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Bennett Based Balanced Butterfly Linkage,
Deployable Linkage with Inherent Balance

Volkert van der Wijk

Abstract In this paper it is shown how a 2-DoF inherently force balanced spatial
deployable Butterfly Linkage is found consisting of four entangled similar Bennett
linkages moving synchronously and with the common center of mass in the cen-
tral joint. This linkage is derived from the Grand 4R Four-Bar Based Inherently
Balanced Linkage Architecture by selecting a planar linkage with four entangled
similar 4R four-bar linkages to which the Bennett conditions are applied. The inher-
ent balance conditions are calculated, which are independent of the Bennett angles,
and a CAD-model of the linkage is presented.

Key words: Inherent force balance, Static balance, Deployable, Bennett linkage,
Similar four-bar

1 Introduction

For deployable linkages, static balance - when gravity does not affect the motion
of the linkage - can be of urgent importance, especially when they become large of
size with significant mass. This is for instance the case in kinetic architecture where
deployable structures are used as movable walls, facades, roofs and for temporary
portable housing [2,4]. The use of springs in the design for balance can be very com-
plex, dangerous in case of failure and, since in practice springs lose their stiffness
properties quickly over time, not very durable [3]. Using large countermasses for
balance however is not desired as well as they cause a high demand on the structural
design in terms of strength and space and they also limit the portability significantly
for which lightweight is essential.

The contribution of this paper is to show how the inherent balance approach
can be applied to synthesize advanced deployable structures with inherent balance,
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Fig. 1 a) Grand 4R Four-Bar Based Inherently Balanced Linkage Architecture from [8] where S
is the common CoM of all the links for 2-DoF motions; b) 2-DoF inherently balanced linkage
solution with S as the common CoM and as base pivot, obtained from the Grand Architecture by
eliminating all other links.

which means that they are force balanced with solely the links of the linkage, not
needing countermasses [6,7,9]. This is possible for specific designs of the kinemat-
ics. In this paper the synthesis of a 2-degree-of-freedom (2-DoF) inherently force
balanced spatial deployable Butterfly Linkage with four entangled similar Bennett
linkages moving synchronously is presented. First it is shown how this linkage is
obtained from a Grand Inherently Balanced Linkage Architecture, subsequently the
inherent balance conditions are derived.

2 Synthesis from the Grand 4R Four-Bar Based Inherently
Balanced Linkage Architecture

Figure 1a shows the Grand 4R Four-Bar Based Inherently Balanced Linkage Archi-
tecture with solely mass symmetric links - when link centers of mass (CoMs) are on
the line through the joints - as presented in [8]. It consists of a 4R four-bar linkage
A0A1A2A3 with inside 20 links that are aligned with the four-bar links in a specific
way based on principal vectors. The linkage architecture is 26 times overconstrained
yet movable with the common CoM of all links stationary in joint S for all motions.
This means that when the linkage architecture is pivoted to a base with S as fixed
base pivot, the architecture is balanced with 2-DoF motion capability.

Since the architecture is highly overconstrained, a variety of links can be elimi-
nated to obtain a normally constrained linkage solution. The choices for this do not
affect the inherent balance capability, all derived solutions can be inherently bal-
anced without the need of countermasses or additional elements. In [8] 32 inherently
balanced linkages were presented which were derived from the Grand Architecture
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Fig. 2 a) Modification of the linkage solution in Fig. 1b where link segments C1B7 and C2B4
have become the separated and shifted links C′

1B′
7 and C′

2B′
4 to obtain a compact and normally

constrained design; b) Close-up of the central joint of the spatial Butterfly Linkage in Fig. 3.

when keeping the four links of the four-bar A0A1A2A3. However it is also possible
to find solutions without the links of the four-bar A0A1A2A3.

