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Microstructure-informed deep convolutional neural network for predicting 
short-term creep modulus of cement paste 

Liang Minfei , Gan Yidong *, Chang Ze , Wan Zhi , Schlangen Erik , Šavija Branko 
Microlab, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft 2628, CN, the Netherlands   
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A B S T R A C T   

This study aims to provide an efficient alternative for predicting creep modulus of cement paste based on Deep 
Convolutional Neural Network (DCNN). First, a microscale lattice model for short-term creep is adopted to build 
a database that contains 18,920 samples. Then, 3 DCNNs with different consecutive convolutional layers are built 
to learn from the database. Finally, the performance of DCNNs is tested on unseen testing samples. The results 
show that the DCNNs can achieve high accuracy in the testing set, with the R2 all higher than 0.96. The dis-
tribution of creep modulus predicted by the DCNNs coincides with that of the original data. Furthermore, 
through analyzing the feature maps, it is found that the DCNNs can correctly capture the local importance of 
different microstructural phases. The DCNN allows therefore prediction of the creep modulus based on micro-
structural input, which saves computational resources of segmentation procedure and multiple incremental FEM 
calculations.   

1. Introduction 

Creep of cement paste is one of the main reasons accounting for time- 
dependent deformation of concrete structures. For concrete structures at 
early age, creep can prevent early age cracking because it largely re-
duces shrinkage-induced tensile stress [1,2]. In the long run, creep is 
undesirable because it may cause excessive deflection and loss of 
prestress [3,4]. Therefore, evaluation of serviceability and durability of 
concrete structures requires accurate prediction of their creep behavior. 

In recent years, a number of experimental studies have been con-
ducted to investigate influences of multiple factors on creep of cemen-
titious materials, including different mixture proportions [5–8], 
hydration degree [9–11], environmental conditions [12,13] and loading 
schemes [14,15]. Moreover, based on experimental results, numerical 
models were developed to simulate the creep or relaxation behavior 
with emphasis on different influencing factors (i.e., relative humidity 
[16], hydration degree [17], loading eccentricity [18]) or different nu-
merical implementation of constitutive models (i.e., rate-type creep 
model [19–21], time-varying generalized Maxwell model [22], age 
adjusted effective modulus [23], and parallel creep curve [24].) 
Although these studies delivered in-depth understandings of creep or 
relaxation behavior, accurate prediction remains a complex issue 

because of gaps in length scales, oversimplification of material hetero-
geneity and interaction between multiple influencing factors. 

As a highly heterogeneous material, concrete properties can be 
characterized in length scales ranging from macroscale, mesoscale, 
microscale to nanoscale. Studies at different scales adopt different as-
sumptions: 1) at the macroscale, concrete is considered as homogenous 
in order to compute the response of the whole structure to external ac-
tions; 2) at the mesoscale, concrete is assumed to be a three-phase ma-
terial constituted by cement paste, aggregate and interfacial transition 
zone (ITZ); 3) at the microscale, cement paste is considered an assembly 
of hydration products, unhydrated cement particles, and capillary pores; 
4) at the nanoscale, the hydration products such as calcium silicate 
hydrate (C-S-H) with certain molecular structure are considered as 
“building blocks” of the material. It is clear that studies at finer scale 
adopt assumptions that are closer to intrinsic mechanisms of the mate-
rial. However, the compromise between finer scale and higher scale 
should be made to achieve computational efficiency. Thereafter, multi- 
scale studies are significant for bridging the finer scale models with the 
higher scale ones, in which finer scale models provide parameters for 
higher scale models. In the context of creep modelling, studies [25–27] 
prove the significant effects of cement paste on creep of concrete, while 
aggregate shows only elastic response. Therefore, an accurate 
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characterization of creep behavior of cement paste is an essential part 
for comprehensive multi-scale modelling. 

Thanks to the nano- and micro- indentation techniques, amounts of 
experimental and numerical studies on viscous property of cement paste 
have been made possible, which measured the intrinsic creep properties 
of two kinds of C-S-H and porous structures [28,29]. Recently, Gan et al. 
[30–33] proposed the methodology of micro-cantilever bending test to 
characterize the viscoelastic properties of cement paste, by which the 
effects of w/b ratio, binder type and stress level on creep were investi-
gated. Their results showed that microstructural features largely influ-
ence the global creep behavior. Furthermore, based on experimental 
results of X-ray computed microtomography analysis and nano-
indentation tests, Gan et al. [34] used a local- force based lattice fracture 
model to simulate the time-dependent deformation process of cement 
paste under constant load. The model was able to reproduce the 
experimentally observed viscous behavior of cement paste and reason-
ably explain the influence of microstructure on viscous properties. Be-
sides, due to the abundant creep data gathered from microscale tests, 
many other microscale creep models were developed to investigate the 
influence of aggregate [35,36], C-S-H gel [37] and hydration [38]. 
Despite these models providing in-depth explanations for viscous 
mechanisms of cement paste and offering an easier way to predict 
viscous properties of cement paste, the complexities brought by the 
highly heterogenous microstructure still put burdens on computational 
capabilities, which can cause inefficiency especially when large amounts 
of computations need to be carried out. 

