
G-Rank
Unsupervised Continuous Learn-to-Rank for Edge Devices in a P2P Network

Andrew Gold

Committee: Dr.ir. J.A. Pouwelse (supervisor), Dr. N. Yorke-Smith
EEMCS, Delft University of Technology, The Netherlands

31 January 2023

to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on Tuesday, 31 January, 2023.

G-Rank: Unsupervised Continuous Learn-to-Rank for Edge Devices in
a P2P Network

Andrew Gold
Delft University of Technology

Delft, The Netherlands

Abstract— Ranking algorithms in traditional search engines
are powered by enormous training data sets that are meticu-
lously engineered and curated by a centralized entity. Decentral-
ized peer-to-peer (p2p) networks such as torrenting applications
and Web3 protocols deliberately eschew centralized databases
and computational architectures when designing services and
features. As such, robust search-and-rank algorithms designed
for such domains must be engineered specifically for decen-
tralized networks, and must be lightweight enough to operate
on consumer-grade personal devices such as a smartphone
or laptop computer. We introduce G-Rank, an unsupervised
ranking algorithm designed exclusively for decentralized net-
works. We demonstrate that accurate, relevant ranking results
can be achieved in fully decentralized networks without any
centralized data aggregation, feature engineering, or model
training. Furthermore, we show that such results are obtainable
with minimal data preprocessing and computational overhead,
and can still return highly relevant results even when a user’s
device is disconnected from the network. G-Rank is highly
modular in design, is not limited to categorical data, and can be
implemented in a variety of domains with minimal modification.
The results herein show that unsupervised ranking models
designed for decentralized p2p networks are not only viable,
but worthy of further research.
Author’s note: the experiments performed herein are open-source
and can be found on GitHub1.

I. INTRODUCTION
The problem of relevance ranking in information retrieval

problems has been well-studied for decades, solutions for
which have enabled users to query vast swathes of informa-
tion on the World Wide Web and retrieve highly relevant
results within milliseconds. Nascent search-and-rank tech-
niques for web search culminated with PageRank in 1998
[1], directly leading to Google’s ascendant dominance in the
web search domain. All such algorithms, however, depend
upon ever-growing databases of mapped relations between
various information sources and topics, requiring enormous
computational power to deliver lightning-fast results directly
to a user’s device. Therefore, these algorithms all depend
upon highly centralized information architectures with thou-
sands of skilled attendants dedicated to maintaining and
improving system capabilities. In such a paradigm, the risk
of impropriety such as misdirection and fraud is high due to
the enormous financial incentives for being ranked higher in
search results.

As such, typical ranking algorithms are wholly unsuited
for deployment in decentralized information architectures

1 https://www.github.com/awrgold/G-Rank

such as peer-to-peer (p2p) file sharing networks (e.g. Bit-
Torrent) and various Web3 applications. These networks
are largely comprised of individual users where the max-
imum computational and storage capacity available to any
search-and-rank algorithm is that of an individual’s desktop
computer or mobile device. The success of many nascent
applications built atop decentralized networks therefore de-
pends upon the efficacy of novel search-and-rank schemes
designed specifically for edge devices in these domains.
These algorithms must have a zero-server architecture, be
lightweight enough to run on a cheap smartphone, and yet
be robust enough to return highly relevant results to each
individual user.

Furthermore, these algorithms must adhere to the ethos
of these decentralized networks, which often emphasize user
privacy and information security foremost among its tenets.
Any ranking algorithm built in such a domain must therefore
be able to function effectively utilizing data immediately
available to a user of a p2p application, the majority of
which is often the user’s own data. That is not to say that
a ranking algorithm cannot be improved via the sharing
of information between participants in such networks, but
rather that the algorithm must be entirely self-sufficient
and self-contained without any meaningful expectation of
obtaining new information outside of the local device. As
first proposed in 2013 by Ormándi et al. [27], the concept
of utilizing message-passing as a means to build a cohesive
machine learning model in a distributed setting became a
novel instrument in respecting user privacy by emphasizing
local-first computational paradigms.

The concept of local-first software is not new [26], and
privacy-preserving machine learning schemes such as en-
crypted machine learning [38][39] and federated machine
learning [34][35][36][37] already exist, yet the problems of
security, storage, and overhead persist. Unfortunately, most
of these machine learning models are supervised which
handicaps developers by requiring large amounts of high-
quality training data to achieve meaningful results. Fur-
thermore, many unsupervised ranking models that show
promising results [19][20][21][22] are designed exclusively
for centralized systems. As such, any decentralized algorithm
or model that can quickly and sufficiently retrieve and rank
search results without the need for model training or human
supervision would allow for p2p networks of any size to
deliver meaningful search capabilities in a more trustless

1

fashion. Therefore, truly decentralized unsupervised ranking
system sits at the forefront of p2p and Web3 communications
development.

The rapid growth of p2p file-sharing networks around
the turn of the new millennium led to a boom in research
for search algorithms designed explicitly for such networks
[2][3][4][7][8][9][13][16]. Many such algorithms attempted
to recreate the efficacy of well-known existing search and
rank algorithms such as PageRank, yet the number of pub-
lications plateaued and began to decline around 2012. The
explosive growth of blockchain and Web3 technologies has
influenced a new generation of developers designing for a
more decentralized web experience. Decentralized search and
rank algorithms that do not depend upon any centralized
entity to function properly, are domain-independent, and can
sufficiently replicate the performance of more centralized
solutions are still nascent. We demonstrate that a simple,
lightweight, and effective ranking algorithm can be deployed
to p2p applications while achieving respectable results.

We introduce the unsupervised ranking algorithm G-Rank
designed explicitly for ranking search results in an internet-
deployed p2p torrent-based music streaming platform. The
goal of this first validation experiment is to demonstrate the
"correctness" of an unsupervised learn-to-rank (LTR) model
in the context of a distributed p2p file sharing network.
This model requires no training data to function, is capable
of returning relevant results to users within the first few
queries, and is not constrained by any dependence upon large
datasets. G-Rank is demonstrably capable of ranking results
in line with their global popularity, even though the model
itself is unaware of the best possible ranking for any given
query term. G-Rank will quickly approach the optimal global
ranking for all peers in the network, even if a user does not
perform any queries themselves; as a network utilizing G-
Rank grows in usership, new users will see highly relevant
results even with their first query.

