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Summary

Freeform shapes in concrete

Within architectural design a large variety of complex shaped buildings can be found. This
is partly thanks to geometry-defining software which make modeling of almost any shape
possible and gives designers a tool to design an infinite variety of objects. Freeform shapes
play an increasingly important role in contemporary architecture and pose big challenges
to fabrication of these structures. Production of double curved concrete elements is one
of the responses. Prefabricated double curved concrete elements currently find their main
application in façades. Two examples of double curved concrete elements can be found are
shown in the Figures 1 and 2. They are the façades of the Pierre Budin daycare in Paris
(France) and the Heydar Aliyev Cultural Center in Baku (Azerbaijan). Current production
methods for double curved concrete elements often involve Computer Numerical Controlled
milling machines which produce mould from polystyrene blocks. In most favorable situations
these moulds can reused in limited series making the production very expensive.

Figure 1: Pierre Budin daycare in Paris
(France) by ECDM [Ductal, 2013].

Figure 2: Heydar Aliyev Cultural Center
in Baku (Azerbaijan) by Zaha Hadid Ar-
chitects [Akhundov, 2008].
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Research goal and question

A flexible mould for the production of double curved concrete elements could offer an cheaper
alternative for current production methods. The main advantages of a flexible mould is that it
can be reused multiple times and each time for a unique shape. The idea of the flexible mould
for double curved element dates back to the 1960’s when Renzo Piano experimented with a
flexible mould for plastic elements. Since then several alternative moulds have been designed
and tested. At the Technical University in Delft research and development of a flexible mould
was started by Dr. Ir. Karel Vollers and later with Ir. Daan Rietbergen. Currently, June
2013, Ir. Roel Schipper is rounding up his PhD research on manufacturing double-curved
concrete elements at the Faculty of Civil Engineering and Geosciences. During this research
a new version of the flexible mould was developed together with Ir. Bas Janssen which was
based on earlier results by Vollers and Rietbergen. This mould was the starting point of this
research and can be seen in Figure 6. Since the mould was built to fulfill research requirements
within a limited budget it was expected that the mould would have shortcomings that could
cause inaccurate geometry of elements. Also the behavior of the mould during deformation
is difficult to understand due to its three-dimensional character. This research was set up
aiming to gain more insight in this behavior and to find aspects that influence accuracy of the
mould. Therefore the following research question was formulated; Which aspects significantly
influence the geometry of the mould surface?

The flexible mould

The concept of a flexible mould is very simple: a flexible surface or membrane is forced into a
required shape. This can be any shape and is also referred to as freeform. The concrete which
was poured on top of the mould takes the shape of the mould after deformation. However,
the mixture of the concrete should not be too liquid since the concrete could flow out of
the mould. Before production support heights are determined and set. Then the concrete
is casted while the mould is kept in horizontal position by a temporary structure until the
concrete has sufficiently stiffened. Then the mould surface can be deformed by lowering a
temporary support structure as can be seen in Figure 3. When al supports have reached the
set height the required shape has been obtain and the concrete can be left to harden. This
can be seen in Figure 4.

At the start of this research a series of test with the flexible mould were performed to gain more
insight in the performance of the flexible mould. And also a more theoretical approach was
used when looking into deformation of general surfaces. The relation between the change of
Gaussian curvature and strain of a surface provided a way to explain displacement, rotations
and, very important, in-plane shear deformation of the mould surface, which is illustrated in
Figure 5. After this it was concluded that the accuracy of the mould could not be ensured
because horizontal displacements and rotation of the mould could not be controlled sufficiently
and cause deviation of the intended shape.
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Figure 3: The flexible mould during pro-
duction of a double curved concrete ele-
ment.

Figure 4: A deformed mould in which the
concrete is left to harden.

Figure 5: Shear deformation due to a increase of Gaussian curvature.

The following aspect could be improved to provide more control over the geometry;

• An alternative method for applying additional loading of the surface

• A mould surface with low resistance to shear deformation

• Connections between two layer of strips that allows in-plane rotation

• Connections between strips and supports that allow horizontal and rotational transla-
tions

• Compensation method for deviations caused by horizontal displacements and rotation
the mould surface

Design for new prototype mould

It was found that the accuracy of the previous version of the mould could not be ensured
due to shortcomings in its buildup. These shortcomings have been identified. Based on these
findings and results from the research on deformation of surfaces a design for a new prototype
has been made and build, which can be seen in Figure 7, in order to research the findings in
more detail. Therefore the following solutions have been introduced, which can also be seen
in the Figures 8 to 11:
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Figure 6: Version of the flexible mould
developed by Ir. Roel Schipper and Ir.
Bas Janssen.

Figure 7: New prototype of the flexible
mould as was introduced in this research.

Figure 8: Plastic strips with notches.
Notches reduce the resistance to defor-
mation of the strips. Most importantly
in their strong direction.

Figure 9: Universal joint connections al-
low rotation of the mould surface and are
capable to transfer a force.

Figure 10: Three-dimensional pendulum
supports allow horizontal displacements
and are capable to transfer a force.

Figure 11: Weight applied for additional
loading such that no extra loading of the
mould surface is required.
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• Plastic strips with notches. Strips have been bolted together, but not fully tightened.
Self locking nuts have been used. Notches where made to reduce the resistance to
deformation of the strips. Most importantly in their strong direction.

• Universal joints as connections that allow rotation while being capable of transferring
a force

• Three-dimensional pendulum supports that allow horizontal displacement while being
capable of transferring a force

• Weights as alternative way to apply additional loading to the surface

Method for setup of the flexible mould

Deformation of the mould surface results in horizontal displacements and rotations of the
mould surface. These cause a deviation of the intended shape. A method has been developed
compensates that aims to compensate for these deviations by calculating and adjusting the
support heights. Therefore the method approximates the horizontal displacements and rota-
tions. The compensation can be calculated by kinematic calculations which use the result of
structural calculations.

During the structural calculation an aspect was noticed that is of importance for the accuracy
of the mould surface. Calculation where performed for shapes with continuous curvature.
From the used boundary condition at the end supports of the strips it followed that there
was no bending moment. From theory of mechanics follows that the curvature will also be
zero. But the required shape has continuous curvature. A deviation of the shape was the
result. In Figure 12 the intended and calculated shape are shown when five support are used.
Here can be seen that near the ends of the strip there is a deviation while in the middle it
cannot be seen. This can be explained by the presence of moments. Figure 13 shows the
difference between the intended shape and the calculated shape. At the point of the supports
the deviation becomes zero. A clear distinction can be made in the deviation of the near ends
and the middle of the strips. The effect can also be seen when the number of support increases.
This could be solved by creating means to introduce moments at the end supports. However
this would make the buildup of the mould unnecessary complicated. It is recommended not
to use the end parts of the strips and thereby the edges of the mould surface.

Tests and performance of the new prototype

To research the behavior of the mould the introduced ideas for the new prototype were tested
with four different shapes. The geometry of these shapes was determined using a 3D scanner
to gain more insight in the accuracy of the flexible mould as can be seen in Figure 14.

Two type of measurement have been performed. Horizontal displacement and the overall
accuracy. Unfortunately the accuracy of the measurements for the horizontal displacement
were not sufficiently accurate to validate the expected displacements. More accurate mea-
surements are required. However the accuracy of the total mould surface was determined
more accurately an were compared to the intended geometry. This is shown in Figure 15.
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Figure 12: Intended and calculated shape of a strip on five supports. Conditions: R = 1000
mm, q = 0 kN/m, EI = 192550 Nmm2.

Figure 13: Difference between intended and calculated shape.

Figure 14: Scanning of tested shape with
the flexible mould.

Figure 15: Point deviation of the scanned
points compared the intended surface.
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The mean deviation of the four tested shaped were respectively 0.91, 1.25, 1.22 and 1.63
millimeter. Locally three of the four test showed a maximum point deviation between 4 and
5 millimeter. Only the last test, which was free of form, showed a maximum point deviation
between 4 and 7 millimeter.

If only the middle of the surface is considered the mean deviation reduces to respectively 0.78,
0.96, 0.86 and 1.11 millimeter. Locally all tests showed a maximum point deviation between
3 and 4 millimeter.

Conclusions

This research was set out to find aspect that influence the accuracy of the flexible mould for
production of double curved concrete elements. The following aspects have been found to
have significant influence on the geometry of the mould surface:

• Level of change of Gaussian curvature following directly from the required shape

• Stiffness of the mould surface. And especially the resistance to in plane shear deforma-
tion

• Loading of the surface

• Direction and size of displacements and rotations of the mould surface

• Type of material used for the strips

• Buildup and connection details of the mould

In order to research the behavior of the flexible mould in detail a new prototype has been
designed, build and tested. The maximum measured deviation of tested shaped compared
to intended shapes is 7 millimeter if the full surface was taken into account. When the
area between the last two supports would not be used the maximum deviation reduced to 4
millimeter.
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Preface

This thesis was submitted in partial fulfillment of the degree of Master of Science in Building
Engineering at the Faculty of Civil Engineering of the Technical University of Delft. This
thesis contributed to research and development of a flexible mould for the production of
double curved concrete elements.

