Now that we have established the structures that turn C[0, 1] and B(H) into C∗-algebras,
we consider the properties of their individual elements. Given a C∗-algebra A and a ∈ A,
we say that a is normal if aa∗ = a∗a (in the commutative case such as C[0, 1], any element is
normal. In the finite-dimensional case of B(H) ≃ Mn(C) of n × n matrices, normal elements
are precisely those matrices that are diagonalizable by a unitary matrix). We say that a is
self-adjoint or hermitian if a∗ = a. We call a unitary if aa∗ = a∗a = 1A. We say that a is positive
if a = b∗b for some b ∈ A, note that positive elements are always self-adjoint 2. Lastly, a is a
projection if it is both self-adjoint and idempotent, i.e. a∗ = a = a2.

Of course, there is much more to say about C∗-algebras, but for now we discuss two topics
that are vital to the constructions and arguments we will later encounter.
1In a certain sense, these encompass “all” examples, because deep theorems following from the Gelfand isomorphism
and the Gelfand-Naimark theorem revealed that any commutative C∗-algebra is isomorphic to C0(X) for some
locally compact space X (and in the unital case, this is C(X) on some compact space X), and any C∗-algebra is
isomorphic to a norm-closed ∗-subalgebra of B(H) for some Hilbert space H through the GNS construction.

2Note that positive elements are generally defined as those a ∈ A that are hermitian and whose spectrum σ(a)
satisfies σ(a) ⊆ R⩾0, but we did not define the spectrum (as we will not need it), hence we use an equivalent
definition. For further information, please see [Mur14, Thm. 2.2.5.]



2.1. C∗-algebras 6

2.1.1. Quantum mechanical and C∗-algebraic states
In quantum mechanics, all relevant information about a quantum system is stored in the
quantum “state”, where we distinguish between so-called pure states and (statistically) mixed
states. This notion coincides in the finite-dimensional case with the more general notion of
a state as a normalized positive functional on a C∗-algebra. Let us first define:

Definition 2.1.1: Faithful, positive and normalized functionals and states

Given a functional (i.e., a linear map) φ : A → C from a complex algebra A to its field C.
We say:

• φ is faithful if, for any a ∈ A with a ̸= 0, we have φ(aA) ̸= {0} and φ(Aa) ̸= {0}.
• φ is normalized if A is a unital algebra and φ(1A) = 1.
• φ is positive if A is a ∗-algebra and for all a ∈ A, we have φ(a∗a) ⩾ 0. We write φ ⩾ 0

to say φ is positive. For two positive functionals φ and τ , we write φ ⩾ τ if φ− τ ⩾ 0.

A functional φ that is both normalized and positive is called a state on the unital ∗-
algebra A. The set of all states on a C∗-algebra A is denoted by S(A). We call such a a
state pure if for any positive functional τ ⩽ φ one can find a t ∈ [0, 1] such that τ = tφ,
and denote the set of all pures states on A by PS(A).

In the quantum mechanical setting, the following definition is standard:

Definition 2.1.2: Quantum mechanical state

In finite dimensions, a quantum system is described in a finite-dimensional complex
Hilbert space H = Cn, and the quantum mechanical information is modelled either by a
pure state or a mixed state:

• A pure state is modelled by a vector |ψ⟩ ∈ H with ⟨ψ|ψ⟩ = ∥ψ∥2 = 1, where the
expectation of an observable x ∈ Mn(C) is calculated by x 7→ ⟨x⟩ψ := ⟨ψ|x|ψ⟩.

• A mixed state is modelled by a density matrix ρ ∈ B(H) = Mn(C) which is a pos-
itive matrix with Tr(ρ) = 1, where the expectation of an observable x ∈ Mn(C) is
calculated by x 7→ Tr (ρx).

When one refers to a state (without specifying whether it is pure or mixed), in general
one is referring to a mixed state (note that pure states are included in the definition of
mixed states, by using ρ = |ψ⟩⟨ψ|), and we denote with S(H) the set of all states on a
Hilbert space H.

Note that a quantum mechanical pure state modelled by |ψ⟩ ∈ H = Cn can be associated
with a C∗-algebraic state φψ : B(H) = Mn(C) → C by x 7→ ⟨ψ|x|ψ⟩. Similarly, a density matrix
ρ ∈ Mn(C) can be associated with a C∗-algebraic state φρ : Mn(C) → C by x 7→ Tr(ρx). In fact,
these associations are bijections:

Theorem 2.1.1

In the finite-dimensional case H = Cn, the quantum mechanical pure states in Defini-
tion 2.1.2 are in bijective correspondence with the C∗-algebraic pure states on B(H) in
Definition 2.1.1 by mapping a state |ψ⟩ to φψ : x 7→ ⟨ψ|x|ψ⟩, and the quantum mechanical
mixed states are in bijective correspondence with the C∗-algebraic states by mapping a
state ρ to φρ : x 7→ Tr(ρx).

Proof. Murphy’s Example 5.1.1 in [Mur14] shows the more general result that pure states of
a C∗-algebra A := K(H) for some Hilbert space H are precisely of this form 3. The mixed state
case is also a well-known result, see for example [Jan10, Thm. 2.7].
3Here, K(H) denotes the space of all compact operators on H. In the finite-dimensional case, B(H) = K(H) = Mn(C)



2.2. Universal C∗-algebras 7

2.1.2. ∗-ideals of and seminorms on C∗-algebras
A necessary tool that we must develop before discussing universal C∗-algebras is the con-
struction of a C∗-algebra from a ∗-algebra with a C∗-seminorm. The latter is defined as
follows:

Definition 2.1.3: C∗-seminorm

Given a ∗-algebra A. A C∗-seminorm is a function p : A → [0,∞) such that:

1. p(λa) = |λ|p(a) for all λ ∈ C and a ∈ A

2. p(a+ b) ⩽ p(a) + p(b) for all a, b ∈ A

3. p(ab) ⩽ p(a)p(b) for all a, b ∈ A

4. p(a∗a) = p(a)2 for all a ∈ A.

Example 2.1.1. Given a ∗-algebra A and a C∗-algebra B, and any ∗-homomorphism φ : A →
B. We then see that p given by p(x) := ∥φ(x)∥ is a C∗-seminorm on A.

It is directly clear from the definition that the norm ∥ · ∥ of a C∗-algebra A is also a C∗-
seminorm on A. However, it is not true that a C∗-seminorm p is generally a norm, as p(a) = 0
does not generally imply a = 0. However, we can look at quotient ∗-algebras, where we mod
out the kernel of p, to make p an actual norm. This construction succeeds because the kernel
of p is a two-sided ∗-ideal. An ideal is a subspace B ⊆ A of an algebra A such that ab, ba ∈ B for
any a ∈ A and b ∈ B. If A is a ∗-algebra, B is called a two-sided ∗-ideal if additionally B∗ = B.
Given such a two-sided ∗-ideal I, we can “mod out I”: we denote by A/I the collection of all
cosets a+ I for a ∈ A, with (a+ I) + (b+ I) = (a+ b) + I, (a+ I)(b+ I) = (ab) + I, (a+ I)∗ = a∗+ I
and λ(a+ I) = (λa) + I for λ ∈ C. This turns A/I into a ∗-algebra.

The thought of modding out the kernel of the C∗-seminorm p on A has merit, because
ker(p) := {x ∈ A : p(x) = 0} is a two-sided ∗-ideal, which is a standard exercise in using
the properties of a C∗-seminorm. We have now achieved a ∗-algebra A/ ker(p) on which the
induced map p̂ given by a + ker(p) 7→ p(a) has a trivial kernel. This turns p̂ into a norm on
A/ ker(p), and by densely embedding A/ ker(p) in its completion Â := A/ ker(p)p̂ as a metric
space, the space Â turns into a C∗-algebra with C∗-norm p̂.

2.2. Universal C∗-algebras
In order to construct compact quantum groups, which consist of a C∗-algebra, comultipli-
cation, and some compatibility conditions, it is often useful to describe the C∗-algebra as
a “universal C∗-algebra” of elements with certain constraints. For example, Mn(C) is a C∗-
algebra (as it is, in fact, a special case of B(H) with H = Cn), but we could equivalently describe
it as the C∗-algebra brought forth by the distinct “basis elements” Eij for 1 ⩽ i, j ⩽ n, with
the constraints that E∗ij = Eji and EijEkl = δjkEil. We make this notion exact in the following
section, which is largely based on [LVWB21] and [Bla06]. Let us commence with defining a
free ∗-algebra on a set of elements.
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Definition 2.2.1: Free (complex) algebra on the generator set X

Let X := {xi : i ∈ I} be a set of elements xi, indexed by I. We define a (non-commutative)
monomial in X as a word xi1 . . . xin where ij ∈ I for all 1 ⩽ j ⩽ n and n ∈ N. We define
a (non-commutative) polynomial in X as a formal C-linear combination of monomials
yk for 1 ⩽ k ⩽ N with N ∈ N, and so we write the polynomial as

∑N
k=1 λkyk for λk ∈ C.

We define the addition of two non-commutative polynomials
∑N
k=1 λkyk and

∑M
k=1 µkzk

as the polynomial
∑N+M
k=1 νktk where νk = λk and tk = yk for k ⩽ N , and νk = µk−N and

tk = zk−N for N < k ⩽ N +M . We define the scalar multiplication on polynomials in X as
µ ·∑N

k=1 λkyk =
∑N
k=1(µλk)yk. The associative multiplication of two monomials is defined

by concatenation, i.e. (xi1 · · ·xin)(xj1 · · ·xjm
) := xi1 · · ·xinxj1 · · ·xjm

, and we canonically
extend this C-linearly to polynomials in X. We then define the free algebra Alg(X) on
the generator set X as the set of polynomials in X, together with the addition, scalar
multiplication and associative multiplication defined above.

Note that the elements xi ∈ X are non-commutative in general, so the monomials x1x2
and x2x1 are in general distinct in the free algebra on the generator set X. Furthermore, note
that if we include the empty word (the monomial in X with length 0) in our definition, this
empty word is the multiplicative unit of Alg(X), turning it into a unital free algebra. We will
also denote the unital free algebra on X by Alg(X), and will in this case explicitly state that
it is unital.

Definition 2.2.2: Free ∗-algebra on the generator set X

Following Definition 2.2.1, we let X be the set of generators xi, and we now consider
another set X∗ := {x∗i : i ∈ I} which we see as disjoint from X. We consider the free
algebra Alg(X ∪X∗), and we define the involution on this free algebra as(

µxϵ1
i1

· · ·xϵn
in

)∗ := µ · xϵ
∗
n
in

· · ·xϵ
∗
1
i1
, (2.1)

where µ ∈ C, and ϵi ∈ {1, ∗} (where we set x1
i := xi for all i ∈ I), and ϵ∗i := ∗ if ϵi = 1

and ϵ∗i := 1 if ϵi = ∗, and we extend this linearly to all of Alg(X ∪X∗). The free ∗-algebra
∗-Alg(X) on the generator set X is defined as Alg(X ∪X∗) with the involution as defined
above.

Definition 2.2.3: Universal ∗-algebra with generators and relations

Let X := {xi : i ∈ I} be a set of elements xi and consider ∗-Alg(X). Assume we have a
set of polynomials in X called R ⊆ ∗-Alg(X). Find the two-sided ∗-ideal J(R) in ∗-Alg(X)
generated by R. We define the universal ∗-algebra with generators X and relations R as
the quotient ∗-Alg(X|R) := ∗-Alg(X)/J(R).

Definition 2.2.4: Universal C∗-algebra

Let X be a set of generators, R ⊆ ∗-Alg(X) a set of relations. Let us put

∥x∥ := sup {p(x) | p is a C∗-seminorm on ∗ -Alg(X|R)} . (2.2)

The reader should convince him- or herself that ∥·∥ is a C∗-seminorm, provided ∥x∥ < ∞
for all x ∈ ∗-Alg(X|R) (this follows directly from the definition). We know that the kernel
K of ∥ · ∥ is a two-sided ∗-ideal, so we can define the universal C∗-algebra of generators
X with relations R as

C∗(X|R) := ∗-Alg(X|R)/K∥·∥, (2.3)

where the overline means that we take a completion of the quotient space with respect
to the C∗-seminorm ∥ · ∥.
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Note that it is not directly clear when this construction will work, as we assume that
∥x∥ < ∞ for all x ∈ ∗-Alg(X|R). Furthermore, it is entirely possible that C∗(X|R) is the trivial
C∗-algebra {0}. Let us investigate both problems.

Lemma 2.2.1: Sufficient condition for ∥x∥ < ∞

Given a generator set X = {xi : i ∈ I} and relations R ⊆ P (X), assume there is a
constant C > 0 such that p(xi) < C for all C∗-seminorms p on ∗-Alg(X|R) and all xi ∈ X.
Then ∥x∥ < ∞ for all x ∈ ∗-Alg(X|R).

Proof. Note that p(xi1 · · ·xin) ⩽ p(xi1)p(xi2) · · · p(xin) < C · C · · ·C = Cn, so the quantity ∥x∥ for
any monomial x of length n is bounded by Cn. By the triangle inequality, any polynomial in
X is also ∥ · ∥-bounded, hence ∥x∥ < ∞ for all x ∈ ∗-Alg(X|R).

To investigate the problem where C∗(X|R) might be trivial, we can use the universality
property of this C∗-algebra – we can show that C∗(X|R) is non-trivial by finding a non-trivial
∗-homomorphism to another C∗-algebra, provided we can find a set of elements that satisfy
the same relations R, and provided that C∗(X|R) exists in the first place:

Proposition 2.2.1: Universality property of C∗(X|R)

Let X = {xi|i ∈ I} be a set of elements, R ⊆ ∗-Alg(X) be the relations, and assume
that C∗(X|R) exists. Given any C∗-algebra B, with a subset Y := {yi|i ∈ I} ⊆ B that
satisfy the relations R, i.e. if we change all xi for yi in the polynomial expressions in R,
then each expression is identically zero. Then, there exists a unique ∗-homomorphism
φ : C∗(X|R) → B mapping xi to yi for all i ∈ I.

Proof. First, let φ0 : ∗-Alg(X) → B be the ∗-homomorphism sending xi to yi – we can do this,
because ∗-Alg(X) is a free ∗-algebra without any constraints over the generator set X. Note
that the two sided ∗-ideal J(R) generated by R in ∗-Alg(X) vanishes in B if we replace all
xi by yi, by assumption. Hence, we get an induced ∗-homomorphism φ̂0 : ∗-Alg(X|R) → B
by φ̂0 : x + R 7→ φ(x). What is left is to show that φ̂0 is continuous with respect to the
sup-norm ∥ · ∥ on ∗-Alg(X|R), such that we can uniquely extend it to a ∗-homomorphism
φ : C∗(X|R) → B. We can use Example 2.1.1: we set p(x) = ∥φ̂0(x)∥B, and note that this
is a C∗-seminorm on ∗-Alg(X|R), hence we see ∥φ̂0(x)∥B ⩽ ∥x∥, so φ̂0 is indeed continuous.
Uniqueness follows from the fact that ∗-homomorphisms that agree on the generators of a
C∗-algebra must necessarily agree on the entire generated C∗-algebra 4.

Proposition 2.2.2: Uniqueness of C∗(X|R)

Assume two C∗-algebras A and B are both generated as C∗-algebras by a set of elements
X := {xi|i ∈ I} and Y := {yi|i ∈ I}, respectively, and that these elements satisfy a set
of relations R ⊆ ∗-Alg(X) (for B, we exchange xi for yi). Furthermore, assume that they
both satisfy the same universality property: if another C∗-algebra C contains a subset
Z := {zi|i ∈ I} such that they satisfy the relations R (if we exchange xi with zi), then
there exist unique ∗-homomorphisms φA : A → C and φB : B → C mapping xi to zi and
mapping yi to zi, respectively. If this is the case, then A ≃ B as C∗-algebras.

Proof. As Y ⊆ B satisfies the relations R, by the universality property of A we can construct
a ∗-homomorphism φA : A → B mapping xi to yi. As X ⊆ A satisfies the relations R, the
universality property of B implies that we have a ∗-homorphism φB : B → A mapping yi to xi.

Clearly, φA◦φB = idB and φB ◦φA = idA as ∗-homomorphisms that agree on the generators
of a C∗-algebra must necessarily agree on the entire generated C∗-algebra, hence we have
A ≃ B as C∗-algebras.
4See Lemma 3.26 in [LVWB21] for details on this
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Let us now provide two situations where the universal C∗-algebra construction “fails”: we
show that C∗(X|R) need not exist, and we show a situation where C∗(X|R) = 0.

Example 2.2.1 (Non-existent universal C∗-algebra). Let X := {x} and let R := {x − x∗},
adopt the more pleasant notation C∗(X|R) = C∗(x|x = x∗). This object does not exist. We
show this by using Example 2.1.1 and Proposition 2.2.1. Namely, consider the C∗-algebra
C[0, 1], and for any λ > 0, define fλ := λ1[0,1] ∈ C[0, 1]. As f∗ = f , it satisfies the relationship
R, hence by Proposition 2.2.1, construct the ∗-homomorphism φλ : C∗(x|x∗ = x) → C[0, 1]
mapping x to fλ. This yields a C∗-seminorm pλ on C∗(x|x∗ = x) given by pλ(y) = ∥φλ(y)∥∞.
But, as pλ(x) = ∥f∥∞ = λ, and we must have pλ(x) ⩽ ∥x∥, we see that λ ⩽ ∥x∥. But λ > 0 was
arbitrary, so ∥x∥ = ∞, hence C∗(x|x∗ = x) does not exist!

Example 2.2.2 (Trivial universal C∗-algebra). Given X = {x} and R = {x2, xx∗x− x, x− x∗},
then we have C∗(x|x2 = 0, xx∗x = x, x = x∗) = 0. Namely, for any C∗-seminorm p on ∗-Alg(x|x2 =
0, xx∗x = x, x = x∗), we have p(x)2 = p(x∗x) = p(x∗xx∗x) = p(x∗x)2 = p(x)4, so p(x) ∈ {0, 1}, thus
by Lemma 2.2.1, C∗(X|R) exists. However, ∥x∥2 = ∥x∗x∥ = ∥x2∥ = ∥0∥ = 0, so C∗(X|R) = 0.

In contrast to these examples where the universal C∗-algebra construction fails, we also
have situations where it is successful, such as the following construction, see [LVWB21, Prop.
6.11]:

Proposition 2.2.3

For n ∈ N⩾2, the C∗-algebra Mn(C) is isomorphic as C∗ algebra with

C∗(Eij , 1 ⩽ i, j ⩽ n | E∗ij = Eji, EijEkl = δjkEil) (2.4)

Remark 2.2.1. Note that Blackader in [Bla06] uses a slightly different construction, where
the generators X := {xi|i ∈ I} need to be realized on a Hilbert space and the relations in R
are of the form ∥p(xi1 , . . . , xin , x∗i1 , . . . , x∗in)∥ ⩽ η, where p is a polynomial of 2n generators in
X, and η ⩾ 0. These relations must (either explicitly or implicitly) bound the norm of those
generators seen as operators on this Hilbert space. He defines a representation of X with
relations R as a set of bounded operators {Ti|i ∈ I} on a certain Hilbert space H, such that
if one replaces xi with Ti (and x∗i with the adjoint T ∗i ) in the relations in R, the relations
∥p(Ti1 , . . . , Tin , T ∗i1 , . . . , T ∗in)∥ ⩽ η are satisfied. He then sets ∥x∥ := sup{∥π(x)∥H}, where the
supremum is over all (π,H) that are representations of X with relations R. Then, C∗(X|R) is
defined as the free ∗-algebra ∗-Alg(X), where one divides out all {x : ∥x∥ = 0}, and completed
with respect to the C∗-seminorm ∥ · ∥, assuming that the supremum in the definition of ∥ · ∥
is finite for all x ∈ ∗-Alg(X). The constructions coincide if we choose all constraints in R to
have η = 0, as follows:

Proposition 2.2.4

Given a set of generators X := {xi|i ∈ I} and a set of relations R := {qj = 0|j ∈ J}
where qj are polynomials in the 2n non-commuting variables xi1 , . . . , xin and x∗i1 , . . . , x

∗
in

.
Assuming the universal C∗-algebra C∗(X|R) as defined in Definition 2.2.4 exists, then
it coincides with Blackader’s universal C∗-algebra, which we shall call C∗B(X|R) with
C∗-norm ∥x∥B.

Proof. Let us show that ∥x∥B ⩽ ∥x + J(R)∥. Given a ∗-representation (π,H) of A := ∗-Alg(X)
such that {π(xi) | i ∈ I} ⊂ B(H) satisfy R. Let B := ∗-Alg(X)/J(R) = ∗-Alg(X|R), and abbreviate
J(R) by J . We can descend to a ∗-homomorphism π̂ : B → B(H) by π̂(x+ J) = π(x), because if
x+ J = y+ J , then x− y ∈ J , and as {π(xi) | i ∈ I} satisfy R, we must have π(x− y) = 0. Then,
the map x + J 7→ ∥π̂(x + J)∥H = ∥π(x)∥H defines a C∗-seminorm on B = ∗-Alg(X|R), hence
∥x+J∥ ⩾ ∥π(x)∥H for any ∗-representation (π,H) on ∗-Alg(X) that satisfies R, hence by taking
a supremum over those representations we get ∥x+ J∥ ⩾ ∥x∥B.
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Let us now show that ∥x∥B ⩾ ∥x+J∥. Given the C∗-seminorm p on B = ∗-Alg(X|R), consider
the ∗-algebra Bp := B/Ker(p), and complete it with respect to the C∗-seminorm p to yield a C∗-
algebra Bp := B/Ker(p)p. Now consider the canonical projection ∗-homomorphism πp : A → Bp
by x 7→ x + J 7→ (x + J) + K, where K := Ker(p). As πp clearly contains J in its kernel, the
elements {πp(xi)|i ∈ I} satisfy R. Each C∗-algebra can be realized as a closed ∗-subalgebra
of a B(Hp) for some Hilbert space Hp, so (πp,Hp) is a representation of X satisfying R, with
the property ∥πp(x)∥ = p(x + J). Hence, p(x + J) ⩽ ∥x∥B, and by taking a supremum over all
possible C∗-seminorms p on B, we retrieve ∥x+ J∥ ⩽ ∥x∥B.

It follows that both constructions yield the same universal C∗-algebra C∗(X|R).

Note that Blackader’s definition can be used to define expressions such as C∗(x|x =
x∗, ∥x∥ ⩽ 1), namely by constructing A := ∗-Alg(X), ∥x∥ := sup{∥π(x)∥} with the supremum
over all ∗-representations (π,H) of A such that π(x) = π(x)∗ and ∥π(x)∥ ⩽ 1, and then finally
constructing A/K∥·∥ with K := Ker∥ · ∥. This universal C∗-algebra, in contrast with Exam-
ple 2.2.1, actually does exist! It is, up to isomorphism, precisely C0(X) with X := [−1, 1] \ {0}
(i.e., the C∗-algebra of all continuous functions on [−1, 1] that vanish in 0), with x identified
with the identity function id : λ 7→ λ. Clearly, x satisfies R, C0(X) is generated as a C∗-algebra
by x, and let us check the universality condition.

Given any C∗-algebra B with an element y ∈ B satisfying y = y∗ and ∥y∥ ⩽ 1. We need to
find a ∗-homomorphism φ from C0(X) to B mapping x to y. We can see this will work through
Continuous Functional Calculus: construct the C∗-subalgebra C∗⟨y⟩ ⊆ B that is generated
by the element y, which is in general non-unital, and then consider the Gelfand-Naimark
isomorphism π : C0(σ(y) \ {0}) → C∗⟨y⟩ ⊆ B. By ∥y∥ ⩽ 1, we know σ(y) ⊆ [−1, 1]. We also know
that π−1(y) = id : λ 7→ λ. Hence, our ∗-homomorphism φ maps a function in C0(X) to its
restriction in C0(σ(y) \ {0}) and then through π to an element in C∗⟨y⟩ ⊆ B. This is clearly a
∗-homomorphism, and maps x to y.

Note that the universal C∗-algebra of generators X with relations R is in general non-
unital, but we can add a unit element 1 to the generator set X and the relations 1 = 1∗ = 12

and 1xi = xi1 = xi for all xi ∈ X to make the universal C∗-algebra unital.

2.3. Partition theory
Having developed the theory of universal C∗-algebras in the previous section, we now turn
our attention to the theory of partitions – the compact quantum groups we are interested
in are so-called partition quantum groups (or sometimes, in the terminology of Banica and
Speicher, “easy” quantum groups), whose intertwiner spaces are characterised by categories
of partitions. Hence, we must first develop the theory of partitions. We follow [FW16].

Definition 2.3.1: Partition

Given k, l ∈ Z⩾0, consider the set X as the union of the sets {1, 2, . . . , k} and {1′, 2′, . . . , l′},
where we see the primed numbers as distinct objects from the unprimed ones. A par-
tition p is then a partition of the set X, i.e. a collection of subsets Vi ⊆ X indexed by
some index set I such that each Vi ̸= ∅, Vi ∩ Vj = ∅ for all i ̸= j ∈ I, and

⋃
i∈I Vi = X.

These subsets Vi are called blocks, and if such a Vi only contains one point, it is called
a singleton. The collection of all partitions with k unprimed and l primed numbers (for
k, l ∈ Z⩾0) is denoted P(k, l), and by definition we set P(0, 0) := {∅}. The collection of all
partitions is called P.

We can graphically denote p by a diagram where we draw {1, 2, . . . , k} as separate points in
a horizontal line, {1′, 2′, . . . , l′} on a horizontal line below the previous one, and connect all
objects within one Vi for each i ∈ I. This looks like:

Example 2.3.1. An example of a partition with k = 4 and l = 6 is {V1, V2, V3, V4, V5} with
V1 = {1, 1′, 2′}, V2 = {5′, 6′}, V3 = {2, 4′}, V4 = {3, 3′} and V5 = {4}. Visually, we can draw this
as:
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.
1

.
2

.
3

.
4

.
1′
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2′

.
3′
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4′

.
5′

.
6′

.

Figure 2.1: The partition p ∈ P(4, 6) given by p = {V1, V2, V3, V4, V5} with V1 = {1, 1′, 2′}, V2 = {5′, 6′}, V3 = {2, 4′},
V4 = {3, 3′} and V5 = {4}.

Here, Vi for 1 ⩽ i ⩽ 5 are called blocks. We see that a block can contain more than 2 points
(e.g., V1), it can contain only points from one side (e.g., V2), it can be a pair of points (e.g., V2
and V3), it can be a singleton (e.g., V5), and the blocks are allowed to “intersect” (e.g., V3 and
V4).

We see that certain blocks may contain both primed and unprimed indices, whilst oth-
ers only contain primed, or only unprimed integers. We will give them a name: a block Vi
containing both a primed and unprimed number is called a through-block, and otherwise it
is called a non-through-block. Denote the number of blocks of p by b(p) and the number of
through-blocks of p by t(p). Finally, we let the β(p) denote the number of non-through-blocks
of p, so we have the relationship b(p) = t(p) + β(p).

Example 2.3.2. Looking at Example 2.3.1, we see that V1, V3 and V4 are through-blocks,
whilst V2 and V5 are non-through-blocks. Hence, for this partition p, b(p) = 5, t(p) = 3 and
β(p) = 2.

We consider two special kinds of partitions: given a partition p ∈ P, it might happen
that all blocks Vi in p = {V1, . . . , Vr} precisely contain 2 points. In that case, we call p a
pair partition, and denote the collection of all those pair partitions by P2, and similar to the
partition definition, we set P2(k, l) as all pair partitions on k unprimed and l primed numbers.
It may happen that, after drawing p as in Example 2.3.1, no strings that belong to different
Vi’s ever intersect each other. If this is the case, we say that p is a non-crossing partition,
and we denote the collection of those non-crossing partitions by NC, and similar to above,
we define NC(k, l). Furthermore, we denote the collection of all non-crossing pair partitions
by NC2 := NC ∩ P2 and NC2(k, l) := NC(k, l) ∩ P2(k, l).

Lastly, it will be useful to identify two special partitions:

Definition 2.3.2

Let | ∈ P (1, 1) be the partition | = {{1, 1′}}. We call this the identity partition. Let ↑∈ P(0, 1)
be the partition ↑ = {{1′}}. We call this the singleton partition.

2.3.1. Operations on partitions
We define the necessary operations that we can apply to partitions:

Definition 2.3.3: (Diagram) composition of partitions

Define a map ◦ : P(k, l) × P(l,m) → P(k,m) for k, l,m ∈ N0 by (p, q) 7→ p ◦ q as follows: draw
the diagram corresponding to the partition p, so with k unprimed numbers on top, and
l primed numbers at the bottom. Now draw the diagram corresponding to the partition
q by using the l primed numbers from the diagram of p as top layer, and draw the m
primed numbers of q at the bottom. Remove the nodes in the centre. Count the number
of blocks that are now “floating” in the centre of the diagram without any connection to
the upper points of p nor to the lower points of q, and call this number rl(q, p). Then,
remove these blocks. What is left is the diagram of the partition p ◦ q ∈ P (k,m).
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Example 2.3.3. An example of the diagram composition of two partitions p and q is as follows:
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Figure 2.2: The composition of two partitions p and q.

We call the result p ◦ q := {V1, V2, V3, V4} with V1 = {1, 1′, 2′}, V2 = {2, 3′, 4′}, V3 = {3, 4} and
V4 = {5′}. We have removed the floating block in the middle, so rl(q, p) = 1.

Definition 2.3.4: Tensor product of partitions

Define a map ⊗ : P(k, l) × P(m,n) → P(k +m, l + n) for k, l,m, n ∈ Z⩾0 by (p, q) 7→ p⊗ q as
follows: draw the diagram of p, and then horizontally concatenate it on the right by the
diagram of q. Relabel the upper points from 1 to k+m, and relabel the lower points from
1′ to l′ + n′. This is the diagram of p⊗ q ∈ P(k +m, l + n).

Definition 2.3.5: Involution of a partition

Define a map ∗ : P(k, l) → P(l, k) for k, l ∈ Z⩾0 by p 7→ p∗ as follows: draw the diagram of
p, then flip it upside-down and relabel the unprimed numbers to primed numbers and
vice-versa. This is the diagram of p∗ ∈ P(l, k).

Definition 2.3.6: Rotation of a partition

Define maps ↷: P(k, l) → P(k − 1, l + 1) and ↶: P(k, l) → P(k − 1, l + 1) for k ∈ Z>0 and
l ∈ Z⩾0 by p 7→ p↷ and p 7→ p↶ as follows: draw the diagram of p, and move the left-most
upper point labelled 1 to the left of the left-most lower point labelled 1′, without changing
any of the strings in the diagram. Then, relabel the new left-most lower point from 1
to 1′, and relabel all x′ → (x + 1)′ for x = 1, . . . , l. This is the diagram of the partition
p↶ ∈ P (k − 1, l + 1). Similarly, moving the right-most upper point labelled k to the right
of the right-most lower point labelled l′, and relabelling, yields p↷ ∈ P (k − 1, l + 1).

Also define maps ↷ : P(k, l) → P(k+ 1, l− 1) and ↶ : P(k, l) → P(k+ 1, l− 1) for k ∈ Z⩾0
and l ∈ Z>0 by p 7→ p↷ and p 7→ p↶ in similar fashion as above: instead of moving the
left- or right-most upper point to the left- or right-most lower position (respectively), now
move the left-most lower point to the left-most upper point to get the diagram of p↶, or
move the right-most lower point to the right-most upper point to get the diagram p↷.

Note that (p↷)↷ = p and (p↷)↷ = p and (p↶)↶ = p and (p↶)↶ = p for any p ∈ P(k, l) for
any k, l ∈ Z>0, so in this sense one may consider the operations ↷ and ↷ to be inverses, and
similarly for ↶ and ↶.

Having defined the operations that we can apply to partitions, we can define, analogous to
the operator algebraic case, a symmetric partition as a partition p ∈ P(k, k) for some k ∈ N0 that
satisfies p∗ = p. Similarly, a partition p ∈ P(k, k) for some k ∈ N0 is called diagrammatically
idempotent if p ◦ p = p, and we call p diagrammatically projective if it is both diagrammatically
idempotent and symmetric, i.e. p∗ = p = p ◦ p.
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2.3.2. Categories and linear categories of partitions
Definition 2.3.7: Category of partitions

Consider subsets C(k, l) ⊆ P(k, l) for each k, l ∈ Z⩾0, and bundle them into a collection
C ⊆ P. We call C a category of partitions if it is invariant under the category operations,
which are precisely the diagram composition, tensor product, involution and four rotations
defined above. Additionally, we demand that it contains the identity partition | ∈ C(1, 1) ⊆
P(1, 1).

We say that a category of partitions C is non-crossing if C(k, l) ⊆ NC(k, l) for all k, l ∈ N0.
Furthermore, note that the invariance of a category of partitions C under the tensor product,
together with the demand | ∈ C(1, 1), directly demands that each C(k, k) ⊆ P(k, k) contains the
identity |⊗k ∈ C(k, k).

Example 2.3.4. Examples of categories of partitions are P itself, the category of all pair
partitions P2 (remember that rotations do not alter any strings, so pairs are preserved), NC
and NC2. For the latter two, one may need to convince oneself that the non-crossing property
of a partition is invariant under the four rotations defined above.

The partition quantum groups studied in this thesis have intertwiner spaces that can be
described by such categories of partitions, and it would be beneficial if we can capture linear
combinations and compositions of intertwiners in the language of partitions as well. In order
to facilitate this, we define the linear categories of partitions as introduced by Gromada and
Weber [GW19]. Let δ > 0 be a fixed parameter, and let Plin[δ](k, l) as a vector space be defined
as C[P(k, l)], i.e., the C-vector space whose basis consists of the diagrams of partitions in
P(k, l). Define Plin[δ] := ∪k,lPlin[δ](k, l). We endow Plin[δ] with an algebra structure by defining
the composition of p ∈ P(k, l) with q ∈ P(l,m) by qp := δrl(q,p)(p◦q) (note the inverted order in qp),
where p ◦ q is the usual diagram composition. Extend this definition linearly. We endow Plin[δ]
with a monoidal structure by extending the tensor product p ⊗ q linearly, and an involution
by extending the involution p 7→ p∗ anti-linearly. In this framework, we define [GW19]:

Definition 2.3.8: Linear category of partitions

Consider for each k, l ∈ N0 a subspace C(k, l) ⊆ Plin[δ](k, l), and collect those subspaces
in C := ∪k,lC(k, l). Assume that the identity partition | ∈ C(1, 1), the pair partition ∩ ∈
C(0, 2), and assume that C is closed under the composition, tensor product and involution
operations defined on Plin[δ]. Then, C is called a linear category of partitions.

Note that a linear category of partitions is automatically closed under rotations [GW19,
Lemma 3.1]. Furthermore, a category of partitions C corresponds to what Gromada and
Weber call an easy linear category of partitions D if we let D(k, l) = span C(k, l), and their
corresponding quantum groups are called easy (partition) quantum groups.

Example 2.3.5. For each of the categories of partitions P2, NC and NC2, we denote by P2,lin[δ],
NClin[δ] and NC2,lin[δ] their respective easy linear categories of partitions with loop parameter
δ.

Remark 2.3.1. We call a partition p ∈ Plin[δ](k, k) for some k ∈ N0 symmetric if p∗ = p,
idempotent if pp = p and projective if p∗ = p = pp. Note that these notions are not the same
as being diagrammatically idempotent or diagrammatically projective, where no scalar factor
is taken into account! As an example, p = .... is diagrammatically projective, but composing p
with itself yields δp, so p is not projective in Plin[δ](2, 2). Note that we can always normalize a
diagrammatically projective partition p by δ−rl(p,p), such that the partition δrl(p,p)p is projective
in Plin[δ].

2.3.3. Intertwiners associated to partitions
In this subsection, we consider a finite-dimensional complex Hilbert space H := CN for some
N ∈ N, with the canonical basis {e1, . . . , eN}.
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Definition 2.3.9: Partition map

Given a partition p ∈ P(k, l) for k, l ∈ N0. We associate to this partition a linear map
Tp : H⊗k → H⊗l by

Tp (ei1 ⊗ · · · ⊗ eik ) =
n∑

j1,...,jl=1
δp(i, j)ej1 ⊗ · · · ⊗ ejl

, (2.5)

where i := (i1, . . . , ik) and j := (j1, . . . , jk), and δp(i, j) ∈ {0, 1} is determined as follows:
draw the diagram of p, replace the labels of the upper nodes by i, the labels of the lower
nodes by j, and consider each of the blocks in p. If all blocks in p connect equal indices,
then δp(i, j) = 1. Otherwise, δp(i, j) = 0. Please note that this does not mean that equal
indices must always be in the same block to have δp(i, j) = 1, as several blocks may be
filled with the same indices.

We extend this notion of a partition map linearly to linear combinations of partitions in Plin[N ],
i.e. δαp+q(i, j) = αδp(i, j) + δq(i, j), and Tαp+q = αTp + Tq.

This allows us to see the assignment p 7→ Tp as a monoidal ∗-homomorphism [GW19, Prop
3.2]:

Theorem 2.3.1

The map T• : p 7→ Tp satisfies

• Tp⊗q = Tp ⊗ Tq,
• Tqp = TqTp where qp refers to the composition in Plin[N ] with δ := N ,
• Tp∗ = T ∗p .

Note that this notation is not consistent with Freslon and Weber [FW16] for two reasons.
Firstly, as they do not consider linear categories of partitions, what they call composition is
what we have called diagram composition (i.e. composition without the scalar factor δrl(q,p))
because there is no linear structure on the collection of partitions P. Secondly, they call the
partition maps as we have introduced them T̊ (their use of Tp is a normalized version of T̊p,
and this does not coincide with our use of Tp). In that case, T̊• still satisfies T̊p⊗q = T̊p ⊗ T̊q
and T̊ ∗p = T̊p∗ , but the composition rule becomes T̊p◦q = N−rl(p,q)T̊pT̊q [FW16, Prop 2.14]. This
is an important distinction, because this means that T̊• is not a functor, whilst T• is, and
we will invoke category theoretical notions in the following chapters. Of course, all results
can be recast into the notation of Freslon and Weber’s [FW16] by carefully examining the
normalization of the partition maps involved.

Lastly, we cover an important Lemma about the linear independence of these partition
maps. Note that this does not depend on the particular normalization of the partition maps
involved. We state the lemma slightly differently from [FW16, Lemma 4.16], as a small mis-
take was discovered in the statement, to which we will return in Lemma 5.1.1.

Lemma 2.3.1: Non-crossing partition maps are linearly independent

[FW16, Lemma 4.16] Consider any category of non-crossing partitions C. If N ⩾ 4, then
the partition maps {Tp : p ∈ C(k, l)} are linearly independent for every k, l ∈ N0. In the
case of C = NC, the converse also holds.



3
An introduction to quantum

Shannon theory
As we investigate information theoretic properties of certain quantum channels arising from
the representation theory of compact quantum groups, it is imperative to discuss in detail the
information theoretic quantities that we are interested in. This chapter is complementary to
the previous chapter. If we are to investigate the properties of certain quantum channels, we
should first clearly define what constitutes a quantum channel. Afterwards, we translate some
classical information theoretical quantities to their quantum counterparts, and introduce the
reader to the minimum output entropy, which is the quantity that we will give most attention
to in this thesis. We follow the work of [NC09, Wil13, Wat18].

3.1. Quantum channels
We will only deal with quantum channels between finite-dimensional Hilbert spaces, as the all
the representation spaces that play an integral role in this thesis will be finite-dimensional.
This simplifies the theory, and provides a clearer overview.

Let us commence with a short recap of the basics of quantum information theory. In a
finite-dimensional Hilbert space H = Cn, the state of a quantum system is either pure, or
mixed – in the first case, we represent the quantum state by a vector |ψ⟩ ∈ H with ⟨ψ|ψ⟩ =
∥ψ∥2

2 = 1 (actually, we identify rays in this complex space, i.e. the unit vectors |ψ⟩ and |ϕ⟩
describe the same quantum state if they have the relation |ϕ⟩ = eiφ |ψ⟩ for some global phase
φ ∈ [0, 2π) ), and in the latter case, we use a density matrix ρ ∈ B(H) = Mn(C), which is a
positive matrix with Tr(ρ) = 1 (see Definition 2.1.2). The set of all mixed states on H is denoted
by S(H). Note that the set of pure states can be viewed as a subset of the set of mixed states
under the identification ρ|ψ⟩ = |ψ⟩⟨ψ|.

To model the transition, manipulation, or evolution of such a quantum system, we use
the quantum operation formalism, which is extraordinarily general: it can model unitary
evolution (which happens in a closed system), but also stochastic changes, and allows for the
modelling of a noisy environment to which the quantum system is coupled and with which it
therefore exchanges information [NC09, Chap. 8.2]. We start with a quantum state ρ ∈ S(H),
and after our experiment, end up with a quantum system Φ(ρ) ∈ B(H′) on a finite-dimensional
Hilbert space H′. Physically, when a quantum system, originally in an initial state ρ, comes
into contact with an environment that is in the state ρE, the unitary evolution of the entire
system should be taken into account, i.e. after some time the entire system is described
by the state U(ρ ⊗ ρE)U∗, where U ∈ B(H ⊗ HE) is a unitary matrix, where HE is the (finite-
dimensional) Hilbert space of the environment. Afterwards, the quantum system no longer
interacts with the environment, and thus, we must trace over the environment to recover the
reduced state of our quantum system, Φ(ρ) = TrE(U(ρ⊗ ρE)U∗), where TrE denotes the partial
trace over the environment E.

In general, when a linear map Φ : B(H) → B(H′) is described by Φ(ρ) = TrE(V ρV ∗) for some

16
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isometry V : H → H′ ⊗ HE, we say that Φ is described in the Stinespring representation, and
we call V the Stinespring isometry or the Stinespring dilation.

We can alternatively describe Φ in its Kraus representation (also called operator-sum rep-
resentation [NC09, Sect. 8.2.3]), by explicitly tracing out the environment:

Φ(ρ) = TrE(V ρV ∗) =
∑
k

(ιH′ ⊗ ⟨ek|)V ρV ∗(ιH′ ⊗ |ek⟩) =
∑
k

EkρE
∗
k , (3.1)

where {|ek⟩}dimHE
k=1 is an orthonormal basis of HE, ιH′ is the identity matrix on H′, and where we

put Ek := (ιH′ ⊗ ⟨ek|)V . The operators Ek are called the operation elements or Kraus operators
associated to the quantum channel Φ.

Finally, we can describe the action of Φ by its Choi matrix J(Φ), defined as J(Φ) =
∑
ij Φ(eij)⊗

eij ∈ B(H′) ⊗ B(H), where {eij}ni,j=1 is the canonical basis of Mn(C) ≃ B(H) with n = dim H.
Namely, we have 1

Φ(ρ) = TrH
(
J(Φ)

(
ιH′ ⊗ ρt

))
. (3.2)

Remarkably, these descriptions are equivalent, and they match the axiomatic description
of a quantum channel. Given a linear map Φ : B(H) → B(H′), we call Φ trace-preserving (ab-
breviated “TP”) if Tr(Φ(ρ)) = Tr(ρ) for any ρ ∈ B(H). We call Φ completely positive (abbreviated
“CP”) if for any auxiliary finite-dimensional Hilbert space HA, the matrix (ιA ⊗Φ)(σ) is positive
for any positive matrix σ ∈ HA ⊗ H, where ιA is the identity operator on HA. We say Φ is CPTP
iff it is CP and TP, and in this case we call Φ a quantum channel.

Theorem 3.1.1: Equivalent descriptions of quantum channels

Given a linear map Φ : B(H) → B(H′). Then the following are equivalent:

1. Φ is completely positive and trace preserving.
2. We can find a finite-dimensional Hilbert space HE and a Stinespring isometry V :

H → H′⊗HE such that we have Φ(ρ) = TrE(V ρV ∗) for any ρ ∈ B(H), i.e. a Stinespring
representation of Φ exists.

3. We can find a finite set of Kraus operators {Ei}di=1 for some d ∈ N with matrices Ei :
H → H′ such that Φ(ρ) =

∑
iEiρE

∗
i , and

∑
iE
∗
i Ei = ιH, i.e. a Kraus representation

of Φ exists.
4. The Choi matrix J(Φ) =

∑
ij Φ(eij)⊗eij ∈ B(H′⊗H) is positive and we have TrH′J(Φ) =

ιH.

Furthermore, in statement 2 we can find an environment HE with dim HE = rank(J(Φ)),
and in statement 3 we can find a finite set of Kraus operators with d = rank(J(Φ)).

Proof. See [NC09, Thm 8.1], [Sti55], and for a detailed treatment also see [Wat18, Thm. 2.22
up to Corol. 2.27].

Note that the representations of Φ are not unique: for example, two sets of Kraus operators
{Ei}mi=1 and {Fj}nj=1 may satisfy

∑
iEiρE

∗
i =

∑
j FjρF

∗
j for all ρ ∈ B(H). In this case, however,

if we append zero operators to whichever list of operators is shorter, we may assume n = m,
and in this case the operators must be related by an m × m unitary u, i.e. Ei =

∑
j uijFj

[NC09, Thm 8.2]. Similarly, if we have two Stinespring representations (V,HE) and (Ṽ ,HẼ)
such that TrE(V ρV ∗) = TrẼ(Ṽ ρṼ ∗) for all ρ ∈ B(H), without loss of generality we can assume
dim HE ⩽ dim HẼ, and we can find an isometry Ũ : H′ ⊗ HE → H′ ⊗ HẼ such that ŨV = Ṽ
[KSW08].
1This follows from the fact that J(Φ)

(
ιH′ ⊗ ρt

)
=
∑

ij
Φ(eij) ⊗ (eijρ

t), and then tracing out H yields
∑

ijk
Φ(eij) ⊗

⟨k| eijρ
t |k⟩ =

∑
ij

Φ(eij) ⊗ ⟨j| ρt |i⟩ =
∑

ij
Φ(eij) ⊗ ρij = Φ(ρ).
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As a consequence of the previous theorem, we can find a quantum channel that is closely
related to our original quantum channel Φ with Stinespring isometry V : H → H′ ⊗ HE if we
choose to trace out Bob’s subsystem instead of the environment E. This yields the definition
of the so-called complementary channel:

Definition 3.1.1: Complementary quantum channel

Given a quantum channel Φ : B(HA) → B(HB) with a Stinespring isometry V : HA →
HB ⊗ HE for some environment Hilbert space HE. The complementary quantum channel
Φc is defined by tracing out Bob’s subsystem instead of the environment:

Φc : B(HA) → B(HE) : ρ 7→ TrB (V ρV ∗) . (3.3)

As the Stinespring representation of a quantum channel is not unique, two Stinespring rep-
resentations (V,HE) and (Ṽ ,HẼ) of Φ give rise to two complementary quantum channels ΦcE
and ΦcẼ, but they are equivalent in the following sense: a partial isometry W : HE → HẼ exists
such that ΦcẼ(ρ) = WΦcE(ρ)W ∗ and similarly ΦcE(ρ) = W ∗ΦcẼ(ρ)W [Hol07].

Having described different variants of representations of quantum channels, we can con-
tinue investigating some of their information theoretic properties.

3.2. Classical information theory
Let us sketch the background of classical information theory, which was adapted in the last
part of the 20th century into quantum Shannon theory to accomodate for quantum channels.
We briefly discuss the concepts that play an integral role in classical information theory and
find their way into quantum Shannon theory. We mainly follow [Wil13].