The rest of this paper is as follows. Section 2 expounds
upon the problem of relevance ranking, namely supervised
versus unsupervised methods. Section 3 details the imple-
mentation of the G-Rank algorithm, describing the click-
log structure and gossip-based information dissemination
mechanism necessary for its functioning, as well as the
experimentation and evaluation of the model. Section 4 de-
scribes a number of experimental simulations of p2p network
participants under a variety of scenarios, including the results
of each experiment. Section 5 concludes that our algorithm is
capable of deployment, and provides suggestions for future
work.

II. PROBLEM DESCRIPTION

Security within the domain of decentralized machine
learning remains an unsolved problem. There exist numer-
ous additional constraints in decentralized networks that
traditional machine learning models need not be concerned
with. Trustless, anonymous networks are rife with malevolent
usership, and the task of identity verification in such net-
works also remains unsolved. Adding an additional layer of

complexity, many p2p networks are built upon open-source
software, affording any would-be adversary direct insight
into potential attack vectors. As such, machine learning mod-
els engineered for public p2p networks require exceptional
attention to detail across all facets of their design. These
constraints disqualify any supervised models from the outset
as they violate the trustless nature of p2p networks. Either
the engineers of such supervised models must be trusted
to train and validate the model, or the network participants
must provide training data themselves, thereby introducing a
critical vulnerability. Creating a LTR search engine for a p2p
domain that requires no training yet can converge towards an
optimal ranking as if an error rate is being minimized in a
supervised model would constitute a major development in
p2p applications.

Learn-to-rank is a well-known and thoroughly-studied
problem with myriad solutions achieving excellent results,
yet many of the most well-known ranking algorithms are
designed around centralized data aggregators and supervised
training methods. Past research into ranking search results
within p2p networks are almost exclusively supervised meth-
ods [6][17][33][40], which besides the traditional pitfalls
mentioned above also constrain the ranking problem into an
optimization problem. Furthermore, such supervised meth-
ods lack inherent "memory" such that they cannot retain
new information as they observe it; as such, they require
large training sets and trusted providers of training data.
Compiling relevant datasets and appropriate labels requires
considerable effort, which historically has been performed
manually by humans and is infeasible for exceptionally
large datasets. Automated labeling methods such as semi-
supervised learning can speed up this process, but these
methods have the drawback of imparting their own inherent
bias into the constructed dataset [42][43]. Therefore, the
difficulty of labeling data in a manual or semi-supervised
manner grows faster relative to the increase in size of data.

Other solutions treat ranking as a recommendation pre-
diction problem, where results are sorted by the predicted
score [30][31][32][33]. Framing the ranking problem as a
recommendation prediction problem also depends heavily
on the manner in which users "score" items that they are
recommended. Depending on the application, the manner in
which scores are calculated heavily influences the behavior
of the recommender. In the domain of e-commerce, an item
purchased by a user may be assigned a higher score than an
item said user has viewed multiple times but not purchased,
even if the user feels that the viewed item is more relevant
to them. Meanwhile, a music recommender may assign a
higher score to a song that appears in multiple playlists of
a specific user yet has fewer overall streaming plays than
a song that does not appear in any playlist yet contains a
significant number of streaming plays for that same user. As
such, any scoring system must be thoughtfully designed for
the specific recommendation algorithm and its domain.

With regards to distributed machine learning, federated
machine learning has several drawbacks in this domain as
well. Federated models are often less accurate due to their

2

relative inability to capture the variance in the overall data
throughout the network, as each model is iteratively fitted
to a small subset of data. Federated learning techniques,
as presented in [34][35][36][37], utilizes message pass-
ing to disseminate model parameters during training. This
parameter-passing mechanism is often considered sufficient
enough to obfuscate local data - affording some degree of
user privacy - though such methods are insufficient to prevent
determined adversaries from recreating input data [44]. That
being said, any such supervised methods still face the issue of
requiring training datasets which limits the scope of potential
research due to inadequate training data availability and
the infeasibility of synthesizing such datasets oneself. As
such, unsupervised ranking algorithms that can approach the
performance of supervised ranking methods may be better
suited towards p2p domains, where a significant portion
of software is open-source and user privacy is often given
higher priority than for traditional web services. Significantly
reduced overhead in algorithm implementation and mainte-
nance, therefore, is of major benefit to p2p applications.

Machine learning models deployed in distributed or de-
centralized settings are vulnerable to several specific attack
vectors, namely sybil and spam attacks, which can undermine
model accuracy and efficacy, e.g. via "model poisoning
attacks" [10][11]. Such attacks are inherently difficult to
thwart in any decentralized network setting. As shown in [5],
even PageRank is not immune to sybil attacks and there-
fore also requires considerable adaptation to trustless p2p
environments. Sybil attacks on federated machine learning
models present critical vulnerabilities, and solutions such as
those mentioned in [41] depend upon assumptions that are
unobtainable in live p2p networks. Meanwhile, spam attacks
are often broader in scope yet still pose significant risk to
machine learning models whose efficacy depend upon the
veracity of the data they are fed.

These threats are well-understood and a variety of methods
to thwart such attacks exist [41][45][46], however many of
these solutions are based on supervised learning and there-
fore suffer from the same issues mentioned previously, or
require the aggregation of network traffic through centralized
"coordinators," eroding the trustlessness of p2p networks.
As such, unsupervised machine learning models that are
robust enough to function in the midst of spam or sybil
attacks are critical to the expansion of search, ranking, and
recommendation models for the decentralized web.

III. ARCHITECTURE OF G-RANK

Our G-Rank algorithm is a first humble step towards a
first decentralised search engine. We focus on the domain
of music and video search specifically. Our p2p architecture
assumes each user operates their own node and searches for
BitTorrent-based Creative Commons licensed music. This
music application allows users (A.K.A. "nodes" when re-
ferring to network architecture, or "peers" when referring
to other users in the network) to query other peers for
the contents of their library and download files to their
device. The clicklog is the central data structure within our

Fig. 1. Decentralized p2p networks are zero-server architectures where
often the only mechanism of information dissemination is via message-
passing, infusing an additional constraint into the machine learning archi-
tecture.

architecture. It contains the user query and supporting info.
Whenever a user issues a query, the user device appends the
query and its associated results to a clicklog that is stored
locally on the device. At any point, each peer can request
an update from another peer containing its local clicklog,
disseminating clicklog data with other peers in the network
via a gossip protocol (See Section 3B). When a user receives
a gossip message containing updated clicklog information,
the device appends the new information to the local clicklog
to be used by the ranking model in future queries.