In August 2012 I started this research. Now, in June 2013, I can look back and know that I
have worked on this topic with great pleasure. The part of this thesis I liked the most was
that I could combine theory and practice. I went through theory of structural mechanics and
have been casting concrete in the laboratory. At one moment I was wearing the ’Engineering
shoes’ and the next ’practical boots’. Figure 16 nicely illustrates this when I was preparing
for a series of castings.

Figure 16: ’Engineering shoes’ and ’practical boots’. I liked working alternating on theoretic and
practical topics during this research.
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”It’s only fun when you are trying to get it in your grasp. Once you catch it throw
it back into the water and then catch it again”
— John Mayer





Chapter 1

Introduction

Within architectural design a large variety of complex shaped buildings can be found. This
type of architecture is also referred to as freeform design in those cases that shapes are
applied that cannot easily be defined mathematically by the used of primitives such as e.g.
spheres, cones or cylinders. Geometry-defining software makes modeling of almost any shape
possible, giving designers a tool to design an infinite variety of objects. Freeform shapes
play an increasingly important role in contemporary architecture and pose big challenges
to fabrication of these structures. Research on and development on the flexible mould for
production of double curved concrete elements is one way of facing these challenges. The
flexible mould can be used to make uniquely shape concrete elements using the same mould
multiple times.

1-1 Freeform design

The use of freeform design in society is strongly related to the development of graphical soft-
ware since the 1960s. Fields of design, media and architecture adopted this software around
the 1990s. Some say that computer graphics have become the language of contemporary de-
sign and architecture [Manovich, 2008]. A research area has emerged around freeform design
in architectural geometry which is situated at the border between applied geometry and archi-
tecture [cec]. Architects, but also engineers have become more and more skilled in designing
freeform structures resulting in esthetically and structurally interesting buildings. Early ex-
amples of modern concrete structures with complex shape can be found around the 1940’s.
Important contributions come from famous engineers like; Pier Luigi Nervi, Felix Candela,
Ove Arup and Heinz Isler. The Figures 1-1 to 1-3 show some of the buildings that were
designed by these engineers. More recent examples come from architects like Frank Gehry, in
Figure 1-4, Zaha Hadid , Coop Himmelb(l)au, UNStudio and many more.
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Figure 1-1: Airplane hangar in Orvito
(Italy) by Pier Luigu Nervi (1938). Early
example of freeform structure [Anengi-
neersaspect, 2009].

Figure 1-2: Opera House in Sidney (Aus-
tralia) engineered by Arup (1973) [Las-
plash, n.d.].

Figure 1-3: Tennis hall in Heim-
berg (Switserland) by Heinz Isler (1978)
[Shadesofgreendesign, 2011].

Figure 1-4: Walt Disney Concert Hall in
Los Angeles by Frank Gehry (2003). A
more recent example where the complex-
ity of the geometry has increased [Lauren
and James, 2012].

1-2 Freeform shapes in concrete

Freeform structures have been designed and realized using all kinds of materials. Concrete
has often been used for shell structures. When designed well these structures can become
both esthetically pleasing and structurally efficient. Like normal concrete structures, freeform
structures need a formwork in which the concrete can be cast. The cost of the formwork make
up for a substantial part of the total budget of the concrete structure because the formwork
is often difficult to make and requires a lot of manual labor and expertise. For freeform
shapes highly skilled woodworkers are needed and the complexity of the shape in combination
with the required accuracy make that labor costs will increase quickly for freeform concrete
structures. Traditional wooden formwork cannot always be used. This makes production of
the formwork very expensive. A recent example of a freeform roof is shown in Figure 1-5. It
is a residential building in Amsterdam (The Netherlands) called "Het Funen" . The roof has
been made using traditional formwork as is shown in Figure 1-6.
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1-3 Application of prefabricated double curved concrete elements 3

Figure 1-5: Residential building "Het
Funen" by NLArchitects [NLArchitects,
2012].

Figure 1-6: Roof under construction.
Scaffolding is partly visible [NLArchitects,
2012].

Figure 1-7: CNC (Computer numeric
controlled) mill for foam or polystyrene
blocks used by Nedcam [Nedcam, 2012a].

Figure 1-8: Boat hull milled out of
polystyrene blocks [Nedcam, 2012a].

An alternative is to make formwork out of foam or polystyrene blocks. Shapes can be milled
according to the required shape using CNC (Computer Numeric Controlled) mills. This
technique is also used for construction of boat hulls. In the Figures 1-7 and 1-8 two CNC
mills are shown which are used by Nedcam. An example of a project where milled foam blocks
where used as formwork is the Spencer Dock Bridge in Dublin (Ireland) designed by Future
Systems. This project is shown in Figure 1-9. The formwork was designed and manufactured
by Nedcam. EPS foam blocks were milled into shape and coated with several layers of hot
spray polyurea for a high quality surface, after which the blocks were placed on a scaffolding
structure as in Figure 1-10. After a required hardening period of five weeks the scaffolding
and foam formwork was removed to reveal a smooth and curved concrete surface [Nedcam,
2012b].

1-3 Application of prefabricated double curved concrete elements

Prefabricated double curved concrete elements currently find their main application in façades.
Two examples of double curved concrete elements can be found are shown in the Figures 1-
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Figure 1-9: Spencer Dock Bridge (2009)
in Dublin (Ireland) by Future Systems [In-
fomatique, 2010].

Figure 1-10: CNC milled formwork de-
signed by Nedcam. Foam blocks are
placed on a scaffolding structure [Ned-
cam, 2012b].

11 and 1-12. They are the façades of the Pierre Budin daycare in Paris (France) and the
Heydar Aliyev Cultural Center in Baku (Azerbaijan). The latter façade consists of concrete
elements that are fixed on a steel space frame. The elements are cast into customized moulds.
The molds are partly from CNC-cut 2D ribs and partly from 3D-milled styrofoam blocks
[Dispenza, 2011]. A disadvantage of this method is that the formwork can be used only once
or, at best, only for small series of elements since the geometry of the elements is different for
most individual panels. A flexible mould as used in this research does not have disadvantage
because its shape can be changed for every individual element. This is the main reason
why a flexible mould would be an interesting production method for double curved concrete
elements. However, until now, the flexible mould method is still in the stage of research and
development, not having been applied yet in commercial application in building industry.
This Master’s thesis research aims to contribute to the development of such a method.

The workflow in the production of double curved concrete elements comprises several steps
which makes the process rather complex: first, freeform shapes need to be divided into smaller
pieces that can be prefabricated. This requires the use of penalization-algorithms. Secondly,
a mould shape needs to be installed or produced for each individual element, likely using a
CNC-method. The shape of each element needs to be produced within sufficient accuracy
to enable an esthetically acceptable fitting during the assembly stage. Thirdly, the elements
need to be cast, to be cured, to harden for a certain time, and finally to be transported to
the building site for final assembly.

1-4 Research framework and problem description

This research project focuses on the development of a flexible mould for double curved con-
crete elements that can be reused and each time for a unique shape. The research addresses
a number of issues that have been found in earlier researches on the flexible mould at Tech-
nical University Delft, and aims to contribute to solving or improving these issues. Although
interest at TU Delft for complex building shapes already stems from the last decades of the
20th century, more intensive research was initiated around 2004, at that time also referred
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1-4 Research framework and problem description 5

Figure 1-11: Pierre Budin daycare in
Paris (France) by ECDM [Ductal, 2013].

Figure 1-12: Heydar Aliyev Cultural Cen-
ter in Baku (Azerbaijan) by Zaha Hadid
Architects [Akhundov, 2008].

to as Blobs. The following students have contributed to the development of a flexible mould
through their Master’s or PhD thesis; Hans Jansen [2004], Marlies Quack [2001], Michelle
van Roosbroeck [2006], Eline den Hartog [2008], Daan Rietbergen, Koen Huyge and Arnoud
Schoofs [2009] and Bas Janssen Janssen [2011]. Currently and parallel to this research imple-
mentation of textile reinforcement has been researched by Marijn Kok [2013]. A wide variety
of topics is researched which will be discussed in the next chapter. Since 2001 and still research
is performed by Dr. Karel Vollers at the Faculty of Architecture. For specific application of
a flexible mould for concrete elements Roel Schipper performs research within a PhD at the
Faculty of Civil Engineering and Geosciences. So the latter has focused specifically on ap-
plication of the flexible mould in combination with concrete. Topics that have been research
are; freeform architecture, applications of elements, techniques of manufacturing, mechanic
behavior and laboratory experiments [Schipper and Janssen, 2011].

The existing model of the flexible mould has some shortcomings. So far the mould has
been improved incrementally. However it has been build to fit research requirements within
reasonable budget. Unavoidable the mould has shortcomings which cannot be neglected in
further development. The accuracy of the mould is unknown. An aspects that influence the
accuracy have not yet been researched in detail. There are theoretical and practical issues
that need to be overcome. The geometry of the mould surface after deformation is difficult
to predict due its 3-dimensional character. Predicting the shape is required to gain insight in
the factors that have influence on the shape. When elements are made tolerances need to be
fulfilled. The mould buildup determines the tolerances, possibilities and limitations in shape
and provide control to set the shape.

In Figure 1-13 the mould devise is shown. This is the starting point of this research. A multi
layered surface on which concrete can be cast is supported by multiple supports. These can be
set to curtain height and influences the shape of the surface. A new shape requires resetting
of the support heights. Initially the devise is fixed in a horizontal position. At this stage
the concrete can be cast. When the devise is released the weight of the concrete acts on the
surface which will therefore deform according to the set support heights. A more elaborate
description of the devise will be given in the next chapter. For practical reason in further text
the device is referred to as ’the mould’. Which could be confused with the top part containing
the actual concrete.

