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Abstract

In this paper we consider a class of stochastic reaction-diffusion equations. We provide local well-
posedness, regularity, blow-up criteria and positivity of solutions. The key novelties of this work are related 
to the use transport noise, critical spaces and the proof of higher order regularity of solutions – even in case 
of non-smooth initial data. Crucial tools are Lp(Lq)-theory, maximal regularity estimates and sharp blow-
up criteria. We view the results of this paper as a general toolbox for establishing global well-posedness for 
a large class of reaction-diffusion systems of practical interest, of which many are completely open. In our 
follow-up work [8], the results of this paper are applied in the specific cases of the Lotka-Volterra equations 
and the Brusselator model.
© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons .org /licenses /by /4 .0/).

MSC: primary 60H15; secondary 35B65, 35K57, 35K90, 35R60, 35B44, 35A01, 58D25

Keywords: Stochastic partial differential equations; Reaction-diffusion equations; Transport noise; Local and global 
well-posedness; Critical spaces; Positivity

✩ The first author has received funding from the European Research Council (ERC) under the European Union’s 

Horizon 2020 research and innovation programme (grant agreement No. 948819) . The second author is 
supported by the VICI subsidy VI.C.212.027 of the Netherlands Organisation for Scientific Research (NWO).

* Corresponding author.
E-mail addresses: antonio.agresti92@gmail.com (A. Agresti), M.C.Veraar@tudelft.nl (M. Veraar).
https://doi.org/10.1016/j.jde.2023.05.038
0022-0396/© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons .org /licenses /by /4 .0/).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jde.2023.05.038&domain=pdf
http://www.sciencedirect.com
https://doi.org/10.1016/j.jde.2023.05.038
http://www.elsevier.com/locate/jde
http://creativecommons.org/licenses/by/4.0/
mailto:antonio.agresti92@gmail.com
mailto:M.C.Veraar@tudelft.nl
https://doi.org/10.1016/j.jde.2023.05.038
http://creativecommons.org/licenses/by/4.0/


A. Agresti and M. Veraar Journal of Differential Equations 368 (2023) 247–300
Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
2. Statement of the main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
3. Proofs of the main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
4. Higher order regularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
5. Existence and uniqueness for large times in presence of small data . . . . . . . . . . . . . . . . . . . 284
6. Extension to the one-dimensional case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
7. Extensions to the case p = q = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

Data availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
Appendix A. A maximum principle for SPDEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

1. Introduction

In this paper we investigate local/global existence, uniqueness, (sharp) blow-up criteria, pos-
itivity and regularity of solutions to the following stochastic reaction-diffusion equations with 
transport noise⎧⎪⎨⎪⎩

dui − νi�ui dt =
[
div(Fi(·, u))+ fi(·, u)

]
dt +

∑
n≥1

[
(bn,i · ∇)ui + gn,i(·, u)

]
dwn

t ,

ui(0)= ui,0,

(1.1)

where i ∈ {1, . . . , �} for some integer � ≥ 1. For simplicity we restrict ourselves to the d-
dimensional torus T d , but we expect that many results can be extended to Rd , and even to 
bounded smooth domains with suitable boundary conditions. The unknown process is denoted 
by u = (ui)

�
i=1 : [0, ∞) ×� ×T d →R�, (wn)n≥1 is a sequence of standard independent Brow-

nian motions on a filtered probability space, Fi, fi, gn,i are given nonlinearities and

(bn,i · ∇)ui :=
d∑

j=1

b
j
n,i∂jui .

The nonlinearities Fi, fi, gn,i are assumed to have polynomial growth. Moreover, the leading 
operator νi� can be replaced by div(ai · ∇). This is included in the main results of this work, 
as this is useful for reformulating (1.1) with Stratonovich noise instead, see (1.8) below. Lower 
order terms in the differential operators can be allowed as well, and they can be included in the 
nonlinearities f, F and g.

1.1. Deterministic setting

Systems of PDEs of the form (1.1) with b = 0 and g = 0, are usually called reaction-diffusion 
equations. Such equations can be used to model a wide class of physical phenomena ranging 
from chemical reactions to predatory-prey systems, as well as phase separation processes. Further 
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examples can be found in the standard reference [64] and in the recent survey [61]. In the de-
terministic case there are many global well-posedness results available (see [13,25,42,61,62,64]
and references therein). In particular, many important systems with rather weak forms of co-
ercivity are included, but some structure is essential. As a matter of fact, existence of global 
smooth solutions to (1.1) (or more generically global well-posedness) under polynomial growth 
and smoothness assumptions, positivity, and mass preservation, is known to be false [61, Section 
4]. This shows that even in the deterministic setting, the problem of global well-posedness is 
rather delicate. Under additional entropy structures, existence of global renormalized solutions 
has been established in [26]. Such solutions have a rather poor regularity in time and space. 
Moreover, the uniqueness of such solutions is still open, see also [27] for the weaker notion of 
weak-strong uniqueness.

Next we discuss a well-known example of reaction-diffusion equations arising in the study 
of chemical reactions. For an integer � ≥ 1 and two collections of nonnegative integers 
(qi)

�
i=1, (pi)

�
i=1 (note that either qi = 0 or pi = 0 for some i is allowed), consider the (reversible) 

chemical reaction:

q1U1 + · · · + q�U�

R+−−⇀↽−−
R−

p1U1 + · · · + p�U�, (1.2)

where R± are the reaction rates and (Ui)
�
i=1 are chemical substances. Let ui be the concentration 

of the substance Ui , and let νi > 0 be its diffusivity. The law of mass action postulates that the 
concentration ui satisfies the deterministic version of (1.1) with

fi(·, u)= (pi − qi)
(
R+

�∏
j=1

u
qj

j −R−
�∏

j=1

u
pj

j

)
, i ∈ {1, . . . , �}. (1.3)

The results of the current paper applies to (1.1) with fi as in (1.3). From a modeling point of 
view, especially in the context of chemical reactions, it is natural to ask for mass conservation
along the flow, i.e. 

∫
T d u(t, x) dx is constant in time. For the special case of (1.3), the mass 

conservation turns out to be equivalent to the existence of strictly positive constants (αi)
�
i=1 such 

that

�∑
i=1

αi(qi − pi)= 0.

Weaker notions of mass conservation are also employed, see property (M) in [61]. Although it 
will be not needed in most of our results below, mass conservation will be used in Theorem 5.1
to provide a simple proof of global existence of (sufficiently) smooth solutions to (1.1) for small 
initial data.

1.2. Stochastic setting

A lot of work has already been done on stochastic reaction-diffusion equations already 
(see [14–16,22,28,47,48,53,65–67] and references therein). Unfortunately, little is known for 
weakly dissipative systems in which the equations are coupled through nonlinear terms such as 
±u

pi u
qj . These type of nonlinearities are very common since they model reaction terms (e.g. 
i j

249
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Lotka-Volterra equations or chemical reactions). In the follow-up paper [8] we prove global 
well-posedness for some of the important concrete systems, including the above mentioned 
Lotka-Volterra equations and the Brusselator model. For these applications we refer to [8, Sec-
tion 5]. Although with our methods we can include a general class of equations, the full setting 
of [25] and [61, Section 3] seems still completely out of reach.

The results of the current paper can be seen as a first natural step in the study of global 
well-posedness of weakly dissipative systems. Some general global well-posedness results will 
already be included in case of small initial data. Moreover, we obtain several new regularization 
effects, sharp blow-up criteria, and positivity results. Each of the above turns out to be crucial 
for proving the global well-posedness results in our follow-up work [8]. Indeed, higher order 
regularity is needed to apply stochastic calculus pointwise in space. This is essential in checking 
energy estimates and mass conservation type conditions, which in turn can often be combined 
with blow-up criteria to show global existence of smooth solutions. Positivity often plays a cen-
tral role in these calculations as it provides a uniform lower bound and important information on 
the sign of the nonlinear terms.

Let us briefly explain the main difference of our setting to the given literature on stochastic 
reaction-diffusion equations. To the best of our knowledge, only few papers consider superlinear 
diffusion (e.g. ±u

pi

i u
qj

j ). Also very few papers allow transport noise (i.e. (bn,i ·∇)ui dwn), which 
seems motivated by small scale turbulence (see Subsection 1.3 below). Furthermore, there is 
very little Lp-theory for stochastic reaction-diffusion equations available. Lp-theory with p > 2
is often essential when dealing with either (rough) Kraichnan noise, or nonlinearities of higher 
order growth and dimensions d ≥ 2. In particular, to establish global well-posedness, Lp-energy 
estimates are typically needed for large p when working with d ≥ 2. For applications to concrete 
systems we refer to [8, Section 3-5]. Moreover, in our work, weighted Lp(Lq)-theory turns out 
to be key in proving results on higher order regularity of solutions.

1.3. A derivation via separation of scales

In this subsection we explain where the transport term in (1.1) comes from and where it has 
been considered before. In fluid dynamics, transport noise is typically used to model turbulent 
phenomena (see e.g. [12,29,30,34,58,59]), and it is usually referred to as Kraichnan’s noise due 
to his seminal works on turbulent flows [44,45].

In engineering applications, highly turbulent flows are often employed to improve the devel-
opment and efficiency of chemical reactions (compared to reactions occurring in more “regular” 
flows), see e.g. [24,57,72,73]. We refer to [39,43,49,56,70] for further applications and discus-
sions concerning turbulent flows and chemical reactions. Here, to motivate the transport noise 
we follow the heuristic argument in [34, Subsection 1.2]. We refer to [23,35] for (different) sit-
uations where the argument below can be made rigorous. Before going further, let us note that 
our setting only requires some Hölder smoothness of bk

n,i , and thus we are able to include the 
Kraichnan noise with arbitrary small correlation parameter (see [3,59] and [38, Section 5]). In 
particular this includes the case where bk

n,i reproduces the Kolmogorov spectrum of turbulence 
according to [52, pp. 427 and 436].

Suppose that (1.1) models a chemical reaction taking place in a fluid where ui’s are the con-
centration of the reactants. As commented below (1.2), from a deterministic view-point, one can 
consider the model:

∂tui = νi�ui + (vi · ∇)ui + div(Fi(·, u))+ fi(·, u), (1.4)
250
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where vi models the transport effects of the fluid, fi is as in (1.3) and Fi is a given nonlinearity (of 
polynomial growth) modeling conservative source terms. In this situation, as in [34, Subsection 
1.2], we can assume that vi splits into a “Small” and “Large” part:

vi = v
(L)
i + v

(S)
i . (1.5)

In a turbulent regime, the small component v(S)
i varies in time very rapidly compared to the larger 

one v(L)
i . Therefore, in some sense, v(S)

i models turbulent phenomena (for instance to thermal 
fluctuations if the reaction is related to combustion processes). In practice, there is no efficient 
way to model the small scale component. Hence, the latter is often modeled as an approximation 
of white noise:

v
(S)
i =

∑
n≥1

bn,iẇ
n
t , (1.6)

where, (wn)n≥1 is a sequence of independent standard Brownian motions. In case of incompress-
ible flows, one also has the divergence free-condition:

divbn,i :=
d∑

j=1

∂j b
j
n,i = 0, for all n≥ 1. (1.7)

Using the ansatz (1.6) for the small scale behavior of vi = v
(L)
i + v

(S)
i in (1.4) one obtains (1.1).

The same heuristic argument can be used also in other contexts. For instance, in the case of 
the famous Lotka-Volterra equations (see e.g. [8, Subsection 5.2]), which model the dynamics 
of predatory-prey systems, the flow vi may model migratory phenomena of the i-th species. In 
particular, in (1.5) the term v(L)

i takes into account the large scale movements of the i-th species 

while v(S)
i models small fluctuations of the movements due to local effects (e.g. unusual dryness 

of the fields, adverse weather events and local changes of the territory).
It is worth to mention two other properties of transport noise. Assume that ui satisfies (1.1)

with gn,i ≡ 0. Firstly, if (1.7) holds, then at least formally the total mass
∑�

i=1

∫
T d ui(t, x) dx

is controlled pathwisely along the flow provided 
∑�

i=1 fi(·, u) � 1 + ∑�
i=1 ui , which is typi-

cal in deterministic theory, see (1.2) and [61, (M)]. To see this it is enough to take 
∫
T d · dx in 

the first equation of (1.1). Secondly, if the positivity preserving condition of the deterministic 
theory holds (see e.g. [61, (P)]), then also the flow induced by (1.1) is positive preserving (see 
Theorem 2.13). Here we do not need (1.7).

From a mathematical point of view, there is no reason to prefer the Itô’s formulation rather 
than a Stratonovich one in (1.1). In our paper, we are able to deal with both situations as we will 
consider (1.1) with νi�ui replaced by div(ai · ∇ui) + (ri · ∇)ui . To see this it is enough to recall 
that (at least formally in case gn,i ≡ 0)

(bn,i · ∇)ui ◦ dwn
t = [div(ab,i · ∇ui)+ (rb,i · ∇)ui]dt + (bn,i · ∇)ui dwn

t (1.8)

where ab,i := ( 1
2

∑
n≥1 b

j
n,ib

k
n,i)

d
j,k=1 and rb,i := (− 1

2

∑
n≥1(divbn,i)b

j
n,i)

d
j=1.

In the context of SPDEs, transport noise has attracted much attention in the last decades. 
Indeed, under structural assumptions on the bn,i’s one can show that the solution u to a certain 
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SPDE has better properties than its deterministic counterparts. This phenomena is usually called 
regularization by noise, see e.g. [30,33] and the references therein for further details. Let us 
mention two situations where it occurs:

• Delayed blow-up [31,34].
• Dissipation enhancement and/or stabilization [32,38,51].

To the best of our knowledge, none of the above phenomena have been shown in the general 
context of reaction-diffusion equations. In the follow-up paper [1] first steps are being made by 
the first author.

1.4. Scaling and criticality

Before we discuss our main results in more detail, it is instructive to analyze the scaling 
property of (1.1) in the following “toy” situation:

�= 1, f (u)= |u|h−1u, F (u)= e|u| h−1
2 u, gn(u)= θn|u| h−1

2 u,

where h > 1, e ∈ Rd and θ = (θn)n≥1 ∈ �2. Note that the growth of f and F, g are related. 
Reasoning as [5, Subsection 5.2.2], one can see that solutions to (1.1) are (locally) invariant 
under the mapping

u 
→ λ1/(h−1)u(λ·, λ1/2·), λ > 0,

and that the Besov spaces B
d
q
− 2

h−1
q,p (T d) and Lebesgue spaces L

d
2 (h−1)(T d) are (locally) invariant 

under the induced mapping on the initial data u0 
→ λ1/(h−1)u0(λ
1/2·) =: u0,λ. More precisely, 

the homogeneous version of such spaces are invariant under the map u0 
→ u0,λ:

‖u0,λ‖
Ḃ

d
q − 2

h−1
q,p (Rd )

� ‖u0‖
Ḃ

d
q − 2

h−1
q,p (Rd )

, ‖u0,λ‖
L

d
2 (h−1)

(Rd )
� ‖u0‖

L
d
2 (h−1)

(Rd )
.

The Sobolev index of the spaces B
d
q
− 2

h−1
q,p and L

d
2 (h−1) is − 2

h−1 and therefore it is independent of 
d, q (and p in case of Besov spaces). This number will appear several times in the paper and it 
will gives distinction between the “critical” and “non-critical” situation.

Although the above choice seems very restrictive, the above can be thought of as a “toy ex-
ample” for the case of F, f, g with polynomial growth of order h > 1, i.e. as u →∞

|F(u)| + ‖(gn(u))n≥1‖�2 � |u| h+1
2 and |f (u)|� |u|h.

1.5. Overview

Below we give an overview of the results of the current paper. In the manuscript we consider 
a (slightly) generalized version of (1.1), namely (2.1) below.

• Local well-posedness in critical spaces of (2.1) - see Theorem 2.7 and Proposition 2.9.
• Instantaneous regularization of solutions to (2.1) - see Theorems 2.7 and 4.2.
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• (Sharp) blow-up criteria for (2.1) - see Theorem 2.10.
• Positivity of solutions to (2.1) - see Theorem 2.13.
• Global well-posedness for small initial data - see Theorems 5.1.

Although we formulate the main results only for d ≥ 2, a detailed explanation on the simpler 
case d = 1 case can be found in Section 6. The special case p = q = 2 is presented separately 
in Section 7 as it requires a different argument. Finally, there is an appendix on the maximum 
principle for scalar SPDEs in Appendix A. The latter plays a crucial role in the positivity of the 
solution to (2.1).

The proofs of the above results are based on our recent theory on stochastic evolution equa-
tions [5,6]. It was already applied to stochastic Navier-Stokes equations [3] and a large class of 
SPDEs which fit into a variational setting [4]. The current paper is the first in a series of papers 
in which we apply our new framework to reaction-diffusion equations. In the companion papers 
[7,8], based on the analysis worked out in this paper, we prove global well-posedness results in 
several cases, and extend some of the results to the quasilinear case. Finally, we mention that the 
local well-posedness and positivity results proven in the current paper have been already used 
by the first author in [1] to prove delay of the blow–up of strong solutions and to establish an 
enhanced diffusion effect in presence of sufficiently intense transport noise.

1.6. Notation

Here we collect some notation which will be used throughout the paper. Further notation will 
be introduced where needed. We write A �P B (resp. A �P B) whenever there is a constant 
C > 0 depending only on P such that A ≤ CB (resp. A ≥ CB). We write C(P ) if the constant 
C depends only on P .

Let p ∈ (1, ∞) and κ ∈ (−1, p − 1), we denote by wκ the weight wκ(t) = |t |κ for t ∈R. For 
a Banach space X and an interval I = (a, b) ⊆R, Lp(a, b, wκ ; X) denotes the set of all strongly 
measurable maps f : I →X such that

‖f ‖Lp(a,b,wκ ;X) :=
( b∫

a

‖f (t)‖p
Xwκ(t)dt

)1/p

<∞.

Furthermore, W 1,p(a, b, wκ ; X) ⊆ Lp(a, b, wκ ; X) denotes the set of all f such that f ′ ∈
Lp(a, b, wκ ; X) (here the derivative is taken in the distributional sense) and we set

‖f ‖W 1,p(a,b,wκ ;X) := ‖f ‖Lp(a,b,wκ ;X) + ‖f ′‖Lp(a,b,wκ ;X).

Let (·, ·)θ,p and [·, ·]θ be the real and complex interpolation functor, respectively. We refer to 
[11,40,71] for details on interpolation and functions spaces. For each θ ∈ (0, 1), we set

Hθ,p(a, b,wκ ;X) := [Lp(a, b,wκ ;X),W 1,p(a, b,wκ ;X)]θ .
In the unweighted case, i.e. κ = 0, we set Hθ,p(a, b; X) := Hθ,p(a, b, w0; X) and similar. For 
A ∈ {Lp, Hθ,p, W 1,p}, we denote by Aloc(a, b, wκ ; X) (resp. Aloc([a, b), wκ ; X)) the set of all 
strongly measurable maps f : (c, d) →X such that f ∈A(c, d, wκ ; X) for all c, d ∈ (a, b) (resp. 
f ∈A(a, c, wκ ; X) for all c ∈ (a, b)).
253



A. Agresti and M. Veraar Journal of Differential Equations 368 (2023) 247–300
The d-dimensional (flat) torus is denoted by T d where d ≥ 1. For K ≥ 1 and θ1, θ2 ∈ (0, 1), 
C

θ1,θ2
loc ((a, b) × T d ; R�) denotes the space of all maps v : (a, b) × T d → R� such that for all 

a < c < d < b we have

|v(t, x)− v(t ′, x′)|�c,d |t − t ′|θ1 + |x − x′|θ2 , for all t, t ′ ∈ [c, d], x, x′ ∈ T d .

This definition is extended to θ1, θ2 ≥ 1 by requiring that the partial derivatives ∂α,βv (with α ∈
N and β ∈Nd ) exist and are in Cθ1−|α|,θ2−|β|

loc ((a, b) ×T d ; R�) for all α ≤ �θ1� and 
∑d

i=1 βi ≤
�θ2�.