The unsupervised method detailed herein focuses on rank-
ing query search results relative to one another, i.e. pairwise
comparison across all potential results. Due to the fact that
each node in the network contains only a small subset
of total possible search results, it is highly unlikely that
any one node attain perfect ranking results without the
dissemination of local clicklog information to other nodes in
the network. Such a mechanism - be it via gossip, broadcast-
ing search history, or a centralized information aggregation
scheme - directly and heavily influences the behavior of
the unsupervised ranking model. The continuous updating
of data accessible to G-Rank is an example of continuous
learning [12], where the model requires no re-training as each
new data point becomes available. Instead, as each gossip
message is received G-Rank considers this new information
in real time, affording it the ability to continuously adapt to
an ever-changing environment with zero human intervention.
Therefore, the ranking model’s dependence upon the clicklog
dissemination scheme is closely investigated alongside the
actual performance of the ranking model, where two distinct
gossip schemes are considered alongside ranking model
parameters and functionality.

3

A. Unsupervised Ranking Model

When a user searches for a query term, the ultimate goal
is to provide the most accurate list of results ranked by
relevance to the query term as well as to the user. First,
the model checks the local clicklog for previous instances of
a query term, and if this term has never been queried before
it then searches for matches of this term in the metadata
of local files, including the title, artist, and genre tags.
The model does not consider misspellings/typos, although
methods such as those mentioned in [2] are highly effective
at correcting for typos in information retrieval (IR) schemes
and could potentially be integrated with G-Rank. If the query
term has been seen before, it returns the most popular results
for this query weighted by the similarity of search and click
behavior of other users who have also issued similar or
identical queries (as described in Section 3D). In order to
avoid plateauing performance, G-Rank incorporates a degree
of statistical noise by swapping two randomly-selected items
in the list of results for 50% of the queries.

Due to the fact that the search mechanism considers only
the clicklog and item metadata, it is extremely unlikely that
a item should erroneously become popularly associated with
a query term that has no direct match with any of the item’s
metadata. The only situation in which this could arise is if
a query term has never been seen before nor is contained
in any accessible metadata. Should this happen, the search
engine returns a list of popular items that have appeared
recently in the user’s local clicklog. However, because peers
have the option to share their local clicklogs with other peers
upon request, it is entirely plausible that a node or subset of
the network could be unaware of newly added items with
matching metadata at the time of the query. If this were
to occur, a user could click on a recommended item that
contains no matching metadata to the search query and then
gossip their clicklog history to nearby nodes, who then also
perform a search for the same term and click on the same
result. Such an occurrence would then erroneously lead to
a term-item pairing for which the associated item actually
contains no matching metadata, which could then propagate
throughout the network.

In order to avoid this situation, search results that contain
matching metadata are always ranked above items that have
term-item matches in the clicklog yet contain no matching
metadata. The justification for such is that should users wish
to find a specific item, they are ostensibly aware of the title,
artist, album, or some other trait that would be found within
the item’s metadata such that they need not rely entirely upon
the search history of a specific term in order to find said
item. A positive side-effect of this restriction is that it also
diminishes the effect of adversarial users "query-bombing"
the network to negatively influence the performance of the
ranking model.

B. Clicklog Structure

Each node in the network contains a clicklog that stores the
following primary attributes as a row entry: the node’s unique
ID, the query term, the query results in descending order, and

Fig. 2. The primary attributes of the clicklog data structure. Each entry
contains a unique identifier of the node performing the query, the query
term, the ranked results (in descending order) for the query, and the item
clicked upon.

the item the user clicked on. Additional clicklog attributes
include the title of the item clicked upon, the tag metadata
associated with that item, and a unique key associated with
the query term consisting of the concatenation of the node’s
unique ID and the local query number. These additional
attributes are used primarily during the evaluation of the sim-
ulations, though G-Rank does consider tag metadata during
ranking if the querying node’s clicklog does not reflect any
direct query term matches. When a query is performed, the
results are stored in local memory until a user clicks upon a
result, after which the clicklog entry is created and appended
locally. Over time, each node becomes increasingly aware
of the click behavior of other nodes in the network without
necessarily gleaning insight into the local libraries of said
nodes. As such, the dissemination of clicklog data enables
the unsupervised model to learn from the behavior of other
users without revealing personally identifiable information.

C. Gossiping Clicklogs

Gossip-based protocols allow for dissemination of in-
formation throughout a p2p network with varying degrees
of efficiency. Regarding G-Rank, it is understood that tra-
ditional unsolicited gossip propagation schemes present a
clear and present attack vector for adversaries to undermine
the model’s performance. Therefore, G-Rank depends upon
solicited gossip for clicklog dissemination. At any time, any
node can send a request message to one or more nodes it is
aware of, also known as a pull gossip scheme. The recipient
of a request message may reply with a response message
containing some or all of its local clicklog, which may
contain clicklog entries from other nodes that the recipient
has received via issuing its own request messages. In our
experiments, nodes cannot refuse update requests and only
send request messages to a single node.

The design of the gossip protocol that propagates clicklog
information directly affects the performance of the ranking
model, and therefore needs to be deliberately designed such
that clicklog information is adequately disseminated without
congesting the network. In order to determine exactly how
the gossip parameters affect the model, specific evaluation
metrics need to be determined. For example, should a node
receive |K| = 10 results for a specific query, it is important
to determine how many of these results are in the "optimal"
ranking, i.e. for each result ki ∈ K the distance between
the local rank L(ki) in the above query versus the global
average rank G(ki) across all participants in the network for
that query term. In this situation, an item with an "optimal"
ranking has a distance of G(ki)−L(ki) = 0 for any specific
query.

4

In distributed and decentralized networks it is well-
understood that obtaining a global "snapshot" of the current
network state becomes intractible as the network grows large.
Well-known algorithms such as Chandy-Lamport [25] are
still imperfect as they fail to capture incipient changes to
the network state deriving from messages that are currently
underway during the time of the snapshot, such that by
the time the algorithm terminates the state of the network
may have already changed. As such, determining a global
truth for a p2p network can only be easily performed in a
contained simulation environment in which a global observer
aggregates all changes to the network’s state. Therefore, it
must be understood that any comparison against a "global"
optimum in our experiments comes with the caveat that
in a live network the global optimum may not be feasibly
observable.