3.2.1. Information content, entropy, and compression
Given a discrete random variable X whose realizations are letters x in a finite alphabet
X := {a1, . . . , a|X |}. We denote the probability mass function of X by pX(x). Say we do an
experiment with a random generator that generates an xj according to the probability dis-
tribution pX , we measure our surprise at finding the outcome x by i(x) = − log pX(x), which
indeed monotonously decreases to 0 as pX(x) grows to 1. The quantity i(x) is sometimes re-
ferred to as the information content of the symbol x. Note that if our source produces two
symbols, with corresponding random variables X1 and X2, and if we assume that the source
is memoryless, i.e. X1 and X2 are independent, then pX1,X2(x1, x2) = pX1(x1)pX2(x2), and we
have

i(x1, x2) = − log(pX1,X2(x1, x2)) = i(x1) + i(x2), (3.4)

so the information content is additive. The expected information content is then H(X) :=
EX(i(X)), where i(X) := − log pX(X) is a random variable, and we see that

H(X) = −
∑
x∈X

pX(x) log pX(x), (3.5)

which we also call the entropy of the information source. Here, the convention is 0 · log(0) := 0
as limε↓0 ε log(ε) = 0. We have 0 ⩽ H(X) ⩽ log |X |. 2

Assume we wish to send a word or block xn := x1x2 . . . xn from Alice to Bob over a noiseless
channel, where each xi ∈ X is a realization of the random variable Xi, which themselves are
independent and identically distributed (i.i.d.). We assume Alice and Bob can beforehand
agree on a codebook. Naively, Alice would need to use n log |X | bits to uniquely encode all |X |n
possible words. Assume that the use of the communication channel is costly, so we wish to
minimize the amount of bits Alice needs to send to Bob to get her message across – so we wish
2H(X) ⩾ 0 follows from the non-negativity of x 7→ −x log x on [0, 1], and for the upper bound, use the fact that H(X)
is concave and consider the Lagrangian L := H(X) +λ(

∑
x
pX(x) − 1), then differentiate it to the “variables” pX(x)

to find ∂pX (x)L = λ − 1 − log pX(x), equate it to 0 and solve for pX(x) to find pX(x) = exp(λ − 1), and we see that
we must have a uniform distribution. It is clear that the uniform distribution has entropy log |X |.
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to compress her message. Can we do better than sending n log |X | bits? Sure, for example,
we might consider sending bitstrings of variable length, where the more likely messages are
encoded in shorter strings, and the less likely messages are encoded in longer strings –
this way, the expected length of an encoded message is shorter than n log |X |. Alternatively,
we could allow for schemes that yield the correct message on Bob’s side with a very high
probability, and trade the certainty of a decoding success of Bob’s side with a much smaller
expected length of an encoded message. The latter description is the starting point from
which Shannon proves his compression theorem.

We define the compression rate as the ratio between the number of noiseless channel bits
we need to send and the number of source symbols that we encode in this message. For
a compression rate of R, Alice must encode her message from xn ∈ Xn to a string of bits in
{0, 1}nR, and therefore uses the communication channel nR times – let this process be denoted
by E. Bob decodes this bitstring in {0, 1}nR to a message in Xn, let this map be denoted by D.
We call such a scheme an (n,R, ε)-source code if p(error) = P ((D ◦ E)(Xn) ̸= Xn) ⩽ ε. If such
a source code exists asymptotically, we call the compression rate R achievable: R is called
achievable for X if for all ε ∈ (0, 1) and δ > 0, there exists an n ∈ N such that an (n,R + δ, ε)-
source code exists. The compression rate H(X) turns out to be achievable. Shannon’s data
compression theorem tells us that this is the best source code with respect to the compression
rate:

Theorem 3.2.1: Shannon compression, noiseless channel

Given an information source described by the discrete random variable X, then com-
munication over a noiseless channel has an achievable rate that satisfies

inf{R : R is achievable for X} = H(X). (3.6)

3.2.2. Classical channels, mutual information and classical capacity
Although Shannon’s compression theorem for noiseless channels definitively answers the
question how well one can compress information when one has a noiseless channel, in prac-
tice, channels are not noiseless.In this framework, Alice and Bob again meet up beforehand
to discuss a channel code C = {xn(m)}m∈M, where xn(m) is a codeword Alice will send to
Bob over the channel, using the channel n times, where m is any of the possible messages
in M that Alice can send to Bob. We again assume that the codewords xn(m) are strings of
letters xi in some finite alphabet X = {a1, . . . , a|X |}. The encoding step is modeled by a map
En : M → Xn. We model the input of the channel as the random variable Xn associated with
the sequence xn. As we have a noisy channel in this case, the output of the channel is not
simply xn, but we model it instead by another random variable Y n associated to the sequence
yn = y1 · · · yn, where each yi is a letter in the alphabet Y, which may be different than the input
alphabet X . The decoding step is then modeled by a map Dn : Yn → M. A classical channel
N is a function that maps the sequence xn that Alice presents to the channel to the random
variable Y n that Bob receives. Thus, the entire chain from the message m to the message m̂
that Bob decodes is m̂ = (Dn◦Nn◦En)(m). We discuss the discrete memoryless channel, where
the random variables are i.i.d., which allows us to write pY n|Xn(yn|xn) =

∏n
i=1 pY |X(yi|xi).

Given such a channel code C, we let pe(C,m) be the probability that something goes wrong
when Alice attempts to send the message m using the code C. The average error over all
messages m is denoted pe(C), and the maximal error over all messages m is denoted p∗e(C).

As there are |M| messages in total, we need at least log |M| bits to uniquely identify them,
and we define the rate R as the ratio of the number of bits in the message divided by the
number of channel uses – in this case, we have R = 1

n log |M|. We call C a (n,R, ε)-channel
code if its maximal error satisfies p∗e(C) ⩽ ε. We say that a communication rate R is achievable
for a channel N if, for all ε ∈ (0, 1) and δ > 0, a sufficiently large n ∈ N exists such that a
(n,R−δ, ε)-channel code C exists. We define the channel capacity C(N ) as the supremum over
all achievable communication rates R for N . To state Shannon’s channel capacity theorem,
we need to adapt the concept of information content to the context of a noisy channel.



3.3. Sending classical information over quantum channels 20

If we assume that Alice posses a random variable X, and Bob a random variable Y that
could be correlated with X, the information content of a symbol x from Alice is affected by
Bob’s knowledge of the symbol y from his random variable Y . To formalize this, we define
the conditional information content i(x|y) as i(x|y) = − log pX|Y (x|y), and similarly H(X|Y =
y) = EX|Y=y(i(X|y)). The conditional entropy is then defined as H(X|Y ) := EX|Y (i(X|Y )) =∑
y pY (y)H(X|Y = y). As expected, we have H(X) ⩾ H(X|Y ) ⩾ 0, and the first inequality is

an equality iff X ⊥ Y . Hence, we define their difference as the mutual information I(X;Y ) :=
H(X) −H(X|Y ), which measures how much the uncertainty in X is reduced by knowing Y .

We can now state:

Theorem 3.2.2: Shannon’s discrete memoryless channel capacity

Given a noisy channel N modelled by the conditional probability distribution pY |X(y|x),
the capacity C(N ) of N satisfies:

C(N ) := sup{R : R is achievable for N } = I(N ) := max
pX

I(X;Y ), (3.7)

where we call I(N ) the maximum mutual information of channel N , and the maximum
is over all possible discrete probability distributions pX .

3.3. Sending classical information over quantum channels
Having discussed some of the fundamentals of classical information theory, we can now at-
tempt to translate these notions to the quantum world. In a sense, the quantum Shannon
theory is even richer than the classical information theory, because we simply have more
options – for example, we can choose to send classical or quantum information over a quan-
tum channel. Furthermore, we can make different analyses based on what kind of resources
are available to Alice and Bob, we could for example assume that they have a (noiseless, or
perhaps noisy) classical channel alongside their quantum channel, or they have a classical
communication channel and some shared entangled states (i.e. entanglement-assisted clas-
sical communication). We restrict ourselves to the case where Alice wants to send classical
information to Bob over a quantum channel, for an overview see for example [Wil13].

3.3.1. Classical information over a noiseless quantum channel
We remind the reader of the POVM formalism: if an observer is given a density matrix
ρ ∈ S(H), and wishes to perform a measurement on ρ, and is only interested about the
probabilities of different outcomes and not the post-measurement state, we can describe
this measurement with a positive operator-valued measure (POVM), which is a set of opera-
tors {Fi}i, where we only demand that each Fi ∈ B(H) is a positive semi-definite matrix, and∑
i Fi = ιH. The probability of obtaining outcome i is obtained by computing Tr(Fiρ). Note

that the POVM formalism includes the projective measurements (PVMs) if we pick Fi = Πi

where the Πi are mutually orthogonal projections that sum to the identity.
With this formalism, we can see that classical information can be carried by a quantum

system, showing that the quantum channel formalism is in this sense broader than the
classical channel formalism. In this case, Alice has an ensemble E of density matrices {ρx}x∈X
and a discrete probability distribution pX . On Bob’s side, the random variable Y is modelled
by the POVM {Fy}y∈Y , and we see that pY |X(y|x) = Tr(Fyρx). Analogous to the classical case,
if Bob wishes to learn as much information about Alice’s random variable X as possible, we
should try to maximize their mutual information I(X;Y ). Note that in this case, Bob can pick
which POVM he wishes to use, so we optimize over those, and define this as the accessible
information of the ensemble E, i.e. Iacc(E) = max{Fy} I(X;Y ).

Let us further investigate the possibility of communicating classical information over a
noiseless quantum channel. We identify four stages in this scheme:
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State preparation: Before we encode our message, we must prepare the quantum system
we wish to send in the right state – we call this state preparation. We can assume that we
have an ensemble of quantum states {|ψ(x)⟩}x∈X and a probability distribution pX(x) for the
discrete random variable X with realizations x in the alphabet X . Assume these quantum
states live in the Hilbert space HA. The word xn = x1x2 · · ·xn is then encoded in the quantum
state

|ψ(xn)⟩ := |ψ(x1)⟩ ⊗ · · · ⊗ |ψ(xn)⟩ ∈ HA ⊗ · · · ⊗ HA := H⊗nA . (3.8)

Similarly, to an observer who does not know the actual sequence xn, the quantum state is
modeled as

ρ⊗n := ρ⊗ · · · ⊗ ρ ,where ρ :=
∑
x

pX(x) |ψ(x)⟩⟨ψ(x)| ∈ S(HA). (3.9)

Encoding: After successfully preparing our quantum system, we use an encoding quantum
channel E that maps B(H⊗nA ) to B(HC), where dim HC = 2nR. We call R the rate of compression
again, and we note that R = 1

n dim HC.

Transmission: After encoding the quantum state to a quantum state living on HC, Alice
sends this state to Bob using a noiseless qubit channel nR times.

Decoding: Bob then applies the decoding quantum channel D that maps B(HC) to B(H⊗nB ),
where HB ≃ HA. We compare the input and the output using the normalized trace distance,
and say it is ϵ-close if:

1
2 ∥|ψ(xn)⟩⟨ψ(xn)| − (D ◦ E) (|ψ(xn)⟩⟨ψ(xn)|)∥1 ⩽ ε. (3.10)

We can summarize this as follows graphically:

xn
|ψ(x1)⟩

|ψ(xn)⟩
σ

E
E(σ) E(σ)

D
D(E(σ))

1
2 ∥σ − D(E(σ))∥1

Alice Bob

IA→B

Figure 3.1: A general protocol for sending classical data over a quantum channel. Alice encodes her codeword xn

in |ψ(xn)⟩ := |ψ(x1)⟩ ⊗ · · · ⊗ |ψ(xn)⟩, where we abbreviate σ := |ψ(xn)⟩⟨ψ(xn)|. Then, she encodes those states using
her encoding quantum channel E. She then uses a noiseless channel IA→B to transfer the quantum state E(σ) to

Bob. Afterwards, Bob applies his decoding quantum channel D. To measure the accuracy of this scheme, the
normalized trace distance 1

2 ∥σ − D(E(σ))∥1 is used.

Call a quantum compression rate R achievable if for all ε ∈ (0, 1) and δ > 0, we can find
a sufficiently large n ∈ N such that an (n,R + δ, ε)-quantum compression code exists. A
similar result to Shannon’s noiseless compression theorem exists, but it requires a quantum
mechanical version of the entropy of the random variable X. We remind the reader that the
entropy H(X) of a discrete random variable is defined as H(X) = −∑x pX(x) log pX(x). In
the quantum framework, instead of an alphabet X consisting of letters xi, we have a set of
quantum states {|ψx⟩}x ⊂ H we can send for some Hilbert space H, each with a probability
pX(x). To an outsider without any other knowledge of the system, this quantum state is
modeled by the density matrix ρ =

∑
x pX(x) |ψx⟩⟨ψx|. Assume for a moment that all states

|ψx⟩ are mutually orthogonal, then the previous expression for ρ is actually its eigenvalue
decomposition, which allows us to define the von Neumann entropy of the quantum state ρ:

H(ρ) = −
∑
x

pX(x) log pX(x) , with eigenval. decomp. ρ =
∑
x

pX(x) |ψx⟩⟨ψx| . (3.11)
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So in this case, H(ρ) is equal to the entropy H(X) of the random variable X. By continuous
functional calculus, we can also write this as H(ρ) = −Tr(ρ log ρ), where log ρ is the matrix
logarithm. In literature, one also frequently encounters the notation H(A)ρ where ρ is the
state of the quantum system labelled A, and thus ρ ∈ S(HA).

Note that one should be careful – if the quantum states in the set {|ψx⟩}x are not mutu-
ally orthogonal, ρ =

∑
x pX(x) |ψx⟩⟨ψx| is still a valid density matrix, we still define H(ρ) :=

−Tr(ρ log ρ), but in this case we do not have H(ρ) = H(X), as the values pX(x) no longer have
to be the eigenvalues of ρ. In this case, we instead have H(X) ⩾ H(ρ) [Wil13, Ex. 11.9.3].

With this definition in mind, we can state:

Theorem 3.3.1: Schumacher quantum data compression

Given an ensemble {|ψ(x)⟩}x∈X and a discrete probability distribution pX(x), then the
quantum data compression limit of ρ, that is, the infimum over all achievable quantum
compression rates for ρ =

∑
x pX(x) |ψ(x)⟩⟨ψ(x)|, is equal to the von Neumann entropy

H(ρ).

Lastly, let us introduce the quantum analogs of the conditional entropy. Assume we have
two quantum systems, labelled A and B, whose Hilbert spaces are HA and HB, respectively.
Assume we have a density matrix ρAB ∈ S(HA ⊗ HB). We use the notation H(AB)ρ to denote
the von Neumann entropy H(ρ). We define the marginal entropy H(B)ρ as the von Neu-
mann entropy H(σ) for σ := TrA(ρAB). The conditional entropy is then defined as H(A|B)ρ :=
H(AB)ρ −H(B)ρ. Just like the classical case, we have the inequality H(A)ρ ⩾ H(A|B)ρ. How-
ever, in stark contrast to the classical case, the conditional entropy can be negative! Let Alice
(A) and Bob (B) share a Bell pair of qubits for example, then the state of the system AB is
pure, hence the entropy is 0, but the marginal state that Bob sees, by tracing out Alice’s state,
is a maximally mixed state, so H(B)ρ = 1, so H(A|B)ρ = −1. To quantize this phenomenon,
we define the coherent information I(A⟩B)ρ := H(B)ρ − H(AB)ρ = −H(A|B)ρ. The quantum
analog of the mutual information is I(A; B)ρ := H(A)ρ − H(A|B)ρ, and just like the classical
case, I(A; B)ρ = I(B; A)ρ.

3.3.2. Classical information over a noisy quantum channel
In the previous exposition, we assumed that Alice sends her quantum system to Bob without
any loss or noise, and we got to Schumacher’s quantum data compression theorem, which
mirror’s Shannon source coding theorem in the classical case. If we wish to model the quan-
tum communication between Alice and Bob as a noisy channel, the analysis becomes more
involved. An important issue arises from the fact that we cannot reasonably assume that
the repeated uses of the same quantum channel are independent of each other, because
we can entangle the input states. If we forget about this for a second, we could device a
scheme that is analogous to the classical case: Alice has a message m ∈ M she wishes to
send to Bob. She encodes it in a codeword xn(m), and now creates the “quantum codeword”
ρxn(m) := ρx1(m) ⊗ · · · ⊗ρxn(m), where {ρx}x∈X are the possible density matrices she inputs into
her channel N . Bob decodes this message using a POVM {Fy}y∈Y , and because the input state
is a product state, one quickly realizes that pY n|Xn(yn|xn) =

∏n
i=1 Tr(FyiN (ρxi)), which closely

mirrors the classical case where we have many independent and identically distributed uses
of a classical channel. The optimal rate that Alice and Bob can communicate is then defined
as the accessible information of N defined by Iacc(N ) := max I(X;Y ), where we optimize over
all discrete distributions pX , the ensemble {ρx}x∈X , and the POVM {Fy}y∈Y .

However, what if Alice uses her quantum channel n times, and entangles her input over
those n uses? That is, Alice’s input is no longer a product of n density matrices, but instead
a general ρmAn ∈ B(H⊗nA ) for each message m ∈ M. In this scheme, Bob receives N⊗n(ρmAn),
and decodes this message with a POVM {Fm}m∈M. The probability that he makes an error
on message m is then

pe(m) = Tr
(

(ιH⊗n
B

− Fm)N⊗n(ρmAn)
)
, (3.12)
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and we define p∗e = maxm∈M pe(m). We say this code has an ϵ error if p∗e ⩽ ϵ for some ϵ ∈ [0, 1].
The rate of this code is C := 1

n log |M|, and we call this scheme a (n,C, ε)-code. Analogous to
the classical situation, a rate C is achievable if for all ε ∈ (0, 1) and for all δ > 0, there exists a
large n ∈ N such that an (n,C − δ, ε)-code exists. We then define the classical capacity C(N )
as the supremum over all achievable rates.

In this situation, we would need to regularize the accessible information Iacc(N ), i.e.
Ireg(N ) = limn→∞ 1

nIacc(N⊗n), which is in general intractable. However, we can be upper
bound the accessible information by the so-called Holevo information χ(N ) := maxρXA I(X; B)ρ,
where I(X; B)ρ is the mutual information of the classical-quantum state ρXB :=

∑
x pX(x) |x⟩⟨x|⊗

N (ρx), which is the state Bob receives if Alice decides to send a classical-quantum state∑
x pX(x) |x⟩⟨x| ⊗ ρx . The celebrated Holevo-Schumacher-Westmoreland theorem tells us that

the regularized Holevo information is not only an achievable rate, but also the best possible
one:

Theorem 3.3.2: Holevo-Schumacher-Westmoreland

Given a quantum channel N ,the classical capacity C(N ) can be computed as:

C(N ) = χreg(N ) , where χreg(N ) := lim
n→∞

1
nχ(N⊗n). (3.13)

We call the quantity χreg the regularization of the Holevo information χ.

Lastly, let us rewrite the Holevo information of a quantum channel N to a slightly different
form. We recall that χ was defined as χ(N ) := maxρXA I(X; B)ρ. Using ρXB :=

∑
x pX(x) |x⟩⟨x| ⊗

N (ρx), and recalling that I(X; B)ρ := H(X)ρ − H(X|B)ρ, we can calculate H(X)ρ = H(X) =
−∑x pX(x) log pX(x), and

H(B)ρ = H(TrX(ρXB)) = H(
∑
x

pX(x)N (ρx)) = H(N (
∑
x

pX(x)ρx)). (3.14)

Furthermore, we can explicitly calculate H(XB)ρ, see for example [Wil13, Thm. 11.2.2]: we
have H(XB)ρ = H(X) +

∑
x pX(x)H(N (ρx)). Thus, we find:

χ(N ) = max
ρXA

(
H(N (

∑
x

pX(x)ρx)) −
∑
x

pX(x)H(N (ρx))
)
. (3.15)

This expression of the Holevo information is sometimes used to define χ(N ), such as in
[BCLY20].

3.4. Additivity conjectures for Holevo information and Mini-
mum Output Entropy

Note that the Holevo-Schumacher-Westmoreland theorem features the regularized Holevo
information χreg, which is for all practical purposes impossible to calculate directly for a
general channel N . To further complicate matters, some channels exhibit additive Holevo
information, i.e. χ(N⊗n) = nχ(N ) (and in those cases, χreg(N ) = χ(N )), but until recently it
was not known whether all quantum channels exhibit additive Holevo information. In 2003,
Shor published his now celebrated breakthrough paper [Sho04], in which he proved that the
additivity conjecture for Holevo information is equivalent to three other additivity conjectures,
including the additivity of the so-called minimum output entropy Hmin, defined for a quantum
channel N : B(H) → B(H′) by

Hmin(N ) := min
ρ∈S(H)

H(N (ρ)). (3.16)

The additivity conjecture for the minimal output entropy can then be stated as

For all quantum channels N1,N2 : Hmin(N1 ⊗ N2) = Hmin(N1) +Hmin(N2). (3.17)
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Note that we trivially have Hmin(N1 ⊗ N2) ⩽ Hmin(N1) + Hmin(N2) as H((N1 ⊗ N2)(ρ ⊗ σ)) =
H(N1(ρ)) +H(N2(σ)), but a strict inequality may occur when we also consider states that are
not product states of the form ρ⊗σ. The additivity conjecture for the minimum output entropy
was initiated (at least in print) by King and Ruskai in [KR01], and was definitively disproved
by a counterexample by Hastings in 2009 (after Hayden and Winter found counterexamples
to the maximal p-norm multiplicativity conjecture for p > 1 which would lead to a counterex-
ample for the additivity of minimum output entropy for p = 1) in [Has09]. Note that Hastings’
counterexample relies on a quantum channel E described by E(ρ) =

∑D
i=1 piU

∗
i ρUi for a suffi-

ciently large dimension N , sufficiently many randomly chosen unitaries Ui ∈ MN (C) indexed
by 1 ⩽ i ⩽ D, and a randomly chosen discrete probability distribution {pi}Di=1, such that the
quantum channel E has a non-zero probability of breaking the additivity conjecture. So far, we
have never found a deterministic construction of any pair of quantum channels that break
the additivity conjecture for the minimal output entropy [CY19], although Hastings’ coun-
terexample has generated quite some research [ASW10, BH10, CFN12, FKM10, BCN16]. We
can, however, identify certain classes of quantum channels that must always satisfy the ad-
ditivity conjecture (and thus cannot yield a deterministic counterexample), which we will do
in the following section.

3.5. Special classes of quantum channels
Certain quantum channels have useful properties that allow us to determine whether they
have additivity Holevo information, or additive minimum output entropy. In this section,
with Φ we denote a quantum channel Φ : B(HA) → B(HB) where HA,HB are finite-dimensional
Hilbert spaces. Recall from the previous section (see Definition 3.1.1) that we also have
a complementary quantum channel Φc : B(HA) → B(HE) given by Φc(ρ) = TrB(V ρV ∗), if the
Stinespring representation of Φ is Φ(ρ) = TrE(V ρV ∗) with a Stinespring isometry V : HA →
HB ⊗ HE. We then have the following two properties:

Definition 3.5.1: Positive Partial Transpose (PPT)

We say that Φ is positive partial transpose (PPT) if ΘB ◦ Φ is still a quantum channel,
where ΘB : B(HB) → B(HB) is the matrix transpose map if we identify HB ≃ CdimHB .

This is equivalent to demanding that (ΘB ⊗ ιHA)J(Φ) is a positive matrix, where J(Φ)
is the Choi matrix J(Φ) =

∑
ij Φ(eij) ⊗ eij.

Definition 3.5.2: Entanglement breaking (EBT)

We say that Φ is entanglement-breaking (“EBT”, the “T” appears because these channels
are historically also called entanglement-breaking trace-preserving) if any of the following
equivalent conditions is met:

1. The Choi matrix J(Φ) is separable, which means that we can find a discrete prob-
ability distribution {pi}di=1 for some d ∈ N and product states ρB

i ⊗ σA
i (where ρB

i ∈
S(HB) and σA

i ∈ S(HA) are density matrices) such that

J(Φ) =
d∑
i=1

piρ
B
i ⊗ σA

i (3.18)

2. The matrix (ιC ⊗ Φ)(ρ) is separable for any density matrix ρ ∈ S(HC ⊗ HA) with HC
any finite-dimensional Hilbert space, where separable again means that we can
find a discrete probability distribution {pi}di=1 for some d ∈ N and product states
σC
i ⊗ ρB

i where ρB
i ∈ S(HB) and σC

i ∈ S(HC) such that

(ιC ⊗ Φ)(ρ) =
∑
i

piσ
C
i ⊗ ρB

i . (3.19)
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3. The quantum channel Φ can be written as Φ(ρ) =
∑d
k=1 RkTr(Fkρ), where d ∈ N, Rk

are density matrices for 1 ⩽ k ⩽ d, and {Fk}dk=1 form a POVM. This is called the
“Holevo form” in literature [HSR03].

4. The quantum channel Φ can be written as Φ(ρ) =
∑d
k=1 |ψk⟩⟨ψk| ⟨ϕk|ρ|ϕk⟩ where d ∈

N, |ψk⟩ ∈ HB for 1 ⩽ k ⩽ d and |ψk⟩ ∈ HA for 1 ⩽ k ⩽ d. [HSR03]
5. The quantum channel Φ has a Kraus operator representation using only Kraus

operators of rank 1 [HSR03].

Lemma 3.5.1: EBT implies PPT

Given a quantum channel Φ. If Φ is entanglement-breaking, then it is also positive
partial transpose.

Proof. Write J(Φ) =
∑d
k=1 pkρ

B
k ⊗ σA

k , then we see that (ΘB ⊗ ιHA)J(Φ) =
∑d
k=1 pk

(
ρB
k

)t ⊗ σA
k , but

this is a convex combination of positive operators as the transpose of a matrix does not affect
its eigenvalues, thus the convex combination itself is positive, thus Φ is PPT.

The previous definitions of the PPT and EBT property, and the implication EBT =⇒ PPT,
are important to our consideration of quantum channels in this thesis because EBT channels
are always MOE-additive:

Theorem 3.5.1: EBT channels are strongly MOE-additive and χ-additive

Given any entanglement-breaking channel Φ. Then, for any arbitrary other channel Ψ
(note that this channel does not have to be entanglement breaking!), we have both

Hmin(Φ ⊗ Ψ) = Hmin(Φ) +Hmin(Ψ), (3.20)

and
χ(Φ ⊗ Ψ) = χ(Φ) + χ(Ψ). (3.21)

Proof. See Theorem 1 and 2 in [Sho02].

As a matter of fact, it is not only important to check whether a quantum channel is
entanglement-breaking (as it has to be MOE-additive in that case by the previous theorem),
it is also imperative to check the EBT property for the complementary channel:

Theorem 3.5.2: MOE-additivity for complementary channels

For any quantum channels Φ and Ψ, the MOE-additivity holds if and only if the MOE-
additivity holds for their complementary channels, i.e.

Hmin(Φ ⊗ Ψ) = Hmin(Φ) +Hmin(Ψ) ⇐⇒ Hmin(Φc ⊗ Ψc) = Hmin(Φc) +Hmin(Ψc) (3.22)

Proof. Theorem 5 in [KMNR05].

MOE-additivity results pertaining to unital qubit channels, depolarizing channels and
Hadamard channels are also known, and can be found in Appendix B.



4
Compact Quantum Groups

The theory of compact quantum groups dates back to the last decades of the 20th century,
with seminal work by Woronowicz in [Wor80], where he developed the notion of what he
called “pseudogroups”. The attempt to define group structures on these pseudospaces was
already started by Kac in the ’60s [Kac63, Kac65], and continued in the language of von
Neumann algebras by Takesaki [Tak72] and Enock and Schwartz [ES75], and later on cast
into C∗-algebra language by for example Jimbo and Drinfel’d [Dri88]. In [Wor87], and later on
in [Wor91], Woronowicz developed a standard theory of what he then called compact matrix
pseudogroups, which coincide with the theory of compact matrix quantum groups which we
will develop in this chapter.

The starting point of his exploration was the Gelfand-Naimark isomorphism theorem,
which showed that any commutative unital C∗-algebra A is isomorphic as C∗-algebra to the
continuous functions C(X) on a certain compact space X. In the non-unital but still com-
mutative case, A is isomorphic as C∗-algebra to C0(X) for some locally compact space X,
where C0(X) are the continuous functions that vanish at infinity.

In the framework of category theory, we consider the category Cpt of compact topologi-
cal spaces (with continuous maps as morphisms). Furthermore, we consider the category
C∗alg of C∗-algebras (with ∗-homomorphisms as morphisms), and its subcategory C∗com1
of commutative unital C∗-algebras (with unital ∗-homomorphisms as morphisms). Then, we
have:

• The functor C : Cptop → C∗com1 which maps a compact space X to C(X), and maps
a morphism fop ∈ HomCptop(X,Y ) to C(fop) ∈ HomC∗com1(C(X), C(Y )) which takes a
function h ∈ C(X) to h ◦ f ∈ C(Y ) ;

• The functor sp : C∗comop
1 → Cpt which maps A to the set sp(A) of all non-trivial

∗-homorphisms f : A → C (called the characters on A), which becomes a compact
space when endowed with the spectral topology. It maps unital ∗-homomorphisms
φop ∈ HomC∗com1(A,B) to sp(φop) ∈ HomCpt(sp(A), sp(B)), which takes a non-trivial ∗-
homomorphism f ∈ sp(A) to f ◦ φ ∈ sp(B).

In this framework, we can state: [Neg71, Del09]

Theorem 4.0.1

The functor C : Cptop → C∗com1 and the functor sp : C∗comop
1 → Cpt are contravariant

equivalences of categories (also called a duality), and they are quasi-inverses.

Although this shows the duality of commutative C∗-algebras with compact topological
spaces 1, Woronowicz noted that no such theory exists for non-commutative C∗-algebras,
and therefore invented what he called the “category of pseudospaces” , which should be
1Note that such a duality also exists for the non-unital case, but we will not go into detail here.

26
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constructed such that it is categorically dual to the category of all C∗-algebras C∗alg. Al-
though, as Woronowicz noted himself, this approach is still fundamentally a theory about
C∗-algebras, it proved fruitful to reason from this framework, quite like a change of reference
frame in physics can yield insights, without actually changing any of the physical laws or
objects involved.

An important subclass of these so-called pseudospaces is the class of pseudo-semigroups,
where one endows a pseudospace G with a comultiplication φ : G → G×G such that it satisfies
the associativity (id × φ) ◦ φ = (φ × id) ◦ φ, where id : G → G is the identity morphism. In
this context, one can wonder whether generalizations of the Pontrjagin duality exist in the
non-abelian case [Wor80]. In the classical case, a locally compact abelian group G has a dual
group Ĝ: as a set, it consists of all characters on G, i.e. all continuous group homomorphisms
G → T, endowed with pointwise multiplication, and the topology of uniform convergence on
compact subsets. The Pontrjagin duality theorem then tells us that the map G → ˆ̂

G given
by x 7→ evx is an isomorphism of topological groups, where evx(φ) = φ(x) for any φ ∈ Ĝ. The
Pontrjagin duality is instrumental in understanding and generalizing the Fourier transform,
and the Fourier inversion theorem.

In ’88, Woronowicz famously proved that a generalization of the Tannaka-Krein theorem
exists for compact quantum groups [Wor88], which, roughly speaking, tells us that compact
quantum groups are uniquely determined by the category of their finite-dimensional unitary
corepresentations. We will come back to the Tannaka-Krein theorem later in this chapter.
According to [MD98], Woronowicz also distributed the preprint Compact Quantum Groups
[Wor92], which contains the definition for a compact quantum group that is still widely used
in the field. Let us commence from this point.

4.1. Definition of a compact quantum group
In this thesis, we will consider particular type of compact quantum groups (which we will
often abbreviate with CQG), namely the so-called partition (or “easy”) quantum groups, which
are a special subset of the so-called compact matrix quantum groups (CMQG). Although this
identification would allow us to focus only on the definition of CMQG’s, it is beneficial to
generalize the setting slightly to include all compact quantum groups:

Definition 4.1.1

A compact quantum group (CQG) G is a pair G := (A,∆), with A a unital C∗-algebra,
and ∆ : A → A⊗ A a comultiplication or coproduct, i.e. a unital ∗-homomorphisms with
the coassociativity property that (∆ ⊗ ι) ◦ ∆ = (ι ⊗ ∆) ◦ ∆, where ι is the identity map
on A. Furthermore, we demand that the cancellation property holds: ∆(A)(1A ⊗ A) and
∆(A)(A⊗ 1A) lie linearly dense in A⊗A.

Given two compact quantum groups (A,∆A) and (B,∆B), a map between them is
called a morphism of quantum groups if it is a non-degenerate unital ∗-homomorphism
f : A → B that satisfies ∆B ◦f = (f ⊗f)◦∆A. Here, non-degenerate refers to the property
that f(A)B lies linearly dense in B.

Example 4.1.1 (Compact groups are compact quantum groups). Given a compact group
G, consider the C∗-algebra A := C(G). The multiplication · : G × G → G by (a, b) 7→ ab
induces a comultiplication ∆G : C(G) → C(G) ⊗ C(G), if we identify C(G) ⊗ C(G) ≃ C(G×G),
by the rule ∆G(f)(x, y) = f(xy) for all x, y ∈ G. One can check that this turns (C(G),∆G)
into a compact quantum group, where the cancellation property follows from the fact that
∆(A)(A ⊗ 1A) is spanned by functions of the form (x, y) 7→ f(xy)g(x) (where f, g ∈ C(G)). As
a unital ∗-subalgebra of C(G × G), it clearly separates the points of G × G 2. Hence, by
Stone-Weierstrass, this must be a dense subspace – the density of ∆(A)(1A ⊗A) is similar.

Remark 4.1.1. In literature, one often finds the notation C(G) for A in G = (A,∆). This
precisely ties in to the non-commutative generalization of the duality described in Theo-
2Let (x, y) ̸= (x′, y′), if x ̸= x′ put f = 1C(G) and pick g such that g(x) ̸= g(x′), otherwise x = x′ so put g = 1C(G)
and pick f such that f(xy) ̸= f(xy′).
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rem 4.0.1: we should read this as the “non-commutative” space of continuous functions on
a virtual compact group G (which Woronowicz called a “pseudogroup”), i.e. the continuous
functions in C(G) in general do not commute. This highlights the generalization of compact
quantum groups from compact groups, in which case the C∗-algebra C(G) with G a compact
group is, in fact, commutative. This also inspires the following:

Proposition 4.1.1: Commutative compact quantum groups

[Tim08, Prop. 5.1.3] Let G := (A,∆) be a compact quantum group, and let A be abelian.
Then one can find a compact group G and an isomorphism of compact quantum groups
between (A,∆) and C(G), where the comultiplication on C(G) is constructed as follows:
(∆G(f))(x, y) = f(xy) for all x, y ∈ G.

Sketch of proof. As A is a unital commutative C∗-algebra, by the Gelfand-Naimark isomor-
phism A ≃ C(G) as C∗-algebra, where G is the compact space sp(A) of all non-trivial char-
acters on A with the spectral topology. The comultiplication ∆ : C(G) → C(G) ⊗ C(G) can be
seen as a map C(G) → C(G×G) under the identification C(G) ⊗ C(G) ≃ C(G×G). Thus, we
find a multiplication m : G × G → G by identifying G × G with sp(A ⊗ A), and then m maps
φ ∈ sp(A ⊗ A) to φ ◦ ∆. It can be shown that m is associative by the coassociativity of ∆,
turning G into a compact semigroup. The requirement that ∆(A)(1A ⊗ A) and ∆(A)(A ⊗ 1A)
lie linearly dense in A ⊗ A translate into the left and right cancellation properties for G, re-
spectively. Here, left cancellation means that if f, g ∈ G, if hf = hg for all h ∈ G, then f = g.
Right cancellation is similar. A compact semigroup with the cancellation property is, in fact,
a compact group [MD98, Prop 3.2]. See also [Web17a, Ex. 2.5].

4.2. States on compact quantum groups
Definition 4.2.1

Given a compact quantum group G := (A,∆) and a state φ on A. We say that the state φ is
left-invariant if (idA⊗φ) (∆(a)) = φ(a)1A for all a ∈ A. Similarly, φ is called right-invariant
if (φ⊗ idA) (∆(a)) = φ(a)1A for all a ∈ A.

Theorem 4.2.1

[Tim08, Thm. 5.1.6] Given a compact quantum group G := (A,∆). This quantum group
has a unique state h that is both left-invariant and right-invariant, i.e. any other state
that is both left- and right-invariant coincides with h. This unique state h is called the
Haar state.

4.3. Corepresentations of compact quantum groups
The quantum channels that are analyzed in this thesis arise from looking at intertwiners be-
tween (tensor products of) corepresentations of compact quantum groups, which necessitates
an introduction to the representation theory of compact quantum groups.

We begin with the definition of a corepresentation:
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Definition 4.3.1

Given a CQG G = (A,∆). A finite-dimensional (unitary) corepresentation operator of G on
a finite-dimensional Hilbert space H is an invertible (unitary) operator X ∈ B(H) ⊗ A,
that satisfies the equation

X[12]X[13] = (ιH ⊗ ∆) (X) ∈ B(H) ⊗A⊗A. (4.1)

Here, X[12] := X ⊗ 1A ∈ B(H) ⊗ A ⊗ A and X[23] := (ιH ⊗ Σ) (X[12]) ∈ B(H) ⊗ A ⊗ A, where
Σ : A⊗A → A⊗A is the flip operator a⊗ b 7→ b⊗ a. We call dim H the dimension of X.

As finite-dimensional Hilbert spaces can be identified with Cn with n = dim H, we can
identify B(H)⊗A with Mn(C)⊗A, which can be identified with Mn(A) (matrices with elements
in A as entries), and we find an equivalent view of finite-dimensional corepresentations in
terms of matrices:

Definition 4.3.2

Given a CQG G = (A,∆). A corepresentation matrix of G is an invertible matrix a ∈ Mn(A)
that satisfies ∆(aij) =

∑
k aik ⊗ akj. We call a unitary if for all 1 ⩽ i, j ⩽ n,∑

k

a∗kiakj = δij1A =
∑
k

aika
∗
jk (4.2)

Theorem 4.3.1

Given a CQG G = (A,∆) and a finite-dimensional Hilbert space H. The (unitary) corep-
resentation operators of G on H are in bijective correspondence with the (unitary) corep-
resentation matrices of G with dimension n = dim H.

Sketch of proof. Given a corepresentation matrix a = (aij) ∈ Mn(A), one can construct the
corepresentation operator X =

∑n
i,j=1 eij ⊗aij, where eij ∈ Mn(C) is the matrix with all entries

zero except the (i, j)-th entry, which is 1. Conversely, given a corepresentation operator X,
one can construct a corepresentation matrix a ∈ Mn(A) by the rule aij =

(
ωei,ej

⊗ ιA
)

(X)
where ωη,ξ : B(H) → C is given by T 7→ ⟨η|Tξ⟩.

For details, please see [Tim08, Section 5.2.3].

Remark 4.3.1. The definition of corepresentations of CQG’s in literature, especially when we
are concerned with compact matrix quantum groups (also see the next section), such as in
[FW16, Def. 3.2], corresponds with the corepresentation matrices defined in Definition 4.3.2.

Now that we have defined corepresentations (and the different ways of looking at them),
we can consider the following:

Definition 4.3.3

Given a CQG G = (A,∆) and two corepresentation operators X and Y on Hilbert spaces
H and K, respectively. An intertwiner between X and Y is an operator T ∈ B(H,K) (i.e.
a bounded linear operator T : H → K), such that

Y (T ⊗ ιA) = (T ⊗ ιA)X. (4.3)

The collection of all intertwiners between X and Y shall be denote HomG(X,Y ), and if
the CQG G is clear from context, sometimes Hom(X,Y ). If there exists an invertible
intertwiner in HomG(X,Y ), we call X and Y equivalent and write X ≃ Y .

Remark 4.3.2. If we write X =
∑
ij eij ⊗ aij with corepresentation matrix a = (aij)ij ∈ Mn(A)

and Y =
∑
ij fij ⊗ bij with corepresentation matrix b = (bij)ij ∈ Mm(A), then writing out the
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equation Y (T ⊗ ιA) = (T ⊗ ιA)X with T =
∑
ij tij |i⟩⟨j|, one finds that T intertwines X and

Y iff
∑
j tijajl =

∑
j tjlbij for all 1 ⩽ i ⩽ m and 1 ⩽ j ⩽ n, which is precisely the matrix

equation Ta = bT . Therefore, we say that T intertwines corepresentation matrices a and b
if Ta = bT , write HomG(a, b) for the intertwiner space between a and b, and thus note that
Hom(a, b) = Hom(X,Y ).

Definition 4.3.4

Given a CQG G = (A,∆) and a corepresentation operator X on a Hilbert space H, a
subspace L ⊆ H is called invariant for X if the canonical projection p : H ↠ L satisfies:

X (p⊗ ιA) = (p⊗ ιA)X (p⊗ ιA) . (4.4)

Furthermore, if the only invariant subspaces for X are 0 and H itself, we call X an
irreducible corepresentation operator.

Remark 4.3.3. Following the spirit of Remark 4.3.2, if we say X =
∑
ij eij ⊗ aij with corepre-

sentation matrix a = (aij)ij ∈ Mn(A), and p =
∑
ij pij |i⟩⟨j|, we see that X(p⊗ ιA) = (p⊗ ιA)X(p⊗

ιA) iff ap = pap.

Remark 4.3.4. Note that if we have a projection p : H ↠ pH such that X(p ⊗ ιA) = (p ⊗
ιA)X(p⊗ ιA), or equivalently ap = pap for some corepresentation operator X =

∑
ij eij ⊗aij and

corepresentation matrix a = (aij)ij ∈ Mn(A), then we also have

(p⊗ ιA)X = X(p⊗ ιA) and pa = ap. (4.5)

See [Tim08, Prop. 5.2.8] for a proof.

We can construct new corepresentations on a CQG G from other corepresentations by
considering their direct sum, tensor product, or by conjugating a corepresentation.

Definition 4.3.5: Direct sum

Given a finite family of corepresentation operators (Xi)i∈I on finite-dimensional Hilbert
spaces (Hi)i∈I of a CQG G = (A,∆), we define the direct sum

⊕
iXi ∈ B(⊕iHi) ⊗ A by

demanding that for each i ∈ I, the natural inclusion ιi : Hi ↪→ ⊕jHj is an intertwiner
from Xi to ⊕iXi. This makes the operator unique.

Remark 4.3.5. If we associate the corepresentation matrix a = (aij)ij ∈ Mn(A) to the corepre-
sentation operator X, and similarly b = (bij)ij ∈ Mm(A) to corepresentation matrix Y , then the

corepresentation matrix associated toX⊕Y , denoted by a⊕b, is the matrix
(
a 0
0 b

)
∈ Mm+n(A).

Definition 4.3.6: Tensor product

Given two corepresentation operators X and Y on finite-dimensional Hilbert spaces H
and K, respectively, of a CQG G = (A,∆). We define the tensor product X ⊗ Y as the
operator

X ⊗ Y := X[13]Y[23] ∈ B (H ⊗ K) ⊗A, (4.6)

where we have defined Y[23] = ιH ⊗ Y and X[13] = (Σ ⊗ ιA) (ιK ⊗X) with the flip operation
Σ : B(K) ⊗ B(H) → B(H) ⊗ B(K) by T ⊗R 7→ R⊗ T .

Remark 4.3.6. If we express the corepresentation operator X as X =
∑n
ij eij ⊗ aij where

a := (aij)ij is its associated corepresentation matrix, and similarly Y =
∑m
ij e
′
ij ⊗ bij , where

n = dim H and m = dim K and we identify H ≃ Cn and K ≃ Cm, and {eij} and {e′ij} are the
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canonical orthonormal bases of Mn(C) and Mm(C), writing out the definition of the tensor
product yields:

X ⊗ Y =
n∑

i,j=1

m∑
k,l=1

eij ⊗ e′kl ⊗ aijbkl, (4.7)

hence we can associate with X⊗Y the corepresentation matrix a⊗b := (aijbkl)ijkl if we identify
Cn ⊗ Cm ≃ Cnm with canonical basis {eij ⊗ e′kl ≃ eijkl}ijkl.

Definition 4.3.7: Conjugation

Given a corepresentation operator X on a finite-dimensional Hilbert space H of a CQG
G = (A,∆). Let H denote the conjugate Hilbert space, which contains vectors ξ for ξ ∈ H,
with the scalar multiplication λξ = λξ for λ ∈ C and the inner product ⟨η|ξ⟩ := ⟨ξ|η⟩H
for ξ, η ∈ H. A bounded operator T on this space, i.e. T ∈ B(H), can be described by
ξ 7→ Tξ. This gives a conjugate-linear isomorphism between H and H by ξ 7→ ξ and also
a conjugate-linear isomorphism between B(H) and B(H) by T 7→ T .

Express the corepresentation operator X as X =
∑
ij eij ⊗aij where {eij} is a basis for

H and a = (aij) ∈ Mn(A) is the corresponding corepresentation matrix. Then, we define
the conjugate corepresentation operator X as

X :=
∑
ij

eij ⊗ a∗ij . (4.8)

One can prove (see [Tim08, Cor. 5.3.10]) that X is again a corepresentation operator.
Note that if X is a unitary corepresentation operator, X is not necessarily so.

The additional structure of tensor products and conjugation of corepresentations also leads
to an important consequence known as Frobenius reciprocity:

Proposition 4.3.1

[Tim08] Let X, Y and Z be corepresentation operators of a compact quantum group G
on Hilbert spaces H,K,L, respectively. Then, there exist isomorphisms

HomG
(
X ⊗ Y,Z

)
≃ HomG (Y,X ⊗ Z) (4.9)

HomG (Y ⊗X,Z) ≃ HomG
(
Y, Z ⊗X

)
. (4.10)

We will also need the following identification:

Lemma 4.3.1

Given a CQG G = (A,∆) , a corepresentation matrix u of G on the finite-dimensional
Hilbert space H, integers n,m ∈ N0, and subrepresentations up := pu⊗n and uq := qu⊗m

for two projections p : H⊗n ↠ Hp and q : H⊗m ↠ Hq that satisfy u⊗np = pu⊗np and
u⊗mq = qu⊗mq. Then,

Hom(up, uq) = qHom(u⊗n, u⊗m)p, (4.11)

if we see both as subspaces of B(H⊗n,H⊗m).

Proof. We identify Hp = pH⊗n ⊂ H⊗n and Hq = qH⊗m ⊂ H⊗m. Following Remark 4.3.4, we
know that pu⊗n = u⊗np and qu⊗m = u⊗mq.

Assume we have an intertwiner T ∈ Hom(u⊗n, u⊗m), then we claim that qTp ∈ Hom(up, uq).
This follows directly by definition:

qTpup = qTp(pu⊗n) = qTpu⊗n = qTu⊗np = qu⊗mTp = q2u⊗mTp = qu⊗mqTp = uqqTp. (4.12)
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Conversely, given a T ∈ Hom(up, uq), under the embedding of Hom(up, uq) into B(H⊗n,H⊗m),
we see

qTpu⊗n = qTp2u⊗n = qTpup = qTupp = quqTp = q2u⊗mTp = qu⊗mqTp = uqqTp, (4.13)

so qTp ∈ Hom(u⊗n, u⊗m) and q(qTp)p = qTp so qTp ∈ qHom(u⊗n, u⊗m)p.

4.4. The structure of all corepresentations
Using the techniques from the previous subsection, which allow us to make new corepresen-
tations from others through direct sums, tensor products and conjugation, we can prove that
this is sufficient to describe “all” the corepresentations:

Theorem 4.4.1

[Tim08, Sect. 5.3] Give a CQG G, the following holds:

1. Peter-Weyl: Every corepresentation operator is equivalent to the direct sum of irre-
ducible finite-dimensional unitary corepresentation operators. Furthermore, any
irreducible corepresentation operator is finite-dimensional. Moreover, the sub-
space spanned by the matrix elements of all irreducible corepresentations lies
dense in C(G), and they satisfy orthogonality relations with respect to the Haar
state on G.

2. Schur’s lemma : given two irreducible corepresentations X and Y , we either have
Hom(X,Y ) = 0, or we have X ≃ Y and dim Hom(X,Y ) = 1.