Figure 1b shows a two times overconstrained 2-DoF linkage solution that is de-
rived from the Grand Architecture by eliminating the links of the four-bar A0A1A2A3
and all other internal links. It consists of the 12 links B5SB2, C1B2D2, D2B3, B3SB8,
B8D1, D1B1C2, B1SB6, B6D4, D4B7C1, B7SB4, C2B4D3, and D3B5. Within the link-
age, the four similar four-bars SB2D2B3 ∼ B8D1B1S ∼ D4B7SB6 ∼ B5SB4D3 can be
recognized. The four-bars SB2D2B3 and B5SB4D3 share the common link B5SB2,
the four-bars SB2D2B3 and B8D1B1S share the common link B8SB3, the four-bars
B8D1B1S and D4B7SB6 share the common link B1SB6, and the four-bars D4B7SB6
and B5SB4D3 share the common link B7SB4. S is the central joint where these four
links have a revolute pair. Parallelograms C1B2SB7 and C2B4SB1 constrain the four
similar four-bars to move synchronously, maintaining similarity.

From the linkage in Fig. 1b it is possible to obtain a normally constrained 2-DoF
linkage by removing either joint C1 or C2 to keep only one parallelogram. Instead
it is also possible to break link C1B7D4 into two separate links C1B7 and B7D4 and
to break link C2B4D3 into two separate links C2B4 and B4D3 to obtain a normally
constrained linkage. Then it is also possible to shift the links C1B7 and C2B4 to
another location without affecting the kinematics as illustrated in Fig. 2a where they
are located, respectively, as C′

1B′
7 and C′

2B′
4. Practically their function is to keep links

B2D2 and B1D1, respectively, in synchronous motion with link B7SB4.
The four similar four-bar linkages can be transformed into four similar Bennett

linkages by including equal Bennett conditions [1] for each four-bar. This results in
the 2-DoF spatial linkage in Fig. 3 which, because of its four deployable segments,
will be referred to as the Bennett Based Balanced Butterfly Linkage. It is interesting
to find out that the parallel links C′

1B′
7 and C′

2B′
4 in Fig. 2a are not needed to constrain

the Bennetts to move similarly, which is because of the known axial overconstraints
of the revolute pairs in Bennett linkages [1].

The Butterfly Linkage is shown for the Bennett conditions that opposite links
have equal length (la

1 = l3, l2 = la
4 , lb

4 = l6, l5 = la
7 , lb

7 = l9, l8 = la
10, lb

10 = l12, and
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Fig. 3 The spatial deployable Bennett Based Balanced Butterfly Linkage, inherently balanced with
four similar Bennett linkages entangled, obtained by including the Bennett conditions in the linkage
of Fig. 2a. The linkage is normally constrained without the links C′

1B′
7 and C′

2B′
4 and can move with

2-DoF motions about the central pivot with all four Bennetts moving synchronously (frontview and
sideview).

l11 = lb
1 , with the parameters explained in Fig. 4) and sinα/la

1 = sinβ/l2 where
α = 40◦ and la

1/l2 = 7/9, resulting in β = 55.7◦, which are the same for all four
Bennetts for similarity. The relative scaling of the four Bennetts is, in frontview,
1.0 (top right), 0.8 (top left), 0.6 (bottom left), and 0.7 (bottom right) and the angle
between link 1 and link 4 is φ1−φ2 = 77◦. With respect to the balance solution of a
single Bennett linkage with countermasses [5], this solution can be regarded as that
the four Bennetts balance one another.

The central joint in S where four links come together with revolute pairs may
be challenging to design for the spatial motions. Figure 2b shows a close-up of the
design presented here. Link 1 and link 4 rotate with respect to the fixed base with
revolute pairs in S, link 7 rotates with respect to link 4 with a revolute pair in S,
which is drawn with an offset to the back, and link 10 rotates with respect to link 7
with a revolute pair in S, which is drawn with an offset to the front. Because of the
axial overconstraints of the revolute pairs in Bennett linkages it is also possible to
replace a few revolute pairs with spherical, cylindrical, or universal joints.

3 Calculation of Parameter Values for Inherent Balance

After deriving the desired linkage solution from the Grand Architecture, the param-
eter values of the linkage need to be calculated for which joint S is the common
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Fig. 4 Mass and link parameters of the linkage in Fig. 2a and of the spatial Butterfly Linkage in
Fig. 3, which are equal.