D. Node Discovery and Similarity Clustering

The primary unsupervised method in G-Rank is based on a
fuzzy non-parametric semantic self-clustering of nodes based
upon a pairwise similarity score as described below. When
a gossip response is received by node ni it appends the
new data to its existing clicklog and updates its local list
of known nodes in the network. Such is the mechanism of
node discovery in the network: via the receipt of clicklog
data from other nodes in the network.

After receiving a clicklog update, ni searches the incoming
data for previously unseen unique node IDs. These unseen
node IDs are added to a local list of known nodes, which
are then sorted in descending order by a modified Jaccard
similarity score between their queries and the results they
each click upon. The similarity score S between a pair of
nodes ni and nj is calculated as follows:

• Find the cardinality of the intersection of the top K
query terms TK(Q) between ni and nj , denoted as κt.

• Find the square of the cardinality of the intersection of
clicked results for all query terms Ci(Q) and Cj(Q)
between ni and nj , denoted as κm.

• The sum κt+(κm)2 is divided by the cardinality of the
the union of clicked results for all query terms Ci(Q)
and Cj(Q) between ni and nj , denoted as κu.

That is,

Si(nj) =
κt + (κm)2

κu

The list of scores Si(N) is normalized by dividing by
max(Si) resulting in a similarity score between 0.0 and 1.0,
where 1.0 indicates that two nodes have clicked on the exact
same item for every single matching query. Therefore, the
similarity score is a weighted ratio of identical query-click
tuples to the overall number of queries shared between two
nodes. As such, every node maintains a list of nodes it
has become aware of via the clicklog, and determines its
similarity to other nodes based on past click behavior. This
similarity is then used to weight the results of future queries
based on the click behavior of other users, such that users are

more likely to see results other similar users have clicked on
for similar query terms. By including (κm)2 in the similarity
score, we account for divergent click behavior such that node
similarity scores follow an exponential gradient. If the click
behavior of node ni diverges from that of nj over time,
Si(nj) will more rapidly decrease than otherwise, allowing
for more expedient "re-clustering."

In order to isolate highly divergent click behavior, we
introduce the isolation constant F to the user similarity score.
When F = 0, only the clicklogs of adjacent nodes with
Si(nj) > 0 are considered when ranking results. When
F = 1, a node considers with equal weight the clicklog
entries of all nodes it has received gossip from when ranking
query results. As such, this isolation parameter allows for
nodes to discount the clicklogs of other nodes if these nodes
have query and click behavior that does not match its own at
least once. Similarity weighting is calculated by taking the
dot product between the aforementioned similarity scores for
each node and sorted results based on the overall number
of clicks found in each node’s local clicklog. The resulting
ranking R provided to querying node ni for query Q is
therefore calculated as:

Ri(Q) = (∀k ∈ KQ),

N∑
j=0

(Ck · (Si(nj) + F))

where Si(nj) indicates the similarity score for each node
pair (ni, nj) ∈ N , and Ck indicates the number of clicks
associated with item k ∈ KQ where KQ is the unsorted
set of results for query Q. The resulting items are sorted
in descending order by their associated scores. As such,
each potential query result is assigned a score based on the
number of clicks found in each node’s clicklog, weighted
by the similarity of each node to the node performing the
query. Therefore, the dissemination of clicklog data not only
informs other nodes of the popularity of items, it also allows
for nodes to cluster themselves based on an easy-to-compute
metric, further allowing for personalization of results.

A potential drawback of introducing such a similarity
metric into the ranked results is that it introduces a possible
attack vector for adversaries to influence the results of
future queries throughout the network, e.g. via spam or sybil
attacks. Spam attacks become less viable as the number of
legitimate users grows larger, while more targeted attacks
may be thwarted by the user similarity scheme itself. An
adversary attempting to undermine the ranking algorithm by
intentionally selecting irrelevant results for specific queries
would find themselves increasingly isolated from other users
performing legitimate queries, as their behavior over time
would continue to deviate from that of other users. So-
phisticated adversaries would then need to mimic legitimate
behavior for a large portion of their queries in order to remain
relevant to other users without ostracizing themselves.

IV. DATASET AND EXPERIMENT SETUP

Our dataset consists of actual music releases and associ-
ated metadata. Our experimental setup is tailored to minimize

5

the work to deploy G-Rank for decentralised search of
BitTorrent audio and video content.

A. Dataset

The dataset utilized in this experiment was compiled
from a series of 256 actual music releases by real artists
via the PandaCD record label2, all of which were released
under the Creative Commons license. Entries may be singles,
albums, EPs (extended-play releases), and LPs (limited-play
releases). Every entry consists of three attributes: Title, Artist,
and Album, as well as a number of associated Tags as
metadata, which describe the release in terms of genre. These
tags have been compiled into a corpus of potential query
terms, and every query term in this experiment consists of
exactly one tag, of which there are a total of 39 unique
values.

B. Experiment Setup

For all experiments we conducted an evaluation round
every 100 queries, where a number of performance metrics
are gathered (see Section 5E). In addition to the regular per-
formance evaluation, these evaluation rounds act as progress
markers at discrete intervals in the simulation, which are
discussed in Section 5F. Each experiment, including the
baseline, was conducted twice: once with similarity weighted
isolation constant F = 0 and again with F = 1, demonstrat-
ing the effect that cluster isolation (see Section 3D) has on
G-Ranks performance. Unless stated otherwise, simulation
parameters are as follows:

• All gossip targets are drawn exclusively from each
node’s local clicklog data.

• All nodes keep track of gossip progress such that
previously-shared clicklog contents are omitted from
new gossip requests.

• When a new node joins the network, it is bootstrapped
by a randomly-selected node who shares with it a
randomly-sampled subset of its own clicklog. Via this
bootstrap mechanism, each adversarial node becomes
aware of a handful of other nodes in the network to
which it can gossip during its attack phase.

• There are exactly 10 malicious nodes in each adversar-
ial experiment (with the exception of the Epic Sybil
Attack), which are bootstrapped as stated above at
simulation time step t = 2500, exactly 25% through
the simulation.

Across all experiments, the simulated network consists
of 100 nodes, all of which begin with a limited number
of library items. The simulation is initialized as follows.
For each node ni ∈ N, i = {0, ..., 99} in the network,
ni is initialized by selecting at uniform random 10% of
the items from the music dataset to add to its local library
(approximately 26 songs per node). Next, a series of initial
queries are performed. For each of the 39 possible query
terms, each node performs a search for said query term
and chooses at random one item from its library with a

2 https://pandacd.io/

tag matching the query term and appends this entry to its
local clicklog. Should a node’s library not contain any items
with tags matching the query term, it selects at random a
single item from its local library, thereby introducing a small
degree of noise into the clicklog. At this point, no ranking or
click modeling is utilized for selection, and the clicklog of
node ni contains exactly 39 items. Then, node ni gossips a
random sample of 10% of its local clicklog to node ni−1 such
that each node contains no more than 44 clicklog entries; 39
belonging to itself, and up to an additional five items that it
receives via gossip from another peer.

