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PREFACE

Alla rinnovata forza di mia madre,
al Romano che è in mio padre, quindi in me.

With my brother, remembering to do push-ups...sure, also that "Hybris is our whole attitude to nature nowa-
days, our violation of nature with the help of machinery, and all the unscrupulous ingenuity of our scientists
and engineers", but mainly push-ups.

Professore: it has been a real pleasure. Thank you for your inspiring busyness and, at the same time, for
your flexibility and patience. Also thank you for welcoming me at PoliMi for the last couple of months: I hope
to be able to come back, one day. But first, see you soon, among asteroids and space debris!

Matteo Manzi
Milano, October 2019

Nunquam praescriptos transibunt sidera fines.

Never will heavenly bodies
transgress their prescribed bounds.

Henri Poincaré
1890
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EXECUTIVE SUMMARY

In interplanetary mission design, ballistic capture is the phenomenon by which a spacecraft approaches its
target body, and performs a number of revolutions around it, without requiring manoeuvres in between. For
a spacecraft to be captured, its gravitational interaction with at least two celestial bodies has to be taken into
account. Because of their fail-safe nature (eliminating the possibility of single point failures), their fuel effi-
ciency and their wider launch windows, ballistic capture trajectories are of particular scientific and engineer-
ing interest. Capture orbits are characterized by a specific qualitative dynamics, defining almost-invariant
regions in a given space, guiding transport phenomena; the introduction of structures, defining and bound-
ing such domains, naturally follows.

Traditionally, the set of initial conditions leading to capture, the Capture Set, has been computed by sam-
pling the domain of interest, and hence analysing the forward and backward behaviour of the orbit associ-
ated to each sample. The main limitations of this approach reside in its large computational cost and, even
for a dense grid, in the non-smooth approximation of the aforementioned boundary regions; the theory of
Lagrangian Coherent Structures (LCS) has the potential of overcoming both limitations, allowing at the same
time for a more insightful description of the phenomenon. In fact, Lagrangian Coherent Structures iden-
tify transport barriers in dynamical systems, separating regions with qualitatively different dynamics. The
development of heuristics applicable to ballistic capture trajectory design and informed by such theory (i.e.
flow-informed) appears desirable.

In this research, different flow-informed approaches are presented and their relations with ballistic capture
are discussed: following, a new heuristic, the Stroboscopic Strainline, is introduced. This new tool is therefore
applied to different case studies at Mars, in order to approximate the capture sets associated to different num-
bers of revolutions and geometries. While a real-ephemerides model has been used to describe the dynamical
environments, different levels of fidelity have been investigated: perturbing forces have been introduced not
only to obtain more accurate results, but also to test the robustness of the proposed technique with respect
to different features of the underlying dynamical model.

Finally, it is shown how Stroboscopic Strainlines are a good candidate for characterizing the qualitative be-
haviour of ballistic capture trajectories, both forward and backward in time.

Keywords— Ballistic capture, Weak Stability Boundary, Low-energy transfers, Lagrangian Coherent Structures, Lyapunov
exponents
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1
INTRODUCTION

1.1. CONTEXT

In astrodynamics, the goal of the trajectory design process is to obtain a solution that satisfies a number of constraints
and is, in some sense, the optimal one. The objective is often the minimization of the cost associated to a certain mission,
and hence the reduction of the spacecraft propellent necessary to reach its destination; reducing the ∆V associated to
a transfer trajectory leads to an exponential reduction of the spacecraft mass and, therefore, of the cost associated to its
launch.

While optimization is an important component of the design process, another key aspect is trying to incorporate in the
problem definition new features, allowing for new available solutions to arise. It is because of this consideration that the
aerospace community is focusing on the exploitation of dynamical nuances of the solar system: aerobraking and solar
sailing are, together with low-energy transfers discussed in this work, some examples of new design ingredients made
available by the presented approach.

As stated, this work is focused on the application of low-energy transfers in trajectory design: such nomenclature should
not be confused with "low-energy propulsion". It simply underlines the low value of the cumulative ∆V associated to the
mission phase, without specifying the kind of propulsion used to generate it.

1.1.1. BALLISTIC CAPTURE

A family of low-energy transfer trajectories is given by the ones making use of ballistic capture. The phenomenon has
been considered for the first time because of extraordinary circumstances. In 1991, the Japanese Hiten mission used a
low-energy transfer with a ballistic capture at the Moon, based on the works by Belbruno and Miller (among others, [1]):
the spacecraft was not designed to reach the natural satellite, so a standard Hohmann transfer was not feasible in terms
of available fuel, and, therefore, ∆V . [2]

Indeed, this kind of low-energy trajectories are characterized by a small velocity w.r.t. the target, and the spacecraft does
not have to perform a manoeuvre in its vicinity; while, compared to a Hohmann transfer, travel takes longer (Figure 1.1),
ballistic capture orbits are interesting from a space mission design point of view. In fact, making use of more traditional
approaches, some designs are excluded in an early stage (mostly because of high ∆V requirements); moreover, in order
to deal with the possibility of single point failures, strict robustness requirements have to be satisfied. Ballistic capture
orbits are attractive also because of their wider launch windows, since space missions using Hohmann transfers must
wait for the Earth alignment with the target body to occur.

1
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Figure 1.1: (a) Hohmann transfer. Low-energy transfer in the geocentric inertial frame (b), and in the Sun-Earth rotating frame (c). [3]

Since Hiten, many other missions used ballistic capture; one example is given by SMART-1, the first ESA mission to the
Moon (Figure 1.2). A trajectory involving capture was used because the mission could not impose launch window con-
strains: this underlines the flexibility of such mission design. Also, the risk evaluation of the mission highlighted many
positive aspects (e.g., [4]), both before and after capture:

• collision or close encounters with the target body, in the presence of problems with the propulsion system, can be
avoided;

• the mission design allows for navigation corrections;

• the absence of single point failures allows for recovery.

Figure 1.2: SMART-1 trajectory. The mission made use of low-thrust propulsion (spiralling phase) and ballistic capture. [4]

Other missions exploiting the ballistic capture phenomenon have been proposed. In this way, for the BepiColombo mis-
sion to Mercury, [5], solar electric propulsion can be used, avoiding once again the possibility of single point failures. For
the Lunette mission to the Moon, the tranfer trajectory would have the benefit of avoiding eclipses during cruise: [6]. The
use of low-energy transfers has been proposed for missions to the moons of Jupiter, to Mars and in the context of asteroid
retrieval as well ([7], [8], [9]). Other possible applications can be found in small-satellite missions to the Moon, relying on
low-thrust propulsion and/or solar sails, such as LunaH-Map and Lunar IceCube: [10].
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1.1.2. FLOW-INFORMED STRATEGIES
Mission design is a trade-off between model accuracy and design feasibility. With the development of tools to tackle
complex systems, their understanding is expanded and new solutions are revealed. In the Circular Restricted 3-Body
Problem (CR3BP), for example, invariant manifolds follow from the analysis of the qualitative dynamics in the vicinity of
unstable equilibrium points, as outlined for the first time in [11], and could not be found with a patched-conic view of
the mission design process. Figure 1.3, showing the projection of such structures onto position space, is a result of more
recent works (e.g. [12], [13]).

Figure 1.3: Projection of stable and unstable invariant manifolds onto position space. [12]

As a general consideration, the elimination of environmental features, triggering particular behaviours, limits available
solutions.

In an analogous manner, ballistic capture trajectories make use of the chaotic nature and, in general, of the nuances
of the dynamical system influencing the motion: [14]. In order to make their implementation feasible, the introduction
of flow-informed strategies appears desirable. Developed in works focused on hyperbolic Lagrangian Coherent Struc-
tures (e.g. [15], [16]), this research project will focus on building from the Finite-Time Lyapunov Exponent (FTLE) and the
Finite-Iteration Lyapunov Exponent (FILE) scalar fields: [17]. Such structures are an attempt to generalize the concept of
invariant manifolds, separating regions of the phase space associated to qualitatively different behaviours.

1.2. MOTIVATIONS
Multiple reasons justify the use of Lagrangian Coherent Structures (LCS) in ballistic capture trajectory design, together
with the development of related tools and heuristics. The application of analytical, differential instruments leads to high-
accuracy results, as opposed to the ones coming from brute-force sampling techniques. Another important advantage,
with respect to previous approaches, resides in a direct applicability in different phase spaces, justifying the increasing
interest of their use for design and analysis in astrodynamics; the investigation of structures in specific spaces allows for
a clearer understanding of the phenomenon and of its features; these can then be leveraged to construct low-energy tra-
jectories. The potential reduction of computational cost can increase the applicability of the technique for the Guidance,
Navigation and Control (GNC) system of autonomous missions. At the same time, the proposed flow-informed approach
can be superimposed onto models of different fidelities, allowing to take into account n-body perturbations, Solar Radi-
ation Pressure (SRP) and Non-Spherical Gravity (NSG), among others.

From a more abstract point of view, the secondary theoretical comparison between traditional methods related to the
ballistic capture literature and the ones coming from the Lagrangian Coherent Structures field of research, makes it pos-
sible to contribute building an encompassing theory.

1.3. RESEARCH QUESTION
At the end of the Literature Study [18] conducted prior to this work, the following research question has been formulated:



4 1. INTRODUCTION

Is it possible to characterize the ballistic capture mechanism, based on the initial osculating orbital parameters of the target-
relative geometry, making use of the theory of Lagrangian Coherent Structures?

In the question formulation process, a number of secondary (sub-)questions have also been identified:

1. which variables define the phase space in which the features of the capture set are best described?

(a) Which variables and methods allow for a fast computation of the capture set?

(b) Which variables make visualization straightforward?

2. Can new mathematical tools, developed in the context of time-dependent dynamical systems, be used in the tra-
jectory design process?

(a) Can the use of stroboscopic maps help in the identification of features of the capture set?

(b) Which Lagrangian method(s) is (are) best suited for Coherent Structures detection in Astrodynamics?

Question 2.a was triggered by [19] - Section 5.1 and [17] - Section 2; question 2.b by [20] and [21].

1.4. OBJECTIVE
Related to such questions, the objective of this work, expressed in high level terms, deals with further developing the
theoretical underpinning of low-energy transfer orbits, by making use of Lagrangian Coherent Structures in non-periodic
(and, more in general, time-dependent) dynamical systems in Astrodynamics. Following from the formulation of the
main research question given above, it reads:

by looking at Lagrangian Coherent Structures in Astrodynamics time-dependent dynamical systems, the research objec-
tive is to further develop a theoretical framework in which the behaviour of ballistic capture orbits, as a function of the
initial target-relative osculating orbital parameters of the spacecraft, can be explained.

Existing views on low-energy transfers in Astrodynamics (i.e. the Lagrangian Coherent Structures and the Ballistic Cap-
ture approaches) have been compared: because of the synthetic nature of this work, an important focus has been to look
for contradictory and/or inconsistent aspects of the different approaches, when applied to specific problems.

1.5. STRUCTURE
• Chapter 2 will present the various reference frames used in the work, together with their relations; it will than

outline the equations of motion of the dynamical systems of interest, with particular focus on perturbing forces,
such as Non-Spherical Gravity (NSG) and Solar Radiation Pressure (SRP). The implementation of the variational
equations, leading to the Cauchy–Green Strain Tensor, is also discussed here. The GRATIS toolbox will then be
introduced, focusing on those features related to the theoretical content of the chapter; its main routines will
finally be validated.

• Chapter 3 will focus on the ballistic capture phenomenon, giving definitions of objects of interest, such as the Cap-
ture Set and the Weak Stability Boundary (WSB), and presenting relevant results of previous works. The second part
of the chapter will again focus on the numerical implementation and on the description of the main algorithms,
used to compute such objects.

• Chapter 4 will describe various fields related to hyperbolic Lagrangian Coherent Structures1; from there, Strobo-
scopic Strainlines, the core idea of this work, will be presented and discussed. In conclusion, a flow-informed
strategy, applicable to study the ballistic capture phenomenon, will be outlined.

• Chapter 5 will present the results, comparing traditional algorithms with the ones coming from the given flow-
informed approach. This will be applied to different case studies, both forward and backward in time. The geom-
etry of the resulting trajectories will be given and discussed.
In conclusion, results associated to different 2D subsets of the phase space, will be given.

• Chapter 6 will summarise the conclusions of the work, underlining areas in which future developments appear
desirable.

• Appendix A will present the SPICE system, used to retrieve the ephemerides and the features of different celestial
bodies.

1Their definition is given in Section 4.5.
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2.1. REFERENCE FRAMES

2.1.1. EARTH MEAN EQUATOR AND EQUINOX OF J2000
In order to introduce the first reference frame, it is necessary to define J2000: it is the epoch corresponding to 12 : 00 at
Greenwich, on January 1st 2000, Barycentric Dynamic Time (TDB).

As given in [22] and discussed in Appendix A, the ephemerides are defined in the Earth Mean Equator and Equinox of
J2000 (EME2000) reference frame. This is an Earth centered inertial reference frame, where, as given in [23], p. 245:

• the +x-axis (xe ) points at the mean equinox at J2000;

• the +z-axis (ze ) points at the celestial North Pole;

• the +y-axis (ye ) completes the right-handed reference frame.

In literature, sometimes, EME2000 is identified only by the direction of its axis, without specifying the location of the
origin. It is therefore important to underline that, as stated in [24], the discrepancy between the International Celestial
Reference Frame (ICRF) and the "Dynamical Mean Equator and Equinox of J2000" reference frame is negligible (when
the latter is considered to be barycentric: [23], p.148)1.

2.1.2. RADIAL-TANGENTIAL-NORMAL FRAME

In literature, the ballistic capture phenomenon has mainly been studied with respect to reference frames related to the
orbit of the target body. In the Radial-Tangent-Normal frame at epoch t0 (RTN@t0, for brevity), centred at the target body:

• the z-axis (zr ) is perpendicular to the plane of the Sun orbit;

• the x-axis (xr ) is aligned with the Sun-planet line, pointing from the Sun to the planet;

• the y-axis (yr ) completes the dextral orthonormal triad.

As stated in [25], the transformation from RTN@t0 to EME2000 (Figure 2.1) is given by the following:

xe

ye

ze

=

 sinθ sinΩcos i −cosθcosΩ sinθcosΩ+cosθ sinΩcos i sinΩsin i

−cosθ sinΩ− sinθcosΩcos i sinθ sinΩ−cosθcosΩcos i −cosΩsin i

−sinθ sin i −cosθ sin i cos i


xr

yr

zr

 (2.1)

where i,Ω, ω and f are the inclination, the right ascension of the ascending node, the argument of periapsis and the true
anomaly of the Sun in the EME2000 frame, respectively; θ =ω+ f.