CoM for all motions, i.e. for which the linkage is force balanced about S. Since the
linkage solution is based on principal vectors, which are equal for planar and spatial
motions, the balance conditions of the planar Butterfly Linkage in Fig. 2a are equal
to the balance conditions of the spatial Butterfly Linkage in Fig. 3. In fact, the planar
linkage can be seen as the single pose of the spatial mechanism when it becomes
flat, i.e. assuming the Bennett angles also movable and becoming α = β = 0◦.

In Fig. 4 the planar Butterfly Linkage of Fig. 2a is shown with the parameters
of the links and the link masses. Each link has a length li and a mass mi with the
link CoM located at a distance pi from the indicated joint. Also the parallelogram
links 13 and 14 are considered, located at offsets d1 and d2 from links 1 and 7,
respectively. For the spatial Butterfly Linkage these links can be disregarded for
balance by making them massless with m13 = m14 = 0.

There are two groups of inherent balance conditions to be fulfilled, the kinematic
balance conditions and the mass balance conditions [8]. The kinematic balance con-
ditions determine the similarity of the four four-bar linkages with:

la
1

lb
1
=

l2
lb
10

=
l3
l11

=
la
4

l12
,

la
1

l5
=

l2
l6

=
l3
la
7
=

la
4

lb
4
,

la
1

l9
=

l2
la
10

=
l3
lb
7
=

la
4

l8
(1)

and with l13 = la
1 and l14 = la

7 . Since these properties of similarity are completely
determined within the kinematics by the design of the links, they turn out to be
purely geometric conditions.

The mass balance conditions determine the relations among the link mass values
and the locations of the link CoMs and can be derived with a method where the
linkage obtains three relative DoFs of which the linear momentum equations are
written individually [6, 7].
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Fig. 5 a) Links 1, 5, 9, and 13 are substituted with equivalent masses to obtain an open-chain model
with 3-DoF relative motion; b-c-d) Individual motion of each DoF, the mass balance conditions are
derived from the linear momentum equations of each DoF individually.

First the linkage is modeled with open loops to obtain three relative DoFs. This,
for instance, is possible as illustrated in Fig. 5a where link 5 and all links in par-
allel, links 1, 9, and 13, are substituted with equivalent masses. Link 5 (B8D1) is
substituted with equivalent masses ma

5 and mb
5 in B8 and D1, respectively, where

mass equivalence is determined by ma
5 +mb

5 = m5 and ma
5 p5 = mb

5(l5 − p5). Sim-
ilarly link 9 (D4B7) is substituted with equivalent masses ma

9 and mb
9 in D4 and

B7, respectively, where mass equivalence is determined by ma
9 + mb

9 = m9 and
ma

9 p9 =mb
9(l9− p9). Link 1 (B5SB2) is substituted with equivalent masses ma

1 and mb
1

in S and B2, respectively, where mass equivalence is determined by ma
1 +mb

1 = m1
and ma

1 p1 = mb
1(l

a
1 − p1). Link 13 (B′

7C′
1) is substituted with equivalent masses

ma
13 and mb

13 in B′
7 and C′

1, respectively, where mass equivalence is determined by
ma

13 +mb
13 = m13 and ma

13 p13 = mb
13(l13 − p13).

The motions of the three relative DoFs of the opened linkage are illustrated in
Figs. 5b-c-d. For DoF 1 in Fig. 5b link 4 is rotating about S and the links parallel to
link 4 (8 and 12) rotate similarly along while all other links solely translate (links
2 and 3) or remain fixed. For DoF 2 in Fig. 5c link 7 is rotating about S and the
links parallel to link 7 (3, 11, and 14) rotate similarly along while all other links
solely translate (links 2, 6, 8, and 12) or remain fixed. For DoF 3 in Fig. 5d link 10
is rotating about S and the links parallel to link 10 (2 and 6) rotate similarly along
while all other links solely translate (links 11, 12 and 14) or remain fixed. The linear
momentum equations of these three individual motions can be written with respect
to the illustrated reference frames as [6]:
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L1