This method of initialization affords each peer in the
network an even number of clicklog items to utilize during
a query, but an uneven distribution of network knowledge
across each node such that nodes with higher IDs are more
likely to be aware of a higher number of peers at the outset
of the simulation. After every node has been initialized, the
simulation begins and nodes are chosen uniformly at random
alongside a random query term from the corpus to perform
a query-term search. The results of the search are ranked
as detailed in Section 2A, and an item to be clicked upon
is chosen based on the aforementioned click model. The
search and click results are then appended to this node’s local
clicklog. Thereafter, this node then performs a gossip round
by requesting a gossip update from a randomly-selected peer
node it is aware of (except in the case of the Push vs. Pull
experiments, see Section 5D).

There are two popular schemes for initiating gossip in
p2p networks: time-based and probabilistic. In time-based
schemes, a node gossips every t time units, whereas in most
probabilistic schemes any given node has a probability p per
time unit to gossip some information to a subset of other
nodes, such that after t time units there is a

Pr(X = t) = (1− p)t−1 · p

probability that a node will have gossiped. To clearly illu-
minate the effect of adversaries on G-Rank’s performance,
our experiment implements a hybrid gossip approach such
that at every simulation tick t a random node is receiving
at least one update from another node it is aware of (see
Section 3C). As such, a node is guaranteed to receive gossip
post-query yet still is chosen probabilistically such that the
above geometric probability distribution holds, given that a
node has probability p = 1

|N | of performing a query-then-
gossip operation at an arbitrary time step t. By utilizing such
a gossip mechanism we ensure that clicklog information is
propagated regularly throughout each simulation.

C. Click Modeling

Modeling realistic user-clicking behavior is essential to
the development of ranking algorithms. Not all user clicks
may be on relevant items in a list, and as such it can be
expected that a certain degree of noise exists in user click
data. Extrapolating such noise into a simulation therefore
requires careful consideration. Without anticipating and mod-
eling a certain degree of noise, a ranking model’s query
results may erroneously converge towards irrelevant items.

6

Anticipating and modeling noise in user click behavior has
been investigated [15], however for this experiment users
select the highest-ranking item in most queries, except when
multiple results with equal relevance scores were shown to
the user. In this case, the result with the lowest item ID is
chosen as a tiebreaker.

V. ADVERSARIAL SIMULATIONS AND PERFORMANCE
ANALYSIS

We simulate several adversarial conditions alongside a
baseline simulation with no adversaries. Each adversarial
simulation is intended to isolate and investigate the effects
of specific adversarial and anti-social behavior on G-Rank’s
performance. Each simulation’s results is compared to the
baseline global performance of G-Rank, as the global optimal
rankings are negatively affected by such attacks. As such,
each scenario’s impact on G-Rank’s ability to converge
towards a true global optimality without adversarial inter-
ference is investigated with the aid of the metrics described
in Section 4B.

In every adversarial simulation, the network is boot-
strapped without any adversarial presence at first. At time
step t = 2500, all attackers are bootstrapped into the network
as described in Section 4B, where they lie in wait until
time step t = 5000 to begin their attack. At this time,
they perform their attack as described in each section below.
Post-bootstrap, these adversarial nodes may receive request
messages from benign nodes, even if they have not yet
performed their attack.

A. Baseline Experiment

Initially we conduct a baseline validation experiment to
demonstrate the sensitivity of the node discovery process
within distributed machine learning. Realistic simulations
lack any centrality and thus have no central coordinator to
discover other nodes. Our design integrates node discovery
via the clicklog itself using a unique node identifier. Thus
a single clicklog message provides both overlay network
information for gossip dissemination, as well as the un-
derlying data upon which the unsupervised model relies.
This baseline experiment entails no adversarial interference,
demonstrating how individual nodes adjust their rankings
over time as they receive gossip throughout the simulation.
All other experiments build upon this validation simulation’s
setup for comparison purposes.

B. Targeted Sybil Attack

The first adversarial simulation is performed to demon-
strate how a sophisticated adversary could undermine a
p2p network utilizing G-Rank by forcing irrelevant results
towards the top of query results. The adversaries execute a
basic sybil attack where 10 new sybil nodes are bootstrapped
into the network as described above, lying in wait until
the predetermined attack time. At the time of attack, each
sybil attacker chooses a single specific term to perform 100
queries with, each time clicking the bottom-most item in
the list of ranked results. After the series of queries are

complete, the attackers then lie in wait until they receive a
gossip request from another peer in order to disseminate their
malicious clicklog entries. This attack artificially inflates the
relevance of otherwise low-ranked results to a specific query
term, undermining the veracity of the rankings other nodes
are shown. By repeatedly choosing the lowest-ranked item
in the list, the attacker attempts to undermine G-Rank’s
ability to determine the most popular item associated with
the query term. The purpose of this experiment is to examine
the effect deliberately misleading clicklog entries has on G-
Ranks ability to converge towards optimality.

C. Clicklog Inflation Attack

The purpose of the second adversarial simulation is to
examine G-Rank’s ability to re-converge towards optimal
rankings after a sudden, significant growth in the number
of clicklog entries that the model considers when ranking
content. This simulation differs from the Targeted Sybil
Attack in two key ways: the number of queries each adversary
performs 1000 queries instead of 100, and each adversary
chooses results purely at random. By performing a significant
number of queries before gossiping, the adversary attempts
to undermine G-Rank by injecting a significant statistical
noise into each node’s clicklog. The propagation of random
clicklog noise throughout the network is investigated against
the Targeted Sybil Attack mentioned previously.

D. Epic Sybil Attack

The purpose of this experiment is to examine the per-
formance of G-Rank in the face of a significant number
of adversaries. The third adversarial simulation is nearly
identical to the first, except that the number of attackers
equals 75% of the entire network participants. Each node
is bootstrapped in the same manner as the Targeted Sybil
Attack, lying in wait until the predetermined attack time. At
the time of attack, each node performs 100 queries, again
choosing the lowest-ranked item in the results for each query.
They then wait until a gossip request message is received.
The inclusion of a network super-majority of sybil nodes is
intended to investigate G-Rank’s ability to improve rankings
over time in the face of severe adversarial conditions.