As a standout image identification approach of Machine Learning 
(ML), Deep Convolutional Neural Network (DCNN) has been broadly 
used in the context of structural health monitoring. DCNNs have been 
shown to have superior performance for detection and segmentation of 
concrete cracks [39–45], which enabled development of intelligent ap-
plications for automatic crack detection. DCNNs have also been used for 
automatic inspection and evaluation for structural health [46–49]. 
However, only a few researches have been concentrated on the potential 
of DCNN in predicting properties of heterogeneous materials. Rao et al. 
[50] proposed a DCNN to predict the effective stuffiness and Poisson’s 
ratio of representative volume elements (RVEs) with random inclusions, 
which showed significantly higher computational efficiency than con-
ventional numerical homogenization approaches. Similarly, Yang et al. 
[51] implemented DCNNs and principal component analysis (PCA) to 
predict the stress-strain curve of a randomized composite microstruc-
ture. They derived a mean absolute error (MAE) of less than 10% of the 
range of values in a small training set, which showed the potential of 
DCNN in efficient material design. However, there is no study concen-
trating on how DCNNs improve computational efficiency for property 
homogenization of cement paste. 

In light of the computational inefficiency of traditional FEM models, 
this study explores the feasibility of DCNN as an alternative for pre-
dicting the viscous property of heterogenous cement paste using 
microstructural images as input. Firstly, based on a previously devel-
oped microscale lattice fracture model, creep strain curves of 18,920 
microstructures derived from X-ray computed tomography (XCT) will be 
generated. Then, well-constructed DCNNs will be trained based on the 
database. Finally, performance of the DCNN will be evaluated by mul-
tiple metrics and parametric studies on unseen data will be 
implemented. 

2. Microscale lattice creep model 

As a data-driven approach, the performance of DCNN strongly de-
pends on the size and reliability of the source database. This study im-
plements an experimentally-validated micro-scale lattice model to 
generate the database of creep behavior of cement paste with different 
microstructures [34]. The workflow of the lattice model and DCNN is 
shown in Fig. 1. Firstly,18,920 XCT images of the size 200 by 200 μm are 
segmented to generate corresponding random lattice networks, which 

are further discretized into 4 phases: High-density CSH (HD-CSH), low- 
density CSH (LD-CSH), unhydrated particles and pores. Then, after a 
cycle of elastic analysis, the method of local force is implemented to 
simulate the creep effects of HD-CSH and LD-CSH, respectively. After the 
predefined creep cycles are achieved, the creep compliance curve is 
fitted according to power function law and creep modulus of different 
microstructures can be derived, which characterizes the creep behavior 
of the cement paste and forms the training database for the DCNNs. 

2.1. Generation of virtual specimens 

To build a database that describes creep behavior of cement paste 
with different microstructure, 9460 slices of 200 μm *200 μm 2D 
microstructure are cropped from XCT images of 3 micro-cantilever 
beams of the size 1650um* 300um*300um by 3 directions: left-right, 
front-back and top-down. Details on the fabrication process of the 
micro-cantilever beams can be found in the authors’ previous work [30]. 
Afterwards, each image is segmented into four phases (i.e., LD-CSH, HD- 
CSH, pores, and unhydrated particles) according to the grey scale his-
togram of the 9460 XCT images, as shown in Fig. 2. The segmentation of 
HD CSH, LD CSH, pore and unhydrated cement is done by the 3 
threshold grey scale values S1, S2, S3, which are calculated according to 
the global thresholding method [52]. The inflection of the CDF was 
defined as the upper threshold value for pores (S1). The grey scale value 
corresponding to a change of the tangent slope of PDF was used as the 
lower threshold level for UHC (S2). The division between the LD-CSH 
and HD-CSH is determined according to a relationship between hydra-
tion degree and w/c ratios [53], which is expressed as: 

Mr = 3.017
(w

c

)
α − 1.347α+ 0.538 (1)  

where Mr is the ratio of the mass of LD-CSH to HD-CSH; α is the hy-
dration degree, which can be estimated by the following equation: 

α =

Vh
V

Vh
V + Vu

(2)  

where Vh, Vu are volume fraction of hydration product and unhydrated 

Fig. 1. Workflow of lattice creep model and DCNN.  
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particle respectively; V is the volume ratio of reaction product to reac-
tant, which can be assumed as 2.2 according to [54]. Thereby, the 
threshold values S1, S2, S3 for distinguishing the four phases can be 
calculated, as shown in Fig. 2. 

To introduce local heterogeneity and disorder to the model, an 
irregular lattice network is generated as shown in Fig. 3. Firstly a 
200*200 array of square cells with the side length 1 um is generated and 
each cell is assigned with different element type according to the seg-
mentation results. Then sub cells with a side length ratio of 0.5 [55] are 
generated and positioned in the center of each cell. Within each sub cell, 
the nodes of the lattice beam elements are positioned randomly using a 
pseudo-random number generator following a uniform distribution. 
Afterwards, based on the random beam nodes array, Delaunay trian-
gulation is performed to connect the neighboring nodes and form the 
lattice network [56]. 

Following the steps introduced above, 9460 4-phase lattice virtual 
specimens corresponding to different microstructures are generated. 

2.2. Simulation of short-term creep behaviors 

4 randomly-selected XCT scans, corresponding virtual specimens and 
boundary conditions are shown in the Appendix A1. The short-term 
creep behavior of cement paste is simulated under the boundary con-
dition of axial compression test. It should be noted that in this study, the 
2D simulations are conducted as a simplification, which cannot consider 
the realistic 3D connectivity and tortuosity of pore structure. Although 
the 2D simulations tends to produce lower elastic modulus in elastic 
analysis [57], similar average prepeak behaviors as in 3D simulations 
can still be characterized in 2D [58]. For creep simulation, if the con-
nectivity of viscoelastic phase (CSH matrix) is preserved and the volume 

of the elastic inclusions is relatively low, the validity of 2D model as 
simplification of 3D can still hold [59,60]. In view of the numerical 
convenience and computational efficiency, 2D model is adopted in this 
study to efficiently generate the dataset for the training of the DCNN. 

