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Orbital effect of magnetic field on the Majorana phase diagram

Bas Nijholt* and Anton R. Akhmerov
Kavli Institute of Nanoscience, Delft University of Technology, P.O. Box 4056, 2600 GA Delft, The Netherlands

(Received 8 September 2015; revised manuscript received 6 April 2016; published 20 June 2016)

Studies of Majorana bound states in semiconducting nanowires frequently neglect the orbital effect of a
magnetic field. Systematically studying its role leads us to several conclusions for designing Majoranas in this
system. Specifically, we show that for experimentally relevant parameter values the orbital effect of a magnetic
field has a stronger impact on the dispersion relation than the Zeeman effect. While Majoranas do not require the
presence of only one dispersion subband, we observe that the size of the Majoranas becomes unpractically large,
and the band gap unpractically small, when more than one subband is filled. Since the orbital effect of a magnetic
field breaks several symmetries of the Hamiltonian, it leads to the appearance of large regions in parameter space
with no band gap whenever the magnetic field is not aligned with the wire axis. The reflection symmetry of the
Hamiltonian with respect to the plane perpendicular to the wire axis guarantees that the wire stays gapped in the
topologically nontrivial region as long as the field is aligned with the wire.

DOI: 10.1103/PhysRevB.93.235434

I. INTRODUCTION

The search for Majorana bound states, the simplest non-
Abelian particles, is fueled by their suitability for fault-
tolerant quantum computation [1,2]. A large fraction of the
experimental effort [3–7] is focused on creating Majoranas in
semiconducting nanowires with proximity superconductivity,
spin-orbit coupling, and magnetic field. The theoretical foun-
dation for this platform was initially developed for a single
one-dimensional spinful band with intrinsic superconducting
pairing [8,9]. Due to its compactness this model can be solved
analytically, and it predicts that Majorana bound states appear
when E2

Z > μ2 + �2, when the Zeeman energy becomes
larger than the harmonic mean of the superconducting gap
and the chemical potential.

The single-mode model is minimalistic and neglects many
physical phenomena that are crucial for understanding the
properties of the Majorana bound states. The existing exten-
sions of this model study multimode wires [10], better model-
ing of the induced gap [11,12], the role of electrostatics [13],
disorder [14–16], and the kp model [17]. The orbital effect of
a magnetic field was analyzed both in planar wires [18,19] and
on the surface of a cylinder [20].

We systematically study the influence of the orbital effect
of a magnetic field on the symmetries of the Hamiltonian and
the topological phase diagram for a three-dimensional (3D)
nanowire. The orbital effect of a magnetic field perpendicular
to the wire induces a skipping orbit motion of the electrons. The
cyclotron radius becomes comparable to the typical wire diam-
eters d ∼ 100 nm already at the field of 0.3 T, and at chemical
potential corresponding to the optimal topological band gap. In
addition, a field parallel to the wire shifts the energies of each
band due to the effect of magnetic flux. We expect the shift of
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the energies to be comparable to the level spacing when the flux
through the wire diameter is of the order of a flux quantum.
Our findings are very different from those of Refs. [18–20]
because we do not limit our analysis to a Hamiltonian with an
artificially high spatial symmetry, or low dimensionality.

II. MODEL

We consider a 3D semiconducting nanowire with Rashba
spin-orbit coupling and proximity-induced s-wave supercon-
ductivity. The nanowire cross section is a regular hexagon, and
the nanowire is translationally invariant in the x direction. Its
Bogoliubov–de Gennes (BdG) Hamiltonian is