Flexible mould for production of double-curved concrete elements Msc Thesis



6 Introduction

Figure 1-13: Flexible mould used for pro-
duction of double curved concrete element
at the Delft Technical University. A flex-
ible surface on multiple adjustable sup-
ports [Schipper, 2013].

Figure 1-14: Test for a double curved el-
ement in the laboratory. The mould sur-
face consists of separate strips [Schipper,
2013].

Within an earlier Master’s thesis research contributions have been made by Bas Janssen
[2011]. An important result of this research was the application of strips instead of a solid
plate. This can be seen in Figure 1-14. More research on the following topics is needed to
come to a fully functional commercial application of the mould:

• Mould buildup and production process.

• Geometry of the elements and production tolerances.

• Concrete composition and reinforcement.

• Application of elements and detailing of connections.

This thesis will focus on the mould and the geometry of the elements. The mould buildup
and the geometry of the surface are directly related and therefore they are treated together.

1-5 Research goal and questions

The goal of this research is to understand the behavior of the mould during deformation.
This understanding could help improving the mould. because the surface of the mould should
match a reference geometry as close as necessary. Therefore more insight is required in the
aspects that influence the geometry and accuracy of the mould. Accuracy of the mould can be
researched in term of tolerances and deviation compared to a reference geometry. Predicting
the shape of the surface presents geometric and structural challenges. All these aspects are
formulated in the following research questions;

Main question:

• Which aspects significantly influence the geometry of the mould surface?
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Secondary questions:

• How do aspects influence the geometry?

• Which changes on the mould buildup will improve control over the geometry?

• How can the deformations and shape of the surface including the edges be predicted?

• Within which tolerances can the surface be set?

1-6 Research strategy and thesis outline

Within this research four parts can be distinguished in order to achieve the research goal and
to answer the questions.

Part 1 Observation and assessment of existing mould: to become familiar with the
mould buildup and the production process several castings of elements have been done in the
laboratory using the existing mould. An assessment has been done on the relation between
change of Gaussian curvature and strain of a surface. Studies on other relevant and related
literature has been done and will be referred to throughout the chapters. Chapter 2 describes
observations of the mould buildup, the production process, shortcomings of the existing flex-
ible mould and the assessment of the relation between Gaussian curvature and strain of a
surface.

Part 2 Design of a new flexible mould prototype: a new prototype has been designed
and build. Modifications and improvements of the mould are introduced based on the results
of the first stage. Part 2 and 3 have been parallel in process. Introduced improvements and
methods have been developed simultaneous. Chapter 3 describes technical details and the
process of building the new mould prototype.

Part 3 Development of method for setup of the new flexible mould: a method has
been developed to obtain the required input needed for the production process. The result
of this method are the support heights that are needed for a curtain required shape. Several
factors and their influence on the geometry of the mould surface are described. A distinction
can be made between mechanical effects (deformation and support reactions) and kinematics
effects (displacement). The method includes steps that can also be used to determine the
location of the edges for freeform shape. Chapter 4 describes the developed method.

Part 4 Testing performance and accuracy of new prototype: the new mould prototype
has been tested and the results of the developed method has been compared to measurements.
Geometry of shapes is obtained using 3D laser scanner resulting in a pointcloud. This was
used to determine displacements of specific points on the mould surface and the to determine
the accuracy of the mould . To process the geometric data a method has been developed.
Chapter 5 describes the test setup, scans, methods and results.
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Figure 1-15: Research strategy
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Chapter 2

Description of existing flexible mould

Double curved concrete elements are often fabricated using CNC-milled moulds. Moulds
can be reused in limited series which leads to high production costs. There is an alternative
method which makes use of a flexible mould. The mould can be reused multiple times and each
time for a new unique shape. The architect Renzo Piano was one of the first to describe such a
mould already in the 1960’s. Figure 2-1 shows a sketch of his idea. Vertical adjustable pistons
support a flexible surface. Since then the concept has been developed further. Different types
of moulds where made for glass, plastic and concrete elements.
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10 Description of existing flexible mould

Figure 2-1: Sketch and details of a flexible mould by Renzo Piano. One of the first to describe
a method for production of double curved elements. [Piano, 1969]
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Figure 2-2: Drawing of flexible mould
patented by Florian-Peter Kosche. Modi-
fied from [Kosche, 1998].

Figure 2-3: Modified drawing of flexible
mould patented by Karel Vollers and Daan
Rietbergen. Modified from [Vollers and
Rietbergen, 2010].

Figure 2-4: Flexible mould as described
by Lars Spuybroek [2004].

Figure 2-5: The "Pinbed Wizard" devel-
oped by Karel Vollers [2013].

2-1 The concept of the flexible mould

The concept of a flexible mould is very simple: A flexible surface or membrane is forced into
a required shape. This can be any shape and is also referred to as freeform. The concept
becomes more difficult when it is thought of how the surface is forced into a shape. For
production of concrete elements the surface should be flexible but stiff enough to carry the
weight of the concrete. For example it can be made of a thick rubber sheet or a wooden or
plastic plate. The surface can be forced into shape by adjusting support heights which are in
a grid supporting the surface. Moulds of this type have been can be seen in the Figures 2-2
and 2-3. These are patented respectively by Florian-Peter Kosche [1998] and Karel Vollers
and Daan Rietbergen [2008]. Different approaches to adjust the shape of the surface have
been chosen. Lars Spuybroek has described his idea of the concept and is shown in Figure
2-4 [Spuybroek, 2004]. Recently Karel Vollers introduced a machine called the "Pin bed
Wizard". This is a computer controlled machine which adjusts numerous pins to required
height. However for each material, a specific flexible surface must be made, that will be
placed on top of the pins [Vollers, 2013]. The concept of a flexible mould can be used for
different materials like plastics, glass and concrete. So far there is no commercial application

Flexible mould for production of double-curved concrete elements Msc Thesis



12 Description of existing flexible mould

for concrete elements. This research aims to bring this one step closer.

2-2 Buildup of the flexible mould at the start of this research

The flexible mould as used in this research consist of a flexible surface with underlying grid
of supports. In Figure 2-6 to 2-11 the different parts of the mould are shown. An important
earlier development is the use of strips in the mould surface. In previous research several
models have been made where the surface consisted of an solid plate. Tests by Bas Janssen
showed local buckling of the surface after deformation [Janssen, 2011]. Therefore the required
shape was not reached.

In Figure 2-6 a base plate with holes is shown which is used to fix the supports. A grid of holes
determines the locations of the supports. The base plate is also the reference for adjusting
the height of the supports. Therefore it should be sufficiently stiff. Would it deform, then its
deformation directly influences the shape of the element.

In the holes the threaded ends are fixed by bolts on both sides of the base plate. The bolts are
fastened hand tight which result in a connection that fixed but not rigid. A rigid connection
could cause jamming of the mould during deformation. A very loose connection would allows
too much horizontal displacement of the threaded ends.

Figure 2-7 shows aluminum tubes that slide over the threaded ends. An extra bold is put on
each threaded end. This bold is used to set the height of the supports. During deformation
of the mould tubes slide over the threaded ends until they reach the set height by the bold.

Figure 2-7 and 2-8 show an additional plate and temporary support structure which keep
the supports in horizontal position. This is used when the concrete is cast on the mould.
Later the temporary supports are removed and the mould is lowered by an crane, as shown
in Figure 2-11, until all tubes rest on the bolds.

Figure 2-9 shows the surface of the mould. Strips span the distance over the supports, but are
not connected. Only nails through the lower strips slot in the tubes. On top of this another
layer of the strips spans in perpendicular direction creating the mould surface. The two layer
are only connected at the middle lower strip. Therefore the two layer can slide over each
other.

Figure 2-10 shows a sheet of foam and silicon is placed on the strips. Edges made of the
same material and are fixed on the sheet using sealant. For testing they are placed in straight
position. Concrete can be cast directly on the sheet. The foam is compressed by the weight
of the concrete and compensates small gaps between the strips.

2-3 Setup and production procedure

Production of double curved concrete element requires two phases. An engineering phase and
a production phase. During the engineering phase production specifications are determined.
Examples of that are support heights, location of edges, element thickness, concrete mixture,
drying times and element buildup in case of reinforcement. This research focuses solely on the
geometry. The geometric description of a shape is required and is assumed to be provided.
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Figure 2-6: Base plate with threaded
ends fixed with both on both side of the
plate. Bolds are hand tight. [Schipper,
2013].

Figure 2-7: Tubes slide over the
threaded ends. An support plate can
keep supports leveled when concrete is
cast. [Schipper, 2013].

Figure 2-8: Temporary structure keeps
the support plate at fixed height. The
structure is removed when the mould is
deformed. [Schipper, 2013].

Figure 2-9: Two layers of strips. The
bottom layer of strips is placed directly
on the tubes. The top layer is only
fixed to the lower middle strip with nails.
[Schipper, 2013].

Figure 2-10: Foam with silicon mould
to contain the concrete. Bottom and
edges are made separately. [Schipper,
2013].