Local properties of different phases, including the tensile strength fi, 
elastic modulus E and creep modulus C are derived from the authors’ 
previous testing results [30,32,33], as summarized in Table 1. Note that 
according to conventional nanoindentation test results, the mechanical 
properties of the four phases at a scale smaller than 5 μm are not 
dependent on w/c ratios [61,62]. 

With the boundary conditions and local material properties settled, 
an elastic calculation is firstly performed to get the initial mechanical 
response of the microstructure to the constant load. During this process, 
the beam elements that meet maximum stress criterion will be removed, 
which characterizes the damage induced by the immediate constant 
load. According to [63,64], the fracture stress can be calculated as 
follows: 

σf = αN
N
A
+ αM

M
W

(3)  

Assuming the cross-section of the beam element is circular, the notations 
in Eq. (3) are as follows: A is the cross-sectional area of every beam 
element; W is the cross-sectional moment of resistance of every beam 
element (W = πD3/32, where D is the effective diameter of the lattice 
element.); N and M are the axial force and bending moment of the beam 
element; αN and αM are the influencing factors of axial force and bending 
moment, which normally equal 1.0 and 0.05, respectively, according to 
[65–67]. 

After the initial mechanical response of the microstructure to the 
immediate constant load is calculated, the creep calculations are con-
ducted using an incremental local force method [68]. In each following 
step, a local force is calculated based on the local mechanical response of 
each node (calculated in first step) to mimic the short-term creep effect. 
First, the creep compliance function of CSH is expressed as: 

C(t, t0) =
1
Ec

(t − t0

Δt

)
β (4)  

In which C(t, t0) is the creep compliance at time t when loaded at time t0; 
Δt is the time interval used in the calculation, which is 1 s in this study; Ec 
is the creep modulus of the CSH phases (Table 1); β is a constant which 
equals to 0.251 according to [69]. Then, based on the Euler’s method, 
the incremental creep strain at each time step can be calculated as: 

εcr
i+1 − εcr

i =
1
Ec

βΔtσi

(t − t0

Δt

)
β− 1 (5)  

in which εi
cr is the creep strain at i-th step; σi is the local stress. Thereby, 

the local creep strain of each beam is dependent on the local stress 
distribution, which is converted to local force [68]. These local forces 
applied on CSH beam elements result in overall creep of the whole 
microstructure. The local stress distribution of the 4 randomly-selected 
virtual specimens at time step t = 30s is shown in Appendix A2. Based 
on the methods introduced above, the short-term creep behavior of a 
specific microstructure of cement paste can be calculated. For the 4 
virtual specimens shown in Appendix A1, their results of creep 
compliance under 30 s’ loading are shown in Appendix A3. By fitting the 
creep compliance curves with Eq. (4), the creep modulus can be derived. 
The fitted exponent β equals to 0.4285 and remains constant for all 

Fig. 2. Segmentation by grey scale histogram of XCT images.  

Fig. 3. Irregular lattice network.  

Table 1 
Local properties of different phases.  

Phases fi/ MPa E/ GPa C/ GPa 

Unhydrated Cement  614.7  84.2 – 
LD CSH  52.2  21.3 670 
HD CSH  82.8  26.4 990  
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specimens. According to the authors’ experimental observations [30] 
and the modelling results of all other virtual specimens, the patterns of 
constant exponent and high coefficient of determination (higher than 
0.995) remains valid. Thereby, only one parameter (i.e., creep modulus) 
is needed to represent the creep behavior of cement paste of certain 
microstructure. 

3. Deep convolution neural network (DCNN) 

Based on the microscale lattice creep model introduced in Section 2, 
the database for training the DCNNs can be produced. In this section, 
data derived from 18,920 virtual specimens will be used to train a self- 
developed DCNN, which will form an efficient approach for predicting 
creep behavior of cement paste with different microstructure. 

3.1. Database 

3.1.1. Data augmentation 
As a data-driven approach, the performance of the DCNNs strongly 

depends on the amount of data. In this study, a data augmentation 
procedure is performed by rotating the input microstructure. As is 
shown in Fig. A1, the presumed boundary condition of the model is axial 
compression, so the orientation of the specimen will strongly influence 
the modelling result because of the heterogeneity of microstructure. For 
example, the creep modulus of the 4 specimens in Fig. A3 will be 
changed from 5614, 5796, 9361, 7059 GPa to 6870, 7570, 6350, 6170 
GPa, if they are rotated 90 degrees anticlockwise. Therefore, by rotating 
the input microstructure and running the lattice creep model with the 
same boundary condition, different creep behaviors will be derived. 
Note that due to the symmetry of boundary conditions and micro-
structure, the rotating angle of 0 degrees and 180 degrees will produce 
the same results, as well as the rotating angle of 90 degrees and 270 
degrees. In this case, only rotating angle of 0 and 90 are chosen to 
produce the whole database for the training of DCNNs. With the 9460 
XCT images of different microstructure, there are in total 18,920 sets of 
data in this database. 