HBdG =
(

p2

2m∗ − μ

)
τz + α(pyσx − pxσy)τz

+ 1

2
gμB B · σ + �τx, (1)

and it acts on the spinor wave function � =
(ψe↑,ψe↓,ψh↓, − ψh↑)T , where ψe, ψh are its electron and
hole components, and ψ↑, ψ↓ are the spin-up and spin-down
components. We introduced the Pauli matrices σi acting on
the spin degree of freedom and τi acting on the electron-hole
degree of freedom. Furthermore, p = −i�∇ + eAτz is the
canonical momentum, with e the electron charge and the vector
potential A = [By(z − z0) − Bz(y − y0),0,Bx(y − y0)]T

chosen such that it does not depend on x. We set the offsets y0

and z0 to ensure that the average vector potential vanishes in
the superconductor. This choice corresponds to a limit when
the superconductor is thinner than the screening length and
its total supercurrent is zero, appropriate for existing devices.
Finally, m∗ is the effective electron mass, EZ = μBgB · σ/2
the Zeeman energy, � the superconducting pairing potential,
α the Rashba spin-orbit coupling strength, and μ = μ0 + Ez

the chemical potential created by a constant electric field E
in the sample parallel to the z axis, such that the Rashba
spin-orbit acts in the xy plane.

First we consider a model with a constant superconducting
gap � inside the wire [see Fig. 1(a)] and then proceed to
make a more realistic model of the superconductor. To do that
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FIG. 1. Three hexagonal nanowire devices we consider: (a) with
an intrinsic pairing term and with a proximity-coupled superconduc-
tor (b) on the top and (c) on the side. The last two setups have tunnel
barriers between the superconductor and the nanowire.

we set the superconducting order parameter � to zero in the
wire and add a superconductor to the top which covers 3/8
of the circumference of the wire [see Fig. 1(b)]. We choose
the thickness of the superconductor to be 20 nm and set �

in the superconductor such that the induced gap of the lowest
band is �ind = 0.250 meV. This is done by computing band
energies at k = 0 over a range of μ and matching the minimum
to �ind. We add a tunnel barrier between the two materials to
change the transparency of the superconductor. In the setup of
Fig. 1(c), we break the reflection symmetry with respect to the
xz plane by moving the superconductor to the side similar to
the experimental setup of Mourik et al. [3].

To perform the numerical simulations we discretize the
Hamiltonian on a cubic lattice with lattice constant a = 10 nm,
much smaller than the minimal Fermi wavelength in the pa-
rameter range we consider. The discretization does not break or
introduce any additional symmetries. The Hamiltonian at a lat-
tice momentum k equals H (k) = h + t exp(ik) + t† exp(−ik),
where h is the Hamiltonian of the cross section of the
tight-binding system and t is the hopping matrix between the
neighboring cross sections. We introduce the vector potential
by Peierls substitution, tnm → tnm exp(−ie

∫
Ad l) [21]. We

perform the numerical simulations using the Kwant code [22].
The source code and the specific parameter values are available
in the Supplemental Material [23]. The resulting raw data are
available in Ref. [24].

III. SYMMETRY ANALYSIS

The Majorana bound states are protected by the combina-
tion of the band gap and the particle-hole symmetry of the
Hamiltonian PH (k)P−1 = −H (−k). In the basis of Eq. (1)
this symmetry has the form P = σyτyK, with K the complex
conjugation. In general there are no additional symmetries
and the Hamiltonian belongs to symmetry class D [25].
Particle-hole symmetry only requires that the energy En(k)
of nth band at momentum k is En(k) = −Em(−k) of some
other mth band; at the same time P puts no constraints on En

itself. This means that whenever En changes sign at a certain
momentum, the band structure becomes gapless. This tilting
of the band structure [26] [shown in the middle panels in
Fig. 2, where En(k) �= −Em(k)] is a strong effect that does not
vanish with superconducting gap or spin orbit, and can easily
become larger than the induced gap, rendering the creation of
Majoranas impossible.