3. Tannaka-Krein: The CQG G can be uniquely recovered from the complete concrete
monoidal W ∗-category of its finite-dimensional unitary corepresentations.

Remark 4.4.1

Note that the first item of this theorem also concerns corepresentation operators on
infinite-dimensional Hilbert spaces, and the direct sum may also be a direct sum over
an infinite family of corepresentations – we have not defined this, as this brings along
some technical details concerning compact operators and multiplier algebras, whilst we
will not extensively need this generality. See [Tim08] for these generalizations.

4.5. Tannaka-Krein duality
In his seminal work in 1988, Woronowicz proved a generalization of the Tannaka-Krein duality
for compact quantum groups [Wor88]. The theorem is cast in the language of concrete W ∗-
categories, whose definition we will repeat here.

Definition 4.5.1: W ∗-category

[Web17a, Def. 4.15] Consider a set of objects R, and a binary operation · : R × R → R.
Associate to each object r ∈ R a finite-dimensional Hilbert space Hr, and associate for
any pair r, s ∈ R a linear subspace of B(Hr,Hs) which we will denote by Hom(r, s). The
tuple R := (R, ·, {Hr}r∈R, {Hom(r, s)}r∈R) is called a concrete monoidal W ∗-category if:

1. The identity operator id ∈ Hr is included in Hom(r, r) for any r ∈ R

2. The category is closed under composition: if a ∈ Hom(r, s) and b ∈ Hom(s, t), then
b · a ∈ Hom(r, t) for any r, s, t ∈ R.

3. The category is closed under the involution: if a ∈ Hom(r, s) then a∗ ∈ Hom(s, r) for
any s, r ∈ R.

4. If Hr = Hs and id ∈ Hom(r, s), then r = s.
5. The category is closed under the tensor product: if a ∈ Hom(r, s), and b ∈ Hom(r′, s′),

then a⊗ b ∈ Hom(r · r′, s · s′) for any r, r′, s, s′ ∈ R.
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6. The binary operation is associative: (r · s) · t = r · (s · t) for any r, s, t ∈ R.
7. R contains a unit element 1 such that H1 = C, and 1 · r = r · 1 = r for any r ∈ R.

Furthermore, we call this concrete monoidal W ∗-category complete if additionally:

8. For any r ∈ R and any unitary u : Hr → K where K is a Hilbert space, there exists
an s ∈ R such that Hs = K and u ∈ Hom(r, s).

9. For any r ∈ R and any orthogonal projection p ∈ Hom(r, r), there exists an s ∈ R
with Hs = pHr and the embedding ι : Hs ↪→ Hr is in Hom(s, r).

10. We can take direct sums: for any r, r′ ∈ R, we can find an s ∈ R such that Hs =
Hr ⊕ Hr′ , and the embeddings ιr : Hr ↪→ Hs and ιr′ : Hr′ ↪→ Hs are in Hom(r, s) and
Hom(r′, s), respectively.

We say that an element r ∈ R is the complex conjugate of r ∈ R if we can find a map
j : Hr → Hr that is invertible and anti-linear, such that the map C → Hr ⊗ Hr given by 1 7→∑
i ei⊗j(ei) is in Hom(1, r ·r), and similarly the map Hr⊗Hr → C given by ei⊗ej 7→ ⟨j−1(ei), ej⟩

is in Hom(r · r, 1).
Given a concrete monoidal W ∗-category R, we say that a finite subset Q ⊆ R generates R

if for any s ∈ R, we can find morphisms bk ∈ Hom(qk, s) for 1 ⩽ k ⩽ m for some m ∈ N such
that

∑
k bkb

∗
k = id ∈ Hom(s, s), where qk are monomials in Q.

We have now established enough theory to understand the compact quantum group setting:
the category of finite-dimensional unitary representations Rep G from a compact quantum
group G form a complete concrete monoidal W ∗-category:

Theorem 4.5.1

[Wor88] Let G be a CQG. The class of all finite-dimensional unitary representations Rep G
is a complete concrete monoidal W ∗-category, where the morphisms are intertwiners
and the binary operation is the tensor product. For any representation a ∈ Rep G, there
exists the complex conjugation a ∈ Rep G. The fundamental representation u is the
distinguished object of Rep G: u and u together generate Rep G.

One of the most celebrated results in the field of compact quantum groups is the realization
that the dual to the previous theorem exists:

Theorem 4.5.2: Tannaka-Krein for CMQGs

[Wor88] Let R := (R, ·, {Hr}r∈R, {Hom(r, s)}r,s∈R) be a concrete monoidal W∗-category,
such that {f, f} generates R. Then, we can find a compact matrix quantum group
G = (A, u) and a natural completion R of R such that R = Rep G. Moreover, if another
compact matrix quantum group G′ = (B, v) exists with the property that R ⊆ Rep G′,
then there exists a morphism of compact quantum groups A → B such that u 7→ v.

For a sketch of the proof, see for example [Web17a].

4.6. Compact matrix quantum groups
In this thesis, we will be concerned with compact quantum groups that are generated by a
unitary matrix of formal elements, which are called compact matrix quantum groups:
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Definition 4.6.1: Compact matrix quantum group

[Tim08, Def. 6.1.1] A compact matrix quantum group G = (A,∆, u) is a unital C∗-algebra
A together with a coproduct ∆, i.e. a ∗-homomorphism ∆ : A → A ⊗ A, together with a
unitary u ∈ Mn(A) for some n ∈ Z>0 such that

1. ∆(uij) =
∑n
k=1 uik ⊗ ukj for all 1 ⩽ i, j ⩽ n;

2. u is an invertible matrix;
3. the elements in the set {uij | 1 ⩽ i, j ⩽ n} generate A as a C∗-algebra.

The matrix u is called the fundamental corepresentation (matrix).

Note that the comultiplication ∆ in Definition 4.6.1 is uniquely determined by the first
and third condition, hence we may also refer to the CMQG G as G = (A, u). [Tim08, Remark
6.1.2]

Proposition 4.6.1: CMQG’s are CQG’s

[Tim08, Prop. 6.1.4] Given a compact matrix quantum group G := (A,∆, u), then (A,∆)
is a compact quantum group.

Definition 4.6.2

[Tim08, Def. 6.1.3] We say that two CMQG’s G = (A,∆A, u) and H = (B,∆B , v) are similar,
denoted as G ≃ H, if there exists an n ∈ N such that u ∈ Mn(A) and v ∈ Mn(B), and there
exists a ∗-isomorphism f : A → B, and there exists an invertible matrix T ∈ GLn(C) such
that v = T (f(uij)ij)T−1.

An important result for compact matrix quantum groups is the fact that their irreducible
corepresentations can be described as follows:

Theorem 4.6.1

[Tim08, Lemma 6.1.5] Given a CMQG G = (A,∆, u), and given any irreducible corepre-
sentation of (A,∆). This irreducible corepresentation must be contained in an iterated
tensor product of u, u, and the trivial corepresentation.

In this thesis, we will be concerned with two compact matrix quantum groups: the free
orthogonal quantum group O+

N , and the quantum permutation group S+
N . Let us define them.

4.6.1. The free orthogonal quantum group O+
N

Definition 4.6.3

The orthogonal quantum group, denoted O+
N or Ao(N), with dimension N ∈ N, is the

compact matrix quantum group O+
N = (C(O+

N ), u), where C(O+
N ) is the universal unital

C∗-algebra generated by the elements {uij}Ni,j=1 placed in the corepresentation matrix
u := (uij)ij ∈ MN (C(O+

N )) with the relation that u is orthogonal, i.e. we have

C(O+
N ) := C∗

(
uij , 1 ⩽ i, j ⩽ N | u∗ij = uij ,

∑
k

uikujk =
∑
k

ukiukj = δij ∀i, j
)
. (4.14)

We can generalize this definition to the free orthogonal quantum group with parameter
matrix F , such that the previous definition coincides with this generalization under the choice
F = IN ∈ GLN (C), where IN is the identity matrix: [vDW96, Tim08]
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Definition 4.6.4

For some N ∈ N, assume we are given a matrix F ∈ GLN (C) with the property FF ∈ RIN .
The free orthogonal quantum group with parameter matrix F , denoted by O+

F or Ao(F ), is
the CMQG (C(O+

F ), u), where C(O+
F ) is the universal unital C∗-algebra generated by the

elements {uij}Ni,j=1 placed in a corepresentation matrix u := (uij)ij ∈ MN (C(O+
F )) with

the relation that u is unitary, i.e. uu∗ = u∗u = 1, and u = FuF−1.

Remark 4.6.1. The relation u = FuF−1 means that the corepresentation matrices u and u are
similar, and the relation FF ∈ RIN is chosen because u = FuF−1 implies u = FuF

−1, which
implies u = (FF )u(FF )−1, so FF is an intertwiner between u and itself. Hence, if we want u
to be an irreducible corepresentation, Schur’s lemma forces us to have FF = λIN for some
λ ∈ C×. As this means F/λ is the inverse of F , we must also have 1

λFF = IN , so FF = λIN ,
but conjugating FF = λIN yields FF = λIN , hence λ = λ and we conclude FF ∈ RIN . [Ban98]

4.6.2. The quantum permutation group S+
N

Definition 4.6.5

The permutation quantum group denoted S+
N or As(N), depending on the dimension

N ∈ N, is the compact matrix quantum group S+
N = (C(S+

N ), u), where C(S+
N ) is the univer-

sal unital C∗-algebra generated by the elements {uij}Ni,j=1 placed in the corepresentation
matrix u := (uij)ij ∈ MN (C(S+

N )) with the relation that u is a magic unitary matrix, i.e.
we have

C(S+
N ) := C∗

(
uij , 1 ⩽ i, j ⩽ N | u∗ij = uij = u2

ij ,
∑
k

uikujk =
∑
k

ukiukj = δij ∀i, j
)

(4.15)

The relations imposed on the elements (uij)ij in the definition of S+
N differ per paper. We

identify five key relations that all hold for the generators of S+
N :

R1. The generators are self-adjoint, i.e. uij = u∗ij.

R2. The generators are idempotent, i.e. u2
ij = uij.

R3. The matrix u is orthogonal, i.e. uut = utu = 1, i.e.
∑
k uikujk = δij =

∑
k ukiukj.

R4. The elements in the rows and columns of u are orthogonal to each other, i.e. uikujk =
ukiukj = 0 if i ̸= j.

R5. The rows and columns of u sum to 1, i.e.
∑
k uik =

∑
k ukj = 1.

Timmermann [Tim08, Ex. 6.1.13] defines S+
N with the relations {R1,R2,R3,R4,R5}, Banica

and Speicher [BS09, Def. 3.4] say that u has to be magic, which is defined by the relations
{R1,R2,R3}, Weber [Web13] says that u has to be magic which is defined by the relations
{R1,R3,R4,R5}, Freslon and Weber [FW16] define S+

N with the relations {R1,R2,R4,R5}, We-
ber defines S+

N in a different paper [Web17b] with relations {R1,R2,R5}, and Banica, Bichon
and Collins [BBC06] define S+

N with relations {R1,R2,R4,R5}. All these definitions are equiv-
alent:
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Proposition 4.6.2

The following sets of relations are equivalent:

1. uij are projections and u is orthogonal : {R1,R2,R3}.
2. uij are self-adjoint, u is orthogonal, elements in rows and columns are orthogonal,

rows and columns sum to 1 : {R1,R3,R4,R5}.
3. uij are projections, rows and columns sum to 1 : {R1,R2,R5}.
4. uij are projections, elements in rows and columns are orthogonal, rows and columns

sum to 1 : {R1,R2,R4,R5}.

Proof. 1. {R1,R2,R3} implies {R1,R3,R4,R5} : By the fact that uij are projections and u
is orthogonal, we have

∑
k uik =

∑
k u

2
ik =

∑
k uikuik = δii = 1, similarly

∑
k ukj = 1 ,

hence {R1,R2,R3} implies R5. But 1 itself is a projection, and if projections sum up to
a projection, they must be orthogonal, i.e. uikujk = ukiukj = 0 if i ̸= j, hence R4 follows.

2. {R1,R3,R4,R5} implies {R1,R2,R5} : By the fact that elements in the rows and columns
of u are orthogonal, and then by the fact that the rows and columns of u sum to 1, we
have u2

ij =
∑
k uijuik = uij

∑
k uik = uij1 = uij , hence R2 follows.

3. {R1,R2,R5} implies {R1,R2,R4,R5} : again, 1 itself is a projection, and if projections
sum up to a projection, they must be mutually orthogonal, so R4 follows.

4. {R1,R2,R4,R5} implies {R1,R2,R3}: for the diagonal elements, by the fact that gener-
ators are idempotent and the rows and columns of u sum to 1, we have

∑
k uikuik =∑

k u
2
ik =

∑
k uik = 1, and similarly

∑
k ukiuki = 1. For the off-diagonal elements, all the

summands are 0 by the orthogonality of elements in the rows and columns. Hence, R3
follows.

Remark 4.6.2. Note that C(S+
N ) is non-commutative for N ⩾ 4 [Web17a]. We can see this

for N = 4 by considering the universality property of the universal C∗ algebra C(S+
N ). Start

with a C∗-algebra A that is generated by two non-commuting projections p and q. In concrete
terms, take for example H = C2, and consider p = |0⟩⟨0| and q = 1

2 (|0⟩ + |1⟩)(⟨0| + ⟨1|). Then,
consider M4(M2(C)), in which we put the matrix

v :=


p1 1 − p1

1 − p1 p1
p2 1 − p2

1 − p2 p2

 . (4.16)

Clearly, v satisfies the relations that were imposed on u = (uij)ij if we swap uij for vij, so by
the universality property of C(S+

N ), we get a ∗-homomorphism φ that sends uij to vij. But
then, as p1p2 ̸= p2p1, φ(u11u33 − u33u11) ̸= 0, whence u11u33 ̸= u33u11, and thus C(S+

4 ) is not
commutative.

Having introduced the relevant compact matrix quantum groups, the next step is under-
standing their corepresentation theory. By Theorem 4.6.1, all their irreducible corepresen-
tations are contained in the repeated tensor product of their fundamental corepresentation
u, its conjugate u and the trivial corepresentation. In the case of O+

N and S+
N , as their gen-

erators are self-adjoint, this simplifies even further, because u ≃ u, so we only need to un-
derstand what the irreducible subrepresentations are of tensor products of the form u⊗k for
k ∈ Z⩾0. The CMQG’s that we are interested in have a particularly nice structure in this
regard: they are examples of so-called partition or easy compact quantum groups, whose
intertwiner spaces can be described by certain categories of partitions. We investigate this
in the next section.
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4.7. (Easy) partition quantum groups
By the Tannaka-Krein duality theorem, we know that we can view Rep G, the category of all
finite-dimensional unitary representations with intertwiners as morphisms, as the dual to a
compact quantum group G. For compact matrix quantum groups G = (C(G), u) with u ≃ u
(such as O+

N and S+
N ), the fundamental corepresentation matrix u generates Rep G, hence the

only data we need to investigate in the complete concrete monoidal W ∗-category Rep G are
the intertwiner spaces HomG(u⊗k, u⊗l) for k, l ∈ N0. They are often abbreviated as HomG(k, l),
or if G is clear from context, simply by Hom(k, l). We can now precisely state:

Definition 4.7.1

[FW16, Def 3.5] An easy (partition) quantum group, is a compact matrix quantum group
G = (C(G), u) whose fundamental corepresentation satisfies u ≃ u, and is orthogonal in
the sense that uut = utu = 1, and whose intertwiner spaces HomG(k, l) are of the form:

HomG(k, l) = span{Tp : p ∈ C(k, l)} = {Tp : p ∈ Clin[N ](k, l)}, (4.17)

where C(k, l) is a subset of all partitions P(k, l), such that the collection C of all C(k, l) for
k, l ∈ N0 is a category of partitions. Here, Clin[N ] is its associated easy linear category of
partitions. The objects Tp are the associated partition maps.

As a brief reminder, the partition maps Tp are defined as

Tp : H⊗k → H⊗l : ei1 ⊗ · · · ⊗ eik 7→
n∑

j1,...,jl=1
δp(i, j)ej1 ⊗ · · · ⊗ ejl

, (4.18)

where δp(i, j) ∈ {0, 1} and δp(i, j) = 1 iff the through-blocks in the diagram of p with the upper
nodes replaced by i and the lower nodes by j connect equal indices. For details on what
constitutes a partition, please see Definition 2.3.1, for (linear) categories of partitions, please
see Section 2.3.2, and for the partition maps, please see Section 2.3.3.

Both the free orthogonal quantum group O+
N and the quantum permutation group S+

N that
we introduced in the previous sections are examples of (easy) partition quantum groups. We
will investigate their intertwiner spaces and fusion rules in the next chapter.



5
The Quantum Groups O+

N and S+
N

In this thesis, we are interested in the compact matrix quantum groups O+
N and S+

N that were
introduced in the previous chapter. They are easy (partition) quantum groups, see Section 4.7,
which means that the intertwiner spaces HomG(u⊗k, u⊗l) can be described in terms of par-
tition maps (where G is O+

N or S+
N , u is their fundamental representation, and k, l ∈ N0). We

discuss the intertwiner spaces and fusion rules of O+
N and S+

N in detail in this chapter.

5.1. The intertwiner spaces and fusion rules of O+
N

In the case of O+
N with N ⩾ 2, the intertwiner spaces are described by the category of non-

crossing pair partitions NC2 [Ban99, BC07b], or equivalently in terms of the linear category
of non-crossing pair partitions NC2,lin[N ], see Definition 2.3.8:

Theorem 5.1.1: Intertwiner spaces for O+
N

HomO+
N

(
u⊗k, u⊗l

)
= span {Tp : p ∈ NC2(k, l)} = {Tp : p ∈ NC2,lin[N ](k, l)} . (5.1)

Banica also established in [Ban98] a classification of the irreducible representations and
their fusion rules for N ⩾ 2:

Theorem 5.1.2: Fusion rules for O+
N

The irreducible corepresentations vk ofO+
N are self-adjoint, and can be indexed by N0. We

let v0 = 1 (the trivial corepresentation) and v1 = u (the fundamental corepresentation).
Furthermore, for all k, l ∈ N0, we have the fusion rules:

vk ⊗ vl ≃ v|k−l| ⊕ v|k−l|+2 ⊕ · · · ⊕ vk+l. (5.2)

Hence, the fusion rules are identical to those of SU(2).

If we label the corepresentation Hilbert spaces by Hk, and their dimension dim Hk by dk,
we see the recurrence relation:

dkdl = d|k−l| + d|k−l|+2 · · · + dk+l, (5.3)

where H0 = C so d0 = 1, and H1 = CN so d1 = N , where N is the dimension of the square
matrix F . Then, putting l = 1, we find the recurrence

dk+1 = dkd1 − dk−1 =⇒ dk+1 = Ndk − dk−1. (5.4)

38
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One can prove that the solution to this recurrence equation for N ⩾ 3 is: 1

dk = qk+1
0 − q

−(k+1)
0

q0 − q−1
0

where q−1
0 = N/2 + 1

2

√
N2 − 4 is the solution to q0 + q−1

0 = N. (5.6)

The authors in [BC16b] and [BCLY20] denote this by dk = [k+1]q0 , where the quantum integers
[n]q0 for n ∈ N0 are defined by [n]α = αn−α−n

α−α−1 , where α ∈ R is called the quantum parameter.
Note that multiple definitions of quantum numbers exist – for example, q-integers are often
defined as (n)q := qn−1

q−1 =
∑n−1
k=0 q

k [SQ15, Nat02], although [n]q is sometimes also referred to
as a q-integer [Lus10, Kas95]. Stum and Quirós call [n]q the symmetric quantum state, and
note that the two definitions are closely related by [n]q = q1−n(n)q2 [SQ15].

Note that in the case of N = 2, q0 = 1, and we have dk = limq0→1[k+1] = k+1. In the case of
N ⩾ 3, we instead see that dk grows approximately as q−k0 and q−1

0 → N for large N and fixed
k [BC16b].

5.1.1. The Temperley-Lieb category and algebras
The concrete monoidalW ∗ category Rep G of finite-dimensional unitary representations ofO+

N

is intimately related to the so-called Temperley-Lieb category TL(δ) with objects k ∈ N0, and
morphism classes TLk,l(δ) for k, l ∈ N0. As the fundamental representation u of O+

N satisfies
u ≃ u (by definition, as we demand that all generators uij are self-adjoint), we know that
Rep O+

N is generated by the concrete monoidal W ∗-category R0(O+
N ) whose objects are u⊗k

for k ∈ N0, and whose morphisms are the intertwiners Hom(u⊗k, u⊗l). A fundamental result
from Banica in [Ban98] tells us that there exists an isomorphism of monoidal W ∗-categories

π : R0(O+
N ) → TL(N) : π(u⊗k) = k and π(Hom(u⊗k, u⊗l)) = TLk,l(N), (5.7)

such that ι ∈ Hom(u, u) 7→ ι ∈ TL1,1(N) and
∑N
i=1 ei ⊗ ei ∈ Hom(1, u⊗2) 7→ ∩ ∈ TL0,2(N). Let us

investigate this Temperley-Lieb category.

Abstractly, for a given loop parameter δ ∈ C×, the Temperley-Lieb category TL(δ) is a strict
C∗-tensor category, whose self-dual irreducible objects can be labelled as {0, 1, . . .} = N0,
where 0 denotes the unit for the tensor category, and the morphism classes Hom(1⊗k, 1⊗l) =:
TLk,l(δ) are generated by the two morphisms ι ∈ Hom(1, 1) (the identity morphism) and ∩ ∈
Hom(0, 1 ⊗ 1), where we demand ∪∩ = δ ∈ Hom(0, 0) = C (with ∪ = ∩∗) and (ι ⊗ ∪)(∩ ⊗ ι) =
(∪ ⊗ ι)(ι ⊗ ∩) = ι, the so-called snake equation [BC20, BCLY20]. Luckily, a diagrammatic
interpretation of TL(δ) exists – as a matter of fact, we have already encountered it, as we will
show an equivalence with the category NC2,lin[δ]. Let us commence with the Temperley-Lieb
algebras:

Definition 5.1.1: Temperley-Lieb algebras

The Temperley-Lieb algebra TLk(δ) := TLk,k(δ) with loop parameter δ ∈ C× and parameter
k ∈ N is the unital (and associative) algebra over C that is generated by the elements
{ui}k−1

i=1 and the unit 1 such that uiuj = ujui whenever |i− j| ⩾ 2, and uiui+1ui = ui, and
u2
i = δui.

1The characteristic polynomial associated with this recurrence relation is p(λ) = λ2 − Nλ + 1, whose roots are
q1 = N/2 +

√
N2 − 4/2 and q2 = N/2 −

√
N2 − 4/2. The general solution to the recurrence equation is then

dk = c1qk
1 +c2qk

2 for some constants c1, c2 ∈ R. Using d0 = 1 yields c1 = 1−c2, and d1 = N together with q2 = N−q1
yields N = q1 − c2q1 + c2N − c2q1, i.e. c2 = (N − q1)/(N − 2q1) and c1 = 1 − c2 = −q1/(N − 2q1). We can then
rewrite:

dk =
−q1

N − 2q1
qk

1 +
N − q1

N − 2q1
(N − q1)k =

(N − q1)k+1 − qk+1
1

N − 2q1
=
qk+1

1 − q
−(k+1)
1

q1 − q−1
1

, (5.5)

where in the last step we used the fact that q1 + q−1
1 = N (which follows from p(λ) = 0) to find both N − q1 = q−1

1
and 2q1 − N = q1 − q−1

1 . Letting q−1
0 = q1 yields the claim, where q0 is the quantum parameter q in [BC16b], and

the quantum parameter q0 in [BCLY20].
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It is well-known that TLk(δ) is a finite-dimensional C-algebra with dim TLk(d) = (2k)!
k!(k+1)! (the

k-th Catalan number), if δ is not twice the real part of a root of unity [Jon83]. Furthermore,
TLk(δ) can be seen as an involutive ∗-algebra under the declaration that u∗i = ui for all 1 ⩽ i ⩽
k− 1, which has non-trivial ∗-representation into a C∗-algebra if δ ∈ [2,∞) ∪ {2 cos(π/n) : n ∈
N, n ⩾ 3} [BC16a].

The Temperley-Lieb algebras can be realized as a C-algebra over non-crossing pair parti-
tions as follows: recall from Section 2.3 that NC2(k, l) denotes the collection of all partitions
between {1, . . . , k} and {1′, . . . , l′} such that all blocks consist of precisely two points (i.e.,
pairs), and none of the blocks cross. In literature, partitions p ∈ NC2(k, l) are also referred to
as Temperley-Lieb diagrams Dp, such as:

.

.

.

.

.

. . .

. . .

.

.

.

. .

. .

. . .

. . . . .

.

.

. .
Figure 5.1: The five Temperley-Lieb diagrams in NC2(3, 3)

We know that we can endow NC2 with a ∗-algebra structure, which we have called NC2,lin[δ]
with the loop parameter δ such that qp = δrl(q,p)(p ◦ q) (where p ◦ q is the usual diagram
composition, see Definition 2.3.3 ), see Section 2.3.2. An example of the composition is then:

.

.

. . .

. . .

.

.
◦

. . .

. . .

. .

. .
7→ .

.

. . .

. . .

.

.

. . .

. . .

. .

. . = δ

. . .

. . .

. .

. .

Figure 5.2: Composition of Temperley-Lieb diagrams

Remarkably, the ∗-algebra NC2,lin[δ](k, k) is in fact isomorphic to the Temperley-Lieb algebra
TLk(δ) as defined in Definition 5.1.1, under the following isomorphism [BC16a]:

1 7→
.

.

.

.
· · ·

.

.
and ui 7→

.

.

.

.
· · ·

.

.

. .

. .

.

.
· · ·

.

.

Figure 5.3: Isomorphism mapping 1 to p = |⊗k, and ui to p = |⊗(i−1) ⊗ c⊗ |⊗(k−i−1), where the tensor operation ⊗
is defined in Definition 2.3.4, and where c = ∩∪ is the “cap-cup“ partition c = .....

Therefore, from now on we refer to both TLk(δ) and NC2,lin[δ](k, k) as “the k-th Temperley
Lieb algebra (with loop parameter δ)”. Lastly, the partitions ∪ ∈ NC2(2, 0) and ∩ ∈ NC2(0, 2)
play an important role in the non-crossing pair partition case: for example, the only pairs of
indices in p ∈ NC2(k, l) that contain two upper indices or lower indices must be (nested) cups
or caps, respectively. Therefore, we define:

Definition 5.1.2

The cup partition ∪ is the unique partition ∪ ∈ NC2(2, 0), and the cap partition ∩ is the
unique partition ∩ ∈ NC2(0, 2). Their nested variants, ∪k ∈ NC2(2k, 0) and ∩k ∈ NC2(0, 2k)
are those partitions consisting of {i, 2k − i+ 1} for 1 ⩽ i ⩽ k, or with primed numbers in
the case of ∩k.

We can then also define:
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Definition 5.1.3: Markov trace

The Markov trace τk : TLk(δ) → C is a tracial linear functional that sends a diagram
p ∈ TLk(δ) to its tracial closure τk(p) ∈ C by looping all its lower points to its upper points.
We can write τk(p) = ∪k(p⊗ |⊗k)∩k, which evaluates to the value δ#loops, where #loops is
the number of loops (i.e., connected components) in the diagram of ∪k(p⊗ |⊗k)∩k:

τk(p) = p

. . · · · .
· · ·

. . · · · .

In general, the morphism classes TLk,l(δ) for general k, l ∈ N0 can be bundled into a uni-
versal graded C∗-algebra (TLk,l(δ))k,l∈N0 , and defined in terms of generators and relations,
see [Bra12]. And analogous to the previous exposition, an isomorphism exists between
TLk,l(δ) and NC2,lin[δ](k, l) that respects this structure, yielding an equivalence of monoidal
∗-categories between TL(δ) = {N0, {TLk,l(δ)}k,l∈N0} and NC2,lin[δ] = {N0, {NC2,lin[δ][k, l]}k,l∈N0}.
As a matter of fact, in literature one sometimes encounters the diagrammatic presentation
as the definition of the Temperley-Lieb category (e.g. [BSA18]). We remind the reader that
R0(S+

N ) is the concrete monoidal W ∗-category with object u⊗k for k ∈ N0 and with morhpism
classes that are the intertwiner spaces Hom(u⊗k, u⊗l). In summary, we then have:

R0(S+
N )

NC2,lin[N ] TL(N)

π

diagram presentation

T•

Here, we used the fact that Hom(u⊗k, u⊗l) = {Tp : p ∈ NC2,lin[N ](k, l)} for the left-most arrow,
which we stated in Theorem 5.1.1. We know that T• is both full (by definition) and essentially
surjective, and by Lemma 2.3.1 it is faithful for N ⩾ 4, and in that case the diagram above
consists of monoidal ∗-isomorphisms such that their composition is the identity functor on
R0, as they agree on the generators of R0 . Note that this result also holds for N ⩾ 2, in
contradiction with [FW16, Lemma 4.16]: 2

Lemma 5.1.1: Independence of partition maps for N ⩾ 2 in NC2

For N ⩾ 2, the maps (Tp)p∈NC2(k,l) are linearly independent.

Proof. We prove this by dimensionality: we know #NC2(k, l) = C(k+l)/2 = 1
k+l+1

(2(k+l)
k+l

)
if k+ l is

even, else #NC2(k, l) = 0. On the other hand, by the identification span{Tp : p ∈ NC2(k, l)} =
Hom(u⊗k, u⊗l), we can look at the dimension of Hom(u⊗k, u⊗l). By rotating the partitions, it
2The small error lies in the fact that Freslon and Weber prove that for the category of partitions NC, the maps
(Tp)p∈NC(k,l) are not linearly independent for N < 4, but this does not imply that for a smaller category, for example
NC2, the maps (Tp)p∈NC2(k,l) must also be linearly dependent. The converse, however, does hold: if (Tp)p∈NC(k,l)
are linearly independent, then surely picking a smaller category still yields linearly independent maps. This is
corroborated by the fact that a rich theory has been developed around the Weingarten calculus, in which the
Weingarten matrix Wkn is defined as the inverse of the matrixGkn = [Gkn(p, q)]p,q∈TLk(n), whereGkn(p, q) = N rl(p,q)

[BC07a]. Brannan and Collins note in [BC16a] that this matrix is invertible (and give a list of references) for all
k ⩾ 1 and N ⩾ 2, whilst Lemma 4.16 in [FW16] applied to NC2 would claim that the same Gram matrix Gkn is
singular for N < 4.
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suffices to consider Hom(u⊗m, 1) and partitions in NC2(m, 0) with m = k+ l. Using the fusion
rule v1 ⊗va = va−1 ⊕va+1 for a ∈ N, we repeatedly tensor v1 = u to u⊗m and use the fusion rules
to decompose u⊗m+1 into irreducibles. Some contemplation yields the table of multiplicities
of vi in u⊗m, and a graphical diagram where each vertex in column vi and row u⊗j shows that
vi ⊂ u⊗j, and each edge from (u⊗j , vi) to (u⊗j+1, vi−1) and (u⊗j+1, vi+1) indicates the fusion
rules vi ⊗ v1 ≃ vi−1 ⊕ vi+1.

v0 v1 v2 v3 v4 v5 v6
u⊗0 1
u⊗1 1
u⊗2 1 1
u⊗3 2 1
u⊗4 2 3 1
u⊗5 5 4 1
u⊗6 5 9 5 1 .

.
.

.

.
.

.

.
.

.

.
.

..
.

.

u⊗6
u⊗5
u⊗4
u⊗3
u⊗2
u⊗1
u⊗0 v0 v1 v2 v3 v4 v5 v6

We have purposefully written the decomposition in this form: it becomes clear that the
multiplicity of v0 in the decomposition of u⊗2k is the number of unique paths along the graph
one can take from vertex (u⊗0, v0) to (u⊗2k, v0), where one is not allowed to cross the diagonal
dashed blue line. It is also clear that v0 ̸⊂ u⊗2k+1. It is well-known that this number of
unique paths is precisely the k-th Catalan number, see e.g. [SF99]. As all vi are irreducible
representations, we have Hom(u⊗m, 1) ≃ Hom(v⊕t(m)

0 , v0), where t(m) is the multiplicity of v0
in u⊗m. But then we recover dim Hom(u⊗m, 1) = Cm/2 if m is even, and else 0. This precisely
corresponds to #NC2(m, 0), so by a dimensionality argument all (Tp)p∈NC2(m,0) must be linearly
independent. Note that this construction is independent of the choice of N ⩾ 2.

Having firmly established the connection between the non-crossing pair partitions, the
Temperley Lieb category, and the intertwiner spaces Hom(u⊗k, u⊗l), we can reap the fruits of
our labour and utilize some useful technology from the Temperley-Lieb theory: specifically,
we can consider the Jones-Wenzl projections.

5.1.2. Jones-Wenzl projection
The Jones-Wenzl projections are exceptionally useful projections in the Temperley-Lieb alge-
bras [BC16a]:

Theorem 5.1.3: Jones-Wenzl projections

Given a finite-dimensional Temperley-Lieb algebra TLk(δ) for k ∈ N and δ ∈ C× but δ /∈
{2 cos(π/n)}2⩽n⩽k+1, then there exists a unique non-zero idempotent pk ∈ TLk(δ) called
the Jones-Wenzl projection that has the property that uipk = pkui = 0 for all 1 ⩽ i ⩽ k− 1.

For example, the reader can check that p1 = |, and p2 = |⊗2 − 1
δ c, where c = ∩∪ is the “cap-cup”

partition c = ..... Using u2
1 = δu1, it directly follows that p2u2 = u2p2 = 0. The fact that p2

2 = p2
follows similarly.

To determine the k-th Jones-Wenzl projection, we can use the Wenzl recursion formula.
Firstly, we can embed the k-th Jones-Wenzl projection pk into TLk+1(δ) by adding a vertical
strand to the right in its diagram, i.e. we map pk to pk ⊗ | ∈ TLk+1(δ). Then, we have [BC16a,
Mor17, BLS19]:
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Theorem 5.1.4: Wenzl recurrence relation

The Jones-Wenzl projection pk satisfies the Wenzl recursion formula:

pk+1 = pk ⊗ | − Tk−1(δ)
Tk(δ) (pk ⊗ |)uk (pk ⊗ |) , (5.8)

where Tk is the k-th Type 2 Chebyshev polynomial defined by T0(x) = 1,T1(x) = x, xTk(x) =
Tk+1(x) + Tk−1(x). Graphically, this is displayed as:

. .· · ·. .

. .· · ·. .
pk+1 = . .· · ·.

. .· · ·.
pk − Tk−1(δ)

Tk(δ)

. .· · ·.
pk

.

.

.

.
· · ·.
· · ·.

. .· · ·.
pk

Lemma 5.1.2

[Mor17, Lemma 2.1] The coefficient of the identity 1k in the Jones-Wenzl projection
pk ∈ TLk(δ) = ⟨1k, ui (1 ⩽ i ⩽ k − 1)⟩ is equal to 1, independent of k.

Proof. If we denote the two-sided ideal generated by {u1, . . . , uk−1} in TLk(δ) by Ik, then we can
express pk = a1k + fk for some fk ∈ Ik and a ∈ C. By the fact that pkui = 0 for all 1 ⩽ i ⩽ k− 1,
we see that pkIk = 0. Hence,

pk = p2
k = pk(a1k + fk) = apk + 0, (5.9)

so pk = apk, which implies a = 1.

Lemma 5.1.3: Absorption property of Jones-Wenzl projections

[BLS19, Prop. 2.4] We have the following absorption properties in the Temperley-Lieb
algebra TLk(δ) with the Jones-Wenzl projection pk:

(pk ⊗ 1m)pk+m = (1k ⊗ pm)pk+m = pk+m = pk+m(1k ⊗ pm) = pk+m(pk ⊗ 1m). (5.10)

Proof. By Lemma 5.1.2, we can express pk = 1k+fk for some fk ∈ Ik, where Il is the two-sided
ideal generated by {u1, . . . , ul−1} in TLl(δ) for some l ∈ N. Then pk ⊗ 1m = 1k+m + fk ⊗ 1m, so
fk ⊗ 1m ∈ Ik+m. But pk+mIk+m = 0, so pk+m(pk ⊗ 1m) = pk+m. The other identities follow with
analogous arguments.

It is well-known that we can identify the irreducible representations vk with pku
⊗k, where

pk ∈ TLk(N) (so, we pick δ = N ), with representation spaces Hk := pkH⊗k1 , where H1 := CN is
the representation space of the fundamental representation [Bra12, BC16b, BCLY20]. To be
pedantic, these equations suppress the monoidal ∗-isomorphism π between R0 and TL(N), as
we should pull pk back to π−1(pk) ∈ Hom(u⊗k, u⊗k) to make sense of pku⊗k. As T• is a monoidal
∗-isomorphism for N ⩾ 2, we can actually identify pk with Tpk

∈ {Tq : q ∈ NC2,lin[N ](k, k)},
which yields the same operator in Hom(u⊗k, u⊗k). However, outside this section, we will often
forget about these monoidal ∗-isomorphisms and simply write pk for the operator Tpk

that
lives in Hom(u⊗k, u⊗k).
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5.2. The intertwiner spaces and fusion rules of S+
N

The intertwiner spaces of the quantum permutation group S+
N for N ⩾ 4 are related to the

non-crossing partitions, in the following sense [BC07a, BC07b, BBC06]:

Theorem 5.2.1: Intertwiner spaces for S+
N

HomS+
N

(k, l) = HomS+
N

(
u⊗k, u⊗l

)
= span {Tp : p ∈ NC(k, l)} (5.11)

The fusion rules for S+
N are also known [Ban99, Ban02, BBC06]:

Theorem 5.2.2: Fusion rules for S+
N

For N ⩾ 4, the irreducible corepresentations vk of S+
N can be indexed by N0. We set

v0 = 1 (the trivial corepresentation) and v1 = u (the fundamental corepresentation). For
all k, l ∈ N0, we have the fusion rules:

vk ⊗ vl ≃ v|k−l| ⊕ v|k−l|+1 ⊕ · · · ⊕ vk+l. (5.12)

Hence, the fusion rules are identical to those of SO(3).

We again label the Hilbert spaces of the corepresentations vk by Hk. their dimension
dim Hk by dk, and we then find the recurrence relation

dkdl = d|k−l| + d|k−l|+1 + · · · + dk+l, (5.13)

with d0 = 1 as H0 = C and d1 = N − 1 as dim(u) = N = 1 + d1. Using l = 1, we find

dkd1 = dk−1 + dk + dk+1 =⇒ dk+1 − (d1 − 1)dk + dk−1 = 0. (5.14)

One can prove that the solution to this recurrence relation for N ⩾ 4 yields 3

dk = [2k + 1]q̂ = q̂2k+1 − q̂−(2k+1)

q̂ − q̂−1 where q̂ + q̂−1 =
√
N. (5.16)

As the fundamental representation u of S+
N satisfies u ≃ u (because all generators uij

are self-adjoint), we know that Rep S+
N is generated by the concrete monoidal W ∗-categroy

R0(S+
N ) whose objects are u⊗k for k ∈ N0, and whose morphism classes are the intertwiner

spaces Hom(u⊗k, u⊗l), analogous to the O+
N case covered in Section 5.1.1. Furthermore, the

morphisms in R0(S+
N ) are generated by the multiplication m ∈ Hom(u⊗2, u), the unit ν ∈

Hom(1, u) and the identity idB ∈ Hom(u, u) [Bra12]. In this case, Banica’s fundamental result
in [Ban02] tells us that we can identify this concrete W ∗-category R0(S+

N ) with the two-cabled
Temperley-Lieb monoidal W ∗-category TL2(δ) = {N, {TL2k,2l(δ)}k,l∈N} with loop parameter δ.
Here, we see TL2(δ) as a subcategory of Temperley-Lieb category TL(δ) := {N0, {TLk,l(δ)}k,l∈N0}
introduced in Section 5.1.1, which also showed that we can think of TL(δ) as NC2,lin[δ]. To
3The characteristic polynomial associated with this recurrence relation is p(λ) = λ2 − (d1 − 1)λ+ 1, whose roots are
q1,2 = d1−1

2 ± 1
2

√
(d1 − 1)2 − 4. As q1 − q2 = d1 − 1, and we can factor p(λ) = 0 as λ(λ − (d1 − 1)) = −1, we see

q1q2 = 1, whence q2 = q−1
1 . The general solution to the recurrence relation is then dk = aqk

1 + bq−k
1 . With d0 = 1,

we learn a+ b = 1, so let b = 1 − a. Filling in k = 1 yields aq1 + (1 − a)q−1
1 = d1. This yields a = (1 + q1)/(q1 − q−1

1 ),
and rewriting dk yields

dk = 1+q1
q1−q−1

1
qk

1 − 1+q−1
1

q1−q−1
1
q−k

1 = qk
1 −q−k

1
q1−q−1

1
+ qk+1

1 −q
−(k+1)
1

q1−q−1
1

= [k]q1 + [k + 1]q1 . (5.15)

Instead of using q1 that satisfies q1 + q−1
1 = d1 − 1 = N − 2, we can choose q̂ satisfying q̂+ q̂−1 =

√
N . Then, we see

q1 + q−1
1 = q̂2 + q̂−2 and q1 − q−1

1 =
√

(N − 2)2 − 4 = (q̂ + q̂−1)(q̂ − q̂−1) = q̂2 − q̂−2, thus q1 = q̂2. Rewriting the
previous expression for dk and using 1 + q̂2 = q̂(q̂−1 + q̂) and 1 + q̂−2 = q̂−1(q̂ + q̂−1) then yields dk = [2k + 1]q̂.
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be precise, Banica’s result tells us that we have an isomorphism of monoidal W ∗-categories,
using δ2 = N so δ =

√
N : [Ban99, Prop. 2.2]

π : R0(S+
N ) → TL2(δ) : π(u⊗k) = k and π(Hom(u⊗k, u⊗l)) = TL2k,2l(δ). (5.17)

And concretely, for the generators, we have the result [Bra12]:

π(ν) = δ−
1
2 ∩ ∈ TL0,2(δ) , π(m) = δ

1
2 | ∪ | ∈ TL4,2(δ) , π(idB) = || ∈ TL2,2(δ). (5.18)

The fact that we have to pick the loop parameter δ =
√
N follows from the more general

theory of quantum automorphism groups Gaut(B,ψ), where S+
N corresponds to a specific choice

of B and ψ. Although we will not define Gaut(B,ψ) precisely (as we do not need its generality
in this thesis), we give a small exposition that allows us to understand the relations imposed
on the multiplication m, unit ν and identity idB morphisms that generate the morphisms of
R0(Gaut(B,ψ)) as described in [Bra12] as we will need those relations in the following subsec-
tion to investigate the intertwiners of S+

N further.
The quantum permutation group S+

N can be considered a special case in the theory of
quantum automorphism groups Gaut(B,ψ) where B is a finite-dimensional C∗-algebra and ψ :
B → C a faithful state, originally investigated by Wang [Wan98]. The choice of the state
ψ has a deep influence on the structure of Gaut(B,ψ), which are generally not isomorphic
for different choices of ψ. Banica called ψ a “canonical trace” if it was the restriction to B
of the unique trace on B(B) where we embed B in B(B) via the left-regular representation
[Ban99, Prop. 2.1], which is not the same choice of ψ that Wang originally made. In [Ban02],
Banica further generalized this choice to any δ-form on B (to which we will return shortly),
and proved that for any δ-form ψ on B, as long as dimB ⩾ 4 (here, B is seen as a Hilbert space
with inner product induced by ψ), the finite-dimensional representation theory of Gaut(B,ψ)
can be described through Temperley-Lieb algebras. Using this technology, he proved that the
irreducible representations of these quantum automorphism groups can always be labeled
by N0, and their fusion rules always follow the fusion rules of SO(3).

Let us return to the δ-forms that we left undefined: we call a faithful state ψ a δ-form
for some δ > 0 if the multiplication map m : B ⊗ B → B satisfies mm∗ = δ2idB, where the
inner products on B and B ⊗ B are induced by ψ and ψ ⊗ ψ [Bra12, Def. 3.5]. In this
case, if we call ν : C → B the unit map, the relations ν∗ν = 1, m(m ⊗ idB) = m(idB ⊗ m),
m(idB ⊗ ν) = m(ν ⊗ idB) = idB and m∗m = (m ⊗ idB)(idB ⊗ m∗) also hold. The quantum
permutation group S+

N corresponds in this framework to the “simplest situation”, where we
pick B = C(XN ) with XN := {1, . . . , N}, and ψ the uniform probability measure on XN . This
means that ψ is a δ-form with δ2 = dimB = N [Bra12].

As Brannan notes, we can find an explicit model of the k-th irreducible representation vk of
S+
N through π, Banica’s isomorphism of monoidal W ∗-categories, by considering the Jones-

Wenzl projection p2k ∈ TL2k,2k(
√
N), and pulling it back through π to find the irreducible

representation vk = π−1(p2k)u⊗k and its representation space Hk = π−1(p2k)B⊗k [Bra12]. Note
that this approach is not yet explicit enough for our purposes, as we will need an explicit
expression for the projection operator π−1(p2k) ∈ Hom(u⊗k, u⊗k) that allows us to actually
analyze and implement the associated Clebsch-Gordan quantum channels. We can contrast
this with the O+

N -case, where we identify π−1(pk) with Tpk
, yielding an explicit operator in

Hom(u⊗k, u⊗k). In the S+
N -case, however, this does not work (yet): the underlying partition cat-

egory for S+
N should be NClin[N ] (in the sense that Hom(u⊗k, u⊗k) = {Tp : p ∈ NClin[N ](k, k)}),

not TL2(
√
N) which contains morphisms classes containing non-crossing pair partitions. We

therefore need to investigate how the categories TL2(
√
N) and NClin[N ] are related. The details

of this relation lie in a so-called fattening procedure, which is a bijection between NC(k, l) and
NC2(2k, 2l).
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5.2.1. The fattening procedure
The category of non-crossing partitions, NC, is intimately related to the category of non-
crossing pair partitions NC2, as we will show that a bijection exists between NC(k) and
NC2(2k). This bijection is sometimes referred to as a fattening procedure in literature [CS11,
BBC06]), presumably because it “doubles” the strands in the NC(k)-diagram. We follow the
exposition of [FN19], which uses [NS06] as a reference.

Note that a category of partitions is by definition invariant under the rotation of a partition
(see Definition 2.3.6), and so, applying the rotation p↷ precisely l times for a non-crossing
partition p ∈ NC(k, l), we get a partition q ∈ NC(k + l, 0). The fattening procedure as described
in the referenced literature seems to always take place on partitions of the form q ∈ NC(k+l, 0)
(which is denoted in the referenced literature by “NC(n)”, leading to a notational clash with
our short-hand NC(n) = NC(n, n) in the partition framework as described by Freslon and
Weber [FW16], thus caution is adviced.). In the general case of NC(k, l), where l ̸= 0, we
translate this “fattening procedure” by first rotating a partition to a partition in NC(k + l, 0),
then applying the procedure, and then rotating it back to NC2(2k, 2l). As the rotations are
invertible operations, and both NC and NC2 are categories of partitions and thus closed under
the rotation operation, this yields a bijection between NC(k, l) and NC2(2k, 2l).