Figure 2-11: Finished mould. A crane
lowers the support plate. [Schipper,
2013].
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Figure 2-12: Fresh concrete is cast into
the formwork until the required thickness
is reached. [Schipper, 2013].

Figure 2-13: After the concrete has
sufficiently hardened the temporary sup-
ports are removed and the surface is low-
ered into its required shape. [Schipper,
2013].

During the engineering phase the support heights be can determined in several ways. For
shapes that can be described by mathematical functions, such as cylinders and spheres, sup-
port heights can be calculated. However the mould will produce freeform shapes. The use
of geometry defining software provides the capability to analyze freeform shapes and obtain
support heights according to the support grid. This is the starting point. Deviations occurs
during deformation of the mould. These are caused by both mechanical and geometric ef-
fects. The resulting deviation can be predicted and compensated for by adjusting the support
heights. Important factors that influence the deviation and determine the support heights
are:

• Positioning and orientation of shape in mould

• Mechanical and material properties of mould surface

• Displacements and rotations due to deformation

When the engineering phase is completed the production of the elements can be started.
The support heights are setup by adjusting the bolds. This is a time consuming activity
which could be automated in future. The formwork (foam and silicon bottom and edges)
that will contain the fresh concrete is placed and aligned on top of the mould surface. Next
the concrete is mixed according to specifications and poured into the formwork (Figure 2-12).
Reinforcement can be placed by adding alternating layers of concrete and reinforcement. At
this stage the mould is kept in horizontal position to prevent the concrete from flowing out
of the formwork. A curtain period of hardening is required to stiffen the concrete mixture.
The optimal duration of this period and its consequences are not fully known yet. When the
concrete is sufficiently stiff the temporary support structure is removed and the mould surface
is lowered by means of a crane until all supporting tubes reach their required height (Figure
2-13). The mould has now reached its final shape and the concrete is left to harden. A foil is
used to cover the concrete preventing fast evaporation of water in the top surface. After one
day the element can be removed from its formwork and the process can be repeated. It takes

Peter Eigenraam



2-4 Shortcomings of the mould 15

about 28 days to fully harden the concrete of the elements. Controlled humidity conditions
are preferred for the hardening process.

The buildup of the mould, using simple materials and connections has curtain advantages.
The simplicity of the buildup is the strong point of the mould. It is robust and parts of
the mould are unlikely to be damaged or fail. It became clear that production of concrete
elements is a messy job. For example concrete, water and sand is likely be dropped outside
of the mould unintentionally and production of prefabricated concrete is mostly done in a
dusty environment. A setup using automated pistons could jam due to sand entering in slits
between moving parts. Additional measures would be needed to prevent material entering
the slits which make the pistons sensitive and could lead to a unpractical working situation.

2-4 Shortcomings of the mould

The mould as used at the start of this research (described in Section 2-2) has been build to
satisfy research requirements and within a limited budget. As a result there are multiple issues
that could be improved. This would provide better control on the shape of the mould and
increase accuracy. Some factors that influence the shape cannot be controlled and introduce
inaccuracies. When accuracy needs to be determined uncontrolled influences need to be
limited as much as possible. The mentioned factors have been noticed and observed during
production of elements will be described here.

Deflection of the mould is caused by the weight of the concrete and is in some cases insufficient.
No other force acts on the mould. The strips in the surface resist to the deformation. Extra
weight can be added manually during the production process. Or in case of single curved
elements the edges can be clamped. An additional factor is that the concrete needed for
one element will not cover the total surface of the mould. Therefore the surface is unevenly
loaded which also introduces inaccuracy. Figure 2-14 and 2-15 shows examples of these
situations. The position of the added weights influence the shape and introducing a inaccuracy
in production. For example there is a difference in adding point loads or distributed loads
over the length of the strips.

This indicates, as can be expected, that the stiffness of the mould surface is an important
aspect that influences the shape of the mould. Similar results where noticed by Koen Huyghe
and Arnoud Schoofs on an alternative version of a flexible mould showing the importance of
the stiffness of the mould surface [Huyge and Schoofs, 2009]. Calculations on the stiffness of
the strips of the mould performed by Bas Janssen [2011] pointed out that a low stiffness would
result in too large deflection between the supports. A high stiffness would cause detaching of
the strips and supports, as was now observed during the tests. Therefore it can be concluded
that the stiffness of the strips was too high for the applied load. This could be solved by
reducing the stiffness of the strips or increasing the load. As described the later was applied
during tests. This is considered a practical solution since changing the stiffness would require
to rebuild the mould surface. In some situation it is needed to apply additional loading, but
the applied method does not provide enough control over the surface. It would be favorable
to find a alternative method that fulfills these requirements.

The number of strips in the two perpendicular directions differs. Therefore the stiffness of
the surface for these two direction is also different. A result is that the strips deform different
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Figure 2-14: Element ready for defor-
mation. Bricks are added around the
element to add weight to the surface.
Weights are needed for deformation if the
mould. [Schipper, 2013].

Figure 2-15: Single curved elements af-
ter deformation. Weight of the concrete
is insufficient for deformation. Clamps
are used to fix the shape. [Schipper,
2013].

under the same load. Equal stiffness in two directions is therefore preferred.

The accuracy of the mould surface cannot be ensured. The surface of the mould consists of
strips in two directions. There is a bottom layer and top layer of strips. The layers only
connected at the lower middle strip. Therefore the strips are free to slide over each other.
This was done as alternative for using a solid plate. Tests by Bas Janssen [2011] showed that
the edges of a solid plate buckle and therefore the required shape was not obtained. Since
the plate has been replaced buckling has not been observed in tests. The strips are separated
with small distance. There is room for in-plane deformation and stresses have not (yet) build
up to a level that cause buckling. As mentioned before the strip are not connected and
displacements cannot be controlled. Figure 2-18 shows uneven displacements of the strips.
This creates a silhouettes of individual strips in the surface of the concrete element as can
be seen in Figure 2-19. In theory neighbor strips deflect almost the same. In practice this
does not happen. Uncontrolled displacements cause that accuracy over the mould cannot be
ensured. An alternative solution that allows control over the displacements would increase
accurate deformation of the mould.

The absence of a good connection between the supports and strips causes that accuracy of
the shape cannot be controlled. The connection allows for detaching of the mould surface
and uncontrolled displacements and rotations. The connection is made using a nail that slots
in the supporting tube. The diameter of the nail is far less than the inner diameter of the
tube. Figure 2-17 illustrates a situation where the strips do not deflect enough to touch
the supports. This can cause the nail to pop out of the tube. Deforming and afterwards
returning the mould surface to horizontal position causes fierce shaking of the mould. Figure
2-16 shows the connection after repeating tests. The nail no longer slots in the tube. Therefore
large horizontal displacements are no longer prevented and accuracy cannot be ensured. A
connection that allows controlled displacements and rotation would increase the accuracy of
the mould.

Rotation of the strips cause a deviation of the required shape. The thickness of the mould
creates a curtain offset from the top of the supporting tubes. In horizontal position this
can easily be compensated by reducing the height with the thickness of the mould surface.
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Figure 2-16: A situation during tests
where the strip does not deflect enough
to touch the support. As result the nail
does not fully slot in the tube.

Figure 2-17: After repeating tests the
nail no longer slots in the tube. Large
horizontal displacements are no longer
prevented.

Figure 2-18: Strips deflect unevenly
causing an uneven surface of the con-
crete element. [Schipper, 2013].

Figure 2-19: Unsmooth surface of con-
crete element. [Schipper, 2013].

Figure 2-20: Strip at angle resting on
support. At the center of the support the
strips is lifted.

Figure 2-21: Vertical deviation from the
height set by the support..
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However when a rotation occurs the offset increases and the compensation is not sufficient
anymore. The Figures 2-20 and 2-21 show a vertical deviation from the set height and
should be compensated for when calculating the support heights. However currently this
not included. The deviation is caused because the point of rotation is not the center of
the support, but the outer diameter of the supporting tube. Also the thickness in vertical
direction changes when the angle of the surface changes.

The height of the bolds are directly derived from the geometry of the required shape. However
a deviation of the height is introduced by thickness of the strips and silicon resting on the
supports at an angle. Since the tube has an curtain width the strip will tilt over the edge
moving the surface at the center of the support.

2-5 The relation between change of Gaussian curvature and strain
of the surface

During deformation of the mould the shape of the mould changes from a flat surface into
a double curved surface. Due its 3-dimensional character it becomes difficult to precisely
describe what happens in terms of displacements and strain in the surface. To describe
properties of curved surfaces Gaussian curvature is well known. It has been described and
studied by many people since Karl Friedrich Gauss describe already in 1827 a measure of
curvature in his General Investigations of curved Surfaces [Gauss, 1827]. However the relation
between change of Gaussian curvature and internal strain of the surface is less known. It was
found that this relation plays an essential role in this research. This chapter describes this
relation and the consequences for the flexible mould.