We will also need the Besov spaces Bs
q,p(T d ; R�) and Bessel potential spaces Hs,q(T d ; R�)

to formulate our main results. These spaces can be defined by real and complex interpola-
tion or more directly using Littlewood-Paley decompositions (see [68, Section 6.6] and [69]). 
Throughout the paper section, to abbreviate the notation, we often write Lq, Hs,q, Bs

q,p instead 
of Lq(T d ; R�), Hs,q(T d ; R�), Bs

q,p(T d ; R�) if no confusion seems likely.
Finally we collect the main probabilistic notation. In the paper we fix a filtered probability 

space (�, A , (Ft )t≥0, P ) and we denote by E[·] = ∫
�
· dP the expected value. A map σ :� →

[0, ∞] is called a stopping time if {σ ≤ t} ∈ Ft for all t ≥ 0. For two stopping times σ and τ , 
we let

[τ, σ ] ×� := {(t,ω) ∈ [0,∞)×� : τ(ω)≤ t ≤ σ(ω)}.

Similar definition holds for [τ, σ) × �, (τ, σ) × � etc. Finally, P denotes the progressive σ -
algebra on the above mentioned probability space.

Acknowledgments. The authors thank the referee and Udo Böhm for helpful comments.

2. Statement of the main results

In this section we state our main results on local well-posedness, regularity, blow-up criteria, 
and positivity for systems of reaction-diffusion equations on the d-dimensional torus T d . The 
results will be presented in a very flexible setting. This has the advantage that using the results 
of this paper, one can address global well-posedness issues in an efficient way by checking sharp 
blow-up criteria. Regularity and positivity often play a crucial role in dealing with these issues. 
As mentioned in the introduction, in the stochastic case there are many important cases in which 
global well-posedness is completely open. Using our new framework we are able to settle some 
of these problems in [8].

The proofs of the main results are postponed to Section 3 and are based on our abstract frame-
work developed in [5,6], and our recent maximal regularity estimates [9].

Consider the following system of stochastic reaction-diffusion equations:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
dui − div(ai · ∇ui)dt =

[
div(Fi(·, u))+ fi(·, u)

]
dt

+
∑
n≥1

[
(bn,i · ∇)ui + gn,i(·, u)

]
dwn

t , on T d ,

d

(2.1)
ui(0)= u0,i , on T ,
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where i ∈ {1, . . . , �} and � ≥ 1 is an integer. Here u = (ui)
�
i=1 : [0, ∞) × � × T d → R� is 

the unknown process, (wn)n≥1 is a sequence of standard independent Brownian motions on the 
above mentioned filtered probability space and

div(ai · ∇ui) :=
d∑

j,k=1

∂j (a
j,k
i ∂kui), (bn,i · ∇)ui :=

d∑
j=1

b
j
n,i∂j ui .

As explained in the Subsection 1.3, the coefficients bj
n,i model small scale turbulent effects; while 

the coefficients aj,k
i model inhomogeneous conductivity and may also take into account the Itô 

correction in case of Stratonovich noise (see (1.8)). Note that the SPDEs (2.1) are coupled only 
through the nonlinearities F , f and g, but there is no cross interactions in the diffusion terms 
div(ai · ∇ui) and (bn,i · ∇)ui , which is a standard assumption in reaction-diffusion systems. The 
absence of cross-diffusion in the deterministic part div(ai · ∇ui) dt can be weakened in all the 
results below expect for Theorem 2.13, where in its proof we argue component-wise.

Lower order terms in the leading differential operators in (2.1) can be included as well. Since 
they can be modeled through the nonlinearities F , f , and g as well, we do not have to write them 
explicitly.

2.1. Assumptions and definitions

In this subsection we collect the main assumptions and definitions. Additional assumptions 
will be employed where needed. Below B and P denotes the Borel and the progressive σ -
algebra, respectively. The space Hα,q(T d ; Y) denotes the Bessel potential space with smooth-
ness α and integrability q , defined on T d with values in the Banach space Y .

Assumption 2.1. Let d ≥ 2 and � ≥ 1 be integers. We say that Assumption 2.1 (p, q, h, δ) holds 
if p ∈ (2, ∞), q ∈ [2, ∞), h > 1, δ ∈ [1, 2) and for all i ∈ {1, . . . , �} the following hold:

(1) For each j, k ∈ {1, . . . , d}, aj,k
i :R+ ×� ×T d →R, bj

i := (b
j
n,i)n≥1 :R+ ×� ×T d → �2

are P ⊗B(T d)-measurable.
(2) There exist N > 0 and α > max{ d

ρ
, δ− 1} where ρ ∈ [2, ∞) such that a.s. for all t ∈R+ and 

j, k ∈ {1, . . . , d},

‖aj,k
i (t, ·)‖Hα,ρ(T d ) + ‖(bj

n,i(t, ·))n≥1‖Hα,ρ(T d ;�2) ≤N.

(3) There exists νi > 0 such that, a.s. for all t ∈R+, x ∈ T d and ξ ∈Rd ,

d∑
j,k=1

(
a

j,k
i (t, x)− 1

2

∑
n≥1

b
j
n,i(t, x)bk

n,i (t, x)
)
ξj ξk ≥ νi |ξ |2.

(4) For all j ∈ {1, . . . , d}, the maps

F
j
i , fi :R+ ×�×T d ×R→R,

gi := (gn,i)n≥1 :R+ ×�×T d ×R→ �2,
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are P ⊗B(T d) ⊗B(R)-measurable. Set Fi := (F
j
i )dj=1. Assume that

F
j
i (·,0), fi(·,0) ∈ L∞(R+ ×�×T d), gi(·,0) ∈ L∞(R+ ×�×T d ;�2),

and a.s. for all t ∈R+, x ∈T d and y ∈R,

|fi(t, x, y)− fi(t, x, y′)|� (1+ |y|h−1 + |y′|h−1)|y − y′|,
|Fi(t, x, y)− Fi(t, x, y′)|� (1+ |y| h−1

2 + |y′| h−1
2 )|y − y′|,

‖gi(t, x, y)− gi(t, x, y′)‖�2 � (1+ |y| h−1
2 + |y′| h−1

2 )|y − y′|.

The parameters p and q will be used for temporal and spatial integrability, respectively. 
Finally, δ will be related to the order of smoothness of the underlined Sobolev space with in-
tegrability q . Although we allow δ ∈ [1, 2), in applications to (2.1) it turns out to be enough to 
consider δ ∈ [1, h+1

h
), see Assumption 2.4 below.

Note that Assumption 2.1(2) and Sobolev embeddings give

‖aj,k
i ‖

C
α− d

ρ (T d )
+ ‖(bj

n,i)n≥1‖
C

α− d
ρ (T d ;�2)

�α,d,ρ N.

For future convenience, we collect some observations in the following remark.

Remark 2.2.

(a) If Assumption 2.1 (p, q, h, δ) holds for some δ ∈ [1, 2), then there exists an ε > 0 such that 
it holds for all ̃δ ∈ [1, δ + ε].

(b) If Assumption 2.1 (p, q, h, δ) holds for some h, then it holds for all ̃h ∈ [h, ∞).
(c) The growth of f, F and g is chosen in accordance with the scaling argument of Subsection 

1.4.
(d) The case d = 1 is excluded in Assumption 2.1 to avoid many subcases in our main results. 

However, it can be deduced by more direct methods (see Section 6), or from the d = 2 case 
by adding a dummy variable (under some restrictions). Often one cannot identify any critical 
spaces in the case d = 1.

(e) The globally Lipschitz case h = 1 is excluded in the above. Global well-posedness always 
holds in this case and can be derived from [6, Theorem 4.15]. Similar to (d), if h = 1, then 
no critical spaces can be identified as no rescaling of solutions can (locally) preserve the 
structure of (2.1).

Next we introduce the notion of solution to (2.1). To stress the dependence on (p, κ, δ, q)

we will keep these parameters in the definition of solutions. The parameter κ ≥ 0 is used for 
the power weight wκ(t) = tκ in time. Finally, let us recall that the sequence (wn)n≥1 uniquely 
induces an �2-cylindrical Brownian motion (see e.g. [5, Definition 2.11]) given by W�2(v) :=∑

n≥1

∫
R+ vn dwn

t where v = (vn)n≥1 ∈ L2(R+; �2).

Definition 2.3. Suppose that Assumption 2.1 (p, q, h, δ) is satisfied for some h > 1 and let κ ∈
[0, p − 1).
2
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• Let σ be a stopping time and let u = (ui)
�
i=1 : [0, σ) ×� →H 2−δ,q(T d ; R�) be a stochastic 

process. We say that (u, σ) is a local (p, κ, δ, q)-solution to (2.1) if there exists a sequence 
of stopping times (σj )j≥1 such that the following hold for all i ∈ {1, . . . , �}:
– σj ≤ σ a.s. for all j ≥ 1 and limj→∞ σj = σ a.s.;
– for all j ≥ 1 the process 1[0,σj ]×�ui is progressively measurable;
– a.s. for all j ≥ 1 we have ui ∈ Lp(0, σj , wκ ; H 2−δ,q(T d)) and

div(Fi(·, u))+ fi(·, u) ∈ Lp(0, σj ,wκ ;H−δ,q(T d)),

(gn,i(·, u))n≥1 ∈ Lp(0, σj ,wκ ;H 1−δ,q(T d ;�2));
(2.2)

– a.s. for all j ≥ 1 the following identity holds for all t ∈ [0, σj ]:

ui(t)− u0,i =
t∫

0

(
div(ai · ∇ui)+ div(Fi(·, u))+ fi(·, u)

)
ds

+
t∫

0

(
1[0,σj ]

[
(bn,i · ∇)u+ gn,i(·, u)

])
n≥1

dW�2(s).

(2.3)

• Finally, (u, σ) is called a (p, κ, δ, q)-solution to (2.1) if for any other local (p, κ, δ, q)-
solution (u′, σ ′) to (2.1) we have σ ′ ≤ σ a.s. and u = u′ on [0, σ ′) ×�.

Note that a (p, κ, δ, q)-solution is unique by definition. Later on in Proposition 3.5 we will 
prove a further uniqueness result: a different choice of the coefficients (p, κ, δ, q, h) leads to the 
same solution.

All the integrals in (2.3) are well-defined. To see this, fix i ∈ {1, . . . , �}. By Assumption 2.1(2), 
[9, Proposition 4.1] and ui ∈ Lp(0, σj , wκ ; H 2−δ,q(T d)) a.s. for all j ≥ 1, we get

div(ai · ∇ui) ∈ Lp(0, σj ,wκ ;H−δ,q(T d)),

((bn,i · ∇)ui)n≥1 ∈ Lp(0, σj ,wκ ;H 1−δ,q(T d ;�2)),
(2.4)

a.s. for all j ≥ 1. The deterministic integrals are well-defined as H−δ,q(T d)-valued Bochner 
integrals. For the stochastic integrals, recall that

γ (�2,Hζ,r (T d))=Hζ,r (T d ;�2), for all ζ ∈R and r ∈ (1,∞), (2.5)

where γ (�2; X) denotes the set of all γ -radonifying operators with values in the Banach space 
X (see [41, Chapter 9] and in particular Theorem 9.4.8 there for details). Therefore, due to (2.2)
and (2.4), the stochastic integrals are well-defined as H 1−δ,q(T d)-valued stochastic integrals by 
(2.5), [60, Theorem 4.7] and Lp(0, T ; wκ) ↪→ L2(0, T ) since κ <

p
2 − 1.

2.2. Local well-posedness and regularity in critical spaces

Before we state our main local well-posedness result for (2.1) in critical spaces, we first intro-
duce the set of admissible exponents (p, q, h, δ).
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Assumption 2.4. Let d ≥ 2. We say that Assumption 2.4 (p, q, h, δ) holds if h > 1, δ ∈ [1, h+1
h

), 
p ∈ (2, ∞), and q ∈ [2, ∞) satisfy

1

p
+ 1

2

(
δ + d

q

)
≤ h

h− 1
, and

d

d − δ
< q <

d(h− 1)

h+ 1− δ(h− 1)
. (2.6)

In the above assumption we avoided the case p = 2 since this is an exceptional case, which can 
be included provided q = 2. The latter situation is discussed in Section 7. The following lemma 
characterizes for which exponents h we can find (p, q, δ) such that Assumption 2.4 (p, q, h, δ)
holds. Recall that we may always enlarge h if needed (see Remark 2.2(b)).

Lemma 2.5. Let d ≥ 2 and set

hd :=

⎧⎪⎨⎪⎩
3, if d = 2,

1

2
+ 1

d
+

√(1

2
+ 1

d

)2 + 2

d
, if d ≥ 3.

(2.7)

Then there exist (p, q, δ) such that Assumption 2.4 (p, q, h, δ) holds if and only if h > hd .

Proof. Since we can take p as large as we want, the first part of (2.6) is equivalent to d(h−1)
2h−δ(h−1)

<

q . Therefore, we can find admissible (p, q, h, δ) if and only if there exist δ ∈ [1, h+1
h

) and q ≥ 2
such that

max
{ d

d − δ
,

d(h− 1)

2h− δ(h− 1)

}
< q <

d(h− 1)

h+ 1− δ(h− 1)
. (2.8)

By elementary considerations one can see that the range of q’s in (2.8) is nontrivial if and only 
if h > d+1

d−1 . Since additionally q ≥ 2, admissibility is equivalent to

h >
d + 1

d − 1
and

d(h− 1)

h+ 1− δ(h− 1)
> 2 for some δ ∈

[
1,

h+ 1

h

)
. (2.9)

Taking δ ↑ h+1
h

, the second part of (2.9) becomes h2 − (1 + 2
d
)h − 2

d
> 0, which is equivalent 

to h > 1
2 + 1

d
+

√( 1
2 + 1

d

)2 + 2
d
=: h̃d . In case d ≥ 3, one can check that d+1

d−1 ≤ h̃d . In case 

d = 2, one has 3 = d+1
d−1 > h̃d . Hence, admissibility is equivalent to h > hd = h̃d if d ≥ 3, and 

h > hd = 3 if d = 2. �
The numbers hd in (2.7) are connected to the Fujita exponent 1 + 2

d
introduced in the seminal 

paper [37] in the study of the blowing-up of positive (smooth) solutions to the PDE: ∂tu −�u =
u1+h. In the next remark we compare this to our setting.

Remark 2.6 (Stochastic Fujita exponent). Note that hd in Lemma 2.5 satisfies 1 + 2
d

< hd ≤
1 + 4

d
. In particular it is always larger than the classical Fujita exponent 1 + 2

d
(note that h > 1 + 2

d

corresponds to the fact that the scaling invariant space L
d
2 (h−1) has integrability > 1). Moreover, 

hd is decreasing in d , hd ↓ 1 as d →∞, and
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h2 = 3, h3 = 2, h4 ≈ 1.781, h5 ≈ 1.643, h6 ≈ 1.549.

In case h ≤ hd , then one can still apply Theorem 2.7 by using one of the following strategies:

• enlarge h in Assumption 2.1, see Remark 2.2(b);
• add dummy variables to increase the dimension d2 > d in order to have h > hd2 (here we are 

using that limd→∞ hd = 1).

Via Theorem 2.10 one can show non-explosion (in probability) on large time intervals for so-
lutions to (2.1) in case of small initial data and admissible exponents without further conditions, 
see Section 5. Therefore, by Lemma 2.5, one can allow nonlinearities as in [37] for h > hd . Such 
a threshold hd seems optimal for these results to hold in presence of a non-trivial transport noise 
term, i.e. (b · ∇)u dw. Therefore, it seems natural to call hd the stochastic Fujita exponent.

Recently, there has been an increasing attention in extending [37] to the stochastic framework, 
see e.g. [18–20,36] and the references therein. In the latter works, equations on Rd are consid-
ered, but transport noise does not appear. In view of the scaling argument in Subsection 1.4, we 
expect that the same stochastic Fujita exponent hd appears in the Rd -case of (2.1).

The main result of this section is the following local existence and regularity for (2.1) in 
critical spaces, and it will be proved in Subsection 3.1. Recall that Bs

q,p(T d ; R�) denotes the 
Besov space with smoothness s ∈R, integrability q , and microscopic parameter p. To abbreviate 
notation we write Bs

q,p and Hs,q for the spaces Bs
q,p(T d ; R�) and Hs,q(T d ; R�).

Theorem 2.7 (Local existence and uniqueness in critical spaces, and regularity). Let Assump-
tions 2.1 (p, q, h, δ) and 2.4 (p, q, h, δ) be satisfied. Set κ := κc := p

(
h

h−1 − 1
2 (δ + d

q
)
) − 1. 

Then for any

u0 ∈ L0
F0

(�;B
d
q
− 2

h−1
q,p ), (2.10)

the problem (2.1) has a (unique) (p, κc, δ, q)-solution (u, σ) such that σ > 0 a.s. and

u ∈ C([0, σ );B
d
q
− 2

h−1
q,p ) a.s. (2.11)

u ∈H
θ,p

loc ([0, σ ),wκc;H 2−δ−2θ,q) a.s. for all θ ∈ [0,1/2). (2.12)

Finally, u instantaneously regularizes in space and time:

u ∈H
θ,r
loc (0, σ ;H 1−2θ,ζ ) a.s. for all θ ∈ [0,1/2), r, ζ ∈ (2,∞), (2.13)

u ∈ C
θ1,θ2
loc ((0, σ )×T d ;R�) a.s. for all θ1 ∈ [0,1/2), θ2 ∈ (0,1). (2.14)

The standard set of initial data in the theory of reaction-diffusion equations is L∞(T d ; R�)

(see e.g. [61]), and it is always included as a special case in the above result (see Remark 2.8(c)).
The regularity (2.13)-(2.14) can be improved by imposing further smoothness conditions on 

(a, b, F, f, g), but keeping the same space of initial data for u0 (see Theorem 4.2 below). We 
will prove later on that if Theorem 2.7 is applicable for two sets of exponents (p, q, h, δ), then 
the corresponding solutions coincide, see Proposition 3.5.
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For future reference, we collect several observations in the following remark.

Remark 2.8.

(a) As we have seen in Subsection 1.4, the space B
d
q
− 2

h−1
q,p in (2.10) has the right local scaling 

for (2.1). For this reason it is often called critical for (2.1). It coincides with the abstract 
notion of criticality which will be considered in Section 3. Note that the Sobolev index of the 
initial value space is ( d

q
− 2

h−1 ) − d
q
=− 2

h−1 , which is independent of q and δ. Moreover, 
by Sobolev embeddings

B
d
q
− 2

h−1
q,p (T d ;R�) ↪→ B

d
r
− 2

h−1
r,s (T d ;R�) for all r ≥ q and s ≥ p.

(b) The freedom in the choice of δ allows us to reduce the smoothness of the above critical 
spaces. Indeed, choosing δ ↑ h+1

h
and letting q ↑ d(h−1)

h+1−( h+1
h

)(h−1)
= dh(h−1)

h+1 it follows that 

we can treat initial data with smoothness d
q
− 2

h−1 ↓− 1
h

.
(c) By increasing h (see Remark 2.2(b)) we can suppose that

either h > 1+ 4

d
or

[
h= 1+ 4

d
, and d ≥ 3

]
.

Setting q = d
2 (h − 1), Theorem 2.7 gives local well-posedness for (2.1) for the important 

class of initial data in

u0 ∈ L0
F0

(�;Lq(T d ;R�)).

Indeed, even if Assumptions 2.1 (p, q, h, δ) and 2.4 (p, q, h, δ) hold with δ = 1, they self-
improve to some δ > 1 (see Remark 2.2(a)) and p ≥ max{q, 2

2−δ
}. Thus since Lq ↪→ B0

q,p =
B

d
q
− 2

h−1
q,p , local well-posedness with initial data from the space L0

F0
(�; Lq) follows from 

Theorem 2.7. In the above setting, one can also prove that u ∈C([0, σ); Lq) a.s. by using the 
local continuity w.r.t. u0 (see Proposition 2.9 below) and a stopped version of the arguments 
used in [8, Proposition 6.3] (see also the comments below its statement).