1For more details: https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/Tutorials/pdf/individual_docs/17_frames_
and_coordinate_systems.pdf (visited on 03-10-2019).

5

https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/Tutorials/pdf/individual_docs/17_frames_and_coordinate_systems.pdf
https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/Tutorials/pdf/individual_docs/17_frames_and_coordinate_systems.pdf
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Figure 2.1: Geometry of EME2000 and RTN@t0 frames. [25]

2.1.3. BODY MEAN EQUATOR FRAME
While the main results of this work are going to be presented in the Radial-Tangential-Normal Frame, the Body Mean
Equator Frame at Epoch (BME@Epoch) frame is nevertheless introduced. This is because

• minor results, presented in Section 5.7, make use of this frame;

• the reference frame is an input of the simulator used for this work. The implementation of the proposed technique
allows avoiding loss of generality, and future works may easily make use of this reference frame.

This frame is centred at the target body and (xb , yb , zb ) is defined such that:

• the zb -axis is aligned with the target spin axis;

• the xb -axis points to the ascending node of the target mean equator;

• the yb -axis completes the dextral orthonormal triad.

The relation between EME2000 and BME@Epoch (Figure 2.2), as given in [22], reads as follows:xe

ye

ze

=

−sinα −cosαsinδ cosαcosδ

cosα −sinαsinδ sinαcosδ

0 cosδ sinδ


xb

yb

zb

 (2.2)

where α and δ are the right ascension and declination, used to obtain the target spin axis direction.

Figure 2.2: Geometry of EME2000 and BME@Epoch frames. [22]

2.2. EQUATIONS OF MOTION
As previously stated, the proposed flow-informed technique can be superimposed onto models of different fidelities: be-
cause of this, a restricted n-body problem, with the addition of Solar Radiation Pressure and Non-Spherical Gravity, will
be used to formulate the equations of motion. This is, on the one hand, necessary, in order to take into account the fact
that the ballistic capture phenomenon is chaotic in nature, and small perturbing forces may change the behaviour of an
initial condition. On the other hand, simpler models (e.g. CR3BP) allow for for the use of more specific and more powerful
tools, such as invariant manifolds.
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Considering a system of n bodies, n − 1 of which called primaries, it is interesting to study the motion of a particle of
negligible mass w.r.t. them. From [22], the following differential equation can be used:

r̈+ µt

r 3
r =− ∑

i∈P
µi

(
ri

r 3
i

+ r− ri

||r− ri ||3
)

(2.3)

where, as also shown in Figure 2.3:

• r identifies the position of the spacecraft with respect to the origin of the reference frame, in which the target body
is located;

• r is the magnitude of the same vector;

• µt is the gravitational parameter of the target body and µi the one of body i;

• ri is the position vector of body i and ri is its magnitude;

• P is the set of n −2 perturbing bodies.

Figure 2.3: Geometry associated to the n-body problem.

In the context of this work, however, the following form, given in [25], underlines the hierarchy of influence of the bodies
on the motion of the particle:

r̈+ µt

r 3
r+µs

(
rs

r 3
s
+ r− rs

||r− rs ||3
)
=− ∑

i∈Q
µi

(
ri

r 3
i

+ r− ri

||r− ri ||3
)

(2.4)

Here Q is the set of n −3 perturbing bodies, Sun excluded. From the same work, when Solar Radiation Pressure and the
Non-Spherical Gravity of the target body are taken into account, the following differential equation governs the dynamics:

r̈+ µt

r 3
r+µs

(
rs

r 3
s
+ r− rs

||r− rs ||3
)
+Q f →i (t )∇UN SG = fSRP − ∑

i∈Q
µi

(
ri

r 3
i

+ r− ri

||r− ri ||3
)

(2.5)

where UN SG is an approximation of the potential function given in Section 2.2.2 and Q f →i is a matrix, relating the planet-
fixed reference frame (in which the function UN SG is defined) and the (pseudo-)inertial reference frame, in which the
equations of motion are written. More, about this, is given in Appendix A.

2.2.1. SOLAR RADIATION PRESSURE
In Equation (2.5), the effect of Solar Radiation Pressure (SRP) can be taken into account by virtue of ([23], p. 152):

fSRP = CR LS

4πc

A

m

r− rs

||r− rs ||3
(2.6)

where LS is the luminosity of the Sun (W), c is the speed of light (m/s), Cr is the reflectivity of the spacecraft and A and
m are its effective area (m2) and mass (kg ); r and rs are the position vectors of the spacecraft and of the Sun, respectively.
When A is assumed to be constant and independent of the orientation of the spacecraft (as it is the case in this work), the
acceleration model is called cannonball Solar Radiation Pressure.

2.2.2. NON-SPHERICAL GRAVITY
As given in [23], p. 527, general potential theory shows that, assuming a static behaviour (therefore neglecting phenomena
like ocean and pole tides), the gravitational potential of a given planet of arbitrary geometry and mass distribution, at a
point outside the planet itself, is described by

U =−µ
r

[
1+

∞∑
n=2

n∑
m=0

(
R

r

)n
Pn,m (sinφ)

(
Cn,m cosmΛ+Sn,m sinmΛ

)]
(2.7)
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with

Pn (x) = 1

(−2)n n!

dn

dxn (1−x2)n (2.8)

Pn,m (x) = (1−x2)m/2 dm Pn (x)

dxm (2.9)

and where R is the reference radius, r the distance from the body center of mass and µ its standard gravitational param-
eter; φ is the geocentric latitude, Λ is the geographic longitude. These spherical coordinates are relative to a target-fixed
reference frame, centred at its barycenter.
An alternative and more commonly used formulation of Equation (2.7) is given by

U =−µ
r

[
1−

∞∑
n=2

Jn

(
R

r

)n
Pn (sinφ)+

∞∑
n=2

n∑
m=1

Jn,m

(
R

r

)n
Pn,m (sinφ)cosm(Λ−Λn,m )

]
(2.10)

Equation (2.10) can hence be used to obtain the potential of the non-spherical components of the gravity field, used in
(2.5), and given by:

UN SG =U + µ

r
(2.11)

For the specific case of Mars, numerical values associated to Equation (2.10) are given in Appendix A, Section A.1.1.

2.2.3. IMPLEMENTATION
In order to integrate the equations of motion and implement all the methodology outlined, making use of the SPICE
ephemerides, the GRAvity Tidal Slide (GRATIS) toolbox has been used. Written in MATLAB and developed at PoliMi, its
name comes from the fact that the toolbox’s purpose is to make use of natural potential energy, analogous to the way in
which submarines rely on tides to save fuel. GRATIS also means gratuitously, i.e., only making use of potential energy
offered by the Solar system.

Numerical integration of the equations of motion is performed, making use of the ode113 integrator: [26]. This func-
tion makes use of an Adams-Bashforth-Moulton variable step size integration routine. A Cowell propagator is used: the
integrator propagates the Cartesian state of the spacecraft. These choices come from the analysis performed in [27] (Sec-
tion 4.8), whose results will be used as a starting point for this work.

Another important feature of GRATIS is the implementation of dimensionless quantities. Physical quantities are nor-
malized, making use of the following units:

• the unit of length DU is given by the mean radius of the central body. In the case of Mars, this is equal to 3396 km;

• the unit of time is given by

TU =
√

DU 3

µ

where µ is the gravitational parameter of the central body; in the case of Mars, this unit is approximately equal to
16 minutes.

The spacecraft has been modelled as a point mass with a mass-to-area ratio of 40 kg /m2, and a reflectivity of 1.1.
While many regularization techniques have been introduced in [18], GRATIS makes use of both the positions and sizes of
celestial bodies of interest (both planets and moons) to compute when a trajectory intersects them (more about this, in
Section 3.3.1). The propagation is therefore stopped before any need to map the propagated state onto a singularity-free
space.

LOSS OF SIGNIFICANCE

The formulation of the equations of motion has a direct impact on the efficiency of the numerical integration. In par-
ticular, considering the motion of a spacecraft in the vicinity of its target body, undergoing the gravitational attraction of
other celestial objects, let’s recall the last term of equation (2.3):

ri

r 3
i

+ r− ri

||r− ri ||3
, r → 0 (2.12)

Particularly when the spacecraft is located inside the Sphere of Influence (SOI) of the target body, the r -condition holds.
The two terms can be re-written as:

p

p3
− d

d3
(2.13)

where:

• p = ri is the position vector of body y ;

• d = ri − r is the position vector of body i , relative to the spacecraft (Figure 2.3).
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Since, studying ballistic capture, the spacecraft is often located in the vicinity of the target body, the terms p/p3 and
d/d3 are nearly equal: storing their difference in a computer would lead to a large rounding error, because of the limited
number of significant digits available for its representation.
In order to avoid such loss of significance, following [28] (Section 8.4), Equation (2.13) can be replaced by:

1

d3

(
r+ f (q)p

)
(2.14)

with

f (q) = q
3+3q +q2

1+ (1+q)3/2

q = r · (r−2p)

p ·p

Loss of significance can therefore be avoided, at the expense of the simulator computational complexity.

ROTO-PULSATING REFERENCE FRAME

In order to be able to switch from a low-fidelity model to an n-body problem model, the latter can be written as a per-
turbed CR3BP in a non-uniformly rotating, pulsating reference frame (RPRnBP - [29]); the geometry of the problem is
given in Figure 2.4.

Figure 2.4: Roto-pulsating reference frame. [29]

The position of the spacecraft in the inertial reference frame, r(t), can be related to the one in the new reference frame,
ρ(t), by means of:

r(t ) = b(t )+k(t )C(t )ρ(τ) (2.15)

where

b(t ) = m1r1(t )+m2r2(t )

m1 +m2
, k(t ) = ||r2(t )− r1(t )||

C = [e1(t ),e2(t ),e3(t )], e1 = r2(t )− r1(t )

k(t )

e3(t ) = (v2(t )−v1(t ))× (r2(t )− r1(t ))

||(v2(t )−v1(t ))× (r2(t )− r1(t ))||

e2(t ) = e3(t )×e1(t ), τ=
√

G(m1 +m2)

a3
(t − t0)

In the relation between t and τ, a is the mean distance of the two primaries over a long time span. By means of such
transformation, it is possible to compare the results of the full ephemeris model with the ones related to a simplified
dynamical model, understanding the effect of the refinement step on the results. A number of results, given in Section
5.6, are going to make use of this reference frame.

2.3. VARIATIONAL EQUATIONS
Independently of the terms considered in Section 2.2, once the reference frame is given, the motion of the massless body
can be described by: {

ẋ(t ) = f(x(t ), t )

x(t0) = x0
(2.16)
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with x(t ) ∈ Ω ⊆ R6. As usual, the first order differential equation (the velocity map) can be obtained at the expenses of
doubling the number of independent variables of the system2. Because of the nature of the (perturbed) n-body problem
presented above, there is a direct dependence with respect to time in the velocity: the system is non-autonomous.
The integration of this set of equations allows to compute the flow map of the system,

φt
t0

:Ω→Ω

x0 7→φt
t0

(x0) = x(t ; t0,x0)

giving its state at time t for each initial state x0 and initial time t0.
Moreover, once the State transition Matrix (STM)

Φ :=Φ(t ; t0,x0) = Dx0φ
t
t0

(x0) = Dx0 x(t ; t0,x0) (2.17)

is defined, it can be propagated by means of{
Φ̇ = Dxf(x, t )Φ = A(x, t )Φ

Φ(t0; t0,x0) = In
(2.18)

where A is the Jacobian of the velocity field and In is the identity matrix of size n. The derivation is given, among others,
in [31]. The joint system, characterized by n2 +n independent variables, defines the Variational equations, allowing to
propagate the State Transition Matrix of the dynamical system.

2.3.1. CAUCHY-GREEN STRAIN TENSOR
The Finite-time Cauchy-Green (CG) Strain Tensor can now be introduced:

∆(T,x0, t0) :=ΦT (t0 +T ;x0, t0) ·Φ(t0 +T ;x0, t0) (2.19)

It allows to quantify the relative stretching of nearby trajectories for a given time interval.
The CG tensor ∆, symmetric and positive definite, is therefore characterized by n real positive eigenvalues; it relates the
final state offset, with respect to the initial one, by means of the following Taylor expansion:

||δx(t0 +T )||2 ≈ ||Φ(t0 +T;x0,t0) ·δx0||2 = δxT
0 ·Φ(t0 +T;x0,t0)T ·Φ(t0 +T;x0,t0) ·δx0 = δxT

0 ·∆(T,x0, t0) ·δx0

Extensive use of this object will be made in Chapter 4; in particular, its eigendecomposition is a powerful tool to enable
the study of the underlying dynamics. The result of the process, allowing to obtain the eigenvalues 0 ≤ λ1 ≤ ·· · ≤ λn and
the associated eigenvectors, ξi , is shown in Figure 2.5.

Figure 2.5: Stretching Associated with Eigenvectors of the Cauchy-Green Tensor. [19]

2.3.2. IMPLEMENTATION
While the computation of the State Transition Matrix, and hence of the Cauchy-Green Strain Tensor, has been imple-
mented by means of integrating the variational equations given above, it is worth mentioning alternative approaches,
proposed in [19].

2See [30] for Ordinary Differential Equations (ODE).
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• Finite differencing allows to estimate the STM, by propagating initial state vectors separated by small perturba-
tions. The State Transition Matrix could be computed (e.g. 2D problem) using

Φ(t ; t0,x0) =


xi+1, j (t )−xi−1, j (t )

xi+1, j (t0)−xi−1, j (t0)

xi , j+1(t )−xi , j−1(t )

yi , j+1(t0)− yi , j−1(t0)
yi+1, j (t )− yi−1, j (t )

xi+1, j (t0)−xi−1, j (t0)

yi , j+1(t )− yi , j−1(t )

yi , j+1(t0)− yi , j−1(t0)

 (2.20)

with (i , j ) representing the initial perturbation in (x, y). While this is an efficient technique to estimate the State
Transition Matrix, it leads to less accurate results, compared to the Variational Equations integration. Nevertheless,
finite differencing has been used in this work, in order to compute the Jacobian of the velocity field A given in
Equation (2.18).

• Making use of an auxiliary grid (as the one given in [16]) allows to increase the accuracy of the computation, by
bracketing each of the primary grid points.