Gaussian curvature (kG) is widely known as the product of the curvatures of a surface in two
principal direction, which is a description in 3 dimensional Euclidean space. However there
is an equivalent definition which can be thought of as 2 dimensional in the direction of the
surface. Therefore it is possible to imagine the surface of the mould as a surface of infinitely
small thickness and in-plane strain can be analyzed. This is an important step when trying to
understand what happens within the surface of the mould during deformation. Both described
definitions are given in Equation 2-1 and Figure 2-22 illustrates the equation parameters. A
precise description is given by Calladine in Chapter 5 of his book Theory of Shell Structures
[Calladine, 1983]. Three types of Gaussian curvature can be distinguished; zero, positive and
negative.

kG = K1 ·K2 = dB
dA (2-1)

Changing the Gaussian curvature of a surface requires straining of the surface. The result of
straining is that points on the surface change position relative to each other when distances
are measured along the surface. This is illustrated in Figure 2-23. The Gaussian curvature is
increased in steps. It can be seen that the corner part of the surface changes into a diamond
shape. This is called shear deformation. Other strain, but less visible, is the change in length
of the part edges. Change of Gaussian curvature (G) involves these three components. A
change of length in two direction (εxx, εxx) and shear (γxy). The relation between the change
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Figure 2-22: Mapping of a surface onto a unit sphere. Used for defining the measure of curvature
[Calladine, 1983].

Figure 2-23: Deformation of surface.

of Gaussian curvature and strain is described in Equation 2-2. A derivation of this equation
is given by Calladine in Chapter 6 of his book [Calladine, 1983]. It can be seen from Figure
2-23 that shear deformation is a substantial contribution and that it can even by itself cause
a change of Gaussian curvature. The latter and the mathematical description may seem
complicated. However the following example clearly illustrated their meaning;

Like in Figure 2-24, a flat sheet of paper can be divided in rectangles with a relative shear
angle to each other according to γ = C · d2. Substituting in Equation 2-2 gives a constant
change of curvature. When the squares are cut from the paper and the edges are fixed to each
other and a double curved shape appears like in Figure 2-25. Since the paper is originally
flat the Gaussian curvature is zero. The final Gaussian curvature is therefore equal to the
change of curvature. By this example it is shown that change of Gaussian curvature involves
a combination of strains. Only shear was considered in this example.

G = −∂2εxx

∂y2 − ∂2εyy

∂x2 + ∂2γxy

∂x∂y
(2-2)

So far only straining is considered. And when changing the Gaussian curvature it is assumed
straining can take place without any resistance. This experiment can only take place within
our thoughts. In reality a surface will always consist of a material with a thickness and
resistance to straining. Within the field of mechanics this relations (if linear) is known as
Hooke’s law. Straining of a surface introduces stresses. The material will resist a deformation.
The result is that it is not possible to change the Gaussian curvature without using force.
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Figure 2-24: Strain of surface with
shear angle according to γ = C · d2.
Modified from [Calladine, 1983].

Figure 2-25: Double curved shape cut
from a flat piece of paper.

The description of change of Gaussian curvature has consequences for the flexible mould.
The flexible mould was designed for freeform shapes. Therefore deformation of the mould
surface will always involve a change of Gaussian curvature of the surface. The deformation
will therefore introduces in plane stresses. within a solid plate stresses can build up to high
levels. For strips this is less, but can still be considerable. Strips are loaded in two directions.
In their weak direction (perpendicular to the surface) and in their strong direction (in plane
of the surface). In Figure 2-23 it can be seen that the edges are bend in the direction of the
surface. In structural mechanics loading in two directions is known as double bending. Since
shear deformation is an important factor it can be concluded that a mould surface is required
that has low resistance to shear. Shear deformation involves a change of angle of initially
perpendicular directions. Would the two layers of the strips be connected then the rotation
should be allowed.

A important aspect is the translation of individual points on the mould surface. The above
given example shows that points displace horizontally and vertically and also rotate in two
directions. These are also called degrees of freedom. A connection between strips and supports
should allow these degrees of freedom. Earlier it was found that these translations occur
uncontrolled. Now it is shown that control of translations is essential to create a curtain
shape.

2-6 Conclusions

A study was made of the flexible mould as it was used at the start of the research. The
buildup of the mould was observed and several shortcomings were found. The accuracy could
not be ensured due to uncontrolled displacement and rotations of the mould surface at the
support connections. Control over these translations is essential for to increase the accuracy
of the mould surface. Some details of the mould buildup cause deviations of the intended
shape which should be compensated for. Also a study was performed on the deformation of
the mould surface. Understanding the behavior of the mould during deformation is difficult
due to its three dimensional character. It was found that during deformation the Gaussian
curvature of the surface changes and that shear deformation has a large contribution to this.
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The surface of the mould should be able to follow this deformation without resisting too much.
The following aspect could be improved in order to gain more control over the geometry;

• An alternative method for applying additional loading of the surface

• A mould surface with low resistance to shear deformation

• Connections between two layer of strips that allows in-plane rotation

• Connections between strips and supports that allow horizontal and rotational transla-
tions

• Compensation method for deviations caused by horizontal displacements and rotations
of the mould surface

Flexible mould for production of double-curved concrete elements Msc Thesis



22 Description of existing flexible mould

Peter Eigenraam



Chapter 3

Design of a new flexible mould
prototype

The accuracy of the concrete elements that will be produced with the flexible mould depend
on the design of the mould. But the accuracy of the mould as it was at the start of this
research could not be ensured in the version. Therefore a new mould prototype has been
designed to improve control over the shape. This was done based on the results of Chapter
2. During the process of designing alternately a theoretical and a practical approach was
chosen and multiple small scale tests have been performed to gain insight in the effectiveness
of solutions. The test models have been made from everyday materials which can be bought
in any hardware store. Figure 3-1 shows the design of the new prototype of the flexible mould.
After the design was finished a prototype has been build which is shown Figure 3-2.

In this chapter the solutions will be introduced that improve control and accuracy over the
shape of the flexible mould. The following aspects will be described; the flexible surface, the
support connections and weights that can be added to the supports. The number of supports
and size of a mould can vary according required size of the elements. For this research a
mould surface of 630 x 630 millimeter is chosen with five supports in each direction. The
distance between the supports is 150 millimeter.

3-1 Flexible surface

In an early version of the flexible mould the surface was made of a solid plate. Later the plate
was replaced by two layers of strips in perpendicular direction. This was done after tests by
Bas Janssen. In these tests local buckling was observed at the edges of the plate [Janssen,
2011, Chapter 10.3]. The strains and accompanied stresses became too high and caused
bucking. Buckling is an unwanted effect because it results in a deviation of the intended
shape. Separate strips have an advantage compared to a solid plate. The strips can deform
separately with limited exchange of in plane stresses because there is a separation between
the strips. The stiffness of the individual strips is an important aspect that influences the
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Figure 3-1: Design of the new prototype of the flexible mould.

Figure 3-2: Finished prototype of the flexible mould.

Peter Eigenraam



3-1 Flexible surface 25

shape. This was described in Chapter 2. The strips in the previous version of the mould where
too stiff in relation to the applied load. Also an important factor that was described is the
absence of a connection between strips in perpendicular direction. The strips can therefore
displace uncontrolled and the accuracy of the mould cannot be ensured.

In order to find a solution for these problems two ideas have been introduced. The first idea
was to reduce the length of the strips and place multiple strips in line instead of one strips
that spans the total surface or the mould. The shorter strips would span the distance between
supports. Figure 2-23 of the previous chapter illustrated that strips make an angle relative
to the next strip in line due to shear deformation. This can also be described as in-plane
deformation. The connection of the strips should be such that an in-plane rotation allowed,
but rotation out of plane is still transferred. The latter was required for continuous curvature
of the strips. The resistance of the surface to shear deformation would be reduced significantly
by making this type of connection. A solution that could fulfill the requirements was a multiple
layered strip which partly overlapped with the next strip in line. When wooden strips would
be used the thickness of the strips would become too high since layers of approximately
0.5 millimeter would be hard to obtain. Therefore the material was replaced with plastic
which is available in this thickness. Figure 3-3 and 3-4 show two small scale versions of
the connection. The layers of strips where glued together. The overlap and connecting bolt
transferred a moment and since there is only one bolt there is a hinged connection in the
in-plane direction. After testing the alternatives it was found that the connection was not
applicable for the flexible mould. This was caused by the following aspects;

• Connection showed discontinuous curvature which was caused by local decrease of mo-
ment of inertia at the connection

• Permanent deformation of the used material

• Layers detached because the glue was not strong enough

• Fabricating of the strips took a lot of work

• A countersunk hole to fit the bolt was not possible because the material is to thin and
the hole would further decrease the stiffness of the connection

The small tests showed multiple difficulties but the concept could be optimized further for
better results. However the connection in this concept was likely to always show a discon-
tinuity in curvature. This was caused by local decrease of stiffness at the connection. The
overlap in the connection has no interaction with the other layers and the moment of inertia
is therefore different from a cross section in the middle of the strips. At that point the strips
are glued together and have a good interaction. For these reasons the idea was abandoned
and another idea was worked out.

The second idea that was introduced was using continuous strips, like in the previous version
of the mould. But an important difference would be that the strips in two directions are fixed
together at the centerline and the point of intersection using a bolted connection. Only one
bolt was used for each connection so that it allowed for in-plane rotations relative to each
other. The nuts and bolts where not fully tightened but enough for the strips to exchange
moments. When the nuts and bolts would tightened to much friction would prevent in-plane
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Figure 3-3: Two small scale tests of con-
nection between strips.