The next rather technical local continuity result will be used in the proof of positivity of 
solutions (u, σ) (see Theorem 2.13 below).

Proposition 2.9 (Local continuity). Let Assumptions 2.1 (p, q, h, δ) and 2.4 (p, q, h, δ) be sat-
isfied. Set κ := κc := p

(
h

h−1 − 1
2 (δ + d

q
)
)− 1. Assume that u0 satisfies (2.10) and let (u, σ) be 

the (p, κc, δ, q)-solution to (2.1) provided by Theorem 2.7. There exist constants C0, T0, ε0 > 0
and stopping times σ0, σ1 ∈ (0, σ ] a.s. for which the following assertion holds:

For each v0 ∈ L
p

F0
(�; B

d
q
− 2

h−1
q,p ) with E‖u0 − v0‖p

B

d
q − 2

h−1
q,p

≤ ε0, the (p, κc, δ, q)-solution 

(v, τ) to (2.1) with initial data v0, has the property that there exists a stopping time τ0 ∈ (0, τ ]
a.s. such that for all t ∈ [0, T0] and γ > 0, one has
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P
(

sup
r∈[0,t]

‖u(r)− v(r)‖
B

d
q − 2

h−1
q,p

≥ γ, σ0 ∧ τ0 > t
)
≤ C0

γ p
E‖u0 − v0‖p

B

d
q − 2

h−1
q,p

, (2.15)

P
(
‖u− v‖Lp(0,t,wκc ;H 2−δ,q ) ≥ γ, σ0 ∧ τ0 > t

)
≤ C0

γ p
E‖u0 − v0‖p

B

d
q − 2

h−1
q,p

, (2.16)

P (σ0 ∧ τ0 ≤ t)≤ C0
[
E‖u0 − v0‖p

B

d
q − 2

h−1
q,p

+ P (σ1 ≤ t)
]
.

(2.17)

The stopping time τ0 depends on (u0, v0). To some extend, the estimates (2.15)-(2.16) show 
that (u, σ) depends continuously on the initial data u0, while (2.17) gives a measure of the size 
of the time interval on which the continuity estimates (2.15)-(2.16) hold. The key point is that the 
right-hand side of (2.17) depends on v0, but not on v. In particular, {τ0 ≤ t} has small probability 
if t ∼ 0 and v0 is close to u0. We actually prove a slightly stronger result than Proposition 2.9, 
see Remark 3.4.

2.3. Blow-up criteria

Below we state some blow-up criteria for the solution to (2.1) provided by Theorem 2.7. 
Roughly speaking, blow-up criteria ensure that, if there exists a fixed time T > 0 such that the 
stopping time σ satisfies P (σ < T ) > 0, then the norm of u in an appropriate space explodes. 
Blow-up criteria are often used to prove that a certain solution (u, σ) is global in time, i.e. σ =∞
a.s. In practice, to prove global existence, it is enough to prove that the norm of u in the above 
mentioned function space cannot explode. In our follow-up paper [8], we will use this strategy to 
prove that solutions provided by Theorem 2.7 are global in time in several situations. A version 
of such results for small initial data can be found in Section 5.

Blow-up criteria are most powerful when they are formulated in function spaces which are 
as rough (large) as possible. On the other hand, the regularity cannot be arbitrarily low, since at 
least the nonlinearities need to be well-defined. Hence, from a scaling point of view it is natural 
to ask for blow-up criteria involving function spaces with Sobolev index − 2

h−1 , because such 
critical threshold (see Subsection 1.4) is generically optimal for local and global well-posedness 
of (S)PDEs (see [63, Section 2.2] for deterministic evidence on this). Our general theory from 
[6] leads to the following criteria which at the moment is the best we can expect with abstract 
methods.

Theorem 2.10 (Blow-up criteria). Let the assumptions of Theorem 2.7 be satisfied and let (u, σ)

be the (p, κc, δ, q)-solution to (2.1). Suppose that p0 ∈ (2, ∞), q0 ∈ [2, ∞), h0 ≥ h, δ0 ∈ [1, 2)

are such that Assumptions 2.1 (p0, q0, h0, δ0) and 2.4 (p0, q0, h0, δ0) hold. Set

β0 := d

q0
− 2

h0 − 1
and γ0 := d

q0
+ 2

p0
− 2

h0 − 1
.

Then for all 0 < s < T <∞,

(1) P
(
s < σ < T, sup

t∈[s,σ )

‖u(t)‖
B

β0
q1,∞

<∞
)
= 0 for all q1 > q0.

(2) P
(
s < σ < T, sup ‖u(t)‖

B
β0
q0,p0

+ ‖u‖Lp0 (s,σ ;Hγ0,q0 ) <∞
)
= 0.
t∈[s,σ )
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Note that the norms in the blow-up criteria are well-defined thanks to (2.13)-(2.14) and s > 0. 
In particular, the parameter s makes it possible to consider rough initial data. It is possible to 
take (p, q, δ, h) = (p0, q0, δ0, h0), but the extra flexibility turns out to be very helpful in proving 
global well-posedness.

The proof of Theorem 2.10 will be given in Subsection 3.2. As a consequence we also obtain:

Corollary 2.11. Let the assumptions of Theorem 2.7 be satisfied and let (u, σ) be the 
(p, κc, δ, q)-solution to (2.1). Suppose that p0 ∈ (2, ∞), q0 ∈ [2, ∞), h0 ≥ max{h, 1 + 4

d
}, 

δ0 ∈ (1, 2) are such that Assumptions 2.1 (p0, q0, h0, δ0) and 2.4 (p0, q0, h0, δ0) hold. Let 
ζ0 = d

2 (h0 − 1). The following hold for each 0 < s < T <∞:

(1) If q0 = ζ0, then for all ζ1 > q0

P
(
s < σ < T, sup

t∈[s,σ )

‖u(t)‖Lζ1 <∞
)
= 0.

(2) If q0 > ζ0, p0 ∈
( 2

δ0−1 , ∞)
, p0 ≥ q0, and d

q0
+ 2

p0
= 2

h0−1 , then

P
(
s < σ < T, sup

t∈[s,σ )

‖u(t)‖Lζ0 + ‖u‖Lp0 (s,σ ;Lq0 ) <∞
)
= 0.

Although Theorem 2.10 is more general, in the follow-up work [8] on global well-posedness 
we mainly use Corollary 2.11. Considering T + ε instead of T in Corollary 2.10(1) and letting 
ε ↓ 0, we find

P
(
s < σ ≤ T , sup

t∈[s,σ )

‖u(t)‖Lζ1 <∞
)
= 0. (2.18)

Note that (2.18) contains also information on the set {σ = T }. The same also holds for Corol-
lary 2.10(2) and the assertions in Theorem 2.10. Such variants of the blow-up criteria can be 
sometimes useful (see e.g. Theorem 5.1).

Remark 2.12.

(a) Keeping in mind the parabolic scaling, the spaces L∞(s, σ ; Bβ0
q0,∞) and Lp0(s, σ ; Hγ0,q0)

have (space-time) Sobolev index − 2
h−1 . Thus, from a scaling point of view, Theorem 2.10(2)

is optimal, while (1) is only sub-optimal. A similar remark holds for Corollary 2.11.
(b) In Theorem 2.10(1) and Corollary 2.11(1), p0 does not appear, and thus it can be taken 

arbitrarily large.
(c) Choosing q0, p0 large enough and δ0 > 1, one has β0, γ0 < 0. Thus Theorem 2.10 yields 

blow-up criteria in Sobolev spaces of negative smoothness. To see how far below zero one 
can get, as in Remark 2.8(b), we take δ0 ↑ h0+1

h0
, q0 ↓ dh0(h0−1)

h0+1 . This gives β0, γ0 ↓− 1
h0

.
(d) Under the assumptions of Theorem 2.10 for p0 large enough (depending on h) one also has

P
(
s < σ < T, ‖u‖Lp0 (s,σ ;Hγ0,q0 ) <∞

)
= 0 for all 0 < s < T .

To prove this one can argue as in the proof of Theorem 2.10 below by using [6, Theorem 
4.11] instead. We leave the details to the reader.
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2.4. Positivity

In this subsection we investigate the positive preserving property of the stochastic reaction-
diffusion equations (2.1). Existence of positive solutions to stochastic reaction-diffusion equa-
tions has been studied by many authors see e.g. [10,17,21,54,55] and the references therein. 
To the best of our knowledge, positivity of solutions to (2.1) is not known in our setting (e.g. 
rough data, transport noise and (t, ω)-dependent coefficients). Considering (t, ω)-dependence 
of the coefficients is also very useful in applications to quasilinear SPDEs, in which case 
a

j,k
i (t, ω, x) := A

j,k
i (u(t, ω, x)) and Aj,k

i (·) is a nonlinear map. These applications will be con-
sidered in [7].

The strategy of proof which we use seems to be new in the stochastic setting, but folklore 
for deterministic reaction-diffusion equations. It is based on a linearization argument, and on 
the maximum principle. The stochastic version of the maximum principle we use is for linear
scalar SPDEs and due to [46] (see Lemma A.1 for a slight variation of the latter). To apply this 
to obtain positivity in the case of nonlinear systems, an essential ingredient is the instantaneous 
regularization (2.13)-(2.14) of solutions to (2.1) proven in Section 3.1.

Below we write v ≥ 0 for v ∈D ′(T d) provided

〈ϕ,v〉 ≥ 0 for all ϕ ∈D(T d) such that ϕ ≥ 0 on T d .

If v ∈ L1(T d), then the above coincides with its natural meaning. Recall that positive distribu-
tions can be identified with finite positive measures. For an R�-valued distribution v = (vi)

�
i=1 ∈

D ′(T d ; R�), we say that v ≥ 0 provided vi ≥ 0 for all i ∈ {1, . . . , �}.
Our main result on positivity is the following.

Theorem 2.13 (Positivity). Let the assumptions of Theorem 2.7 be satisfied. Let (u, σ) be the 
(p, κc, δ, q)-solution to (2.1) provided by Theorem 2.7. Suppose that

u0 ≥ 0 a.s.,

and that there exist progressive measurable processes c1, . . . , c� :R+ ×� →R such that for all 
i ∈ {1, . . . , �}, n ≥ 1, y = (yi)

�
i=1 ∈ [0, ∞)� and a.e. on R+ ×� ×T d ,

fi(·, y1, . . . , yi−1,0, yi+1, . . . , y�)≥ 0, (2.19)

Fi(·, y1, . . . , yi−1,0, yi+1, . . . , y�)= ci(·), (2.20)

gn,i(·, y1, . . . , yi−1,0, yi+1, . . . , y�)= 0. (2.21)

Then a.s. for all x ∈ T d and t ∈ [0, σ), one has u(t, x) ≥ 0.

By (2.14), the pointwise expression u(t, x) is well-defined in the above. The condition (2.19)
is standard in the theory of (deterministic) reaction-diffusion equations (see e.g. [61, eq. (1.7)]), 
while (2.21) is (almost) optimal since it excludes the additive noise case (in which case positivity 
cannot be preserved). Condition (2.20) might be new. For � = 1 it holds trivially if F is not 
depending on x ∈T d . In case � = 2 it is for instance fulfilled for

Fi(t,ω, x, y1, y2)=ψi(t,ω, x)φi,1(x, y1)φi,2(x, y2)
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if φi,i(x, 0) = 0 and ψi is P ⊗B(T d)-measurable.
The proof of Theorem 2.13 will be given in Section 3.3. From the proof it will be clear that 

it is possible to replace T d by a domain O ⊆Rd if one assumes Dirichlet boundary conditions 
(for instance), and bn,i |∂O = 0.

3. Proofs of the main results

3.1. Local well-posedness and regularity

The aim of this subsection is to prove local well-posedness and smoothness of (p, κ, δ, q)-
solutions to (2.1). In particular, the next result contains Theorem 2.7 as a special case.

Proposition 3.1 (Local existence, uniqueness, and regularity). Let Assumption 2.1 (p, q, h, δ)
be satisfied. Suppose that q > max{ d

d−δ
, d(h−1)

2h−δ(h−1)
} and that κ ∈ [0, p2 − 1) satisfies one of the 

following conditions:

q <
d(h− 1)

δ
and

1+ κ

p
+ 1

2
(δ + d

q
)≤ h

h− 1
; (3.1)

q ≥ d(h− 1)

δ
and

1+ κ

p
≤ h

h− 1
(1− δ

2
). (3.2)

Then for any u0 ∈ L0
F0

(�; B2−δ−2 1+κ
p

q,p ), (2.1) has a (unique) (p, κ, δ, q)-solution satisfying a.s. 

σ > 0 and for all θ ∈ [0, 12 )

u ∈H
θ,p

loc ([0, σ ),wκ ;H 2−δ−2θ,q)∩C([0, σ );B2−δ−2 1+κ
p

q,p ). (3.3)

Moreover, u instantaneously regularizes

u ∈H
θ,r
loc (0, σ ;H 1−2θ,ζ ) a.s. for all θ ∈ [0,1/2), r, ζ ∈ (2,∞), (3.4)

u ∈ C
θ1,θ2
loc ((0, σ )×T d ;R�) a.s. for all θ1 ∈ [0,1/2), θ2 ∈ (0,1). (3.5)

The weight κ is called critical if equality holds in the above condition on κ in (3.1) or (3.2), 
i.e.

in (3.1): κ = κc = p
( h

h− 1
− 1

2

(
δ + d

q

))− 1,

in (3.2): κ = κc = ph

h− 1

(
1− δ

2

)
− 1.

Moreover, the space of initial data B
2−δ−2 1+κ

p
q,p is called critical as well. For details on criticality 

we refer to [5, Section 4]. This explains the subscript ‘c’ in Theorem 2.7. This abstract notion of 
criticality turns out to be the one that leads to scaling invariant space in many examples.

Before we prove the above result, let us first show how Theorem 2.7 can be deduced from 
Proposition 3.1.
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Proof of Theorem 2.7. The upper bound q <
d(h−1)

h+1−δ(h−1)
and δ < h+1

h
imply q <

d(h−1)
δ

. In 
particular, this is the first case of Proposition 3.1. Thus, it remains to check the inequality

1+ κ

p
+ 1

2

(
δ + d

q

)
≤ h

h− 1
.

Since κc = p
(

h
h−1 − 1

2 (δ + d
q
)
)− 1, the assumptions 1

p
+ 1

2

(
δ + d

q

)
≤ h

h−1 and q <
d(h−1)

h+1−δ(h−1)

imply κc ≥ 0 and κc <
p
2 − 1, respectively. In other words κc belongs to the admissible range 

[0, p2 − 1). Hence, the assumptions of Theorem 2.7 imply that Proposition 3.1 is applicable with 
κ = κc. It remains to show that the space of initial data u0 is the one claimed in Theorem 2.7. To 

this end, note that B
2−δ−2 1+κc

p
q,p = B

d
q
− 2

h−1
q,p as desired. �

Next we prove Proposition 3.1. The idea is to reformulate the system of SPDEs (2.1) as a 
stochastic evolution equations (SEE in the following) and then use the results in [5,6]. To this 
end, we need two ingredients:

• Stochastic maximal Lp(Lq)-regularity for the linearized problem (see e.g. [5, Section 3] for 
the definition);

• Estimates for the nonlinearities.

Recently, we obtained stochastic maximal Lp(Lq)-regularity for second order systems on the d-
dimensional torus [9]. Required estimates for the nonlinearities will be formulated in Lemma 3.2
below.

Before we state the lemma we reformulate (2.1) as an SEE. To this end, throughout this 
subsection we set

X0 =H−δ,q , X1 =H 2−δ,q , and Xλ := [X0,X1]λ =H−δ+2λ,q, (3.6)

where λ ∈ (0, 1), and a.s. for all t ∈R+, v ∈X1,

A(t)v = div(a(t) · ∇v), B(t)v = (
(bn(t) · ∇)v

)
n≥1,

�(t, v)= div(F (t, v))+ f (t, v), �(t, v)= (
gn(t, v)

)
n≥1.

(3.7)

With the above notation, (2.1) can be rewritten as a semilinear SEE on X0:{
du−A(t)udt =�(t,u)dt + (B(t)u+ �(t, u))dW�2(t), t ∈R+,

u(0)= u0,
(3.8)

where W�2 is the �2-cylindrical Brownian motion induced by (wn)n≥1, see the text before Defi-
nition 2.3. Recall that γ (�2, X1/2) = γ (�2, H 1−δ,q) =H 1−δ,q(�2), cf. (2.5).

Lemma 3.2. Let Assumption 2.1 (p, q, h, δ) be satisfied. Let �, � be as in (3.7). Suppose that 
q > max{ d , d(h−1) }. Set ρ1 = h − 1, ρ2 = h−1 and
d−δ 2h−δ(h−1) 2
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β1 :=

⎧⎪⎪⎨⎪⎪⎩
1

2

(
δ + d

q

)(
1− 1

h

)
, if q <

d(h− 1)

δ
,

δ

2
, if q ≥ d(h− 1)

δ
,

β2 :=

⎧⎪⎪⎨⎪⎪⎩
1

h+ 1
+ 1

2

(
δ + d

q

)h− 1

h+ 1
if q <

d(h− 1)

2(δ − 1)
,

δ

2
, if q ≥ d(h− 1)

2(δ − 1)
.

Then β1, β2 ∈ (0, 1) and for each v, v′ ∈X1

‖�(·, v)−�(·, v′)‖X0 �
∑

j∈{1,2}(1+ ‖v‖ρj

Xβj
+ ‖v′‖ρj

Xβj
)‖v − v′‖Xβj

,

‖�(·, v)‖X0 �
∑

j∈{1,2}(1+ ‖v‖ρj

Xβj
)‖v‖Xβj

,

‖�(·, v)− �(·, v′)‖γ (�2,X1/2)
� (1+ ‖v‖ρ2

Xβ2
+ ‖v′‖ρ2

Xβ2
)‖v − v′‖Xβ2

,

‖�(·, v)‖γ (�2,X1/2)
� (1+ ‖v‖ρ2

Xβ2
)‖v‖Xβ2

.

Since βj < 1, the above result shows that � and � are lower-order nonlinearities.

Proof. Since f (·, 0), Fj (·, 0) ∈ L∞ and (gn,i(·, 0))n≥1 ∈ L∞ by Assumption 2.1(4), it is enough 
to estimate the differences �(·, v) −�(·, v′) and �(·, v) − �(·, v′). We break the proof into two 
steps.

Step 1: Estimate for �. Let us write � =�0 +�1 where

�0(·, v) := f (·, v) and �1(·, v)= div(F (·, v)).

Substep 1a: Estimate for �0. By Assumption 2.1(4), a.e. on R+ ×� and for all v, v′ ∈X1,

‖�0(·, v)−�0(·, v′)‖H−δ,q

(i)

� ‖f (t, ·, v)− f (t, ·, v′)‖Lξ

�
∥∥∥(1+ |v|h−1 + |v′|h−1)|v − v′|

∥∥∥
Lξ

(ii)

� (1+ ‖v‖h−1
Lhξ + ‖v′‖h−1

Lhξ )‖v − v′‖Lhξ

(iii)

� (1+ ‖v‖h−1
Hθ,q + ‖v′‖h−1

Hθ,q )‖v − v′‖Hθ,q ,

(3.9)

where in (i) we used Sobolev embedding with − d
ξ
=−δ− d

q
and q > d

d−δ
to ensure ξ ∈ (1, ∞). 

Estimate (ii) follows from Hölder’s inequality. In (iii) we used Sobolev embedding with θ− d
q
≥

− d
hξ

, and where we need θ < 2 − δ to ensure that �0 is of lower-order (see (3.6)). To choose θ
we consider two cases:

• Case q <
d(h−1)

δ
. In this situation we set θ = d

q
− d

hξ
= d(h−1)

hq
− δ

h
> 0. Note that θ < 2 − δ

follows from the assumption q >
d(h−1) ;
2h−δ(h−1)
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• Case q ≥ d(h−1)
δ

. Here we set θ = 0. Since δ < 2 by Assumption 2.1, we also have θ = 0 <
2 − δ.