3.1.2. Overview of the database 
Based on the microscale lattice model, a database that contains 

18,920 sets of data is established, with each set including an image of a 
specific microstructure and a corresponding creep modulus. The over-
view of the database is shown in Fig. 4. 5 parameters are selected here to 
describe the database: with one parameter (i.e., creep modulus Ec) being 
the modelling result that characterizes the creep behavior of cement 
paste and four other parameters (i.e., poro (porosity), LDR (LD/CSH 
ratio), DOH (Degree of hydration), UHC (Unhydrated cement particle 
ratio)) characterizing the constituent of the corresponding microstruc-
ture. Based on the segmentation of the input XCT image, the four pa-
rameters that related to the microstructure are calculated as follows: 

poro =
Npore

Ntotal
(6-a)  

LDR =
NLD− CSH

NLD− CSH + NHD− CSH
(6-b)  

DOH =
NLD− CSH + NHD− CSH

Ntotal
(6-c)  

UHC =
Nuhc

Ntotal
(6-d)  

where Ntotal is the number of image pixels, which equals to 40,000 in this 
study; Npore, NLD-CSH, NHD-CSH, Nuhc refer to the number of lattice cells 
that represent pores, LD-CSH, HD-CSH and unhydrated cement particles 
respectively. In Fig. 4(a), the diagonal figures show the histogram of 
each parameter and the other figures show the correlation between any 

pair of parameters. Fig. 4(b) shows the exact correlation between any 
two parameters. From Fig. 4, clear correlations between the creep 
modulus and the other four parameters can be found: the creep modulus 
decreases with porosity, LDR and DOH, while it increases with UHC. 
Besides, a strong correlation can also be found between DOH and UHC, 
while LDR and porosity show little correlation with DOH. Note that 
although the correlations of creep modulus with DOH and UHC are 
much weaker than that with LDR and porosity, it is contradicted to 
common understandings. According to common understandings, higher 
DOH and lower UHC means a more mature and integrated CSH micro-
structure, whose creep modulus should be higher. However, the Lattice 
model gives an opposite trend. This difference is because the stiffness of 
unhydrated cement particle is much higher than other phases (see 
Table 1), and the lattice model adopted here does not consider the aging 
effects of other material phases. In other words, the lattice model cal-
culates the creep behavior of cement paste totally from the perspective 
of microstructural mechanics and therefore its results regarding hydra-
tion effects are not formal. 

3.2. DCNN architecture 

In this study, 3 kinds of DCNN architecture with 1 single convolu-
tional layer, 2-stack consecutive convolutional layers, and 3-stack 
consecutive convolutional layers will be adopted, which are named as 
DCNN-1, DCNN-2 and DCNN-3, respectively. Taking DCNN-3 as an 
example, its architecture is shown in Fig. 5, and a detailed description of 
its configuration are listed in Table 2. The DCNN is formulated by the 
following 6 kinds of layers: convolutional layer, max pooling layer, 
ReLU activation layer, global pooling layer, fully-connected dense layer 
and linear activation layer. As is shown in Fig. 5, firstly, the input layer 
receives a grayscale XCT image representing a specific microstructure. 
Then, the image is passed through a series of consecutive convolutional 
layers and processed by a ReLU activation function and a max pooling 
layer. Subsequently, the stacked feature maps produced by the con-
volutional layers will be flattened by a global pooling layer and trans-
ferred into a 512*1 vector. The vector will then be passed through fully- 
connected dense layers and finally output a scalar, which is the creep 
modulus that can describe the creep behavior of the input microstruc-
ture under axial compression (see Fig. 4). 

3.2.1. Consecutive convolutional layer 
The convolutional layer of DCNN is what make it stand out from 

other ML algorithms when processing tasks of image recognition. An 
illustration of the convolution operation used in this study is shown in 
Fig. 6. As shown by Fig. 6(a), the convolution operation is performed by 
sliding a filter (i.e., kernel) over the whole input image step by step. 
Within each sliding step, the part of the input image covered by the filter 
is called the receptive field. Note that the filter is a matrix of trainable 
parameters whose size is much smaller than that of the input image, 
while the receptive field is a matrix of the grey scale value, whose size is 
the same as that of the filter. As shown by Fig. 6(b), in every step, by 
calculating the dot product of the filter matrix and the receptive field 
matrix, the local feature of the input image is extracted to form a new 
input image for next layers. This new input image is then activated by a 
non-linear function and then form a feature map (i.e., activation map), 
which will be passed to the subsequent convolutional layers. Note that 
the illustration in Fig. 6 only considers an input grey-scale image with 
only one channel. For image with multiple channels, which happens 
before arriving at the second convolutional layers (see Fig. 5), the filter 
has the same depth as the channel of the input image. Besides, to ensure 
the consistency of image size, empty rows and columns are padded on 
the edge of the output image after each convolution operation. 

As mentioned above, the filter plays a significant role in the process 
of convolution operation. A larger filter means a larger receptive field, 
which will extract more information at each step. However, simply 
increasing the filter size will bring in too many parameters and raise a 
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(a) Histogram and correlation scatters

(b) Correlation matrix

Fig. 4. Overview of the database.  
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problem of computational inefficiency. Therefore, this study configures 
a 3-stack consecutive convolutional layer instead of a single one. Such 
net architecture can enable a larger receptive field while only using 
small filter size [70]. A similar application can also be found in other 
well-established DCNN architectures like Alex Net [71]. The explanation 
is shown in Fig. 6 (c). For a single convolutional layer, given the filter 
size of 3*3, one can only get 3*3 receptive fields like A, B, C in the left of 
Fig. 6 (c). However, when a second convolutional layer is applied, the 
information contained in B is incorporated into A, which includes in-
formation that lies outside of A in the first layer. As this happens in every 
direction, the receptive field of A is augmented from 3*3 to 5*5, as is 
shown in the right part of Fig. 6 (c). And if a third layer is applied, the 
receptive filed of C is also incorporated by A, which then enlarges A’s 

receptive field to 7*7. Therefore, by stacking consecutive convolutional 
layers, the receptive field can be effectively augmented without 
increasing the filter size. In this study, a single convolutional layer with a 
filter size of 3*3 and a stride size of 1 is adopted. 