2.4. VALIDATION
In the validation of the various routines implemented in GRATIS, the TU Delft Astrodynamics Toolbox (TUDAT) has been
used as a reference; with this, it has been possible to propagate the state of the spacecraft and, propagating the variational
equations, obtain the State Transition Matrix of the problem, for a given initial state/epoch.
The simulation has been initialized at ’08 MAY 2015 12:36:08.640 (UTC)’, corresponding to 4.84360635825×108 seconds
after J2000; the final time is given by t f = 5.23686894807×108 s, and it corresponds to the epoch at which the spacecraft
completes one revolution around its central body, Mars.
Other bodies are included in the simulation, in order to validate the correct implementation of SPICE: together with Mars,
also the Sun, the Earth, Jupiter and Saturn (and, therefore, their ephemerides) are considered.
The spacecraft is assumed to be characterized by:

• Mass: 400 kg ;

• Surface: 10 m2;

• CR : 1.1;

Together with the central gravity introduced by the mentioned bodies, the motion of the spacecraft is influenced also by
(cannonball) solar radiation pressure and by the non-spherical components of Mars’ gravity field, up to degree and order
10.
The initial state of the spacecraft is implicitly given by its Kepler elements, expressed with respect to a Mean Earth Equa-
torial frame (at J2000), centred at Mars:

a = 1.37753631448×109 m, e = 0.99

i =ω=Ω= f = 0.0 r ad (2.21)

where a and e are the semi-major axis and eccentricity of the orbit, respectively.
This initial condition is in the Weak Stability Boundary3 of the problem, where third-body perturbations are known to
play an important role in the dynamics of the spacecraft.
The equations have been propagated using a Cowell propagator and an Adams-Bashforth-Moulton variable step size
integrator, with a minimum step-size of machine epsilon4 and a maximum step-size of positive infinity5; relative and
absolute tolerances have been set to 10−10. The same integration settings have been used to propagate the variational
equations of the system.

Figure 2.6 and 2.7 present the results of both propagations, looking at the position and velocity of the spacecraft, re-
spectively, during approximately 19 months. The final state of the GRATIS propagation is given by

x = 109 ×



1.094339216379882

0.000000000000940

−0.114790390419061

0.000000200931406

0.000000131982575

0.000000044718382


(2.22)

where the units are meters and meters per second. The final state (same units) of the TUDAT propagation is given by

3Chapter 3 will define this object, together with presenting an algorithm to compute it accurately.
4Machine epsilon is the difference between 1.0 and the next value representable by the floating-point (in this case type double).
5The positive infinity is the value with all bits of the exponent set and all bits of the fraction cleared.
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x = 109 ×



1.094584254790360

0.000796871130608

−0.114435163769937

0.000000200749525

0.000000132084634

0.000000044784178


(2.23)

Leading to the following position and velocity offsets:

||∆r|| = 9.0622×105 m

||∆v|| = 0.2187 m/s
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Figure 2.6: GRATIS-TUDAT Position verification
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Figure 2.7: GRATIS-TUDAT Velocity verification

Figure 2.8 represents the GRATIS propagation of the State Transition Matrix, while Figure 2.9 the one obtained with TU-
DAT:
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Figure 2.8: GRATIS State Transition Matrix propagation
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Figure 2.9: TUDAT State Transition Matrix propagation

The values associated to the final epoch of the propagations are given by:

10−7 ×ΦT =

=



−0.023874355942 −0.000212656418 0.000091293292 −2.365332506253 −262.983692323880 −0.038614800048

−0.181154966786 −0.001767440578 0.000779600869 −19.643441629881 −1995.363165428160 −0.346397908475

−0.083636818291 −0.000824513982 0.000345355469 −9.162896434402 −921.229930603506 −0.158034356618

0.000000038181 0.000000000369 −0.000000000161 0.000004096363 0.000420558619 0.000000071259

−0.000000028656 −0.000000000283 0.000000000125 −0.000003145076 −0.000315636210 −0.000000055712

−0.000000017109 −0.000000000169 0.000000000071 −0.000001882088 −0.000188445639 −0.000000033054


10−7 ×ΦG =

=



−0.024011594350 −0.000213986636 0.000091876199 −2.380117508339 −264.495336581092 −0.038872952120

−0.181094384438 −0.001766863755 0.000779349446 −19.637030175254 −1994.695855677720 −0.346290091969

−0.083595664423 −0.000824117517 0.000345191466 −9.158489967907 −920.776624795710 −0.157957959607

0.000000038170 0.000000000368 −0.000000000161 0.000004095160 0.000420437566 0.000000071238

−0.000000028673 −0.000000000283 0.000000000125 −0.000003146894 −0.000315819095 −0.000000055745

−0.000000017116 −0.000000000169 0.000000000071 −0.000001882883 −0.000188524799 −0.000000033067



where the units are the ones given in the associated Figures above. While TUDAT is more efficient in performing the
propagation, GRATIS contains a number of subroutines that make it a preferable toolbox, in the context of this thesis
work.
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BALLISTIC CAPTURE

3.1. INTRODUCTION

It is important to start by defining what ballistic capture is: it is a phenomenon by means of which the spacecraft ap-
proaches a target celestial body and starts revolving around it only by means of gravitational interactions with two or
more celestial bodies [32]. Because the process is reversible (i.e., the spacecraft can also escape from the target gravity
field) other forces, such as thrust or interaction with the target atmosphere, need to take place in order to make the cap-
ture permanent.
An alternative definition is given in [3]: "ballistic capture by a planet occurs when an object enters, under natural dy-
namics, within the sphere of influence of that planet and makes at least one complete revolution around it". While this
definition may be preferable, because it allows to take into account non-spherical gravity and solar radiation pressure, as
it is done in this work, the Sphere Of Influence (SOI) constraint has been relaxed in more recent works.
The study of the phenomenon allows to use low-energy transfers to reach a celestial body, eliminating the need for an
injection manoeuvre, and, therefore, the possibility of single-point failures.

3.2. STABLE SET & WEAK STABILITY BOUNDARY

3.2.1. ALGORITHMIC DEFINITION

Considering, in the context of a perturbed n-body problem, the motion of the particle P3 with respect to the target body
P2, its relative Kepler energy H2 can be introduced:

H2 = 1

2
v2

2 − µ

r2
(3.1)

from this it is easy to understand why at least one perturbing body is necessary, in order for capture to be possible: the
relative energy of the spacecraft has to go from positive to negative. In studying ballistic capture, the initial condition of
the motion is such that P3 starts at the periapsis of an osculating ellipse1 (Figure 3.1), therefore

r2 = a(1−e), v2 =
√
µ(1+e)

r2
(3.2)

1Because of this, the nomenclature (peri)apse map can be introduced. [10]

15
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Figure 3.1: Geometry of 1-stable and unstable trajectories relative to P2. [2]

Recalling the idea of Poincaré section (presented in Section 4.3), the initial position is on a radial segment emanating
from P2 and forming an angle θ with the P1P2 line: the search space is sampled, together with changing the value of
θ in [0,2π], also considering different initial distances from the target and different values of the eccentricity. In [2], for
example, the grid is given by

r = {0,2 ·10−3, . . . ,1.5}, θ = {0,2π/1000, . . . ,2π}, e = {0,0.05, . . . ,0.95} (3.3)

The resulting orbit is considered to be stable if P3 makes a complete turn around P2 maintaining a negative Kepler energy
after a revolution and without revolving around P1. From the analysis of the orbits associated to each l (θ), the set of stable
points, countable union of open intervals, can be introduced:

W(θ,e) = ⋃
k≥1

(r∗2k−1,r∗2k )

In this definition, the various r∗ are endpoints of stable intervals. As anticipated, varying θ in [0,2π] allows to introduce
the following set:

W(e) = ⋃
θ∈[0,2π)

W(θ,e)

Finally, considering all the eccentricities associated to a negative energy (i.e., e ∈ [0,1)), the Stable Set can be introduced:

W = ⋃
e∈[0,1)

W(e) (3.4)

From W , the Weak Stability Boundary (WSB) ∂W can be defined. It is the locus of points r∗(θ,e), for each radial line l (θ),
in which a change of stability in the associated trajectory occurs:

∂W = {r∗(θ,e)|θ ∈ [0,2π],e ∈ [0,1]} (3.5)

Roughly speaking, the Weak Stability Boundary identifies the separatrix between those points in the phase space (defining
the state of the spacecraft) leading to capture orbits and those leading to different behaviours, such as escape orbits. For
illustration purposes, fixing the eccentricity leads to the introduction of a particular subset of the WSB:

∂W(e) = {r∗(θ,e)|θ ∈ [0,2π]}. (3.6)

Dealing with its computation, [2] introduced a bisection method, in order to identify the exact location of the boundary
condition. The same has been done in this work: such method will be introduced in Section 3.5.

It is finally worth mentioning that relatively old works, like [32] and [33], presented an analytical definition/approximation
of the Stable Set and of the Weak Stability Boundary. Such elegant formulation has been abandoned in later works. The
too much conservative nature of this definition and its relations with the algorithmic one are deeply investigated in [34].
In fact, since only inside the target Sphere of Influence a two-body analysis is meaningful, the use of Kepler energy as
a reliable quantifier should be restricted to such region. It is because of such considerations that only the algorithmic
definition has been presented here.

3.2.2. GENERALIZED STABLE SET AND WSB
The idea of considering more intersections with l, in order to study the different stable sets, was first outlined in [35].
In this way, for a given n, a generalized Stable Set Wn can be introduced (Figure 3.2): it contains the initial conditions
for which the orbit makes n stable revolutions around the target. Recalling the definition of stability given above, the n
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revolutions are stable if the point mass returns at l (θ) with negative Kepler energy with respect to P2 and without making
a complete turn around P1.

Figure 3.2: Comparison between ∂W3 and ∂W6 in the CR3BP, for µ= 0.0121506683, for an initial circular osculating orbit. [35]

The work [2] further develops the idea considering the openness of the Stable Sets. This generalized Stable Set is defined
by the same relations given above: only the meaning of stability is different. From W , the Generalized Weak Stability

Boundary ∂W can again be defined as the locus of points r∗(θ,e), endpoints of an n-stable interval
(
r∗2k−1,r∗2k

)
.

3.3. 3D MODEL

While, in the 2D case, the introduction of a radial half-line is enough, in order to study the stability of the particle, the 3D
case requires the introduction of an half-plane. This is the case because, according to the stability criterion previously
defined, the motion would, otherwise, always be classified as unstable [33].

The work [36], generalizing the considerations in [33], presented an algorithmic definition of the WSB, in the context
of the Elliptic Restricted 3-Body Problem (ER3BP). In both these references, however, the half-plane is defined in a rotat-
ing reference frame, being related to models naturally described in it.

In [22], the intersection plane, fixed in the inertial reference frame, is defined by the initial position and angular mo-
mentum (see Figure 3.3): it is given by all the r = (x, y, z), such that

r · (h0 × r0) = 0 (3.7)

A complete revolution is performed at time t1 if the particle lies on the intersection plane:

r(k)(t1) · (h0 × r0) = 0 (3.8)

In particular, it has to lie on the semi-plane of interest:

r(k)(t1) · r0 > 0 (3.9)

Finally, the intersection has to be associated to complete revolutions:

(v(k)(t1) ·v0)(v(k−1) ·v0) > 0 (3.10)
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Figure 3.3: Definition of Spatial Stability. [22]

Escape is identified by the time te in which the Kepler energy Ht becomes positive and, at the same time, the particle is
located outside the target Sphere of Influence:

Ht (te ) = v2

2
− 1

r
> 0 (3.11)

r (te ) > Rs (3.12)

As previously mentioned, considering only the first of these conditions leads to a non-conservative classification.

3.3.1. ORBIT CLASSIFICATION & RANKING

The set of initial conditions can be divided into four subsets, so that all its elements belong to one and only one of the
subsets.

• The n-Weakly Stable Set Wn contains the elements associated to the orbits performing n complete revolutions
around the planet (Figure 3.4).

Figure 3.4: Weakly Stable Sample Orbit. [22]

• The n-Unstable Set Xn contains the elements associated to the orbits that, after n−1 complete revolutions, escape
the planet (Figure 3.5).

Figure 3.5: Unstable Sample Orbit. [22]

• The n-Crash Set Kn contains the elements associated to the orbits that, after n −1 complete revolutions, impact
the planet (Figure 3.6).
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Figure 3.6: Crash Sample Orbit. [22]

• The n-Acrobatic Set Dn contains the elements associated to the orbits that, after n−1 complete revolutions, satisfy
none of the above conditions within a given time span (Figure 3.7).

Figure 3.7: Acrobatic Sample Orbit. [22]

This Orbit Classification has been slightly modified from the one given in [25], underlining the generalization by [35].
Also, backward stability (and all other behaviours) can be defined, categorizing the orbits integrated backward in time
([37], [38]).
From these definitions, the Capture Set can be introduced:

Cn
−1 :=X−1 ∩Wn (3.13)

The set Cn
−1 contains all the conditions associated to orbits that, after being captured by the target body, perform n revo-

lutions around it.

3.3.2. STABILITY INDEX & CAPTURE RATIO

There has always been the need to somehow filter the obtained capture orbits and look for the ideal one; while [37]
introduced two filters, [22] introduced the Stability Index. It is given by

S = tn − t0

n
(3.14)

with tn the time at which the nth revolution is completed. Physically, such index represents the mean period of the
captured orbit.
In the context of this work, a normalized Stability Index has been introduced; this is simply given by:

S = S
Sk

(3.15)

where Sk is the stability index of to the Keplerian elliptic orbit (i.e., its period) associated to the same initial state. It is
given by:

Sk = 2π

[
r0

1−e0

]3/2

Without the proposed normalization, high values of the Stability Index S would identify not only irregular orbits, but
also the regular ones associated to high values of r0; this can also be inferred from Figure 3.8. The use of S , for the
categorization of a set of orbits, allows to identify the most regular one, irrespective of its size.
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Figure 3.8: Ballistic capture orbits and their stability index. [22]

Finally, the Capture Ratio, introduced in [25], measuring the occurrence of capture orbits, is given by

RC =
NCn

−1

Nr0 ×Nω0

(3.16)

where NCn
−1

is the number of elements in Cn
−1 and the denominator is equal to the number of investigated initial condi-

tions.