Figure 3-4: Overlapping connections of
strips.

rotation of the strips. Self locking nuts where used to prevent the nut from detaching over
time. Also the size of the strips was reduced to 29 x 3.8 mm. The imprint of the bolts in the
concrete would will be reduced when the holes are countersunk in the top strip. This way the
top of the bolt would be in line with the surface. A disadvantage of this is a local decrease
of stiffness because the cross section is reduce. However when the hole is small the effect
will hardly be noticed. Together the strips form a plate-like surface. This idea was worked
out and can be seen in Figure 3-6. The result was a relative stiff surface. Therefore a great
effort was needed to force the surface into shape. This was hardly an improvement compared
to the previous version of the mould surface. Additionally, wood is a natural product. It is
anisotropic, never exactly straight, does not fully return to its original shape and is sensitive
to humidity conditions of the surrounding air. The shape of the strips in horizontal setup of
the mould can be seen in Figure 3-7. Based on these findings it was concluded that the strips
where still too stiff and that wood is not the ideal material for the mould surface.

A second version of the idea was worked out where four changes where implemented. The first
change was a reduction of the thickness of the strips. It was reduced from 3.8 to 2.0 millimeter.
Secondly, the wood was replaced with a plastic. Third, in the bottom layer two strips where
placed on top of each other. This was done to compensate the difference in stiffness of the top
and bottom layer of the surface. The strips where fixed by the bolted connection that also
fixes the supports. The bolts where tightened strong. Thereby the interaction between the
strips was increased. If the connection would be loose then the stiffness would double. But
if the connection would be solid then the stiffness would increase by a factor eight because
for the moment of inertia the height of the strips is taken into account to the power three.
So the stiffness would have increased somewhere between a factor to and eight. The fourth
change was that notches where made in the sides of the strips. The Figures 3-8 and 3-9 show
small scale tests which were used to find an alternative for the wooden strips. The notches
reduced the stiffness of the individual strips. From theory of mechanics it is known that for
rectangular cross sections the moment of inertia takes the dimension of considered direction
into account to the power three. For the strips in their strong direction this dimension is its
width. As result of reducing the width by a half the stiffness reduced by a factor eight. The
strips together formed the surface which will be subjected to shear deformation. The result
can be seen in the Figure 3-10 and 3-11. Shear deformations was described in Section 2-5.
The surface is required to have low resistance to shear deformation, so that large internal
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Figure 3-5: First design of the new prototype of the flexible mould
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Figure 3-6: First version of a new sur-
face of the mould. The surface consisted
of wooden strips which are connected to
each other by bolts.

Figure 3-7: The wooden strips are not
straight as can be seen at the edge of the
strips.

Figure 3-8: A small scale test in order to
find an alternative for the wooden strips.

Figure 3-9: Small scale test of the strip
with notches.

stresses are prevented. High stresses can cause buckling of the surface and a deviation from
the intended geometry. Reduction of the strip width also reduced the resistance to bending
deformation. Over the length of the strips the moment of inertia alternates because it is higher
for cross sections that have not been reduced. This could result in discontinuous curvature
if notches are unequally spaced and to far apart. To ensure that continuous curvature the
notches where made at equal distance and depth. These two dimension are parameters that
influence the stiffness of the strips can in the future could be used for optimization of the strips
stiffness. By introducing the notches in the strips the mould surface should be able to deform
more easily compared to a similar surface using strips without notches. Also deformation at
the moment that buckling occurs will be larger. From these consideration is was concluded
that the notches should make the mould surface very flexible.

3-2 Support connections

Strips and supporting tubes are not connected in the previous version of the mould. Therefore
the strips can displace uncontrolled relative to the supports. Also negative support reactions
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Figure 3-10: Plastic strips replaced the
wooden strips and the thickness was re-
duced from 3.8 to 2.0 mm.

Figure 3-11: Top view and section of a
strips. The notches in the strips should re-
duce the resistance to deformation of the
whole surface.

cannot occur. Therefore the supports can only resist a force downwards which should fix the
shape of the mould in curtain position. As result the weight of the concrete must be sufficient
to cause positive support reactions on all supports. But for some shapes and thickness of the
concrete this was not the case and additional weights had to be added to the surface. This
is not ideal and therefore two solution where introduced which enabled positive and negative
supports reactions and at the same time allow rotation of the strips.

The first idea was a connection using a couch bolt, a rounded block and a locking plate. This
idea can be seen in the Figures 3-12 and 3-13. Here a couch bolt would slot in the supporting
tube and would also be locked within a block and locking plate. The connection would be
able to transfer negative reaction force because of the locking plate. The advantage of the
rounded shape of the couch bolt would be that the strip rotates around a fixed point. The
reason for the rounded shape of the block is that it would prevent local stiffening of the strip.
Therefore the block should also be fixed with two bolts only perpendicular to the direction
of curvature. Unfortunately there was still room for play in the connection which was not
wanted. An alternative was therefore sought.

A new solution was found in two steps. Following the stated requirements a first version
of a connection was made. This connection worked well. However rotations in different
directions did not have the same point of rotation as can be seen in Figure 3-14. This would
be unpractical in further research. Therefore a second version was made. The solution showed
much resemblance to a universal joint and in fact is one. This connections finds its application
in connections for axles and bars in machines which can be found in everyday equipment. For
example a car. A stroke of inspiration dating from earlier days playing with Technic Lego
was not excluded. Figure 3-15 shows the second version of the connection. The connection
proved to work very good. It allowed for rotation of the strip and could transfer a force at
the same time. Therefore it was implemented in the new prototype of the flexible mould.
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Figure 3-12: Section seen from the side
of first idea for connection of strips and
supports. The rounded shape of the block
prevent local stiffening of the strip.

Figure 3-13: Section perpendicular to
the strip. The locking plate enables trans-
fer of negative reaction forces.

Figure 3-14: First version of a connec-
tion between strip and support.

Figure 3-15: Second version of a connec-
tion. The connection is a universal joint.
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Figure 3-16: Two universal joints are
combined to create a three dimensional
pendulum support. This allows the strip
to displace in all required degrees of free-
dom.

Figure 3-17: Implementation of the pen-
dulum support in the new prototype of the
flexible mould. Jamming of the mould is
prevented.

3-3 Pendulum supports

The surface of the mould will be deformed during the production of the concrete elements.
Therefore the supports are required to displace horizontally. A horizontal reaction force
would be the result if the displacement is not allowed by the connection of the strips and
the supports. This could jam or damage the mould. Also the required shape would not be
reached. Therefore a solution has been introduced that allows horizontal displacement, but
remains capable of transferring a force through the supports. A additional universal joint
was added to the supporting tubes. Thereby a three dimensional pendulum rod was created
which allows all the required degrees of freedom for displacements and rotations. A small scale
model can be seen in Figure 3-16. This pendulum could displace freely while the lower part
of the support remains in the same location. The interaction of forces between the surface
and support is in line with the pendulum support. Only a normal force can be taken by
this part since the universal joints do not transfer any bending moments. A small horizontal
reaction force is taken by the lower part of the support due to the angle of the pendulum
support. The angle is small, but will increase if the mould dimensions increase. A possible
solution could be to increase the length of the pendulum support. Thereby the horizontal
displacement cause a smaller angle. Due to the pendulum supports jamming or damage
would be prevented. All parts of the mould where now connected. As result, uncontrolled
displacements and rotations did not occur. Height of the supports could be set accurately
and points of rotations where known to be the center of the universal joints. Like in the
connection between strips and supports, the reaction forces could be transferred and at the
same time all the required degrees of freedom are allowed by the combination of the universal
joints. Figure 3-16 shows a model that was made to test the pendulum support.

The surface of the mould would not be stable if all supports would be made using the pen-
dulum support. This is because the connections would allow displacements and rotation of
the total surface. Therefore the middle support was not made using a pendulum support.
Only a universal joint was used at the top. This prevent the surface to displace in horizontal
direction and the middle support became a reference point. However rotation around this
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Figure 3-18: Two types of pendulum
supports. The left support allows dis-
placements in two direction. The right
connection only one direction.

Figure 3-19: Allowed direction of de-
grees of freedom by the pendulum sup-
ports. Rotation of the surface is prevented
by a combination of two type of pendulum
supports.

support was not yet prevented. Therefore a second type of pendulum was introduced which
could only rotate in one direction. This was done by using a simple hinged connection instead
of a universal joint at the lower connection of the pendulum. The top connection remained
the same because rotation of the strips in all directions need to be allowed. The two different
types of pendulum supports can be seen in Figure 3-18. By applying these two of pendulums
the surface could be made stable while all required degrees of freedom remain. This was done
by placing the two types of pendulum supports in specific locations. The supports in line
with the middle support have been made of the second type of pendulum support so that
they can only displace towards the middle support. Rotations around the middle support are
thereby prevented. In theory only one supports would be required to be of the second type.
However in the connections that where made is some play. Therefore all supports in line with
the middle support have been made using the second type. The location of the two types of
pendulum supports is illustrated in Figure 3-19.