3.2.2. Pooling layer 
Following the convolutional layers, pooling layer is another 

component that distinguishes CNN from conventional neural networks. 
After the image is processed by the convolutional layers, its dimension is 
largely augmented. For example, in this study, after the first consecutive 
convolution layers (see Fig. 5 or Table 2), the image size is augmented 
from 200*200*1 to 200*200*16. Such a large increase of image 
dimension puts a heavy burden on the computational capabilities. In 
light of this situation, the pooling layer is incorporated in the DCNN 
architecture to fulfill 2 objectives: 1) Reduce the dimension of image 
array; 2) Reserve the key information extracted by the convolutional 
layers. An illustration of how the pooling layer works is given in Fig. 7. 
Similar to the convolution operation, in the pooling process, a pooling 
filter will slide over the input feature map, which is delivered by the last 
convolutional layer. In every step, the area corresponding to the pooling 
filter is called the pooling field. Then the statistics (i.e., max or average) 
of all elements in the pooling field matrix will be calculated and form the 
downscaled feature map. Currently, there are mainly two kinds of 
pooling layers that are broadly adopted in various CNN applications: 
Max pooling and average pooling. Furthermore, as a more discrimina-
tive approach, max pooling has proven to be more effective than average 
pooling [72]. Therefore, in this study, max pooling layers with pooling 
size 2*2 and pooling stride 2 are adopted to be attached to each 
consecutive convolutional layer. 

After all convolution operations are finished, a global average 
pooling layer [73] is adopted. The global average pooling layer takes the 
average of the feature map at each channel and forms a 1D vector to feed 
the next dense layer. For example, when the output image block 
(6*6*512) at the 24th layer is passed to the 25th layer, its dimension is 
reduced to 1*1*512, with the 512 elements representing the global 
average value of all 6*6 feature maps of the 6*6*512 image block. 

3.2.3. Activation layer 
Activation layer is a key component in Artificial Neural Network 

(ANN) and CNN, which introduces nonlinearity to the linear trans-
formation process. In typical ANN, activation functions like sigmoid 
function (f(x) = (1 + e-x)− 1) and tanh function (f(x) = tanh(x)) are used. 
However, such highly-nonlinear functions can cause computational in-
efficiency and are not favorable for DCNN which requires much higher 
computational capabilities than conventional ANN. To tackle such 
problem, the Rectified Linear Unit (ReLU) function (f(x) = max(x,0)) 

Fig. 5. DCNN-1 architecture 
(C#: Convolutional layer; MP#: Max pooling layer; ReLU#: ReLU activation function; 
GP#: Global average activation function; LR#: Linear activation function). 

Table 2 
Detailed configurations of the DCNN-1.  

Consecutive 
Layer # 

Layer 
# 

Layer type Output 
shape 

Number of 
Parameters  

1 Input 200*200*1 – 

1 
2 Conv1 200*200*16 160 
3 Conv2 200*200*16 2320 
4 Conv3 200*200*16 2320  
5 Max pooling1 100*100*16 0 

2 
6 Conv4 100*100*32 4640 
7 Conv5 100*100*32 9248 
8 Conv6 100*100*32 9248  
9 Max pooling2 50*50*32 0 

3 
10 Conv7 50*50*64 18,496 
11 Conv8 50*50*64 36,928 
12 Conv9 50*50*64 36,928  
13 Max pooling3 25*25*64 0 

4 
14 Conv10 25*25*128 73,856 
15 Conv11 25*25*128 147,584 
16 Conv12 25*25*128 147,584  
17 Max pooling4 12*12*128 0 

5 
18 Conv13 12*12*256 295,168 
19 Conv14 12*12*256 590,080 
20 Conv15 12*12*256 590,080  
21 Max pooling5 6*6*256 0 

6 
22 Conv16 6*6*512 1,180,160 
23 Conv17 6*6*512 2,359,808 
24 Conv18 6*6*512 2,359,808  

25 Global average 
pooling1 

1*512 0  

26 Dense1 1*256 131,328  
27 Dense2 1*128 32,896  
28 Dense3 1*1 129  

Total parameters 8,028,769  
Trainable parameters 8,028,769  
Non-trainable parameters 0  

L. Minfei et al.                                                                                                                                                                                                                                   



Cement and Concrete Research 152 (2022) 106681

7

(a) Filter slides across the input image

(b) Calculation flow

(c) Augmentation of receptive field by consecutive convolution layers

Fig. 6. Convolution operation.  
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[74] is introduced, which sets all negative input to zero and preserves all 
positive input. Unlike the sigmoid and tanh function, ReLU does not put 
limit on its output, and only produces gradients of 1 or 0, which effec-
tively accelerates the training process. Therefore, in this study, the ReLU 
activation layer is adopted, which is attached after every single con-
volutional layer (see Fig. 5). 