E

P, Rx, C
B x̂

P
B ŷ

P, C
B ẑ

k

E

P, Rx

k

P

k

P

FIG. 2. Band structures of the setup of Fig. 1(b) (top) and Fig. 1(c)
(bottom). Each panel is labeled with the symmetries respected by
the corresponding Hamiltonian. The dashed black line indicates the
Fermi energy (E = 0). The red dashed lines show the size of the band
gap if it is present. In the top row, the reflection symmetry of the wire
along the y axis, Ry , makes the Hamiltonian have a chiral symmetry
C ′ when the magnetic field lies in the xz plane. The wire used for the
calculation of the bottom row dispersions lacks Ry and therefore has
no C ′. Without C ′ the bands are allowed to tilt and the gap may close
whenever By �= 0 or Bz �= 0. A magnetic field parallel to the x axis
preserves Rx , which protects the band gap from closing.

The tilting of the band structure is absent if the Hamiltonian
has an extra chiral symmetry alongside P . It has been shown
that the Hamiltonian has an approximate chiral symmetry
CH (k)C−1 = −H (k), C = σyτy , valid when the wire diameter
d is smaller than the spin-orbit length lso = �

2/m∗α [27,28],
and By = 0. Then the pyσxτz term, associated with the
transverse motion in Eq. (1), is negligible. Without the tilting,
the system is gapped in every region of parameter space,
except at the topological phase boundaries. However, for
relevant experimental parameters [3], the orbital terms break
this symmetry more strongly than the spin-orbit term, bringing
the system back to symmetry class D.

We perform a systematic search of symmetries that the
Hamiltonian (1) may have [29]. We find the reflection sym-
metry with respect to the yz plane, RxH (k)R−1

x = H (−k),
Rx = σxδ(x + x ′). It is independent of the wire geometry
and spin-orbit strength and guarantees the absence of tilting
whenever the field is aligned with the x axis. The combined
symmetry P ′ = RxP is local in momentum space and ensures
the absence of band structure tilting: P ′H (k)P ′−1 = −H (k).

Additionally, we find a chiral symmetry C ′ = τyRy ,
C ′H (k)C ′−1 = −H (k), with Ry = σyδ(y + y ′) the reflection
with respect to the y axis. This chiral symmetry holds when
the magnetic field lies in the xz plane and none of the potentials
in Eq. (1) break Ry , like in the setups of Figs. 1(a) and 1(b).
When present, C ′ guarantees the absence of band structure
tilting just like C. This symmetry is present in most theoretical
models, and in particular it is obeyed by the Hamiltonians
used in Refs. [18–20]. A finite By breaks both Rx and C ′;
therefore, the bands can tilt and close the topological gap. The
band structures in Fig. 2 summarize the relation between the
geometry of the setup of Figs. 1(b) and 1(c), magnetic field
orientation, and the symmetries of the Hamiltonian.
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IV. CALCULATING THE TOPOLOGICAL PHASE
DIAGRAM

We use an optimized algorithm to quickly find all the μ

values corresponding to the topological phase transitions at
once. The topological transitions in symmetry class D occur
when Pf HBdG(k = 0) changes sign [30]. Since the sign change
of Pf HBdG is accompanied by the appearance of zero energy
states, we need to find μ and ψ such that H (μ,k = 0)ψ = 0.
Using that μ enters the Hamiltonian as a prefactor of a
linear operator, we rewrite this equation as a generalized
eigenproblem:

HBdG(μ = 0,k = 0)ψ = μτzψ. (2)

The real eigenvalues of this eigenproblem are the values of
μ where the gap closes at k = 0 [see Fig. 3(a)], and they
can be found using standard generalized eigensolvers. If the
dispersion relation is gapped also at any finite k, these gap
closings are the boundaries of the topological phase.

Since the eigenvalues of HBdG come in opposite sign pairs,
the real eigenvalues of Eq. (2) always come in degenerate
pairs, and each pair lies at a transition between a trivial
and a nontrivial phase. We complete the calculation of the
topological phase diagram by using as a reference point that
HBdG(μ = −∞) is topologically trivial.