3.4. FEATURES IN A 3D, N-BODY PROBLEM (EPHE)
Using this model, [25] presents a comparison of the results in the EPHE reference frame with the ones in the simpler
CR3BP and ER3BP reference frames. Table 3.1 underlines the importance of taking into account the eccentricity of the
target orbit around the Sun, making the CR3BP unsuitable for the study of ballistic capture2. Moreover, for some celes-
tial bodies, the inclusion of n-body perturbations leads to different solutions. Because of such considerations, used in
defining the Case Studies given in Chapter 5, the development of a flow-informed strategy, suitable for models of different
fidelities, is desirable. Finally, analysis like the one conducted in [25] justify the introduction of the RPRnBP.

System Model Mercury Venus Earth Mars Jupiter Saturn

Rc (‰) CR3BP 0.020 0.118 0.148 0.203 0.311 0.182

ER3BP 0.907 0.128 0.161 0.295 0.207 0.223

EPHE 0.907 0.128 0.160 0.315 0.225 0.264

Smi n(TU ) CR3BP 3.037 7.367 9.277 15.180 56.809 77.823

ER3BP 1248 7321 7837 10.143 38.421 71.065

EPHE 1248 7229 7837 10.143 38.748 70.991

Table 3.1: Capture ratios and minimum stability indices for C6
−1, using different models. [25]

3.4.1. THE ROLE OF TARGET’S ECCENTRICITY

It can be seen (Figure 3.9) that, in general, considering the eccentricity of the target orbit around the Sun leads to larger
capture sets. Moreover, for some planets, considering a full n-body problem leads to similar results, with respect to the
ER3BP: when accurate enough, the choice of a simplified model should be preferred. Another conclusion is that the
capture ratio Rc increases for increasing planetary eccentricity.

2More about this, in Section 3.4.1.
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Figure 3.9: Capture ratio versus planetay eccentricity. Also a trendline is shown. [25]

3.4.2. THE ROLE OF TARGET’S TRUE ANOMALY

The previous results have been obtained considering the initial position of the planet to be at perihelion. When the planet
true anomaly is allowed to change, larger capture sets (i.e., larger values of Rc ) are obtained when:

• the orbit is prograde and f ∈ [π/2,3/2π];

• the orbit is retrograde and f ∈ [0,π/2]∩ [3/2π,2π].

Moreover, as it can be seen in Figure 3.10, the Stability index is minimized for f ∈ [0,π/2].

Figure 3.10: True anomalies of maximum Rc and minimum Smi n . [25]

3.4.3. THE ROLE OF PARTICLE’S INCLINATION AND ORIENTATION

The role of i0 andΩ0 has been investigated in the context of the ER3BP, since negligible discrepancies with higher quality
models have been detected. The main results, that can also be inferred from Figure 3.11, 3.12, are:

• the out-of-plane component of motion is crucial for maximizing the chance for capture; two ranges of inclination
maximize the capture ratio;

• the post-capture dynamics obtained from prograde orbits is, in general, more regular;

• the initial planes that maximize the chances of capture are the same that produce regular post-capture orbits.
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Figure 3.11: Capture ratio Rc as a function of i0 andΩ0 for different planets.[25]

Figure 3.12: Minimum stability index Smi n as a function of i0 andΩ0 for different planets. [25]

As anticipated, by taking into account these considerations and results, different case studies will be presented in Chapter
5.

3.5. IMPLEMENTATION: BISECTION METHOD
As previously discussed, the Capture Set is computed with a grid of points, expressed in polar coordinates, covering the
region of the initial osculating orbital plane around the target body. In order to be able to accurately compute the Weak
Stability Boundary, being a dense grid computationally infeasible, a bisection method has been implemented. It is im-
portant to state the assumption that made this choice reasonable: the possible Cantor-like structure of the WSB has not
been considered in this work3.

Once the initial osculating orbital plane is given (i.e. Ω and i ), for a fixed value of the eccentricity, it is possible to se-
lect the argument of perigee ω of interest. In this way it is possible to compute a grid of initial conditions in rp , and
categorize their behaviour as a function of only one variable. The identification of the biggest rp of the grid associated to
a stable orbit, rp0, together with the knowledge of the grid-size∆r , is necessary for the process initialization; the bisection
method is described in Algorithm 1.

3This is addressed, together with its dynamical causes, in [39].
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Result: rW SB
k = 0 ;
a = rp0, b = rp0 +∆r ;
x = (a +b)/2 ;
fx = St abi l i t y(x) ;

while (|b −a| > 10−10 || fx == 0) && k < 100 do
if fx == 0 then

b = x;
x = (a +b)/2 ;
fx = St abi l i t y(x) ;

else
a = x;
x = (a +b)/2 ;
fx = St abi l i t y(x) ;

end
k = k +1 ;

end
rW SB = x ;

Algorithm 1: Bisection algorithm

In Algorithm 1:

• The Stability function, used to compute fx , propagates the orbit associated to the initial condition given by x, and
gives a binary output: 1 if the orbit is n-stable, 0 is it is n-unstable.

• The iteration is performed until convergence and until the computed condition is stable. The second condition
is necessary, in order not to risk converging to an initial condition close to the WSB, but associated to an unstable
orbit.

Based on the content of Chapter 4, this algorithm will be generalized, allowing to refine ω for a fixed r (and, in general, to
refine a Kepler element, keeping fixed the other five); it will also be used to study the backward-in-time behaviour of the
initial condition.
Finally, the process can be visualized in Figure 3.13:
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Figure 3.13: Bisection Algorithm





4
LAGRANGIAN COHERENT STRUCTURES

4.1. INTRODUCTION
The understanding of complex mechanical phenomena, modelled as nonlinear and non-autonomous dynamical sys-
tems, requires the development of specific tools: in these cases, as presented in Section 1.1.2, one cannot study the qual-
itative behaviour of the whole system via fixed points and associated invariant manifolds. In recent times, Lagrangian
Coherent Structures (LCS) have been introduced: [40], [41], [17]. The word Lagrangian underlines the spacial evolution of
such structures in time, distinguishing this approach from an Eulerian specification of the flow field.
The behaviour of an autonomous dynamical system, with respect to its initial condition, can be studied by looking at
fixed points, periodic orbits, invariant manifolds and, from there, qualitatively categorize the motion. The structures
presented in this chapter are an attempt to generalize the concept of invariant manifolds, identifying transport barrier,
separating regions of the phase space with qualitatively different dynamics: such Coherent Structures "represent nearly
invariant manifolds even in systems with arbitrary time dependence". [42]
Their utility in astrodynamics can, in some sense, be tracked back to [43]1: studying the dynamic of a restricted problem
as a function of the initial position in phase space is equivalent to study the flow-field of fluid particles in physical space.

It should be noted that Section 4.3 and Section 4.4 will introduce two concepts that are not going to be applied in or-
der to produce results, nor to directly tackle the research questions. Their understanding has nevertheless been crucial in
the development of appropriate flow-informed strategies for trajectory design.

4.2. FINITE-TIME LYAPUNOV EXPONENTS
In Section 2.3, the finite time Cauchy-Green Strain Tensor has been introduced; the shorthand definition ∆ :=∆(T ;x0, t0)
will now be used. Being λn (∆) its largest eigenvalue, the Finite-Time Lyapunov Exponent (FTLE) is a field defined by

σT
t0

(x) = 1

|T | log
√
λn (∆) (4.1)

This metric, measuring the stretching between close trajectories (for a fixed time interval), can be applied to flow analysis
([19] - Section 2.4): its ridges, informally defined as hyper-surfaces along which one sees a smaller change in the value of
the scalar field than in directions transverse to it, play the role of invariant manifolds in autonomous dynamical system:
they are an heuristic procedure to identify LCS. [40]
This observation, as explained in [44] and [15], is only statistically robust: such procedure ignores the direction of the
eigenvector associated to the largest eigenvalue: it could generate also shearing deformations. Still, the fact that the flux
across an LCS is negligible, [42], makes this object and interesting tool.

Because of the limitations of the FTLE field, Section 4.5.1 will present some criteria, introduced to distinguish between
stretching and shearing deformations.

4.3. POINCARÉ & STROBOSCOPIC MAPS
Taking a section of the flow inRn with a codimension-one surface, the map that naturally arises, called Poincaré map2, is a
powerful tool to study the general behaviour of a dynamical system (Figure 4.1). These maps can be viewed as dynamical

1Section 2.7 - Two-dimensional streamline analogy
2For an exahustive presentation, see [30], Section 4.12.

25
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systems in which time is allowed to assume discrete values. In the context of the CR3BP, such mapping has been used to
relate Invariant Manifolds with the Weak Stability Boundary. [45]

Figure 4.1: Poincaré map from a flow on a section S. [30]

A special case of a Poincaré map, that can be introduced for non-autonomous, periodic dynamical systems (with period
T), is the stroboscopic map, in which the state of the system is studied in intervals of T time units.

4.4. FINITE-ITERATION LYAPUNOV EXPONENTS
In order to reduce the dimensionality of a four-dimensional problem and allow the representation of relevant results, [17]
made use of Poincaré sections. With this approach, a given hyperplane U ⊂ R4 can be advected until the orbits intersect
the hyperplane N times. From this, the Finite-Iteration Lyapunov Exponent (FILE) field

σN
t0

(x) = 1

|N | log

∣∣∣∣∣
∣∣∣∣∣ dPN (x)

dx

∣∣∣∣∣
∣∣∣∣∣ (4.2)

can be computed; P is the Poincaré map associated with the hyperplane U and the flowΦ.

As anticipated, in the context of this work, Poincaré mapping is not going to be used: in fact, while representability
remains an important focus of this work, the concept of FILE has been introduced because of its relation with the way in
which capture orbits are categorized and, therefore, with the definition of the WSB. In fact, one could still consider the
non-projected flow and introduce a time-varying FTLE field

σ
TN (x)
t0

(x) = 1

|TN (x)| log

∣∣∣∣∣∣
∣∣∣∣∣∣

dΦTN (x)
t0

(x)

dx

∣∣∣∣∣∣
∣∣∣∣∣∣ (4.3)

where TN (x), being the time it takes for the propagated orbit to intersect a section of the phase space, is a function of the
initial state.
With another conceptual step away from Poincaré mapping, it is possible to consider the intersection of the orbit in
physical space with a variable 2D plane, defined by the initial condition of the orbit: this is what has been done for the
computation of the capture set. In this way, each stable initial condition will be associated to a time TN , necessary to
perform N revolutions around the target body.

4.5. LCS - DEFINITION AND CLASSIFICATION
Now that different heuristics have been presented, it is possible to formally define Lagrangian Coherent Structures. They
are characterized by two properties:

• LCS should be material surfaces3. They need to have sufficient dimension to have a visible impact on the dynamics
and they must move with the flow;

• LCS should be characterized, locally, by the strongest attraction, repulsion or shear in the flow.

Their classification follows the classical invariant manifolds one:

• Hyperbolic LCS are the most attracting and repelling structures;

3See [46] for a formal definition of material surface.
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• Elliptic LCS are closed material surfaces;

• Parabolic LCS are structures characterized by the strongest shearing.

As already stated in Chapter 1, this work deals with hyperbolic Lagrangian Coherent Structures only.

4.5.1. VARIATIONAL THEORY
As introduced in Section 4.2, ridges of FTLE are not always associated to underlying structures; moreover, LCS are not
necessarily ridges of the FTLE field ([15] - Section 2.3). This Section will therefore present sufficient and necessary condi-
tions for the existence of LCS.

For a given initial state x0 and an arbitrary co-dimension 1 material surface M(t ), it is possible to introduce the tan-
gent space Tx0M(t0) and the one-dimensional normal space n0 := Nx0M(t0).
Because of the properties of the linearised flow, the advected tangent space is tangent to M(t ) in xt = φt

t0
(x0). On the

other hand, the advected normal space in not necessarily defined in the normal space Nxt M(t ) (Figure 4.2).

Figure 4.2: Advection of M(t0), Tx0M(t0) and n0. [15]

The advected normal space Dx0φ
t
t0

(x0)n0 can be expressed by means of

Dx0φ
t
t0

(x0)n0 = ρt
t0

(x0,n0) ·nt +πt
t0

(x0,n0) ·Txt M(t ) (4.4)

where ρt
t0

(x0,n0) is the repulsion rate. It can be computed by means of

ρt
t0

(x0,n0) = 1√
〈n0,∆−1n0〉

(4.5)

where ∆−1 is the inverse of the CG strain tensor.

Recalling the observations given in Section 4.2, together with the repulsion rate, the repulsion ratio is defined, in or-
der to assess which effect, between repulsion and shearing, is the dominant one. It can be computed by means of the
following:

νt
t0

(x0,n0) = min|e0|=1

ρt
t0

(x0,n0)
p〈e0,∆e0〉

, e0 ∈ Tx0M(t0) (4.6)

It is moreover possible to report the sufficient and necessary conditions, given in [15], for a material surface to be a LCS,
based on the invariants of the Finite-Time CG Strain Tensor:
"Given a compact material surface M(t ) ⊂ U ⊂ Rn over the time interval [t0, t0 +T ], it is a repelling LCS over the given
time interval if and only if the following hold for all x0 ∈M(t0)":

• λn−1(x0, t0,T ) 6=λn (x0, t0,T ) > 1;

• ξn (x0, t0,T ) ⊥ Tx0M(t0);

• Dx0λn (x0, t0,T ) ·ξn (x0, t0,T ) = 0;

• L(x0, t0,T ), given in Equation 4.7, is positive definite for all x0 ∈M(t0).
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L(x0, t0,T ) =


D2

x0
∆−1 [ξn ] 2λn−λ1

λ1λn

(
ξ1 ·Dx0ξnξn

) · · · 2λn−λn−1
λn−1λn

(
ξn−1 ·Dx0ξnξn

)
2λn−λ1
λ1λn

(
ξ1 ·Dx0ξnξn

)
2λn−λ1
λ1λn

· · · 0

...
...

. . .
...

2λn−λn−1
λn−1λn

(
ξn−1 ·Dx0ξnξn

)
0 · · · 2λn−λn−1

λn−1λn

 (4.7)

with

D2
x0
∆−1 [ξn ] =− 1

λ2
n

(
ξn ·D2

x0
λnξn

)
+2

n−1∑
q=1

λn −λq

λnλq

(
ξq ·Dx0ξnξn

)2

2D DOMAINS

In the case of a 2-dimensional domain, the four conditions can be reformulated. Following the considerations given in
[16], in order to also take into account numerical sensitivity and have a more robust implementation:
"Given a curve Γ(t ) ⊂U ⊂R2, repelling LCS over the time interval [t0, t0 +T ], for all x0 ∈ Γ(t0)":

1. λ1(x0, t0,T ) 6=λ2(x0, t0,T ) > 1;

2. ξ2(x0, t0,T ) ·D2
x0
λ2(x0, t0,T )ξ2(x0, t0,T ) < 0;

3. ξ1(x0, t0,T ) ∥ Tx0Γ(t0);

4. λ2(Γ(t0)), the average of λ2 over Γ(t0), is maximal among all nearby curves γ(t0), such that their tangent at x0 is
parallel to ξ1(x0, t0,T ).