3.3. Training configuration 

The training of DCNN can be conducted by importing the database 
(in Section 3.1) into the designed network architecture (in Section 3.2). 
Note that in this study, DCNN with a single convolutional layer (DCNN- 
1), 2-stack consecutive convolutional layers (DCNN-2) and 3-stack 
consecutive convolutional layers (DCNN-3) will be used to train the 
database in the meantime and their difference will be compared. 

3.3.1. Data preprocessing 
Before training starts, the database will be shuffled and grouped into 

3 sets: a training set, a validation set and a testing set following the 
proportion ratio 6.4: 1.6: 2. Thus, there are 12,108, 3028 and 3784 
samples in the training, validation and testing set, respectively. Then, 
the data of creep modulus in training set will be standardized by its max 
and min value to make sure the range of each sample point lie in the 
range of (0,1). Note that the standardization should only be conducted 
within the training set and cannot be extended to the testing set, since 
the statistical information of the testing set should be totally isolated 
from training set. 

3.3.2. Optimization 
During the training process, the weights and biases of the filters and 

dense networks are updated to optimize the prediction performance on 
training set. Mean squared error is adopted as the loss function. Then, by 
a gradient descent algorithm, the weights and filters are updated to 
minimize the loss function through backpropagation of error. In this 
study, the Adam algorithm (i.e., Adaptive Moment Estimation) [75] is 
adopted as the optimization function, which is an advanced version of 
RMSprop and Adadelta algorithms [76]. In the Adam algorithm, two 
momentum terms are incorporated to take the historical values of gra-
dients into consideration, which can prevent the local minima and 
achieve high efficiency. The two momentum terms of Adam at t-th 
iteration are as follows: 

mt = β1mt− 1 +(1 − β1)gt (7-a)  

vt = β2vt− 1 +(1 − β2)gt
2 (7-b)  

where mt, vt are the first and second momentum terms; gt is the 

derivative of loss function; β1 and β2 are the decaying weight of the first 
and second momentum term, respectively. Because the initial values of 
the momentum terms are assumed as 0 in the first iteration, their values 
are normalized to get a bias-corrected momentum terms as follow: 

m̂t =
mt

1 − βt
1

(8-a)  

v̂t =
vt

1 − βt
2

(8-b)  

Then the weights and bias of the DCNN at (t + 1)-th iteration can be 
updated by: 

θt+1 = θt −
α
̅̅̅̅
v̂t

√
+ ε

m̂t (9)  

where θt, θt+1 denotes the targeted parameter at t and t-th iteration; α is 
the learning rate; ε is the parameter for numerical stability, which equals 
to 1*10− 8. In this study, the value of decaying weights β1 and β2 are set 
as 0.9 and 0.999, according to [71]. However, although given such an 
efficient optimization algorithm, the setting of learning rate is still based 
on presumptions. As learning rate determines the updating step of each 
iteration in the gradient descent process, an appropriate value of the 
learning rate is essential for the objective of finding the minima effi-
ciently. Thereby, this study adopts an adaptive exponential-decay 
approach to update the learning rate: for every five epochs, if the co-
efficient of determination evaluated in validation set is not improved, 
the learning rate will be decayed by a proportion of 0.9. Note that during 
the training process, in every iteration, 32 samples are imported to the 
DCNN to update the variables. A complete training for all the images in 
training set is called an epoch. In this study, 200 epochs are conducted 
for the training of the DCNNs. 

4. Results and discussion 

4.1. Metrics and performance 

4.1.1. Training and validation 
In this study, 3 metrics are used to evaluate the performance of the 

DCNNs in training, validation and testing set, which are Mean Squared 
Error (MSE), Mean Absolute Error (MAE) and Coefficient of Determi-
nation (R2). They can be expressed as follows: 

MSE =
1
n

∑n

i=1
(xi − x̂)2 (10-a)  

MAE =
1
n

∑n

i=1
∣xi − x̂∣ (10-b)  

R2 = 1 −

∑n

i=1
(xi − x̂)2

∑n

i=1
(xi − x)2

(10-c)  

In the training process, MSE is adopted as the loss function that is used in 
gradient descent, and R2 is used as the metrics for adjusting learning rate 
in every 5 epochs (as described in 3.3.2). Therefore, the MSE and R2 are 
used to describe the training history. In the training and validation set, 
the MSE and R2 of the 3 DCNNs are shown in Fig. 8 (a) ~ (c), and the 
learning rate history are shown in Fig. 8 (d). From Fig. 8, one can see that 
the 3 DCNNs all achieve high prediction performance in the training 
process. On the training and validation set, the R2 of all the DCNNs are 
above 0.99 and 0.95, respectively, which indicates low risk of overfitting 
since the prediction performance of training and validation set are quite 
close. Besides, the results also prove the adaptive adjustment of learning 
rate are effective for the training process of DCNNs: for DCNN-1, DCNN- 
2 and DCNN-3, the learning rate decreases by 96.5%, 97.6%, and 97.8% 

Fig. 7. Examples for max and average pooling layer.  
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in 200 epochs, respectively. However, comparing the difference of 
DCNNs, one can find the importance of having consecutive convolu-
tional layers. With the 3-stack convolutional layers, DCNN-3 gives the 
best prediction while maintaining the best numerical stability since the 
first iterations. Besides, the fast decrease of learning rate of DCNN-3 also 
indicates that better numerical stability is achieved. Comparing DCNN-1 
with the others, more distinguished effects of consecutive convolutional 
layers on both prediction performance and numerical stability can also 
be found. 