In both of the above cases, Xβ1 =Hθ,q (see (3.6)). Thus (3.9) gives

‖�0(t, ·, v)−�0(t, ·, v′)‖X0 � (1+ ‖v‖ρ1
Xβ1

+ ‖v′‖ρ1
Xβ1

)‖v − v′‖Xβ1
. (3.10)

Substep 1b: Estimate for �1. As in substep 1a, by Assumption 2.1(4) we have, a.e. on R+×�

and for all v, v′ ∈X1,

‖�1(·, v)−�1(·, v′)‖H−δ,q

(iv)

� ‖F(t, ·, v)− F(t, ·, v′)‖Lη

�
∥∥∥(1+ |v| h−1

2 + |v′| h−1
2 )|v − v′|

∥∥∥
Lη

(v)

� (1+ ‖v‖
h−1

2

L
h+1

2 η
+ ‖v′‖

h−1
2

L
h+1

2 η
)‖v − v′‖

L
h+1

2 η

(vi)

� (1+ ‖v‖
h−1

2
Hφ,q + ‖v′‖

h−1
2

Hφ,q )‖v − v′‖Hφ,q ,

(3.11)

where in (iv) we used div : H 1−δ,q → H−δ,q boundedly, and Sobolev embedding with − d
η
=

1 − δ − d
q

, where η ∈ (1, q) since q > d
d−δ

. In (v) we used Hölder’s inequality, and in (vi) the 

Sobolev embedding with φ ∈ [0, 2 − δ) and φ − d
q
≥− 2d

η(h+1)
. As in substep 1a, to choose φ we 

distinguish two cases.

• Case q <
d(h−1)
2(δ−1)

. In this situation we have φ := d
q
− 2d

η(h+1)
= d

q
h−1
h+1 + 2 1−δ

h+1 > 0. Note that 

φ < 2 − δ since q >
d(h−1)

2h−δ(h−1)
by assumption;

• Case q ≥ d(h−1)
2(δ−1)

. Here we set φ = 0 and thus φ < 2 − δ.

Again one can check Xβ2 =Hφ,q in both cases. Thus (3.11) gives

‖�1(·, v)−�1(·, v′)‖X0 � (1+ ‖v‖ρ2
Xβ2

+ ‖v′‖ρ2
Xβ2

)‖v − v′‖Xβ2
. (3.12)

The required estimate for �(·, v) − �(·, v′) follows from (3.10) and (3.12), which completes 
Step 1.

Step 2: Estimate for �. Here we prove that �(·, v) − �(·, v′) satisfies the same bound of 
�1(·, v) −�1(·, v′) in (3.11). Thus the required estimate for � follows as in Substep 1b. Indeed, 
a.e. on R+ ×� and for all v, v′ ∈X1,

‖�(·, v)− �(·, v′)‖γ (�2,X1/2)

(vii)

� ‖g(t, ·, v)− g(t, ·, v′)‖γ (�2,Lη)

(viii)
� ‖g(t, ·, v)− g(t, ·, v′)‖Lη(�2)

(ix)

�
∥∥∥(1+ |v| h−1

2 + |v′| h−1
2 )|v − v′|

∥∥∥ ,

(3.13)
Lη
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where in (vii) we used Sobolev embeddings with − d
η
= 1 − δ − d

q
, in (viii) (2.5) and in (ix)

Assumption 2.1(4). Comparing (3.13) with the second line in (3.11), one can check that the 
claimed estimate for � follows as in Substep 1b. �

Next we prove Proposition 3.1. For the reader’s convenience, the proof will be divided into 
two parts. In Part (A) we prove the existence of a (p, κ, δ, q)-solution to (2.1) with pathwise 
regularity as in (3.3) and in Part (B) we prove (3.4)-(3.5).

Proof of Proposition 3.1 Part (A) – Local existence and uniqueness. We break the proof of 
Part (A) into two steps. Recall that (A, B, �, �) are defined in (3.7). In the following, we use the 
definition of criticality of [5] for the trace space of initial data (see e.g. [2] for details on trace 
theory)

XTr
κ,p := (X0,X1)1− 1+κ

p
,p
= (H−δ,q ,H 2−δ,q)1− 1+κ

p
,p
= B

2−δ−2 1+κ
p

q,p , (3.14)

where we used [11, Theorem 6.4.5].
Step 1: The assumptions (HF) and (HG) of [5, Section 4.1] hold with (F, G) replaced by 

(�, �). Moreover, the trace space XTr
κ,p = B

2−δ−2 1+κ
p

q,p is critical for (2.1) if and only if one of the 
following conditions holds:

• q <
d(h−1)

δ
and 1+κ

p
+ 1

2 (δ + d
q
) = h

h−1 ;

• q ≥ d(h−1)
δ

and 1+κ
p

= h
h−1 (1 − δ

2 ).

To prove the claim of this step, by Lemma 3.2 it is suffices to show that

1+ κ

p
≤ ρj + 1

ρj

(1− βj ) for j ∈ {1,2}, (3.15)

where ρj , βj are as in Lemma 3.2. Note that d(h−1)
δ

<
d(h−1)
2(δ−1)

for all h > 1 and δ ∈ [1, 2). There-
fore, to check (3.15), we can split into the following three cases:

(a) Case q <
d(h−1)

δ
. In this situation one can check that the inequalities in (3.15) for j ∈ {1, 2}

are equivalent to the following restriction:

1+ κ

p
≤ h

h− 1
− 1

2

(
δ + d

q

)
.

(b) Case d(h−1)
δ

≤ q <
d(h−1)
2(δ−1)

. Then (3.15) for j ∈ {1, 2} holds if and only if

1+ κ

p
≤ h

h− 1
− 1

2

(
δ + d

q

)
, and

1+ κ

p
≤ h

h− 1

(
1− δ

2

)
.

Note that q ≥ d(h−1)
δ

implies h
h−1 (1 − δ

2 ) ≤ h
h−1 − 1

2 (δ + d
q
). Therefore, it is enough to 

assume the second of the above conditions.
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(c) Case q ≥ d(h−1)
2(δ−1)

. Then (a), (3.15) for j ∈ {1, 2} leads to the same condition

1+ κ

p
≤ h

h− 1

(
1− δ

2

)
.

One can check that the conditions in the cases (a)-(c) coincide with the one assumed in Proposi-
tion 3.1. Moreover, criticality holds if and only if the estimates in cases (a)-(c) hold with equality.

Step 2: There exists a (unique) (p, κ, δ, q)-solution (u, σ) to (2.1) such that

u ∈H
θ,p

loc ([0, σ );H 2θ−δ,q) a.s. for all θ ∈ [0,1/2).

To prove existence and uniqueness for (2.1) we will apply [5, Theorem 4.8]. Indeed, our notion of 
(p, κ, δ, q)-solution to (2.1) (see Definition 2.3) is equivalent to the notion of Lp

κ -maximal local 
solution given in [5, Definition 4.4] (see also [6, Remark 5.6]). By [9, Theorem 5.2 and Remark 
5.6], the linearized problem with leading operator (A, B) (see (3.7)) has stochastic maximal Lp-
regularity. More precisely, we have (A, B) ∈ SMR•

p,κ (T ) for all T ∈ (0, ∞) with X0 =H−δ,q

and X1 = H 2−δ,q (see [5, Definition 3.5] for the definition). Now existence and uniqueness 
follows from Step 1 and [5, Theorem 4.8]. �

In order to complete the proof of Proposition 3.1 it remains to show the regularity results 
(3.4)-(3.5). For this we will use our new bootstrap technique of [6, Section 6]. The structure of 
the proof of the regularity will be follows:

• Bootstrap regularity in time via [6, Proposition 6.8] (see Step 1a) and [6, Corollary 6.5] (see 
Substep 1b).

• Bootstrap integrability in space via [6, Theorem 6.3] applied recursively considering (2.1)
in the (H−δ,qj , H 2−δ,qj , r, α)-setting where (qk)k≥1 is a sequence of increasing numbers 
qk ↑∞ with q1 = q (see Step 2).

• Bootstrap differentiability in space via [6, Theorem 6.3] by shifting the scale from Yj =
H 2j−δ,q to Ŷj =H 2j−1,q (see Step 3).

In each of the steps in the proof below and without further mentioning it, we use the stochastic 
maximal Lr

wα
-regularity result of [9, Theorem 5.2 and Remark 5.6] for (A, B). By Assump-

tion 2.1 the latter holds on X0 =H−s,ζ and all r ∈ (2, ∞), ζ ∈ [2, ∞), κ ∈ [0, r2 −1), and s such 
that 1 ≤ s ≤ δ + γ , for some (small) γ > 0.

Proof of Proposition 3.1 Part (B) – Instantaneous regularization (3.4)-(3.5). Let (u, σ) de-
note the (p, κ, δ, q)-solution to (2.1) provided by Part (A).

Step 1: For all r ∈ (2, ∞),

u ∈
⋂

θ∈[0,1/2)

H
θ,r
loc (0, σ ;H 2−δ−2θ,q), a.s. (3.16)

The proof of (3.16) consists of two sub-steps, where Step 1a is not needed if κ > 0.
Step 1a: If κ = 0, then (3.16) holds for some r > p. Here we apply [6, Proposition 6.8]. Let 

(βj )j∈{1,2} be as in Lemma 3.2. Note that β1, β2 ∈ (0, 1) and p ∈ (2, ∞) under the assumption 
of Proposition 3.1. Fix r ∈ (p, ∞) and α ∈ (0, r − 1) such that
2
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1

p
= 1+ α

r
, and

1

r
≥ max

j
βj − 1+ 1

p
. (3.17)

With the above choice, Step 1 of the proof of Proposition 3.1 Part (A) ensures that [6, Proposition 
6.8] is applicable with Yj = Xj = H 2−δ,q and (r, α) as above. This yields (3.16) for all r ∈
(p, ∞) and α > 0 satisfying (3.17).

Step 1b: (3.16) holds for all r ∈ (2, ∞). Let

either [(r,α)= (p, κ) if κ > 0] or [(r,α) as in Step 1a if κ = 0].
In all cases α > 0. Let ̂r ∈ (2, ∞) be arbitrary and let ̂α ∈ [0, ̂r2 − 1) be such that 1+α̂

r̂
< 1+α

r
. Set 

Yj :=H 2j−δ,q for j ∈ {0, 1}. Combining Step 1 of the proof of Proposition Part (A) and Step 1a 
if κ = 0, one can check that the assumptions of [6, Corollary 6.5] hold and this yields the claim 
of Step 1b.

Step 2: For all r, ζ ∈ (2, ∞),

u ∈
⋂

θ∈[0,1/2)

H
θ,r
loc (0, σ ;H 2−δ−2θ,ζ ) a.s.

It suffices to consider r ∈ (p, ∞) such that 1
r
+ 1

2 (δ + d
q
) < h

h−1 . The latter condition is 

nonempty since in each of the case of (3.1) and (3.2) one can check that 1
2 (δ+ d

q
) < h

h−1 . To prove 
the above claim for u it is enough to show the existence of ε > 0 depending only (r, δ, q, h, d)

such that for all ζ ∈ [q, ∞),

u ∈
⋂

θ∈[0,1/2)

H
θ,r
loc (0, σ ;H 2−δ−2θ,ζ ) a.s. =⇒ u ∈

⋂
θ∈[0,1/2)

H
θ,r
loc (0, σ ;H 2−δ−2θ,ζ+ε) a.s. (3.18)

Indeed, by Step 1 we know that the RHS (3.18) holds with ζ = q and r as above. Thus the claim 
of this step follows by iterating (3.18).

To prove (3.18) suppose that u ∈⋂
θ∈[0,1/2) H

θ,r
loc (0, σ ; H 2−δ−2θ,ζ ) a.s. We will apply [6, The-

orem 6.3]. Since 1
r
+ 1

2 (δ + d
q
) < h

h−1 by assumption, there exists α > 0 (depending only on 

(r, δ, q, h, d)) such that 1+α
r

+ 1
2 (δ + d

q
) < h

h−1 . By Step 1 of the proof of Proposition 3.1 Part 

(A) we know that (HF) and (HG) of [5, Section 4.1] hold in the (H−δ,ζ , H 2−δ,ζ , α, r)-setting 
with ζ ∈ [q, ∞), and the corresponding trace space is not critical for (2.1) in this setting. Next 
we check the assumptions of [6, Theorem 6.3] with the choice

Yi =H 2j−δ,ζ , Ŷi =H 2j−δ,ζ+ε, r = r̂ , α = α̂

where ε will be chosen below. It is easy to see that conditions (1) and (2) of [6, Theorem 6.3] are 
satisfied. To check condition (3) of [6, Theorem 6.3] note that Ŷi ↪→ Yi and the assumption [6, 
(6.1)] is satisfied due to [6, Lemma 6.1(1)]. It remains to check

Yr ↪→ Ŷα̂,̂r = Ŷα,r . (3.19)

The latter will require ε to be small enough. Recall that Yr = B
2−δ− 2

r

ζ,r and Ŷα,r = B
2−δ−2 1+α

r

ζ+ε,r by 
(3.14). By Sobolev embedding (3.19) holds provided
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2− δ − 2

r
− d

ζ
≥ 2− δ − 2

1+ α

r
− d

ζ + ε
⇔ 1

ζ
− 1

ζ + ε
≤ 2α

dr
. (3.20)

For (3.20) we can for instance take ε = 2α
dr

> 0.
Step 3: For all r, ζ ∈ (2, ∞),

u ∈
⋂

θ∈[0,1/2)

H
θ,r
loc (0, σ ;H 1−2θ,ζ ) a.s. (3.21)

Note that, if δ = 1, then (3.21) follows from Step 2. Thus below we may assume δ ∈ (1, 2). It 
suffices to prove (3.21) for r and ζ large. Therefore, we may suppose that

ζ ≥ max
{d(h− 1)

δ
, q

}
, r > max

{
p,

2

2− δ

}
, and

1

r
+ δ − 1

2
<

h

2(h− 1)
.

For the latter note that δ−1
2 < h

2(h−1)
always holds.

As in the previous step, we use [6, Theorem 6.3] to improve the differentiability in space. To 
prove (3.21), for j ∈ {0, 1}, we let

Yj =H 2j−δ,ζ , Ŷj =H 2j−1,ζ , r̂ = r, α = 0, α̂ = r(δ − 1)

2
. (3.22)

Moreover, ̂α ∈ [0, ̂r2 − 1) since ̂r > 2
2−δ

.
We claim that and (3.2) is satisfies in the (Y0, Y1, r, α)-setting and (Ŷ0, ̂Y1, ̂r, ̂α)-setting, and 

both are not critical. Indeed, for Y and Ŷ this follows from

1

r
< 1− δ

2
<

h

h− 1

(
1− δ

2

)
and

1+ α̂

r̂
= 1

r
+ δ − 1

2
<

h

2(h− 1)
,

respectively. To apply [6, Theorem 6.3] it remains to check condition (3) there, which states

(a) Y Tr
r ↪→ Ŷα̂,̂r , and (b) [6, (6.1)] holds. (3.23)

The choice of ̂α in (3.22) immediately yields (3.23)(a) and both spaces equal B
2−δ− 2

r

ζ,r . To check 

(3.23)(b) we apply [6, Lemma 6.2(4)]. To this end note that, for ε = δ−1
2 ,

Ŷ1−ε = [Ŷ0, Ŷ1]1−ε = Y1, Ŷ0 = [Y0, Y1]ε = Yε, and
1+ α̂

r
= ε + 1

r
.

Since α = 0 and ε < 1
2 − 1

r
by construction, [6, Lemma 6.2(4)] applies and thus (3.23)(b) follows. 

Hence [6, Theorem 6.3] yields (3.21).
Step 4: Conclusion. Note that (3.4) is equivalent to (3.21). In addition, (3.5) follows from (3.4)

and Sobolev embedding. Hence the proof of Proposition 3.1 is completed. �
Next we turn to the local continuity result.
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Proposition 3.3 (Local continuity). Let the assumptions of Proposition 3.1 be satisfied. Let (u, σ)

be the (p, κ, δ, q)-solution to (2.1). Then there exist positive constants (C0, T0, ε0) and stopping 
times σ0, σ1 such that σ0, σ1 ∈ (0, σ ] a.s. for which the following assertion holds:

For each v0 ∈ L
p

F0
(�; B2−δ−2 1+κ

p
q,p ) with E‖u0 − v0‖p

B
2−δ−2 1+κ

p
q,p

≤ ε0, the (p, κ, δ, q)-solution 

(v, τ) to (2.1) with initial data v0 has the property that there exists a stopping time τ0 ∈ (0, τ ]
a.s. such that for all t ∈ [0, T0] and γ > 0, one has

P
(

sup
r∈[0,t]

‖u(r)− v(r)‖
B

2−δ−2 1+κ
p

q,p

≥ γ, σ0 ∧ τ0 > t
)
≤ C0

γ p
E‖u0 − v0‖p

B
2−δ−2 1+κ

p
q,p

, (3.24)

P
(
‖u− v‖Lp(0,t,wκ ;H 2−δ,q ) ≥ γ, σ0 ∧ τ0 > t

)
≤ C0

γ p
E‖u0 − v0‖p

B
2−δ−2 1+κ

p
q,p

, (3.25)

P (σ0 ∧ τ0 ≤ t)≤ C0
[
E‖u0 − v0‖p

B
2−δ−2 1+κ

p
q,p

+ P (σ1 ≤ t)
]
. (3.26)

Let us first show that Proposition 2.9 is included.

Proof of Proposition 2.9. The claim follows from Proposition 3.3 with the choice of κc =
p( h

h−1 − 1
2 (δ + d

q
)) − 1, as in the proof of Theorem 2.7. �

Proof of Proposition 3.3. For the proof of Proposition 3.3 we need some of the arguments in 
the abstract local well-posedness result of [5, Theorem 4.5] (see also [5, Theorem 4.8]). Let 
ξ ∈W 1,∞(R) be such that ξ |[0,1] = 1, ξ |[2,∞) = 0 and ξ is linear on [1, 2].

For λ > 0 consider the following truncated version of (3.8):{
du−A(t)udt = ξλ(t, u)�(t, u)dt + (B(t)u+ ξλ(t, u)�(t, u))dW�2(t), t ∈R+,

u(0)= u0,
(3.27)

where

ξλ(t, u) := ξ
(1

λ
‖u‖X (t)

)
(3.28)

where X is as in [5, eq. (4.14)] with (ρj , βj ) as in Lemma 3.2 and ϕj = βj . For the choice of 
the cut–off in (3.28) we also uses [5, Remark 4.14] and that the implicit constants in estimates of 
Lemma 3.2 are independent of v, v′. As noticed in Step 2 of the proof of Proposition 3.1 Part (A), 
the (p, κ, δ, q)-solution of (2.1) is the Lp

κ -maximal solution in the terminology of [5, Definition 
4.4] with the choice (3.6)-(3.7). Recall that XTr

κ,p has been defined in (3.14). Now Steps 1–2 in the 
proof of [5, Theorem 4.5] show the existence of constants (λ0, T0, ε0) for which the following 
assertion holds: For all v0 ∈ L

p

F0
(�; XTr

κ,p) such that E‖u0 − v0‖p

XTr
κ,p

≤ ε0 there exists a local 

(p, κ, δ, q)-solution (v, T0) to (3.27) with initial data v0 and λ = λ0 satisfying

E‖u− v‖p

C([0,T0];XTr
κ,p)

+E‖u− v‖p

Lp(0,T0,wκ ;H 2−δ,q )
≤ C0E‖u0 − v0‖p

XTr
κ,p

, (3.29)

where (u, T0) is the local (p, κ, δ, q)-solution to (3.27) with λ = λ0 and initial data u0.
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As in Step 4 of [5, Theorem 4.5], we set

σ0 := inf
{
t ∈ [0, T0] : ‖u‖X (t) ≥ λ0

}
, and τ0 := inf

{
t ∈ [0, T0] : ‖v‖X (t) ≥ λ0

}
. (3.30)

Note that a.s. σ0 > 0 and τ0 > 0. Arguing as in [5, Step 4], one can check that (u|[0,σ0)×�, σ0)

(resp. (v|[0,τ0)×�, τ0)) is a local (p, κ, δ, q)-solution to (2.1) with initial data u0 (resp. v0). By 
maximality of the (p, κ, δ, q)-solutions (u, σ) and (v, τ), we have σ0 ∈ (0, σ ], τ0 ∈ (0, τ ] a.s., 
and

u= u a.e. on [0, σ0)×�, and v = v a.e. on [0, τ0)×�. (3.31)

We are ready to prove (3.24). By (3.31), for all t ∈ [0, T0].