4.6. STRAINLINES
Because of condition (3), given in Section 4.5.1, Lagrangian Coherent Structures are necessarily tangent to ξ1: the eigen-

vector associated to the smallest eigenvalueλ1 of the Cauchy-Green strain tensor∆t0+T
t0

(x0). For a given two-dimensional
projection of the phase space, such structures are 1-dimensional curves, called strainlines: [16] - p. 3.
A strainline γ(t0) ⊂Ω⊂R2 is obtained solving the following Cauchy problem:

x′(s) = ξ1(x(s), t0,T )

x(0) = x0 ∈Ω
|ξ1| = 1

(4.8)

Following [16], the system of equations can be scaled:{
x′(s) = ξ̃1(x(s), t0,T )

x(0) = x0 ∈Ω (4.9)

with
mathb f ξ̃1(x(s), t0,T (s)) = si g n(x(s))α(x(s))ξ1(x(s), t0,T (s)) (4.10)

• α(x(s)), allowing to stop the procedure, if a degenerate point is approached, is given by

α(x(s)) =
(
λ2(x(s))−λ1(x(s))

λ2(x(s))+λ1(x(s))

)2

• si g n(x(s)) ensure the smoothness of the strainline: in fact, at each integration step k, it is necessary for the tangent
vector to verify

ξ̃1 (x(s), t0,T (s)) · (xk−1 −xk
)≥ 0

As given in [19] - Equation 5.1, the latter condition can be equivalently implemented by studying the eigenvector used for
the previous integration step. Finally, in order to ensure the strainline to start in the direction of interest, with respect to
the origin of the reference frame, the sign of the eigenvector associated to the first integration is modified, if necessary, in
order to verify the following:

xk × ξ̃1(x(s), t0,T (s)) > 0

Since, as stated, strainlines associated to the FTLE field lead to the definition of ridges dividing the plane in dynamically
distinct regions (at least statistically), and since the WSB displays a similar role in the categorization of stable and un-
stable orbits, [47] (Chapter 4) investigated the similarities between these two objects. The main advantage of doing so is
that computing a LCS is, potentially, computationally less expensive then constructing a capture set: the separatrix can
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be computed, starting from one initial point of the WSB, and reducing by one the dimensionality of the problem.
The work [47], whose results are shown in Figure 4.3, analysed the Capture Set of an Elliptic Restricted Three-Body Prob-
lem (ER3BP), characterized by:

• Mass parameter: µ= 3.226208×10−7;

• Eccentricity of the primaries: ep = 0.093418;

• Initial true anomaly of the primaries: f0 = 0 rad.

Figure 4.3: n-stable sets and repelling LCS for the Sun-Mars system. In some regions, the LCS bounds the Stable set. [47]

The use of the same strainline, for different n-stable sets, does not appear consistent with the way in which the different
Stable Sets are computed. Moreover, as also [48] recently noticed, "poor matching is due to the fact that the LCS are
computed using a fixed integration time, whilst the integration time of each particle in the stable set varies".

4.6.1. 2D PROJECTION
A number of works are focusing on the application of Lagrangian Coherent Structures in high degrees-of-freedom sys-
tems; however, because of the simplifications arising from the reduction of the dimensionality (Section 4.5.1), but also in
order to be consistent with previous works (e.g., [47], [48]), a 2-dimensional flow will be considered here.
As previously discussed, the dynamical system is characterized by six degrees of freedom; some additional mapping needs
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to take place in order for the Streamline to be defined in a 2D space, as Capture Sets with fixed eccentricity are. Gener-
alizing the mapping introduced by [47] (Section 4.2.2), it is possible to introduce ψ, which is related to the physical flow
by:

ψ=π◦X X 2S ◦ I 2X X ◦φ◦X X 2I ◦S2X X ◦M
It is representable by means of:

R2 M−−−−−−−−−→R6 S2X X−−−−−−−−−→R6 X X 2I−−−−−−−−−→R6 Φ−−−−−−−−−→R6 I 2X X−−−−−−−−−→R6 X X 2S−−−−−−−−−→R6 π−−−−−−−−−→R2

{
xOP

0
yOP

0

}
7→



xOP
0

yOP
0
0

ẋOP
0

ẏOP
0
0


7→



x X X
0

y X X
0

z X X
0

ẋ X X
0

ẏ X X
0

ż X X
0


7→



x0

y0

z0

ẋ0

ẏ0

ż0


7→



xT

yT

zT

ẋT

ẏT

żT


7→



x X X
T

y X X
T

z X X
T

ẋ X X
T

ẏ X X
T

ż X X
T


7→



xOP
T

yOP
T

zOP
T

ẋOP
T

ẏOP
T

żOP
T


7→

{
xOP

T
yOP

T

}
(4.11)

In Equation (4.11), OP stands for "Orbital Plane", identified by the initial osculating orbital parameters. Its x-axis (pos-
itive side) is associated to ω = 0 rad. For a given value of the perigee distance rp and its argument (i.e. given the polar
coordinates), it is straightforward to obtain Cartesian coordinates of any point in such place, which are used as an input
for the given mapping.

• The function M allows to compute the velocity vector, in the same reference frame, for a given value of the eccen-
tricity. The velocity vector at perigee is given by

Vp =V eV

with

Vp =
√

1+e

rp
, eV = [−er 2,er 1], er = 1

rp
[er 1,er 2]

Since the z-component of both the position and velocity vectors is zero, it is possible to obtain the initial state of
the spacecraft in the OP reference frame;

• S2XX is a reference frame transformation, relating the orbital plane with a generic reference frame, XX, the one
with respect to which the orbital parameters of the spacecraft are defined. As discussed in the previous chapters,
one may be interested in defining the initial osculating orbital plane with respect to some non-inertial reference
frame (e.g., RTN@t0), and this intermediate transformation is therefore necessary. This linear transformation is
given by ([23], Section 11.8)

S2X X =
[

η 03x3

03x3 η

]
with η= AB ,

A =

 cosΩ −sinΩ 0

sinΩ cosΩ 0

0 0 1

 , B =

 1 0 0

0 cos i −sin i

0 sin i cos i


XX2S is its inverse transformation;

• XX2I is the reference frame transformation relating XX, in which the state of the spacecraft is given, with I, the
inertial reference frame, in which the equations of motion are formulated. The different relations, depending on
which XX is used, are given in Chapter 2. I2XX is its inverse transformation. Of course, in the case in which the
generic XX frame is inertial, the XX2I transformation is the identity.

• φ is the flow of the system, described by the equations given in Chapter 2;

• π is the projection from the state to the 2D position, simply given by

π(x, y, z, ẋ, ẏ , ż) = (x, y)

It should be underlined that here the OP reference plane is not identified by the osculating orbital parameters at
epoch T , but its the same given above.

ψ is therefore a 2D flow, and its strainlines can easily be computed. Being the strainlines associated to this mapping, and
not to φ, the Cauchy-Green strain tensor is given by

∆=ΨTΨ (4.12)

whereΨ is the Jacobian of ψ. The Jacobian of this 2D-flow is computed using the chain rule:

Ψ= Jψ = Jπ J T
S2X X J T

X X 2IΦJX X 2I JS2X X JM (4.13)
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• Φ, the State Transition Matrix, is computed propagating the variational equations of the system, as discussed in
Section 2.3;

• Because S2XX and XX2I are linear transformations and, in particular, rotations, their Jacobian is given by the rota-
tion matrix itself, and their inverse is equal to their transpose;

• The Jacobian of the projection is given by

Jπ =
[

1 0 0 0 0 0

0 1 0 0 0 0

]

• The Jacobian of M, computed analytically, is given by:

JM =



1 0

0 1

0 0
∂ẋ

∂x

∂ẋ

∂y
∂ẏ

∂x

∂ẏ

∂y
0 0


(4.14)

with
∂ẋ

∂x
=p

1+e
3x y

2(x2 + y2)7/4

∂ẏ

∂y
=−p1+e

3x y

2(x2 + y2)7/4

∂ẋ

∂y
=p

1+e

(
3y2

2(x2 + y2)7/4
− 1

(x2 + y2)3/4

)
(4.15)

∂ẏ

∂x
=p

1+e

(
1

(x2 + y2)3/4
− 3x2

2(x2 + y2)7/4

)

REPRESENTATION IN DIFFERENT SPACES

The modularity of the process allows to change the investigated space, without varying the core of the process.
An alternative mapping (that may require a generalization in the definition of the Stable Set) is presented here. For fixed
values of e,ω,rp , one can study how the stability is influenced byΩ, the Right Ascension of the Ascending Node and i , the
inclination. The choice of these two variables was driven by Figure 3.11 and 3.12.

In order to do this, only the outer functions of the given mapping need to be changed:

ψ=πiΩ ◦X X 2K ◦ I 2X X ◦Φ◦X X 2I ◦MiΩ

Representable by means of:

R2 MiΩ−−−−−−−−−→R6 X X 2I−−−−−−−−−→R6 Φ−−−−−−−−−→R6 I 2X X−−−−−−−−−→R6 X X 2K−−−−−−−−−→R6 πiΩ−−−−−−−−−→R2

{
i0

Ω0

}
7→



x X X
0

y X X
0

z X X
0

ẋ X X
0

ẏ X X
0

ż X X
0


7→



x0

y0

z0

ẋ0

ẏ0

ż0


7→



xT

yT

zT

ẋT

ẏT

żT


7→



x X X
T

y X X
T

z X X
T

ẋ X X
T

ẏ X X
T

ż X X
T


7→



aT

eT

iT

ωT

ΩT

fT


7→

{
iT

ΩT

}
(4.16)

Here MiΩ is the transformation that gives, for fixed values of rp ,e,ω, f , the relation between (i ,Ω) and the Cartesian
state, expressed in the same reference frame (XX). For this, the SPICE built-in function cspi ce_coni cs has been used.
XX2K is the inverse transformation, giving the Kepler elements as a function of the Cartesian State. Using again SPICE,
this is given by cspi ce_oscel t .
The Jacobians of these transformation have been computed numerically, allowing to compute the CG Strain Tensor asso-
ciated to a different space that, limited to the [0,π]×[0,2π] region, is associated to the surface of a sphere in physical space.

The presented transformation is just an example; it should now be clear how general the procedure is and how straight-
forward, because of the modularity of the process, it is to analyse different 2D subsets of the phase space.



32 4. LAGRANGIAN COHERENT STRUCTURES

4.6.2. STROBOSCOPIC STRAINLINES
Inspired by the introduction of a relation between strainlines and Finite Iteration Lyapunov Exponent, Stroboscopic Strain-
lines can now be defined. The introduction of this object is the core of this work. The name comes from the fact that each
point of the strainline is associated to a different time, associated to the orbit of the spacecraft around the target body.
While it should be noted that the motion of the spacecraft is not properly periodic, this name should capture the main
idea, at the same time showing how it has has been formulated.
A Stroboscopic Strainline, again given by γ(t0) ⊂Ω⊂R2, is the solution to a more general Cauchy problem:

x′(s) = ξ1(x(s), t0,T (s))

x(0) = x0 ∈Ω
|ξ1| = 1

(4.17)

The innovation of this work lies in the fact that, in the first equation of (4.17), the integration time T (s) is a function of the
independent variable s through x(s): recalling the definition of stability given in Section 3.2.2, T (s) is the final integration
time of an n-stable orbit in physical space.
This generalization allows to relate the concept of Lagrangian Coherent Structures with the way in which capture orbits
are defined. The utility of this tool, in the study of the phenomenon, should be now clear: the concept of Weak Stability
Boundary, presented in Chapter 3 is expected to be strictly related to the stroboscopic streamline here introduced.

4.7. IMPLEMENTATION
Figure 4.4 shows the conceptual steps, taken for the computation of the strainlines:
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Figure 4.4: Stroboscopic Strainlines - Conceptual Steps

1. First, a bisection algorithm is applied on a 1-dimensional space, in order to find a point on the Weak Stability
Boundary. In the schematic representation of Figure 4.4, this is performed varying the radius of perigee, for a
constant argument ω. As discussed in Section 4.7.1, however, also the opposite is possible.
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2. Once the initial point is obtained, the spacecraft can be propagated under φ, until n revolutions around the target
body are performed (or until the escape condition is satisfied). It should be noted that time T1 comes from the
investigation of φ, not ψ.

3. The variational equations are propagated until time T1, and the Jacobian of ψ, at such epoch, is used to compute
the CG strain tensor, together with its eigenvectors.

4. The identification of the eigenvector associated to the biggest eigenvalue allows to identify the tangent to the
strainline in the initial point.

This routine, also given in Algorithm 2, is therefore used to compute the tangent to the strainline on every point: its
integration solves Equation (4.17), leading to the Stroboscopic Strainline computation.
The same integrator used for the propagation of the orbits has been used to compute the strainline: for different cases,
its length, absolute and relative tolerance have been varied; their values will be presented in the following Chapter.

Result: x′(s)
xs

0 = [rW SB cosωW SB ,rW SB sinωW SB ] ;

xOP
0 =M(xs

0) ;

xX X
0 = S2X X (xOP

0 ) ;

x0 = X X 2I (xX X
0 ) ;

Tn (x0): Orbit Integration and analysis ;
Φ(Tn ): Variational Equations integration ;

Ψ= Jψ = Jπ J T
S2X X J T

X X 2IΦJX X 2I JS2X X JM ;

∆=ΨTΨ ;
(ξ1,ξ2,λ1,λ2): ∆ Eigendecomposition ;

ξ̃1(x(s), t0,T (s)): Equation (4.10) ;

x′(s) = ξ̃1(x(s), t0,T (s)) ;
Algorithm 2: Strainline tangent computation

The notation xs has been here used to identify the position on the 2D plane, not to be confused with the associated state
of the spacecraft in physical space, x.

4.7.1. INITIALIZATION AND BISECTION: GENERALIZATION

The streamline is integrated into segments and, because of this, the streamline integration process is (re-)initialized. The
main reasons for doing so are:

• avoiding divergence associated to numerical instability, while maintaining an integration tolerance leading to fea-
sible computation times;

• allow the process to identify a new boundary, once the strainline reaches a point in the vicinity of which no stable
orbit exists.