4.1.2. Testing result 
After the training process is finished, the DCNNs are tested by the 

3784 data samples, which have been kept isolated since the beginning. 
The testing results of the DCNNs are shown in Fig. 9. The testing results 
of different DCNNs are consistent with that of the training and validation 
set: All the 3 DCNNs can achieve high accuracy over most samples 
within the unseen testing set. And more consecutive convolutional 
layers can improve the testing accuracy expressed by R2, MSE and MAE. 

4.1.3. Correlation with microstructural parameters 
To further validate the capabilities of the DCNN, the correlation 

between the microstructural parameters and prediction results in the 
testing set are compared. According to Fig. 4, the most significant 
microstructure parameters that influence the creep modulus are LD-CSH 
ratio, Porosity and Unhydrated Cement Ratio. Therefore, the correlation 
between these parameters and creep modulus predicted by the DCNNs 
are shown in Fig. 10. By comparison, the distribution of creep modulus 
predicted by the DCNNs highly coincides with the original distribution 
of Lattice modelling results in testing set. Such distributions are also 

similar to the ones that shown in Fig. 4. These results further proves that 
the proposed DCNNs can effectively replicate the predictions made by 
the microstructural lattice model. 

4.2. Feature map 

This section discusses how the DCNNs capture the feature of an input 
microstructure and give its prediction. As mentioned in Section 3.2.1, 
during the convolution operation, the local feature of the microstructure 
is extracted by the filters to form a new input image block (a 3D matrix), 
which are called feature maps and are passed to the subsequent layers 
after ReLU activation and max pooling. Therefore, the feature maps 
indicate the local features identified by different convolutional layers. 
Taking DCNN-3 as an example, the feature maps produced at the end of 
every consecutive convolutional layer are shown in Fig. 11. Note that for 
each consecutive convolution layer, a stack of feature maps is produced. 
The results shown in Fig. 11 are the summation of these feature maps 
along its channel. Given the input microstructure (see Fig. 12(a)), the 
DCNNs keeps extracting the features and downscaling the size of feature 
maps. At the first layers, only the finer local features are extracted and 
compressed into smaller feature maps. While when it goes deeper into 
the DCNN, more details are compressed into smaller number of pixels 
and therefore such feature maps become highly abstract and uninter-
pretable. In further analysis for local importance of microstructure, the 
feature maps at the 4th layer will be used, which is close to the output 
layers and meanwhile maintains interpretability. 

Except for sample 1, which is in consistent with Fig. 11, 3 other 
samples were randomly selected and imported to DCNN-3. Their feature 
maps at the 4th consecutive layer are summed along the channel and 

(a) Performance of DCNN-1 (b) Performance of DCNN-2

(c) Performance of DCNN-3 (d) Learning rate history

Fig. 8. Training history.  
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shown in Fig. 12. By comparing the feature maps (right) with the input 
microstructure (left) and the segmentation result (middle), we can see 
that the phases of unhydrated cement particles and the surrounded HD- 
CSH are highlighted by the feature maps. Such distribution in the feature 
maps indicates that the phases of unhydrated cement particles and HD- 
CSH can cause higher creep modulus, which is consistent with the cor-
relations that shown in Figs. 4 and 10. Besides, the feature maps tell that 
the phase of unhydrated cement particles is the most significant phase 
which increases the final prediction value of creep modulus. Such 

prediction reflects the inherence of the microscale lattice model. As can 
be seen from Table 1, the elastic modulus of unhydrated cement parti-
cles (614 GPa) is much higher than that of LD-CSH (52 GPa) and HD- 
CSH (82 GPa), so the incorporation of unhydrated cement particles 
actually increases the overall stiffness of the microstructure. Thereby, 
under the action of local force, smaller deformation at each creep step is 
obtained, which then gives a higher creep modulus in the fitting result. 
As can be seen from Figs. 4 and 10, there is a negative correlation be-
tween LD-CSH/ porosity and creep modulus, which is not explicitly 
shown here. This is because the ReLU activation function is used in every 
convolution operation, and the negative values produced during 
convolution operation are all replaced with zeros and only positive 
values are preserved. However, one can also see a complementary 
relationship between LD-CSH and HD-CSH, according to Eq. (6-b). By 
this relation, since HD-CSH is detected as a positive contribution to the 
magnitude of creep modulus, then the LD-CSH should be a negative one. 

4.3. Further discussions 

Sections 4.1 and 4.2 have shown that the DCNNs can accurately 
mimic the microscale lattice creep model. By comparison, the DCNNs 
save the computational resources for image segmentation and multiple 
incremental iterations of the microscale lattice creep model, and directly 
predict the creep modulus with the input of a microstructure repre-
sented by a raw XCT image. The capabilities of extracting and inte-
grating local features from highly heterogeneous microstructures make 
DCNN a powerful tool in predicting the short-term creep of cement 
paste. Moreover, such capabilities indicate strong potential of DCNN in 
other computationally- intensive tasks for homogenization of heterog-
enous materials. 