Let us consider a non-crossing partition p ∈ NC(n, 0). We see that p can be naturally
identified with a permutation αp ∈ Sn, which are called geodesic permutations (or simply non-
crossing permutations), see [NS06], as follows: say p contains blocks V1, . . . , Vt. For each block
Vi, order its elements from small to large, put them in a tuple, and call this the cycle si. The
permutation αp is then αp = s1s2 . . . st. For example:

.
1

.
2

.
3

.
4

.
5

.
6

7→ αp = (1, 4, 5)(2, 3)(6) ∈ S6

Now that we have found the geodesic permutation αp associated with p, we “fatten” p to
get a partition p̃ ∈ NC2(2k, 0) by first doubling the index set from {1, . . . , k} to {1, 1, . . . , k, k} (so
we “inject” the i-indices between the original indices). Then, the pairs in p̃ are constructed
by the rule: connect i with j if and only if αp(i) = j. In our example, this means that 1 gets
connected to 4, 4 to 5, and 5 to 1 p̃. Visualized:

.
1

.
2

.
3

.
4

.
5

.
6

7→ .
1
.
1

.
2
.
2

.
3
.
3

.
4
.
4

.
5
.
5

.
6
.
6

Inversely, consider a non-crossing pair partition q ∈ NC2(2k, 0). Note that if we label the
indices {1, 1, . . . , k, k} again, any pair in q must be of the form {i, j} for some 1 ⩽ i, j ⩽ k: if
not, then an odd number of indices exists strictly between these two indices, which cannot
be paired to obtain a valid non-crossing pair partition. Hence, starting with the pair {1, i1},
we go to {i1, i2}, then to {i2, i3}, etcetera. This process terminates when we arrive back at
index 1. We have then found the cycle (1, i1, i2, . . . , it) for some t ∈ N0. Find all such disjoint
cycles in the indices of q, making sure to always start with the smallest index that is not yet
a member of any other cycle: they make up a geodesic permutation α, and we can translate
this back into a partition q′ ∈ NC(k) by letting each of the cycles be a block of q′, the inverse
of the assignment r 7→ αr for r ∈ NC(2k, 0).

We wish to determine the inverse image of the Temperley-Lieb generators ui ∈ NC2(2k, 2k)
under the fattening procedure such that we can understand the inverse image of the Jones-
Wenzl projection under this fattening procedure. As an aid, we translate the fattening proce-
dure to the general NC(k, l) (with l ̸= 0) case.
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Remark 5.2.1

A direct algorithm for the fattening procedure for NC(k, l) (with l ̸= 0) is as follows:

1. for a partition p ∈ NC(k, l), label the k upper indices by {1, . . . , k} and the l lower
indices by {1′, . . . , l′}.

2. For each block Vx = {i1, . . . , it, j′1, . . . , j′s}, sort the unprimed indices from small to
large, and concatenate to this the primed indices sorted from large to small (rotation
operators invert the order of the lower indices once they become upper indices,
hence we need to invert the sorting order), and call this tuple the cycle sx.

3. From this, make the permutation αp = s1 . . . su, which is an automorphism on the
set [k] ⊔ [l′], where [k] = {1, . . . , k} and [l′] = {1′, . . . , l′}.

4. “Fatten” the upper and lower indices to the sets {1, 1, . . . , k, k} and {1′, 1′ . . . , l′, l′}.
Note that the insertion of i′ in the lower indices happens to the left of i′, in contrast
to the case for the upper indices.

5. Create the partition q ∈ NC2(2k, 2l) whose blocks are precisely those pairs (x, y) with
x, y ∈ [k] ⊔ [l′] for which αp(x) = y (note that this includes cases in which precisely
one of the indices x and y is primed, whilst the other is unprimed).

Lemma 5.2.1: Inverse image of Temperley-Lieb generators

Under the fattening procedure, the inverse image of the Temperley-Lieb generators ui ∈
NC2(2k, 2k) for some k ∈ N and 1 ⩽ i ⩽ 2k − 1 is given by a(i+1)/2 if i is odd, and bi/2 if i is
even, where aj , bj ∈ NC(k) are given by

aj =
.

.
· · ·

.

.

.

.

.

.
· · ·

.

.
and bj =

.

.
· · ·

.

.

. .

. .

.

.
· · ·

.

.
, (5.19)

where the j’th upper and lower nodes in aj are singletons (so aj is defined for 1 ⩽ j ⩽ k),
and the j’th and (j + 1)’th upper and lower nodes of bj are connected in a block of size 4
(so bj is defined for 1 ⩽ j ⩽ k − 1).

Proof. This follows directly from applying the fattening procedure to aj, which results in u2j−1,
and applying the fattening procedure to bj, which results in u2j.

We see that the fattening procedure that we have sketched here is precisely the connec-
tion between the underlying category of partitions NC for the intertwiner spaces and the two-
cabled Temperley Lieb category TL2(

√
N). Let us make this precise. First, note that the func-

tor T• is faithful for N ⩾ 4 by Lemma 2.3.1, whence T• is a monoidal ∗-isomorphism between
NClin[N ] and R0(S+

N ) with objects u⊗k with k ∈ N0, and morphism classes Hom(u⊗k, u⊗l) for
k, l ∈ N0. Together the Banica’s monoidal ∗-isomorphism π, and the monoidal ∗-isomorphism
between the two-cabled Temperley-Lieb category TL2(

√
N) and the linear category of parti-

tions NC2
2,lin[

√
N ] := {N0, {NC2,lin[

√
N ](2k, 2l)}k,l∈N0}, we have:
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Theorem 5.2.3: The fattening isomorphism

The fattening procedure ψ : NC → NC2 coincides with the restriction of the fattening
isomorphism Ψ : NClin[N ] → NC2

2,lin[
√
N ] to NC (so, we forget the linear structure on

NClin[N ]), where Ψ is the monoidal ∗-isomorphism defined by the following commutative
diagram:

R0(S+
N )

NClin[N ] TL2(
√
N)

NC2
2,lin[

√
N ]

T• π

diagram presentationΨ

Here, R0(S+
N ) is the concrete monoidal W ∗-category with objects u⊗k for k ∈ N0 and

with the intertwiner spaces Hom(u⊗k, u⊗l) as morphisms.

Proof. We use δ :=
√
N . We claim that 1

δ ↑∈ NClin[N ](0, 1) is mapped to the unit ν ∈ Hom(1, u)
by T•. Clearly, NClin[N ](0, 1) = C ↑, and ν∗ν = 1 forces ν = 1

δT↑ = Tδ−1↑. Similarly, the inverse
image under T• of the multiplication m ∈ Hom(u⊗2, u) must be some linear combination of
diagrams in NClin[N ](2, 1). One can check that, if we scale the diagram h = . .. by δ, the
operator Tδh satisfies the relations from [Bra12, Remark 3.6], whence m = Tδh. Then, if we
compose π ◦ T• and see the result as diagrams in NC2

2,lin[
√
N ], we see that Ψ behaves as:

δ−1 ↑ 7→ ν = δ−1T↑ 7→ δ−1/2∩ ∈ TL0,2(δ) (5.20)

δ
. .. 7→ m = δT. .. 7→ δ1/2| ∪ | ∈ TL4,2(δ) (5.21)

| 7→ idB = T| 7→ || ∈ TL2,2(δ) (5.22)

But then, we see that Ψ coincides with the fattening procedure ψ on the generators, as long
as we forget about the scalar factors. As Ψ is a monoidal ∗-isomorphism, this fully describes
Ψ. From the definition of the fattening procedure, it readily follows that ψ fulfills ψ(p ⊗ q) =
ψ(p)⊗ψ(q), ψ(p∗) = ψ(p)∗ and ψ(p◦q) = ψ(p)◦ψ(q) (note that we are referring to the diagrammatic
composition here, without the scalar factors, because the domain and codomain of ψ do not
have linear structure). Thus, the theorem follows.

5.2.2. Jones-Wenzl projections for S+
N

Having established the fattening isomorphism and its relation to the intertwiner spaces
Hom(u⊗k, u⊗l), we have an alternative route to finding an expression for p̂k := π−1(p2k) ∈
Hom(u⊗k, u⊗k): when we consider Theorem 5.2.3, we see that pulling p2k back through π−1

is equivalent to T• ◦ Ψ−1, where Ψ is the fattening isomorphism NClin[N ] → NC2
2,lin[

√
N ]. As

long as we are careful with the scalar factors, we understand the fattening procedure well
enough to compute the inverse image of p2k, and we understand T• enough to yield a concrete
description of an operator in Hom(u⊗k, u⊗k). Note that the original Jones-Wenzl projections
p2k ∈ TL2k,2k(

√
N) do not have a direct formula, but are expressed in the Wenzl recursion rela-

tion (see Theorem 5.1.4), so a more modest goal is to find a recursion relation for p̂k. When we
contemplate this strategy, we see hints to the fact that this calculation will be quite involved:
we cannot use one recursion step by expressing p2k in terms of p2k−1, because p2k−1 does not



5.2. The intertwiner spaces and fusion rules of S+
N 49

live in TL2(
√
N) as 2k− 1 is odd, which means that we cannot use the fattening isomorphism.

We are therefore forced to take another recursion step, and express p2k in terms of p2k−2.

Lemma 5.2.2: Two-step recursion for Jones-Wenzl

The Wenzl-recursion formula reads:

pk = pk−1.
.

− [k−1]
[k]

pk−1.
.
.

pk−1.
.. (5.23)

Applying this recursion formula once more, for pk−1 in this expression, yields:

pk = pk−2.
.

− [k−2]
[k−1]

pk−2.
.
.

pk−2.
.. − [k−1]

[k]

pk−2.
.

pk−2.
. + [k−2]

[k]

pk−2.
.
.

pk−2.
..

pk−2.
.

+ [k−2]
[k]

pk−2.
.

pk−2.
.
.

pk−2.
..

− [k−2]2

[k][k−1]

pk−2.
.
.

pk−2.
..

pk−2.
.
.

pk−2.
..
(5.24)

Proof. This can be directly shown by filling in the Wenzl recursion formula for pk−1 in terms
of pk−2.

This lemma is the basis of:

Theorem 5.2.4: Wenzl recursion for S+
N

Let Ψ be the fattening isomorphism from Theorem 5.2.3. Let p̂k−1 := Ψ−1(p2k−2). Let u(2k)
i

denote the i’th generator of TL2k(
√
N), and let a(k)

j , b
(k)
j ∈ NC(k, k) be the inverse images

of those generators as described in Lemma 5.2.1. We claim that we have

p̂k = p̂k−1 ⊗ | − δ [2k−2]
[2k−1] (p̂k−1 ⊗ |)b(k)

k−1(p̂k−1 ⊗ |) − δ−1 [2k−1]
[2k] (p̂k−1 ⊗ |)a(k)

k

+ [2k−2]
[2k] a

(k)
k (p̂k−1 ⊗ |)b(k)

k−1(p̂k−1 ⊗ |) + [2k−2]
[2k] (p̂k−1 ⊗ |)b(k)

k−1(p̂k−1 ⊗ |)a(k)
k

− δ [2k−2]2

[2k][2k−1] (p̂k−1 ⊗ |)b(k)
k−1(p̂k−1 ⊗ |)a(k)

k b
(k)
k−1(p̂k−1 ⊗ |). (5.25)

Proof. We can directly calculate the images of the TL2k(
√
N )-generators under Ψ−1:

u
(2k)
2k−2 = |⊗2k−3 ⊗ ⊗ | 7→ δb

(k)
k−1 = δ|⊗k−2 ⊗ (5.26)

u
(2k)
2k−1 = |⊗2k−2 ⊗ 7→ δ−1a

(k)
k = δ−1|⊗k−1 ⊗ (5.27)

Let us call the six diagrams Ak up to and including Fk in Lemma 5.2.2, i.e. pk = Ak + · · · +Fk.
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We then see that the action of Ψ−1 on the diagrams A2k up to F2k is:

A2k = p2k−2 ⊗ |⊗2 7→ p̂k−1 ⊗ |.
B2k = − [2k−2]

[2k−1] (p2k−2 ⊗ |⊗2)u(2k)
2k−2(p2k−2 ⊗ |⊗2) 7→ − δ [2k−2]

[2k−1] (p̂k−1 ⊗ |)b(k)
k−1(p̂k−1 ⊗ |).

C2k = − [2k−1]
[2k] (p2k−2 ⊗ |⊗2)u(2k)

2k−1 7→ − δ−1 [2k−1]
[2k] (p̂k−1 ⊗ |)a(k)

k .

D2k = [2k−2]
[2k] u

(2k)
2k−1(p2k−2 ⊗ |⊗2)u(2k)

2k−2(p2k−2 ⊗ |⊗2) 7→ [2k−2]
[2k] a

(k)
k (p̂k−1 ⊗ |)b(k)

k−1(p̂k−1 ⊗ |).

E2k = [2k−2]
[2k] (p2k−2 ⊗ |⊗2)u(2k)

2k−2(p2k−2 ⊗ |⊗2)u(2k)
2k−1 7→ [2k−2]

[2k] (p̂k−1 ⊗ |)b(k)
k−1(p̂k−1 ⊗ |)a(k)

k ,

and lastly

F2k = − [2k−2]2

[2k][2k−1] (p2k−2 ⊗ |⊗2)u(2k)
2k−2(p2k−2 ⊗ |⊗2)u(2k)

2k−1u
(2k)
2k−2(p2k−2 ⊗ |⊗2)

7→ −δ [2k−2]2

[2k][2k−1] (p̂k−1 ⊗ |)b(k)
k−1(p̂k−1 ⊗ |)a(k)

k b
(k)
k−1(p̂k−1 ⊗ |). (5.28)

This can be shown by a direct calculation, using the fact that Ψ−1 respects compositions and
tensor products. Note that we have simplified the result somewhat by using p2

2k−2 = p2k−2,
such as in the definition of C2k. Please also note that u(2k)

2k−1 and p2k−2 ⊗ |⊗2 commute.
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Clebsch-Gordan Quantum

Channels
When the quantum analogs of classical capacity theories were discovered, such as the HSW-
theorem (Theorem 3.3.2), regularized information-theoretic quantities such as the regular-
ized Holevo information appeared, which are in general intractable. Hastings’ counterexample
to the additivity conjecture showed us that there exist quantum channels whose information-
theoretic quantities are truly different than the regularized ones. Thus the scientific endeavor
appeared to classify which classes of quantum channels are (strongly) additive, and which are
not – some of those results have been recorded in Section 3.5. As we can see, if we assume
our quantum channel has a nice property, such as entanglement-breaking, we can try to
leverage that property to figure out whether our channel is (strongly) additive, or to calculate
other information-theoretic properties.

Another fruitful idea is to consider channels that have an “underlying symmetry”, i.e.
channels that are somehow closely related to a mathematical object that we understand
well. A natural candidate is to take a mathematical group whose representation theory is
well-understood, and use the Hilbert space in which the linear operators of the group repre-
sentation live to define a quantum channel. This method dates at least back to 2005, where
Holevo proved the equivalence of MOE-additivity and χ-additivity for what he calls irreducibly
covariant quantum channels [Hol05]. For a group G, two representations πH, πK on Hilbert
spaces H,K, a quantum channel Φ : B(H) → B(K) is called G-covariant if Φ(πH(g)ρπH(g)∗) =
πK(g)Φ(ρ)πK(g)∗ for all ρ ∈ B(H) and for all g ∈ G. The channel Φ is called irreducibly covariant
if both representations are irreducible.

For specific groups, these quantum channels have been investigated: Al Nuwairan studied
the convex set of SU(2)-irreducibly covariant channels, in particular their extreme points, the
so-called EPOSIC (extreme points of SU(2)-irreducibly covariant) channels [Nuw14, Nuw13].
The starting point of this thesis was the paper by Brannan and Collins, in which they in-
troduce quantum channels that are G-covariant, where G is the compact quantum group
O+
N .

6.1. Channels with compact quantum group symmetry
The theory of compact quantum groups yields an interesting collection of quantum channels:
given a compact quantum group G, and three unitary irreducible corepresentations (u,Hu),
(v,Hv) and (w,Hw) such that w is a subrepresentation contained in the tensor product u⊗ v
on Hu ⊗ Hv. Then, we know an intertwining isometry αv,wu exists that embeds Hw in Hu ⊗ Hv.
By the Stinespring dilation theorem, we can then naturally consider the quantum channels
given by:

Φ(v),w
u : B(Hu) → B(Hw) : ρ 7→ TrHv

(αv,wu ρ(αv,wu )∗) ; (6.1)

Φv,(w)
u : B(Hu) → B(Hv) : ρ 7→ TrHw

(αv,wu ρ(αv,wu )∗) . (6.2)
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These channels are called Clebsch-Gordan quantum channels in [BCLY20], as the Clebsch-
Gordan coefficients are encoded in the isometries αv,wu in the case where one picks SU(2) as
the compact quantum group.

6.2. Diagrammatic calculus
We wish to broaden our use of string diagrams to depict partitions to include all linear opera-
tors, such that we could for example depict ρ 7→ αv,wu ρ(αv,wu )∗ diagrammatically if the isometry
αv,wu is (a linear combination of) a partition diagram. This technique is called string diagram
calculus in [BCLY20]. A linear transformation T ∈ B(H1,H2), where dim Hi = di, is depicted
graphically as

T..
· · ·

.
d2 strings

.. · · ·.
d1 strings

Notice that we choose the convention that the diagram is read top-to-bottom, which breaks
with the convention of [BCLY20]! We wish to display the composition T2T1 of two operators
T1 ∈ B(H1,H2) and T2 ∈ B(H2,H3) by stacking the diagram of T1 on top of T2 and connecting the
lower nodes of T1 with the upper nodes of T2, to be consistent with the diagram composition
introduced in the partition theory section (Section 2.3), and especially with the introduction
of the partition maps Tp in Definition 2.3.9. For example, the partition ∪ ∈ NC2(2, 0) yields
a partition map T∪ : H⊗2 → C (where H = CN ) that maps |i1i2⟩ → δi1,i2 , so if we look at the
diagram T∪ , the flow of the diagram must be from top to bottom. Again, the diagram of the
tensor product of T1 ⊗T2 is drawn by horizontal concatenation. We will use this diagrammatic
string calculus for linear transformations extensively in the following sections.

6.3. Quantum channels associated to O+
N

In the case of the compact quantum group O+
N , we know that its irreducible corepresentations

vk can be labelled by N0, where v0 := 1, v1 := u (the fundamental representation), and the
fusion rules vk⊗vl ≃ v|k−l|⊕v|k−l|+2 · · ·⊕vk+l, see Theorem 5.1.2. We know that we can identify
vk by pku⊗k, where pk is the k-th Jones-Wenzl projection. We label the corepresentation Hilbert
spaces by Hk, with dim Hk = [k + 1]q, see Section 5.1. The main results in this section are
due to [BC16b, BC20, BCLY20], but we prove a small uniqueness result that we could not
directly find in literature, using the partition theory tools from [FW16].

In order to explicitly describe the Clebsch-Gordan quantum channels associated with O+
N

(as described in Section 6.1), we will need to find explicit descriptions of the intertwining
isometries αl,mk that embed Hk in Hl⊗Hm. By studying the fusion rules, we see that vk ⊂ vl⊗vm
iff k = l+m− 2r for some 0 ⩽ r ⩽ min{l,m}, and in this case we call the triple (k, l,m) ∈ N3

0 ad-
missible. In Section 5.1, we developed theory that showed a bijection between the intertwiner
space HomO+

N
(k, l) and the non-crossing pair partitions NC2(k, l). By Lemma 4.3.1, we know

that the intertwiner space Hom(vk, vl ⊗ vm) is equal to (pl ⊗ pm)Hom(u⊗k, u⊗l ⊗ u⊗m)pk where
pk : H⊗k1 ↠ Hk is the canonical projection such that vk = pku

⊗k, and similarly for pl and pm.
From the fusion rules, we see that the multiplicity of vk in vl⊗vm is 1, so dim Hom(vk, vl⊗vm) =
1. Hence, we simply need to find any intertwiner T in Hom(u⊗k, u⊗(l+m)) = span{Tp : p ∈
NC2(k, l + m)} such that (pl ⊗ pm)Tpk ̸= 0. As the linear assignment Tp 7→ (pl ⊗ pm)Tppk
maps onto a one-dimensional space, we know there must exist a p ∈ NC2(k, l +m) such that
(pl ⊗ pm)Tppk ̸= 0, i.e. we do not need to consider linear combinations of Tp. We have the
following characterisation:
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Theorem 6.3.1

Given an admissible triple (k, l,m) ∈ N3
0, let k = l + m − 2r with 0 ⩽ r ⩽ min{l,m}.

Precisely one Tp exists for p ∈ NC2(k, l + m) such that (pl ⊗ pm)Tppk ̸= 0, and this p is
precisely |⊗(l−r) ⊗ ∩r ⊗ |⊗(m−r). Diagrammatically:

.

.

.

.
· · ·

.

.

. .. .. . .

.

.

.
· · ·

.

.k = l + m − 2r

l − r r r m − r

Proof. As p ∈ NC2(k, l + m), if the partition contains a pair X = {i, j} of upper nodes, it must
contain a pair Y = {i, i+1} of adjacent nodes (and the other pairs of non-adjacent upper nodes
are “nested caps” around such a pair of adjacent nodes). This means that p = 1

N pu
(k)
i where

u
(k)
i ∈ TLk(N) is the i’th generator, but the Jones-Wenzl projection pk kills ui, so Tppk = 0.

Hence, p contains k through-blocks (connecting upper and lower nodes). Similarly, if p
contains a pair of two of the first l lower nodes, it must contain a pair Z = {i, i + 1}, so
p = 1

N (u(l)
i ⊗ |⊗m)p, but pl ⊗ pk kills u

(l)
i ⊗ |⊗m, so (pl ⊗ pm)Tp = 0. A similar argument shows

that p cannot contains pairs of two of the last m lower nodes.
But then, as p is a pair partition, k of the l +m lower nodes are connected to the upper k

nodes, leaving (l+m−k)/2 = r pairs of lower nodes that need to be connected. By the previous
argument, none of the pairs can be exclusively in the first l or the last m nodes, so we must
connect pairs of elements of the form {i, j′}. By the fact that p is non-crossing, we again find
that these pairs must form “nested cups” around the pair {l, 1′}. This fully describes p and
shows that it is precisely of the form as stated in the theorem.

We denote the unique intertwiner that we found in Theorem 6.3.1 by Al,mk ∈ Hom(vk, vl ⊗
vm). We see that the unique partition map Tp with p ∈ NC2(k, l+m) such that (pl ⊗ pm)Tppk is
given by ι⊗l−r ⊗ T∩r ⊗ ι⊗m−r, where ι is the identity operator on H1 and where the intertwiner
T∩r ∈ Hom(1, u⊗2r) is given by the equation

T∩r (1) =
∑

i:[r]→[N ]

|i1 · · · ir−1ir⟩ |irir−1 · · · i1⟩ , (6.3)

where [r] := {1, . . . , r}, similarly for [N ], and the summation is over all functions i from the
finite set [r] to [N ], and {|j⟩}Nj=1 is the canonical orthonormal basis of H1 = CN . Graphically,
this is displayed as

Al,mk =

pk

pl pm

.

.

.

.
· · ·

.

.

.

.
· · ·

. .. ...
displayed as

pk

pl pm

.
.

.
.. .l − r

r

m − r (6.4)

The diagram on the right-hand side has been simplified (repeating strings between objects
have been removed), and the labels next to the string indicate how many repeated strands
are encoded in one string. In some contexts, the labels might be superfluous (and are left
out), as long as only one possible configuration is possible.

This object Al,mk is called a three-vertex in the Temperley-Lieb recoupling theory as de-
scribed in [KL94]. We can normalize Al,mk to an isometry αl,mk given by [BCLY20]

αl,mk =
(

τk(ιk)
τk((Al,m

k
)∗Al,m

k )

)1/2
Al,mk =

(
[k+1]q

θq(k,l,m)

)1/2
Al,mk , (6.5)
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where the theta-net θq(k, l,m) is given by

θq(k, l,m) := τk

(
(Al,mk )∗Al,mk

)
= [r]q ![l−r]q ![m−r]q ![k+r+1]q !

[l]q ![m]q ![k]q ! , (6.6)

where the quantum factorial is defined as [x]q! := [x]q[x− 1]q · · · [2]q[1]q for x ∈ N.
This leads us to diagrammatically display the action ρ 7→ αl,mk ρ(αl,mk )∗ as:

αl,mk ρ(αl,mk )∗ = [k+1]q

θq(k,l,m)

pk

pl pm

.
.

.
.. .l − r

r

m − r

..
ρ
..
pk

pl pm

.
.

.
.. .

l − r

r

m − r

(6.7)

This analysis allows us to build the Clebsch-Gordan quantum channels as discussed
in Section 6.1: the input space is B(Hk), and the output space is either B(Hl) or B(Hm),
depending on whether we trace out the first or the second subsystem, respectively. As Hk =
pkH⊗k1 , we see that pkρpk = ρ for ρ ∈ Hk, so we can simplify the diagram above slightly. Taking
the partial trace over Hl or Hm corresponds to connecting the left-most pl blocks with each
other, or connecting the right-most pm blocks with each other, respectively:

Φ(l),m
k (ρ) = [k+1]q

θq(k,l,m) ·

pl pm

.
.

.
.. .l − r

r

m − r

ρ

pl pm

.
.

.
.. .

l − r

r

m − r

.

.

l

..

..

, Φl,(m)
k (ρ) = [k+1]q

θq(k,l,m) ·

pl pm

.
.

.
.. .l − r

r

m − r

ρ

pl pm

.
.

.
.. .

l − r

r

m − r

.

.

m

..

..

(6.8)

6.4. Quantum channels associated to S+
N

In the case of the compact quantum group S+
N , we know its irreducible corepresentations vk

can be labelled by N0, with v0 := 1, and u = v0 ⊕v1 where u is the fundamental representation,
and we have the fusion rules vk ⊗ vl ≃ v|k−l| ⊕ v|k−l|+1 ⊕ · · · ⊕ vk+l, see Theorem 5.2.2. We
again label the Hilbert spaces of the corepresentations vk by Hk. To study the Clebsch-
Gordan channels as described in Section 6.1 for S+

N , we look at the intertwining isometries
αl,mk embedding Hk in Hl ⊗ Hm. With the fusion rules in mind, we call a tuple (k, l,m) ∈ N3

0
admissible if k = l+m−r for some 0 ⩽ r ⩽ 2 min{l,m}. The main results of this section can be
found in [Bra12], but we adapt the results to match the framework in which we described the
O+
N -channels. Analogous to the O+

N case covered in Theorem 6.3.1, we can state a uniqueness
result:

Theorem 6.4.1

Given an admissible triple (k, l,m) ∈ N3
0, let k = l + m − r with 0 ⩽ r ⩽ 2 min{l,m}.

Precisely one Tp exists for p ∈ NC(k, l + m) such that (p̂l ⊗ p̂m)Tpp̂k ̸= 0. Furthermore, if
we let r′ := r/2 if r is even, and r′ := (r + 1)/2 if r is odd, p is precisely:
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p =

l − r′ r′ r′ m − r′

k = l + m − r

.

.

.

.
· · ·
.

.

. .. .. . .

.

.

.
· · ·

.

.
if r is even, else p =

l − r′ r′ r′ m − r′

k = l + m − r

.

.

.

.
· · ·
.

.

. .. .. . .

.

.

.
· · ·

.

..
(6.9)

Proof. Firstly, note that p cannot contain any singleton with an upper index, say {i1}: in this
case, by Lemma 5.2.1, we know that p is equal to (a scalar multiple of) pai1 , but ai1 p̂k = 0.
Secondly, note that p cannot contain any block X that contains two adjacent upper indices,
say {i2, i2 + 1} ⊆ X. In this case, using the same Lemma 5.2.1, p is equal to pbi2 up to a
non-zero scalar, but bi2 p̂k = 0 as well.

Then, note that the only way for a non-crossing p to neither have an upper index singleton
nor any block with two adjacent upper indices, is for all k upper indices to be in separate
through-blocks. An analogous argument reveals that the leftmost l lower indices must all be
in different blocks, and the rightmost m lower indices as well.

The r additional indices we have at the bottom must be connected in caps containing
precisely one lower index i′1 with i′1 ⩽ l and one lower index i′2 with i′2 > l, or in {i′1, i′2, j} (of
the latter, only one is possible for a non-crossing partition!). They must be nested caps and
they must be symmetrically distributed around the center of the lower axis, as the partition is
non-crossing. All other lower indices must then be in a paired with precisely one upper index.
Hence, only one partition is possible, which is precisely the partition p that we drew.

Let us call the resulting intertwiner Âl,mk := (p̂l ⊗ p̂m)Tpp̂k ∈ Hom(vk, vl ⊗ vm). Note that as an
alternative proof to the previous theorem, one can apply the inverse of the fattening isomor-
phism as described in Section 5.2.1 to the partition found in the O+

N case in Theorem 6.3.1,
which is a valid procedure as the Jones-Wenzl projections p̂t (for t ∈ {k, l,m}) are also inverses
under the fattening isomorphism of the usual Jones-Wenzl projections pt ∈ TLt(δ). This ap-
proach also reveals the proper normalization constant to turn Âl,mk into an isometry. Let us
carefully examine the normalization constant.

We have previously seen in Theorem 5.2.3 that under the fattening isomorphism, a :=↑∈
NClin[N ](0, 1) is mapped to Ψ(a) := δ1/2∩ ∈ TL0,2(δ), b := . .. is mapped to Ψ(b) := δ−1/2| ∪ | ∈
TL4,2(δ), and | ∈ NClin[N ](1, 1) is mapped to || ∈ TL2,2(δ), where δ =

√
N .

In the case where r is even, we claim that the fattening isomorphism takes the intertwining
p = |⊗l−r′⊗∩r′⊗|⊗m−r′ to Ψ(p) = |⊗2l−r⊗∩r⊗|⊗2m−r, where r′ := r/2. Namely, a cap ∩ ∈ NClin[N ]
can be realized as b∗a, and is thus mapped to ∩2 ∈ TL0,4(δ). Similarly, ∩2 ∈ NClin[N ] can be
realized as (|⊗b∗⊗|)(|⊗a⊗|)b∗a and is thus mapped to ∩4 ∈ TL0,8(δ). In general, ∩t is mapped
to ∩2t for t ∈ N. In the case where r is odd, we define r′ := (r + 1)/2, and then a similar check
shows that Ψ(p) = δ−1/2 · |⊗2l−r ⊗ ∩r+1 ⊗ |⊗2m−r (note that, in this case, building p in terms of
a, b∗ and | always includes one more b∗ than a, which causes the scalar factor in Ψ(p) ).

We conclude that Ψ(Âl,mk ) = A2l,2m
2k in the case where r is even, and Ψ(Âl,mk ) = δ−1/2A2l,2m

2k
in the case where r is odd. Thus, we have

α̂l,mk =
(

[2k+1]q

θq(2k,2l,2m)

)1/2
Âl,mk if r is even, else α̂l,mk =

(
δ[2k+1]q

θq(2k,2l,2m)

)1/2
Âl,mk (6.10)

Akin to the O+
N -channels, we therefore find a set of Clebsch-Gordan quantum channels

for S+
N labelled by Φ̂(l),m

k and Φ̂l,(m)
k , given by:

Φ̂(l),m
k : B(Hk) → B(Hm) : ρ 7→ TrHl

(
α̂l,mk ρ(α̂l,mk )∗

)
(6.11)

Φ̂l,(m)
k : B(Hk) → B(Hl) : ρ 7→ TrHm

(
α̂l,mk ρ(α̂l,mk )∗

)
. (6.12)
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6.5. Minimum output entropy for O+
N and S+

N channels
Proposition 6.5.1: Highly entangled intertwiner for O+

N

[BC16b, Prop. 3.1] For N ⩾ 3, fix an O+
N -admissible triple (k, l,m) ∈ N3

0. For any unit
vectors ξ ∈ Hk, η ∈ Hl, ζ ∈ Hm, we have:

|⟨αl,mk (ξ) | η ⊗ ζ⟩| ⩽
(

[k+1]q

θq(k,l,m)

)1/2
. (6.13)

Proof. Note that Ht := ptH⊗t1 for t ∈ N, and by the absorption property of the Jones-Wenzl
projections we have the useful identity:

Hm = pmH⊗m1 = pm(ιr ⊗ pm−r)H⊗m1 = pm(H⊗r1 ⊗ Hm−r). (6.14)

Thus, we can see Hm as a subspace of H⊗r1 ⊗ Hm−r, and similarly Hl as a subspace of Hl−r ⊗
H⊗r, which allows us to express η =

∑
i:[r]→[N ] ηi ⊗ ei and ζ =

∑
i:[r]→[N ] ei ⊗ ζi for vectors

ηi ∈ Hl−r, ζi ∈ Hm−r, and where we let {ei := |i1 . . . ir⟩}i:[r]→[N ] be the canonical orthonormal
basis for H⊗r1 . If we apply the adjoint of Al,mk to η ⊗ ζ, we can use the fact that the adjoint of
the intertwiner T∩r ∈ Hom(1, u⊗2r) is given by

T ∗∩r = T∪r =
∑

i:[r]→[N ]

⟨i1 · · · ir| ⟨ir · · · i1| . (6.15)

Thus, we see:

(Al,mk )∗(η ⊗ ζ) = pk(ιl−r ⊗ T∪r ⊗ ιm−r)(pl ⊗ pm)(η ⊗ ζ) (6.16)

= pk(ιl−r ⊗ T∪r ⊗ ιm−r)
∑

i,j:[r]→[N ]

(ηi ⊗ ei ⊗ ej ⊗ ζj) (6.17)

= pk
∑

i,j:[r]→[N ]

T∪r (ei ⊗ ej)ηi ⊗ ζj = pk
∑

i:[r]→[N ]

ηi ⊗ ζǐ, (6.18)

where ǐ : [r] → [N ] has ǐt := iN−t+1. Using the fact that ∥∑i ai ⊗ bi∥2 ⩽ (
∑
i ∥ai∥2)(

∑
i ∥bi∥2) for

arbitrary vectors ai and bi
1 , we see

|⟨αl,mk ξ, η ⊗ ζ⟩| ⩽ ∥ξ∥ · ∥(αl,mk )∗(η ⊗ ζ)∥ ⩽
(

[k+1]q

θq(k,l,m)

)1/2
(
∑
i

∥ηi∥2)1/2(
∑
i

∥ζǐ∥2)1/2. (6.19)

Finally, we use the fact that
∑
i ∥ηi∥2 = ∥η∥2 = 1 and similarly for ζ.

Proposition 6.5.2: Highly entangled intertwiner for S+
N

For N ⩾ 4, fix an S+
N -admissible triple (k, l,m) ∈ N3

0. For any unit vectors ξ ∈ Hk, η ∈ Hl

and ζ ∈ Hm, we have:

|⟨α̂l,mk (ξ)|η ⊗ ζ⟩| ⩽


(

[2k+1]q

θq(2k,2l,2m)

)1/2
r := l +m− k is even(

[2k+1]q

θq(2k,2l,2m)

)1/2
·N1/4 r := l +m− k is odd

. (6.20)

Proof. In the case r := l + m − k is even, this follows directly from Proposition 6.5.1, where
we can use the same proof, mutatis mutandis. In the case r is odd, however, we need to be
careful: the intertwiner Tp ∈ Hom(u⊗k, u⊗l+m) is now given by Tp = ιl−r′ ⊗ Tq ⊗ ιm−r′ , where
1Expand ∥

∑
i
ai ⊗bi∥2 =

∑
ij

⟨ai ⊗bi, aj ⊗bj⟩ =
∑

ij
⟨ai, aj⟩⟨bi, bj⟩, let γij := ⟨ai, aj⟩ and δij := ⟨bi, bj⟩ be components

of vectors γ and δ, apply Cauchy-Schwartz to conclude ⟨γ, δ⟩ ⩽ ∥γ∥ · ∥δ∥, again use Cauchy-Schwartz on ∥γ∥ to
conclude ∥γ∥2 =

∑
ij

|⟨ai, aj⟩|2 ⩽
∑

ij
∥ai∥2∥aj∥2 = (

∑
i

∥ai∥2)2 and similarly for ∥δ∥2. Combining these results
yields the claim.
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r′ = (r − 1)/2 and q is the diagram in NC(1, 2r′) given by: q := . .. .. , where the double lines
indicate r′ − 1 nested caps, see Theorem 6.4.1. We repeat the first part of Proposition 6.5.1:
write Hl = p̂l(Hl−r′ ⊗ H⊗r′) and Hm = p̂m(H⊗r′ ⊗ Hm−r′) (note that we use H := CN here,
whilst H1 := p̂1H ≃ CN−1, in contrast to the O+

N -case where p1 is the identity!). Then, express
η =

∑
i:[r′]→[N ] ηi ⊗ ei and ζ =

∑
i:[r′]→[N ] ei ⊗ ζi, where ηi ∈ Hl−r′ , ζi ∈ Hm−r′ , and where we let

{ei := |i1 . . . ir′⟩}i:[r′]→[N ] be the canonical orthonormal basis for H⊗r′ . We again see

(Âl,mk )∗(η ⊗ ζ) = p̂k
∑

i,j:[r′]→[N ]

ηi ⊗ T ∗q (ei ⊗ ej) ⊗ ζj , (6.21)

but this time we have T ∗q (ei ⊗ ej) = δǐ,j |i1⟩ , where δǐ,j is zero unless j is equal to ǐ. Thus,

(Âl,mk )∗(η ⊗ ζ) = p̂k
∑

i:[r′]→[N ]

ηi ⊗ |i1⟩ ⊗ ζǐ. (6.22)

We still use the inequality ∥∑i ai⊗bi∥2 ⩽ (
∑
i ∥ai∥2)(

∑
i ∥bi∥2), but let ai := ηi⊗|i1⟩ in this case,

and then note that∑
i

∥ai∥2 =
∑
i

∥ηi ⊗ |i1⟩ ∥2 =
∑
i

∥ηi∥2 · ∥ |i1⟩ ∥2 =
∑
i

∥ηi∥2, (6.23)

so the argument still holds. Using the correct normalization to pass from Âl,mk to α̂l,mk yields
the proposition.

Theorem 6.5.1: Minimum output entropy for O+
N

[BC16b, Cor. 4.2] For N ⩾ 3, fix an O+
N -admissible triple (k, l,m) ∈ N3

0. We have:

Hmin(Φ(l),m
k ) = Hmin(Φl,(m)

k ) ⩾ log θq(k,l,m)
[k+1]q

. (6.24)

Proof. We know that the value Hmin(Φ(l),m
k ) is achieved on a pure input state, call this state

ρ = |ψ⟩⟨ψ| ∈ B(Hk). This input state is first mapped to the pure state |ϕ⟩ := αl,mk |ψ⟩ ∈ B(Hl⊗Hm)
before the partial trace is applied. We make a Schmidt decomposition of |ϕ⟩ in the form
|ϕ⟩ =

∑
i

√
λi |ηi⟩ ⊗ |ζi⟩, where λi ⩾ 0 with

∑
i λi = 1, {ηi} is an orthonormal system in Hl and

{ζi} is an orthonormal system in Hm. By Proposition 6.5.1 applied to ξ := |ϕ⟩, η := |ηi⟩ and
ζ := |ζi⟩, we see that λi ⩽ [k + 1]q/θq(k, l,m). But then, applying the partial trace over Hl

yields Φ(l),m
k (ρ) =

∑
i λi |ηi⟩. Using the fact that −∑i pi log pi ⩾ − log maxi pi for any discrete

probability distribution {pi}, we see

Hmin(Φ(l),m
k ) = H(Φ(l),m

k (ρ)) = −
∑
i

λi log λi ⩾ − log max
i
λi ⩾ − log [k+1]q

θq(k,l,m) = log θq(k,l,m)
[k+1]q

. (6.25)

Theorem 6.5.2: Minimum output entropy for S+
N

For N ⩾ 4, fix an S+
N -admissible triple (k, l,m) ∈ N3

0. We have:

Hmin(Φ̂(l),m
k ) = Hmin(Φ̂l,(m)

k ) ⩾
{

log θq(2k,2l,2m)
[2k+1]q

r := l +m− k is even
log θq(2k,2l,2m)

[2k+1]q
− 1

2 log(N) r := l +m− k is odd.
(6.26)

Proof. The proof is entirely analogous to the proof of Theorem 6.5.1.
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Remark 6.5.1. Note that in the limit of N → ∞, the quantum parameter q for O+
N defined by

q+q−1 = N and q ⩽ 1 approaches 1/N , and in that case the quantum integers [x+1]q approach
Nx for a fixed x ∈ N. In that case, the quantum factorial [x+1]q! approaches Nx(x+1)/2, and an
algebraic manipulation of the expression for the θ-net then shows that θq(k, l,m) approaches
N (k+l+m)/2. Together with the fact that [k + 1]q approaches Nk, this shows that [k+1]q

θq(k,l,m) is
approximately N (k−l−m)/2 = N−r where k = l + m − 2r. In more precise terms: according to
[BCLY20, Lem. 4.2], for any O+

N -admissible (k, l,m) ∈ N3
0, Nr[k + 1]q/θq(k, l,m) = 1 + O(N−2).

This show thatHmin(Φ(l),m
k ) grows at least as fast as r logN , which has the sameN-dependency

as the entropy of the maximally mixed output state, which must be a strict upper bound: this
state has entropy log[m+ 1]q ≈ m logN , or if we trace out Hm, it has entropy log[l+ 1]q ≈ l logN
(remember that 0 ⩽ r ⩽ min{l,m}).

Similarly, the quantum parameter q̂ for S+
N given by q̂ + q̂−1 =

√
N and q̂ ⩽ 1 approaches

1/
√
N in the limit N → ∞, and [2x + 1]q̂ approaches Nx for a fixed x ∈ N0. In this case, we

have [2k+1]q̂

θq̂(2k,2l,2m) ≈ N−r/2 with r defined by k = l + m − r. Thus, Hmin(Φ̂(l),m
k ) grows at least as

fast as r
2 logN in the case where r is even (here, 0 ⩽ r ⩽ 2 min{l,m}), and it grows at least as

fast as r−1
2 logN in the case where r is odd.

Remark 6.5.2. The previous theorems show a direct link between the quantum channels
associated to O+

N and S+
N : in the case where N = M2 for some M ∈ N with M ⩾ 3, and we pick

an S+
N -admissible triple (k, l,m) ∈ N3

0, the lower bound for the MOE of the S+
N -channel Φ̂(l),m

k

is identical to the lower bound for the MOE of the O+
M -channel Φ(2l),2m

2k , as long as r defined
by k = l +m− r is even. This is a direct consequence of the fattening isomorphism, but it is
nonetheless surprising that the lower bound for the MOE shifts by a factor − log(M) in the
case where r is odd.

Theorem 6.5.3

[BC16b, Thm. 3.2] For N ⩾ 3, fix a highest-weight O+
N -admissible triple (k = l+m, l,m) ∈

N3
0 (where l,m ∈ N0). We have Hmin(Φ(l),m

l+m ) = Hmin(Φl,(m)
l+m ) = 0.

Proof. Let |ηl⟩ = |0101 · · ·⟩ ∈ H⊗l1 . We claim |ηl⟩ ∈ Hl, i.e. pl |ηl⟩ = |ηl⟩. Consider any diagram
p in NC2(l, l) except the identity: this diagram must have at least one cup and cap. Such
a cup connects an odd and an even index, otherwise it encloses an odd number of points
which cannot be paired. But then Tp |ηl⟩ = 0 as this cup connects a |0⟩ with a |1⟩. Hence, by
Lemma 5.1.2, pl = 1l + fl with fl ∈ Il = ⟨u1, · · · , ul−1⟩, we see pl |ηl⟩ = |ηl⟩.

Similarly, we let |ηm⟩ = |0101 · · ·⟩ ∈ H⊗m1 if the pattern in |ηl⟩ ends with a 1, otherwise
|ηm⟩ = |1010 · · ·⟩ ∈ H⊗m1 . Then, by a similar argument as before, |ηm⟩ ∈ Hm, and additionally
|ηl⟩⊗|ηm⟩ = |0101 · · ·⟩ ∈ H⊗l+m1 also has |ηl⟩⊗|ηm⟩ ∈ Hl+m. But then, as αl,ml+m = (pl⊗pm)pl+m by
Theorem 6.3.1, and by the absorption property αl,ml+m = pl+m (see Lemma 5.1.3), we see that
αl,ml+m |ηl⟩ ⊗ |ηm⟩ = |ηl⟩ ⊗ |ηm⟩. But this is an elementary tensor product, so taking the partial
trace over either the first or the second subsystem yields a pure state, in turn we see that
Hmin(Φ(l),m

l+m ) = Hmin(Φl,(m)
l+m ) = 0.

Theorem 6.5.4

For N ⩾ 4, fix a highest-weight S+
N -admissible triple (k = l+m, l,m) ∈ N3

0 (with l,m ∈ N0).
We have Hmin(Φ̂(l),m

l+m ) = Hmin(Φ̂l,(m)
l+m ) = 0.

Proof. Let
|ηl⟩ = 1

2l/2 (|0⟩ − |1⟩) ⊗ (|2⟩ − |3⟩) ⊗ (|0⟩ − |1⟩) ⊗ · · · ∈ H⊗l. (6.27)
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We claim that p̂l |ηl⟩ = |ηl⟩. Through the inverse fattening procedure, the Temperley-Lieb
generators ui are transformed into aj and bj, see Lemma 5.2.1, for the reader’s convenience:

aj =
.

.
· · ·

.

.

.

.

.

.
· · ·

.

.
and bj =

.

.
· · ·

.

.

. .

. .

.

.
· · ·

.

.
. (6.28)

Clearly, Tbj
|ηl⟩ = 0 for all 1 ⩽ j ⩽ l− 1, as bj connects two adjacent nodes whilst two adjacent

tensor legs in |ηl⟩ never contain the same basis elements. Furthermore, Taj |ηl⟩ = 0 for all
1 ⩽ j ⩽ l as each individual tensor leg contains an alternating vector. As p̂l = 1l + f̂l, where
f̂l ∈ Îl = ⟨a1, . . . , al, b1, . . . , bl−1⟩ ⊆ NC(l, l) by the fattening procedure, and we just showed that
|ηl⟩ is in the kernel of all generators except the identity, we see that p̂l |ηl⟩ = |ηl⟩.

Analogously, let

|ηm⟩ = 1
2m/2 (|0⟩ − |1⟩) ⊗ (|2⟩ − |3⟩) ⊗ (|0⟩ − |1⟩) ⊗ · · · ∈ H⊗m (6.29)

if the last tensor leg in |ηl⟩ is |2⟩ − |3⟩, otherwise we start |ηm⟩ with |2⟩ − |3⟩ in the first tensor
leg, and |0⟩ − |1⟩ in the second, etcetera. Mutatis mutandis, we see p̂m |ηm⟩ = |ηm⟩.

Lastly, we claim that p̂l+m (|ηl⟩ ⊗ |ηm⟩) = |ηl⟩ ⊗ |ηm⟩. All generators aj and all but one bj in
NC(l + m, l + m) are obtained from generators ai and bi of NC(l, l) or NC(m,m) by tensoring
on |⊗m from the right, or |⊗l from the left, respectively. It is straightforward to see that these
generators still kill |ηl⟩ ⊗ |ηm⟩. We are left with one truly new generator: bl, connecting the
last tensor leg from |ηl⟩ with the first tensor leg of |ηm⟩. However, we precisely chose those
such that they do not contain the same basis elements, so we see Tbl

(|ηl⟩ ⊗ |ηm⟩) = 0 as well,
and we conclude by a similar argument as before that p̂l+m(|ηl⟩ ⊗ |ηm⟩) = |ηl⟩ ⊗ |ηm⟩. But then,
again using α̂l,ml+m = p̂l+m, the input state |ηl⟩ ⊗ |ηm⟩ is a fixed point of α̂l,ml+m, whence tracing
out either Ĥl or Ĥm yields a pure state, yielding the theorem.