The initial point of the new segment is obtained with a Bisection method (Section 3.5) that requires an initial guess as
well. This is obtained using a local grid search, made of 150 samples equally spaced; for the first strainline segment and if
the local grid search does not lead to the identification of stable orbits, a wider grid search is performed, using 100 equally
spaced values of rp ∈ [1,50]. The value of argument of perigee, for this, is fixed, and given by

ω= atan2(y f , x f )

where atan2 is a four quadrant inverse tangent and y f , x f are the coordinates of the final point of the previous strainline
segment.

In order to select which variable, between rp and ω, is used as a constant during the following bisection algorithm, the
local grid search is performed using the variables initialization given in Algorithm 3:
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α= atan2(ξ f 2,ξ f 1) ;

β= atan2(y f , x f ) ;

R =
√

x2
f + y2

f ;

if |mod(α,π)−mod(β,π)| < 20.0◦ then
rp = R ;
ω=β+ l i nspace(−5◦,5◦,150) ;

else
ω=β ;
rp = R + l i nspace(−0.1,0.1,150) ;

end
Algorithm 3: Generalized initialization algorithm

where

• ξ f is the eigenvector of the Cauchy-Green tensor associated to the final integration step of the previous strainline
segment.

• α allows to compute the local direction of the previous strainline segment at its final point; β gives the angular
position of the final point of the previous strainline segment.

• R and β therefore identify the point, in polar coordinates, around which a local grid search should be performed:
which of the two variables (radius and argument of perigee) has to be used is decided using the if-condition given
above: if the strainline is close-to-radial, the search should be performed varying ω; rp otherwise.

Once the set of orbits, associated to the set of initial conditions given by Algorithm 3, is propagated, the inputs for the
following bisection algorithm can be identified. Because of presented variable generalization, this can be given by (ω =
β,rp0,∆r ) or by rp = R,ω0,∆ω. For the latter case, in which the search is performed along an arc of fixed radius, the
bisection procedure is given in Algorithm 4.

Result: ωW SB
k = 0 ;
a =ω0, b =ω0 +∆ω ;
x = (a +b)/2 ;
fx = St abi l i t y(x) ;

while (|b −a| > 10−10 || fx == 0) && k < 100 do
if fx == 0 then

b = x;
x = (a +b)/2 ;
fx = St abi l i t y(x) ;

else
a = x;
x = (a +b)/2 ;
fx = St abi l i t y(x) ;

end
k = k +1 ;

end
ωW SB = x ;

Algorithm 4: Bisection algorithm: ω case.

This is done because, as shown in the preliminary result given in Figure 4.5, as soon as the strainline becomes (close to)
radial, the refinement used to reinitialize the strainline leads to diverging from the WSB. Moreover, once the strainline
leaves the vicinity of the WSB, reaching an unstable region, the algorithm is not able to find the time associated to the
stability in that point, and it breaks down (as displayed in the top-left corner of the second plot).
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Figure 4.5: Preliminary result, motivating a generalized refinement.





5
RESULTS

5.1. INTRODUCTION
In this chapter, various results, coming from the application of the developed tools for different problems, will be given.
The first part of the chapter will present the capture sets associated to different models. The chapter will then focus on
the application of Stroboscopic strainlines, introduced in Chapter 4, to compute, for different problems and conditions,
the Weak Stability Boundary. This will be done for different numbers of revolutions, both forward and backward in time.
Moreover, the definition of the Capture Set will be translated geometrically, by computing the intersection of -1-Unstable
and n-Stable Stroboscopic Strainlines; finally, some orbits associated to the computed Capture Sets will be given.

5.1.1. CASE STUDIES DEFINITION
Different simulations have been set up, mainly in order to test the robustness of the introduced technique with respect
to different choices of model fidelities. For continuity reasons with respect to the majority of previous works in the field
(e.g., [27], [47]), Mars has been chosen as the target body, located at the origin of the reference frame.

• Case 1:
As a first case study, the initial epoch (i.e. Mars’ position along its orbit) has been randomly selected: In UTC,
the epoch is: 6th September 2020,10 : 40 : 00.0, corresponding to T0 = 6.526608692×108 seconds past J2000. Its
dynamics is closely related to a planar elliptic restricted three-body problem: in fact, while real ephemerides have
been used, only the gravitational influence of Mars and of the Sun have been considered. Moreover, since the
inclination of the set of initial osculating orbital parameters, expressed in a radial-tangent-normal reference frame,
is zero, the initial osculating orbit always lies in the plane of the two primaries.
The set of initial conditions, again expressed in a Mars-centered RTN reference frame, are given by:

e = 0.95;

Ω= θ = i = 0 r ad ;

The 2D grid of initial states is given, in terms of radius [DU] and argument of perigee [deg], by:

rp = {1,1+49/348,1+2 ·49/348. . .50}, ω= {0,2.5,5 . . .357.5} (5.1)

This grid will be used for the following cases as well.

The choice of an highly eccentric orbit comes from energetic considerations: numerical experimentation shows
that, while close-to-circular orbits are highly stable, forward in time, their -1-escape set X−1 is small, leading to
small capture sets.

• Case 2:
For the second case study, only the initial epoch of the simulation has been modified, such that Mars is at its
perihelion, at the initial simulation epoch. This is therefore set at 3r d August 2020,04 : 43 : 14.5, corresponding
to T0 = 6.497018637× 108 seconds past J2000. This value can be obtained, making use of the SPICE spkpos_s
function, and looking for the epoch associated to the minimum distance between Mars and the Sun.
This condition has been selected because, as given in [22], configurations with the planet at aphelion or perihelion
are of particular interest, favouring the capture phenomenon.

• Case 3:
With respect to the previous case, perturbations have been included, while Mars is still located at its perihelion, at

37
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the initial simulation epoch. In order to define the dynamical model, the environmental analysis performed in [27]
(Section 4.6) has been taken as a reference. While such analysis is only a preliminary one, making use of a number
of assumptions, it is enough to define a hierarchy of influence, and to therefore select the main environmental
features. The environment of this case study can has been modelled taking into account, in order of importance:

– Mars point-mass gravity;

– Sun point-mass gravity;

– Solar Radiation Pressure;

– Phobos and Deimos point-mass gravity;

– Mars spherical harmonics, up to degree and order 20;

– Earth point-mass gravity;

– Jupiter point-mass gravity.

It should be underlined that, for planetary systems such as Jupiter, the considered position is the barycenter of the
whole system, not just the central body’s one.
While, following the same analysis (Figure 5.1), [27] included all planets, from Mercury to Neptune, in the context
of this work only the main ones have been considered: in fact, the aim of this work is not primarily to compute
accurate capture orbits, but to demonstrate the robustness and flexibility of the proposed technique, with respect
to models of different fidelities.

Figure 5.1: Environmental analysis, in the vicinity of Mars, of [27]. Accelerations are due to: Mars, Mercury, Venus, Earth, Sun, Jupiter,
Saturn, Uranus, Neptune, Pluto, Phobos, Deimos, SRP (mass-to-area ratio = 40 kg /m2), NSG (up to degree and order 20).

• Case 4:
The same perturbations and initial simulation epoch, introduced in the previous case, define the dynamical model
used here. Here, the orbital plane of the initial osculating orbit of the spacecraft is inclined with respect to the one
in which Mars and the Sun lie. In fact, as discussed in Section 3.4.3 and shown in Figures 3.11, 3.12, the inclination
and the Right Ascension of the Ascending Node have a big influence on the capture phenomenon. Because of this,
the inclination and the RAAN of the initial osculating orbit, for this case, are be given by:

i = 0.7 · π
4
= 31.5deg

Ω= π

4
= 45deg

In fact, both values are associated to high values of the capture ratio (i.e., capture is more likely to occur).

As previously discussed, the computation of the Capture Set involves the study of the dynamics both forward and back-
ward in time: this will be done, separately, in the following sections.
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5.2. FORWARD STABILITY
Before introducing Stroboscopic Strainlines, the results of the GRATIS toolbox alone will be given: for each case study,
the 1-Stable, 2-Stable, 4-Stable and 6-Stable Sets will be given. All the results have been obtained from the propagation
of 50400 initial conditions, defined by the polar coordinates introduced in the previous section. The following plots will
also make use of the Normalized Stability Index, introduced in Section 3.3.2.

5.2.1. CASE 1
Figures 5.2 and 5.3 show the Stable Sets of the first case study. A relevant consideration is that the stable set is not a
connected one, and it is not possible to define all of its points looking for one boundary; the majority of its points are
nevertheless connected, and the computation of the "main" Weak Stability Boundary allows for a good approximation of
the set of stable solutions.
One should also notice that the non-connected regions of the set are characterized, on average, by an higher Normalized
Stability Index: this implies that the orbits associated to such points are highly non-Keplerian.
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Figure 5.2: 1-stable and 2-stable sets of Case Study 1 and their Normalized Stability Index
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Figure 5.3: 4-stable and 6-stable sets of Case Study 1 and their Normalized Stability Index
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The propagations necessary to build these sets required a computation time of approximately 4 hours. The machine
used for all the simulations is made of 80 "Intel(R) Xeon(R) CPU E5-4620 v4 @ 2.10GHz" processors, each with a cache
size of 25600 KB. If not differently stated, each simulation, by means of parallel computing, made use of approximately 10
processors.

5.2.2. CASE 2
The same considerations given above hold for Figures 5.4 and 5.5 as well. The propagations required approximately 4.4
hours; because the model is the same, the computations necessary to obtain a Stable Set with the same size are of the
same order of magnitude as the previous case.
For all the n-stable sets considered in these first two cases, the Normalized Stability Index increases in the vicinity of the
Weak Stability Boundary. This, however, appears to be true only for small values of rp0, and for certain intervals of ω0.
It is not clear whether or not the former limitation is a consequence of the fact that the grid gets less dense for greater
values of rp0, leading to a less accurate estimation of the n-Stable set. Nevertheless, the latter limitation, which can be
appreciated by looking at the internal limit of the 1-Stable Sets, is interesting from a dynamical point of view.
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Figure 5.4: 1-stable and 2-stable sets of Case Study 2 and their Normalized Stability Index
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Figure 5.5: 4-stable and 6-stable sets of Case Study 2 and their Normalized Stability Index
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5.2.3. CASE 3
In this case perturbations have been introduced. As far as the geometry of the capture set is concerned (Figures 5.6 and
5.7), only minor variations, with respect to the previous case, are present. The same is true for the value of the normalized
stability index. In fact, [25] concluded that, while "the CR3BP is not adequate for constructing ballistic capture orbits,the
ERTBP is a good approximation of the real model".
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Figure 5.6: 1-stable and 2-stable sets of Case Study 3 and their Normalized Stability Index
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Figure 5.7: 4-stable and 6-stable sets of Case Study 3 and their Normalized Stability Index
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The introduction of perturbations increased the computation time to approximately 5 days. This is because, every time
the acceleration of the spacecraft has to be computed, the relative position of different celestial bodies needs to be re-
trieved from SPICE: ephemerides retrieval remains the bottleneck of the procedure.

5.2.4. CASE 4
The geometry shown in Figure 5.8, 5.9 is fairly different from the previous cases; in fact, the depicted plane is inclined
with respect to the one in which the Mars and the Sun lie. The computation required approximately 6 days.
It is interesting to notice that, in this case, the 1-Stable Set is connected, with a few exceptional cases in the bottom-left
(and top-right) of the figure, where more than one stable-unstable transition is occurring. It is also relevant to underline
that, in this geometry (in which the initial osculating orbital plane it inclined with respect the the one in which the Mars
orbit lies) a non-negligible number of initial conditions is associated to a Normalized Stability Index lower than 1: the
perturbations acting on the associated trajectories are increasing the spacecraft angular velocity around Mars. This may
be a desired feature, from a design point of view.
Finally, it looks like to knowledge of the Normalized Stability Index associated to an n-Stable Set cannot be used to esti-
mate the (n +1)-Stable Set.
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Figure 5.8: 1-stable and 2-stable sets of Case Study 4 and their Normalized Stability Index
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Figure 5.9: 4-stable and 6-stable sets of Case Study 4 and their Normalized Stability Index
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5.3. BACKWARD BEHAVIOUR ANALYSIS
As previously discussed, the computation of the Capture Set requires the study of the behaviour of the set of initial con-
ditions both forward and backward in time. This section will present the -1-Unstable Sets of the four case studies defined
above. No index, analogous to the (Normalized) Stability Index has been used to characterize the set.
Figures 5.10 and 5.11 display the set X1 associated to the case study problems 1,2,3 and 4, respectively.
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Figure 5.10: -1-unstable set of Case Study 1 & 2.
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Figure 5.11: -1-unstable set of Case Study 3 & 4.

Following from the considerations given in 5.2.2, one could have speculated that the boundary of the Stable Set charac-
terized by an high value of the Normalized Stability Index, identifies the region of the plane in which a Stable-Unstable
transition occurs. Moreover, because of the fact that other parts of the boundary are not displaying such a sudden vari-
ation in such index, one could have concluded that such regions identify Stable-Crash or Stable-Acrobatic transitions.
From the shapes in Figures 5.10 and 5.11, whose boundaries recall the ones given in the previous section, it not clear
whether this is the case or not, since X−1

⋃W−1 may approximately cover the entire plane, with a few exception. This
consideration will be used, in order to produce a number of results associated to the X−1 (Section 5.4).

The black-and-white representation used here also allows to appreciate the multiple transitions, for a given ω0; for some
values (e.g. ω0 ≈π/4) six transitions can be identified.
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From these results, it is finally clear how a sampling, performed in polar coordinates, is not accurate in the estimation
of the boundary region associated to large rp0.

5.4. STROBOSCOPIC STRAINLINES
The algorithms and the theories presented in Chapters 3-4 can now be applied for the analysis of the case studies pre-
sented above. Different combinations of the number of segments used to compute the Strainline, their number and the
tolerance of its integrations have been used to obtain the results given in this section.

5.4.1. CASE 1
For the first case study, the following design choices have been made:

• W1 in Figure 5.12: 7 segments for each quadrant, each of length 6.0, obtained with absolute and relative integration
tolerances of 10−1;

• W2 in Figure 5.12: 10 segments for each quadrant (length 3.0), absolute and relative integration tolerances of 10−2;

• W4 in Figure 5.13: 15 per quadrant (length 1.5), integration tolerances of 10−3;

• W6 in Figure 5.13: 10 per quadrant (length 1.5), integration tolerances of 10−4.