However, it should also be noted that the performance of the DCNNs 
highly depends on the microscale lattice creep model, which generated 
the datasets for the whole training process. The applications of DCNNs of 
this study is limited to the scenario of hardened four-phase cement paste 
under immediate axial compression. If any other phases (e.g., CH) of 
cement paste play an essential role, or other boundary conditions are to 
be considered, the microscale lattice creep model will need to be 
adjusted first. After new datasets that reflect the influence of new phases 
or different boundaries are generated, the DCNNs can be retrained to 
gain accuracy on the new tasks. If the changes of the microscale lattice 
creep model are minor, then transfer learning can be applied in this 
process. In this case, only parts of the DCNN network have to be adjusted 
to gain good accuracy for new datasets, which not only saves compu-
tational resources in training process but also tends to gain higher ac-
curacy [77]. However, it should be noted that meaningful Transfer 
Learning requires that the new task should be related to the old task. 
Therefore, if significant changes are made to the inherent mechanisms of 
the microscale lattice creep model, such as the constitutive relationship, 
then the ML model will need to be retrained all over again. 

5. Conclusions 

In this study, we built a database that contains 18,920 microstruc-
tures and their corresponding creep moduli using an experimentally- 
validated microscale lattice model for short-term creep. Then, DCNNs 
with different numbers of consecutive convolutional layers are estab-
lished to predict the creep modulus given the microstructure as input. 
Finally, the distribution of creep modulus predicted by DCNNs and the 
lattice model are compared, and the local importance of microstructure 
are analyzed based on the output of feature maps. Through this study, 
the following conclusions can be obtained:  

(1) The modelling results of 18,920 microstructures show that the 
adopted microscale lattice model captures well the correlations 
between the creep behaviors and microstructural parameters, 

(a) DCNN-1, R2 = 0.9678, MSE = 0.00391, MAE = 0.01285

(b) DCNN-2, R2 = 0.9753, MSE = 0.00300, MAE = 0.01100

(c) DCNN-3, R2 = 0.9757, MSE = 0.00295, MAE = 0.01088

Fig. 9. Testing results.  
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Fig. 10. Correlation between predicted creep modulus and microstructural parameters.  

(a) 1st layer 200*200*16 (b) 2nd layer 100*100*32 (c) 3rd layer 50*50*64

(d) 4th layer 25*25*128 (e) 5th layer 12*12*256 (f) 6th layer 5*5*512

Fig. 11. Feature maps extracted from DCNN-3.  
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(a) Sample 1

(b) Sample 2

(c) Sample 3

(d) Sample 4

(e) Legend for the lattice model in the middle column

Fig. 12. Random selected samples for illustrating the feature importance 
(Note: the images from left to right are: XCT image, Lattice modelling (segmentation result) and 4th layer feature map.) 
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including CSH content, porosity and unhydrated cement particle 
ratio.  

(2) Due to the amplification of receptive field, the consecutive 
convolution layers can promote the prediction accuracy of 
DCNNs and meanwhile maintain both the numerical stability.  

(3) All the DCNNs adopted in this study can achieve high accuracy in 
predicting the creep modulus of unseen microstructure, with the 
values of R2 all above 0.96. Moreover, the correlation between 
creep modulus predicted by the DCNNs and microstructural pa-
rameters is consistent with that of the original database.  

(4) The 4th consecutive convolution layer gives the feature maps that 
highlight the contribution of unhydrated cement particles and 
HD-CSH to the overall prediction of creep modulus, which 
correctly reflects the inherence of the microscale model. 
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Appendix A 

A.1. Virtual specimens 

4 XCT scans and corresponding virtual specimens are randomly selected here to present the models, as is shown in Fig. A1. The green elements at 
the left-right boundaries are steel plate, whose modulus equal to 30,000 GPa. 
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Fig. A1. Randomly selected virtual specimens 
(Legend for different phases are consistent with Fig. 3). 
A.2. Local stress distribution 

The local stress distribution of the four virtual specimens at time step t = 30s are shown in Fig. A2. As can be seen from the stress plot, the stress 
distribution is heterogenous depending on the microstructure, especially the distribution of pores: in the direction perpendicular to external load, 
stress concentration around the pores can be explicitly observed.

Fig. A2. Stress plot of 4 random selected virtual specimens (Unit: MPa).  

A.3. Creep curves 

Based on the methods introduced in Section 2, the short-term creep behavior of a specific microstructure of cement paste can be calculated. For the 
4 virtual specimens shown in Fig. A1, 3 main microstructural parameters including porosity, LD-CSH/ CSH ratio (LDR) and ratio of unhydrated cement 
particles (UHC) are shown in Table A1. Results of creep compliance of the 4 virtual specimens under 30 s’ loading are shown in Fig. A3 and sum-
marized in Table A1. The results in Fig. A3 are fitted by a creep compliance function with the form of Eq. (4). The exponent β remains constant for all 
specimens and equals to 0.4285 and the coefficient of determination are all higher than 0.995.  

Table A1 
Microstructural parameters of the 4 virtual specimens.  

NO. Porosity /% LDR /% UHC /% Creep modulus/ GPa 

Virtual specimen 1  6.05  44.39  6.16  5614 
Virtual specimen 2  5.32  40.32  4.67  5796 
Virtual specimen 3  2.43  40.24  9.01  9361 
Virtual specimen 4  3.31  45.26  4.91  7059   
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Fig. A3. Creep curves of 4 randomly selected virtual specimens.  
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[33] Y Gan H Zhang B Šavija E Schlangen K van Breugel. Micro-cantilever testing of 
cementitious materials under various loading conditions. Proceedings of the 10th 
International Conference on Fracture Mechanics of Concrete and Concrete 
Structures. 

[34] Yidong Gan, Claudia Romero Rodriguez, Hongzhi Zhang, Erik Schlangen, Klaas van 
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