3-4 Additional weights for the supports

The support connections are capable of transferring forces. However, until now, no means
of applying the force has been introduced. In some cases the weight of the concrete would
be sufficient to lower all the support to their required height. But in some cases additional
loading would be required because the surface resists to the deformation. Additional loading
was applied by adding weights to the support. The shape of the weights was designed such
that they can easily be added and removed according to the required location. For that
purpose the weights where provided with slots as can be seen in Figure 3-20. The weights
where made of concrete and their weight is approximately two kilogram. At the bottom of
each supporting tube a ring was fixed which is larger than the slots in the weights. The tube
where flared at the bottom. This made the outer diameter of the tube larger than the inner
diameter of the used ring. Therefore the weights can be placed on the supports. This detail
is shown in Figure 3-21.
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Figure 3-20: Weights that can be added
to the supports when the weight of the
concrete is insufficient.

Figure 3-21: Detail of the bottom of the
supports. The end of the supports have
been flared. An additional ring provides
support for the weight.

3-5 Conclusions

Based on the possible improvements which were found and described in Chapter 2 a design
was made for a new prototype of the flexible mould. During the process of designing small
scale tests were performed to test the functionality of new ideas. After finishing the design a
version of the new prototype has been build. In this prototype solutions have been introduced
which should improve control over the shape of the surface and increase accuracy of the mould:

• A flexible surface consisting of plastic strips in two perpendicular directions fixed to-
gether using a bolted connection. Notches in the strips reduce stiffness of individual
strips. Therefore the resistance to bending and shear deformation of the surface should
be reduced.

• In-plane rotation between initially perpendicular strips is allowed, so that shear defor-
mation is made possible.

• No sliding parts are present in this design, making the kinematic predictability of the
whole system much clearer. There are no uncontrolled translations.

• Support connections using universal joints allow rotation of the surface while positive
and negative supports reactions can be transferred.

• Three dimensional pendulum supports allow horizontal displacements of the supports.
Again positive and negative support reactions can still be transferred. The total surface
is stable. Rotations and displacement as a whole are prevented by two types of pendulum
supports in specific locations.

• Additional weights for the supports provide means to create negative support reactions.
The weights can be placed and removed easily according to the required location.
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Chapter 4

Method for setup of the flexible mould

When elements can be produced first the data from the geometry must be processed. This
is needed to determine the setup of the mould. With this is meant that heights of the
supports need to be determined. The geometry cannot directly be used because deviation
occur during deformation of the mould. This was described in Chapter 2-4. These effect
should be compensated for. In this chapter a method will be described which can be used to
prepare the setup of the support heights of the flexible mould. The goal of the method is to
provide support heights which would enable the manufacturer to obtain a surface which is as
close to the intended geometry as is needed. Within this method mechanical and kinematic
aspects are important. The method focuses on a single strips and can be extended for use
of the flexible mould. First mechanic and kinematic aspects will be discussed. Then the
proposed method will be described.

4-1 Mechanics

The mould will be deformed during the production process of the elements and the deflection
can be calculated by structural calculations. Although the mould is small compared to the
structure of a building or a bridge, the same calculations can be performed.

In earlier research by Bas Janssen [2011] the strips in the mould have been compared to a
beam on multiple supports. This approach was continued. However there are multiple factors
that complicate the description of the deformation of the mould:

• Three-dimensional character of the deformation including double bending

• Non-symmetric and discontinuous cross section properties of the deformed strips

• Assumption of small displacements are not fulfilled

• Complexity in large number of equations to set up for each strip
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Figure 4-1: Model of mould surface for setup of structural calculation.

• Unknown support heights outside element area

Because of the complexity of the deformation many factor have been simplified. And some
assumption for theory of mechanics are not fulfilled. But this does not mean the comparison
cannot be made at all. Results of a simplified approach may not be exact, but could be
accurate enough. Therefore this approach was continued.

4-1-1 Bending equation

For structural calculation the fourth order differential equation for bending has been used.
There are many references that can be made for this theory. Within this research lecture
notes by Coen Hartsuijker en Hans Welleman [2011] have been used. The used equation have
been derived and can be found in the Appendix A.

At first this method makes use of the equations for deflection and rotation. Later also the
reaction forces and calculated. The equations for deflection, rotation and support reactions
according to the coordinate system in Figure 4-2 are;

w(x) = q(x) · x4

24 · EI
+ C1 · x3 + C2 · x2 + C3 · x+ C4 (4-1)

ϕ(x) = −q(x) · x3

6 · EI
− 3 · C1 · x2 − 2 · C2 · x− C3 (4-2)

R(x) = Vleft(x) − Vright(x) (4-3)

There were lots of strips in the mould surface. To make the calculation less complex in quantity
only the strips above the supports have been considered. The surface has been modeled
according to Figure 4-1. It was not required to perform structural calculations for every strips
to gain insight in the shape of the mould. The strips have been given equivalent stiffness
properties for the part of the surface they represent. To solve the equations a boundary
condition had to be found for every unknown constant. There were many equation to solve.
These can be found at the supports according to Figure 4-3. There was a difference between
supports at the end, where two boundary conditions can be found, and supports in the middle
of the strips, where four boundary conditions can be found.

A distinction was made between the top layer and the bottom layer of strips. First the top
layer was calculated. The resulting reaction forces where then used as load for the bottom
strips. An equally distributed load could not be used because the support reactions vary
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Figure 4-2: Scheme of strip. For single
bending the deflection w of one strips is
modeled as a function of the horizontal
distance x.

Figure 4-3: Boundary conditions to
solve a set of equations. Different
boundary conditions can be found at end
supports and middle supports.

Figure 4-4: Load functions of the strips.

over location of the mould surface. However the reaction forces could not directly be used
as load for the bottom strips because the forces would be above a support and no deflection
would be caused by this load. To simulate the interaction with the strips that were not
modeled according to Figure 4-1 equivalent load functions where calculated from the support
reactions of the strips in the top layer. For each support reaction a triangular load function
was setup. Then for each part of the strip a summation of the loads was used as input for
the equations. This is illustrated in Figure 4-4. The equation was written so that only the
value of the load above the supports needed to be chosen. This value was calculated using the
support reaction of the top layer of strips. The equations are linear. Therefore the equations
for the deflection become a fifth order polynomial instead of a fourth order when an equally
distributed load would be used. In Equation 4-4 the factor thousand was taken into account
due to the measurement in millimeters.

qtotal;n(x) = qrep;n ·
(
n · 1000 − x

d

)
+ qrep;n+1 ·

(
x

d
− n · 1000 − 1

)
(4-4)

4-1-2 Calculations for strips

When calculations for the strips where performed some aspect where noticed that are specific
for application of the flexible mould.

First the Young’s modulus of the used material must be known. However the used material
was bought in a hardware store and the Young’s modulus was not known. The Young’s

Flexible mould for production of double-curved concrete elements Msc Thesis



38 Method for setup of the flexible mould

Figure 4-5: Various possible material properties expressed in σ-ε-diagrams for plastics. There is
no linear clear elastic zone. Adapted from [van der Vegt, 1994].

modulus has be derived from a σ-ε-diagram obtained by tests. During these tests the material
was loaded by weights and the train of the strips was measured. The setup and results of these
test can be found in Appendix C. Figure C-1 shows a various possible material properties in
σ-ε-diagrams for plastics. Here can be seen that plastic does always not have a linear elastic
zone. However if the strain would be limited to low values an approximation could be made of
quantity that could be used as if it was the Young’s modulus of the material. This would fit
research requirements although it is theoretically not correct. Three test showed an average
value of 3851 N/mm2 for low strain. This value was used in the performed calculations. In
calculations it was assumed that the material of the strip was homogeneous and linear elastic.
However the used material, plastic, is not. This could lead to a deviation in the shape.

A second important aspect was described in Section 3-1. There is a difference in stiffness for
the strips in the top and bottom layer. The modeled strips represent there equivalent part
of the surface. Therefore the strips in the middle represent the same distance as the support
distance. However the edge strips represent only half of that. This was implemented in the
performed calculations.

Third, during deformation of the mould displacement and rotations occur in multiple direc-
tion. However in the calculation only translation in the x-z-plane of the strips are considered.
This is not in accordance with the actual deformation. This phenomenon is called double
bending. Similar calculation as for single bending can be performed but are not implemented
in this research. However the required equations have been derived and can be found in
Appendix A. The equation have been modified from lecture notes by Coen Hartsuijker en
Hans Welleman [2011]. Double bending should be considered if single bending would greatly
influence the made calculation error or for if scientific reasons it is strove for more accurate
results. However calculation become more complex. In the calculation during this research
double bending is not included. First result of single bending are researched. Another result
of translation in multiple directions was that the orientation of the strips change. Therefore
cross sectional properties change too. The moments of inertia of a rectangular cross section
has been written as a function of the angle as in Figure 4-6 and 4-7. It can be seen from the
following the equations 4-5 to 4-7 that for an angle of zero degrees the well known function
for the moment of inertia appear.
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Figure 4-6: The orientation of a strips
has changed due to an angle α.

Figure 4-7: Cross section of a strip. The
moment of inertia has changed.