7
Lowest Weight Clebsch-Gordan

Quantum Channels

Having established estimates for the minimum output entropy of the O+
N -channels and S+

N -
channels in the previous chapter, we wish to investigate their sharpness. Brannan and
Collins conjectured in [BC16b, Remark 7] that the lower bound for the MOE of the O+

N -
channel was asymptotically sharp for N → ∞, and indeed in [BCLY20, Thm 4.3] they proved
together with Lee and Youn that for any O+

N -admissible triple (k, l,m) ∈ N3
0 with k = l+m− 2r:

r logN − C(N) ⩽ Hmin(Φ(l),m
k ) = Hmin(Φl,(m)

k ) ⩽ r logN +D(N), (7.1)

with C(N), D(N) → 0 as N → ∞. In this chapter, we will analytically investigate the “lowest-
weight“ channels, for which we pick k = |l − m|, where we will in particular focus on the
case of k = 1 (thus, l = m ± 1), where we will show that the minimum output entropy can
be analytically calculated. This chapter also provides the necessary tools for the numerical
approximations to the minimum output entropy for small N that we will describe in following
chapters.

7.1. Quantum channels characterized by a projection
Let us commence with a small lemma we will need in the following sections – in the “lowest
weight“ case k = |l−m| (where (k, l,m) is an admissible triple), we can rewrite the description of
the channels Φ(l),m

k and Φ̂(l),m
k to an easier form, and this lemma shows us that this description

is a valid channel description (i.e., they are completely positive and trace-preserving).

Lemma 7.1.1

Given the finite-dimensional Hilbert spaces H1, K and H2 = H1 ⊗ K, and given a linear
map N : B(H1) → B(H2) of the form

N (ρ) = p (ρ⊗ ιK) p, (7.2)

where ρ ∈ B(H1), ιK is the identity map on K, and p ∈ B(H2) is an orthogonal projection.
The following are equivalent:

1. It is possible to normalize N to make it trace-preserving on a restricted domain
B(H′), where H′ ⊆ H1 is a non-trivial subspace;

2. There exists a non-trivial subspace H′ ⊆ H1 such that the partial trace of p, denoted
TrK(p), restricted to this subspace H′, can be expressed as TrK(p)|H′ = λ1H′ where
λ ∈ C and 1H′ is the identity on H′.

In this case, the normalization of N is 1/λ.

60
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Proof. By cyclicity of the trace and the fact that p is an orthogonal projection, we consider
Tr(N (ρ)) = Tr(p(ρ ⊗ ιK)). From this form, it becomes apparent that Tr(N (ρ)) = Tr (TrK(p)ρ) .
Hence, if we assume that N can be normalized by 1/λ on a subspace H′ ⊆ H1 such that it
is a quantum channel, we must have TrK(p)|H′ = λ1H′ . Conversely, if TrK(p)|H′ = λ1H′ for
some subspace H′ ⊆ H1 and λ > 0, we can restrict ourselves to ρ ∈ B(H′), and we see that
λ−1N : B(H′) → B(H2) is trace-preserving, that is, λ−1N is a quantum channel.

Remark 7.1.1. Note that, if the normalization constant λ in the previous lemma is strictly
positive, the map λ−1N is a quantum channel – complete positivity follows directly from the
description N (ρ) = p(ρ⊗ 1K)p.

7.2. Description of the lowest weight quantum channels
In the case of O+

N , a triplet of indices (k, l,m) ∈ N3
0 is admissible if there exists an r ∈ N0 with

0 ⩽ r ⩽ min{l,m} such that k = l + m − 2r, corresponding with the fusion rules that tell us
that vk ⊂ vl ⊗ vm precisely when k = l+m− 2r. We can consider the subrepresentation v|l−m|,
which we will call the “lowest weight representation”. In the S+

N case, k = |l − m| is also the
lowest-weight representation. Equivalently, we can parametrize the quantum channels by the
admissible triplets (k, l = k + m,m) for free parameters k,m ∈ N0. In this case, the quantum
channels Φk+m,(m)

k and Φ(k+m),m
k (and their S+

N counterparts Φ̂k+m,(m)
k and Φ̂(k+m),m

k ) allow for
a much easier description than the Stinespring representation, by manipulating their dia-
grammatic representations and using the absorption property of the Jones-Wenzl projection.
Specifically, let us first consider the intertwiners Ak+m,m

k and Âk+m,m
k in Hom(vk, vk+m ⊗ vm):

using Theorem 6.3.1, we find:

Ak+m,m
k =

pk

pk+m pm

.
. . .k m ; Âk+m,m

k =
p̂k

p̂k+m p̂m

.
. . .k m (7.3)

Hence, the action ρ 7→ Ak+m,m
k ρ(Ak+m,m

k )∗ is:

Ak+m,m
k ρ(Ak+m,m

k )∗ =

pk

pk+m pm

.
. . .k m

..
ρ
..
pk

pk+m pm

.
. . .

k m

; Âk+m,m
k ρ(Âk+m,m

k )∗ =

p̂k

p̂k+m p̂m

.
. . .k m

..
ρ
..
p̂k

p̂k+m p̂m

.
. . .

k m

(7.4)

Intuitively, the outer pm’s should not contribute anything, as they are fully connected to
pk+m, and the projections pk+m are dominated by 1k ⊗ pm. Indeed, we can state a modified
absorption property, for which we did not find a direct reference, but it is for example implicitly
used by Brannan in [BC20, Section 5] to compute Choi matrices of O+

N -quantum channels:

Lemma 7.2.1

The modified absorption property of the Jones-Wenzl projection holds:

(pk+m ⊗ pm)(ιk ⊗ T∩m) = (pk+m ⊗ ιm)(ιk ⊗ T∩m), (7.5)

or graphically:
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pk+m.
k + m

.k . .
pm.

m

= pk+m.
k + m

.k .
m

The exact same relations also hold for the generalized Jones-Wenzl projections p̂k and
p̂k+m.

To facilitate this proof, it is beneficial to describe some of the “capping” of diagrams that we
see here in more detail. From this discussion in the next subsection, the proof of the lemma
will then directly follow.

7.2.1. Capforms and diagram manipulations
The following section seems related to Morrison’s work in [Mor17, Sect. 5], where he ma-
nipulates diagram by “folding them down to the right”, similar to the expressions (ιk ⊗ p)T∩m

below. This is also discussed in [Kau01, Appendix, Sect. III], where the structure of folding a
diagram is called a “capform”. Note that such capforms actually also fit into the framework
of partition theory as described by Freslon and Weber in [FW16]: a capform (ιk ⊗ p)T∩m or
(p ⊗ ιk)T∩m is obtained by performing the rotation maps ↷ and ↶ precisely k times on the
partition p, for their definition see Definition 2.3.6.

Definition 7.2.1

Given a partition p ∈ P(k, l) for some k, l ∈ N0 (note that we allow both crossing and non-
pair partitions). We define its horizontal flip p↔ as follows. Say the partition p consists
of blocks Vi, and has upper nodes (1, . . . , k) and lower nodes (1′, . . . , l′). Then, p↔ has the
same blocks Vi, but we switch its upper nodes around to (k, . . . , 1) and its lower nodes
to (l′, . . . , 1′). For example:

. . .

. . .

.

.
7→

.

.

.

.. .

. .

Remark 7.2.1. Note that we can equivalently define p↔ = xkpxl, where we will call xt for
t ∈ N the “reflection partition” in P(t, t) that only contain through-blocks connecting the i-th
upper node to the (t− i+ 1)’th lower node. This is a useful identity as this allows us to define
a↔ := Txl

aTxk
for any operator a ∈ B(H⊗k1 ,H⊗l1 ). Also note that (pq)↔ = p↔q↔, which follows

from the fact that x2
k = ιk.

Remark 7.2.2. A moment’s reflection will convince the reader that for any p ∈ P(k, l), (p∗)↔ =
(p↔)∗, as this corresponds to the fact that the reflections along the canonical axes in two
dimensions commute. We will therefore freely write p∗↔.

Lemma 7.2.2: Pulling an operator through a cap

For any operator a ∈ B(H⊗k1 ,H⊗l1 ) for some k, l ∈ N, we have

(ιk ⊗ a)T∩k = (at↔ ⊗ ιk)T∩k , (7.6)

where at↔ := Txk
atTxl

, where xi are the reflection partitions from Remark 7.2.1. Dia-
grammatically:
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a

.
.
.k

l

= at
↔.
.

k l

Proof. Writing out both sides yields:

(ιk ⊗ a)T∩k =
∑

i

|i1 · · · ik⟩ ⊗ (a |ik · · · i1⟩) , (7.7)

(at↔ ⊗ ιk)T∩k =
∑

i

(
at↔ |i1 · · · il⟩

)
⊗ |il · · · i1⟩ . (7.8)

Taking the inner product with the basis element ⟨j1, . . . , jk, j
′
1, . . . , j

′
l | then yields the expres-

sions ⟨j′1, . . . , j′l | a |jk, . . . , j1⟩ and ⟨j1, . . . , jk|Txk
atTxl

|j′l , . . . , j′1⟩, respectively, which are equal to
each other.

Note that the previous lemma holds in particular for partitions, so we can prove the useful
corollary:

Lemma 7.2.3

The Jones-Wenzl projection pk ∈ TLk(d) satisfies ptk = pk and (pk)↔ = pk, hence we can
“pull it through” a cap or cup:

pk

.
.
.k
k

= pk.
.

k k

The generalized version p̂k ∈ NClin[d] satisfies the same relation.

Proof. Note that p∗k = pk by the fact that pk is an orthogonal projection, and ptk = pk follows
from the Wenzl recursion formula, which shows that pk contains only real coefficients. So,
we are left with proving (pk)↔ = pk. Note first that (pk)↔ itself is again a projection in TLk(d),
which follows from Remark 7.2.1 and Remark 7.2.2, as

(pk)↔(pk)↔ = (pkpk)↔ = (pk)↔ , (pk)t↔ = (ptk)↔ = (pk)↔. (7.9)

Now, our strategy is to show that (pk)↔ui = 0 for all generators ui of TLk(d), as this is the
unique property of the Jones-Wenzl projection, and thus implies (pk)↔ = pk. A quick look at
the diagram of ui shows that (ui)↔ = uk−i. But then, (pk)↔ui = (pk)↔(uk−i)↔ = (pkuk−i)↔ = 0.
Hence, (pk)↔ ∈ TLk(d) is a projection that satisfies the unique relations of the Jones-Wenzl
projection, so the lemma follows.

Proof of Lemma 7.2.1. Pull pm through the cap to the right by using Lemma 7.2.3, then we
get

(pk+m ⊗ ιm)(ιk ⊗ pm ⊗ ιm)(ιk ⊗ T∩m), (7.10)

but then we can use the usual adsorption property pk+m(ιk ⊗ pm) = pk+m, and the lemma
follows.

7.2.2. Lowest weight channels: partial trace over Hm

We consider the quantum channels Φk+m,(m)
k . By the absorption property of the Jones-Wenzl

projection, the pm’s are absorbed by pk+m, so we have, up to normalization:
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pk+m.
k + m

.
m

.

.
k

ρ
.
.

k

pk+m

.k + m

.

That is, up to normalization, we see that the quantum channel is described by the action

ρ 7→ pk+m (ρ⊗ 1m) pk+m, (7.11)

where 1m is the identity on H⊗m1 . It is not a priori clear that this description is normalizable
to make the map trace-preserving (and for general projections, it truly is not normalizable,
as we might be able to find a density matrix ρ such that ρ⊗ 1m is in the kernel of pk+m), but
according to Lemma 7.1.1, this mapping can be normalized iff the partial trace of pk+m over
Hm yields a positive scalar multiple of an orthogonal projection. Furthermore, as we already
know that the domain of Φk+m,(m)

k is B(Hk), this partial trace would have to be a positive
scalar multiple of the Jones-Wenzl projection pk. Luckily, we have:

Lemma 7.2.4

For any k,m ∈ N0, the partial trace over Hm of the Jones-Wenzl projection pk+m ∈ B(Hk⊗
Hm) yields a positive scalar multiple λ of the Jones-Wenzl projection pk, and this scalar
is:

λ = [k +m+ 1]q
[k + 1]q

. (7.12)

Proof. Note that the diagram of the partial trace of pk+m over Hm lives in TLk(d), so it must
be expressible as q := TrHm(pk+m) = λ1k + fk, where fk is an element of the two-sided ideal Ik
generated by the generators {u1, . . . , uk−1} ⊆ TLk(d), and λ ∈ C. However, if we compute pkq,
we can see from the diagrams:

pk+m.
k

.

.
m

..
pk

.k

=
pk+m.

k
.
.

m

..
pk

.k

Now, from the absorption property (pk ⊗ ι⊗m)pk+m = pk+m, see Lemma 5.1.3, it is clear
that pkq = q. However, then:

q = pkq = pk(λ1k + fk) = λpk + 0, (7.13)

so indeed TrHm
(pk+m) = λpk. We are left with calculating the value of λ.

By Lemma 7.1.1, ρ 7→ λ−1pk+m(ρ ⊗ 1m)pk+m is trace-preserving on the domain B(Hk).
Hence, if we input ρ = pk, we find:

pk 7→ λ−1pk+m(pk ⊗ 1m)pk+m = λ−1pk+m, (7.14)

which again follows from the absorption property of pk+m, see Lemma 5.1.3. But then, we
compute:

[k+1]q = dim Hk = dim(pkH⊗k1 ) = Tr(pk) = λ−1Tr(pk+m) = λ−1 dim Hk+m = λ−1[k+m+1]q, (7.15)

whence λ = [k +m+ 1]q/[k + 1]q.
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From the previous lemma and Lemma 7.1.1, we directly recover:

Lemma 7.2.5

We have

Φk+m,(m)
k : B(Hk) → B(Hk+m) : ρ 7→ [k + 1]q

[k +m+ 1]q
pk+m(ρ⊗ 1m)pk+m. (7.16)

7.2.3. Lowest weight channels: partial trace over Hk+m

We now consider the quantum channels Φ(k+m),m
k , so we have up to normalization the follow-

ing diagram:

pk+m

k + m

.
m

.

.
k

ρ
.
.

k

pk+m

k + m

. m

.

.

By Lemma 7.2.3, we can pull the Jones-Wenzl projection pk+m through the caps and cups
on the left-hand side, which transforms this diagram into:

pk+m

ρ

pk+m

.

.
k + m

.
k

.
k

.
m

. m

But now, as p2
k+m = pk+m, this simplifies to

pk+m ρ.
m

.m

. .

. .k

k

Hence, up to normalization, our quantum channel can be described by

ρ 7→ (ιm ⊗ T∪k )(pk+m ⊗ ρ)(ιm ⊗ T∩k ). (7.17)

Alternatively, pulling ρ through ∩k and taking the partial Markov trace over the last k strands
yields

ρ 7→ TrHk

(
pk+m(ιm ⊗ Txk

ρtTxk
)
)
, (7.18)

where Txk
is the partition map associated to the partition xk ∈ P2(k, k) that contains pairs

{i, (k − i+ 1)′}.
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Again, linearity and complete positivity are obvious, but whether this channel can be nor-
malized to be trace-preserving is not immediately clear. However, again using Lemma 7.2.3,
we see that when we take the trace, our diagrams can be manipulated as:

pk+m ρ.
m

.m

. .

. .
k

=
pk+m

ρ

.

.

.

.

.

.

And this trace can be evaluated as Tr(pk+m(ρ⊗ 1m)), and we see the familiar expression

Tr(pk+m(ρ⊗ 1m)) = Tr(TrHm
(pk+m)ρ) = [k +m+ 1]q

[k + 1]q
Tr(pkρ) = [k +m+ 1]q

[k + 1]q
Tr(ρ), (7.19)

which gives us the proof to the following lemma.

Lemma 7.2.6

We have

Φ(k+m),m
k : B(Hk) → B(Hm) : ρ 7→ [k + 1]q

[k +m+ 1]q
(ιm ⊗ T∪k )(pk+m ⊗ ρ)(ιm ⊗ T∩k ). (7.20)

7.3. PPT and EBT properties for lowest weight channels
Having established the descriptions of Φk+m,(m)

k and Φ(k+m),m
k , we can investigate their information-

theoretic properties such as whether they are positive-partial transpose or entanglement-
breaking. Before stating the next theorem, we need a small lemma.

Lemma 7.3.1

Consider any partition p ∈ NC2(k) for any k ∈ N. If a block X in p contains two indices
from either the upper row or the lower row, then one of these indices is odd and the
other is even. If a block Y in p contains an index from the upper row and an index from
the lower row, either both indices are odd, or both are even.

Proof. In the case of a block containing two upper indices or lower indices that are either
both even or both odd, in the diagram of p they enclose an odd number of indices below
their cap or above their cup. This is impossible, as those points need to form pairs and
cannot cross the cap or cup. Similarly, if an upper index and a lower index are paired, and
one is odd whilst the other one is even, the diagram of the partition is split vertically into
two non-interacting parts, but those parts both contain an odd number of points, whilst no
non-crossing partitions exist with an odd total number of points.

The following theorem is an improvement to the negative PPT-result in [BCLY20, Cor. 5.4]
(as it holds for all N ⩾ 3), and is complementary to the EBT property established in [BCLY20,
Thm. 5.2].

Theorem 7.3.1

The quantum channels Φk+m,(m)
k are not PPT, and therefore also not EBT.
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Proof. The Choi matrix J(Φk+m,(m)
k ) can be calculated as follows, with λ := [k+1]q

[k+m+1]q
> 0:

J(Φk+m,(m)
k ) =

∑
ij

|ei⟩⟨ej | ⊗ Φk+m,(m)
k (|ei⟩⟨ej |) = λ

∑
ij

|ei⟩⟨ej | ⊗ [pk+m (|ei⟩⟨ej | ⊗ ιm) pk+m]

= λ (ιHk
⊗ pk+m)

(∑
ij

|ei⟩⟨ej | ⊗ |ei⟩⟨ej | ⊗ ιm
)

(ιHk
⊗ pk+m) . (7.21)

Here, {|ei⟩}[k+1]q

i=1 is an orthonormal basis for Hk, not for H⊗k1 (for those orthonormal bases,
we reserve the notation {|i⟩}i:[k]→[N ]), as the domain of the quantum channels is restricted to
B(Hk) (as they are not trace-preserving on the orthogonal complement of Hk in H⊗k1 ). If we
apply the partial transpose to the first system, denoted by θk ⊗ ιk+m, we get:

(θk ⊗ ιk+m) J(Φk+m,(m)
k ) = λ (ιHk

⊗ pk+m)
(∑
ij

|ej⟩⟨ei| ⊗ |ei⟩⟨ej | ⊗ ιm
)

(ιHk
⊗ pk+m) . (7.22)

There is a strong analogy with the fact that the transpose map itself is not 2-positive, al-
though we believe the proof is not yet trivialized by this, as we need to carefully deal with the
projections around this expression.

As the diagram of pk+m can be expressed as |⊗k+m+fk+m for fk+m ∈ Ik+m, where Ik+m is the
two-sided ideal generated by the generators {u1, . . . , uk+m−1} ⊆ TLk+m(d) (see Lemma 5.1.2),
we can pick vectors that are annihilated by all diagrams in NC2(k+m) that are not the unit:
these vectors are then guaranteed to lie in the image of pk+m. As all those diagrams contain
at least one cap, by Lemma 7.3.1, we know that these caps always connect an odd and an
even index. Thus, if we write |x⟩ = |i1, . . . , ik+m⟩ ∈ H⊗k+m

1 , as long as all pairs {ij , ik} with
an odd j and even k have ij ̸= ik, the vector |x⟩ is annihilated by all diagrams in NC2(k + m)
except the identity, and we find pk+m |x⟩ = |x⟩.

Let us pick |x1⟩ = |i1, . . . , ik⟩ as a repeating pattern of 0121 until we run out of indices, and
|x2⟩ = |j1, . . . , jk⟩ as a repeating pattern of 2101 until we run out of indices. Note that for any
k ∈ N, |x1⟩ ⊥ |x2⟩. Now put |y⟩ = |l1, . . . , lm⟩ as a repeating pattern of 01 until we run out of
indices if k is even, and a repeating pattern of 10 until we run out of indices if k is odd.

The reader is invited to check that |x1⟩ |y⟩ always contains a pattern with all odd indices
equal to 1, and all even indices equal to 0 or 2. Similarly for |x2⟩ |y⟩. The clue lies in the fact
that |x1⟩ and |x2⟩ both lie in the image of pk, and |x1⟩ |y⟩ and |x2⟩ |y⟩ both lie in the image of
pk+m. But then, we see that

(θk ⊗ ιk+m) J(Φk+m,(m)
k ) |x1⟩ |x2⟩ |y⟩ = λ |x2⟩ |x1⟩ |y⟩ (7.23)

(θk ⊗ ιk+m) J(Φk+m,(m)
k ) |x2⟩ |x1⟩ |y⟩ = λ |x1⟩ |x2⟩ |y⟩ . (7.24)

Thus, we conclude that the vector

|z⟩ = (|x1⟩ |x2⟩ − |x2⟩ |x1⟩) |y⟩ (7.25)

is an eigenvector of the partially transposed Choi matrix with eigenvalue −λ < 0.

We did not find a counterpart to Theorem 7.3.1 in the case where we take the partial trace
over Hk+m (i.e., considering the channels Φ(k+m),m

k instead of Φk+m,(m)
k ) for general k. However,

if we specify to the k = 1 case, these complementary channels are interestingly related in the
following way:
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Theorem 7.3.2

For k = 1, m ∈ N and l = m+ 1, the quantum channel Φ(m+1),m
1 can be described as

Φ(m+1),m
1 (ρ) = [2]q

[m+2]q
(ιm ⊗ T∩)(pm+1 ⊗ ρ)(ιm ⊗ T∪)

= [2]q

[m+2]q
Tr(ρ)pm − [m]q

[m+2]q

[2]q

[m+1]q
pm(ιm−1 ⊗ ρ)pm

= Txm

(
[2]q

[m+2]q
Tr(ρ)pm − [m]q

[m+2]q
Φm,(m−1)

1 (ρ)
)
Txm . (7.26)

Proof. The first equality follows from the Wenzl recursion formula:

pm+1 = pm ⊗ ι− [m]q

[m+1]q
(pm ⊗ ι)um−1(pm ⊗ ι). (7.27)

Applied to our problem:

pm+1.
m

.m
ρ. .

. .
= pm.

m

.m
ρ.
.

− [m]q

[m+1]q

pm

.m

pm.
m

.

.
ρ..
..

It is not obvious from the description of Φ(m+1),m
1 that this quantum channel is trace-

preserving (obviously, this should hold if our diagram manipulations and the original nor-
malization of Φ(m+1),m

1 are correct, so the reader can interpret the next steps as a sanity
check). However, we have:

Tr(Φ(m+1),m
1 (ρ)) = [2]q

[m+2]q
[m+ 1]qTr(ρ) − [2]q [m]q

[m+2]q [m+1]q

[m+1]q

[2]q
Tr(ρ), (7.28)

where the second term can be computed by first computing the partial trace of pm over Hm−1
by Lemma 7.2.4. The claim follows from the identity [2]q[m+ 1]q − [m]q = [m+ 2]q 1.

To verify the second equality, note that the term pm(ιm−1 ⊗ρ)pm looks like Φm,(m−1)
1 , but the

density matrix ρ is in the last tensor leg instead of the first. Luckily, by Lemma 7.2.3, we see
that (pm)↔ = pm, equivalently xmpmxm = pm, where xm is the “reflection partition” introduced
in Remark 7.2.1. On the level of partition maps, we have Txm

: |i1 · · · im⟩ 7→ |im · · · i1⟩. The
reader is invited to check that Txm

(ιm−1 ⊗ ρ)Txm
= ρ ⊗ ιm−1, which works because ρ acts on

only one strand in the diagram, so trivially ρ↔ = ρ. But then, we have

pm(ιm−1 ⊗ ρ)pm = Txm
pm(ρ⊗ ιm−1)pmTxm

. (7.30)

As Txm
commutes with pm, we can write

Φ(m+1),m
1 (ρ) = Txm

(
[2]q

[m+2]q
Tr(ρ)pm − [m]q

[m+2]q
Φm,(m−1)

1 (ρ)
)
Txm

. (7.31)

Using this description for Φ(m+1),m
1 allows us to state the following theorem, which is com-

plementary to the negative PPT result established in [BCLY20, Cor. 5.4], as we discuss the
case k = l −m that the authors excluded:

1This can be verified using the identity
[m+ n]q = q−n[m]q + qm[n]q , (7.29)

which itself follows from the well-known identity for q-integers (m+n)q = (m)q + qm(n)q by using [n]q = q1−n(n)q2 ,
see the introduction of Section 6.3.
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Theorem 7.3.3

For k = 1, the quantum channels Φ(m+1),m
1 are PPT.

Proof. From the proof of Theorem 7.3.2, we know that Φ(m+1),m
1 (ρ) = UNm(ρ)U∗, where U is

the unitary Txm (independent of ρ), and Nm is the quantum channel

Nm : ρ 7→ [2]q

[m+2]q
Tr(ρ)pm − [m]q

[m+2]q
Φm,(m−1)

1 (ρ). (7.32)

Writing out the definition of the Choi matrix, we see that J(Φ(m+1),m
1 ) is related by the unitary

transformation ι1 ⊗U to J(Nm), which does not change the eigenvalues, so we consider J(Nm)
instead. This Choi matrix equals

J(Nm) = [2]q

[m+2]q
ι1 ⊗ ιHm − [m]q

[m+2]q
J(Φm,(m−1)

1 )(ρ). (7.33)

But then, we see that the partial transpose over the first system, denoted by θ1 ⊗ ιm, yields

(θ1 ⊗ ιm)J(Nm) = [2]q

[m+2]q
ι1 ⊗ ιHm

− [m]q

[m+2]q
(θ1 ⊗ ιm)J(Φm,(m−1)

1 )(ρ). (7.34)

If we investigate the description of the partially transposed Choi matrix of Φm,(m−1)
1 in the

proof of Theorem 7.3.1, we see that it consists of a composition of contractions, hence its
largest possible eigenvalue is [2]q

[m+1]q
. But then, we see that Nm is PPT if

[2]q

[m+2]q

?
⩾ [m]q

[m+2]q

[2]q

[m+1]q
. (7.35)

But this inequality is equivalent to 1 ⩾ [m]q

[m+1]q
, which always holds. Thus, Nm is PPT, and as

Φ(m+1),m
1 is a rotated version of Nm, the theorem follows.

Remark 7.3.1. Note that the upper bound on the largest possible eigenvalue of J(Φm,(m−1)
1 ) is

actually achieved, as can be deduced from Theorem 7.3.1, using |z⟩ = (|x1⟩ |x2⟩ + |x2⟩ |x1⟩) |y⟩.
This immediately tells us that

min
λ

(θ1 ⊗ ιm)J(Φ(m+1),m
1 ) = [2]q

[m+2]q
− [m]q

[m+2]q

[2]q

[m+1]q
. (7.36)

Remark 7.3.2. Note that Theorem 7.3.2 tells us that

Φ(m+1),m
1 (ρ) = [2]q

[m+2]q
pm

(
Tr(ρ)ιm − [m]q

[m+1]q
ιm−1 ⊗ ρ

)
pm. (7.37)

We can write this action as a concatenation of simpler quantum channels: we note that we
can first send ρ 7→ Tr(ρ)ι1 − [m]q

[m+1]q
ρ. With the proper normalization:

N : B(H1) → B(H1) : ρ 7→ N
N−[m]q/[m+1]q

(
Tr(ρ) ι1N − [m]q

N [m+1]q
ρ
)
, (7.38)

and let M be the quantum channel

M : B(H1) → B(Hm) : ρ 7→ [2]q

[m+1]q
pm (ιm−1 ⊗ ρ) pm. (7.39)

Then, M◦N = Φ(m+1),m
1 (the multiplication of the normalization constants in N and M works

out to [2]q

[2]q [m+1]q−[m]q
, and [2]q[m+ 1]q − [m]q = [m+ 2]q). The map N looks like a depolarization

channel ∆λ with parameters λ = − N
N−[m]q/[m+1]q

[m]q

N [m+1]q
. However, working out this parameter

yields
λ = − [m]q

N [m+1]q−[m]q
= − [m]q

[2]q [m+1]q−[m]q
= − [m]q

[m+2]q
. (7.40)
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One can check that − [m]q

[m+2]q
⩽ −1

N2−1 where equality only holds if m = 1. 2 We know that ∆λ

is not completely positive for λ < − 1
N2−1 [LH16] whence N is not a channel, so we cannot

conclude that Φ(m+1),m
1 is entanglement-breaking for m > 1.

However, for m = 1 we see that λ = −[1]q/[3]q = − 1
N2−1 , which leads to the following

theorem, which is a positive answer to the question posed in [BCLY20, Remark 5.3] whether
the channels Φ(l),m

l−m are entanglement-breaking, but only in the very smallest non-trivial (i.e.
k, l,m ̸= 0) case:

Theorem 7.3.4

For k = m = 1, the quantum channel Φ(2),1
1 is entanglement-breaking.

Proof. From the previous remark, we know that Φ(2),1
1 = M◦N , where N = ∆λ is a depolarizing

channel on B(H1) with λ = − 1
N2−1 , which is on the boundary of (but inside) the domain

− 1
d2−1 ⩽ λ ⩽ 1

d+1 (with d the dimension of the Hilbert space, in our case d = dim H1 = N ),
whence N is entanglement breaking, see for example [LH16]. Although it is true in general
that the composition of a quantum channel with an entanglement-breaking channel is always
itself entanglement-breaking 3, in this case the proof simplifies because M is the identity
channel in the case m = 1, so Φ(2),1

1 is a proper depolarizing channel ∆λ with λ = −1
N2−1 .

Having established results regarding the PPT and EBT property of the lowest-weight chan-
nels, we specify further to the k = 1 case (with l = m± 1), where some considerations lead to
the surprising fact that they have constant (and explicitly computable) output entropy.

7.4. Constant output entropy for O+
N channels with k = 1

The smallest non-trivial choice of k for the quantum channels Φk+m,(m)
k and Φ(k+m),m

k is k = 1,
where the fundamental representation v1 = u of O+

N is embedded in vm+1 ⊗ vm. Remarkably,
in this case, we have:

Theorem 7.4.1

In the case of k = 1, m ∈ N, and l = m+ 1, the quantum channels Φm+1,(m)
1 and Φ(m+1),m

1
yield an output entropy that is constant on all pure states, because for Φ = Φ(m+1),m

1 or
Φ = Φm+1,(m)

1 , all pairs of outputs Φ(|ψ⟩⟨ψ|) and Φ(|ϕ⟩⟨ϕ|) are related by a unitary (that
generally depends on the choice of |ψ⟩ and |ϕ⟩).

Before we dive into the proof of this theorem, the following elementary lemma shows that
it suffices to prove the previous theorem just for Φm+1,(m)

1 .

Lemma 7.4.1: Same non-zero spectrum for complementary channel output

Given any quantum channel Φ : B(HA) → B(HB). Then, the matrix Φ(|ψ⟩⟨ψ|) has the
same non-zero spectrum as the matrix Φc(|ψ⟩⟨ψ|) for any pure state |ψ⟩ ∈ HA.

Proof. Describe Φ in its Stinespring representation as Φ(ρ) = TrE(V ρV ∗) with Stinespring
isometry V : HA → HB ⊗ HE, where HA, HB and HE are finite-dimensional Hilbert spaces.

2Use N2 − 1 = [3]q, so we need to prove [m]q
[m+2]q

⩾ 1
[3]q

, equivalently [3]q [m]q ⩾ [m + 2]q. Write [3]q = [1 + 2]q =
q−2[1]q + q[2]q and [m+ 2]q = q−2[m]q + qm[2]q, so we can equivalently prove q−2[m]q + q[2]q [m]q ⩾ q−2[m]q + qm[2]q,
equivalently [m]q ⩾ qm−1. This is obviously true for all m ⩾ 1 as [m]q = dim Hm−1 ⩾ 1 whilst qm−1 ⩽ 1 as q ⩽ 1.
We see that equality only holds for m = 1.

3This follows from the definition: any channel applied after an entanglement-breaking channel N cannot “restore”
the entanglement: by Definition 3.5.2, we know that we can write (ιC ⊗ N )(ρ) =

∑
i
piσ

C
i ⊗ ρB

i for any auxiliary
Hilbert space HC, where {pi} is a discrete probability distribution and σC

i ∈ S(HC) and ρB
i ∈ S(H1). But then,

(ιC ⊗ M ◦ N )(ρ) =
∑

i
piσ

C
i ⊗ M(ρB

i ), which shows that (ιC ⊗ M ◦ N )(ρ) is separable.
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Then, note that for any pure state ρ = |ψ⟩⟨ψ| with |ψ⟩ ∈ HA, we have V ρV ∗ = |ϕ⟩⟨ϕ| with
|ϕ⟩ := V |ψ⟩ ∈ HB ⊗ HE. Make a Schmidt decomposition of |ϕ⟩ by finding an orthonormal
system (|xi⟩)di=1 ⊂ B(HB) and an orthonormal system (|yi⟩)di=1 ⊂ B(HE) and scalars α1 ⩾ α2 ⩾
· · · ⩾ αd ⩾ 0, where d = min{dim HB,dim HE}, such that |ϕ⟩ =

∑d
i=1

√
αi |xi⟩ ⊗ |yi⟩. Then, we see

that the partial trace over E yields
∑
i αi |xi⟩⟨xi|, whilst a partial trace over B yields

∑
i αi |yi⟩⟨yi|.

This shows that both non-zero spectra of Φ(|ψ⟩⟨ψ|) and Φc(|ψ⟩⟨ψ|) consist precisely of those
αi ̸= 0, and the lemma follows.

Remark 7.4.1. Note that a direct corollary from this lemma is the fact that for any quantum
channel Φ, we have

Hmin(Φ) = Hmin(Φc). (7.41)

Before continuing to the proof of Theorem 7.4.1, let us consider a toy example, where
we put k = m = 1 and thus l = 2. In this case, it is not only possible to prove that Φ2,(1)

1
has constant output entropy on pure states, but it is relatively straight-forward to explicitly
calculate these eigenvalues. We have the following:

Theorem 7.4.2

In the case of k = 1, m = 1 and l = 2, for any pure input ρ = |ψ⟩⟨ψ|, the output Φ2,(1)
1 (ρ)

has the eigenvalues:

• λ = 0 with multiplicity N2 −N − 1.

• λ = [2]q

[3]q

N−1
N = N−1

N2−1 with unit multiplicity;

• λ = [2]q

[3]q
= N

N2−1 with multiplicity N − 1;

Proof. Let ρ := |ψ⟩⟨ψ| be a pure input state. Let us consider the output ρout, and for the sake
of brevity we will leave out the global normalization constant [2]q

[3]q
until the very end. We then

have
ρout = p2(|ψ⟩⟨ψ| ⊗ ι1)p2. (7.42)

Note that in general, for a matrix pAp where p is an orthogonal projection and A is any matrix,
the following holds: an eigenvector |x⟩ of pA with eigenvalue λ ̸= 0 is also an eigenvector of
pAp with eigenvalue λ, as

p |x⟩ = 1
λppA |x⟩ = 1

λpA |x⟩ = |x⟩ , (7.43)
thus |x⟩ lies in the image of p, and pAp |x⟩ = pA |x⟩ = λ |x⟩. Conversely, an eigenvector |y⟩ of pAp
with eigenvalue µ ̸= 0 is also an eigenvector of pA with eigenvalue µ, as a similar calculation
shows that |y⟩ is in the image of p, whence pA |y⟩ = pAp |y⟩ = λ |y⟩. Hence, we can restrict
ourselves to finding the non-zero eigenvalues of p2(|ψ⟩⟨ψ| ⊗ ι1) instead.

In this particular case, we know p2 = ι2 − 1
N T∩T∪. We prefer to write T∩ =

∑
i |ii⟩ as |ϕ+⟩.

We claim it suffices to calculate the eigenvalues for just the input state ρ = |1⟩⟨1|, where
{|i⟩}Ni=1 is the canonical orthonormal basis of H1 = CN . In that case, the eigenvalues can
be exactly calculated, which we will do in Lemma 7.4.3. We are left with the claim that just
considering ρ = |1⟩⟨1| is sufficient. Firstly, note that the eigenvalues of ρout are unaffected by
a unitary transformation of the form V ρoutV

∗. We then pick V := U ⊗ U where U :=
∑
i |i⟩⟨ψi|,

where {|ψi⟩}Ni=1 is any orthonormal basis of CN with |ψ⟩ = |ψ1⟩. Here, U :=
∑
i |i⟩⟨ψi| where

|ψi⟩ is the unit vector one gets from conjugating all coefficients of the unit vector |ψi⟩. Clearly,
V (|ψ⟩⟨ψ|⊗ι1)V ∗ = |1⟩⟨1|⊗ι1. By Lemma 7.4.2, V |ϕ+⟩ = |ϕ+⟩, and we are done. Using the global
normalization constant [2]q

[3]q
and the result of Lemma 7.4.3, the lemma now follows.

Lemma 7.4.2

The generalized unnormalized Bell state |ϕ+⟩ :=
∑
i |ii⟩, where {|i⟩}Ni=1 is the canonical

orthonormal basis of H1 = CN , is a fixed point of a basis transformation from a basis of
the form {|ψi⟩ |ψj⟩}Ni,j=1 to the canonical tensor product basis {|ij⟩}Ni,j=1, where {|ψi⟩}Ni=1 is
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an orthonormal basis of CN , and |ψi⟩ denotes the unit vector one gets from conjugating
all coefficients from the unit vector |ψi⟩.

Proof. This follows directly from a small calculation: let U :=
∑
i |i⟩⟨ψi| be the basis transforma-

tion, and put U :=
∑
i |i⟩⟨ψi|. We see (U⊗U) |ϕ+⟩ =

∑
ijk |ij⟩⟨ψiψj | |kk⟩ =

∑
ij |ij⟩∑k ⟨ψi|k⟩ ⟨ψj |k⟩ .

Now use the fact that ⟨ψj |k⟩ = ⟨k|ψj⟩ to see
∑
k ⟨ψi|k⟩ ⟨ψj |k⟩ =

∑
k ⟨ψi|k⟩ ⟨k|ψj⟩ = ⟨ψi|ψj⟩ = δij .

Hence, (U ⊗ U) |ϕ+⟩ = |ϕ+⟩.

Lemma 7.4.3

The eigenvalues λ and eigenvectors |x⟩ of

|1⟩⟨1| ⊗ ι1 − 1
N |ϕ+⟩⟨ϕ+| (|1⟩⟨1| ⊗ ι1) (7.44)

are:

• λ = 0 with multiplicity N2 −N , with orthogonal eigenvectors {|ij⟩}Ni̸=1,j .

• λ = 1 with multiplicity N − 1, with orthogonal eigenvectors {|1j⟩}Nj=2.

• λ = N−1
N with unit multiplicity, with eigenvector |11⟩ + −1

N−1
∑N
i=2 |ii⟩ .

Proof. Note that the last term |ϕ+⟩⟨ϕ+| (|1⟩⟨1|⊗ι1) can be evaluated to |ϕ+⟩⟨11|. Hence, any basis
vectors of the form |ij⟩ with i ̸= 1 is killed by both terms, yielding orthogonal eigenvectors for
the eigenvalue 0. Similarly, any basis vectors of the form |1j⟩ with j ̸= 1 has eigenvalue 1 for
the first term, and is killed by the last term, yielding λ = 1 precisely N − 1 times. Because
|1⟩⟨1| ⊗ ι1 − 1

N |ϕ+⟩⟨11| is not a normal matrix, it might not be diagonalizable, or if it is, it
cannot be unitarily diagonalizable, so we look for an eigenvector that is not orthogonal to the
previous ones. Heuristically, as the last term produces a vector in C |ϕ+⟩, it is prudent to
start the search with a vector |x⟩ =

∑
i αi |ii⟩. If we apply the first term, we are only left with

α1 |11⟩, and the second term leaves − 1
N α1 |ϕ+⟩. Hence, if λ is the corresponding eigenvalue,

we must have α1 − 1
N α1 = λα1, i.e. λ = N−1

N . Then, the other constraints are − 1
N α1 = λαj for

j > 1, hence αj = −1
N−1α1. We have found N2 linearly independent eigenvectors, so we can be

certain we have found all eigenvalues.

This toy example has given us some insight into the general case. Diagrammatically speak-
ing, Lemma 7.4.2 tells us that any caps do not care if we rotate one strand with a unitary U , as
long as we rotate the other with the unitary U . This is actually a consequence of Lemma 7.2.2,
where we showed that we can pull a partition through a cap or cup if we reflect the partition
both horizontally and vertically. In our case, the unitary acts only on one “strand” (i.e., one
copy of H1), so it is automatically invariant under the horizontal flip. Hence, we know that
pulling U through a cap or cup yields the operator U t (the transpose of U ). Hence, if we want
it to meet another operator, say V , on the other side of the cap or cup and annihilate with
it, i.e. V U t = U tV = ι, we must choose V = U . However, in the general case, more than 2
strands are in play, and if we expand pm+1 as a linear combination of diagrams, we do not
know which strand ρ is connected to in pm+1(ρ⊗ ιm)pm+1, and even worse, it is connected to
different input and output strands for different diagrams in the expansion of pm+1. Luckily,
this is more tractable than it might appear on first sight, through Lemma 7.3.1 that tells us
that ρ can’t just be connected to any input and output: any pair in a NC2-partition containing
two upper indices or two lower indices contains one odd and one even index, and in the case
of a pair of one upper index and one lower index, both are even, or both are odd. This now
allows us to formulate a proof:

Proof of Theorem 7.4.1. We consider the quantum channel Φm+1,(m)
1 first, the proof for Φ(m+1),m

1
then follows from Theorem 7.3.2. We see that the output density matrix is described (up to
normalization) by ρout = pm+1(|ψ⟩⟨ψ| ⊗ ιm)pm+1. Consider the unitary V := U ⊗ U ⊗ U ⊗ · · · ⊗ U
with m+ 1 tensor legs (in the case where m+ 1 is odd, the last tensor leg contains U instead



7.4. Constant output entropy for O+
N channels with k = 1 73

of U ), where we leave the unitary U undetermined for now. This unitary V lives in B(H⊗m+1
1 ).

As V ∗ρoutV has the same eigenvalues as ρout, we consider the density matrix

V ∗ρoutV = V ∗pm+1V V
∗(|ψ⟩⟨ψ| ⊗ ιm)V V ∗pm+1V. (7.45)

We claim that V ∗pV = p for any p ∈ NC2(m + 1), which implies this equation also holds for
the Jones-Wenzl projection. From Lemma 7.3.1 we know that if any block in p contains two
upper or two lower indices, then one of those is even and one of them is odd. Hence, one is
affected by U∗ and the other by U∗ if they form a cup, or U and U if they form a cap. However,
by Lemma 7.4.2, we know that (U ⊗ U)T∩ = T∩, similarly T∪(U∗ ⊗ U

∗) = T∪; hence, pulling U
(or U∗) through its cap (or cup) results in an annihilation against U (or U∗) on the other side
of the cap (or cup).

Similarly, if any block in p contains a lower and upper index, both are odd or both are
even. Hence, the U∗ (or U∗) from the lower index meets and annihilates against the U (or U )
from the upper index. Thus, V ∗pV = p.

But then, we can pick U :=
∑
i |i⟩⟨ψi|, where {|i⟩}Ni=1 is the canonical orthonormal basis

of CN , and {|ψi⟩}Ni=1 is some other orthonormal basis with |ψ⟩ = |ψ1⟩. It is then evident that
V (|ψ⟩⟨ψ| ⊗ ιm)V ∗ = |1⟩⟨1| ⊗ ιm, thus

V ρoutV
∗ = pm+1(|1⟩⟨1| ⊗ ιm)pm+1, (7.46)

and we see that ρout has the same eigenvalues for all pure input states |ψ⟩.

Note that analytically determining the eigenvectors of ρout for any value of m ∈ N, i.e. a
generalization of Theorem 7.4.2, is in all likelihood quite difficult. Namely, as already dis-
cussed in Theorem 7.4.2, it suffices to compute the eigenvectors with non-zero eigenvalue
of pm+1(|1⟩⟨1| ⊗ ιm). In turn, the eigenvalues of a product of projections are related to the
eigenvalues of the difference of those two projections (see e.g. [AHT85]), however, this would
require intimate knowledge of the eigenvectors of pm+1. In turn, this is equivalent to pre-
cisely understanding the image of pm+1, whilst finding direct formulas for the Jones-Wenzl
projection (equivalently, direct formulas for its image) has proven to be difficult [BC16b].

We will, however, employ a handy trick that allows us to analytically express the eigen-
values of Φ(m+1),m

1 for all values of m in a recurrence relation. Let us first commence with
an example that shows how involved a direct calculation with eigenvectors and eigenvalues
already gets for m = 2:

Lemma 7.4.4

In the case of k = 1, m = 2 and l = 3, for any pure input ρ = |ψ⟩⟨ψ|, the output Φ3,(2)
1 (ρ)

has the eigenvalues:

• 0 with multiplicity N3 −N2 − 2N + 1;

• [2]q

[4]q

N
N+1 = 1

N2−2
N
N+1 with unit multiplicity;

• [2]q

[4]q

N2−N−1
N2−1 = 1

N2−2
N2−N−1
N2−1 with multiplicity N − 1;

• [2]q

[4]q
= 1

N2−2 with multiplicity (N − 1)2 +N − 2 = N2 −N − 1.

Proof. By the previous result, we know that it suffices to calculate this for |ψ⟩ = |0⟩. We
know from Lemma 7.2.5 that the action of Φ3,(2)

1 (ρ) is p3(ρ⊗ ι2)p3 up to normalization. There-
fore, we will heuristically consider three Ansatz eigenvectors based on the symmetry of the
Jones-Wenzl projections, and show that this collection of eigenvectors is exhaustive. Let us
commence with the first Ansatz.

Ansatz 1. Assume that the eigenvector |x⟩ corresponding to λ ̸= 0 has the form |x⟩ =
α |0ϕ+⟩ + β |ϕ+0⟩ + γ |000⟩ – this Ansatz comes from the observation that |000⟩ is sent to a
linear combination of |000⟩, |ϕ+0⟩ and |0ϕ+⟩ by p3, which we will make exact in the following
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calculation. We claim that applying p3 to |x⟩ yields |y⟩ := γp3 |000⟩. Note that Tu1 |ϕ+0⟩ = |ϕ+0⟩
and Tu2 |0ϕ+⟩ = |0ϕ+⟩, but p3ui = 0 for i = 1, 2 by the defining property of the Jones-Wenzl
projection, whence p3 |0ϕ+⟩ = p3 |ϕ+0⟩ = 0. Finding out what γp3 |000⟩ is, requires a more
detailed description of p3.

As we know p2 = ι2 − 1
N |ϕ+⟩⟨ϕ+|, from the Wenzl recursion formula we find

p3 =
.

.

.

.

.

.

A

− [2]q

[3]q . .

. .

.

.

B

− [2]q

[3]q .

.

. .

. .

C

+ [2]q

[3]q

1
N .

.

. .

. .

D

+ [2]q

[3]q

1
N . .

. .

.

.

E

Using the fact [2]q = dim H1 = N and [3]q = dim H2 = N2 − 1, we see that A = ι3, B =
− N
N2−1 |ϕ+⟩⟨ϕ+|⊗ι1, C = − N

N2−1 ι1 ⊗|ϕ+⟩⟨ϕ+|, D = 1
N2−1

∑
i |ϕ+i⟩⟨iϕ+|, and E = 1

N2−1
∑
i |iϕ+⟩⟨ϕ+i|.