P
(

sup
r∈[0,t]

‖u(r)− v(r)‖XTr
κ,p

≥ γ, σ0 ∧ τ0 > t
)
≤ P

(
sup

r∈[0,t]
‖u(r)− v(r)‖XTr

κ,p
≥ γ

)
≤ 1

γ p
E‖u− v‖p

C([0,t];XTr
κ,p)

≤ C
p
0

γ p
E‖u0 − v0‖p

XTr
κ,p

,

where in the last inequality we used (3.29) and t ≤ T0. The same argument also yields (3.25).
Next we prove (3.26). For all t ∈ [0, T0],

P (σ0 ∧ τ0 ≤ t)≤ P
(‖u‖X (t) + ‖v‖X (t) ≥ λ0

)
≤ P

(
2‖u‖X (t) + ‖v − u‖X (t) ≥ λ0

)
≤ P

(
‖v − u‖X (t) ≥ λ0

2

)
+ P

(
‖u‖X (t) ≥ λ0

4

)
≤ 2pC0

λ
p

0

E‖u0 − v0‖p

XTr
κ,p

+ P (σ1 ≤ t),

where in the last step we used (3.29) and σ1 := inf
{
t ∈ [0, T0] : ‖u‖X (t) ≥ λ0

4

}
. �

Remark 3.4. The proof of Proposition 3.3 also yields the following facts.

(a) By (3.29) and (3.31), the estimates (3.24)–(3.26) can be also formulated as Lp(�)–estimates. 
For instance, (3.24) holds in the stronger form:

E
[
1{σ0∧τ0>t} sup

s∈[0,t]
‖u(s)− v(s)‖p

B
2−δ−2 1+κ

p
q,p

]
≤ C0E‖u0 − v0‖p

B
2−δ−2 1+κ

p
q,p

, t ∈ [0, T0].

(b) Let (u, v) be as in (3.29), i.e. the (p, κ, δ, q)–solutions to (3.27) with data (u0, v0), respec-
tively. By Steps 1–2 of [5, Theorem 4.5] and maximal Lp–regularity estimates (cf. [9]), we 
have the following stronger version of (3.29):
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E‖u− v‖p

Hθ,p(0,T0,wκ ;H 2−δ−2θ,q )
�θ E‖u0 − v0‖p

B
2−δ−2 1+κ

p
q,p

, for all θ ∈ [0, 1
2 ).

Whence (3.25) also holds with Lp(0, t, wκ ; H 2−δ,q) replaced by Hθ,p(0, t, wκ ; H 2−δ−2θ,q).
(c) The proof of Proposition 3.3 shows that (3.24)–(3.26) holds also for quasilinear SPDEs as 

considered in [5] but taking FL = GL ≡ 0. The above proofs need the following modifica-
tions: (3.28) needs to be replaced with ξλ(t, u) = ξ( 1

λ
[‖u‖X (t) + sups∈[0,t] ‖u(s)‖XTr

κ,p
]) for 

t ∈ [0, T0], and (3.30) needs to be replaced by

σ0 = inf
{
t ∈ [0, T0] : ‖u‖X (t) + sup

s∈[0,t]
‖u(s)− u0‖XTr

κ,p
≥ λ0

}
,

τ0 = inf
{
t ∈ [0, T0] : ‖v‖X (t) + sup

s∈[0,t]
‖v(s)− u0‖XTr

κ,p
≥ λ0

}
.

The same assertion as in Proposition 3.3 holds in the quasilinear setting, but the set {τ0 = 0}
might have positive measure as we are only imposing smallness on E‖u0 − v0‖p

XTr
κ,p

.

3.2. Blow-up criteria

Here we prove Theorem 2.10. The argument follows the one in [6, Lemma 6.10]. However, 
Theorem 2.10 cannot be deduced from such result since in the present situation we are also 
considering a parameter h0 that is (possibly) different from h. Thus we provide a proof below. 
For the reader’s convenience, we give a (rough) idea of the argument which is based on the 
fact that solutions to (2.1) instantaneously regularizes, cf. (2.13)-(2.14). Indeed, for any s > 0, 
u(s) is smooth and we may ‘restart’ the system of SPDEs (2.1) considering the solution to such 
problem on [s, ∞) with data u(s), which will be denoted by v. Note that, a-priori, we don’t know 
how u(t)|{t>s} and v relate. Since u(s) is smooth, the restarted problem (2.1) can be considered 
in a different ‘setting’, i.e. replacing the parameters (p, κ, q, δ, h) by (possibly) different ones 
(p0, κ0, q0, δ0, h0). With the latter choice, the results in [6, Section 4] show that v satisfy a blow-
up criterium in the (p0, κ0, q0, δ0, h0)-setting which is the analogue of the one claimed for u. 
The conclusion follows by showing that u = v on [s, ∞) and thus the blow-up criteria for v
‘transfers’ to u.

Proof of Theorem 2.10. (1): We begin by collecting some useful facts. Fix 0 < s < T <∞ and 
let (u, σ) be the (p, κc, δ, q)-solution to (2.1) provided by Theorem 2.7. By [6, Theorem 4.10(3)], 
(3.6) and (3.14) we have

P
(
σ <∞, sup

t∈[0,σ )

‖u(t)‖
B

β
q,p

+ ‖u‖Lp(0,σ ;Hγ,p) <∞
)
= 0, (3.32)

where

β = d

q
− 2

h− 1
, γ = d

q
+ 2

p
− 2

h− 1
, and κc = p

( h

h− 1
− 1

2

(
δ + d

q

))
− 1.

Moreover, let us recall that, by (2.12) for θc := κc
p

< 1
2 − 1

p
and the weighted Sobolev embeddings 

(see e.g. [5, Proposition 2.7]), we have
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u ∈H
θc,p

loc ([0, σ ),wκc;H 2−δ−2θc,q ) ↪→ L
p

loc([0, σ );Hγ,q) a.s. (3.33)

Let (q0, p0, δ0, h0, β0) be as in Theorem 2.10 and q1 > q0. Set κ0 = κc,0 = p0
(

h0
h0−1 − 1

2 (δ0 +
d
q0

)
) − 1. Fix κ ∈ (κc,0, κc,1) where κc,1 := p0(

h0
h0−1 − 1

2 (δ + d
q1

)) − 1 for i ∈ {0, 1}. Set β :=
2 − δ − 2 1+κ

p0
and note that β < β0. By (2.14) with θ1 = 0, θ = θ2 ∈ (β, 1) and the progressive 

measurability of u, we have

1{σ>s}u(s) ∈ L0
Fs

(�;Cθ).

Combining this with Cθ = Bθ∞,∞ ↪→ B
β
q1,p0 since θ > β , we get

1{σ>s}u(s) ∈ L0
Fs

(�;Bβ
q1,p0

), where V := {σ > s}.
Up to a shift argument, Proposition 3.1 ensures the existence of a (p0, κ0, δ0, q1)-solution (v, τ)

on [s, ∞) to⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dvi − div(ai · ∇vi)dt =
[
div(Fi(·, v))+ fi(·, v)

]
dt

+
∑
n≥1

[
(bn,i · ∇)vi + gn,i(·, v)

]
dwn

t , on T d ,

vi(s)= 1{σ>s}ui(s), on T d ,

(3.34)

where v = (vi)
�
i=1. Moreover, the solution (v, τ) to (3.34) instantaneously regularizes in time 

and space:

v ∈H
θ,r
loc (s, τ ;H 1−2θ,ζ ) a.s. for all θ ∈ [0,1/2), r, ζ ∈ (2,∞). (3.35)

The notion of (p0, κ0, δ0, q1)-solutions to (3.34) follows as in Definition 2.3.
By Step 1 of Proposition 3.1 and the fact that κ < κc,1 we know that Bβ

q1,p0 is not critical for 
(3.34). Thus, applying [6, Theorem 4.10(2)] to (3.34),

P
(
τ < T , sup

t∈[s,τ )

‖v(t)‖
B

β
q1,p0

<∞
)
= 0.

Since β < β0, we have Bβ0
q1,∞ ↪→ B

β
q1,p0 . Hence the previous implies

P
(
τ < T , sup

t∈[s,τ )

‖v(t)‖
B

β0
q1,∞

<∞
)
= 0. (3.36)

Recall that V = {σ > s}. Since τ > s a.s., (3.36) shows that (1) follows as soon as we have shown

τ = σ a.s. on V and u= v a.e. on [s, σ )× V . (3.37)

The remaining part of this step is devoted to the proof of (3.37). Let us begin by noticing that, by 
h0 ≥ h and (2.13), (u|[s,σ )×V , 1Vσ + 1�\Vs) is a (p0, κ0, δ0, q1)-solution to (3.34). The maxi-
mality of (v, τ) yields (see the last item in Definition 2.3)
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σ ≤ τ a.s. on V and u= v a.e. on [s, σ )× V . (3.38)

To conclude it is enough to show that P (V ∩ {σ < τ }) = 0. To this end we employ the blow-
up criteria in (3.32). Indeed, by (3.35) and (3.38), we have u = v ∈ L

p

loc((s, σ ]; Hγ,q) a.s. on 
V ∩ {σ < τ }. Combining this with (3.33), we find u ∈ Lp(0, σ ; Hγ,q) a.s. on V ∩ {σ < τ }. 
Similarly, one can check that supt∈[0,σ ) ‖u(t)‖

B
β
q,p

<∞ a.s. on V ∩ {σ < τ }, and therefore

P (V ∩ {σ < τ })= P
(
V ∩ {σ < τ } ∩

{
sup

t∈[0,σ )

‖u(t)‖
B

β
q,p

+ ‖u‖Lp(0,σ ;Hγ,p) <∞
})

≤ P
(
σ <∞, sup

t∈[0,σ )

‖u(t)‖
B

β
q,p

+ ‖u‖Lp(0,σ ;Hγ,p) <∞
)

(3.32)= 0.

(2): The proof is similar to the one of (1). Indeed, let us consider the (p0, κc,0, δ0, q0)-solution 
to (3.34) where κc,0 = p(

h0
h0−1 − 1

2 (δ0 + d
q0

)) − 1. Here the subscript ‘c’ stresses that the corre-

sponding space for the initial data Bβ0
q0,p0 is critical for (3.34) (cf. Step 1 of Proposition 3.1 and 

note that the spatial integrability is q0). Compared to Step 1, the only difference is that instead of 
(3.36) we use [6, Theorem 4.10(3)] (which holds also in critical situations) and it yields

P
(
τ < T , sup

t∈[s,τ )

‖v(t)‖
B

β0
q0,p0

+ ‖v‖Lp0 (s,τ ;Hγ0,q0 ) <∞
)
= 0,

where β0, γ0 are as in the statement of Theorem 2.10. �
Proof of Corollary 2.11. To prove (1) we use Theorem 2.10(1) with an appropriate choice of 
(q0, q1). Recall that h0 ≥ 1 + 4

d
, ζ0 = d

2 (h0 − 1) and let ζ1 > ζ0. Choose δ0 > 1 small enough so 
that Assumption 2.1(2) holds. Fix q1 ≤ ζ1 such that

ζ0 < q1 <
d(h0 − 1)

h0 + 1− δ0(h0 − 1)
.

The above choice is possible since δ0 > 1. Since δ0 < 2, we may fix p0 ∈ (q1, ∞) such that

1

p0
+ 1

2

(
δ0 + d

ζ0

)
≤ h0

h0 − 1
.

One can check the condition in Theorem 2.7 with (p, q, δ, h) replaced by (p0, q0, δ0, h0). By 
ζ1 ≥ q1 and elementary embeddings for Besov spaces, Lζ1 ↪→Lq1 ↪→ B0

q1,∞. Hence{
s < σ < T, sup

t∈[s,σ )

‖u(t)‖Lζ1 <∞
}
⊆

{
s < σ < T, sup

t∈[s,σ )

‖u(t)‖B0
q1,∞ <∞

}
Thus that (1) follows from Theorem 2.10(1) with q0 = ζ0 noticing that β0 = d

ζ0
− 2

h0−1 = 0.
To prove (2) we use Theorem 2.10(2). Let δ0 > 1 be as above. By assumption q0 <
d(h0−1)

h0+1−δ0(h0−1)
and therefore

d
>

2 − (δ0 − 1).

q0 h0 − 1
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Hence to ensure the existence of p0 such that 2
p0

+ d
q0
= 2

h0−1 we need p0 > 2
δ0−1 as required in

(2). Since q0 > ζ0,

Lζ0
(i)
↪→ Bβ0

q0,q0

(ii)
↪→ Bβ0

q0,p0

where in (i) we used the Sobolev embeddings for Besov spaces (recall β0 = d
q0
− 2

h0−1 ) and in 
(ii) the fact that p0 ≥ q0 by assumption. Hence{

s < σ < T, sup
t∈[s,σ )

‖u(t)‖Lζ0 + ‖u‖Lp0 (s,σ ;Lq0 ) <∞
}

⊆
{
s < σ < T, sup

t∈[s,σ )

‖u(t)‖
B

β0
q0,p0

+ ‖u‖Lp0 (s,σ ;Lq0 ) <∞
}
.

Thus (2) follows from Theorem 2.10(2) by noticing that γ0 = 2
p0

+ d
q0
− 2

h0−1 = 0. �
Finally we prove a compatibility result for the solutions obtained in different settings.

Proposition 3.5 (Compatibility of different settings). If Proposition 3.1 is applicable for two 
sets of exponents (p1, κ1, δ1, q1, h1) and (p2, κ2, δ2, q2, h2), then the corresponding solutions 
(u1, σ1) and (u2, σ2) coincide, i.e. σ1 = σ2 a.s. and u1 = u2 a.e. on [0, σ1) ×�.

As Theorem 2.7 is a special case of Proposition 3.1, the above compatibility also holds for 
solutions provided by Theorem 2.7. To explain the difficulty in proving the above result, let us 
consider two settings where Theorem 2.7 applies with p1 �= p2 and (δ1, q1, h1) = (δ2, q2, h2). 
Note that the corresponding critical weights κc,i := pi

(
h

h−1 − 1
2 (δ+ d

q
)
)−1 satisfy 1+κ1

p1
= 1+κ2

p2
. 

In particular, the Lpi (wκc,i )–spaces on RHS (2.2) of Definition 2.3 cannot be embedded one 
in the other (cf. [6, Proposition 2.1(3) and Remark 2.2]). Hence, a priori it is unclear how to 
compare the solutions, and use the uniqueness in one of the two settings. To solve this, we use 
an approximation argument, local continuity, and regularization results.

Proof of Proposition 3.5. Step 1: Approximation. Note that u0 ∈ ∩i∈{1,2}B
2−δi−2

1+κi
pi

qi ,pi
a.s. as the 

assumptions of Proposition 3.1 are verified in both settings. By localization in �, see [5, Theorem 
4.7(d)] with

�=∩i∈{1,2}
{‖u0‖

B
2−δi−2

1+κi
pi

qi ,pi

≤ n
} ∈F0,

it is enough to consider the case

u0 ∈ ∩i∈{1,2}Lpi (�;B2−δi−2
1+κi
pi

qi ,pi
).

In the following we let (u(n)
0 )n≥1 ⊆ L∞

F0
(�; C1) be such that u(n)

0 → u0 in Lpi (�; B2−δi−2
1+κi
pi

qi ,pi
)

for i ∈ {1, 2}. Fix some r > max{p1, p2, q1, q2, 2d + 2, d(h1 − 1), d(h2 − 1)} and set h =
max{h1, h2}. Then one can check that Assumption 2.1 (r, r, h, 1) holds, and (3.2) holds with 
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(p, κ, q, δ) replaced by (r, 0, r, 1). Therefore, by Proposition 3.1, for each n ≥ 1 there exists a 
(unique) (r, 0, 1, r)–solution (u(n), σ (n)) to (2.1) such that a.s. σ (n) > 0 and

u(n) ∈H
θ,r
loc ([0, σ (n));H 1−2θ,r )∩C([0, σ (n));B1− 2

r
r,r ), θ ∈ [0,1/2). (3.39)

By Sobolev embedding (since 1 − 2
r

> − d
r

) we find that u(n) ∈ C([0, σ (n)); C(T d ; R�))

a.s. Now let us fix i ∈ {1, 2} and n ≥ 1. Consider the (pi, κi, δi, qi)–solution (u
(n)
i , σ (n)

i )

provided by Proposition 3.1 with the parameters (pi, κi, δi, qi) and initial data u
(n)
0 . By 

Definition 2.3, (3.39), and the special choice of r , one obtains that (u(n), σ (n)) is a local 
(pi, κi, δi, qi)–solution to (2.1). Hence σ (n) ≤ σ

(n)
i and u(n) = u

(n)
i a.e. on [0, σ (n)) × � by 

maximality of (u(n)
i , σ (n)

i ). Now reasoning as in the proof of Theorem 2.10, by instantaneous 
regularization of (pi, κi, δi, qi)–solutions (i.e. (3.4)–(3.5)), we also obtain

σ
(n)
i = σ (n) a.s. and u

(n)
i = u(n) a.e. on [0, σ (n))×�. (3.40)

Thus in the following we write (u(n), σ (n)) instead of (u(n)
i , σ (n)

i ).
Step 2: For all i ∈ {1, 2}, up to extracting a (not relabeled) subsequence of ((u(n), σ (n)))n≥1, 

there exists a stopping time τi ∈ (0, σi) such that a.s. τi < lim infn→∞ σ (n) and

ui = lim
n→∞u(n) a.e. on [0, τi)×�. (3.41)

Note that the RHS (3.41) makes sense since τi < lim infn→∞ σ (n).
In this step we fix i ∈ {1, 2}. Moreover, we use the notation introduced in the proof of Propo-

sition 3.3 with the subscript i to keep track of the setting we are considering. For instance Xi

denotes the space introduced in [5, eq. (4.14)] in the (pi, κi, δi, qi)–setting. Here we prove the 
claim with τi given by (cf. the definition of σ1 at the end of the proof of Proposition 3.3)

τi := inf
{
t ∈ [0, T0,i] : ‖ui‖Xi (t) ≥

λ0,i

4

}
,

where ui is the (pi, κi, δi, qi)–solution on [0, T0,i] solution to (3.27) in the (pi, κi, δi, qi)–setting, 
and where T0,i and λ0,i are as in the proof of Proposition 3.3.

To prove the claim of Step 2, let σ
(n)
0,i be as in (3.30) with (u, X , λ0) replaced by 

(u
(n)
i , Xi , λ0,i ). By [5, Lemma 4.9], Remark 3.4(b) and [2, Corollary 5.2], up to extract a subse-

quence, it follows that

u
(n)
i → ui a.s. in Xi (T0,i )∩C([0, T0,i];B

2−δi−2
1+κi
pi

qi ,pi
). (3.42)

Therefore, we have τi < lim infn→∞ σ
(n)
0,i . Recall that (see (3.31))

σ
(n)
0,i ≤ σ

(n)
i a.s. and u

(n)
i = u

(n)
i a.e. on [0, σ

(n)
0,i )×�,

σ0,i ≤ σi a.s. and ui = ui a.e. on [0, σ0,i )×�.
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Hence τi < lim infn→∞ σ
(n)
i = lim infn→∞ σ (n) by (3.40). Finally, Step 1 and (3.42) give (3.41).

Step 3: Conclusion. By Steps 1 and 2, we deduce that

u1(t)= u2(t) a.s. for all t ∈ [0, τ1 ∧ τ2).