E. Push vs. Pull Experiment

Within this fourth experiment we introduce a number
of malicious nodes which conduct a Targeted Sybil Attack
under a modified gossip scheme. This experiment shows the
dramatic impact of Push versus Pull gossip. This experiment
proves that is is vital for security that malicious nodes
can not easily insert their polluting content with honest
peers, i.e. a push architecture. With a pull architecture, peers
are more autonomous and decide individually the speed of
incoming information, if they trust another peer, or may
randomly sample from discovered peers. Malicious nodes in
this experiment send an unsolicited clicklog gossip messages
to up to two peers3, whereas benign nodes push to no more

3 In the rare circumstance that an adversary is only aware of one other
peer, it only gossips to that peer.

7

Fig. 3. Scatter plots depicting each node’s average distance to optimal rankings for each term, for each baseline simulation.

than one peer. As Internet bandwidth is cheap, this simple
experiment shows a first line of defence against clicklog
spam without the need for significantly modifying G-Rank’s
core functionality.

With the pull architecture utilized in the original Targeted
Sybil attack, there exists only one recipient of a malicious
node’s gossip. In this experiment, all nodes must accept
incoming gossip messages. By comparing the push gossip
scheme to the original pull-based scheme, we illuminate
the difference in G-Rank’s convergence rate between two
different gossip mechanisms without altering G-Rank’s core
functionality. The purpose of this experiment is to high-
light the effect various gossip and information dissemination
schemes have upon G-Rank’s efficacy.

F. Evaluation Metrics

For each simulation we utilized a number of metrics
to evaluate G-Rank’s ranking performance over time, its
tenacity when facing adversarial conditions, and the network
capacity overhead over time. The primary performance met-
ric utilized is a positional edit distance metric where we
compare the sum of index distances between each unique
element in Ri(Q) and Rg(Q), where Rg(Q) indicates the
globally optimal ranking for query Q. Rg(Q) is computed
simply by ranking the most popular items by their respective
number of clicks associated with a specific query term across
all nodes. This metric allows us to determine how far each
item is from its most optimal position at any given point in
time, giving us the ability to determine how G-Rank performs
for any given node for a specific query term.

We also consider the rate of G-Rank’s convergence to-
wards the global optimal averaged across all nodes and
possible query terms over time. The rate of change in this
distance metric affords us insight into G-Ranks behavior
over time, particularly during the adversarial simulations,
such that we can better understand how G-Rank’s long-term
performance is affected by transient adversarial events. For
each possible query term we also measure the number of
results containing the most popular result in the top position
in order to demonstrate the roughly even distribution of
performance, regardless of the frequency a specific query
term is issued.

In terms of space and storage metrics, we also measure
the average clicklog size across all nodes over time, as
gossip occurs consistently yet as time goes on the number
of duplicate clicklog items being shared likely continues
to grow. To better understand G-Rank’s dependence upon
gossip, we monitor the rate of growth in gossip message size
(in bytes) as individual clicklogs grow large - an important
metric considering the potential variation in each node’s
processing power and storage space. However, we do not
consider any time-based computational overhead metrics as
these are highly dependent upon numerous factors, including
the programming language in which G-Rank is implemented
as well as each individual device’s computational power.

G. Performance Analysis

The results of the initial baseline experiment show that
without any adversarial conditions the performance of G-
Rank rapidly approaches the globally-optimal ranking for
each node. Figure 3 shows that the distance between each
node’s local ranking of results and the globally optimal
ranking for each possible query term drops precipitously in
early stages of the simulation, approaching perfect ranking
scores for all peers in the network. Figure 7 shows that the
median percentage of queries containing the most popular
song per tag initially grows slowly, accelerating in growth
as gossip continues due to the increasing awareness of
other nodes’ queries and results. As more gossip occurs, the
number of queries containing the top song associated with
each query approaches 100%. Notably, the Epic Sybil Attack
simulations were the only experiments in which the median
percentage of queries did not reach 100% by the end of the
simulation, which likely is due to the significantly higher
number of adversaries polluting each peer’s clicklog. Figure
8 shows how the number of most popular items associated
with each possible query term grows at approximately even
rates, indicating that the gossip scheme itself does not lead
to an imbalance over time in ranking performance for lesser-
used query terms. Figure 9 shows that while average gossip
message size grows quickly at first, the rate of growth rapidly
slows as peers become increasingly aware of one another.
The size of gossip messages rarely exceeds 600 kB.

8

Fig. 4. Scatter plots depicting each node’s average distance to optimal rankings for each term, for each adversarial simulation, for both F = 0 (top) and
F = 1 (bottom).

Considering the known threat that sybil and spam attacks
pose to p2p networks, the results of the adversarial simu-
lations generally fall in line with expectations. G-Rank is
susceptible to sybil and spam attacks, though its relative
resilience in the face of targeted sybil attacks is notable.
However, both the Targeted Sybil Attack and the Clicklog
Inflation Attack have an outsize effect on performance, where
due to the sheer size of infected clicklog entries, the entire
network converges towards towards a single set of rankings
that it appears unable to escape from, even considering
the injected noise described in Section 3A. This indicates
that local minimums are exceedingly difficult for G-Rank to
escape from.

As seen in Figure 4, G-Rank deviates from optimality
post-attack, albeit at vastly different rates depending on the
manner of adversarial interference. Figure 4 also shows that
when F = 0, benign users are not as quickly affected by
malicious gossip, most noticeably during the Targeted Sybil
Attack and the Epic Sybil Attack. Rankings in the Clicklog
Inflation Attack experience a more rapid divergence from
optimality than in the Targeted Sybil Attack, though the
results of the Epic Sybil Attacks are significantly worse.
When adversaries constitute a super-majority of peers in the
network, results degrade rapidly before tapering off. Ranking
results post-attack are still significantly more accurate than
at the start across all adversarial simulations.

Notably, network peers in the Push vs. Pull simulation
see ranking performance rates improve faster than in the
Targeted Sybil Attack with the pull-based gossip scheme, as
seen in Figure 5 and Figure 6. The Push vs. Pull comparison
demonstrates that push-based gossip schemes result in faster
convergence at the expense of faster divergence under adver-
sarial influence. In both versions of this simulation, G-Rank
converges significantly faster towards optimality, though is
almost immediately trapped in a local minimum post-attack,
further bolstering the argument that the gossip dissemination

Fig. 5. Push vs. Pull: Mean node distance to optimal rankings across all
terms for F = 0.