We calculate |y⟩ = γp3 |000⟩ as:

Aγ |000⟩ = γ |000⟩ , Bγ |000⟩ = − N
N2−1γ |ϕ+0⟩ , Cγ |000⟩ = − N

N2−1γ |0ϕ+⟩
Dγ |000⟩ = 1

N2−1γ |ϕ+0⟩ , Eγ |000⟩ = 1
N2−1γ |0ϕ+⟩ . (7.47)

Noting that N−1
N2−1 = 1

N+1 , we find

|y⟩ = γp3 |000⟩ = γ |000⟩ − γ 1
N+1 |ϕ+0⟩ − γ 1

N+1 |0ϕ+⟩ . (7.48)

Applying |0⟩⟨0| ⊗ ι2 to this result yields

|z⟩ := (|0⟩⟨0| ⊗ ι2) |y⟩ = γ
(

1 − 1
N+1

)
|000⟩ + γ 1

N+1 |0ϕ+⟩ = γ N
N+1 |000⟩ + γ 1

N+1 |0ϕ+⟩ . (7.49)

We then need to apply p3 again to the result |z⟩, realizing that the |0ϕ+⟩ term gets killed again,
we can quickly conclude

p3 |z⟩ = γ N
N+1p3 |000⟩ = γ N

N+1

(
|000⟩ − 1

N+1 |ϕ+0⟩ − 1
N+1 |0ϕ+⟩

)
. (7.50)

Requiring p3 |z⟩ = λ |x⟩ = λα |0ϕ+⟩ + λβ |ϕ+0⟩ + λγ |000⟩ we learn:

|000⟩ :
(

N
N+1 − 2N

(N+1)2

)
γ = λ(α+ β + γ) (7.51)

|0ϕ+⟩ : − N
(N+1)2 γ = λβ (7.52)

|ϕ+0⟩ : − N
(N+1)2 γ = λα. (7.53)

We required λ ̸= 0, therefore we can use the second and third equation to learn that α = β =
− N

(N+1)2
1
λγ. Plugging this into the first equation yields(

N
N+1 − 2N

(N+1)2

)
γ =

(
λ− 2N

(N+1)2

)
γ =⇒ γ = 0 ∨ λ = N

N+1 . (7.54)

The option γ = 0 leads to α = β = 0, but this leads to |x⟩ = 0, and is thus excluded. We are
left with the options where λ = N

N+1 , γ is a free parameter, and α = β = − 1
N+1γ.

Ansatz 2. Similarly, we can use the Ansatz |x⟩ = α |iϕ+⟩+β |ϕ+i⟩+γ |00i⟩, where 1 ⩽ i ⩽ N−1.
Again, seeing the first two terms are in the image of u1 and u2, we conclude that they are killed
by p3, so |y⟩ := p3 |x⟩ = γp3 |00i⟩. This results in:

Aγ |00i⟩ = γ |00i⟩ , Bγ |00i⟩ = − N
N2−1γ |ϕ+i⟩ , Cγ |00i⟩ = 0.

Dγ |00i⟩ = 0 , Eγ |00i⟩ = 1
N2−1γ |iϕ+⟩ . (7.55)

Thus, we find
|y⟩ = γp3 |00i⟩ = γ |00i⟩ − N

N2−1γ |ϕ+i⟩ + 1
N2−1γ |iϕ+⟩ . (7.56)
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Applying |0⟩⟨0| ⊗ ι2 then yields

|z⟩ := (|0⟩⟨0|⊗ ι2) |y⟩ = γ(|0⟩⟨0|⊗ ι2)
(

|00i⟩ − N
N2−1 |ϕ+i⟩ + 1

N2−1 |iϕ+⟩
)

= γ
(

1 − N
N2−1

)
|00i⟩ . (7.57)

Applying p3 to |z⟩ yields:

p3 |z⟩ = γ
(

1 − N
N2−1

)(
|00i⟩ − N

N2−1 |ϕ+i⟩ + 1
N2−1 |iϕ+⟩

)
. (7.58)

Requiring p3 |z⟩ = λ |x⟩ yields:

|00i⟩ :
(

1 − N
N2−1

)2
γ = λ(β + γ) (7.59)

|iϕ+⟩ :
(

1 − N
N2−1

)
1

N2−1γ = λα (7.60)

|ϕ+i⟩ : −
(

1 − N
N2−1

)
N

N2−1γ = λβ. (7.61)

As we demand λ ̸= 0, we express β in terms of γ from the last equation, and substitute this
expression in the first equation to find:

β = −
(

1 − N
N2−1

)
N

N2−1
1
λγ ,

(
1 − N

N2−1

)2
γ =

(
λ−

(
1 − N

N2−1

)
N

N2−1

)
γ. (7.62)

Excluding the option γ = 0 again (as this forces α = β = 0 in the last two equations, forcing
|x⟩ = 0), we see that we must have γ = 1 − N

N2−1 = N2−N−1
N2−1 .

Ansatz 3. Furthermore, it is easy to see that {|0ij⟩}i̸=0,j ̸=i is filled with orthogonal vectors
who lie in the image of p3 and in the image of |0⟩⟨0| ⊗ ι2, hence those vectors are eigenvectors
with eigenvalue 1. Following the same type of calculations as before, it is possible to prove
that for i ̸= 0, we have

p3 |0ii⟩ = |0ii⟩ − N
N2−1 |0ϕ+⟩ + 1

N2−1 |ϕ+0⟩ . (7.63)
Hence, {|0ii⟩ − |011⟩}i>1 contains N − 2 linearly independent eigenvectors in the image of p3,
and they also lie in the image of |0⟩⟨0| ⊗ ι2, so they are also eigenvectors with eigenvalue 1.

We claim this analysis fully describes all (non-zero) eigenvalues of Φ3,(2)
1 (|0⟩⟨0|). Let us

count the eigenvalues:
• We have found λ = N

N+1 with unit multiplicity, with eigenvector |x⟩ = γ(|000⟩− 1
N+1 (|0ϕ+⟩+

|ϕ+0⟩)).
• we have found λ = N2−N−1

N2−1 with multiplicity N − 1, with eigenvectors |xi⟩ = γ(|00i⟩ +
α |iϕ+⟩ + β |ϕ+i⟩), where α, β ̸= 0 are uniquely determined by γ, and i = 1, . . . , N − 1. One
can quickly check that these vectors are mutually orthogonal.

• We have found λ = 1 with multiplicity (N − 1)2 + N − 2 = N2 − N − 1, with eigenvectors
|0ij⟩ for i = 1, . . . , N − 1 and j ̸= i, and eigenvectors |0ii⟩ − |011⟩ for i > 1. They are all
linearly independent.

Summing over these eigenvalues with their respective multiplicities yields
N
N+1 + (N−1)(N2−N−1)

(N−1)(N+1) + (N − 1)2 +N − 2 = N2 − 2, (7.64)

and the normalization factor of the quantum channel Φ3,(2)
1 is [2]q

[4]q
. Using [2]q = N and [4]q =

N3 −2N , we see that no more space is left for non-zero eigenvalues. Using this normalization
factor to scale the eigenvalues of p3(|0⟩⟨0| ⊗ ι2)p3 to eigenvalues of Φ3,(2)

1 , the lemma follows.

Considering the amount of work the previous lemma took, and considering the Ansatz-
approach to finding eigenvectors, how could we hope to generalize this to m ∈ N? The an-
swer lies in a more careful consideration of Φm+1,(m)

1 , that we have so far ignored because
Lemma 7.4.1 told us that the non-zero spectrum of Φm+1,(m)

1 coincides with the non-zero
spectrum of Φ(m+1),m

1 . Apart from this lemma, Theorem 7.3.2 tells us the channels Φ(m+1),m
1

and Φm+1,(m)
1 are strongly related in another sense:
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Theorem 7.4.3

The eigenvalues µi (with repetition) of Φ(m+1),m
1 (ρ) correspond bijectively with the eigen-

values λi of Φm,(m−1)
1 (ρ) through

µi = [2]q

[m+2]q
Tr(ρ) − [m]q

[m+2]q
λi. (7.65)

Proof. We remind the reader of the statement of Theorem 7.3.2:

Φ(m+1),m
1 (ρ) = Txm

(
[2]q

[m+2]q
Tr(ρ)pm − [m]q

[m+2]q
Φm,(m−1)

1 (ρ)
)
Txm . (7.66)

From the definition of Txm
, it is clear that T 2

xm
= ιm and T ∗xm

= Txm
, so it is a self-adjoint uni-

tary, thus the conjugation by Txm
in the previous equation does not change the eigenvalues.

As the image of Φ(m+1),m
1 lies in B(Hm), the first term only shifts the value of any eigenvalue

of Φm,(m−1)
1 by [2]q

[m+2]q
Tr(ρ), and we recover the last statement of the lemma.

Theorem 7.4.4: Recurrence relation for eigenvalues of Φm+1,(m)
1

Let (µ(m)
i )[m+2]q

i=1 be the [m+ 2]q-tuple with eigenvalues (with repetition) of Φm+1,(m)
1 (ρ). All

eigenvalues µ
(m)
i of Φm+1,(m)

1 (ρ) for a pure input ρ can be computed through the recur-
rence relation

µ
(m)
i = [2]q

[m+2]q
− [m]q

[m+2]q
µ

(m−1)
i , (7.67)

which yields [m+1]q eigenvalues (with repetition). The other [m+2]q− [m+1]q eigenvalues
µ

(m)
i are 0.

This recurrence relation starts with(
µ

(1)
i : 1 ⩽ i ⩽ N2 − 1

)
=
(

[2]q

[3]q
for 1 ⩽ i ⩽ N − 1 ; [2]q

[3]q

N−1
N ; 0 for 1 ⩽ j ⩽ N2 −N − 1

)
.

(7.68)

Proof. The last statement for µ(1)
i is Theorem 7.4.2. Using Theorem 7.4.3, we see that the

eigenvalues λ(m)
i of Φ(m+1),m

1 can be found by

λ
(m)
i = [2]q

[m+2]q
− [m]q

[m+2]q
µ

(m−1)
i . (7.69)

By Lemma 7.4.1, the non-zero spectrum of Φm+1,(m)
1 is precisely the non-zero spectrum of

Φ(m+1),m
1 , whence

µ
(m)
i = λ

(m)
i = [2]q

[m+2]q
− [m]q

[m+2]q
µ

(m−1)
i . (7.70)

Finally, the spectrum of Φm+1,(m)
1 must contain [m + 2]q eigenvalues and we have computed

all its non-zero eigenvalues, which yields the theorem.

Remark 7.4.2. Note that we could have started with the channel Φ1,(0)
1 , i.e. m = 0, in which

case we see from Lemma 7.2.5 that Φ1,(0)
1 (ρ) = [2]q

[2]q
p1ρp1 = ρ, so we get (µ(0)

i : 1 ⩽ i ⩽ N) =
(1 ; 0 for 1 ⩽ j ⩽ N−1). And indeed, if we do the recurrence step once, the 1 gets transformed
into [2]q

[3]q
− [1]q

[3]q
= 1

N+1 , whilst the 0’s with multiplicity N − 1 get transformed into [2]q

[3]q
, which

yields the correct eigenvalues according to Theorem 7.4.2. Then, applying the recurrence
step again, we see

1
N+1 7→ [2]q

[4]q
− [2]q

[4]q

1
N+1 = [2]q

[4]q

N
N+1 with multiplicity 1,

[2]q

[3]q
7→ [2]q

[4]q
− [2]q

[4]q

N
N2−1 = [2]q

[4]q

N2−N−1
N2−1 with multiplicity N − 1,

0 7→ [2]q

[4]q
with multiplicity N2 −N − 1.

This is precisely the result of Lemma 7.4.4.
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Let us compare these findings to the lower bound of the minimum output entropy, given
by log θq(1,m+1,m)

[2]q
, from Theorem 6.5.1. Furthermore, let us compare this with the function

N 7→ m log(N), which is a close approximation as Nm[2]q/θq(1,m+1,m) = 1+O(N−2) according
to [BCLY20, Lem. 4.2]. For the choice m = 4, we record the results in Figure 7.1. We
see that the numerical computations of Hmin(Φ(5),4

1 ) using the eigenvalues as described in
Theorem 7.4.4 is in excellent agreement with the lower bound from Theorem 6.5.1 (which is
asymptotically sharp for N → ∞), and can already be approximated well by m log(N) even for
small values of N .

0 20 40
N
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Hmin(Φ
(5),4
1 )

Hmin
Lower bound
m log(N)

0 20 40
N

−0.4

−0.2

0.0

0.2

H

Hmin(Φ
(5),4
1 ) comparison

Hmin − l.b.
Hmin −m log(N)

Figure 7.1: The minimum output entropy Hmin of Φ(5),4
1 (so, k = 1, l = 5, m = 4), versus the lower bound

(abbreviated l.b. in the right image) given by N 7→ log θq(1,5,4)
[2]q

from Theorem 6.5.1 and versus the function
N 7→ m log(N).



8
Numerical approximations for

Hmin

When one considers the additivity conjecture for Hmin as sketched in Section 3.4, one might
wonder how difficult it would be to (numerically) approximate the quantities Hmin(N1 ⊗ N2)
and Hmin(Ni), where Ni are quantum channels (i = 1, 2), to a sufficient degree to determine
whether these channels satisfy the additivity conjecture. In general, calculating the mini-
mum output entropy of a channel is a difficult task: Beigi and Shor showed in [BS07, Thm.
4.2] that the following problem is NP-complete: given a quantum channel N and a scalar
c > 0, determine whether Hmin(N ) < c. They proved that this problem is a reduction from
2-Out-of-4-SAT, which is an NP-complete problem, hence the problem of determining whether
Hmin(N ) < c is itself an NP-hard problem. Furthermore, it is NP-complete (which are precisely
those NP-hard problems that are themselves NP), because checking whether H(N (ρ)) < c for
a given witness state ρ can be achieved in polynomial time.

We will therefore focus on the low-dimensional case, where we can use specific tools that
make the computation of Hmin tractable. To investigate whether two channels Ni (for i = 1, 2)
violate the additivity conjecture, i.e. Hmin(N1 ⊗ N2) < Hmin(N1) + Hmin(N2), we need to find
a good lower bound for the quantities Hmin(Ni), and a good upper bound for the quantity
Hmin(N1 ⊗ N2). In this chapter, we discuss the theory for both: we use ϵ-covers to find lower
bounds for Hmin(Ni), and we use heuristic optimization schemes based on particle swarm
optimization to approximate Hmin(N1 ⊗ N2) from above. Let us commence with investigating
the continuity of the von Neumann entropy, which is essential for the use of ϵ-covers.

8.1. Continuity bounds
It is well-known that, given a finite-dimensional Hilbert space H, the von Neumann entropy
H : S(H) → R given by H(ρ) = −Tr(ρ log ρ) is continuous. Hence, one can investigate whether
evaluating H(Φ(ρ)), where Φ is a quantum channel, for sufficiently many states ρ, together
with the continuity of H, can yield a lower bound for the minimum output entropy Hmin(Φ).

Firstly, note that the von Neumann entropy is concave, i.e. H(
∑k
i=1 piρi) ⩾

∑k
i=1 piH(ρi),

where k ∈ N, ρi ∈ S(H) and pi ⩾ 0 such that
∑
i pi = 1. Given a quantum channel Φ : S(H1) →

S(H2), we see that H ◦ Φ : S(H1) → R is also concave. Hence, as the space of states S(H1)
is compact and convex, we know that the minimal output entropy of a quantum channel is
always achieved on an extreme point of S(H1), which are the pure states on H1. We can thus
restrict our attention to solving Hmin(Φ) = min|ψ⟩H(Φ(|ψ⟩⟨ψ|)) where the minimum is over all
|ψ⟩ ∈ H1 with ∥ψ∥ = 1.

Apart from restricting our attention to the pure input states, we also need a continuity
estimate of the output entropy. A famous result is the Fannes continuity inequality, which

78
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reads:
|H(ρ) −H(σ)| ⩽ 2T log2(d) − 2T log2(2T ) for 0 ⩽ T ⩽ 1/2e, (8.1)

where T = T (ρ, σ) = ∥ρ − σ∥1/2 is the normalized trace distance, where ∥ · ∥1 denotes the
trace norm ∥X∥1 := Tr

(√
X†X

)
, and where d = dim H. For larger T , a weaker estimate holds

[Aud07]. However, Audenaert provided a better bound that holds everywhere:

Theorem 8.1.1: Sharp continuity bound for H

[Aud07] The sharpest possible continuity bound for the von Neumann entropy, using
only knowledge of the normalized trace distance T and the dimension d is:

|H(ρ) −H(σ)| ⩽ T log2(d− 1) +H2(T ), (8.2)

where H2 is the binary entropy H2(p) = −p log2(p) − (1 − p) log2(1 − p) for p ∈ [0, 1] , and
T = T (ρ, σ) = ∥ρ− σ∥1/2, so T ∈ [0, 1].

We can combine the previous continuity result for H with the monotonicity property of the
trace norm: it is well-known that we have ∥Φ(ρ) − Φ(σ)∥1 ⩽ ∥ρ− σ∥1, where Φ : S(H1) → S(H2)
is a quantum channel and ρ, σ ∈ S(H1), see for example [Wil13]. Let us now combine this
with the fact that the minimum output entropy is achieved on a pure state by the concavity
of the von Neumann entropy, we can write:

Proposition 8.1.1

Given a quantum channel Φ : S(H1) → S(H2), and given two pure states ρ := |ψ⟩⟨ψ| and
σ := |ϕ⟩⟨ϕ| with the assumption |⟨ψ|ϕ⟩| ⩾ 1

2
√

3 (equivalently, ∥σ−ρ∥1 ⩽ 1). Let d2 := dim H2,
then we have:

|H(Φ(ρ)) −H(Φ(σ))| ⩽
√

1 − |⟨ψ|ϕ⟩|2 log2(d2 − 1) +H2(
√

1 − |⟨ϕ|ψ⟩|2). (8.3)

Proof. We can directly estimate using Audenaert’s result:

|H(Φ(ρ)) −H(Φ(σ))| ⩽ 1
2 ∥Φ(ρ) − Φ(σ)∥1 log2(d2 − 1) +H2(∥Φ(ρ) − Φ(σ)∥1/2). (8.4)

Then, note that H2 is a monotonically increasing function on the interval [0, 1/2], so if we
additionally assume ∥Φ(ρ) − Φ(σ)∥1 ⩽ 1, then using the monotonocity property of the trace
norm:

1
2∥Φ(ρ)−Φ(σ)∥1 log2(d2 −1)+H2(∥Φ(ρ)−Φ(σ)∥1/2) ⩽ 1

2∥ρ−σ∥1 log2(d2 −1)+H2(∥ρ−σ∥1/2). (8.5)

Note that by the same monotonicity property of the trace norm, the previous inequality is in
particular valid for ∥ρ− σ∥1 ⩽ 1. But this is precisely the assumption |⟨ψ|ϕ⟩| ⩾

√
3

2 , using the

fact that for pure states the trace distance evaluates to: ∥|ψ⟩⟨ψ| − |ϕ⟩⟨ϕ|∥1 = 2
√

1 − |⟨ϕ|ψ⟩|2.

Although the previous proposition gives a clear recipe for the continuity of the output
entropy for a channel Φ, the trace norm ∥ · ∥1 is a difficult norm to work with. Luckily, we can
switch to the familiar Euclidean norm with a penalty of a factor 2:

Proposition 8.1.2

For pure states ρ := |ψ⟩⟨ψ| and σ := |ϕ⟩⟨ϕ| for |ψ⟩ , |ϕ⟩ ∈ H, we have:

∥ρ− σ∥1 ⩽ 2∥ψ − ϕ∥2. (8.6)



8.2. ε-covers for the unit sphere Sn−1 in Rn 80

Proof. Note that ∥ϕ−ψ∥2
2 = ⟨ψ−ϕ|ψ−ϕ⟩ = 2−2ℜ{⟨ψ|ϕ⟩}.We claim that 2−2ℜ{⟨ψ|ϕ⟩} ⩾ 1−|⟨ϕ|ψ⟩|2.

Then, using the expression ∥ρ−σ∥2
1 = 4−4|⟨ϕ|ψ⟩|2, the proposition follows. To verify the claim,

write ⟨ψ|ϕ⟩ = a+ bi, then the claim translates to 2 − 2a ⩾ 1 − (a2 + b2) ⇐⇒ a(a− 2) + b2 ⩾ −1,
but the right-hand side is always true as trivially b2 ⩾ 0 and a(a−2) ⩾ −1 for all a ∈ R. Hence,
the claim follows.

Remark 8.1.1. Note that the bound in Proposition 8.1.2 can be very loose for certain inputs,
for example |ψ⟩ = − |ϕ⟩ yields ∥ρ − σ∥1 = 0, whilst ∥ψ − ϕ∥2 = 2. However, the bound is the
sharpest possible: say |ψ⟩ = ε |ϕ⟩ +

√
1 − ε2 |ϕ⊥⟩ for some |ϕ⊥⟩ that is perpendicular to |ϕ⟩ and

some ε ∈ [−1, 1]. One can calculate that

∥ψ − ϕ∥2 =
√

2 − 2ℜ{⟨ϕ|ψ⟩} =
√

2 − 2ε ; ∥σ − ρ∥1 =
√

4 − 4|⟨ϕ|ψ⟩|2 =
√

4 − 4ε2. (8.7)

This yields
∥σ − ρ∥1

2∥ϕ− ψ∥2
= 2

√
1 − ε2

2
√

2
√

1 − ε
= 1√

2
√

1 + ε. (8.8)

This can be brought arbitrarily close to 1 by letting ε ↗ 1. Note that the bound can never
be achieved with equality for |ψ⟩ ≠ |ϕ⟩. Namely, this would demand that 4 (2 − 2ℜ{⟨ϕ|ψ⟩}) =
4 − 4|⟨ψ|ϕ⟩|2, and setting ⟨ϕ|ψ⟩ := a+ bi, this reduces to 8 − 8a = 4 − 4(a2 + b2), which refactors
to (a − 1)2 + b2 = 0, i.e. a = 1 and b = 0. However, this implies |ψ⟩ = |ϕ⟩, which is the trivial
case. Hence, no choice of the states |ψ⟩ ≠ |ϕ⟩ results in ∥ρ− σ∥1 = 2∥ψ − ϕ∥2.

The previous Proposition 8.1.2 allows us to recast Proposition 8.1.1 to:

Theorem 8.1.2

Given a quantum channel Φ : S(H1) → S(H2), and given two pure states ρ := |ψ⟩⟨ψ| and
σ := |ϕ⟩⟨ϕ| with the assumption ∥ψ − ϕ∥2 ⩽ 1

2 . Let d2 := dim H2, then we have:

|H(Φ(ρ)) −H(Φ(σ))| ⩽ ∥ψ − ϕ∥2 log2(d2 − 1) +H2(∥ψ − ϕ∥2), (8.9)

Proof. By T (ρ, σ) = ∥ρ−σ∥1/2 ⩽ ∥ψ−ϕ∥2 as seen in Proposition 8.1.2, the assumption ∥ψ−ϕ∥2 ⩽
1
2 implies ∥ρ − σ∥1 ⩽ 1, which means that Proposition 8.1.1 holds. Again using the fact that
H2 monotonically increases on [0, 1/2], the proposition follows.

We are now at a stage where we can start to investigate how the previous continuity results
can be leveraged to numerically determine a lower bound for the minimum output entropy
of a quantum channel Φ: we should sample enough unit vectors ∥ϕ∥ from H1, calculate the
output entropy for these vectors, and estimate the maximal deviation of the output entropy
between those “nodes” by using Theorem 8.1.2. This naturally leads us to the investigation
of good choices of these “nodes” on the unit sphere of H1, which we will introduce as ε-covers
in the following section.

8.2. ε-covers for the unit sphere Sn−1 in Rn

Ideally, one would like to sample the unit sphere in such a way that the sample points are
as equally distributed as possible. Let us establish a few definitions from computational
geometry to help us formulate this precisely.

8.2.1. Definitions and properties of ε-covers
We will follow [HMS16] and [Cla06]. Let us assume we have a metric space (X, d). Given a
subset L ⊆ X and a point x ∈ X, the minimal distance of x to L is denoted by d(x, L), i.e.
d(x, L) := infy∈L d(x, y). Note that, if L is compact, this minimal distance is actually achieved
at some point y ∈ L. Note that if L is finite, it is automatically compact.
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Definition 8.2.1

Given a subset L ⊆ X of a metric space (X, d), the separation of L is defined as the
minimal distance between any two distinct points in L, i.e. Sep(L) := minξ ̸=η∈L d(ξ, η).
We say that L is ε-separated if Sep(L) ⩾ ε. In this case L is sometimes also called an
ε-packing .

Definition 8.2.2

Given a subset L ⊆ X of a compact metric space (X, d), the covering radius of L is
defined as the maximal distance between a point in X and the set L, i.e. Cov(L) :=
maxξ∈X minη∈L d(ξ, η) = maxξ∈X d(ξ, L). We say that L is an ε-cover of X if Cov(L) ⩽ ε.

Definition 8.2.3

A subset L ⊆ X of a compact metric space (X, d) is called an (εp, εc)-Delone set if L is an
εp-packing and an εc-covering. If εp = εc = ε, one often calls (ε, ε)-Delone sets also ε-nets.
In literature, Delone sets are sometimes called Delaunay sets.

To summarize, ideally we would like to discretize the unit sphere Sn−1 in Cn ≃ H1, say by
picking a finite set of points A ⊆ Sn−1, such that A is an ε-covering of Sn−1 for a given small
ε > 0. Ideally, we would like A to be an (ε, ε)-Delone set, i.e. an ε-net, as this would also mean
we are not over-sampling parts of the sphere (because ε-nets have to be ε-separated).

8.2.2. Difficulty of finding good ε-covers
The problem of finding good distributions of points on the sphere has attracted a lot of scien-
tific attention in computational geometry, combinatorial theory and data sciences, but also
beyond those: it is related to biology, for example, through the Tammes problem, which is a
packing problem that seeks to maximize the minimal distance between N points on a sphere,
which is related to the distribution of pores on pollen grains. It is also related to physics,
for example through the generalized Thomson problem, which seeks to minimize the Riesz
s-energy

∑
1⩽i<j⩽N ∥xi − xj∥−s for some s > 0 and a finite set of variables {xi}Ni=1 ⊆ Sn−1. For

s = 1, the Riesz s-energy is the Coulomb law, and thus Thomson’s problem seeks to find the
optimal placement of N electrons on a sphere such that their electric potential is minimized
[SK97]. These problems are highly non-trivial: only in 2015 the Tammes problem was solved
for N = 14 [MT15]. Our problem does not precisely deal with the packing problem, nor with
the energy minimization problem, however, but with a variant of the covering problem, where
we are given a precision ε, and the task is to find the minimal number of points N and their
locations {xi}Ni=1 ⊆ Sn−1 such that their covering radius maxy∈Sn−1 min1⩽i⩽N ∥y−xi∥2 is smaller
than or equal to ε, which has also attracted research [Rog63, Don97, BW03, VG04, DPP06].

8.2.3. Upper and lower bounds for the size of ε-covers
Let us commence with some lower bounds on how large ε-coverings must be, and an upper
bound on how large they have to be by considering one particular ε-covering. The following
proposition is a small refinement of [HLSW04, Lemma II.4] using the same argument:

Proposition 8.2.1: Upper bound for the size of an ε-covering of Sn−1

Given n ∈ N and ε > 0, an ε-cover A of Sn−1 exists with size

|A| ⩽ U(n, ε) :=
( 2
ε + 1

)n −
( 2
ε − 1

)n
. (8.10)

Proof. We claim that we can pick a maximal ε-separated subset Aε of Sn−1, i.e. no subset of
Sn−1 exists that properly contains Aε and is itself also ε-separated. We apply Zorn’s lemma:
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consider the collection P of all subsets A ⊂ Sn−1 that are ε-separated. Partially order P by
set-inclusion. Consider a chain T ⊆ P, i.e. a totally ordered collection {Ai : i ∈ I} of ε-
separated subsets of Sn−1. We claim that this chain has an upper bound A :=

⋃
i∈I Ai ∈ P.

Pick any x, y ∈ A. Then find i, j ∈ I such that x ∈ Ai and y ∈ Aj. Let k := max(i, j), then, as T
is totally ordered, Ai, Aj ⊆ Ak, so x, y ∈ Ak. But Ak is ε-separated, so ∥x− y∥ ⩾ ε. This shows
that A ∈ P. Now, by Zorn’s lemma, P has at least one maximal element, say Aε.

It is clear that Aε is not only ε-separated, but also an ε-net: if not, one can find an x0 ∈ Sn−1

such that ∥x0 − x∥ ⩾ ε for all x ∈ Aε, but then Aε ∪ {x0} is ε-separated and properly includes
Aε, which is a contradiction to the maximality of Aε.

By the ε-separation of Aε, we know that n-dimensional open balls B(x, ε/2) of radius ε/2
and with centers x ∈ Aε are disjoint. They are always contained in the set B(0, 1+ε/2)\B(0, 1−
ε/2). Hence, we have:

|Aε|V (ε/2) ⩽ V (1 + ε/2) − V (1 − ε/2), (8.11)
where V (a) is the volume of an n-ball with radius a > 0. We have V (a) = anVn, where Vn is
the volume of the unit n-ball, which is well known: Vn = πn/2/Γ(n/2 + 1). Hence, we find:

|Aε| ⩽
((1 + ε/2)n − (1 − ε/2)n)Vn

(ε/2)nVn
=
(

2
ε

+ 1
)n

−
(

2
ε

− 1
)n

=: U(n, ε). (8.12)

Remark 8.2.1. Note that the size of the bound for |Aε| increases rapidly for fixed n and ε ↓ 0:
the leading term of U(n, ε) is 2n(2/ε)n−1. For example, for n = 5 and ε = 0.01, the bound
for |A0.01| evaluates to approximately 1.6 · 1010. For n = 15 and ε = 0.1, the upper bound is
approximately 5.3 · 1019.

Remark 8.2.2. Note that other upper bounds exist in literature: Rogers established in
[Rog63] that for R > 1 and n ⩾ 9, an n-sphere of radius R has a cover consisting of unit
spheres, whose size is smaller than cn log(n)Rn if R > n and cn5/2Rn when R < n, where c is
some constant independent of n and R. See also [DPP06]. As [Don97] points out, the number
of ε-spheres one needs to cover a ρ-sphere is equal to the number of 1-spheres one needs to
cover a ρ/ε-sphere, so we let ρ := 1 and thus R = 1/ε, and we see that in our language, an
ε-cover Bε must exist such that

|Bε| ⩽
{
cn log(n)ε−n ε < 1/n,
cn5/2ε−n 1/n < ε < 1.

(8.13)

Other upper bounds in certain circumstances are also known, see for example [BW03, VG04].

Apart from an upper bound, we can also find lower bounds for the size of ϵ-covers:

Proposition 8.2.2: Lower bound for the size of an ε-covering of Sn−1

Given n ∈ N and ε > 0, any ε-covering A of Sn−1 must have a size of at least:

|A| ⩾ L(n, ε) := sup
δ∈(0,1)

L(n, ε, δ) where L(n, ε, δ) := (1 + δ)n − (1 − δ)n
(ε+ δ)n . (8.14)

Proof. Given an ε-covering A of Sn−1, we wish to use a volumetric argument again. We claim
that A is also an (ε+δ)-covering of Θ(δ) := B(0, 1+δ)\B(0, 1−δ) for any δ ∈ (0, 1), where B(0, 1)
is the closed unit n-ball (hence, Θ(δ) is a spherical shell with inner radius 1 − δ and outer
radius 1 + δ). To see this, take any point z ∈ Θ(δ), and put y := z/∥z∥ such that y ∈ Sn−1. By
the definition of Θ(δ), ∥z− y∥ ⩽ δ. Pick x ∈ A such that ∥x− y∥ ⩽ ε. By the triangle inequality,
it follows that ∥x− z∥ ⩽ ε+ δ, and hence A is an (ε+ δ)-covering of Θ(δ).

But then, as Θ(δ) ⊆ ⋃x∈AB(x; ε+ δ), we also have

vol (Θ(δ)) ⩽ vol

(⋃
x∈A

B(x; ε+ δ)
)

⩽
∑
x∈A

vol
(
B(x; ε+ δ)

)
= |A|(ε+ δ)nVn. (8.15)
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The volume of Θ(δ) can be evaluated as ((1 + δ)n − (1 − δ)n)Vn, which yields:

|A| ⩾ (1 + δ)n − (1 − δ)n
(ε+ δ)n =: L(n, ε, δ) (8.16)

As δ ∈ (0, 1) was arbitrary, the proposition follows.

Proposition 8.2.3

The lower bound Ln,ε can be estimated with

L(n, ε) ⩾ L1(n, ε) where L1(n, ε) = L(n, ε, ε/(n− 1)) =

(
1 + ε

n− 1

)n
−
(

1 − ε

n− 1

)n
(

n

n− 1ε
)n ,

(8.17)
and furthermore, the latter quantity can again be estimated by

L1(n, ε) ⩾ L2(n, ε) ⩾ L3(n, ε) where L2(n, ε) := 2(1 − 1/n)n−1ε−n+1

and L3(n, ε) := 2e−1ε−n+1. (8.18)

Proof. The results in this proposition can be found by approximating the unique maximum
of δ 7→ L(n, ε, δ). For a calculation, please see Section A.1.

Remark 8.2.3. Other lower bounds are also known in literature: for example, Wyner estab-
lished in [Wyn67] that “the minimum number of caps of half-angle θ required to cover the
unit Euclidean n-sphere” is equal to exp (−n log sin θ + O(n)).

Remark 8.2.4. Let us investigate how fast this lower bound grows with n and ε:
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Figure 8.1: The lower bound L(n, ε) for different values of n and ε.

Now that we have established some notion of the sizes of the ε-coverings involved, we can
propose two naive ways of building ε-nets for Sn−1, based on either discretizing the Cartesian
coordinates, or discretizing the n-spherical coordinates.
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8.2.4. ε-covering A(1)
n,ε : discretization of Cartesian coordinates

By discretizing each coordinate xi for 1 ⩽ i ⩽ n separately over the interval [−1, 1], we can find
an ε-covering of the unit cube [−1, 1]n. Using Sn−1 ⊆ [−1, 1]n, this directly yields an ε-covering
A

(1)
n,ε for Sn−1, although we must stress that the vectors in A

(1)
n,ε are generally not unit vectors!

We discretize the coordinate xi by setting x(j)
i := −1 + 2j/(t− 1) for 1 ⩽ j ⩽ t for some natural

number t. We choose a parameter δ > 0 that depends on n and ε (we will later precisely specify
this dependency), and then we choose t such that:∣∣∣x(j)

i − x
(j+1)
i

∣∣∣ = 2
t− 1 ⩽ 2δ =⇒ t ⩾ 1 + 1

δ
so pick t = 1 + ceil

(
1
δ

)
. (8.19)

Then, we will define A(1)
n,ε as the collection of all vectors ϕ(i1,...,in) with components ϕ(i1,...,in)

m =
x

(im)
m , for any tuple (i1, . . . , in) with 1 ⩽ ij ⩽ t for all 1 ⩽ j ⩽ n.

Theorem 8.2.1: A(1)
n,ε is an ε-covering

Given ε > 0 and n ∈ N, pick δ ⩽ ε/
√
n. Construct the set A(1)

n,ε containing all ϕ(i1,...,in)

for which its m’th coordinate satisfies ϕm = x
(im)
m . Then, we have for any unit vector

ψ ∈ Sn−1:
min
ϕ∈A

∥∥∥ψ − ϕ(i1,...,in)
∥∥∥

2
⩽ ε. (8.20)

Proof. Given a unit vector ψ, denote with ψm the m-th coordinate. For each m, pick an x
(im)
m

such that |ψm − x
(im)
m | ⩽ δ, which is possible as the xi are distributed uniformly over [−1, 1]

with spacing 2δ, and ψm ∈ [−1, 1], so it is at worst precisely halfway between two xi. Compose
the vector ϕ(i1,...,in) ∈ A consisting of the coefficients x

(im)
m , then clearly ∥ψ − ϕ(i1,...,in)∥2

2 =∑n
m=1

∣∣∣ψm − x
(im)
m

∣∣∣2 ⩽
∑n
m=1 δ

2 = nδ2. Hence, if we pick δ
√
n ⩽ ε, the theorem follows.

Proposition 8.2.4: The size of A(1)
n,ε

Given n ∈ N and ε > 0, the ε-net A(1)
n,ε has size |A(1)

n,ε| =
(

1 + ceil
(√

n
ε

))n
.

Proof. This follows directly from t = 1 + ceil(1/δ) and δ = ε/
√
n.

Remark 8.2.5. For n = 5 and ε = 0.01, we have δ ≈ 0.00447 and |A(1)
n,ε| ≈ 5.8 · 1011. We compare

this to the lower bound L5,0.01 ≈ 8.2 · 107 and upper bound (for the maximal ε-nets, whilst A(1)
n,ε

is δ-separated and not ε-separated!) U5,0.01 ≈ 1.6 ·1010, and see that smallers ε-coverings than
A

(1)
n,ε must exist. For n = 15 and ε = 0.1, we have δ ≈ 0.0258 and |A(1)

n,ε| ≈ 1.07 · 1024. We again
compare this to the lower bound L15,0.1 ≈ 7.6 · 1013 and upper bound U15,0.1 ≈ 5.3 · 1019.
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Figure 8.2: Left: The size |A(1)| of ε-cover A(1) for different values of n and ε. Right: The relative size |A(1)|/L(n, ε)
for different values of n and ε.

8.2.5. ε-covering A(2)
n,ε: discretization of n-spherical coordinates

Two large drawbacks occur in the previous construction of the ε-covering: the size of the
covering A(1)

n,ε is suboptimal (i.e., smaller ε-coverings must exist), and the vectors in A
(1)
n,ε are

not actually unit vectors. We can mitigate the second challenge by discretizing angles, instead
of coordinates. We use generalized n-spherical coordinates, which look like:

x1 = cos(α1)
x2 = sin(α1) cos(α2)
x3 = sin(α1) sin(α2) cos(α3)

... (8.21)
xn−1 = sin(α1) · · · sin(αn−2) cos(αn−1)
xn = sin(α1) · · · sin(αn−2) sin(αn−1).

0 ⩽ α1, . . . , αn−2 ⩽ π , 0 ⩽ αn−1 < 2π.

We discretize α(j)
i = πj/(t1 − 1) for some t1 ∈ N that we will specify later, and 0 ⩽ j ⩽ t1 − 1

and 1 ⩽ i ⩽ n− 2. Furthermore, we discretize α(j)
n−1 = 2π(j − 1)/t2 for some t2 ∈ N that we will

specify later, and 1 ⩽ j ⩽ t2, such that α(1)
n−1 = 0 and α

(t2)
n−1 = 2π(t2 − 1)/t2, as αn−1 should be

sampled on the half-open interval [0, 2π). Let us introduce a parameter δ > 0 that depends on
ε and n (we will later precisely specify this dependency), and then pick t1 such that for any
1 ⩽ i ⩽ n− 2:

|α(j)
i − α

(j+1)
i | = π/(t1 − 1) < 2δ =⇒ t1 > 1 + π

2δ so pick t1 = 1 + ceil
( π

2δ

)
. (8.22)

Furthermore, let us pick t2 similarly for αn−1, but now for a range 2π, which yields:

|α(j)
n−1 − α

(j+1)
n−1 | = 2π

t2
⩽ 2δ =⇒ t2 ⩾

2π
2δ so pick t2 = ceil

(π
δ

)
. (8.23)

Then, letA(2)
n,ε be the collection of all unit vectors ϕ(i1,...,in−1) whose n-spherical angles (α1, . . . , αn−1)

as described in Equation (8.21) are given by αj = α
(ij)
i for 1 ⩽ j ⩽ n− 1 as described by Equa-

tion (8.21), and αn−1 = α
(in−1)
n−1 as described by Equation (8.23). Before we prove that A(2)

n,ε is an
ε-cover, we need to pick δ appropriately. We need to be able to bound the distance between two



8.2. ε-covers for the unit sphere Sn−1 in Rn 86

unit vectors ϕ and ψ with small differences in each n-spherical angle. Firstly, note that if two
angles α and β satisfy |α−β| ⩽ δ, then by the Mean Value Theorem we have | sin(α)−sin(β)| ⩽ δ
and | cos(α)−cos(β)| ⩽ δ. We identify multiple methods to bound the distance between two unit
vectors ϕ and ψ with n-spherical angles (α1, . . . , αn−1) and (β1, . . . , βn−1), respectively, where
|αi − βi| is small:

1. Bounding the terms |ϕm − ψm| for 1 ⩽ m ⩽ n by using a telescoping sum. As the com-
ponents are of the form sin(α1) · · · sin(αm−1) cos(αm), this can be achieved by using the
identity

b1 · · · bm − a1 · · · am =
m∑
k=1

a1 · · · am−k(bm−k+1 − am−k+1)bm−k+2 · · · bm, (8.24)

in combination with the triangle inequality. Further using that | sin(α) − sin(β)| ⩽ δ and
| cos(α) − cos(β)| ⩽ δ if |α − β| ⩽ δ, this yields an estimate of the form |ϕm − ψm|2 ⩽
m2δ2. Summing over these terms, and taking the square root, results in the rule
δ
√
n(n+ 1)(2n+ 1)/6 ⩽ ε. The resulting bound is quite loose due to the overuse of the

triangle inequality.
2. Bounding the terms |ϕm−ψm| for 1 ⩽ m ⩽ n by using a multivariate first-order Taylor ap-

proximation of functions fm given by fm(α1, . . . , αm) = sin(α1) · · · sin(αm−1) cos(αm), where
we identify ϕm = fm(α1, . . . , αm) and ψm = fm(β1, . . . , βm). The Lagrange rest term can
be estimated as δ2m2/2, and the size of the first order derivatives can be recast into an
optimization problem with a unique solution. This yields the estimate

|ψm − ϕm| ⩽ δ (1 − 1/m)m/2 ·
(√
m− 1 + 1/

√
m− 1

)
+ δ2m2/2, (8.25)

which yields the rule δg(n) ⩽ ε, where g scales slightly worse than O(n). See Lemma A.1.1.
The resulting bound is imperfect, because the size of the first order derivatives in the
Taylor expansion is bounded individually for each component |ϕm − ψm|, instead of a
“global” bound for the squared sum of all components.

3. Estimating ∥ϕ − ψ∥2 by first rotating ψ and ϕ such that either ψ or ϕ is rotated to the
vector (1, 0, . . . , 0), and then combining the components of the other vector using the
sum and difference formulae for cosines and sines. This yields the rule δ

√
n− 1 ⩽ ε.

The third method leads to the best bound, and will therefore be fully explained in the following
subsection.

Estimating ∥ϕ− ψ∥ in n-spherical coordinates using rotations
Given a unit vector ψ, we pick the best approximation ϕ(i1,...,in−1) that is in the ε-net A(2)

n,ε.
Then, we rotate ψ back to the “north pole” (1, 0, . . . , 0), and look at the angles corresponding
to the rotated version of ϕ(i1,...,in−1). Let us introduce notation.

Definition 8.2.4: 2D rotation

In two dimensions, as rotation matrix R(α) rotates a vector counterclockwise over an

angle α. The matrix R(α) is given by R(α) =
(

cosα − sinα
sinα cosα

)
.

Definition 8.2.5: Embedding of 2D rotation in n dimensions

In n dimensions, we can “embed” a two-dimensional rotation as a rotation of 2 canonical
axes around the previous axis as:

Rk(α) := 1k−1 ⊕R(α) ⊕ 1n−k−1, (8.26)

where 1m denotes the m×m identity matrix. Note that Rk(α) is a square n× n matrix.
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Remark 8.2.6. Note that the matrix Rk(α) are indeed rotations in n dimensions:

Rk(α)⊤ = 1k−1 ⊕R(α)⊤ ⊕ 1n−k−1 = 1k−1 ⊕R(α)−1 ⊕ 1n−k−1 = Rk(α)−1, (8.27)

and detRk(α) = detR(α) = 1, hence Rk(α) ∈ SO(n).

Lemma 8.2.1: Approximation lemma

Given a unit vector ϕ with n-spherical angles (α1, . . . , αn−1), and a unit vector ψ with
n-spherical angles (β1, . . . , βn−1). Assume that |βi − αi| ⩽ δ for all 1 ⩽ i ⩽ n − 1, then we
have:

∥ψ − ϕ∥2
2 ⩽ (n− 1)δ2. (8.28)

Proof. Rotate ϕ by Rn−1(−αn−1), and call the result ϕ(1). This only affects the coordinates ϕn
and ϕn−1, which become:(

ϕ
(1)
n−1
ϕ

(1)
n

)
= R(−αn−1)

(
ϕn−1
ϕn

)
=
(

cosαn−1 sinαn−1
− sinαn−1 cosαn−1

)
sn−2(α)

(
cosαn−1
sinαn−1

)
= sn−2(α)

(
cos2 αn−1 + sin2 αn−1

− cosαn−1 sinαn−1 + sinαn−1 cosαn−1

)
= sn−2(α)

(
1
0

)
, (8.29)

where we use the shorthand notation sk(α) := sin(α1) · · · sin(αk) for k ∈ N. Hence, precisely by
construction, we rotated ϕn to 0. Then, rotate ϕ(1) by Rn−2(−αn−2), and call the result ϕ(2).
Clearly, this only affects ϕ(1)

n−2 and ϕ
(1)
n−1. We can again write down:(

ϕ
(2)
n−2
ϕ

(2)
n−1

)
= R(−αn−2)

(
ϕ

(1)
n−2
ϕ

(1)
n−1

)
=
(

cosαn−2 sinαn−2
− sinαn−2 cosαn−2

)
sn−3(α)

(
cosαn−2
sinαn−2

)
= sn−3(α)

(
cos2 αn−2 + sin2 αn−2

− cosαn−2 sinαn−2 + sinαn−2 cosαn−2

)
= sn−3(α)

(
1
0

)
. (8.30)

So, by the same argument, we’re rotating ϕ(1)
n−1 to 0. Continue rotating each ϕ(k) until we reach

ϕ(n−2), which we rotate by R1(−α1) to get ϕ(n−1) = (1, 0, . . . , 0). We now need to investigate what
happens to ψ with the same rotations. Let us consider the first rotation Rn−1(−αn−1):(

ψ
(1)
n−1
ψ

(1)
n

)
=
(

cosαn−1 sinαn−1
− sinαn−1 cosαn−1

)(
ψn−1
ψn

)
=
(

cosαn−1 sinαn−1
− sinαn−1 cosαn−1

)
sn−2(β)

(
cosβn−1
sin βn−1

)
(8.31)

= sn−2(β)
(

cosαn−1 cosβn−1 + sinαn−1 sin βn−1
− sinαn−1 cosβn−1 + cosαn−1 sin βn−1

)
= sn−2(β)

(
cos(βn−1 − αn−1)
sin(βn−1 − αn−1)

)
.

(8.32)

The term ψn is not changed by further rotations, but the coordinate ψn−1 is changed by the
next rotation. We calculate:(

ψ
(2)
n−2

ψ
(2)
n−1

)
=
(

cosαn−2 sinαn−2
− sinαn−2 cosαn−2

)
sn−3(β)

(
cosβn−2

sin βn−2 cos(βn−1 − αn−1)

)
(8.33)

= sn−3(β)
(

cosαn−2 cosβn−2 + sinαn−2 sin βn−2 cos(βn−1 − αn−1)
− sinαn−2 cosβn−2 + cosαn−2 sin βn−2 cos(βn−1 − αn−1)

)
. (8.34)

We can still approximate the angles in the last expression. We abbreviate cαk := cos(αk),
cβk := cos(βk) and similarly sαk := sin(αk) and sβk := sin(βk), and cβ−αk := cos(βk − αk) and we see:(

ψ
(2)
n−2

ψ
(2)
n−1

)
= sn−3(β)

 cαn−2c
β
n−2 + sαn−2s

β
n−2 + sαn−2s

β
n−2

(
cβ−αn−1 − 1

)
−sαn−2c

β
n−2 + cαn−2s

β
n−2 + cαn−2s

β
n−2

(
cβ−αn−1 − 1

) (8.35)

= sn−3(β)

cβ−αn−2 + sαn−2s
β
n−2

(
cβ−αn−1 − 1

)
sβ−αn−2 + cαn−2s

β
n−2

(
cβ−αn−1 − 1

) . (8.36)
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In general, we see that for a parameter qk we have(
cosα sinα

− sinα cosα

)(
cosβ

sin(β) · qk

)
=
(

cosα cosβ + sinα sin β + sinα sin(β) (qk − 1)
− sinα cosβ + cosα sin β + cosα sin(β) (qk − 1)

)
(8.37)

=
(

cos(β − α) + sinα sin(β) (qk − 1)
sin(β − α) + cosα sin(β) (qk − 1)

)
. (8.38)

Hence, each rotation, the parameter qk is transformed as qk 7→ cos(β−α)+sin(α) sin(β)(qk−1) :=
qk+1, as only the topmost element of the 2-dimensional vector is relevant in the next rotation.
Starting from t0 = 1 before the first rotation, we see

q0 = 1 (8.39)

q1 = cβ−αn−1 (8.40)

q2 = cβ−αn−2 + sαn−2s
β
n−2

(
cβ−αn−1 − 1

)
(8.41)

q3 = cβ−αn−3 + sαn−3s
β
n−3

(
cβ−αn−2 − 1 + sαn−2s

β
n−2

(
cβ−αn−1 − 1

))
. (8.42)

We continue this pattern until we have rotated ψ the same as ϕ, and we see that the first
coordinate ψ(n−1)

1 becomes:

ψ
(n−1)
1 = qn−1 = cβ−α1 +sα1 s

β
1

(
cβ−α2 − 1

)
+sα1 s

β
1 s
α
2 s
β
2

(
cβ−α3 − 1

)
+ · · ·+sα1 s

β
1 · · · sαn−2s

β
n−2

(
cβ−αn−1 − 1

)
.