θ̇1
=

−(mb
1 +m2 +m3 +mb

13)l
a
4 −m4 p4 +ma

5lb
4+

m8 p8 +ma
9l8 +m12 p12

0

=

[
0
0

]
(2)

L2

θ̇2
=

−(mb
1 +m2 +mb

13)l3 −m3 p3 − (mb
5 +m6)la

7 −m7 p7+
(m8 +ma

9)l
b
7 +m11 p11 +m12l11 −m14 p14

0

=

[
0
0

]
(3)

L3

θ̇3
=

 mb
1l2 +m2 p2 +mb

5l6 +m6 p6 +mb
9la

10 −m10 p10−
(m11 +m12)lb

10 +mb
13(l2 −d1)−ma

13d1 +m14d2
0

=

[
0
0

]
(4)

with equivalent masses:

mb
1 = m1

p1

la
1

ma
5 = m5(1−

p5

l5
) mb

5 = m5
p5

l5
(5)

ma
9 = m9(1−

p9

l9
) mb

9 = m9
p9

l9
ma

13 = m13(1−
p13

l13
) mb

13 = m13
p13

l13

The common CoM of the linkage is in the central joint S for force balance when
the linear momentum equations are equal to zero. From the linear momentum equa-
tions the three mass balance conditions of the planar and the spatial Butterfly Link-
age can be directly found as:

−(mb
1 +m2 +m3 +mb

13)l
a
4 −m4 p4 +ma

5lb
4 +m8 p8 +ma

9l8 +m12 p12 = 0 (6)
−(mb

1 +m2 +mb
13)l3 −m3 p3 − (mb

5 +m6)la
7 −m7 p7 +(m8 +ma

9)l
b
7+

m11 p11 +m12l11 −m14 p14 = 0 (7)
mb

1l2 +m2 p2 +mb
5l6 +m6 p6 +mb

9la
10 −m10 p10 − (m11 +m12)lb

10+

mb
13(l2 −d1)−ma

13d1 +m14d2 = 0 (8)

For the spatial Butterfly Linkage these three balance conditions can be simplified by
including the Bennett conditions on the link lengths la

1 = l3, l2 = la
4 , lb

4 = l6, l5 = la
7 ,

lb
7 = l9, l8 = la

10, lb
10 = l12, and l11 = lb

1 and m13 = m14 = 0 to eliminate links 13 and
14, with which the balance conditions become:

−(m1
p1

la
1
+m2 +m3)l2 −m4 p4 +m5(1−

p5

l5
)l6 +m8 p8+

m9(1−
p9

l9
)l8 +m12 p12 = 0 (9)

−m1 p1 −m2la
1 −m3 p3 −m5 p5 −m6l5 −m7 p7 +m8l9+

m9(l9 − p9)+m11 p11 +m12lb
1 = 0 (10)

m1
p1

la
1

l2 +m2 p2 +m5
p5

l5
l6 +m6 p6 +m9

p9

l9
l8−

m10 p10 − (m11 +m12)l12 = 0 (11)
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where also the equivalent masses of Eq. 5 have been substituted. The inherent bal-
ance conditions have been verified by Matlab simulations.

4 Conclusion

In this paper the synthesis of a 2-DoF inherently force balanced spatial deploy-
able Butterfly Linkage was presented. The linkage consists of four entangled simi-
lar Bennett linkages moving synchronously with the common center of mass in the
central joint. The linkage was derived from the Grand 4R Four-Bar Based Inherently
Balanced Linkage Architecture by eliminating the outer four-bar links and numer-
ous other links to obtain a planar normally constrained linkage with four entangled
similar 4R four-bar linkages. By applying the Bennett conditions the planar linkage
was transformed into the spatial inherently balanced Butterfly Linkage. The balance
conditions of the spatial Butterfly Linkage were derived from the planar linkage
with a method based on linear momentum equations. These balance conditions are
independent of the Bennett angles. A CAD-model of a realistic design of the spatial
linkage was shown.
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