Set τ := τ1 ∧ τ2 ∈ (0, σ1 ∧ σ2] and let s > 0. Using the instantaneous regularization (i.e. 
(3.4)-(3.5)) we have 1{τ>s}u1(s) = 1{τ>s}u2(s) ∈ Cθ for all θ ∈ (0, 1). Hence, as in Step 1, the 
conclusion follows by repeating the argument used in Theorem 2.10. �
Remark 3.6.

(a) (A proof involving X –space). Proposition 3.5 can be also proved by using embedding results 
for the X –spaces (cf. the proof of [6, Proposition 6.8] where κi = 0 for some i ∈ {1, 2}). 
Besides being technically more difficult, this approach also requires additional assumptions 
on the parameters (pi, κi, δi, qi). These restrictions can be removed by tedious iteration ar-
guments. Hence we prefer the above more direct argument based on local continuity.

(b) The proof of Proposition 3.5 extends verbatim to other situations such as the Navier–Stokes 
equations with transport noise as analyzed in [3].

3.3. Positivity

Next we will prove the positivity of the solution stated in Theorem 2.13. For the proof we need 
the well-posedness and regularity results of Theorem 2.7, Proposition 2.9, the blow-up criteria of 
Theorem 2.10, and a maximum principle for linear scalar equations, which is a variation of [46]
(see Lemma A.1 in the appendix).

In case of smooth initial data the proof below can be shortened considerably. In particular, the 
approximation argument in Step 1 in the proof below can be omitted. Note that Step 1 relies on 
the rather technical local continuity result of Proposition 2.9.

Proof of Theorem 2.13. Below we write Y :=XTr
κc,p

= B
d
q
− 2

h−1
q,p (T d ; R�) for convenience.

Step 0: Reduction to the case u0 ∈ Lp(�; Y). To prove the claim of this step, assume that the 
claim of Theorem 2.13 holds for Lp(�)–integrable data. For any n ≥ 1, set Vn := {‖u0‖Y ≤ n}
and let (u(n), σ (n)) be the (p, κc, δ, q)-solution to (2.1) with initial data 1Vn

u0. Thus, by assump-
tion, Theorem 2.13 holds for (u(n), σ (n)) and therefore

u(n)(t, x)≥ 0 a.s. for all t ∈ [0, σ (n)) and x ∈T d . (3.43)

By localization (i.e. [5, Theorem 4.7(d)]), we have

σ = σ (n) a.s. on Vn, and u= u(n) a.e. on [0, σ )× Vn.

The previous identity, the arbitrariness of n ≥ 1 and (3.43) yield the claim of this step.
Step 1: Reduction to the case u0 ∈ L0(�; Cα(T d ; R�)) where α ∈ (0, 1). Fix α ∈ (0, 1). By 

Step 0 we can assume that u0 ∈ Lp(�; Y). In the current step we assume that Theorem 2.13
holds for initial data from Lp(�; Cα(Rd ; R�)). Note that from (2.14), we know that u is smooth 
on (0, σ) ×T d . This will be used several times below.
279



A. Agresti and M. Veraar Journal of Differential Equations 368 (2023) 247–300
Set

A+ := {ϕ ∈D(T d ;R�) : ϕ ≥ 0 and ‖ϕ‖Y ∗ ≤ 1}.
It is important to note that A+ is separable due to the separability of D(T d; R�), in order to 
have measurable sets below. Recall that u0 ≥ 0 by assumption. Let (C0, T0, ε0, σ0, σ1) be as in 
the statement of Proposition 2.9. Choose a sequence (u(n)

0 )n≥1 in Lp(�; Cα(T d ; R�)) such that 

u
(n)
0 ≥ 0 a.s. on T d and u(n)

0 → u0 in Lp(�; Y). Without loss of generality we may assume that 

E‖u0 −u
(n)
0 ‖p

Y ≤ ε0 for all n ≥ 1. Let (u(n), σ (n)) be the (p, κc, δ, q)-solution to (2.1) with initial 

data u(n)
0 . The reductive assumption ensures that

u(n)(t, x)≥ 0 a.s. for all t ∈ (0, σ (n)) and x ∈T d . (3.44)

Note that, for all t ∈ (0, T0], n ≥ 1 and γ > 0,

P
(

inf
r∈[0,t]

∫
T d

u(r) · ϕ dx ≤−γ for some ϕ ∈A+, σ0 > t
)

≤ P
(

inf
r∈[0,t]

∫
T d

u(r) · ϕ dx ≤−γ for some ϕ ∈A+, σ0 ∧ τ
(n)
0 > t

)
+ P (σ0 ∧ τ

(n)
0 ≤ t),

where τ (n)
0 is as in Theorem 2.7 with v0 replaced by u(n)

0 . Note that, by combining (2.11), (3.44)
and ‖ϕ‖Y ∗ ≤ 1 for ϕ ∈A+,{

inf
r∈[0,t]

∫
T d

u(r) · ϕ dx ≤−γ, σ0 ∧ τ
(n)
0 ≥ t

}
∩

{
sup

r∈[0,t]
‖u(r)− u(n)(r)‖Y < γ

}
=∅.

Hence

P
(

inf
r∈[0,t]

∫
T d

u(r) · ϕ dx ≤−γ for some ϕ ∈A+, σ0 > t
)

≤ P
(

sup
r∈[0,t]

‖u(r)− u(n)(r)‖Y ≥ γ, σ0 ∧ τ
(n)
0 > t

)
+ P (σ0 ∧ τ

(n)
0 ≤ t)

≤ C0(1+ γ−p)E‖u0 − u
(n)
0 ‖p

Y +C0P (σ1 ≤ t),

where in the last estimate we used (2.15) and (2.17). Letting n →∞ and γ = k−1 ↓ 0, the above 
estimate yields

P (Ut )≤ C0P (σ1 ≤ t), (3.45)

where

Ut :=
{

inf
r∈[0,t]

∫
d

u(r) · ϕ dx < 0 for some ϕ ∈A+, σ0 > t
}
.

T
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Note that {σ0 > t} = Ut ∪ Vt where

Vt :=
{

inf
r∈[0,t]

∫
T d

u(r) · ϕ dx ≥ 0 for all ϕ ∈A+, σ0 > t
}

= {
u(r, x)≥ 0 for all x ∈ T d , r ∈ (0, t]}∩ {σ0 > t},

where we used the smoothness of u. By definition Vs ⊇ Vt as s ≤ t and Vt ∈Ft for all t ∈ [0, T0]. 
The estimate (3.45) gives

P (Vt )= P (σ0 > t)− P (Ut )≥ P (σ0 > t)−C0P (σ1 ≤ t)→ 1 as t ↓ 0, (3.46)

where we used σ0 > 0 and σ1 > 0 a.s.
Fix t ∈ [0, T0] and consider (v, τ) the (p, κc, δ, q)-solution to (2.1) on [t, ∞) with initial data 

v(t) = vt := 1Vt
u(t). By definition of Vt , we have a.s. vt ≥ 0 on T d , and by the smoothness of 

(u, σ) (see (2.14)), we have vt ∈ L0
Ft

(�; Cα(T d ; R�)).
In particular, by the reductive assumption (applied at initial time t instead of 0), we have a.s.

v(r, x)≥ 0 for all r ∈ [t, τ ) and x ∈ T d .

As before, by localization (i.e. [5, Theorem 4.5(4)]), τ = σ a.s. on Vt and v = u a.e. on [t, τ) ×Vt . 
It follows that

P
(
u(r, x)≥ 0 ∀r ∈ [t, σ ) and x ∈ T d

)= lim
s↓0

P
({

u(r, x)≥ 0 ∀r ∈ [t, σ ) and x ∈T d
}∩ Vs

)
= lim

s↓0
P

({
v(r, x)≥ 0 ∀r ∈ [t, τ ) and x ∈ T d

}∩ Vs

)
= lim

s↓0
P (Vs)= 1,

by (3.46). Therefore, letting t ↓ 0 we obtain that a.s. u(r, x) ≥ 0 for all r ∈ (0, σ) and x ∈T d .
Step 2: Reduction to the case u0 ∈ L∞(�; Cα(T d ; R�)) where α ∈ (0, 1). Due to Step 1, the 

claim of Step 2 follows by localization as in Step 0.
Step 3: Reduction to positivity of a new function u+. By the previous steps we may suppose 

that u0 ∈ L∞(�; Cα(T d ; R�)) for some α > 0. For all (t, ω, x) ∈ R+ × � × T d , y ∈ R� and 
i ∈ {1, . . . , �}, let

f+
i (t,ω, x, y) := fi(t,ω, x, (y ∨ 0)), F+

i (t,ω, x, y) := Fi(t,ω, x, (y ∨ 0)),

g+n,i(t,ω, x, y) := gn,i(t,ω, x, (y ∨ 0)).

We denote by (2.1)+ the system of SPDEs (2.1) with (F, f, g) replaced by (F+, f+, g+). Since 
the assignment y 
→ y ∨ 0 is globally Lipschitz, (F+, f+, g+) satisfies Assumption 2.1(4) with 
the same parameters. Thus, by Theorem 2.7 there exists a (p, κc, δ, q)-solution (u+, σ+) to 
(2.1)+. Moreover, Theorem 2.10(1) implies (with T ↑∞)

P
(
s < σ+ <∞, sup

+
‖u+(t)‖L∞ <∞

)
= 0, for all s > 0. (3.47)
t∈[s,σ )
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We claim that

u+ ≥ 0 a.e. on [0, σ+)×�×T d . (3.48)

Next we show that (3.48) yields the claim of Theorem 2.13. More precisely we prove that, if 
(3.48) holds, then

σ+ = σ a.s. and u+ = u a.e. on [0, σ )×�×T d . (3.49)

Suppose that (3.48) holds. Thus, by Definition 2.3, (u+, σ+) is a local (p, κc, δ, q)-solution to 
the original problem (2.1). Since (u, σ) is a (p, κc, δ, q)-solution to (2.1), we have

σ+ ≤ σ a.s. and u+ = u a.e. on [0, σ+)×�×T d .

Since σ+ > 0 a.s., to prove (3.49) it remains to show that P (s < σ+ < σ) = 0 for all s > 0. To 
this end, fix s ∈ (0, ∞). Note that u+ = u a.s. on [s, σ+ ∧ σ), and u ∈ C([s, σ+] ×T d ; R�) a.s. 
on {s < σ+ < σ } by (2.14). Thus

P (s < σ+ < σ)= P
(
{s < σ+ < σ } ∩ sup

t∈[0,σ+)

‖u+(t)‖L∞ <∞
)

≤ P
(
s < σ+ <∞, sup

t∈[s,σ+)

‖u+(t)‖L∞ <∞
)

(3.47)= 0.

This proves (3.49) in case (3.48) holds.
Step 4: Proof of (3.48). Fix i ∈ {1, . . . , �}. As usual, for all j ≥ 1, we set

σ+
j := inf

{
t ∈ [0, σ ) : ‖u+(t)− u0‖L∞ + ‖u+‖L2(0,t;H 1) ≥ j

}
∧ j where inf∅ := σ.

By (2.13)-(2.14) (applied with (F, f, g) replaced by (F+, f+, g+)) we have limj→∞ σ+
j = σ+. 

Therefore, to show (3.48) it is suffices to prove

u+ ≥ 0 a.e. on [0, σ+
j ] ×�×T d .

In the following we fix j ≥ 1 such that ‖u0‖L∞(�;L∞) < j , and we drop it from the notation. 
Moreover, we set τ+ := σ+

j . Note that

sup
t∈[0,τ+)

‖u+(t)‖L∞ ≤ 2j a.s. and ‖u+‖L2(0,τ+;H 1) ≤ j a.s. (3.50)

Next we turn the nonlinearities into globally Lipschitz function by a cut-off argument. Let 
ζ :R� →R� be a smooth map such that ζ |{|y|≤2j} = 1 and ζ |{|y|≥2j+1} = 0. Set

fi (·, y) := f+
i (·, ζ(y)), Fi (·, y) := F+

i (·, ζ(y)), gn,i(·, y) := g+n,i(·, ζ(y)).

Then fi , Fi , gn,i are globally Lipschitz w.r.t. y ∈R� uniformly in (t, ω, x) ∈ [0, ∞) ×� ×T d .
For a vector y ∈ R� we set ŷi = (y1, . . . , yi−1, 0, yi+1, . . . , y�). Note that, a.e. on [0, τ+) ×

� ×T d ,
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f+
i (·, u)= [

f+
i (·, u)− f+

i (·, ûi )
]+ f+

i (·, ûi )
(3.50)= [

fi (·, u)− fi (·, ûi )
]+ fi (·, ûi ).

Below we will exploit that fi(·, ̂ui) ≥ 0 by (2.19). Similarly, by (2.20)–(2.21),

div(F+
i (·, u))= div[F+i (·, u)− F+i (·, ûi )],

g+n,i(·, u)= gn,i(·, u)− gn,i(·, ûi ).

Recall that Lipschitz functions are weakly differentiable. Hence, for a Lipschitz function R writ-
ing R(u) − R(v) = ∫ 1

0
d
ds
[R(u + s(v − u))] ds = ( ∫ 1

0 R′(u + s(v − u)) ds
)
(v − u), one can 

check that there exists bounded P ⊗ B(T d)-measurable maps rfi , rFi
, rgi ,n (depending on u

on [0, τ+) ×� ×T d ) such that

F+i (·, u)− F+i (·, ûi )= rFi
ui , fi (·, u)− fi (·, ûi )= rfi ui, gn,i(·, u)− gn,i(·, ûi)= rgi ,nui

(3.51)
a.e. on [0, τ+) ×� ×T d .

Now consider the following linearization of (2.1):

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
dvi − div(ai · ∇vi)dt = 1[0,τ+)

[
div(rFi

vi)+ rfi ,nvi + fi (·, ûi )
]

dt

+
∑
n≥1

[
(bn,i · ∇)vi + 1[0,τ+)rgi ,nvi

]
dwn

t , on T d ,

vi(0)= ui,0, on T d .

(3.52)

Let vi ∈ L2(�; C([0, j ]; L2)) ∩L2((0, j) ×�; H 1) be the global (2, 0, 1, 2)-solution to the linear 
problem (3.52) (well-posedness follows from [50, Chapter 4]). By (3.51), u+i is a solution to the 
problem (3.52) on [0, τ+). Therefore, by uniqueness u+i = vi on [0, τ+). Thus it remains to 
show vi ≥ 0 on [0, j ]. By (2.19), the inhomogeneity satisfies 1[0,τ+)fi (·, ̂ui) ≥ 0 a.e., and the 
coefficients of the linear parts are bounded. Therefore, the conditions of the maximum principle 
of Lemma A.1 are fulfilled, and thus a.e. on [0, j ] ×�, vi ≥ 0 on T d . Hence, a.e. on [0, τ+] ×�, 
we have u+i ≥ 0 on T d as desired. �
4. Higher order regularity

In this section we briefly explain higher order regularity of the solution to (2.1) provided by 
Theorem 2.7.

The next assumption roughly says that F, f and (gn) are C"α+1# in the y-variable, where 
α > 0 is some fixed number.

Assumption 4.1. Let α > 0, F, f and gn be as in Assumption 2.1(4). We assume that F, f and 
gn are x-independent, C"α+1# in y and, for all N ≥ 1 there is a CN > 0 such that a.s.

"α+1#∑
|∂j

y Fi(t, y)| + |∂j
y fi(t, y)| + ‖(∂j

y gn,i(t, y))n≥1‖�2 ≤ CN, |y| ≤N, i ∈ {1, . . . , �}, t ≥ 0.
j=1
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Theorem 4.2 (Higher order regularity). Let the assumptions of Theorem 2.7 be satisfied, where 
(η, ρ) are such that Assumption 2.1(2) holds, i.e. α > max{d/ρ, δ − 1}, ρ ∈ [2, ∞), and there 
exists an N such that

‖aj,k
i (t, ·)‖Hα,ρ(T d ) + ‖(bj

n,i(t, ·))n≥1‖Hα,ρ(T d ;�2) ≤N, t ≥ 0, i ∈ {1, . . . , �}, a.s.

Furthermore, suppose that Assumption 4.1 holds. Let (u, σ) be the (p, κc, δ, q)-solution to (2.1)
provided by Theorem 2.7. Then a.s.

u ∈H
θ,r
loc (0, σ ;H 1+α−2θ,ρ(T d ;R�)) for all θ ∈ [0,1/2), r ∈ (2,∞), (4.1)

u ∈ C
θ1,θ2+α− d

ρ

loc ((0, σ )×T d ;R�) for all θ1 ∈ [0,1/2), θ2 ∈ (0,1). (4.2)

From the above theorem one can see how the regularity of order α of the coefficients appears 
in (4.1) and (4.2). In particular, (4.1) with θ = 0 shows that the regularity of u is one order higher 
than the regularity of (a, b, h). In the above, we can also allow x-dependency of the nonlinearities 
Fi , fi and gn,i under suitable smoothness assumptions on the spatial variable.

Remark 4.3. If u0 ∈ L0
F0

(�; B1+α− 2
r

ρ,r (T d ; R�)) for some fixed r ∈ (2, ∞), then one can check 
from the proofs that the regularity result (4.1) (for the fixed r) holds locally on [0, σ) instead of 
(0, σ). However, this will not be used in the sequel.

To prove the result one can argue in the same way as in [3, Theorem 2.7]. Similar as in the 
proof of (3.4), the ingredients in the proof are stochastic maximal Lp-regularity (see [9]) and 
mapping properties for the nonlinearities as we have encountered in the proof of Proposition 3.1. 
Since the proofs go through almost verbatim, details are left to the reader.

5. Existence and uniqueness for large times in presence of small data

In this section we prove that the solution of reaction-diffusion equations provided by Theo-
rem 2.7 exists on large time intervals whenever the initial data is sufficiently small.

Theorem 5.1 (Existence and uniqueness for large times in presence of small data). Suppose that 
Assumptions 2.1 (p, q, h, δ) and 2.4 (p, q, h, δ) hold and set κ := κc := p( h

h−1 − 1
2 (δ+ d

q
)) − 1. 

Assume that there are M1, M2 > 0 such that a.s. for all t ≥ 0 and y ∈R�,

|f (t, x, y)| ≤M1 +M2(|y| + |y|h),
|F(t, x, y)| + ‖(gn(t, x, y))n≥1‖�2 ≤M1 +M2(|y| + |y| h+1

2 ).
(5.1)

Fix u0 ∈ L
p

F0
(�; B

d
q
− 2

h−1
q,p ). Let (u, σ) be the (p, κc, δ, q)-solution to (2.1) provided by Theo-

rem 2.7. For all ε ∈ (0, 1) and T ∈ (0, ∞), there exists Cε,T > 0, independent of u0 such that

E‖u0‖p
d
q − 2

h−1
+M

p
1 ≤ Cε,T =⇒ P (σ > T ) > 1− ε. (5.2)
Bq,p
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Roughly speaking, Theorem 5.1 shows that if u0 and M1 are close to 0, then u exists up to T
with probability > 1 − ε. Reasoning as in Remark 2.8(c), the above result also implies existence 
for large time of unique solutions with small data in L

d
2 (h−1)(T d ; R�). Under the assumptions 

of Theorem 5.1, the proof below also yields the following assertion:
If (u0, M1) satisfies the condition on LHS (5.2), then there exists a stopping time τ ∈ (0, σ ]

a.s. such that P (τ ≥ T ) > 1 − ε and

E
[
1{τ≥T }‖u‖p

Hθ,p(0,T ,wκc ;H 2+δ−2θ,q )

]
�θ E‖u0‖p

B

d
q − 2

h−1
q,p

+M
p

1 , for all θ ∈ [0, 1
2 ). (5.3)

To prove Theorem 5.1 and (5.3) one can modify the arguments used in the proofs of [3, Theo-
rem 2.11(1)] and [3, Theorem 2.11(2)], respectively. Instead of repeating the technical iteration 
argument used in [3, Theorem 2.11], we present an alternative approach under the additional 
assumption that u ≥ 0, and the mass conservation property: there exist α1, . . . , α�, C0 > 0 such 
that, for all t ≥ 0, x ∈ T d and y ∈ [0, ∞)�,

�∑
i=1

αifi(t, x, y)≤ C0

(
1+

�∑
i=1

yi

)
. (5.4)

Both conditions are natural for reaction-diffusion equations, see Subsection 1.1 and [61].
Due to assumption (5.4) we can control the lower order term M2|y| on the RHS (5.1) by 

exploiting the mass balance, i.e. for all T <∞ and i ∈ {1, . . . , �},

E

∫
T d

ui(τ, x)dx �T E

∫
T d

u0,i (x)dx, for any stopping time τ ∈ (0, σ ∧ T ]. (5.5)

We refer to Step 1 in the proof of Theorem 5.1 for the precise statement.
Before going into the proof of the simplified version of Theorem 5.1, we introduce some more 

notation. Recall that (Xλ, A, B, �, �) and κc = p( h
h−1 − 1

2 (δ + d
q
)) − 1 have been introduced 

in (3.6)–(3.7) and Theorem 2.7, respectively. Moreover, XTr
κc,p

= B
d
q
− 2

h−1
q,p , and for β1, β2 as in 

Lemma 3.2 (with q <
d(h−1)

δ
and thus q <

d(h−1)
2(δ−1)

), we let

X (t) := Lhp(0, t,wκc;Xβ1)∩L
h+1

2 p(0, t,wκc;Xβ2). (5.6)

One can readily check that the above space coincides with the one introduced in [5, Subsection 
4.3, eq. (4.14)]. By [5, Lemma 4.19], there exists θ ∈ [0, 12 ) such that

Hθ,p(0, t;wκc;X1−θ )∩Lp(0, t,wκc;X1)⊆X (t), t > 0.