(8.43)
Hence, using the fact that we have

∥ϕ− ψ∥2
2 = ⟨ψ − ϕ|ψ − ϕ⟩ = 2 − 2ℜ {⟨ϕ|ψ⟩} = 2 − 2ℜ

{
⟨ϕ(n−1)|ψ(n−1)⟩

}
= 2 − 2ψ(n−1)

1 , (8.44)

we must estimate the expression found for ψ(n−1)
1 . We use cos(x) ⩾ 1 − x2/2 for any x ∈ R,

where the approximation becomes sharper as |x| → 0. By assumption, |βi−αi| ⩽ δ, hence the
first term can be estimated as cβ−α1 ⩾ 1 − δ2/2. Similarly, the other terms can be estimated,
using the fact that sin(γi) ⩾ 0 for 1 ⩽ i ⩽ n−2 and γ = α, β, as the first n−2 angles are between
0 and π. As cβ−αi − 1 ⩽ 0, we have

sα1 s
β
1 · · · sαk sβk

(
cβ−αk+1 − 1

)
⩾ cβ−αk+1 − 1 ⩾ −δ2/2. (8.45)

Thus, in total we get

ψ
(n−1)
1 ⩾ 1 − δ2/2 − δ2/2 − δ2/2 − · · · − δ2/2︸ ︷︷ ︸

n−2 times

= 1 − (n− 1)δ2/2, (8.46)

hence ∥ϕ− ψ∥2
2 ⩽ (n− 1)δ2, completing the proof.

Given this approximation lemma we can now prove:

Theorem 8.2.2: A(2)
n,ε is an ε-covering

Given an ε > 0, and n ∈ N. Pick δ ⩽ ε/
√
n− 1. Construct the set A(2)

n,ε containing all
ϕ(i1,...,in−1) whose n-spherical angles (α1, . . . , αn−1) as described in Equation (8.21) are
given by αj = α

(ij)
i for 1 ⩽ j ⩽ n − 1 as described by Equation (8.21), and αn−1 = α

(in−1)
n−1

as described by Equation (8.23). Then, given any unit vector ψ ∈ Sn−1:

min
ϕ∈A

∥∥∥ψ − ϕ(i1,...,in)
∥∥∥

2
⩽ ε. (8.47)
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Proof. Given a unit vector ψ ∈ Sn−1 with n-spherical angles β1 up to βn−1, pick ϕ(i1,...,in−1) ∈ A
(2)
n,ε

with n-spherical angles α
(ij)
j such that |α(ij)

j − βj | ⩽ δ, which is possible by the uniform
discretization of each spherical angle. Then, we satisfy the assumptions of Lemma 8.2.1,
hence

∥ϕ− ψ∥2
2 ⩽ (n− 1)δ2 ⩽ ε2. (8.48)

Size of ε-covering A
(2)
n,ε

Perhaps surprisingly, the size of A(2)
n,ε does not simply evaluate to tn−2

1 t2, but is actually slightly
smaller. This is due to the fact that multiple choices of the discretized angles α(j)

i yield the
same unit vector ϕ(i1,...,in−1): if any of the angles αi is either 0 or π, then all coordinates
xi+1 up to xn are automatically 0 as they include a factor sin(αi). This leads to the following
proposition:

Proposition 8.2.5: The size of A(2)
n,ε

Given the ε-covering A(2)
n,ε for some n ∈ N and ε > 0, we have

∣∣∣A(2)
n,ε

∣∣∣ = (t1 − 2)n−2t2 + 2
n−2∑
k=1

(t1 − 2)n−2−k, (8.49)

where t1 := 1 + ceil( π2δ ) and t2 := ceil(πδ ), and δ := ε/
√
n− 1.

Proof. We remind the reader that α(j)
i := πj/(t1 − 1) for 1 ⩽ i ⩽ n− 2 and 0 ⩽ j ⩽ t1 − 1, whilst

α
(j)
n−1 := 2π(j − 1)/t2 for 1 ⩽ j ⩽ t2. If we restrict ourselves to the case where αi ̸= 0, π for

1 ⩽ i ⩽ n − 2, i.e. we exclude the endpoints of the discretization, we find that A(2)
n,ε contains

(t1 − 2)n−2t2 unique vectors.
Then, if we assume all αi ̸= 0, π for 1 ⩽ i ⩽ n − 3 and αn−2 = 0, π, the value of αn−1

is inconsequential, so we have 2 · (t1 − 1)n−3 unique vectors with αn−2 = 0, π. Similarly, if
we assume all αi ̸= 0, π for 1 ⩽ i ⩽ n − 4 and αn−3 = 0, π, the values of αn−2 and αn−1 are
inconsequential, yielding 2 · (t1 − 1)n−4 unique vectors. Continuing this process until we pick
α1 = 0, π (corresponding to the n-dimensional North and South poles (±1, 0, 0, . . . , 0)), the
expression for |A(2)

n,ε| in the proposition follows.
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Figure 8.3: Left: The size |A(2)| of ε-cover A(2) for different values of n and ε. Right: The relative size |A(2)|/L(n, ε)
for different values of n and ε.

8.2.6. ε-covering A(3)
n,ε: improved discretization of n-spherical coordinates

Although discretizing the n-spherical coordinates instead of the Cartesian coordinates gives
us an actual ε-cover of the sphere Sn−1 (instead of an ε-cover of the n-cube [−1, 1]n), it is most
certainly not a uniform distribution of points in the sense that it is not ϵ-separated – we can
easily visualize this in 3 dimensions, where this discretization procedure yields for example
the following:

Figure 8.4: Visualization of ε-cover A(2)
3,0.125.

This non-uniform distribution arises due to oversampling of points close to the North and
South pole – in other words, given any latitude given by α1, we always distribute t2 points over
the longitude, but this is a smaller circle around the North pole than around the equator. We
therefore somehow wish to take into account that, when one is closer to one of the poles, one
can sample the next angle more coarsely. After applying the method described below, this
yields:
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Figure 8.5: Visualization of ε-cover A(3)
3,0.125.

More uniform sampling using the effective radius
We remind the reader of the generalized n-spherical coordinates:

x1 = cos(α1) (8.50)
x2 = sin(α1) cos(α2) (8.51)
x3 = sin(α1) sin(α2) cos(α3) (8.52)

... (8.53)
xn−1 = sin(α1) · · · sin(αn−2) cos(αn−1) (8.54)
xn = sin(α1) · · · sin(αn−2) sin(αn−1). (8.55)

0 ⩽ α1, . . . , αn−2 ⩽ π , 0 ⩽ αn−1 < 2π. (8.56)

Now, presume the angles α1, . . . , αn−2 are given, and we need to discretize αn−1, which only
affects xn−1 and xn. If we consider the 2-dimensional plane where we draw xn−1 on the
x-axis and xn on the y-axis, we see that they are located on the circle with radius r =
sin(α1) · · · sin(αn−2), see Figure 8.6. If two points on this circle are separated by an an-
gle ∆, one can calculate that their Euclidean distance is 2r| sin(∆/2)|. Hence, if the pre-
vious angles α1, . . . , αn−2 change, giving a new radius r′ instead of r, if we wish to keep
the same distance between the sample points by using a separation angle ∆′, we require
2r| sin(∆/2)| = 2r′| sin(∆′/2)|. In the small-angle approximation sin(γ) ≈ γ, we therefore require
r∆ = r′∆′.

xn−1

xn

−1 1

1..

∆.
. ∆′

r

r′

Figure 8.6: Visualization of the distribution of the coordinates xn−1 and xn, given the radii
r := sin(α1) · · · sin(αn−2) and r′ := sin(α′

1) · · · sin(α′
n−2), and separation angles ∆ and ∆′.

This intuition remains true for the other angles as well: for example, consider that we
have to distribute α2, whilst α1, α3 and α4 are fixed. Let ϕ(γ1, . . . , γn) refer to the unit vector
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whose spherical coordinates are γi, then we see:

∥ϕ(α1, α2, α3, α4) − ϕ(α1, β2, α3, α4)∥2

= sin2(α1) (cos(α2) − cos(β2))2 + sin2(α1) (sin(α2) − sin(β2))2 ∥ϕ(α3, α4)∥2

= sin2(α1) (2 − 2 cos(α2 − β2)) = 4 sin2(α1) sin2((α2 − β2)/2), (8.57)

hence in the small angle approximation for α2 − β2 = ∆2 ≪ 1 we have the rule that if α1
changes to α′1, we require sin(α1)∆2 = sin(α′1)∆′2.

In general, we see that we can sample the angle αk with discretization steps of ∆k such
that r(α1, . . . , αk−1)∆k is invariant under the choice of α1, . . . , αk−1, where r is the effective
radius r(α1, . . . , αk−1) =

∏k−1
i=1 sin(αi). In other words, we must choose

∆k(α1, . . . , αk−1) = Ck∏k−1
i=1 sin(αi)

, (8.58)

where Ck is a constant independent of any of the angles αi.

Discretization scheme
Taking into account the more uniform sampling from the previous section, we therefore dis-
cretize the spherical angles as follows. Firstly, discretize α1 by α

(i1)
1 = π(i1 − 1)/(t1 − 1) for

1 ⩽ i1 ⩽ t1. Again, we introduce a parameter δ > 0 depending on ε and n (which we will
precisely specify later), and then pick t1 such that:

|α(i1)
1 − α

(i1+1)
1 | = π/(t1 − 1) ⩽ 2δ =⇒ t1 ⩾ 1 + π

2δ so we pick t1 = 1 + ceil
( π

2δ

)
. (8.59)

Then, given a discretized angle α(i1)
1 , we further discretize α2 by α(i2)

2 = π(i2 − 1)/(t2 − 1), and
here the total number of points t2 is a function of i1. Namely, the discretization step δ2 is now
dependent on i1, as we put

δ2 = min
{

δ

sinα(i1)
1

, π2

}
. (8.60)

Here, capping the size of δ2 by π/2 ensures that we always have at least two angles in the
interval [0, π] (separated at most by 2δ2), namely on 0 and π. This is also necessary to bound
the error term in the corresponding approximation Lemma 8.2.2. The number of points t2
can be calculated again as:∣∣∣α(i2)

2 − α
(i2+1)
2

∣∣∣ = π/(t2 − 1) ⩽ 2δ2 =⇒ t2 ⩾ 1 + π

2δ2
so we pick t2 = 1 + ceil

(
π

2δ2

)
. (8.61)

We continue in this fashion – in general, when discretizing αk, we assume that the dis-
cretized angles α(i1)

1 up to α(ik−1)
k−1 are provided. The total number of αk ’s, given by tk, is therefore

a multivariate function depending on (i1, . . . , ik−1). The discretization step δk is given by

δk = min
{

δ∏k−1
j=1

sinα
(ij )
j

, π2

}
, (8.62)

and we pick tk = 1 + ceil
(

π
2δk

)
.

For the last angle, we put α(in−1)
n−1 = 2π(in−1 − 1)/tn−1, as we need to sample the half-open

interval [0, 2π). This means that we get the rule:∣∣∣α(in−1)
n−1 − α

(in−1+1)
n−1

∣∣∣ = 2π/tn−1 ⩽ 2δn−1 =⇒ tn−1 ⩾
2π

2δn−1
so we pick tn−1 = ceil

(
π

δn−1

)
.

(8.63)
The point set A(3)

n,ε then consists of all those admissible unit vectors ϕ(i1,...,in−1) whose spher-
ical angles αj correspond to αj = α

(ij)
j , and please note that the indices ij are not independent

– one must know the value of indices i1, . . . , ij−1 before one can determine whether αj is in-
deed one of the discretized α

(ij)
j , because this discretization is now dependent on the choices

of the previous angles.
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Estimating ∥ϕ− ψ∥ in the uniform discretization scheme
We now wish to find a result similar to the approximation Lemma 8.2.1, but its results are less
fortunate, yielding an estimate with a quadratic function of n instead of the linear function in
Lemma 8.2.1. Therefore, we have chosen to use the ε-coverA(2)

n,ε in the numerical calculations,
but we still record our main findings here – the lengthy proofs are included in the appendix.

Lemma 8.2.2: Approximation lemma in the uniform discretization scheme

Given a unit vector ϕ with n-spherical angles (α1, . . . , αn−1) and a unit vector ψ with
n-spherical angles (β1, . . . , βn−1). Assume that for all 1 ⩽ k ⩽ n− 1, we have:

|βk − αk| ⩽ δk , δk := min
{

δ∏k−1
j=1 sin(βj)

,
π

2

}
. (8.64)

Then, we have:
∥ψ − ϕ∥2

2 ⩽

(
(n− 1) + π

2
(n− 3)(n− 2)

2

)
δ2. (8.65)

Proof. Please see Section A.2.

Given this approximation lemma, we can prove:

Theorem 8.2.3: A(3)
n,ε is an ε-covering

Given ε > 0 and n ∈ N, pick δ > 0 such that(
(n− 1) + π

2
(n− 3)(n− 2)

2

)
δ2 ⩽ ε2. (8.66)

Construct the set A(3)
n,ε containing all ϕ(i1,...,in−1) with admissible n-spherical angles

α
(ij)
j as specified in the discretization scheme. Then, we have for any unit vector ψ ∈ Sn−1:

min
ϕ∈A

∥∥∥ψ − ϕ(i1,...,in)
∥∥∥

2
⩽ ε. (8.67)

Proof. Given a unit vector ψ ∈ Sn−1 with n-spherical angles β1 up to βn−1, pick ϕ(i1,...,in−1) ∈ A
(3)
n,ε

with n-spherical angles α(ij)
j such that |α(ij)

j − βj | ⩽ δj, which is possible by the discretization
of each spherical angle. Then, we satisfy the assumptions of Lemma 8.2.2, hence the claim
follows.

Proposition 8.2.6: The size of A(3)
n,ε

Given the ε-covering A(3)
n,ε for some n ∈ Z>0 and ε > 0, we have∣∣∣A(3)

n,ε

∣∣∣ ≈
〈
Cn−2

mat a, δvec
〉
, (8.68)

where a := (2, 2, 0, 0, . . . , 0) , δvec := (1, π/(2δ), π2/(2δ)2, . . . , πn−1/(2δ)n−1) , and the matrix
Cmat is given by

Cmat :=



2
1 I(1)
0 I(1) I(2)
0 0 I(2) I(3)

. . .
I(n− 2) I(n− 1)


, I(β) := 1

π

∫ π

0
sinβ(y)dy. (8.69)
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Proof. Please see Section A.2.
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Figure 8.7: Left: The size |A(3)| (dots) of ε-cover A(3) for different values of n and ε plotted together with |A(2)|
(lines) – for a given n, the same colours are used for |A(2)| and |A(3)|. Right: The relative size |A(3)|/|A(2)| for

different values of n and ε.

8.3. Particle Swarm Optimization
We now turn our attention to approximating Hmin(N1 ⊗ N2) from above (here, Ni for i = 1, 2
are two quantum channels). We used the concavity of the von Neumann entropy to deduce
that the minimum output entropy is achieved on some pure state, but finding this optimum
over the complex n-sphere is in general very hard – although we know that the objective
function is continuous, it may contain many local minimums, which makes finding a global
optimum difficult. Furthermore, as we will see in the next section, the von Neumann entropy
is not differentiable everywhere, further complicating the implementation of gradient-based
methods. We therefore investigate a popular derivative-free optimization (DFO) method, called
Particle Swarm Optimization (PSO).

8.3.1. Introduction and background
The particle swarm optimization method (from now on, PSO) was created by Eberhart and
Kennedy in [EK95, KE95], and is inspired by the sociological behaviour of large collections of
individual organisms, such as flocks of birds or schools of fish. As Eberhart and Shi put it,
“[t]he original intent was to graphically simulate the graceful but unpredictable choreography of
a bird flock” [ES01]. The particles are initialized randomly in the search space, and they are
given a random velocity. The particles each have a discrete memory, which keeps track of the
best solution they have achieved themselves so far. Furthermore, they can communicate to
each other to determine the global best solution any member of the flock has so far achieved.
Their social interactions are then modelled by an inertial term, a nostalgic term that pushes
the particle back towards their own best solution position, and a social term that pushes the
particle towards the global best position. Each timestep, these contributions to the particle’s
velocity are determined stochastically. Since the conception of PSO in 1995, researchers have
applied it successfully in wide variety of fields [ES01, LWJ+05]. Let us commence with the
fundamentals of PSO.

Assume we have an objective function f : Rd → R that we wish to minimize over a search
domain Ω = [a1, b1] × · · · × [ad, bd] ⊆ Rd for some dimension d ∈ N, with −∞ ⩽ ai < bi ⩽ +∞. At
the start of the algorithm, we initialize all d-dimensional positions x[i](0) uniformly randomly
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over the search space Ω. Here, the superscript identifies each particle, with 1 ⩽ i ⩽ np, where
np is the number of particles, and the quantity in parentheses is the time step. We also
initialize all d-dimensional velocities v[i](0) randomly with a magnitude between 0 and vmax.
The best known position of the i’th particle at initialization, denoted by p[i](0), is equal to its
first position, x[i](0). The best global position g(0) is equal to p[i0](0) where i0 is chosen such
that f(p[i0](0)) ⩽ f(p[j](0)) for all 1 ⩽ j ⩽ np. Each time step, the position and velocity are
updated according to the rules

x[i](k + 1) = x[i](k) + v[i](k) (8.70)

v[i](k + 1) = w(k)v[i](k) + ϕ[i](k) ◦ (p[i](k) − x[i](k)) +ψ[i](k) ◦ (g(k) − x[i](k)), (8.71)

where w : N0 → [0, 1] is the inertial weight function, ϕ[i](k) is the nostalgia, uniformly randomly
chosen in [0, ϕmax]d, ψ[i](k) is the social component, uniformly randomly chosen in [0, ψmax]d,
and ◦ denotes an element-wise multiplication of two vectors. Furthermore, the norm of
v[i](k + 1) is reduced to vmax if it exceeds it, and the components of x[i](k + 1) may not exceed
the boundaries of the search domain Ω. After all positions are updated, the p[i](k + 1) are
equal to p[i](k) whenever f(x[i](k + 1)) ⩾ f(p[i](k)), else they are set to x[i](k + 1). Similarly,
g(k + 1) is equal to p[i0](k + 1) where i0 is chosen such that f(p[i0](k + 1)) ⩽ f(p[j](k + 1)) for
all 1 ⩽ j ⩽ np. The algorithm terminates when a stopping criterion is reached, such as a
maximal number of iterations, or a threshold for the value of f(g(k)) is reached.

The hyperparameters np, vmax, ϕmax and ψmax need to heuristically optimized, and have a
great influence on the performance [LWJ+05].

8.3.2. PSO on the sphere
The original algorithm proposed by Eberhart and Kennedy assumes the search domain Ω
is of the shape [a1, b1] × · · · × [ad, bd] ⊆ Rd, whilst our domain of interest is the complex unit
sphere in Cn for some n ∈ N. As states are determined up to global phase, we may assume
that the first component of a unit vector |ψ⟩ ∈ Cn is real. We then identify the set of pure
states on Cn with S2n−2 ⊆ R2n−1, where we map a real vector ψ̃ ∈ S2n−2 ⊆ R2n−1 to a complex
vector |ψ⟩ := cplx(ψ̃) ∈ Cn, with components ψk, by:

ψ0 = ψ̃0 ; ψk = ψ̃2k−1 + iψ̃2k for 1 ⩽ k ⩽ n− 1. (8.72)

The map cplx : R2n−1 → {|ψ⟩ ∈ Cn : ψ0 ∈ R} is an R-linear isometric bijection.
Therefore, we now need to investigate how the PSO algorithm works on the real sphere

S2n−2 ⊆ R2n−1. We can cast this problem in the framework of optimization on (Riemannian
or matrix) manifolds, see [AMS08, Bou20]. For this specific purpose, the ManOpt toolbox was
developed, mainly in the Matlab language, but a port to other languages such as Python
and Julia is available [BMAS14]. The velocity vectors v[i](k) are seen as tangent vectors in
the space tangent to the point x[i](k + 1) on the manifold. Considering the update rules for
the original PSO algorithm, whenever a velocity vector and a position need to be added, we
instead use a retraction on the manifold M, and whenever we consider the displacement
vector between two points (such as p[i](k) −x[i](k)), we use the logarithmic manifold function
instead (the local diffeomorphic inverse of the exponential map). We then find the update
rules:

v[i](k + 1) = w(k)Tx[i](k)←x[i](k−1)(v[i](k)) + ϕ[i](k) ◦ Logx[i](k)(p[i](k)) +ψ[i](k) ◦ Logx[i](k)(g(k)),
(8.73)

x[i](k + 1) = Rx[i](k)(v[i](k + 1)). (8.74)

Here, Ty←x(u) denotes the vector transport Ty←x : TxM → TyM of a vector u ∈ TxM at
x ∈ M to a vector in TyM (see [Bou20, Def 10.68]), and Rx(u) denotes the retraction R :
TM → M, a smooth map such that for all curves c(t) = Rx(tv), we have c(0) = x and
c′(0) = v [Bou20, Def. 3.47]. Furthermore, Logx(y) = arg min{∥v∥x : v ∈ Ox and Expx(y) =
v}, defined on a domain Ox defined as {v ∈ TxM : (x, v) ∈ O}, where O = {(x, v) ∈
TM : γv is defined on an interval containing [0, 1]}, where γv : I → M is a maximal geodesic
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with γv(0) = x and γ′v(0) = v. This is the set of update rules that is currently used in the
ManOpt toolbox [BMAS14].

We specialize to the case where M = S2n−2 ⊆ R2n−1. In this case, we have:

Vector transport Ty←x(u) = Py(u). (8.75)
Tangent space projection Py(u) = u− ⟨y, u⟩y. (8.76)

Retraction Rx(u) = (x+ u)/∥x+ u∥R2n−1 . (8.77)

Logarithm Logx(y) = d(x,y)
∥Px(y−x)∥Px(y − x). (8.78)

Great circle distance d(x, y) = arccos⟨x, y⟩. (8.79)

Our own qittoolbox on GitHub contains a PSO implementation that is largely based on
a combination of the original Matlab implementation of ManOpt and the PyManOpt port to
Python, but fully vectorized using numpy to obtain a performance increase, and with an im-
portant change to the update rules. The vector transport Ty←x(u) = Py(u) is generally strictly
contractive, which results in the following unwanted behaviour: when the inertial weight w(k)
is set to 1 for all k, and the nostalgic and social interactions ϕi(k) and ψi(k) to 0 for all i and k,
one would expect the particles to fly on a constant trajectory (which indeed happens in the
unconstrained original version of PSO). However, due to the contractive nature of the vector
transport on the sphere, the particles slow down until they come to a complete stop. We can
mitigate this behaviour by rescaling the transport:

T̃y←x(u) = 1
∥Ty←x(u)∥Ty←x(u) = 1

∥Py(u)∥Py(u). (8.80)

8.3.3. PSO with gradient descent
Although the PSO algorithm is a derivative-free optimization method, it can be enriched
with gradient-based optimization – these methods often converge faster as they can identify
good search directions, but they perform poorly on flat regions where the gradient all but
vanishes, and they get easily stuck in local minima. Thus, a hybrid algorithm combining the
stochastic derivative-free PSO exploration technique with a gradient-descent optimization
could be valuable [Noe12]. Noel proposed in [Noe12] to apply gradient descent to the current
best position g(k) after each iteration of the PSO algorithm, and updating this global best
position in case the gradient descent algorithm finds a better position. This hybridization
yielded good results on the test functions that were studied in [Noe12]. In our case, we need
to investigate two steps before we can utilize this hybridization: we need to determine the
(Euclidean) gradient of our cost function at a given point, and we need to relate the Euclidean
gradient to the Riemannian gradient on the sphere S2n−2 ⊆ R2n−1.

Determining the Euclidean gradient of H(Φ(ρ))
We identify the following concatenation of maps:

ψ ∈ S2n−2 ⊆ R2n−1 cplx−−→ |ψ⟩ ∈ Cn mat−−→ ρ = |ψ⟩⟨ψ| ∈ Mn(C)
Φ−→ Φ(ρ) ∈ Mm(C) H−→ H(Φ(ρ)) = −Tr (Φ(ρ) log Φ(ρ)) ∈ R. (8.81)

Let us investigate the directional derivative of this composition in the direction of ϕ: we
consider ψ + tϕ ∈ R2n−1. Then, as the complexification is linear, we get |ψ⟩ + t |ϕ⟩, which is
mapped to the matrix ρ(t) = |ψ⟩⟨ψ| + t |ψ⟩⟨ϕ| + t |ϕ⟩⟨ψ| + t2 |ϕ⟩⟨ϕ|, and using the linearity of Φ, we
see

Φ(ρ(t)) = Φ(|ψ⟩⟨ψ|) + tΦ(|ψ⟩⟨ϕ|) + tΦ(|ϕ⟩⟨ψ|) + t2Φ(|ϕ⟩⟨ϕ|). (8.82)
We then use the derivative rule for a matrix-valued function t 7→ A(t):

d
dtH(A(t)) = −Tr (A′(t) (I + logA(t))) . (8.83)

We therefore find the directional derivative if we set ϕ = ei, where {ei}2n−1
i=1 is the canonical

basis of R2n−1:

DeiH(Φ(ρ)) = d
dt

∣∣
t=0H(ρ(t)) = −Tr (Φ (|ei⟩⟨ψ| + |ψ⟩⟨ei|) (I + log Φ(|ψ⟩⟨ψ|))) , (8.84)

which is the i-th component of the gradient (∇R2n−1H)(ψ).

https://github.com/SamvPoelgeest/qittoolbox
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Relating the Euclidean gradient to the Riemannian gradient
We must, however, optimize over the compact space S2n−2 ⊆ R2n−1, so we must convert the
Euclidean gradient to the Riemannian gradient on S2n−2, which means we use the tangent
space projection Py(u) as described in Equation (8.76) to calculate:

(∇S2n−2H)(ψ) = Pψ((∇S2n−2H)(ψ)) = (∇R2n−1H)(ψ) − ⟨ψ , (∇R2n−1H)(ψ)⟩R2n−1 · ψ. (8.85)

This gradient may not always exist, as log Φ(|ψ⟩⟨ψ|) is ill-defined whenever Φ(|ψ⟩⟨ψ|) is a singu-
lar matrix. This corresponds to the scalar case where we see that the function x 7→ −x log x
has a derivative −1 − log x that tends to +∞ for x ↓ 0. However, this divergence is logarithmic,
and therefore “extremely slow”: for x = 10−16, the derivative evaluates to 15. With machine
precision in mind, we therefore choose to approximate the von Neumann entropy by the func-
tion H̃ : σ 7→ −Tr ((σ + εI) log(σ + εI)) for some small ε, for which we have the derivative rule

d
dtH̃(A(t)) = −Tr (A′(t)(I + log(A(t) + εI)) . (8.86)

8.4. DPS hierarchy and DPS∗ criterion
Having discussed the theory of ε-covers to bound the minimum output entropy from below,
and having discussed the implementation of particle swarm optimization techniques on the
unit sphere to find good upper bounds of the minimum output entropy, we turn our atten-
tion to the specific quantum channels that we wish to investigate. Theorem 7.3.3 tells us
that the O+

N -quantum channels Φ(m+1),m
1 (for m ∈ N) are positive partial transpose, and may

therefore be entanglement-breaking. In fact, in the smallest case of m = 1 we know from
Theorem 7.3.4 that Φ(2),1

1 is indeed entanglement-breaking, and is therefore by Shor’s theo-
rem (see Theorem 3.5.1) an MOE-additive channel. To investigate whether Φ(m+1),m

1 for m ⩾ 2
are entanglement-breaking, we can utilize the so-called DPS-hierarchy and DPS∗-criterion to
determine whether their normalized Choi matrices are separable quantum states (see Defi-
nition 3.5.2). Let us denote by Ssep(HA ⊗ HB) the set of all separable states on HA ⊗ HB.

The idea of the DPS hierarchy (named after its inventors Doherty, Parrilo and Spedalieri)
was first presented in [DPS02], and two years later the same authors wrote a seminal paper
in which they proved the following criterion: [DPS04, Thm. 1]

Theorem 8.4.1: DPS Hierarchy: k-symmetric extensions

Given any bipartite mixed state ρAB ∈ S(HA ⊗ HB). Then ρAB has a (PPT) symmetric
extension to k copies of the subsystem B for all k ∈ N if and only if ρAB is separable.
Here, ρABk is a k-symmetric extension of ρAB if it satisfies:

1. ρABk ∈ S(HA ⊗ H⊗kB ),
2. TrH⊗k−1

B
(ρABk ) = ρAB, where the partial trace is performed over the last k − 1 copies

of HB,
3. ρABk ∈ S(HA ⊗ ∨kHB) where ∨kHB is the (Bose) symmetric subspace of H⊗kB . Equiv-

alently, ρABk is invariant under permuting any of the k tensor legs associated with
HB, equivalently ρABk (ιA ⊗ P ksym) = ρABk , where P ksym is the symmetric projection

P ksym := 1
k!

∑
π∈Sk

P [dimHB]
π where P [d]

π =
∑

i:[k]→[d]

|iπ−1(1), . . . , iπ−1(k)⟩⟨i1, . . . , ik| , (8.87)

and where Sk is the k-th symmetric group.

We call ρABk a PPT k-symmetric extension of ρAB if additionally

4. ρABk is PPT with respect to the bipartition ABceil(N/2)|Bfloor(N/2) [NOP09]

Remark 8.4.1. Note that the additional PPT-constraint on ρABk is not necessary for the com-
pleteness result (i.e., we already have the equivalence between being separable and having a
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k-symmetric extension for all k ∈ N without the PPT criterion), but this constraint makes the
hierarchy of tests stronger.

Hence, for increasing values of k ∈ N, one can ask whether ρAB = J(Φ(m+1),m
1 ) has a

(PPT) k-symmetric extension, and if not, we conclude that J(Φ(m+1),m
1 ) is not separable (and

hence, Φ(m+1),m
1 is not entanglement-breaking). This feasibility problem can be cast into a

positive semi-definite program (PSD), for which efficient algorithms and solvers exist [DPS02];
however, the time complexity scales as (dim HB)O(k) [HNW17] and the space complexity scales
as O(kdimHB−1) [DPS04], which means the DPS hierarchy becomes intractable for large k or
large dim HB.

The DPS hierarchy approaches the set of all separable states from the outside: if we denote
by Sk-sym(HA ⊗ HB) the set of all k-symmetrically extensible states on HA ⊗ HB, then we see
S(k+1)-sym(HA ⊗HB) ⊆ Sk-sym(HA ⊗HB) and limk→∞ Sk-sym(HA ⊗HB) = Ssep(HA ⊗HB). In contrast,
the so-called DPS∗ criterion proposed in [NOP09] approaches the set of all separable states
from within by using the following sets, where we let d := dim HB and σA = TrH⊗k

B
(σABk ):

S̃k-sym(HA ⊗ HB) = { k
k+dσABk + 1

k+dσA ⊗ ιB : σABk ∈ Sk-sym(HA ⊗ HB)}. (8.88)

In this case, we no longer have a strict hierarchy because we do not necessarily have S̃k-sym(HA⊗
HB) ⊆ S̃(k+1)-sym(HA ⊗ HB), but we do have S̃k-sym(HA ⊗ HB) ⊆ Ssep(HA ⊗ HB) for all k, and a
similar completeness criterion: limk→∞ S̃k-sym(HA ⊗ HB) = Ssep(HA ⊗ HB) [NOP09]. In other
words:

Definition 8.4.1: Inner k-symmetric extensions

Given a bipartite mixed state ρAB ∈ S(HA ⊗ HB). We say that ρABk ∈ S(HA ⊗ H⊗kB ) is an
inner k-symmetric extension of ρAB if there exists a k-symmetric extension σABk of ρAB,
such that

ρABk = k
k+dσABk + 1

k+dσA ⊗ ιB. (8.89)

8.5. Results
Using the theory we have developed in the previous sections, we can now numerically in-
vestigate the MOE and the MOE-additivity of the O+

N and S+
N -quantum channels. We mainly

focus on the lowest-weight channels (where k = |l−m|), such that the input dimension of the
quantum channels remains relatively small. Let us commence with numerical investigations
of the lowest-weight O+

N channels.

8.5.1. Lowest weight O+
N-channels

A deeper analysis of the lowest-weight O+
N -channels revealed that their output entropy is con-

stant on all pure states, and can be quickly computed because the eigenvalues of Φ(m+1),m
1 (ρ)

(which are independent of the choice of the pure state ρ by Theorem 7.4.1) can be computed
by the recurrence relation established in Theorem 7.4.4. Therefore, we can precisely com-
pute Hmin(Φ(m+1),m

1 ). Nonetheless, before one would utilize the particle swarm optimization
(PSO) strategy to find good upper bounds for Hmin(Φ(m+1),m

1 ⊗Φ(m′+1),m′
1 ) (where m,m′ ∈ N), one

ought to investigate whether these channels are entanglement-breaking: by Theorem 7.3.3,
we know that the channels Φ(m+1),m

1 for m ∈ N are PPT, whence they might be entanglement-
breaking. We utilize the QETLAB toolbox [JCR16] written for Matlab as well as our own imple-
mentation in qittoolbox on GitHub written in Python, where we implement the DPS hierarchy
and DPS∗ criterion established in Section 8.4. The QETLAB toolbox also deploys a list of much
simpler separability tests before using the DPS hierarchy and DPS∗ criterion based on several
criterions found in literature.

https://github.com/SamvPoelgeest/qittoolbox
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As a preliminary test, we investigate whether the QETLAB toolbox and the qittoolbox on
GitHub implementation report that the Choi matrix of the O+

N -channel Φ(2),1
1 is separable –

we know from Theorem 7.3.4 that this channel is entanglement-breaking, so its Choi matrix
should be separable. Indeed, for 3 ⩽ N ⩽ 7, QETLAB reports that J(Φ(2),1

1 ) is separable, using
its closeness to the maximally mixed state as shown in [GB02]. As expected, J(Φ(2),1

1 ) has a
4-symmetric PPT extension as reported by our implementation of the DPS hiearchy. However,
it does not have an i-PPT-inner symmetric extension for 2 ⩽ i ⩽ 4, so the DPS∗ criterion is
not capable of detecting its separability for small extensions.

For m = 2, we can compute the Choi matrix of Φ(3),2
1 by using the results from [BC20]:

J(Φ(m+1),m
1 ) = [2]q

[m+2]q
αm,1m+1(αm,1m+1)∗. (8.90)

ForN = 3 andm = 2, we have checked the k-symmetric extensibility of Φ(3),2
1 using qittoolbox:

it has a k = 3 symmetric extension with the additional PPT-criterion, and it does not have a
k = 2 or k = 3 inner symmetric extension with the PPT criterion. This means that the test is
inconclusive: it is still possible for the Choi matrix to be separable or entangled.

It was not possible to utilize the DPS hierarchy or the DPS∗ criterion for larger N and m
due to computer memory limitations.

8.5.2. Lowest weight S+
N-channels

Turning our attention to S+
N -channels, we investigate whether they are entanglement-breaking

for small input and output dimensions. If this is the case, then by Theorem 3.5.1, they can-
not have a strictly subbaditive MOE. One could repeat the analysis from [BC20, Section 5]
to find analytic expressions for the Choi matrices J(Φ̂(l),m

k ) and J(Φ̂l,(m)
k ), which would al-

low us to find an analogous statement to [BCLY20, Thm. 5.2]). This theorem states that in
the O+

N case, for k ̸= l − m, Φ(l),m
k is not EBT, and for k ̸= m − l, Φl,(m)

k is not EBT, because
their Choi matrices are multiples of of an orthogonal projection in B(Hk ⊗ Hm) or B(Hk ⊗ Hl),
respectively, whose range is the subrepresentation that is equivalent to Hl or Hm, respec-
tively. By Proposition 6.5.1, these subrepresentations are highly entangled for l ̸= k +m and
m ̸= k + l, respectively. From [BCLY20, Lemma 5.1], it then follows that the Choi matrix is
not separable.

However, in our case, the MOE estimate of the S+
N -channels Φ̂(l),m

k and Φ̂l,(m)
k is also trivial

whenever the parameter r defined by r := l+m−k is equal to 1, see Theorem 6.5.2. This means
that we cannot establish whether any of the channels Φ̂(l),m

l−m , Φ̂l,(m)
m−l , Φ̂(l),m

l−m+1 or Φ̂l,(m)
m−l+1 are

entanglement-breaking. However, for small input and output dimension, we can numerically
check whether the Choi matrices are positive partial transpose: if the channels are not PPT,
they are also not entanglement-breaking.

For N = 4, we checked for all l,m ∈ {1, 2, 3} and all max(|l − m|, 1) ⩽ k ⩽ min(l + m, 3)
and found in all cases that Φ̂(l),m

k and Φ̂l,(m)
k were both not PPT. For N = 5, we checked

for all l,m ∈ {1, 2} and max(|l − m|, 1) ⩽ k ⩽ min(l + m, 3) and again found that Φ̂(l),m
k and

Φ̂l,(m)
k were in all cases not PPT. Notably, this includes the channels associated to the tuples

(k, l,m) = (1, 1, 1), (2, 2, 1), (2, 1, 2) for both N = 4, 5 and additionally (k, l,m) = (3, 3, 1), (3, 1, 3) for
N = 4. These channels all have the associated parameter r = l + m − k = 1, and we could
therefore not analytically determine whether they are entanglement-breaking.

Based on this analysis, the channels Φ̂(1),1
1 and Φ̂(2),2

1 are not EBT for N = 4, 5, and could
therefore have strictly subadditive MOE. Therefore, we turn our attention to casting an ε-cover
over these channels to find a lower bound on their MOE.

8.5.3. ε-cover
We chose to investigate the S+

N -channels Φ̂(l),m
k for three choices of N, k, l,m and ε. Considering

the exponential growth in size of the ε-covers with the dimension of the input states, we
investigated the O+

N or S+
N quantum channels that have the smallest (but non-trivial) input

https://github.com/SamvPoelgeest/qittoolbox
https://github.com/SamvPoelgeest/qittoolbox
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dimension, which corresponds to k = 1, and N = 3 in the case of O+
N and N = 4 in the case of

S+
N . However, a deeper analysis of the lowest-weight O+

N -channels revealed that their output
entropy is constant on all pure states (see Theorem 7.4.1), which disqualified them from
consideration for ε-covers. We therefore turn our attention to the S+

N -channels we developed
in this thesis. In light of the somewhat surprising findings of Theorem 6.5.2 where the lower
bound of the MOE is smaller when r is odd (with r defined by k = l + m − r), we choose
k = l = m = 1 (yielding r = 1) with N = 4, 5, and k = 1, l = m = 2 (yielding r = 3) with N = 4.

We remind the reader of Theorem 8.1.2: given a quantum channel Φ : S(H1) → S(H2), and
given two pure states |ψ⟩ and |ϕ⟩ with the assumption ∥ψ− ϕ∥2 ⩽ 1

2 . Let d2 := dim H2, then we
have:

|H(Φ(|ψ⟩⟨ψ|)) −H(Φ(|ϕ⟩⟨ϕ|))| ⩽ ∥ψ − ϕ∥2 log2(d2 − 1) +H2(∥ψ − ϕ∥2). (8.91)

We were granted access to the Dutch National Supercomputer Snellius 1 to compute the
output entropy on all points of the ε-covers. The following results were obtained 2:
Table 8.1: Results of the ε-covers over the S+

N -quantum channels Φ̂(l),m
k

for varying values of ε, N , k, l and m. For
these values, the real dimension n = 2[2k + 1]q̂ − 1 was calculated for which Sn−1 ⊆ Rn is mapped to

{|ψ⟩ ∈ C[2k+1]q̂ ≃ Ĥk : ψ0 ∈ R}. Furthermore, the total size of the ε-cover is calculated, and the two error terms
ε log2(d2 − 1) and H2(ε) are displayed. Lastly, an estimate for the minimum output entropy Ĥmin is given, together

with the maximal error found by summing the two error terms.

N (k, l,m) ε δ n Size ε log2(d2 − 1) H2(ε) Ĥmin Max error
4 (1, 1, 1) 0.01 0.005 5 1.9 · 1010 0.01 ≈ 0.08079 1.0000 0.0908
4 (1, 2, 2) 0.01 0.005 5 1.9 · 1010 0.02 ≈ 0.08079 1.7219 0.1008
5 (1, 1, 1) 0.035 ≈ 0.0143 7 3.4 · 1012 ≈ 0.05547 ≈ 0.21888 1.0000 0.2744

To put the value of Ĥmin into perspective, we note that for (k, l,m) = (1, 1, 1), the entropy of
the maximally mixed output state is log2(N−1) ≈ 1.585 for N = 4, and log2(N−1) = 2 for N = 5.
For (k, l,m) = (1, 2, 2), the entropy of the maximally mixed output state is log2(N2 − 3N + 1) ≈
2.3219 for N = 4. 3

From these findings, it becomes apparent that the usage of ε-covers is truly bounded to the
low-dimensional regime: even in the modest case of covering the unit sphere in 7 dimensions,
we had to increase the error ε to 0.035 to reduce the total size (for ε = 0.01, the size would
increase to approximately 6.4 ·1015). The main contribution to the error is clearly H2(ε), which
grows rapidly for increasing ε: for example, an error of H2(ε) ⩽ 0.01 requires an ε slightly
below 0.00086.

8.5.4. Particle Swarm Optimization
In order to benchmark the application of PSO to the problem of finding the MOE of a quantum
channel, let us start by considering the highest-weight channels Φ̂(l),m

l+m and Φ̂l,(m)
l+m , where we

know by Theorem 6.5.4 that the minimum output entropy is 0. We find:
1https://www.surf.nl/en/dutch-national-supercomputer-snellius
2This work was carried out on the Dutch national e-infrastructure with the support of SURF Cooperative.
3Here, we used the identity [2]q̂ [m+1]q̂ − [m]q̂ = [m+2]q̂ for m ∈ N to find for m = 3 the identity [5]q̂ = [2]q̂ [4]q̂ − [3]q̂ =√

N
(
N

√
N − 2

√
N
)

− (N − 1) = N2 − 3N + 1

https://www.surf.nl/en/dutch-national-supercomputer-snellius


8.5. Results 101

Table 8.2: Results of 100 independent runs of the PSO and PSO-GD algorithms (corresponding to False or True in
the GD column, respectively) that seek to minimize the output entropy of the S+

N -quantum channels Φ̂(l),m
l+m

and

Φ̂(l),m
l+m

, corresponding to Hout = Hm and Hout = Hl, respectively, for varying values of N , k, l and m. The minimal
value of all runs is recorded in the Best Ĥmin column. The average of all Ĥmin over the 100 runs, together with the

sample deviation, is recorded in the last column.

N (k, l,m) Hout GD Best Ĥmin avg(Ĥmin) ± σ
4 (2, 1, 1) Hl T 5.10465 · 10−11 1.83636 · 10−2 ± 4.80103 · 10−2

4 (2, 1, 1) Hl F 3.59177 · 10−6 5.05532 · 10−5 ± 5.71389 · 10−5

4 (2, 1, 1) Hm T 1.02484 · 10−10 1.98834 · 10−2 ± 4.08666 · 10−2

4 (2, 1, 1) Hm F 5.71584 · 10−6 8.33604 · 10−5 ± 4.17503 · 10−4

4 (3, 1, 2) Hl T 1.09430 · 10−10 2.39899 · 10−2 ± 6.20306 · 10−2

4 (3, 1, 2) Hl F 6.40487 · 10−5 6.39059 · 10−3 ± 2.80240 · 10−2

4 (3, 1, 2) Hm T 2.23798 · 10−8 8.85733 · 10−3 ± 2.64066 · 10−2

4 (3, 1, 2) Hm F 7.09647 · 10−5 4.21163 · 10−3 ± 6.72610 · 10−3

5 (2, 1, 1) Hl T 1.50074 · 10−9 1.08410 · 10−2 ± 1.83736 · 10−2

5 (2, 1, 1) Hl F 8.43941 · 10−4 9.22410 · 10−3 ± 1.11571 · 10−2

5 (2, 1, 1) Hm T 9.45717 · 10−10 6.44861 · 10−3 ± 1.03997 · 10−2

5 (2, 1, 1) Hm F 8.54227 · 10−4 8.20559 · 10−3 ± 8.84512 · 10−3

5 (3, 1, 2) Hl T 5.77000 · 10−10 4.53873 · 10−3 ± 1.57220 · 10−2

5 (3, 1, 2) Hm T 6.97742 · 10−11 5.13496 · 10−3 ± 1.28646 · 10−2

5 (3, 1, 2) Hm F 6.38292 · 10−2 1.70077 · 10−1 ± 7.85152 · 10−2

We see that the gradient-descent enriched PSO method outperforms the original PSO
method in all cases. It also manages to find good estimates for the MOE (which is 0 in this
case) in higher input dimensions (corresponding to higher values of N and k).

With this tool in hand, we can consider a specific case in more depth: we choose the
(k, l,m) = (1, 1, 1) case, that we also analyzed using the ε-covers: this yielded Hmin(Φ(1),1

1 ) ⩾

1.0000 − 0.0908 and Hmin(Φ(1),1
1 ) ⩾ 1.0000 − 0.2744 for N = 4 and N = 5, respectively, where the

first number denotes the minimal output entropy found on the nodes of the ε-cover, and the
second number denotes the maximal deviation possible, see Section 8.5.3. This specific case
is of interest because the lower MOE bound found in Theorem 6.5.2 is trivial as it is smaller
than 0 (and approaches 0 in the limit N → ∞). We find the following:



8.5. Results 102

Table 8.3: Results of 100 independent runs of the PSO and PSO-GD algorithms (corresponding to the column value
GD is False or True, respectively) that seek to minimize the output entropy of the S+

N -quantum channel Φ̂(1),1
1 , for

varying values of N . The minimal value of all runs is recorded in the Best Ĥmin column. The average of all Ĥmin
over the 100 runs, together with the sample deviation, is recorded in the last column.