Fig. 6. Push vs. Pull: Mean node distance to optimal rankings across all
terms for F = 0.

9

Fig. 7. The median percentage of queries containing the most popular
song for each query, across all experiments.

Fig. 8. Percentage of queries where the most popular song associated with
each query term is included in the ranked results, average between both
baseline simulations.

scheme holds an outsize influence on G-Rank’s overall
performance and resilience.

The effect that the isolation constant F has on such be-
havior is minimal, but not negligible. Setting F = 0 has the
consequence of effectively disqualifying any nodes without
at least one matching query-click pair with the querying
node. Any influence an adversary then has on ranking is
dependent upon the number of matching query-click pairs.
As such, as the diversity of clicklog entries grows larger
so too should the effect such a parameter has on insulating
nodes from other malicious peers, in theory. Conversely,
when F > 0, all clicklog data (including malicious entries)
is considered in the ranking process as the weight of each
entry will subsequently also be a positive non-zero value. The
positive effect this has is greater personalization results for
benign queries; clicklog results from nodes with similarity
scores Si(nj) = 0 still have the number of clicks associated
with that result considered in the final ranking. The negative
effect is that all clicklog entries, including malicious entries,
are considered. In our simulations, there exists a negative
effect on rank distances when F > 0, although the effect
is not enough to permanently isolate peers from adversarial
clicklog poisoning.

Fig. 9. Mean gossip message size (in kilobytes) for all simulations. Each
clicklog row entry is approx. 600 bytes in size.

VI. CONCLUSION

We proposed G-Rank as a lightweight, modular, and
easy-to-understand unsupervised continuous ranking model
designed explicitly for permissionless p2p networks. The
results demonstrate that unsupervised search-and-rank mod-
els designed specifically for p2p applications show merit
and are worthy of further research. G-Rank demonstrates
that a simple unsupervised model can recommend near-
perfect results to users in sterile network conditions. The
self-clustering method described in Section 3D allows for a
high degree of algorithm customization such that individual
nodes can dramatically alter their ranked results based on
the behavior of other nodes. By altering their search results
based on similarity of behavior, peers in the network are able
to isolate themselves from adversarial behavior to varying
degrees. G-Rank shows varying degrees of resilience in the
face of transient adversarial conditions, particularly regarding
highly targeted nefarious behavior. The scale of negative
adversarial impact depends heavily upon the clicklog dissem-
ination gossip scheme. Furthermore, the isolation constant F
has some effect on insulating peers from adversarial clicklog
poisoning, though we suggest further research including
larger more diverse data such that peers can more effectively
distance themselves from the behavior of dissimilar peers.

Potential for future development of unsupervised decen-
tralized search and ranking models in p2p networks is
exceptionally rich. One of the primary pitfalls of the p2p
network domain is the threat adversarial actors such as sybil
attackers may have on the model. As such, mitigating threats
above the network and protocol layers at the model level is
a rich field for future development. Other potential model
improvements may include augmenting the user clustering
model beyond a simple similarity metric such that sybil
and other spam attacks become classified as outliers with
regards to "typical" user behavior, where recommendation
and ranking scores are more heavily influenced by the
behavior of other users within clusters. Fuzzy clustering
methods such as the one mentioned herein allow for peers to
improve their local rankings based on those received by other
similar users. More explicit self-clustering methods may lead

10

to significantly improved performance, particularly those
adept at identifying and isolating statistical outliers, such as
measuring the distance of an outlier from all known cluster
centroids. We therefore conclude that unsupervised learn-to-
rank models in adversarial p2p networks show significant
promise and are worthy of further research.

REFERENCES

[1] Page, Lawrence, et al. "The PageRank citation ranking: Bringing order
to the web." Stanford InfoLab, 1999.

[2] Wong, Bernard, Alex Slivkins, and Emin Gun Sirer. "Approximate
matching for peer-to-peer overlays with cubit." 2008.

[3] Wong, Bernard, Ymir Vigfússon, and Emin Gün Sirer. "Hyperspaces
for object clustering and approximate matching in peer-to-peer over-
lays." Proceedings of the 11th USENIX workshop on Hot topics in
operating systems. 2007.

[4] Rudomilov, Ilya, and Ivan Jelínek. "Semantic p2p search engine." 2011
Federated Conference on Computer Science and Information Systems
(FedCSIS). IEEE, 2011.

[5] Cheng, Alice, and Eric Friedman. "Manipulability of PageRank under
sybil strategies." 2006.

[6] Duh, Kevin, and Katrin Kirchhoff. "Learning to rank with partially-
labeled data." Proceedings of the 31st annual international ACM SI-
GIR conference on Research and development in information retrieval.
2008.

[7] Li, Mingyu, et al. "Bringing Decentralized Search to Decentralized
Services." 15th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 21). 2021.

[8] Lai, Ziliang, et al. "Decentralized search on decentralized web." arXiv
preprint arXiv: 1809.00939. 2018.

[9] Parreira, Josiane Xavier, et al. "Efficient and decentralized pagerank
approximation in a peer-to-peer web search network." Proceedings of
the 32nd international conference on Very large databases. 2006.

[10] Awan, Sana, Bo Luo, and Fengjun Li. "Contra: Defending against
poisoning attacks in federated learning." European Symposium on
Research in Computer Security. Springer, Cham. 2021.

[11] Jiang, Yupeng, et al. "Sybil Attacks and Defense on Differential
Privacy based Federated Learning." 2021 IEEE 20th International
Conference on Trust, Security and Privacy in Computing and Com-
munications (TrustCom). IEEE, 2021.

[12] Liu, Bing. "Lifelong machine learning: a paradigm for continuous
learning." Frontiers of Computer Science 11.3: 359-361. 2017.

[13] Papagelis, Athanasios, and Christos Zaroliagis. "A collaborative de-
centralized approach to web search." IEEE transactions on systems,
man, and cybernetics-part a: systems and humans 42.5: 1271-1290.
2012.

[14] Kim, Yein, Huili Chen, and Farinaz Koushanfar. "Backdoor Defense in
Federated Learning Using Differential Testing and Outlier Detection."
arXiv preprint arXiv: 2202.11196. 2022.

[15] van den Bogaart, Tom. "Noise-Aware Click Modelling." Diss. Univer-
sity of Amsterdam, 2015.