The expression "for each quadrant"implies that, for every problem, four initial conditions are defined: two points, char-
acterized by ω0 = 0 and ω = π respectively, are used to initialize different Strainlines. Moreover, for both points, two
different integrations, clockwise and counter-clockwise, are performed. The number of segments, together with their
lengths, identifies the termination condition of the Strainline integration process.
Finally, the combination of integration tolerance and of the length of each Strainline segment has been determined by
means of numerical experimentation.
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Figure 5.12: 1-stable & 2-stable stroboscopic strainlines with the associated sets.
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Figure 5.13: 4-stable & 6-stable stroboscopic strainlines with the associated sets.
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The fact that, in Figure 5.12, the transitions associated to the re-initialization and bisection process cannot easily be de-
tected, implies that the final point of the previous Strainline is close to the WSB. This positive result allows to increase the
length of each segment and, at the same time, work with higher tolerances, allowing to further reduce the computational
cost of the process.
From the Figure associated to the 6-stable set, the effect of the generalization discussed in Section 4.7.1 can be appreci-
ated. Once a strainline segments reaches a region in which no stable orbits can be found, the local search is substituted
with a wider one: because of this, the big radial discontinuity from approximately [-4,5] to [-9, 14] is obtained. In the Fig-
ure associated to the 1-stable set, the branches associated to quadrant 2 and 4 are characterized by minor discontinuities,
resulting from the re-initialization in ω.

Strainlines can also be superimposed onto dynamical systems propagating the state of the spacecraft backward in time.
In this way, it is possible to identify the boundary of the set X−1. Following the hypothesis given at the end of Section
5.3, the set of conditions in Kn

⋃Dn is negligible, compared to Xn
⋃Wn . This implies that the boundary region of the

two almost complementary sets is approximately the same: the same algorithms can therefore be used to identify the
unstable set.
It is again important for the the bisection method to converge to a point associated to a stable orbit: this allows to identify
the final integration time at which to compute the CG strain tensor. Therefore, the implementation allows to estimate the
boundary of X−1 "from the outside".
Figure 5.14 shows the results approximating X−1, obtained by integrating 7 strainline segments for each quadrant, for a
length of 6.0 and absolute and relative integration tolerances of 10−1.
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Figure 5.14: -1-unstable stroboscopic strainline with the associated set

The discontinuities associated to the quadrant-1 branch are the more evident ones: since both bisections have been
used for its computation, there’s a correlation between the Strainline being close-to-radial and its divergence from the
boundary region.
Moreover, the good matching between the boundary ofX−1 and the strainlines supports the previously stated hypothesis.

STROBOSCOPIC STRAINLINES AND INVARIANT MANIFOLDS

An additional propagation, whose results are shown in Figure ??, has been performed using 110 segments per quadrant,
each of length 6.0; because of lack of convergence, however, the propagation of the branches associated to quadrant 2
and 4 was prematurely terminated. The absolute and relative tolerance of the streamline integrator have been again set
to 10−1. The computation required approximately 57 hours, and it has been performed to investigate the relation between
the final radial distance and the computation time. In fact, the (potential) computational advantage of this approach can
be appreciated for big values of rp where, in order to get a good coverage, the grid would require a big number of points
(ideally proportional to the square of the maximum radius considered).
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Depending on the desire size of the post-capture orbit around the target body, the use of Stroboscopic Strainlines leads
to a computational advantage, even with the "primitive" implementation used for this work.
Moreover, this propagation has been performed to investigate the potential similarities between Invariant Manifolds and
Stroboscopic Strainlines, and to understand their potential as a generalizing tool for non-autonomous systems. In partic-
ular, the resulting geometry recalls [35], and particularly Figure 5.15b. While it should be underlined that [35] worked with
a CR3BP model (in order to simulate the Earth–Moon system), where the theory of invariant manifolds applies, and in-
vestigated the elements of the 2-stable set with a fixed Jacobi constant, also the points defining the strainlines in Figure ??
are associated to stable orbits. This consideration appears to justify a further investigation into Stroboscopic Strainlines,
in order to understand their relations with Lagrangian Coherent Structures.
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(a) 1-stable stroboscopic strainlines; longer branches.

(b) Projection of the stable manifold
and of the subset of W2 for which

C = 3.09998 onto the position space
[35].

Figure 5.15: Comparison of Stroboscopic Strainlines and Invariant Manifolds.

5.4.2. CASE 2

For case study 2, slightly different design choices, with respect to Case 1, have been made. This has been done, in order
to test the requirements of the proposed technique. As a general rule, as in the previous case, lower tolerances have been
associated to higher numbers of revolutions, defining the stable set of interest: the WSB of a given Wn is expected to be
"less well-behaving", the higher the value of n.

• W1 in Figure 5.16: 10 segments for each quadrant, each of length 6.0, obtained with absolute and relative integra-
tion tolerances of 10−1;

• W2 in Figure 5.16: 10 segments for each quadrant (length 3.0), absolute and relative integration tolerances of 10−2;

• W4 in Figure 5.17: 15 per quadrant (length 1.5), integration tolerances of 10−4;

• W6 in Figure 5.17: 10 per quadrant (length 1.5), integration tolerances of 10−5;

• X−1 in Figure 5.18: 15 per quadrant (length 4.0), integration tolerances of 10−1.

As in the previous case, there’s no matching between the computed Strainlines and the regions of ∂W4 and ∂W4 asso-
ciated to a low value of the Normalized Stability Index. It is not clear why, but these two facts may be produced by a
common cause.
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Figure 5.16: 1-stable & 2-stable stroboscopic strainlines with the associated sets.
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Figure 5.17: 4-stable & 6-stable stroboscopic strainlines with the associated sets.
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Figure 5.18: -1-unstable stroboscopic strainline with the associated set

As previously noticed, for some radial directions, more than one transition occurs. In principle, the Strainline should
be able to approximate the boundary of the two "internal" regions of Figure 5.18 as well, once the new initial points are
identified.

5.4.3. CASE 3

For the last two cases, in which perturbations have been included, similar design choices have been made for the compu-
tation of the strainlines. This is because the strainlines, being informed by the flow, reside in a more abstract domain and
are not directly influenced by the formulation of the equations of motion: in fact, the accuracy requirements associated
to their computation is merely a function of the WSB shape, not of the dynamical system complexity, which is treated
as a "black box" by the superimposed approach (this can also be understood, recalling the nested structure of the two
integration processes).

• W1 in Figure 5.19: 10 segments for each quadrant, each of length 6.0, obtained with absolute and relative integra-
tion tolerances of 10−1;

• W2 in Figure 5.19: 10 segments for each quadrant (length 3.0), absolute and relative integration tolerances of 10−2;

• W4 in Figure 5.20: 15 per quadrant (length 1.0), integration tolerances of 10−3;

• W6 in Figure 5.20: 10 per quadrant (length 1.0), integration tolerances of 10−4;

• X−1 in Figure 5.21: 15 per quadrant (length 4.0), integration tolerances of 10−1.
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Figure 5.19: 1-stable & 2-stable stroboscopic strainlines with the associated sets.
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Figure 5.20: 4-stable & 6-stable stroboscopic strainlines with the associated sets.

The computation of the bottom-right branch of the Strainline associated to ∂W2 has been manually terminated. In
confronting the second figure with the third one, it is interesting to notice how the strainline associated to ∂W4 appears
to follow the inner boundary of W2. Again, for an high number of revolutions, some regions of the WSB couldn’t be
identified.
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Figure 5.21: -1-unstable stroboscopic strainline with the associated set

As a general consideration, the level of accuracies of these results is comparable to the one of of the previous cases; this
fact confirms the fact assumption presented at the beginning of the Section, according to which the strainlines accuracy
requirements are not a function of the underlying dynamical complexity.

5.4.4. CASE 4

Finally, the computations associated to Case 4, are characterized by:

• W1 in Figure 5.22: 10 segments for each quadrant, each of length 6.0, obtained with absolute and relative integra-
tion tolerances of 10−1;

• W2 in Figure 5.22: 12 segments for each quadrant (length 3.0), absolute and relative integration tolerances of 10−1;

• W4 in Figure 5.23: 15 per quadrant (length 2.0), integration tolerances of 10−1;

• W6 in Figure 5.23: 20 per quadrant (length 1.5), integration tolerances of 10−1;

• X−1 in Figure 5.24: 7 per quadrant (length 6.0), integration tolerances of 10−1.

The choice of higher tolerances and longer strainline segments, with respect to the previous Section, has mainly been
driven by the need to reduce the computational cost of the simulations.

The results given in Figure 5.22 are of particular interest, in order to underline the positive effect of dividing the prop-
agation into multiple branches. Dealing with W1, the Strainline at the top identifies a stable-unstable transition that, for
high values of rp is not the "main" one: its re-initialization allows to move back to the relevant transition, containing the
majority of the stable conditions, and hence better approximating the associated Stable set. Again, the computation of
the strainline associated to ∂W2 has been manually terminated.
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Figure 5.22: 1-stable & 2-stable stroboscopic strainlines with the associated sets.
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Figure 5.23: 4-stable & 6-stable stroboscopic strainlines with the associated sets.

An additional, general consideration can be made, recalling again [35]. In the mentioned work, the stable set has been
computed for a fixed value of the Jacobi constant C, together with the invariant manifolds associated to the Lyapunov
orbits around L1, L2 (Figure 5.15b). Such procedure lead to the following conclusion:

∂Wn (C ) ⊂ S (5.2)

where S is the clausure of the union of the two branches of the stable manifold. In this work, a similar relation appears to
hold, i.e. the set of stable orbits is a subset of the space defined by the associated Stroboscopic strainlines.
As predictable, because of the higher value of the strainline integration tolerance, the results associated to a high number
of revolutions around the Mars, are less accurate than the ones of the previous Cases.
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Figure 5.24: -1-unstable stroboscopic strainline with the associated set
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Dealing with the results shown in Figure 5.24, while the majority of the output approximates the boundary of the set
of unstable conditions, unexpected branches can be seen on both sides of the figure. These results should be further
investigated, to understand whether they are simply an error, resulting from a too specific implementation and/or wrong
tolerances, or whether the given results describe some additional features of the problem, not directly associated to, in
this specific case, X−1.

5.5. CAPTURE SETS & STROBOSCOPIC STRAINLINES
The fact that a Capture Set is defined as the intersection of two other sets, Wn and X1, can easily be translated, using the
strainline approach, by considering the intersection of the spaces that each strainline defines: of course, in the case of
strainlines identifying the stable set, the space of interest is the one close to the target body, while, in the case related to
the unstable set, the space of interest is "outside" the associated strainline.

5.5.1. CASE 1
Figures 5.25 and 5.26 show the intersection of the previously computed Stroboscopic Strainlines and the different Capture
Sets. It is interesting to notice how the majority of the initial conditions, leading to capture, are located close to the
intersection between the stable and unstable Strainline; this is particularly relevant for a high number of revolutions
around the target.
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Figure 5.25: 1- & 2-Capture Set and the associated stroboscopic strainlines
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Figure 5.26: 4- & 6-Capture Set and the associated stroboscopic strainlines

In the left figure of 5.26, the x identifies the initial condition of the 6-Capture Set associated to the minimum Stability
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Index:
Smi n = 9538.4 TU

The initial state is identified by:
rp0 = 5.63350 DU , ω0 = 152.5◦

and it is therefore characterized by the following Normalized Stability Index, identifying a close-to-Keplerian orbit:

S = 1.2694

5.5.2. CASE 2
Figures 5.27 and 5.28 show the same results, for the second case study. The results shown are qualitatively the same as
the ones given in Section 5.5.1.
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Figure 5.27: 1- & 2-Capture Set and the associated stroboscopic strainlines
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Figure 5.28: 4- & 6-Capture Set and the associated stroboscopic strainlines

The x point is now associated to the following values:

Smi n = 10451.7 TU

rp0 = 5.63350 DU , ω0 = 335◦

S = 1.3909

From the given results, its clear that stroboscopic strainlines associated to ∂X−1 are relevant, in the identification of the
Capture Set, only for a small portion of the plane.

5.5.3. CASE 3
From Figures 5.29 and 5.30 it can be seen that the majority of Capture conditions are located close to the -1-Unstable
bound; this is particularly true for more than one revolution around the target body.
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Figure 5.29: 1- & 2-Capture Set and the associated stroboscopic strainlines
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Figure 5.30: 4- & 6-Capture Set and the associated stroboscopic strainlines

Again, the x point is associated to the following values:

Smi n = 10362.3 TU

rp0 = 5.91430 DU , ω0 = 320◦

S = 1.2820

The condition associated to the minimum stability index is again located in the proximity of the strainline associated to
∂X−1. Building on previous considerations, an effective routine for ballistic capture trajectory design would be:

1. compute short branches of the strainlines associated to an n-Stable Set of interest;

2. compute the branches of the strainlines associated to ∂X−1 inside the stable region identified by the previous
results;

3. perform a small but dense sampling of the resulting space, in the vicinity of the unstable strainline.

5.5.4. CASE 4
Figures 5.31 and 5.32 confirm what’s been stated in the previous section. It appears that a big number of capture con-
ditions can easily be found, investigating the region in the proximity of the -1-Unstable bound, located inside the stable
region identified by the n-Stable Strainlines.
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Figure 5.31: 1- & 2-Capture Set and the associated stroboscopic strainlines
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Figure 5.32: 4- & 6-Capture Set and the associated stroboscopic strainlines

Finally, the x point is associated to the following values:

Smi n = 11004.4 TU

rp0 = 6.33550 DU , ω0 = 275◦

S = 1.2279

5.6. TRAJECTORIES
This section presents the geometries of the trajectories associated to the Capture Sets given above. The initial conditions
used to obtain them are the ones given in the previous section and identified by the lowest Normalized Stability Index
(Section 3.3.2) in C6

−1. The initial conditions are propagated both forward and backward in time, and their stable and
unstable branches can be easily identified.
While Figures 5.33 and 5.34, showing the trajectories of Case study 1,2,3,4, are associated to an inertial reference frame,
the results given in Figures 5.35 and 5.36 represent the same trajectories in a roto-pulsating reference frame, as introduced
in Section 2.4.