N GD Best Ĥmin avg(Ĥmin) ± σ
4 T 1.00000 · 100 1.00000 · 100 ± 9.88631 · 10−9

4 F 1.00000 · 100 1.00000 · 100 ± 4.23084 · 10−9

5 T 1.00000 · 100 1.01351 · 100 ± 2.48793 · 10−2

5 F 1.00000 · 100 1.00079 · 100 ± 6.68804 · 10−3

6 T 1.00000 · 100 1.02561 · 100 ± 3.40027 · 10−2

6 F 1.00001 · 100 1.00414 · 100 ± 1.44261 · 10−2

7 T 1.00000 · 100 1.03519 · 100 ± 1.50104 · 10−2

7 F 1.00007 · 100 1.03519 · 100 ± 1.54949 · 10−2

8 T 9.60953 · 10−1 9.73042 · 10−1 ± 1.71738 · 10−2

8 F 9.60967 · 10−1 9.69092 · 10−1 ± 1.27063 · 10−2

9 T 8.94484 · 10−1 9.05511 · 10−1 ± 2.37725 · 10−2

9 F 8.94537 · 10−1 9.01560 · 10−1 ± 1.27098 · 10−2

10 T 8.36592 · 10−1 8.43555 · 10−1 ± 2.42092 · 10−2

10 F 8.36699 · 10−1 8.42953 · 10−1 ± 1.01063 · 10−2

11 T 7.85988 · 10−1 8.03928 · 10−1 ± 3.30744 · 10−2

11 F 7.86146 · 10−1 8.01947 · 10−1 ± 2.59771 · 10−2

12 T 7.41490 · 10−1 7.71767 · 10−1 ± 5.99180 · 10−2

12 F 7.41638 · 10−1 7.64464 · 10−1 ± 4.00876 · 10−2

13 T 7.02103 · 10−1 7.35975 · 10−1 ± 6.08363 · 10−2

13 F 7.02819 · 10−1 7.33599 · 10−1 ± 4.79379 · 10−2

14 T 6.67010 · 10−1 6.85970 · 10−1 ± 5.16975 · 10−2

14 F 6.68326 · 10−1 6.91203 · 10−1 ± 4.42134 · 10−2

15 T 6.35549 · 10−1 6.70369 · 10−1 ± 7.62529 · 10−2

15 F 6.36862 · 10−1 6.76487 · 10−1 ± 7.72862 · 10−2

Interestingly, the best upper bound of the MOE of Φ̂(1),1
1 decreases as as N grows – it is

possible that the MOE of Φ̂(1),1
1 decreases to 0 in the limit N → ∞, which would in turn make

the trivial lower bound found in Theorem 6.5.2 still asymptotically sharp for N → ∞.

We keep our attention on the k = l = m = 1 case, and investigate the best upper bound for
Hmin(Φ̂(1),1

1 ⊗ Φ̂(1),1
1 ) that we can find. In the case of N = 4, The PSO-GD algorithm yielded

an upper bound of 2.00000000004, which therefore does not lead to a violation of the MOE-
additivity conjecture, but is quite close to twice the value found by the ε-cover for a single
channel.

If we turn our attention to the choice k = 1, l = m = 2 and N = 4, the best ε-cover bound
we found was Hmin ⩾ 1.7219 − 0.1008. The PSO-GD algorithm yielded an upper bound of
Hmin(Φ̂(2),2

1 ⊗ Φ̂(2),2
1 ) of 3.4438562180616468, so although it gets close to twice the lower bound

on Hmin, it does not lead to a violation of the MOE-additivity conjecture.
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Discussion and conclusion

In this thesis, we have investigated the covariant quantum channels that arise from the
representation theory of compact quantum groups. Specifically, we reviewed the work of
Brannan and Collins in [BC16b] who introduced the quantum channels associated to the free
orthogonal quantum group O+

N , and we investigated the connection between the intertwiner
spaces of O+

N and the Temperley-Lieb theory, which is at the heart of this construction.
Afterwards, we went beyond the results from Brannan and Collins and investigated the

possibility of generalizing this approach to other compact quantum groups. We introduced a
similar construction for the quantum permutation group S+

N by investigating its intertwiner
spaces, and combined this with previous work by Banica and Brannan to give a concrete
construction of the quantum channels associated to S+

N . We also translated the lower bounds
on the minimum output entropy (from now on, MOE) found by Brannan and Collins for the
O+
N -quantum channels to similar lower bounds for the MOE of the S+

N -quantum channels.
Notably, we found the interesting result that our lower bound for the MOE of the S+

N -channels
Φ̂(l),m
k , characterized by a tuple of (k, l,m) ∈ N0 such that k = l + m − r for some 0 ⩽ r ⩽

2 min{l,m}, depends on whether the parameter r is odd or even, which makes the MOE bound
trivial for the choice r = 1.

We then analyzed the lowest-weight quantum channels in more depth, and we simplified
the Stinespring representations of these quantum channels. For the O+

N -quantum channels,
we improved the negative partial transpose results from [BCLY20] to include all fundamental
dimensions N ⩾ 3. Furthermore, we found the surprising result that it is possible to analyti-
cally calculate the MOE of the lowest-weight quantum channels associated to O+

N in the case
where we embed the fundamental representation in the tensor product of two larger repre-
sentations, allowing us to directly analyze the sharpness of the lower bound for the MOE
found by Brannan and Collins in lower dimensions: the MOE-bound is already adequate in
low dimensions and becomes sharper as the dimension grows.

Afterwards, we turned our attention to numerical approximations of the MOE of a general
quantum channel. We discussed how one could utilize the theory of ε-covers to cover the unit
sphere of pure states together with the continuity of the von Neumann entropy to find lower
bounds for the MOE. We showed a proof-of-concept by applying these ε-covers to three of the
smallest S+

N -quantum channels, but also noted that this method quickly becomes intractable
for growing dimensions as it scales exponentially in the input dimension.

To bound the MOE from above, we utilized a derivative-free optimization method called
Particle Swarm Optimization (PSO). We modified the original algorithm, whose search space
is an orthotope (hyperrectangle) in Rn for some n ∈ N, to work on the unit sphere Sn−1 ⊆ Rn
for some n ∈ N. Furthermore, we analyzed the gradient of the von Neumann entropy and
used this additional information to enrich the PSO algorithm with a gradient-descent (GD)
component, applied to the best global position after each iteration of PSO. We benchmarked
the performance of PSO by approximating the MOE of the highest-weight S+

N -channels, as we
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know that their MOE is 0 for any dimension N ⩾ 4. We saw that PSO was adequate at finding
good local minima for these channels. Afterwards, we applied PSO to the S+

N -channel Φ̂(1),1
1

with k = l = m = 1, as it has r = 1 (with r defined by r := l+m−k), and for r = 1 the analytical
MOE lower bound for S+

N is trivial. We found a monotonically decreasing upper bound of the
MOE for growing N , which might indicate that the MOE decreases to 0 for N → ∞.

We utilized the PSO algorithm to find upper bounds on the MOE of the tensor product
of two S+

N -channels, but did not find any violation of the MOE-additivity conjecture. We
also briefly discussed the utilization of the DPS hierarchy and DPS∗ criterion to numerically
determine whether a quantum channel is entanglement-breaking, by investigating whether
its Choi state is separable, but this did not lead to definitive results.

Based on the work in this thesis, we can formulate proposals for future research. Firstly,
one could consider investigating the dependency of the MOE lower bound for S+

N on whether r
is odd or even: in the case where r is odd, in Proposition 6.5.2, we throw away the additional
information that the term T ∗q (ei ⊗ ej) not only forces j = ǐ (which is also true in the O+

N

case), but also outputs the quantum state |i1⟩ ∈ H. Perhaps it is possible to utilize this
additional information to sharpen the bound, possibly removing the additional factor N1/4

present in the bound of Proposition 6.5.2, or it might be possible to prove that this bound
is still asymptotically sharp for N → ∞, akin to the work done for O+

N in [BC16b, BCLY20].
However, this requires a better understanding of the range space of the S+

N -Jones-Wenzl
projections p̂k to formulate quantum input states for which this lower MOE bound is achieved
(asymptotically).

Secondly, one could try to generalize the methods from [BC16b] to other partition quantum
groups, whose intertwiner spaces have the same type of diagrammatic interpretations as O+

N

and S+
N . A viable candidate is the hyperoctahedral quantum group H+

N , but its irreducible
representations are no longer indexed by N0, but rather by the free monoid over Z2, and
its fusion rules are more involved than those of O+

N or S+
N [BV09]. Its intertwiner spaces

correspond to non-crossing partitions whose blocks are all of even size. Future research will
first have to determine whether the Temperley-Lieb theory, which is instrumental in finding
concrete models for the irreducible representations of O+

N and S+
N through the Jones-Wenzl

projections, is still applicable in this situation.

Thirdly, the numerical methods that we employed in this thesis can be refined. We proposed
an adaptive ε-cover based on the discretization of the spherical angles, where the stepsize of
each spherical angle is dependent on the choice of all previous spherical angles. Although
this ε-cover should scale better with the dimension n than the uniform discretization of all
spherical angles, we did not succeed in finding a sharp bound on the distance between a unit
vector and the ε-cover. If a better bound is found, it could be used to significantly decrease
the size of the ε-cover. Furthermore, we converted the norm ∥ · ∥1 that naturally appears in
the continuity bounds of the von Neumann entropy to the ∥ · ∥2-norm with a multiplicative
penalty of 2 such that we could discretize the Euclidean unit sphere, but it might be possible
to formulate an ε-cover using the ∥ · ∥1-norm instead.

Furthermore, although the use of ε-covers is restricted to the case where the input di-
mension of a quantum channel is small, no such restrictions apply to the output dimension.
However, calculating the von Neumann entropy on each node of the ε-cover becomes more ex-
pensive with growing output dimension as it requires a diagonalization of the state obtained
by applying the quantum channel to the state corresponding to the node of the ε-cover. It is
possible to calculate Tr(p(σ)) instead of H(σ), where p : R → R is a polynomial that approx-
imates x 7→ −x log x on [0, 1]. We effectively substitute the diagonalization that is necessary
for calculating H(σ) by a collection of matrix multiplications that are necessary to calculate
Tr(p(σ)), which is generally a cheaper operation. For large matrices, matrix multiplication
also becomes expensive, but Tr(p(σ)) can be approximated by a Monte-Carlo scheme using
a certain number of inner products ⟨ω|p(σ)|ω⟩ with random vectors |ω⟩, for details please see
[WBS14]. It is then possible to compute the quantity Tr(p(σ)) for all σ = N (|ψ⟩⟨ψ|) where |ψ⟩
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is a node in the ε-cover and N is a quantum channel, and only compute H(σ) if the value of
Tr(p(σ)) is so sufficiently small that a new global minimum of H could be achieved on σ.

The numerical methods utilized in this thesis have been bundled into a quantum infor-
mation theory toolbox. As ε-covers are also utilized for other optimization problems, such
as bounding operator norms [BH15] or solving optimization problems over separable states
[SW12], our explicit construction of ε-covers over the unit sphere could be beneficial to other
researchers: this method can be utilized to find lower and upper bounds for any continuous
quantity over the unit sphere. Similarly, our implementation of the Particle Swarm Optimiza-
tion on the unit sphere, enriched with the gradient-descent algorithm, could be utilized to
solve other minimization problems. The toolbox is written in Python and mainly built on the
packages numpy and scipy, and can be publicly accessed at qittoolbox on GitHub . There,
we also provide a small tutorial that shows how one can utilize the different tools.

https://github.com/SamvPoelgeest/qittoolbox
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Appendix: Additional proofs

In this appendix, we will provide a selection of additional lemmata and proofs for the treat-
ment of ε-covers. In particular, we will show how we derived bounds on the Euclidean dis-
tance between two unit vectors on the (n−1)-sphere whose spherical angles are close to each
other.

A.1. Additional proofs for the ε-cover A(2)
n,ε

Let us state Taylor’s theorem for multivariate functions [Edw73, Thm. 7.1]:

Theorem A.1.1: First-order multivariate Taylor’s theorem

Given a twice continuously differentiable function f : Ω → R on an open domain Ω ⊆ Rn
for some n ∈ N that contains the line segment L from α to β, then we can approximate
the value of f at β by its value at α as follows:

f(β) = f(α) +
n∑
k=1

∂f

∂xk

∣∣∣∣
x=α

(βk − αk) +R1(α,β), (A.1)

where the Lagrange rest term R1 is defined as

R1(α,β) =
∑
|γ|=2

1
γ! · (∂γf)

∣∣
x=c

· (β −α)γ , (A.2)

where c ∈ L is a vector whose components ci are between βi and αi. Here, γ is a multi-
index of degree |γ|: this is an n-tuple γ = (γ1, . . . , γn) ∈ Nn0 , with |γ| :=

∑
i γi and γ! :=∏

i(γi!). Furthermore, xγ :=
∏
i x

γi

i , and lastly, the notation ∂γf refers to:

∂γf = ∂γ1
1 · · · ∂γn

n f = ∂|γ|f
∂xγ1

1 · · · ∂xγn
n
. (A.3)

We can now state the result that was alluded to in Section 8.2.5, but was not included
there as a better result was found using rotations:

Lemma A.1.1: Approximation lemma for A(2)
n,ε

Given angles (β1, . . . , βk) and (α1, . . . , αk) for some k ∈ N, and assume |βi − αi| ⩽ δ for all
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1 ⩽ i ⩽ k. Then, we have:∣∣ sin(α1) · · · sin(αk−1) cos(αk) − sin(β1) · · · sin(βk−1) cos(βk)
∣∣

⩽ δ ·
(

1 − 1
k

)k/2
·
(√

k − 1 + 1/
√
k − 1

)
+ δ2k2/2 ⩽ δ ·

(√
k − 1
e

+ 1√
e(k − 1)

)
+ δ2k2/2.

(A.4)

Proof. As all |βi − αi| ⩽ δ, let βi = αi + ϵi for |ϵi| ⩽ δ. We will use α to denote the vector
(α1, . . . , αk), and ϵ to denote the vector (ϵ1, . . . , ϵk). Then, consider the following function:

f(x) = f(x1, . . . , xk) = sin(x1) sin(x2) · · · sin(xk−1) cos(xk). (A.5)

As the function f is a smooth function of all its variables, we can use the multivariate Taylor
theorem to approximate f up to first order.

When we look at R1(α,β) in our case, we note that every second derivative of f is still a
product of sines and cosines (possibly with a minus sign in front). Hence, surely, |∂γf | ⩽ 1
on the entirety of Rk. Hence, we can estimate:

|R1(α,α+ ϵ)| =

∣∣∣∣∣∣
k∑
i=1

1
2
∂2f

∂x2
i

∣∣∣∣
x=c

ϵ2i +
∑
i<j

∂2f

∂αi∂αj

∣∣∣∣
x=c

ϵiϵj

∣∣∣∣∣∣
⩽

k∑
i=1

ϵ2i
2 +

∑
i<j

|ϵiϵj | ⩽
k∑
i=1

δ2

2 +
∑
i<j

δ2 = k

2 δ
2 + k(k − 1)δ2

2 = δ2k2

2 . (A.6)

We now need to find a good estimate of the factor
∑t
i=1

∂f
∂xi

∣∣
x=α

ϵi. In order to make the
proof accessible, let us for now focus on the case k = 3, such that we have:

f(α) = sin(α1) sin(α2) cos(α3), (A.7)

and hence, where we abbreviate s(x) := sin(x) and c(x) := cos(x):
k∑
i=1

∂f

∂xi

∣∣∣∣
x=α

ϵi = ϵ1c(α1)s(α2)c(α3) + ϵ2s(α1)c(α2)c(α3) − ϵ3s(α1)s(α2)s(α3). (A.8)

Thus, we can cast our estimation problem into the optimization problem P3:

P3 :



maximize |ϵ1c(α1)s(α2)c(α3) + ϵ2s(α1)c(α2)c(α3) − ϵ3s(α1)s(α2)s(α3)|
such that − δ ⩽ ϵi ⩽ δ ∀1 ⩽ i ⩽ 3

0 ⩽ α1 ⩽ π

0 ⩽ α2 ⩽ π

0 ⩽ α3 ⩽ 2π.

(A.9)

This problem and its generalization Pk to any k can actually be analytically solved, and
we will do so in Lemma A.1.2. For now, assuming Lemma A.1.2 is valid, this problem has an
optimal value that scales as:

Ck = δ ·
(
k − 1
k

)k/2
· k√

k − 1
= δ ·

(
1 − 1

k

)k/2
·
(√

k − 1 + 1/
√
k − 1

)
. (A.10)

Now, the first term can be estimated as follows: it is increasing as a function of k 1. Hence,
we can estimate the term by its limit value, which is:

lim
t→∞

(1 − 1/t)t/2 = lim
x→∞

(1 + (−1/2)/x)x = e−1/2 =
√

1/e ≈ 0.607. (A.12)

1Namely, consider g(n) = (1 − 1/n)n. Then, by the AM-GM inequality for p1 = 1 and p2 = p3 = · · · = pn+1 = 1 − 1/n,
note that all pi ⩾ 0 and p1 ̸= p2, so(

1 −
1
n

) n
n+1

= n+1√p1 · · · pn+1 <
p1 + · · · + pn+1

n+ 1
=

1 + n(1 − 1/n)
n+ 1

=
n

n+ 1
= 1 −

1
n+ 1

. (A.11)

Hence, by taking the (n + 1)-th power, we see g(n) < g(n + 1). The first term is g(t)1/2, and the square root is
monotonously increasing, from which our claim follows.
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Hence, we have ∣∣∣∣∣
k∑
i=1

∂f

∂xi

∣∣∣∣
x=α

ϵi

∣∣∣∣∣ = δCk ⩽ δ ·
(√

k − 1
e

+ 1√
e(k − 1)

)
. (A.13)

Hence, we have found:

|f(β) − f(α)| ⩽
∣∣∣∣∣
k∑
i=1

∂f

∂xi

∣∣∣∣
x=α

ϵi

∣∣∣∣∣+ |R1(α,β)| ⩽ δ ·
(√

k − 1
e

+ 1√
e(k − 1)

)
+ δ2k2/2. (A.14)

Filling in the definition of f yields the statement of the lemma.

What is left, is to prove the claim that the optimization problem in the previous lemma
can be analytically solved:

Lemma A.1.2: Optimization lemma for Lemma A.1.1

For k ∈ N with k ⩾ 2, define the optimization problem Pk as:

Pk :



maximize

∣∣∣∣∣∣
(
ϵk

k∏
i=1

sin(αi)
)

+
k−1∑
i=1

ϵi cos(αk) cos(αi)
k−1∏

j=1,j ̸=i
sin(αj)

∣∣∣∣∣∣
such that − δ ⩽ ϵi ⩽ δ ∀1 ⩽ i ⩽ k

0 ⩽ αi ⩽ π ∀1 ⩽ i ⩽ k − 1
0 ⩽ αk ⩽ 2π.

(A.15)

The problem Pk has an optimal solution, and its optimal value Ck is precisely

Ck = δ ·
(
k − 1
k

)k/2
· k√

k − 1
. (A.16)

Proof. First note that we will always choose |ϵi| = δ, and we can choose sgn(ϵi) depending
on the factor with which it is multiplied, such that all k factors in the objective function are
positive. Hence, we can equivalently solve the problem

maximize

∣∣∣∣∣
k∏
i=1

sin(αi)
∣∣∣∣∣+

k−1∑
i=1

∣∣∣∣∣∣cos(αk) cos(αi)
k−1∏

j=1,j ̸=i
sin(αj)

∣∣∣∣∣∣ (A.17)

under the same constraints for αi. Now let us put xi := sin(αi) for 1 ⩽ i ⩽ k−1 and xk = cos(αk).
Hence, we now have the constraints 0 ⩽ xi ⩽ 1 for 1 ⩽ i ⩽ k−1, and the constraint −1 ⩽ xk ⩽ 1.
However, note that the objective function only depends on the absolute value of xk, so we may
as well assume 0 ⩽ xk ⩽ 1. Then, note that | cos(αi)| =

√
1 − x2

i , and | sin(αk)| =
√

1 − x2
k, so

our objective is to maximize the function g, given by

g(x) = x1 · · ·xk−1

√
1 − x2

k + x1 · · ·xk−2

√
1 − x2

k−1xk + . . .

. . .+ x1 · · ·xk−3

√
1 − x2

k−2xk−1xk + · · · +
√

1 − x2
1x2 · · ·xk. (A.18)

We now see that the very symmetric function g is also in fact continuous on the compact
domain [0, 1]k, so we know that the maximum is achieved. Let us define the functions

fi(x) = x1 · · ·xi−1

√
1 − x2

ixi+1 · · ·xk ; f
(j)
i (x) = fi(x)/xj , (A.19)

where we assume j ̸= i and extend f
(j)
i so that it is continuous at xj = 0. So, f (j)

i is just the
function fi without the factor xj. Clearly, g(x) =

∑
i fi(x). Then note that g is smooth in each
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variable on [0, 1)m, and we can compute:

∂g

∂xi
=

∑
j ̸=i

f
(i)
j (x)

+ −xi√
1 − x2

i

∏
j ̸=i

xj , (A.20)

We investigate the critical points of g in (0, 1)k (note the exclusion of 0 in this open interval):
we see

∂g

∂xi
= 0 ⇐⇒ xi√

1 − x2
i

=
∑
j ̸=i f

(i)
j (x)∏

j ̸=i xj
=
∑
j ̸=i

√
1 − x2

j

xj
. (A.21)

Let us define yi := xi/
√

1 − x2
i ∈ (0,∞), then we see that the above is equivalent to:

yi =
∑
j ̸=i

1/yj , ∀1 ⩽ i ⩽ k. (A.22)

This set of equations has the solution yi =
√
k − 1, which is in fact unique for k ⩾ 3. Assume

for now k ⩾ 3, we will come back to k = 2 at the end. Namely, given any such solution
(y1, . . . , yk), consider the difference y1 − y2, and utilize Equation (A.22) to find: 2

y1 − y2 = 1/y2 + 1/y3 + · · · + 1/yk − (1/y1 + 1/y3 + · · · + 1/yk) = 1/y2 − 1/y1. (A.23)

Then, multiply both sides by y1y2 to find y1y2(y1 − y2) = y1 − y2, i.e. y1 = y2 or y1 = 1/y2.
Considering the constraint y1 = 1/y2 + 1/y3 + · · · + yk, the latter is impossible as all yi are
strictly positive, hence y1 = y2. This analysis holds in general for any pair (yi, yj). Then,
yi = (k − 1)/yi yields yi =

√
k − 1 for all i.

This critical point has x∗i =
√
k − 1/

√
k and thus

√
1 − x∗2i =

√
1/k, and has the value:

g(x∗) = k ·
(√

k − 1√
k

)k−1

· 1√
k

= (k − 1)(k−1)/2k1/2−(k−1)/2 = (k − 1)(k−1)/2k1−k/2. (A.24)

Let us briefly investigate the case of k = 2: we start out with the constraint y1 = 1/y2 (and y2 =
1/y1, which is equivalent), but in this case starting from x1/

√
1 − x2

1 =
√

1 − x2
2/x2, squaring

both sides and re-arranging terms reveals x2
1 + x2

2 = 1, so at these points we have g(x) =
x1
√

1 − x2
2 + x2

√
1 − x2

1 = x2
1 + x2

2 = 1, so g(x∗) = 1.
All other candidates for optimal values of g must occur at the boundary of the domain

[0, 1]k. Note that if any xi = 0, all but one term in g vanishes, and the remaining term is∏
j ̸=i xj, so the obvious maximal value is 1 in this case. Note that if any xi = 1, the problem

simplifies as well: by the symmetry of g, we may as well assume that xk = 1. In this case, we
see that we now must determine the maximum of

x1 · · ·xk−2

√
1 − x2

k−1 + · · · +
√

1 − x2
1x2 · · ·xk−1, (A.25)

which is simply the function g for k − 1 variables. The base case of k = 1 trivially yields a
maximum of 1, and note that g∗ is an increasing function of k for k ⩾ 2 (and has the same
value 1 for both k = 1 and k = 2), hence this does not yield a global maximum. Therefore, x∗
is the critical point at which g achieves its maximum, and the lemma follows.

We continue with the proof of Proposition 8.2.3, in which we we approximate L(n, ε) :=
supδ∈(0,1) L(n, ε, δ) with L(n, ε, δ) = [(1 + δ)n − (1 − δ)n] (ε+ δ)−n:

Proof of Proposition 8.2.3. We can approximate L(n, ε) as follows. Fixing n and ε, we consider

f : [0, 1] → [0,∞) : f(δ) := L(n, ε, δ) = (1 + δ)n − (1 − δ)n
(ε+ δ)n . (A.26)

2The author thanks fellow student Stephan Loor for exploiting the symmetry of the optimization problem by looking
at terms of the form y1 − y2 to prove uniqueness.
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We see that f is a continuously differentiable function of δ on [0, 1], it is also non-negative on
this interval. We will show that its derivative at δ = 0 is strictly positive, and we will show
that f ′(δ) = 0 has precisely one solution for δ ∈ [0, 1]. We will approximate this stationary
point which leads to an approximation of the maximal value of f on [0, 1].

Let us introduce Tn(δ) := (1 + δ)n − (1 − δ)n and Nn(δ) := (1 + δ)n + (1 − δ)n, hence f(δ) =
Tn(δ)/(ε+ δ)n. We can directly see:

T ′n(δ) = n(1 + δ)n−1 + n(1 − δ)n−1 = nNn−1(δ) (A.27)
N ′n(δ) = n(1 + δ)n−1 − n(1 − δ)n−1 = nTn−1(δ). (A.28)

Furthermore, Tn(0) = 0 whilst Nn(0) = 2, and Tn(1) = 2n and Nn(1) = 2n. Let us now calculate:

f ′(δ) = (ε+ δ)n · n ·Nn−1(δ) − Tn(δ) · n · (ε+ δ)n
(ε+ δ)2n . (A.29)

Hence, we find f ′(0) = 2nεn/ε2n = 2nε−n > 0 for all ε > 0 and n ∈ Z>0. To find the stationary
point(s), we solve:

f ′(δ) = 0 ⇐⇒ (ε+ δ)Nn−1(δ) − Tn(δ) = 0. (A.30)
Although this might not be analytically solvable for δ, we can approximate a solution by
rewriting:

f ′(δ) = 0 ⇐⇒ ε+ δ = Tn(δ)
Nn−1(δ) := g(δ). (A.31)

The function g is again a continuously differentiable function of δ on [0, 1]. Furthermore,
g(0) = 0 and g(1) = 2. We show that g′(δ) ⩾ 0 for all δ ∈ [0, 1], hence g is a monotonously
increasing function and must intersect the line δ 7→ ε + δ precisely once on [0, 1], provided
that 0 < ε < 1. This point is therefore the unique stationary point of f . Let us show the
non-negativity of g′ :

g′(δ) =
nN2

n−1(δ) − nTn(δ)Tn−2(δ)
N2
n−1(δ) . (A.32)

Hence, showing g′(δ) ⩾ 0 is equivalent to
N2
n−1(δ)

Tn(δ)Tn−2(δ) ⩾ 1. We simply expand the functions

to find:
N2
n−1(δ)

Tn(δ)Tn−2(δ) = (1 + δ)2n−2 + 2(1 + δ)n−1(1 − δ)n−1 + (1 − δ)2n−2

(1 + δ)2n−2 − (1 − δ)n(1 + δ)n−2 − (1 + δ)n(1 − δ)n−2 + (1 − δ)2n−2

= N2n−2(δ) + 2(1 + δ)n−1(1 − δ)n−1

N2n−2(δ) − ((1 + δ)n(1 − δ)n−2 + (1 + δ)n(1 − δ)n−2) ⩾ 1. (A.33)

We now approximate g by a linear function around δ = 0. As g(0) = 0, and g′(0) = 4n/4 = n,
we see that g(δ) ≈ nδ for δ around 0. Hence, if we solve ε+ δ = g(δ), an approximate solution
is δ = ε/(n − 1). This provides us with the estimate L(n, ε, ε/(n − 1)) for L(n, ε). The second
inequality in Proposition 8.2.3 follows from considering the binomial expansion of Tn(x):

Tn(x) = (1 + x)n − (1 − x)n = 2nx+ 2
(
n

3

)
x3 + 2

(
n

5

)
x5 + · · · + 2

(
n

n′

)
xn
′
, (A.34)

where n′ = n if n is odd and n′ = n − 1 if n is even. Hence, Tn(x) ⩾ 2nx for x ⩾ 0, with the
inequality increasingly sharp as x ↓ 0. The denominator of L1(n, ε) contains a term that can
be estimated as well: (

n

n− 1

)−n+1
=
(

1 − 1
n

)n−1
↘ e−1 as n → ∞. (A.35)

Hence:

L1(n, ε) = L(n, ε, ε/(n− 1)) =
Tn

(
ε

n−1

)
(

n
n−1ε

)n ⩾

(
n

n− 1

)−n
ε−n

2nε
n− 1 = 2

(
n

n− 1

)−n+1
ε−n+1

= L2(n, ε) ⩾ 2e−1ε−n+1 = L3(n, ε). (A.36)
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A.2. Additional proofs for the ε-cover A(3)
n,ε

We now consider the adaptive ε-cover A
(3)
n,ε, whose step sizes δi depend on the choices of

all previous discretized angles αj for 1 ⩽ j ⩽ i − 1. We need to adapt Lemma 8.2.1, which
used rotations to give a bound on the Euclidean distance between two unit vectors when the
difference between the spherical angles of these two unit vectors is bounded by a maximal
error δ. We find:

Proof of Lemma 8.2.2. We follow the analysis from Lemma 8.2.1, which is independent of the
choice of the parameter δ until we find in Equation (8.43):

∥ϕ− ψ∥2
2 = 2 − 2ψ(n−1)

1 , (A.37)

and

ψ
(n−1)
1 = cβ−α1 +sα1 s

β
1

(
cβ−α2 − 1

)
+sα1 s

β
1 s
α
2 s
β
2

(
cβ−α3 − 1

)
+· · ·+sα1 sβ1 · · · sαn−2s

β
n−2

(
cβ−αn−1 − 1

)
. (A.38)

The analysis now breaks down for the second angle, because we can still approximate cβ−α2 −
1 ⩾ −(β2 − α2)2/2 ⩾ −δ2

2/2, but for δ2
2 we only have the estimate

δ2
2 = min{ δ2

sin(β1)2 ,
π2

4 }. (A.39)

Thus, we need a multiplicative term sin(β1)2 to estimate this term in ψ
(n−1)
1 quadratically

in δ, but we have the multiplicative term sin(α1) sin(β1). However, sin(α1) should be close to
sin(β1), so we need to approximate this further. Write αi = βi + εi with |εi| ⩽ δi, consider
sin(αi) = sin(βi) cos(εi) + cos(βi) sin(εi) and expand:

sα1 s
β
1

(
cβ−α2 − 1

)
= cε1

(
sβ1

)2 (
cβ−α2 − 1

)
+ cβ1 s

ε
1s
β
1

(
cβ−α2 − 1

)
. (A.40)

Note that |εi| ⩽ δi ⩽ π/2, so we always have cos(εi) ⩾ 0. Then note that the first term is now in
the right shape:

cε1

(
sβ1

)2 (
cβ−α2 − 1

)
⩾ − cos(ε1) sin2(β1)δ2

2/2 ⩾ −δ2/2. (A.41)

The second term requires some tweaking: we only have one sin(β1), but we now additionally
have sin(ε1). Using | sin(γ)| ⩽ |γ| for any γ ∈ R:

cos(β1) sin(ε1) sin(β1)
(

1 − cβ−α2

)
⩽ | cos(β1) sin(ε1)| sin(β1)|δ2

2/2. (A.42)

We now estimate δ2 ⩽ δ/ sin(β1) and also δ2 ⩽ π/2 to arrive at sin(β1)δ2
2 ⩽ δ π2 . Then, we get:

| cos(β1) sin(ε1)| sin(β1)δ2
2/2. ⩽ |ε1|δ2

π

2 ⩽
π

2 δ
2/2. (A.43)

This gives us insight into the general case. Consider the termAk := sα1 s
β
1 · · · sαk sβk

(
1 − cβ−αk+1

)
.

We first expand sα1 to find

Ak = cε1(sβ1 )2sα2 s
β
2 · · · sαk sβk

(
1 − cβ−αk+1

)
︸ ︷︷ ︸

:=A(1)
k

+cβ1 sε1s
β
1 s
α
2 s
β
2 · · · sαk sβk

(
1 − cβ−αk+1

)
. (A.44)

We can immediately estimate the last term: it contains
∏k
i=1 sin(βi), so estimate 1 − cβ−αk+1 ⩽

δ2
k+1/2, then estimate δk+1 ⩽ π/2 and use

∏k
i=1 sin(βi)δk+1 ⩽ δ to get an upper bound of δπ/(2·2).

As we also have | sin(ε1)| ⩽ |ε1| ⩽ δ, we get an upper bound of δ2π/(2 · 2).
The first term A

(1)
k is not yet useful, so we expand sin(α2) to get:

A
(1)
k = cε1c

ε
2(sβ1 )2(sβ2 )2sα3 s

β
3 · · · sαk sβk

(
1 − cβ−αk+1

)
︸ ︷︷ ︸

:=A(2)
k

+cε1c
β
2 (sβ1 )2sε2s

β
2 s
α
3 s
β
3 · · · sαk sβk

(
1 − cβ−αk+1

)
. (A.45)
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The last term now contains sin(ε2), and we know | sin(ε2)| ⩽ |ε2| ⩽ δ2. As we have two sin(β1)
terms, we can sacrifice one to estimate sin(β1)δ2 ⩽ δ, and we then still have

∏k
i=1 sin(βi) left.

Estimating the cosine again yields δ2
k+1/2, we estimate δk+1 ⩽ π/2, we use the product of sines

to get
∏k
i=1 sin(βi)δk+1 = δ, and we thus find an upper bound of δ2π/(2 · 2).

This continues: we expand the next sin(αi), we get a term with sin(εi) and (1 − cβ−αk+1 ) which
we can estimate quadratic in δ as we have have terms sin(βj)2 for j < i in there, which still
leaves a term

∏k
j=1 sin(βj) after using

∏i−1
j=1 sin(βj)|εi| ⩽ δ, so we can estimate

∏k
j=1 sin(βj)(1 −

cβ−αk+1 ) ⩽ πδ/(2 · 2).
The last term (which is the only term without any sin(εi) in it) also works out:

cε1 · · · cεk(sβ1 )2(sβ2 )2 · · · (sβk)2(1 − cβ−αk+1 ) ⩽ δ2/2, (A.46)

as we precisely have twice the product
∏k
i=1 sin(βi) to get

∏k
i=1 sin(βi)δk+1 = δ. In all, we get

Ak ⩽ (k − 1)π2
δ2

2 + δ2

2 . (A.47)

As k in Ak runs from 1 to n− 2, we have
n−2∑
k=1

Ak ⩽
n−2∑
k=1

(
(k − 1)π2

δ2

2 + δ2

2

)
= π

2
δ2

2
(n− 3)(n− 2)

2 + (n− 2)δ
2

2 . (A.48)

Hence,

ψ
(n−1)
1 = cβ−α1 −

n−2∑
k=1

Ak ⩾ 1 − δ2

2 − (n− 2)δ
2

2 − (n− 3)(n− 2)
2

π

2
δ2

2 . (A.49)

Finally,

∥ϕ− ψ∥2
2 = 2 − 2ψ(n−1)

1 ⩽

(
(n− 1) + π

2
(n− 3)(n− 2)

2

)
δ2. (A.50)

We now consider the size of the ε-covers A(3)
n,ε. Calculating their size is much more involved

than calculating the size of A(2)
n,ε, because the discretization of αi depends on the choice of all

previous angles αj for 1 ⩽ j ⩽ i− 1. We find:

Proof of Proposition 8.2.6. Our strategy is to approximate the sum

|A(3)
n,ε| =

∑
(i1,...,in) admissible

1 =
t1∑
i1=1

t2∑
i2=1

· · ·
tn−2∑
in−2=1

tn−1, (A.51)

where each nested sum over ik is dependent on all the choices of ij for j < k, hence we must
start with the very last sum.

Approximation of the sum over in−2. Assume we are given the discretized angles α(i1)
1 up to

α
(in−2)
n−2 . We then know that tn−1 = ceil(π/δn−1), where δn−1 = δ/

∏n−2
j=1 sin(α(ij)

j ), or δn−1 = π/2 if
that is smaller. We use ceil(x) ⩽ x + 1 for any x ∈ R to replace tn−1 with a new upper bound
t̂n−1, defined by:

tn−1 ⩽ t̂n−1 := 2 + π

δ
sn−2(α), (A.52)

where we again use the notation sk(α) =
∏k
i=1 sin(αi). Then, let us sum over all possible values

of α(in−2)
n−2 , assuming (i1, . . . , in−3) is fixed for the moment. This means that the sum over in−2

in the expression of |A(3)
n,ε| can be upper-bounded by:

tn−2∑
in−2=1

tn−1 ⩽
tn−2∑
in−2=1

2 + π

δ
sn−3(α) sin(α(in−2)

n−2 ). (A.53)
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We move all terms that are not dependent on the summand out of the sum and we find:

tn−2∑
in−2=1

2 + π

δ
sn−3(α) sin(α(in−2)

n−2 ) = 2tn−2 + π

δ
sn−3(α)

tn−2∑
in−2=1

sin
(
π(in−2 − 1)
tn−2 − 1

)
. (A.54)

With foresight, we will investigate this sum in slightly more generality, and note for β ∈ N:

t∑
i=1

sinβ
(
π(i− 1)
t− 1

)
≈
∫ t

1
sinβ

(
π(x− 1)
t− 1

)
dx = t− 1

π

∫ π

0
sinβ(y)dy := (t− 1)I(β), (A.55)

where the integrals I(β) are well-known and can be expressed in term of the beta function B

given by B(x, y) =
∫ 1

0 t
x−1(1 − t)y−1 dt, which satisfies B(x, y) = Γ(x)Γ(y)

Γ(x+y) :

I(β) = 1
π

∫ π

0
sinβ(y)dy = 1

π
B

(
1
2 ,
β + 1

2

)
= Γ(1/2)Γ((β + 1)/2)

πΓ(1 + β/2) . (A.56)

Let us return to the expression found in Equation (A.54), which we now approximate by:

2tn−2 + π

δ
sn−3(α)

tn−2∑
in−2=1

sin
(
π(in−2 − 1)
tn−2 − 1

)
≈ 2tn−2 + π

δ
sn−3(α)(tn−2 − 1)I(1). (A.57)

Approximation of the sum over in−3 Having approximated the sum over in−2, we need to
sum over all possible values of in−3. First, note that as tn−2 = 1 + ceil(π/(2δn−2)), and δn−2 =
δ/sn−3(α) or δn−2 = π/2, whichever is smaller, we utilize the upper bound ceil(x) ⩽ 1 + x for
any x ∈ R again to find the new upper bound t̂n−2, defined by:

tn−2 ⩽ t̂n−2 := 2 + π

2δ sn−3(α). (A.58)

Hence, we substitute t̂n−2 for tn−2 in the summand, which is described in Equation (A.57).
We find:

2tn−2 + π

δ
sn−3(α)(tn−2 − 1)I(1) ⩽ 2 · 2 +

(
2π
2δ + π

δ
I(1)

)
sn−3(α) + π2

2δ2 I(1)s2
n−3(α). (A.59)

Now expand sn−3(α) = sn−4(α) sin(α(in−3)
n−3 ), move all terms that are not dependent on in−3 out

of the summation, and use the integral approximation as given in Equation (A.55) to find:

tn−3∑
in−3=1

2 · 2 +
(

2π
2δ + π

δ
I(1)

)
sn−4(α) sin(α(in−3)

n−3 ) + π2

2δ2 I(1)s2
n−4(α) sin2(α(in−3)

n−3 )

≈ 2 · 2tn−3 +
(

2π
2δ I(1) + π

δ
I(1)2

)
sn−4(α)(tn−3 − 1) + π2

2δ2 I(1)I(2)sn−4(α)2(tn−3 − 1). (A.60)

Approximation of the sum over general ik. Now, we find the pattern: we find an upper bound
t̂k for tk, given by the equation tk ⩽ t̂k := 2+ π

2δ sk−1(α). Any constant c going into a sum comes
out as ctk ⩽ 2c+ cπ

2δ sk−1(α), and any term proportional to sβk(α) in a sum over ik comes out as:

sβk(α) 7→ sβk−1(α)I(β)(tk − 1) ⩽ sβk−1(α)I(β) + π

2δ s
β+1
k−1(α). (A.61)

We see that we must keep track of the terms sβk(α) involved, which are the only terms depen-
dent on the summing variables ij for 1 ⩽ j ⩽ n− 2. We utilize polynomials for the bookkeep-
ing, and those polynomials will be defined recursively. Firstly, let us look back at the upper
bound t̂n−1 for tn−1, defined by t̂n−1 = 2 + π

δ sn−2(α). We can define a polynomial pn−2 given by
pn−2(x) := 2 + 2x, such that t̂n−1 = pn−2( π2δ sn−2(α)). Then, for the next summand in the sum
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over in−3, we define pn−3(x) = 2 · 2 + 2 · x+ 2I(1)x+ 2I(1)x2. We estimated the summand in the
sum over in−3 in Equation (A.59), which we can now describe as:

2 · 2 +
(

2π
2δ + π

δ
I(1)

)
sn−3(α) + π2

2δ2 I(1)s2
n−3(α) = pn−3

( π
2δ sn−3(α)

)
. (A.62)

In this language, we can therefore write:

pn−3
(
π
2δ sn−3(α)

)
≈

tn−2∑
in−2=1

pn−2
(
π
2δ sn−2(α)

)
. (A.63)

We now wish to generalize this: find a polynomial pk−1 such that pk−1
(
π
2δ sk−1(α)

)
approxi-

mates
∑tk
ik=1 pk

(
π
2δ sk(α)

)
. We will give a recursion relation for pk−1 in terms of pk.

We noted at the start of this paragraph that any constant c going into a sum comes out
as ctk ⩽ 2c + cπ

2δ sk−1(α), so we see this as a mapping c 7→ 2c + cx. Similarly, according to
Equation (A.61), any term proportional to sβk(α) came out of the sum over ik as sβk−1(α)I(β)(tk−
1), which we estimated by sβk−1(α)I(β) + π

2δ s
β+1
k−1(α). Hence, we see this as a mapping xβ 7→

I(β)xβ + I(β)xβ+1. Note that these mappings applied to pn−2(x) = 2 + 2x indeed yield pn−3.
Then, the dynamics of finding the polynomial pk−1 from pk can be described in matrix-

vector notation as follows. Let pk := a
(k)
0 + a

(k)
1 x+ · · · + a

(k)
n−1x

n−1, then:
a

(k−1)
0
a

(k−1)
1
a

(k−1)
2

...
a

(k−1)
n−1

 =



2
1 I(1)
0 I(1) I(2)
0 0 I(2) I(3)

. . .
I(n− 2) I(n− 1)


︸ ︷︷ ︸

:=Cmat


a

(k)
0
a

(k)
1
a

(k)
2
...

a
(k)
n−1

 . (A.64)

After evaluating all other sums, we finally end up with
∑t1
i1=1 pn−(n−1)( π2δ sin(α1)). This sum

can be evaluated just like the previous ones, yielding a polynomial p0, which we should then
evaluate in π/(2δ), so we find

|A(3)
n,ε| ≈ p0(π/(2δ)) =

〈
a

(0)
0
...

a
(0)
n−1

 , δvec

〉
=
〈
Cn−2

mat a
(n−2), δvec

〉
, (A.65)

where a(n−2) := (2, 2, 0, 0, . . . , 0) is the starting coefficient vector of polynomial pn−2(x) = 2 + 2x,
and δvec := (1, π/(2δ), π2/(2δ)2, . . . , πn−1/(2δ)n−1).



B
Appendix: Additional Quantum

Channel Properties

Definition B.0.1: Hadamard form

We say that Φ can be written in Hadamard form if either of the following equivalent
conditions is met:

1. The quantum channel Φc is entanglement-breaking;
2. We can write

Φ(ρ) =
∑
jk

|ej⟩⟨ek| ⟨xj |xk⟩ ⟨wj |ρ|wk⟩ = X ∗Wρ, (B.1)

where {|ei⟩} is an orthonormal basis of HB, {|xi⟩} ⊂ HE, and {|wi⟩} ⊂ HA. We put
this data into a matrix X with coefficients [X]jk = ⟨xj |xk⟩ and a matrix Wρ with
coefficients [Wρ]jk = ⟨wj |ρ|wk⟩, and we can then describe Φ(ρ) = X ∗Wρ, where ∗ is
the Hadamard (or Schur) element-wise product.

We say that Φ is a Hadamard (diagonal) channel if the vectors {|wk⟩} ⊂ HA form an
orthonormal basis of HA, such that Wρ is a matrix representation of ρ with respect to
this basis. Equivalently, Φc is a classical-quantum (CQ) channel (which is an extreme
point in the convex set of EBT maps).

Remark B.0.1. The second equivalent condition that allows Φ to be written in Hadamard
form is implied by the first condition as follows: as Φc is entanglement breaking, we can write
Φc(ρ) =

∑d
k=1 |xk⟩⟨xk| ⟨wk|ρ|wk⟩ for some |xk⟩ ∈ HE and |wk⟩ ∈ HA. Hence, its Kraus operators

Fk are given by Fk = |xk⟩⟨wk|. From this, it follows that Φ(ρ) =
∑
jk |ej⟩⟨ek| Tr(FjρF ∗k ), where

{|ek⟩}dk=1 is an orthonormal basis of HB ≃ Cd. Writing out the trace yields ⟨xj |xk⟩ ⟨wj |ρ|wk⟩
and we recover the second equivalent condition.

Definition B.0.2: Unital or bistochastic

We say that Φ is bistochastic if it sends the maximally mixed input state ρ = 1
dimHA

ιHA

to the maximally mixed output state 1
dimHB

ιHB . In the case dim HA = dim HB, this is
equivalent to Φ(ι) = ι, and in this case Φ is also called unital.

Theorem B.0.1: Unital qubit channels are strongly MOE-additive

Given any unital qubit channel Φ : B(C2) → B(C2). Then, for any arbitrary other channel
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Ψ (note that this channel does not have to be unital, or a qubit channel!), we have

Hmin(Φ ⊗ Ψ) = Hmin(Φ) +Hmin(Ψ), (B.2)

Proof. Theorem 1 in [Kin02a].

Theorem B.0.2: Depolarizing channel is strongly MOE-additive and χ-additive

The depolarizing channel is a quantum channel ∆λ : B(H) → B(H) for some finite-
dimensional Hilbert space H and a real parameter − 1

d2−1 ⩽ λ ⩽ 1 with d := dim H,
given by ∆λ(ρ) = λρ+ 1−λ

d ιH. For any other channel Ψ, we have

Hmin(∆λ ⊗ Ψ) = Hmin(∆λ) +Hmin(Ψ). (B.3)

and
χ(∆λ ⊗ Ψ) = χ(∆λ) + χ(Ψ). (B.4)

Proof. Theorems 2 and 3 in [Kin03], the strong MOE-additivity for 0 < λ < 1 was already
established earlier in [AH01]. Also note that ∆λ is entanglement-breaking if and only if it
is PPT (in general, we only know that EBT implies PPT, see Lemma 3.5.1 below), if and only
if −1

d2−1 ⩽ λ ⩽ 1
d+1 , which was already proven by the brothers Horodecki [HH99], and from

Theorem 3.5.1 we know that EBT channels are strongly MOE-additive. Also see [LH16].

Theorem B.0.3: Channels in Hadamard form are strongly MOE-additive

Given any channel Φ that can be written in Hadamard form. Then, for any arbitrary
other channel Ψ (note that this channel does not have to be Hadamard!), we have

Hmin(Φ ⊗ Ψ) = Hmin(Φ) +Hmin(Ψ). (B.5)

Proof. The Hadamard diagonal case was proven by King [Kin02b, Kin04], the general case
was proven by King, Matsumoto, Nathanson and Ruskai in [KMNR05], as this theorem di-
rectly follows from their Theorem 5 (see Theorem 3.5.2 in this thesis) using the fact that the
complementary channel of a channel that has a Hadamard form is an entanglement-breaking
channel, and EBT channels are strongly MOE-additive by Theorem 3.5.1.
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