−8
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=
0)
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)

(a)

0 8 16 24 32
μ (meV)
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0.16

E
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=
0)
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)

(b)

FIG. 3. (a) Energy spectrum at k = 0 of the setup of Fig. 1(a) as
a function of chemical potential μ. The blue points are the solutions
of HBdGψ = Eψ at fixed μ marked by the blue line. The green points
are the real eigenvalues of Eq. (2) lying at E = 0 (the green line).
(b) The gap size for the same setup and parameters, with dark gray
regions trivial and the orange regions topological.

The generalized eigenvalue algorithm for finding phase
boundaries does not guarantee that H (k) is gapped for k �= 0,
and therefore we calculate the magnitude of the gap Egap in
the topologically nontrivial regime separately for each set of
parameter values. We form a translation eigenvalue problem
to calculate all the modes of HBdG at a given energy E and
check whether there are any propagating modes [22]. By using
a binary search in E for the energy at which the propagating
modes start to appear, we find Egap [see Fig. 3(b)].

The real space size of the Majoranas ξ imposes a lower
bound on the nanowire length required to create them. To
calculate ξ we find the eigenvalue decomposition of the
translation operator at zero energy. The eigenvalue λmin closest
to the unit circle corresponds to the slowest decaying part of
the Majorana wave function. We calculate ξ using

ξ = log−1 λmin. (3)

V. RESULTS

We use realistic parameters of an InSb nanowire [3]: α =
20 meV nm, m∗ = 0.015me, � = 0.250 meV, d = 100 nm,
and g = 50. At the high fields that are typically used in
experiment (B � T), we find that the Zeeman effect of the
magnetic field has a lower impact on the phase boundaries
than the orbital effect of the magnetic field (see Fig. 4). We
verify that the band gap is protected by C ′ as long as By = 0,
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FIG. 4. Phase diagrams of the setup of Fig. 1(a) (a), (b) without
the orbital effect of a magnetic field and (c), (d) with it. The green
lines depict the topological phase transitions. The colored regions
are topologically nontrivial, with the color representing the size of
the topological band gap Egap. At B � 1 T the orbital effect of the
magnetic field becomes stronger than the Zeeman effect and changes
the sign of the slope of half of the phase boundaries. Furthermore,
the orbital effect leads to a faster suppression of the band gaps with
magnetic field. The narrow regions with suppressed Egap originating
from the crossings of the phase boundaries in (c) are due to Dirac
cones appearing in (kx,B)-space and are protected by C ′. The vertical
black line in (a) indicates the value of the magnetic field used in Fig. 3.
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FIG. 5. Same as Fig. 4, but with the magnetic field slightly
misaligned. We observe that the band gaps close quickly upon
changing the direction of the magnetic field towards the spin-orbit
direction in y.

despite that the orbital effect of the magnetic field reduces
Egap.

In agreement with our expectations a finite By � 0.1 T
leads to the closing of the band gap (see Figs. 2 and 5). The
maximum tolerable By becomes smaller with increasing μ.
The narrow regions with suppressed Egap visible in Figs. 4(c)
and 4(d) are the consequence of Dirac cones appearing in
(kx,B)-space and are protected by C ′. Breaking Ry breaks C ′
and removes these Dirac cones.

We now turn to study the system shown in Fig. 1(c) that
has C ′ strongly broken and only Rx and P remaining. Since
the induced superconducting gap �ind ≈ 250 μeV in Ref. [3]
is much smaller than the NbTiN gap 2 meV, the system must
be in the long junction limit, where ETh � �. In the long
junction limit the induced gap equals �ind ≈ �T vF/d, where
T is the transparency of the tunnel barrier, and vF the Fermi
velocity. In the absence of the orbital effect of a magnetic
field, this means that the Zeeman energy has to exceed �ind

and therefore the critical value of the magnetic field at which
the gap closes strongly depends on μ as seen in Fig. 6(a).
With the orbital effect of the magnetic field flux, penetration
through the quasiparticle trajectory changes the interference
phases, which suppresses the induced gap and causes the
topological phase transitions to occur at a value of B cor-
responding to a single flux quantum penetrating the wire area
[see Fig. 6(b)].