[16] Wu, Yawen, et al. "Decentralized unsupervised learning of visual
representations." Proceedings of the Thirty-First International Joint
Conference on Artificial Intelligence, IJCAI. 2022.

[17] Burges, Chris, et al. "Learning to rank using gradient descent." Pro-
ceedings of the 22nd international conference on Machine learning.
2005.

[18] Csernai, Kornél, and Márk Jelasity. "Distributed machine learning
using the tribler platform." (2012).

[19] Mukherjee, Sach, and Stephen J. Roberts. "Unsupervised Learning of
Ranking Functions for High-Dimensional Data."

[20] Klementiev, Alexandre, Dan Roth, and Kevin Small. "Unsupervised
rank aggregation with distance-based models." Proceedings of the 25th
international conference on Machine learning. 2008.

[21] Alattas, Khalid, et al. "Unsupervised Ranking of Numerical Obser-
vations based on Magnetic Properties and Correlation Coefficient."
Proceedings of the 52nd Hawaii International Conference on System
Sciences. 2019.

[22] Primožič, Urh, et al. "Unsupervised Feature Ranking via Attribute
Networks." International Conference on Discovery Science. Springer,
Cham, 2021.

[23] Dickey, Chris Gauthier, and Christian Grothoff. "Bootstrapping of
peer-to-peer networks." 2008 International Symposium on Applica-
tions and the Internet. IEEE, 2008.

[24] Aberer, Karl, et al. "An architecture for peer-to-peer information
retrieval." 27th Annual International ACM SIGIR Conference (SIGIR
2004), Workshop on Peer-to-Peer Information Retrieval. 2004.

[25] Chandy, K. Mani, and Leslie Lamport. "Distributed snapshots: De-
termining global states of distributed systems." ACM Transactions on
Computer Systems (TOCS) 3.1: 63-75. 1985.

[26] Kleppmann, Martin, et al. "Local-first software: you own your data,
in spite of the cloud." Proceedings of the 2019 ACM SIGPLAN Inter-
national Symposium on New Ideas, New Paradigms, and Reflections
on Programming and Software. 2019.

[27] Ormándi, Róbert, István Hegedűs, and Márk Jelasity. "Gossip learn-
ing with linear models on fully distributed data." Concurrency and
Computation: Practice and Experience 25.4: 556-571. 2013.

[28] Mottin, Davide, Themis Palpanas, and Yannis Velegrakis. "Entity
ranking using click-log information." Intelligent Data Analysis 17.5:
837-856. 2013.

[29] Hegedűs, István, Gábor Danner, and Márk Jelasity. "Decentralized
recommendation based on matrix factorization: A comparison of gos-
sip and federated learning." Joint European Conference on Machine
Learning and Knowledge Discovery in Databases. Springer, Cham,
2020.

[30] Ai, Jun, et al. "Decentralized collaborative filtering algorithms based
on complex network modeling and degree centrality." IEEE Access 8:
151242-151249. 2020.

[31] Park, Seung-Taek, and David M. Pennock. "Applying collaborative
filtering techniques to movie search for better ranking and browsing."
Proceedings of the 13th ACM SIGKDD international conference on
Knowledge discovery and data mining. 2007.

[32] Wu, Liwei. "Advances in collaborative filtering and ranking." Diss.
University of California, Davis, 2020.

[33] Pessiot, Jean-Francois, et al. "Learning to Rank for Collaborative
Filtering." ICEIS (2) 7 (2007).

[34] Konečný, Jakub, et al. "Federated optimization: Distributed machine
learning for on-device intelligence." arXiv preprint arXiv: 1610.02527.
2016.

[35] Yang, Qiang, et al. "Federated machine learning: Concept and appli-
cations." ACM Transactions on Intelligent Systems and Technology
(TIST) 10.2: 1-19. 2019.

[36] He, Chaoyang, et al. "Fedml: A research library and benchmark for
federated machine learning." arXiv preprint arXiv: 2007.13518. 2020.

[37] Yang, Qiang, et al. "Federated learning." Synthesis Lectures on Artifi-
cial Intelligence and Machine Learning 13.3: 1-207. 2019.

[38] Graepel, Thore, Kristin Lauter, and Michael Naehrig. "ML confiden-
tial: Machine learning on encrypted data." International Conference
on Information Security and Cryptology. Springer, Berlin, Heidelberg,
2012.

[39] Jäschke, Angela, and Frederik Armknecht. "Unsupervised machine
learning on encrypted data." International Conference on Selected
Areas in Cryptography. Springer, Cham, 2018.

[40] Cao, Zhe, et al. "Learning to rank: from pairwise approach to list-
wise approach." Proceedings of the 24th international conference on
Machine learning. 2007.

[41] Fung, Clement, Chris JM Yoon, and Ivan Beschastnikh. "The lim-
itations of federated learning in sybil settings." 23rd International
Symposium on Research in Attacks, Intrusions and Defenses (RAID
2020). 2020.

[42] Zhu, Xiaojin Jerry. "Semi-supervised learning literature survey."
(2005).

[43] Zhu, Xiaojin, and Andrew B. Goldberg. "Introduction to semi-
supervised learning." Synthesis lectures on artificial intelligence and
machine learning 3.1: 1-130. 2009.

[44] Titcombe, Tom. “Extracting Private Data from a Neural Network.”
OpenMined Blog, 28 Apr. 2020, https://blog.openmined.org/extracting-
private-data-from-a-neural-network/.

[45] Balachandran, Nitish, and Sugata Sanyal. "A review of techniques to
mitigate sybil attacks." arXiv preprint arXiv: 1207.2617. 2012.

[46] Vasudeva, Amol, and Manu Sood. "Survey on sybil attack defense
mechanisms in wireless ad hoc networks." Journal of Network and
Computer Applications 120: 78-118. 2018.

11

	INTRODUCTION
	PROBLEM DESCRIPTION
	ARCHITECTURE OF G-RANK
	Unsupervised Ranking Model
	Clicklog Structure
	Gossiping Clicklogs
	Node Discovery and Similarity Clustering

	Dataset and Experiment Setup
	Dataset
	Experiment Setup
	Click Modeling

	Adversarial Simulations and Performance Analysis
	Baseline Experiment
	Targeted Sybil Attack
	Clicklog Inflation Attack
	Epic Sybil Attack
	Push vs. Pull Experiment
	Evaluation Metrics
	Performance Analysis

	Conclusion
	References