The initial states associated to the four orbits, expressed in the inertial reference frame, are (in normalized units):

x1 =



−4.88346

2.50060

1.27873

−0.29296

−0.46671

−0.20616


, x2 =



3.69276

−3.82839

−1.85563

0.44407

0.35519

0.15093


;



56 5. RESULTS

x3 =



2.58933

−4.80638

−2.27444

0.51606

0.23385

0.09333


, x4 =



2.36010

−2.98829

−5.06347

0.50178

0.20939

0.11031


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5.7. REPRESENTATION IN DIFFERENT SPACES

As discussed in Section 4.6.1, in order to be able to investigate results from previous works, like the ones given in Figures
3.11, 3.12, alternative mappings can be introduced, without a substantial variation of the technique, in order to investigate
structures present in different 2D subsets of the phase space.
A preliminary result of this approach is shown in Figure 5.37, where a Stroboscopic Strainline is plotted over [0,π]×[0,2π],
the space in which a grid search has been performed, studying the stability of the orbits as a function of the inclination
and Right Ascension of the Ascending Node associated to the initial osculating orbit. For this specific simulation, the
following values, expressed with respect to a Body Mean Equator reference frame, have been used:

e = 0.99; ω= 0.0 r ad ; rp = 1.2 f = 0 r ad

The initial simulation epoch is the 8th May 2024,12 : 36 : 08.64 (UTC).
In order to perform the same routine, the bisection algorithm has been further generalized, in order to take i and Ω as
input variables. The result of the strainline integration are given in Figure 5.37:
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Figure 5.37: Set of 1-stable initial conditions and associated stroboscopic strainline in the (i ,Ω) space.

The possibility of applying the proposed technique to difference 2D spaces is useful, from a mission design point of view.
Because of the uncertainties characterizing the dynamics (e.g., associated to the initial state of the spacecraft) in the
trajectory design process, it is important to select a robust solution. Based on the dynamical quantity characterized by
the main uncertainty (e.g. the target-relative initial energy of the spacecraft, its speed . . . ), this approach allows to use it
as one of the two variables associated to the 2D strainline computation. In this way, since the strainline would identify
the boundary of the capture set as a function of the variable characterized by epistemic uncertainty, the results could be
used to select a conservative nominal value, for such variable.

5.8. FINAL CONSIDERATIONS
In this Chapter, a number of results have been presented. These allowed to show the robustness of the proposed tech-
nique with respect to:

• the model fidelity describing the underlying dynamical model;

• the number of revolution associated to the forward-in-time Stable Set;

• the direction of the integration (forward and backward in time);

• the 2D subset of the phase space.

The results also triggered some ideas, that could in the future be used to build a more efficient toolbox for the computation
of ballistic capture orbits.
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CONCLUSIONS AND RECOMMENDATIONS

6.1. CONCLUSIONS
As discussed in Section 1.3, this work aims at tackling the following research question:

Is it possible to characterize the ballistic capture mechanism, based on the initial osculating orbital parameters of the target-
relative geometry, making use of the theory of Lagrangian Coherent Structures?

The results presented in Chapter 5 allow to reply positively, since the theory of Lagrangian Coherent Structures informed
a new technique, applicable in the trajectory design process of ballistic capture orbits. It has been shown how the study of
tools and heuristics associated to such theory can help characterizing the mechanics of ballistic capture; with the intro-
duction of Stroboscopic Strainlines, an approximation of the Weak Stability Boundaries of given problems have been com-
puted. This has been done mainly in the domain in which the Capture Set is defined, but the flexibility of the technique
allows to introduce alternative subsets of the phase space, whose investigation could lead to a clearer understanding of
the ballistic capture phenomenon and of its features.

The presented results show how the effectiveness of the technique is independent of the fidelity of the underlying dy-
namical model, onto which the flow-informed strategy is superimposed: its applicability covers complex, non-periodic
(and, in general, time-dependent) dynamical systems in astrodynamics. Particularly for highly complex models, e.g. tak-
ing into account n-body perturbations, solar radiation pressure and non-spherical gravity, the technique has the potential
of greatly reducing the cost of the Capture Set computation, and hence to increase the applicability of Ballistic Capture in
trajectory design.

This research project aims at contributing in opening up the field of low-energy transfers in space mission design, al-
lowing for new concepts to redefine the domain of feasible missions for human space exploration.

6.2. RECOMMENDATIONS
While, when relevant, the assumptions and the design choices made have been underlined throughout the work, and
while many recommendations have been given in commenting the results in the previous chapter, they will be summa-
rized here. Moreover, some high-level considerations, which have not been included in the core of this document for
readability, will be given here.

Based on this work, future research efforts are required:

• the proposed technique appears to potentially reduce the cost associated to the computation of a Capture Set of
interest. Quantifying the optimal trade-off between the accuracy of the WSB estimation and its efficiency, as a
function of different design parameters, may be relevant: for example, an informed selection of the best strainline
integrator is missing from this work; it is conceivable for the strainline to require much less accurate integration
routine, e.g. fixed step size RK schemes, whose implementation may allow the reduction of the tolerances asso-
ciated to the integration of the equations of motion and hence a more accurate estimation of the State Transition
Matrix;

• the applicability of the proposed technique to different 2D subsets of the phase space should be exploited, in
order to understand some features of the capture phenomenon, given in previous works (e.g. [35] - Figure 4). This
could also increase the applicability of ballistic capture orbits: many scientific missions may be characterized by
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requirements associated to the average, minimum and maximum distance of the spacecraft from a target body.
Because of this, it is desirable to use the semi-major axis of the orbit as an input of the design process, and look for
capture conditions as a function of other variables, defining the geometry of the orbit;

• as discussed in 2.3.2, alternative approaches for the computation of the Jacobian of the physical flow should be
investigated, together with their accuracy and efficiency;

• as given in Algorithm 2, two different integrations are performed: first, the 6-dimensional state is propagated until
the nth revolution is completed; then, the final integration time is used as an input for the integration of the vari-
ational equations. The implementation of the termination condition into the variational equations propagation
would be beneficial, in terms of computational advantage;

• translating the developed toolbox, written in Matlab, in C++ would allow its implementation inside TUDAT: this
would make the simulator much faster and an analysis of its performance would further help clarifying its appli-
cability inside GNC routines;

• as previously stated, retrieving the ephemerides proved to be the bottleneck of the simulations, irrespective of the
language used. A more in-depth understanding of the ephemerides retrieval may be desirable: for example, [49]
presented an approach between 70 and 250 times faster then SPICE;

• following the discussion comparing Figures 5.15a and 5.15b, it may be relevant to get a global picture of the struc-
tures associated to stroboscopic strainlines: this would allow understanding to what extent they generalize the
concept of invariant manifolds for more general systems;

• investigating to what extent the proposed solution allows for a robust design. Following [10], "a second challenge
for these spacecraft is the large amount of uncertainty associated with the deployment state. Accordingly, a robust
strategy to deliver the spacecraft [..] is desired";

• generalizing the proposed techniques to higher dimensions spaces, following, e.g., [50], or more simply the solu-
tion proposed by [17] - Section 4.2, dealing with 3D representability;

• to verify whether Stroboscopic Strainlines are Lagrangian Coherent Structures or not. For their formulation, only
the third condition given in 4.5.1 has been used. Studying whether these objects verify the other conditions may
be interesting, from a theoretical point of view.
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THE SPICE SYSTEM

A.1. CONSTANTS

The main constant values, used in the simulation set-up, are given in table A.1:

Symbol Name Value [units]

AU Astronomical Unit 149597870700 [m]1

SC Solar Constant 1367.5 [W/m2]2

LS Sun Luminosity 3.8458 ·1026 [W]

c Speed of light 299792458 [m/s]

Table A.1: Main constants

A.1.1. NON-SPHERICAL GRAVITY COEFFICIENTS

Table A.2 contains the values of the NSG coefficients of Mars, up to degree and order 5. These values are stored in the
Geosciences Node of the NASA Planetary Data System 3, and result from the analysis of data collected by the Mars Recon-
naissance Orbiter.

While the listed terms lead to the main contribution to the perturbing force, it should be remembered that, when NSG
has been included in the simulations, terms up to degree and order 20 have been included.

3https://pds-geosciences.wustl.edu/mro/mro-m-rss-5-sdp-v1/mrors_1xxx/data/shadr/ (visited on 26/09/19)
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n m Cnm Snm

2 0 −8.75022092453700 ·10−4 0

2 1 4.02233330638200 ·10−10 2.30318385355200 ·10−11

2 2 −8.46330265598300 ·10−5 4.89394183216700 ·10−5

3 0 −1.18970150373000 ·10−5 0

3 1 3.80499819910100 ·10−6 2.51771177076300 ·10−5

3 2 −1.59474319237200 ·10−5 8.36239397846700 ·10−6

3 3 3.50562983603300 ·10−5 2.55713254573700 ·10−5

4 0 5.12909583013400 ·10−6 0

4 1 4.21639115821700 ·10−6 3.76326435612200 ·10−6

4 2 −9.53066952998400 ·10−7 −8.98079684180800 ·10−6

4 3 6.45685198413000 ·10−6 −1.93772122841600 ·10−7

4 4 3.08249362477000 ·10−7 −1.28730569773800 ·10−5

5 0 −1.72677024042600 ·10−6 0

5 1 4.83842156306600 ·10−7 2.12311297539500 ·10−6

5 2 −4.29817604567900 ·10−6 −1.16569544408600 ·10−6

5 3 3.31266700855500 ·10−6 2.71440977857900 ·10−7

5 4 −4.64076084741200 ·10−6 −3.38155362224900 ·10−6

5 5 −4.44926452689700 ·10−6 3.78047894095200 ·10−6

Table A.2: NSG coefficients of Mars, up to degree (n) and order (m) 5.

In order to include NSG in the dynamics of the problem, a target-fixed rotating reference frame should be used. For the
case of Mars, this is the IAU-Mars frame (from International Astronomical Union); this frame is available in SPICE and
has been used in GRATIS for the formulation of the dynamics.
In the IAU-Mars frame:

• the +z-axis points towards the North of the Mars rotational axis;

• the +x-axis points at the prime meridian of Mars;

• the +y-axis completes the right-handed reference frame.

Finally, the reference radius of Mars is 3396 km.

A.2. EPHEMERIDES
Since, in the more general case, a RnBP is going to be considered and, because of the Restricted aspect of it, the solution
of the problem can be split into two phases:

• first, the n-1 interacting bodies are considered and the general problem is (numerically) solved;

• then, the motion of the spacecraft, guided by the gravity field of the primaries, is considered.

Among others, JPL has allowed the space community not to solve the first part of the problem every time; this is possible
because of the restricted nature of all the models considered. A database of ephemeris can be use to retrieve the position
of the celestial bodies of interest at a certain time, in the Earth Mean Equator and Equinox of J2000 reference frame.

A.2.1. ČEBYŠËV APPROXIMATION
Since the ephemeris are a discrete set of position and velocity, one needs to efficiently and accurately interpolate them.
This is done ([51] - 3.3.3) with a least-square fit using the Čebyšëv polynomials

Tn (τ) = cos(n ·arccosτ)

with |τ| ≤ 1, that can be computed recursively by
T0(τ) = 1

T1(τ) = τ
Tn+1(τ) = 2τTn (τ)−Tn−1(τ) f or n ≥ 1

In order to make use of the behaviour of this functions in [−1,1], time is mapped to the new variable τ with

τ= 2
t − t1

t2 − t1
−1
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where [t1, t2] define the time interval of interest.
The reason for not using a more common Taylor approximation

f (t ) ≈
n−1∑
i=0

biτ
i

but, instead,

f (t ) ≈
n−1∑
i=0

ai Ti (τ)

is that the truncation error in the Taylor approach is pronounced for some values of τ and negligible for others, while, in
the Čebyšëv approximation, the error is more uniformly distributed.
In [52] the procedure to generate the coefficients is shown: starting from a discrete set of position and velocity (p, v) of a
certain body, a least-square problem has to be solved.

T0(1) T1(1) T2(1) · · · TN (1)

Ṫ0(1) Ṫ1(1) Ṫ2(1) · · · ˙TN (1)
...

...
...

. . .
...

T0(−1) T1(−1) T2(−1) · · · TN (−1)

Ṫ0(−1) Ṫ1(−1) Ṫ2(−1) · · · ˙TN (−1)





a0

a1
...

aN−1

aN

=



p(1)

v(1)
...

p(−1)

v(−1)


The coefficients can also be found by means of Lagrange multipliers: this is because, in addition to the fact that a least-
square is a minimization procedure, the initial and final values of the state are constrained to assume the exact value
obtained from the integration.

A.2.2. THE SPICE SYSTEM
Developed by the Navigation and Ancillary Information Facility (NAIF) of the Jet Propulsion Laboratory (JPL), the SPICE
system was built to assist engineers involved in modelling, planning and executing activities necessary, in order to con-
duct planetary exploration missions.4

This toolkit has been used to read the ephemerides in, among others, [25]. It is composed of both data files (called kernels)
and a suite software (the SPICE Toolkit), used to read SPICE data files. The main components of the system, relevant for
the goals of this work, are:

• Satellite and Planet Kernel - SPK. It mainly contains ephemerides of many objects of the solar system, as a function
of time;

• a frames kernel (FK) contains specifications for the assortment of reference frames that are typically used by flight
projects;

• Leap Seconds Kernel - LSK relates different time measurement systems: the TDB and the UTC;

• PCK, DSK contain informations about sizes and shapes of the bodies, together with other informations about
atmosphere and gravity;

• APIs are the main components of the "SPICE Toolkit" Software. It’s used to read the kernel files;

• WebGeocalc - WGC provides a GUI to a SPICE geometry engine.

A.2.3. DEVELOPMENT EPHEMERIDES

The Development Ephemerides (DE), provided by JPL, are given in the form of Čebyšëv approximations and can be re-
trieved with this toolkit. The DE400 series is referred to the International Celestial Reference Frame (ICRF), whose differ-
ence with the EME2000 can be neglected for the aims of this work ([51], Section 3.3.4).
They are obtained from numerical integration, taking into account, together with point-mass interactions, the perturba-
tions from asteroids, relativistic corrections and torques. For example, the Development Ephemerides DE430 and DE431
have been used in [25]; they are described in [53]. The state of all celestial bodies is stored, as Čebyšëv polynomial coeffi-
cients, in 32-day-long segments.
DE430, including the interaction between the differential rotation of the core and the mantle, leads to difficultly defined
initial conditions: for this reason the time span of this model is limited, as the error grows in backward integrations.
DE431 does not take into account this effect: in this way it can cover several thousand years.

4https://naif.jpl.nasa.gov/naif/spiceconcept.html

https://naif.jpl.nasa.gov/naif/spiceconcept.html
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