The Majorana decay lengths ξ significantly increase when
including the orbital effect of the magnetic field in the
Hamiltonian (see Fig. 7). Specifically, the mode of the
distribution of ξ changes by a factor of ∼4 in the parameter
range we consider (see histograms in Fig. 7). However, the
minimum values of ξ without orbital effect and with it are
both ≈200 nm. Therefore, μ needs to be tuned with sub-meV
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FIG. 6. Phase diagrams of the setup of Fig. 1(c) (a) without
the orbital effect of a magnetic field and (b) with it. Color scale
corresponds to Egap, with the topological regions colored and trivial
regions in grayscale. The histograms in the right-hand panels show
the distribution of the gap values sampled in the topological regime
within the selected parameter range. Neglecting the orbital effect
of the magnetic field incorrectly leads to a strong dependence of
the critical field on μ. With the orbital effect of the magnetic field
flux, penetration through the quasiparticle trajectory changes the
interference phases and can suppress the topological gap Egap.

precision within the lowest band in order to create Majorana
bound states with practically relevant parameters.

To investigate the effect of the spin-orbit coupling on the
Majorana properties in the presence of an orbital field, we have
repeated the calculations shown in Figs. 6 and 7 using a fivefold
larger spin-orbit strength reported in Ref. [31]. We find that
the topological band gap increases overall and in particular the
maximal gap grows from 0.14 to 0.21 meV, while the minimal
decay length remains almost the same. Therefore, increasing
spin-orbit strength has a positive but not very strong effect on
the topological band gap.

VI. DISCUSSION AND CONCLUSIONS

We have shown that the orbital effect of a magnetic field
complicates the creation of Majoranas in nanowires. Orbital
terms break the chiral symmetry C and prevent the appearance
of Majoranas whenever the magnetic field is not aligned with
the wire axis. When the field does point along the x axis,
we find that the reflection symmetry Rx in combination with
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FIG. 7. Same as Fig. 6, but with color representing inverse
Majorana length ξ−1. The histogram and color scales are truncated
from above at 1 μm−1. The mode of the distribution of ξ−1 reduces
from 0.35 to 0.10 μm−1 upon taking the orbital effect into account.
Although the Majorana lengths are overall much larger with the
orbital effect of the magnetic field, the minimal length is close to
200 nm in both cases.

particle-hole symmetry P protects the band gap from closing
everywhere in (B,μ)-space, except at the topological phase

boundaries. At experimentally relevant values of magnetic
field, the orbital effect has a stronger impact on the dispersion
relation than the Zeeman effect. Furthermore, the orbital effect
suppresses Egap and increases ξ . However, the maximum value
of the Egap in the topologically nontrivial region does not
change as drastically (from 0.21 to 0.14 meV) and the minimal
decay length changes even less (from 201 to 210 nm). The
reflection symmetry Rx of the Hamiltonian that we consider
is respected by any Rashba spin-orbit interaction. Dresselhaus
spin-orbit coupling breaks Rx ; however, it is expected to be
weak in the nanowires.

Our simulations can be made more complete by comple-
menting them with self-consistent electrostatics and magnetic
field screening by the superconductor. An additional extension
of our work is to go beyond the effective mass approximation
and to use the kp model. A separate topic of study is the
interplay between the orbital effect of the magnetic field and
disorder. We expect that the sensitivity to disorder will increase
by taking the orbital effect of the magnetic field into account.

Our results suggest that keeping the chemical potential low
is required to obtain Majoranas with reasonable length and
energy scales. Furthermore, our findings reveal a complication
in realizing more sophisticated Majorana setups, such as
a T junction required for braiding. This is because of the
requirement that the field should be aligned with the nanowire.
A possible strategy to reduce the undesirable orbital effect of
the magnetic field is to use nanowires with smaller diameters
at a cost of reduced electric field effect and increased disorder
sensitivity.
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