In particular, the solution (u, σ) provided by Theorem 2.7 satisfies a.s. for all t ∈ (0, σ), u ∈
X (t).

As in [3], we need the following special case of [6, Lemma 5.3] and the maximal 
Lp–regularity estimates of [9].
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Lemma 5.2. Let Assumption 2.1 (p, q, h, δ) be satisfied. Fix T ∈ (0, ∞). Let (A, B) be as in 
(3.7). Then there exists K > 0 such that for every stopping time τ ∈ [0, T ], every

v0 ∈ L0
F0

(�;XTr
κc,p

), f ∈ L
p

P ((0, τ )×�,wκc;X0), g ∈ L
p

P ((0, τ )×�,wκc;γ (�2,X1/2)),

and every (p, κc, q, δ)-solution v ∈ L
p

P ((0, τ) ×�, wκc; X1) to

{
dv +Av dt = f dt + (

Bv + g
)

dW�2,

v(0)= v0,

on (0, τ) ×�, the following estimate holds

‖v‖p

Lp(�;X (τ ))
≤Kp

(‖v0‖p

Lp(�;XTr
κc,p)

+ ‖f ‖p

Lp((0,τ )×�,wκc ;X0)
+ ‖g‖p

Lp((0,τ )×�,wκc ;γ (�2,X1/2))

)
.

Proof of Theorem 5.1 – Case u≥ 0 a.e. on [0, σ) ×� ×T d and the mass conservation (5.4)
holds. Through the proof we fix ε ∈ (0, 1) and T ∈ (0, ∞). Let

σn := inf
{
t ∈ [0, σ ) : ‖u‖Lp(0,t,wκc ;X1) + ‖u‖X (t) ≥ n

}∧ T , n≥ 1,

where inf∅ := σ . We split the proof into several steps.
Step 1: (Mass conservation). There exists L > 0, depending only on (C0, αi, T ) in (5.4) such 

that, for all t ∈ [0, T ] and n ≥ 1,

E

∫
T d

�∑
i=1

ui(t ∧ σn, x)dx ≤ LE

∫
T d

�∑
i=1

u0,i (x)dx. (5.7)

On the RHS (5.7) we understood 
∫
T d

u0(x)dx := 〈1T d , u0〉. Note that 
∫
T d

u0(x)dx � ‖u0‖XTr
κc,p

.

To see (5.7) it is enough to stop (2.1) at time t ∧ σn, multiply each equation in (2.1) by αi and 
then sum them up. After integrating over T d and canceling the divergence terms and martingale 
terms, and using the mass conservation (5.4), we find that

E

∫
T d

�∑
i=1

αiui(t ∧ σn, x)dx

=E

∫
T d

�∑
i=1

αiu0,i (x)dx +E

∫
T d

t∧σn∫
0

αifi(s, x,u)ds dx

≤E

∫
d

�∑
i=1

αiu0,i (x)dx +C0E

t∧σn∫ (
1+

∫
d

�∑
i=1

ui(s, x)dx
)

ds
T 0 T
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≤E

∫
T d

�∑
i=1

αiu0,i (x)dx +C0E

t∫
0

(
1+

∫
T d

�∑
i=1

ui(s ∧ σn, x)dx
)

ds,

where we used the positivity of ui in the last step, which holds by assumption. Now (5.7) follows 
from Gronwall’s inequality applied to the function U(s) :=E 

∫
T d

∑�
i=1 ui(s ∧ σn, x)dx and the 

fact that αi > 0.
Step 2: (Estimates for the nonlinearities). Let K be as in Lemma 5.2. There exists c0, c1 > 0

independent of M1 such that, for all stopping times 0 ≤μ ≤ σ ∧ T a.s., one has

E‖�(·, u)‖p

Lp(0,μ,wκc ;H 2−δ,q )
+E‖�(·, u)‖p

Lp(0,μ,wκc ;H 1−δ,q (�2))

≤ c0M
p
1 + 1

2Kp
E‖u‖p

X (μ)
+ c1M

p
2

(
E‖u0‖XTr

κc,p
+E‖u‖ph

X (μ)

)
,

where (�, �) is as in (3.7). Finally, c0 is also independent of M2.
Recall that � = f + div(F ). We only provide the details for the estimate of f . The estimates 

for divF and � are similar. Following the proof of the �–estimates in (3.9), we obtain that

‖f (·, v)‖H 2−δ,q ≤ c0(M1 +M2‖v‖Lξ +M2‖v‖h
Lhξ ), v ∈H 2−δ,q , (5.8)

where c0 is a constant independent of (M1, M2, v) and ξ is as in (3.9).
By Fatou’s lemma it is enough to show the claim of Step 2 where μ is replaced by μn :=

σn ∧μ for n ≥ 1 and with constants independent of n ≥ 1. Hence, by using (5.8) we have

E‖f (·, u)‖p

Lp(0,μn,wκc ;H 2−δ,q )
≤ c0T M1 + c1M2

(
E‖u‖p

Lp(0,μn,wκc ;Lξ )
+E‖u‖ph

Lph(0,μn,wκc ;Lhξ )
).

Next we conveniently estimate the lower order term E‖u‖p

Lp(0,μn;Lξ )
appearing on the RHS of 

the above estimate. Let λ > 0 be arbitrary for the moment. Note that, by standard interpolation,

E‖u‖p

Lp(0,μn,wκc ;Lξ )
≤ 1

λ
E‖u‖p

Lp(0,μn,wκc ;Lhξ )
+C1E‖u‖p

Lp(0,μn;L1)

≤ 1

λ
E‖u‖p

Lp(0,μn,wκc ;Lhξ )
+C2

(
E‖u‖L1(0,μn,wκc ;L1)

+E‖u‖ph

Lph(0,μn,wκc ;L1)

)
,

where C1, C2 are constants which depend only on (p, c1, λ, M2, h, ξ, d) and we used (5.6). Now, 
let CT be the constant of the embedding

Lhp(0, t,wκc;Xβ1) ↪→ Lp(0, t,wκc;H−δ+2β1,q) ↪→ Lp(0, t,wκc;Lhξ )

for any t ∈ (0, T ]. Then, the previous shows

E‖u‖p

Lp(0,μn,wκc ;Lξ )
≤ CT

λ
E‖u‖p

X (μn)
+C2

(
E‖u‖L1(0,μn,wκc ;L1) +E‖u‖ph

X (μn)

)
.

To conclude, recall that, μn ≤ σn ≤ T a.s. and therefore
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E‖u‖L1(0,μn,wκc ;L1) ≤E

T∫
0

∫
T d

|u(t ∧ σn, x)|wκc(t)dx dt �E‖u0‖XTr
κc,p

,

where in the last inequality we used Step 1. Note that, by Step 1, the implicit constant in the 
above estimate is independent of n ≥ 1 as desired. Putting together the previous estimates, one 
obtains the claim for f (·, u) by choosing λ large enough. The remaining ones are similar.

Step 3: Let K be as in Lemma 5.2. Then there exists R > 0, independent of (M1, u0), such 
that for any N ≥ 1 and any stopping time μ satisfying 0 ≤ μ ≤ σ ∧ T and ‖u‖X (μ) ≤N a.s.,

E
[
ψR(‖u‖p

X (μ)
)
]≤E‖u0‖XTr

κc,p
+E‖u0‖p

XTr
κc,p

+M
p
1 , with ψR(x)= x

R
− xh.

As in the previous step we may prove the claim with μ replaced by μn := σn ∧ μ since 
‖u‖X (μ) ≤N a.s. for some N ≥ 1. The estimates of Lemma 5.2 and Step 3 readily implies

E‖u‖p

X (μn)
≤Kp

(
E‖u0‖p

XTr
κc,p

+E‖�(·, u)‖p

Lp(0,μn,wc;X0)
+E‖�(·, u)‖p

Lp(0,μn,wc;X1/2)

)
≤Kpc0M

p
1 +Kp

(
E‖u0‖XTr

κc,p
+ c1M2E‖u0‖p

XTr
κc,p

)+ 1

2
E‖u‖p

X (μn)
+Kpc1M2E‖u‖ph

X (μn)
.

Since ‖u‖X (μn) ≤ n a.s. by definition of σn, the term 1
2E‖u‖p

X (μn)
can be absorbed on the LHS 

and hence

E‖u‖p

X (μn)
≤ 2Kpc0M

p
1 + 2Kp(E‖u0‖XTr

κc,p
+ c1M2E‖u0‖p

XTr
κc,p

)+ 2Kpc1M2E‖u‖ph

X (μn)
.

Letting n →∞, the desired estimate follows after division by R = 2Kp max{c0, 1 + c1M2}.
Step 4: (A reduction). To prove Theorem 5.1 (i.e. the implication (5.2)) it is sufficient to prove 

the existence of Cε,T , rT > 0 independent of u0 such that

E‖u0‖XTr
κc,p

+E
∥∥u0

∥∥p

XTr
κc,p

+M
p

1 ≤ Cε,T =⇒ P (O) > 1− ε, (5.9)

where

O = {‖u‖X (σ∧T ) ≤ rT }.

Arguing as in Step 2 (cf. (5.8) and the text before it), one can check that there exists C∗ depending 
only on (M1, M2, K, c0, c1, rT ) such that

‖�(·, u)‖Lp(0,μ,wκc ;H 2−δ,q ) + ‖�(·, u)‖Lp(0,μ,wκc ;H 1−δ,q (�2)) ≤ C∗ on O,

where μ ∈ [0, σ ] is a stopping time. Define the stopping time τ by

τ = inf
{
t ∈ [0, σ ) : ‖�(·, u)‖Lp(0,μ,wκc ;H 2−δ,q ) + ‖�(·, u)‖Lp(0,μ,wκc ;H 1−δ,q (�2)) ≥ C∗ + 1

}∧T ,

where we set inf∅ = σ ∧ T . Then τ = σ ∧ T on O.
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By [9, Theorem 1.2], (A, B) has stochastic maximal Lp-regularity. Since (u, σ) is a 
(p, κc, q, δ)-solution to (2.1), as in [5, Proposition 3.12(2)] it follows that a.s. on [0, τ)

du+Audt = 1[0,τ )F (·, u)dt + (
Bu+ 1[0,τ )G(·, u)

)
dW�2,

and u(0) = u0. Now [9, Theorem 1.2] (see also Theorem 5.2 there) also gives

u ∈ Lp(�;H κc
p

,p
(0, τ,wκc;X1− κc

p
))∩Lp(�;C([0, τ ];XTr

κc,p
)). (5.10)

Using τ = σ ∧ T on O, by Sobolev embedding [5, Proposition 2.7] we obtain

u ∈H
κc
p

,p
(0, σ ∧ T ,wκc;X1− κc

p
) ↪→ Lp(0, σ ∧ T ;X1− κc

p
)

= Lp(0, σ ∧ T ;Hγ,q) a.s. on O,

(5.11)

where γ = 1 + δ−2 κc
p
= 2

p
+ d

q
− 2

h−1 . Let β = d
q
− 2

h−1 , and note that XTr
κc,p

= B
β
q,p , see (3.14). 

Thus (5.10) also implies

u ∈ C([0, σ ∧ T ];Bβ
q,p) a.s. on O. (5.12)

Hence, it follows that

P
({σ ≤ T } ∩O

)
(i)= lim

s↓0
P

({
s < σ ≤ T , sup

t∈[s,σ )

‖u(s)‖
B

β
q,p

+ ‖u‖Lp(s,σ ;Hγ,q) <∞
}
∩O

)
≤ lim sup

s↓0
P

(
s < σ ≤ T , sup

t∈[s,σ )

‖u(s)‖
B

β
q,p

+ ‖u‖Lp(s,σ ;Hγ,q) <∞
)

(ii)= 0.

Here in (i) we used σ > 0 a.s. (see Theorem 2.7) and (5.11)-(5.12). In (ii) we used Theo-
rem 2.10(2) with p0 = p, q0 = q , γ0 = γ and β0 = β (see also the comments below (2.18) on 
the set {σ = T }). Therefore, σ > T on O and therefore we showed that (5.9) implies the claim 
of Theorem 5.1.

Step 5: Conclusion, i.e. (5.9) holds. Let ψR be as in Step 3. It is easy to check that ψR has 
a unique maximum on R+ attained in x� := (Rh)−1/(h−1) and it is given by ψ� := x�

R
h−1
h

. Set 

rε,T = x
−1/p
� and hence O= {‖u‖X (σ ) ≤ x

−1/p
� }. Define

μ := inf{t ∈ [0, σ ) : ‖u‖X (t) ≥ x
−1/p
� } ∧ T , (5.13)

where inf∅ := σ ∧ T . We prove (5.9) with Cε,T = εψ�

2 . To derive a contradiction suppose that

E‖u0‖XTr
κc,p

+E‖u0‖p

XTr
κc,p

+M
p

1 ≤ εψ�

2
, and P (O)≤ 1− ε. (5.14)

From the definition of O and (5.13), we find that μ < σ ∧ T a.s. on � \O. Moreover,
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ψR(‖u‖p

X (μ)
)=ψ� a.s. on � \O, and ψR(‖u‖p

X (μ)
)≥ 0, a.s. on O. (5.15)

Therefore,

E
[
ψR(‖u‖p

X (μ)
)
]
=E

[
ψR(‖u‖p

X (μ)
)1O

]
+E

[
ψR(‖u‖p

X (μ)
)1�\O

]
(5.15)≥ P (� \O)ψ�

(5.14)≥ εψ�

(5.14)≥ 2
(
E‖u0‖p

XTr
κc,p

+M
p

1

)
.

The latter contradicts Step 2 since M1 > 0 by assumption. Thus P (O) > 1 − ε as desired. �
6. Extension to the one-dimensional case

Many of the results of the previous sections extend to the one-dimensional setting. How-
ever, different restrictions on the parameters will appear. The reason for this is that certain sharp 
Sobolev embeddings become invalid. An example is the condition on ξ in (3.9): − d

ξ
=−δ − d

q
. 

The latter can no longer hold for δ ∈ [1, 2) and d = 1, and therefore one takes the best possi-
ble choice ξ = 1, which in turn leads to other conditions on h and δ in the Sobolev embedding 
Hθ,q ↪→ Lhξ used in (3.9). Similar changes are needed for Subset 2. As these restrictions lead to 
sub-optimal exponents, it is not really interesting to consider critical spaces anymore. Therefore, 
there is no need to state Theorem 2.7 for d = 1. However, we will include the conditions on the 
exponents under which the one-dimension variant of Proposition 3.1 holds:

Proposition 6.1 (Local existence, uniqueness, and regularity for d = 1). Let Assumption 2.1
(p, q, h, δ) be satisfied for d = 1. Suppose that q ≥ 2 and 1

q
− 1

h
< 2 − δ and that one of the 

following holds:

(1) δ + 1
q

> 2 and 1+κ
p

≤ h
h−1 min

{
1 − δ

2 , 1 − δ
2 + 1

2h
− 1

2q

}
.

(2) δ + 1
q

< 2 and 1+κ
p

≤ h
h−1 min

{
1 − δ

2 , 1 − δ
2 + 1

2h
− 1

2q
, 1 − h−1

2h
(δ + 1

q
)
}

.

Then for any u0 ∈ L0
F0

(�; B2−δ−2 1+κ
p

q,p ), (2.1) has a (unique) (p, κ, δ, q)-solution satisfying a.s. 
σ > 0 and

u ∈ L
p

loc([0, σ ),wκ ;H 2−δ,q)∩C([0, σ );B2−δ−2 1+κ
p

q,p ).

Moreover, u instantaneously regularizes

u ∈H
θ,r
loc (0, σ ;H 1−2θ,ζ ) a.s. for all θ ∈ [0,1/2), r, ζ ∈ (2,∞),

u ∈ C
θ1,θ2
loc ((0, σ )×T d ;R�) a.s. for all θ1 ∈ [0,1/2), θ2 ∈ (0,1).

Moreover, the assertions of Proposition 3.3 hold under these conditions as well.

We left out the case δ+ 1
q
= 2 since it leads to slightly different conditions because one needs 

η = 1 + ε in this case, because the Sobolev embedding L1 ↪→ H 1−δ,q does not hold for the 
L1-endpoint (here η is as in Substep 1b of Lemma 3.2).
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Proof. First we discuss the required changes in the proof of Lemma 3.2. Taking ξ = 1 in (3.9)
we can set θ = max{ 1

q
− 1

h
, 0}. We need the condition 1

q
− 1

h
< 2 − δ to ensure �0 is of lower. 

This leads to the choice

β1 = max
{ 1

2q
− 1

2h
,0

}
+ δ

2
. (6.1)

For �1 and � we consider two cases:
Case δ+ 1

q
> 2. In this case we choose η= 1 and φ = max{0, 1

q
− 2

h+1 }. We need the condition 
1
q
− 2

h+1 < 2 − δ to ensure that �1 is of lower order, but the latter is automatically satisfied since 
2

h+1 > 1
h

. This leads to

β2 = max
{ 1

2q
− 1

h+ 1
,0

}
+ δ

2
.

It turns out that the sub-criticality condition (see (3.15))

1+ κ

p
≤ ρj + 1

ρj

(1− βj ) for j ∈ {1,2}, (6.2)

is most restrictive for j = 1, and this leads to the condition as stated in (1).
Case δ + 1

q
< 2. In this case we can take η, φ and β2 as in the proof of Lemma 3.2. Since 

δ + 1
q

< 2 < 2h
h−1 , elementary computations show that the condition φ < 2 − δ is automatically 

satisfied. This time the condition (6.2) gets an additional restriction as stated in (2). It only plays 
a role if q < h−1

2(δ−1)
.

Now the rest of the assertions follow in the same way as in Propositions 3.1 and 3.3. �
The following analogues of the previous results hold in the case d = 1 as well:

Remark 6.2. Let the conditions of Proposition 6.1 be satisfied with exponents (p, q, h, δ, κ).

(1) (Blow-up criteria). Suppose that Assumption 2.1 (p0, q0, h0, δ0) holds with h0 ≥ h, and 
that Proposition 6.1(1) or (2) hold for (p0, q0, h0, δ0, κ0). Let β0 = 2 − δ0 − 2 1+κ0

p0
and 

γ0 = 2 − δ0 − 2κ0
p0

. Then for all 0 < s < T <∞, Theorem 2.10(1)-(2) for d = 1 hold.
(2) (Positivity). The assertion of Theorem 2.13 holds for d = 1 if the conditions of Theorem 2.7

are replaced by the conditions of Proposition 6.1.
(3) In a similar way Theorems 4.2 and 5.1 hold for d = 1 in the setting of Proposition 6.1. Here 

Assumption 2.4 should be omitted and κ should be as in Proposition 6.1 instead of κc. Some 
changes are required in the arguments.

In Remark 2.2(d) we mentioned an alternative way to include the case d = 1 by adding a 
dummy variable. However, this leads to additional restrictions on the parameters.

7. Extensions to the case p = q = 2

In this section we explain how to extend the results of the previous sections to p = q =
2 and κ = 0. This end-point case follows in the same way as in [4], where we cover the so-
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called variational setting which can be seen as an abstract version of the case p = q = 2 and 
κ = 0. Its importance lies in the fact that it often allows to prove energy bounds which lead to 
global existence. All results in Sections 2 and 6 extend to p = q = 2 and κ = 0 under suitable 
restrictions which we explain below.

The variational framework is very effective in the weak setting (i.e. δ = 1), where coercivity 
conditions are easy to check. The case δ ∈ (1, 2) allowed in Theorem 2.7, is typically not in-
cluded as the fractional scale leads to difficulties with coercivity conditions. The results of this 
section (e.g. Proposition 7.3) might be combined to some of the results in [4] for instance to 
allow rougher initial data and/or to obtain higher order regularity (see Theorem 2.7 and 4.2, re-
spectively). However, one should be aware that using the case p= q = 2 and κ = 0 requires low 
dimension, or nonlinearities which do not grow too rapidly (see Subsection 1.4 and [8, Subsec-
tion 5.2]).

As in [4, Subsection 5.3] one can check that Definition 2.3 can be extended to p = q = 2, 
κ = 0 and δ = 1 if Assumption 2.1(1),(3), and (4) hold and there exists a constant K such that

|aj,k
i | + ‖bj

i ‖�2 ≤K, for all i, j, k and a.e. on R+ ×�×T d . (7.1)

Note that the regularity conditions on the coefficients in Assumption 2.1(2) are left out. In this 
section we often use the abbreviation Hs =Hs,2(T d ; R�) for s ∈R.

Proposition 7.1 (Local existence and uniqueness, and blow-up criteria for p = q = 2). Suppose 
that

h ∈

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(1,4], if d = 1,

(1,3), if d = 2,(
1,

4+ d

d

]
, if d ≥ 3.

(7.2)

Suppose that for all i ∈ {1, . . . , �} parts (1),(3), and (4) of Assumption 2.1 hold, and (7.1) holds. 
Let u0 ∈ L0

F0
(�; L2). Then there exists a unique (2, 0, 1, 2)-solution (u, σ) to (2.1) satisfying 

σ > 0 a.s. and

u ∈ L2
loc([0, σ );H 1)∩C([0, σ );L2) a.s.

Moreover, for all T <∞,

P
(
σ < T, sup

t∈[0,σ )

‖u(t)‖L2 + ‖u‖L2(0,σ ;H 1) <∞
)
= 0. (7.3)

Note that in d = 2, one cannot reach the scaling invariant case h = 3, cf. Subsection 1.4.

Proof. This follows by the same reasoning as in [4, Theorems 3.3, 3.4 and Section 5.3]. �
Of course a natural question whether under further conditions on the coefficients, the solution 

of Proposition 7.1 is a (p, κ, δ, q)-solution and has higher regularity than stated in Proposi-
tion 7.1. This indeed turns out to be the case.
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Proposition 7.2 (Regularity for p = q = 2). Suppose that (7.2) holds with the additional restric-
tion that h < 4 for d = 1. Suppose Assumption 2.1 (p, q, h, δ) holds for some δ ∈ (1, 2). Let 
u0 ∈ L0

F0
(�; L2). Let (u, σ) be the (2, 0, 1, 2)-solution to (2.1) provided by Proposition 7.1. 

Then the regularity assertions (2.13)-(2.14) hold, i.e.

u ∈H
θ,r
loc (0, σ ;H 1−2θ,ζ ) a.s. for all θ ∈ [0,1/2), r, ζ ∈ (2,∞),

u ∈ C
θ1,θ2
loc ((0, σ )×T d ;R�) a.s. for all θ1 ∈ [0,1/2), θ2 ∈ (0,1).

Proof. First consider d ≥ 3. Then without loss of generality we can assume h = 1 + 4
d

. Fix 
ε ∈ (0, 1/2) is so small that δ0 := ε + 1 < δ.

To prove the claim we will apply [6, Proposition 6.8] with

Yi =H−1+2i−ε, Xi =H−1+2i , p = 2, r ∈ (2,∞),
1

2
= 1+ α

r
+ ε

2
. (7.4)

Note that since ε ∈ (0, 12 ), (7.4) yields α ∈ (0, r2 − 1). First note that the conditions of Propo-
sition 3.1 with variant (3.1) hold with (p, q, κ, δ) replaced by (r, 2, α, δ0). Therefore, Part (A) 
of the proof of Proposition 3.1 shows that the conditions of [6, Proposition 6.8] are satisfied if 
we choose r such that 1

r
= maxj∈{1,2} βj − 1

2 , where βj is as in Lemma 3.2. From the proof of 
[6, Proposition 6.8] one sees that (u, σ) coincides with the (r, α, δ0, 2)-solution. Therefore, the 
required regularity follows from Proposition 3.1 (or equivalently the extrapolation result of [6, 
Lemma 6.10]).

Next let d = 2. Without loss of generality we can assume h ∈ (2, 3). In this case we need a 
slight modification of Lemma 3.2. To this end, let 1 < δ0 ≤ min{δ, 5/3} be fixed but arbitrary. 
The nonlinearity �0 satisfies the required estimates with h < 3, β1 = δ0

2 + 1
2 − 1

h
. Indeed, to see 

this in (3.9) one can take ξ = 1 (using δ0 > 1), and θ = d
q
− d

hξ
= 1 − 2

h
< 1

3 . Note that we are in 

the case q <
d(h−1)

δ
and θ < 2 − δ0 follows from δ0 ≤ 5/3. The estimates for �1 and � can be 

done by taking the optimal choices for η and φ in the Sobolev embeddings where we replace δ
by δ0.

Note that in Step 1 of the proof of Proposition 3.1 we have q <
d(h−1)

δ0
and 1+κ

p
+ 1

2 (δ0+ d
q
) ≤

h
h−1 with d = p = q = 2 and κ = 0 if we take δ0 ≤ h+1

h−1 . Now we are in the situation that we can 
repeat the argument of the case d ≥ 3, where we take δ0 = 1 + ε with ε ∈ (0, 1/2) small enough.

In the case d = 1, we argue in a similar way as for d = 2. We may suppose that h ∈ (3, 4). 
We first check Proposition 6.1(2). One can check that the minimum is attained at the middle 
expression. Let r > 2, α ∈ (0, r−1

2 ) and δ0 ∈ (1, δ ∧ 7
4 ] be arbitrary but fixed. Using h < 4 and 

that the right-hand side is strictly decreasing in h, we find that for δ0 small enough

1+ α

r
<

1

2
<

h

h− 1

(
1− δ0

2
+ 1

2h
− 1

4

)
.

Thus Proposition 6.1 is applicable with (p, q, κ, δ) replaced by (r, 2, α, δ0). Recall from (6.1)

that β1 = max
{

1
2q

− 1
2h

, 0
}
+ δ0

2 ∈ ( 1
2 , 1

)
. Also recall that from the proof of Proposition 6.1 one 

can see that β2 can be taken as in Lemma 3.2. Therefore, we can repeat the argument of the case 
d ≥ 3 once more. �
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The following complements the blow-up criteria of Theorem 2.10 and of Corollary 2.11. In 
particular, it shows that the solutions provided by Proposition 3.1 (or Theorem 2.7) are global in 
time if one can obtain energy estimates in an L2-setting. Here the initial data can be from space 
with lower smoothness than L2(T d ; R�). Thus the result extends the class of initial data covered 
by Proposition 7.1 under some smoothness conditions on the coefficients.

Proposition 7.3 (Global existence for rough initial data). Suppose that the conditions of Propo-

sition 3.1 are satisfied, in particular u0 ∈ L0
F0

(�; B2−δ−2 1+κ
p

q,p ). Let (u, σ) be the (p, κ, δ, q)-
solution obtained there. Suppose that (7.2) holds with h < 4 if d = 1. Then, for all 0 < s < T <

∞,

P
(
s < σ < T, sup

t∈[s,σ )

‖u(t)‖L2 + ‖u‖L2(s,σ ;H 1) <∞
)
= 0. (7.5)

Proof. We extend the argument in Theorem 2.10 to p = q = 2. First note that u satisfies the 
regularity stated in (3.4) and (3.5). In particular, the L2-norm and H 1-norm appearing in (7.5)
are well-defined.

Proposition 7.1 (up to translation) yields the existence of a (2, 0, 1, 2)-solution (v, τ) on 
[s, ∞) to (3.34) with initial data 1{σ>s}u(s) which satisfies τ > s a.s., and by Proposition 7.2
(here we use that h < 4 if d = 1),

v ∈H
θ,r
loc (s, τ ;H 1−2θ,ζ ) a.s. for all θ ∈ [0,1/2), r, ζ ∈ (2,∞). (7.6)

Moreover, by Proposition 7.1 (up to translation),

P
(
τ < T , sup

t∈[s,τ )

‖v(t)‖L2 + ‖v‖L2(s,τ ;H 1) <∞
)
= 0. (7.7)

We claim that

τ = σ a.s. on {σ > s} and u= v a.e. on [s, σ )× {σ > s}. (7.8)

Hence (7.5) follows from (7.7) and (7.8).
It remains to prove the claim (7.8). Since (u|[s,σ )×V , 1Vσ + 1�\Vs) is a local (2, 0, 1, 2)-

solution to (3.34) with initial data with initial data 1{σ>s}u(s), the maximality of (v, τ) yields

σ ≤ τ a.s. on {σ > s} and u= v a.e. on [s, σ ). (7.9)

To conclude it is enough to show that P (s < σ < τ) = 0. To this end we will apply the blow-up 
criteria (3.32). Indeed, by (7.6) and (7.9) we have u = v ∈ L

p

loc((s, σ ]; Hγ,q) a.s. on {s < σ < τ }. 
Combining this with (3.33) we find u ∈ Lp(0, σ ; Hγ,q) a.s. on {s < σ < τ }. Similarly, one can 
check that supt∈[0,σ ) ‖u(t)‖

B
β
q,p

<∞ a.s. on {s < σ < τ }, and therefore

P (s < σ < τ)= P
(
{s < σ < τ } ∩

{
sup

t∈[0,σ )

‖u(t)‖
B

β
q,p

+ ‖u‖Lp(0,σ ;Hγ,p) <∞
})

≤ P
(
σ < T, sup ‖u(t)‖

B
β
q,p

+ ‖u‖Lp(0,σ ;Hγ,p) <∞
)

(3.32)= 0. �

t∈[0,σ )
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Remark 7.4. From the proof of Proposition 7.2 it follows that the compatibility result of Proposi-
tion 3.5 extends to p = q = 2 and δ = 1 under the restrictions on h and d stated in Proposition 7.2.

Remark 7.5. By splitting the locally Lipschitz and growth conditions on f , F and g stated in 
Assumption 2.1(4) into three different growth conditions with parameters hf , hF and hg instead 
of h, one can further weaken the conditions in Propositions 7.1-7.3. Indeed, from [4, Section 5.3]
one sees that in Proposition 7.1 it is enough to assume hF , hg ≤ d+4

d
for d ≥ 1. The assumption 

on hf remains as it was for h. This leads to a slightly weaker assumptions on F and g for 
d ∈ {1, 2}. The same actually applies to the more general of Lemma 3.2.

Remark 7.6. One can also replace (L2, H 1) by (Hs, Hs+1) in the above results. This gives a 
wider range of nonlinearities which can be treated if s is large, but at the same time this choice 
requires more restrictions on the regularity of the coefficients, the spatial smoothness of the 
nonlinearities f, F, g and on the initial data (see e.g. [4, Section 5.4]).

Data availability

No data was used for the research described in the article.

Appendix A. A maximum principle for SPDEs

In [46], Krylov presented a maximum principle for linear scalar second order SPDEs, which 
are allowed to be degenerate. In the proof of the positivity result of Theorem 2.13 we need such 
a result in the non-degenerate setting, but with coefficients which have less smoothness. Below 
we extend the maximum principle to the case of non-smooth coefficients as one can use an 
approximation argument in the non-degenerate case. As before Theorem 2.13, here we say that 
v ∈D ′(T d) is positive (or v ≥ 0) if 〈ϕ, v〉 ≥ 0 for all test functions ϕ satisfying ϕ ≥ 0 on T d .

Lemma A.1 (Maximum principle for second order SPDEs of scalar type). Suppose that 
aij , ai, bi, c : [0, T ] × � × T d → R, (σ ik)k≥1, (νk)k≥1 : [0, T ] × � × T d → �2 are bounded 
and P ⊗B(T d)-measurable, and there is a γ > 0 such that a.s.

d∑
i,j=1

(
aij − 1

2
αij

)
ξiξj ≥ γ |ξ |2 on [0, T ] ×T d , (A.1)

where αij = (σ i, σ j )�2 . Let u0 ∈ L2(�; L2(T d)) and f ∈ L2(� × (0, T ); H−1(T d)) be such 
that a.e. u0 ≥ 0 and f ≥ 0. Let u ∈ L2(�; L2(0, T ; H 1(T d))) ∩ L2(�; C([0, T ]; L2(T d))) be 
the solution to ⎧⎪⎨⎪⎩

du−Audt = f dt +
∑
k≥1

Bkudwk
t ,

u(0)= u0,

(A.2)

where
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Au=
d∑

i,j=1

∂i(a
ij ∂ju)+

d∑
i=1

∂i(a
iu)+

d∑
i=1

bi∂iu+ cu, and Bku=
d∑

i=1

σ ik∂iu+ νku.

Then a.s. for all t ∈ [0, T ], one has u ≥ 0.

In the above solutions to (A.2) are understood in the sense of Defintion 2.3 with q = p = 2 and 
κ = 0. A similar result holds for general domains O⊆Rd with (for instance) Dirichlet boundary 
conditions.

Proof. For convenience of the reader we give the details of the approximation argument. Note 
that a unique solution exists by the classical variational setting (see e.g. [50, Theorem 4.2.4]) 
applied to the linear problem (A.2). In case of smooth coefficients and smooth f , it follows from 
that u ≥ 0 (see [46]). In order to prove u ≥ 0 in the above setting, it suffices to construct (un)n≥1
such that un ≥ 0 and un → u in L2(�; C([0, T ]; L2(T d))).

To approximate u we use a standard mollifier argument. Let ρ ∈ C∞(T d) be such that ρ ≥ 0
and 

∫
T d ρdx = 1. Set ρn(x) = ndρ(nx), hn = ρn ∗ h for h ∈ {aij , ai, bi, c, σ ik, νk, αij , f } and

Anv =
d∑

i,j=1

∂i (̃a
ij
n ∂j v)+

d∑
i=1

∂i(a
i
nv)+

d∑
i=1

bi
n∂

iv + cnv, and Bk
nv =

d∑
i=1

σ ik
n ∂iv + νk

nv,

where ãij
n = a

ij
n + 1

2 (σ i
n, σ

j
n )�2 − 1

2α
ij
n . Note that in general (σ i

n, σ
j
n )�2 �= α

ij
n , but the equality 

holds pointwise a.e. in the limit as n →∞, (possibly) up to a subsequence. Due to this seemingly 
unnatural definition we can again check the parabolicity condition (A.1):

d∑
i,j=1

(̃
a

ij
n − 1

2
(σ i

n, σ
j
n )�2

)
ξiξj =

d∑
i,j=1

(
a

ij
n − 1

2
α

ij
n

)
ξj ξj =

[ d∑
i,j=1

(
aij − 1

2
αij

)
ξiξj

]
∗ ρn ≥ γ |ξ |2.

Let un ∈ Z := L2((0, T ) ×�; H 1(T d)) ∩ L2(�; C([0, T ]; L2(T d))) be the unique solution 
to ⎧⎪⎨⎪⎩

dun −Anun dt = fn dt +
∑
k≥1

Bk
nun dwk

t ,

un(0)= u0.

Since the coefficients in the above linear SPDE are smooth, we apply the periodic case of [46, 
Theorem 4.3] to obtain un ≥ 0. It remains to show un → u in L2(�; C([0, T ]; L2(T d))).

Note that vn = u − un satisfies⎧⎨⎩dvn −Anvn dt = Fn dt +
∑
k≥1

(
Bk

nvn +Gk
n

)
dwk

t ,

vn(0)= 0,

where
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Fn := (A−An)u+ f − fn and Gk
n := (Bk −Bk

n)u.

Therefore, by standard regularity estimates (see [50, Theorem 4.2.4] and its proof),

‖vn‖Z ≤ C‖Fn‖L2((0,T )×�;H−1(T d )) +C‖(Gk
n)k≥1‖L2((0,T )×�;L2(T d ;�2))

≤ C‖(A−An)u+ f − fn‖L2((0,T )×�;H−1(T d ))

+C‖((Bk −Bk
n)u)k≥1‖L2((0,T )×�;L2(T d ;�2)).

Since for each h ∈ {aij , ai, bi, c, σ ik, νk, αij , f }, we have hnm → h a.e. for a suitable subse-
quence, and since u ∈ L2((0, T ) × �; H 1(T d)), it follows from the dominated convergence 
theorem that

‖(A−An)u‖L2((0,T )×�;H−1(T d )) → 0, and ‖((Bk −Bk
n)u)k≥1‖L2((0,T )×�;L2(T d ;�2)) → 0.

Note that in the above we used that u ∈ L2((0, T ) × �; H 1(T d)) as γ > 0 in (A.1). For the 
inhomogeneity f , writing f̃ = (1 −�)−1/2f , we have

‖f − fn‖L2((0,T )×�;H−1(T d )) � ‖f̃ − ρn ∗ f̃ ‖L2((0,T )×�;L2(T d )) → 0.

Combining the above we have ‖vn‖Z → 0, as required. �
References

[1] A. Agresti, Delayed blow-up and enhanced diffusion by transport noise for systems of reaction-diffusion equations, 
arXiv preprint, arXiv :2207 .08293, 2022.

[2] A. Agresti, N. Lindemulder, M. Veraar, On the trace embedding and its applications to evolution equations, Math. 
Nachr. 296 (4) (2023) 1319–1350.

[3] A. Agresti, M.C. Veraar, Stochastic Navier-Stokes equations for turbulent flows in critical spaces, arXiv preprint, 
arXiv :2107 .03953, 2021.

[4] A. Agresti, M.C. Veraar, The critical variational setting for stochastic evolution equations, arXiv preprint, arXiv :
2206 .00230, 2022.

[5] A. Agresti, M.C. Veraar, Nonlinear parabolic stochastic evolution equations in critical spaces part I. Stochastic 
maximal regularity and local existence, Nonlinearity 35 (8) (2022) 4100–4210.

[6] A. Agresti, M.C. Veraar, Nonlinear parabolic stochastic evolution equations in critical spaces part II: blow-up criteria 
and instataneous regularization, J. Evol. Equ. 22 (2) (2022) 56.

[7] A. Agresti, M.C. Veraar, Global existence and regularity for quaslinear SPDEs with transport noise, 2023, in prepa-
ration.

[8] A. Agresti, M.C. Veraar, Reaction-diffusion equations with transport noise and critical superlinear diffusion: global 
well-posedness of weakly dissipative systems, arXiv preprint, arXiv :2301 .06897, 2023.

[9] A. Agresti, M.C. Veraar, Stochastic maximal Lp(Lq)-regularity for second order systems with periodic boundary 
conditions, Ann. Inst. Henri Poincaré B, Probab. Stat. (2023), in press.

[10] S. Assing, Comparison of systems of stochastic partial differential equations, Stoch. Process. Appl. 82 (2) (1999) 
259–282.

[11] J. Bergh, J. Löfström, Interpolation Spaces. An Introduction, Grundlehren der Mathematischen Wissenschaften, 
vol. 223, Springer-Verlag, Berlin, 1976.
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