Iyy = 1
48 · w3 · h+ 1

16 · w3 · h · cos(α)2 (4-5)

Iyz = 1
16 · w3 · h · sin(α) · cos(α) (4-6)

Izz = 1
12 · w · h3 + 1

16 · w3 · h · sin(α)2 (4-7)

A fourth aspect that was noticed is of importance of the accuracy of the mould surface.
Calculation where performed for shapes with continuous curvature. From the used boundary
condition at the end supports of the strips it followed that there was no bending moment.
From theory of mechanics follows that the curvature will also be zero. But the required shape
has continuous curvature. A deviation of the shape was the result. In Figure 4-8 the intended
and calculated shape are shown when five support are used. Here can be seen that near the
ends of the strip there is a deviation while in the middle it cannot be seen. This can be
explained by the presence of moments. Figure 4-9 shows the difference between the intended
shape and the calculated shape. At the point of the supports the deviation becomes zero. A
clear distinction can be made in the deviation of the near ends and the middle of the strips.
The effect can also be seen when the number of support increases. This could be solved by
creating means to introduce moments at the end supports. However this would make the
buildup of the mould unnecessary complicated. It is recommended not to use the end parts
of the strips and thereby the edges of the mould surface.

4-1-3 Torsion

Strips which are perpendicular in the surface interact not only by forces, but also by bending
and torsional moments. Bending moments of strips connected to a perpendicular strip must
be in equilibrium. There are moments in two directions from strip main axis. A third moment
is torsional. The equation for the torsional moment is:

φt = Mt · x
GIt

+ C1 (4-8)

This equation involves two extra unknown constants: The torsional moment M1 and a C1.
To solve these extra unknown two extra boundary conditions must be found for each strip.
Therefore can be used that the bending moment in one strips must be equal to the torsional
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Figure 4-8: Intended and calculated shape of a strip on five supports. Conditions: R = 1000
mm, q = 0 kN/m, EI = 192550 Nmm2.

Figure 4-9: Difference between intended and calculated shape.

Figure 4-10: Interaction of bending and
torsion between two connected strips.
One strip is clamped at one end and the
other end a deflection is imposed. There-
fore one strips is subjected to bending
and one to torsion.

Figure 4-11: Interaction of bending and
torsion between two connected strips.
Both strips are clamped at one end and
the shared end a deflection is imposed.
Therefore both strips are subjected to
bending and to torsion.
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moment in the perpendicular strip. An other boundary condition can be found in the rotations
of the strips with similar conditions. In total there are now six unknown constant for each
part of the strips. The figures 4-10 and 4-11 illustrate a situation of interaction between
bending moment and torsional moments.

When this method is applied to the strips of the flexible mould the number of unknowns grows
rapidly because for each part of the strips between two supports a new equation is required.
Therefore the number of unknowns becomes large. When the number of supports increase.
An larger amount of boundary conditions is required to solve this system of equations. If m
and n are the number of supports in two directions the number of unknowns can be calculated.
Since only the strips on top of the support are considered there are equal amount of strips in
the top layer as support m. For the setup of equations each strips is divided in pieces between
the support which are (n− 1). So for the top later the number of unknown constants is equal
to 6 ·m · (n− 1). A similar situation is present for the strips in the bottom layer which results
in 5 ·n · (m− 1). Together these two provide insight in the quantitative complexity of solving
structural calculation for the flexible mould. Table 4-1 shows the rapid increase of number
of unknowns for m and n ranging up to 5. Luckily repetition can be found for the setup of
the boundary conditions which can be programmed very well, for example in Matlab as in
Appendix K.

Supports 2 3 4 5
2 24 42 60 78
3 42 72 102 132
4 60 102 144 186
5 78 132 186 240

Table 4-1: Number of unknowns

4-2 Kinematics

The method that will be described involves also kinematic aspects. These describe only
displacements and rotations which cause deviation of the shape of the surface. Two main
aspect are now described. The horizontal displacement of the supports and the rotation of
the supports.

4-2-1 Horizontal displacement of the supports

When the strips in the flexible mould would deform there will occur horizontal displacements
of the supports. This will cause a deviation of the intended shape. Figure 4-12 illustrates the
horizontal displacements of a single strips. If the support would not displace in horizontal
direction the strips should extend. However the strips will resist to this creating horizontal
reaction forces. This is one of the reasons that in the new prototype of the flexible mould
horizontal displacement are allowed due to the pendulum supports. In order to obtain an
accurate shape of the mould surface the questions raise how large the horizontal displacement
is and how this can be compensated for.
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Figure 4-12: Horizontal displacements of
supports after deformation.

Figure 4-13: Length of an arc with con-
stant radius

Figure 4-14: Approximation of curve
length by linear distance between points.

Figure 4-15: Approximation of the
length of a curve by assuming continuous
curvature between points.

It was assumed that the length of the strips after deformation would not change. To determine
the horizontal displacement a method was required to obtain the length of a shape or curve. To
gain insight in this first the arc length of a part of a circle was calculated. The circumference
of an arc as in Figure 4-13 can be calculated with the formulas:

L = 2 ·R · θ (4-9)

sin(θ) = D

2 ·R
(4-10)

When the curvature of a curve is discontinuous it becomes more difficult to determine the
length. Two methods, that use a geometric approach, are shown in Figure 4-14 and 4-15. Here
the length of the curve is a summation of different parts. The first method uses the distances
between points on the curve. The second method uses an approximation of the curvature
based on three points on the curve. The lengths can be determined using the Equations 4-9
and 4-10. Both methods will approximate the length within a curtain accuracy. The accuracy
can be enlarged by making the step size (d) smaller.

Another approach could be of more accurate. The arc length formula could be used to deter-
mine the length of a curve of which the function is known and if its derivative is continuous.
The arc length formula is:

L =
∫ b

a

√
1 +

(
dy

dx

)2
dx (4-11)
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Figure 4-16: Range of element can be
used to find reference points of the edge.

Figure 4-17: Reference points on the
mould surface can be used to position the
edge profiles.

An approximation of the horizontal displacement can be made using this formula and the
function for deflection obtained by structural calculations. By taking the integral of this
function the length of the curve between the original support distance in known. This will
be larger than the horizontal support distance. The difference is the approximation of the
horizontal displacement. This way the actual shape is used for an approximation of the
horizontal displacement instead of making multiple approximations for the curvature.

4-2-2 Edge control

The arc-length formula in Equation 4-11 could also be used to find an approximation of the
location of the edges. When the required geometry has virtually been placed in the mould
the horizontal range of the element measured over the strips can be determined. Using these
ranges in the arc-length formula result in a reference point of the edge. Figure 4-16 illustrates
this. The reference points can be set out. An edge can be positioned based on these reference
points. However there are limited points for positioning. A fluent edge profile could be a
good approximation of the required edge. More reference points could be determined if the
number of supports is increased. Figure 4-17 illustrates the placement of the edge profiles
based on the reference points.

4-2-3 Compensation support heights

Due to horizontal displacements and rotations of the supports a deviation will occurs com-
pared to the required geometry. This can be seen in Figure 4-18 and 4-19. The height could
be compensated for these effects. This can be calculated using goniometric formulas. The
input that is required for these calculations can be derived from the arc length formula and
the equations of structural calculations. There is a difference in formulas for supports left
and right of the middle support because displacement where described according to the global
coordinate system. The horizontal displacement will always be towards the middle support.
For the support left of the middle support this resulted in a positive displacement. For the
support to the right of the middle supports this resulted in a negative displacement. There-
fore the sign changes and this was implemented in the equations. At every support two strips
cross. Therefore a compensation should be calculated for two direction. The final height to
compensate is the sum of these two.
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Figure 4-18: Used distances for compen-
sation of support heights left of the middle
supports.

Figure 4-19: Used distances for compen-
sation of support heights right of the mid-
dle supports.

Equations for supports left of the middle
support:

d1 = L1 · cos(α)
d2 = L1 · sin(α)
d3 = L2 · sin(α)
d4 = L2 · cos(α)
d5 = d1 − d3

d6 =
√

(L3)2 − (d5)2

d7 = L2 + L3 − d2 − d4 − d6;

Equations for supports right of the middle
support:

d1 = −L1 · cos(α)
d2 = L1 · sin(α)
d3 = L2 · sin(α)
d4 = L2 · cos(α)
d5 = d1 + d3

d6 =
√

(L3)2 − (d5)2

d7 = L2 + L3 − d2 − d4 − d6;

4-3 Proposed method for setup of flexible mould

The process to go from a geometry to the setup of the flexible mould involve the steps the
where described in previous sections. But there are more steps to be taken that do not involve
calculations. Together they for a method for the setup of the flexible mould which will be
described in steps. In Appendix G the results of using this method can be recognized. The
following steps are required to determine the setup of the mould;

Step 1 Determine the orientation of the geometry within the flexible mould: the
support heights depend on the orientation of the geometry of the shape in the mould. The
range at which the support can be set is limited. Thereby a bounding box is created for
the shapes to fit within. Within this bounding box the shape can be placed in any position.
However is would advantageous to limit the range of height differences of the supports because
it would save time during setup of the mould, however this advantage will be small. A second
and more important aspect is the influence on the deviation of the shape. The compensation
of the support heights is based on an approximation of the horizontal displacement and the
angle at the supports. When these can be taken as small as possible the made error when
making the approximations is limited to a minimum. This will result in a more accurate
shape. Therefore it is preferred that the orientation of the shape in the mould is such that
the shape height difference and the angles at the supports are limited to a minimum.
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Figure 4-20: Orientation of the shape
where large difference in support height is
needed. This is not preferred.

Figure 4-21: Orientation of the shape
where small difference in support height
is needed. This is preferred.

Step 2 Determine initial support height: for the boundary conditions of the structural
calculation support heights are needed. These can be derived from the shape that was placed
within the bounding box of the mould. This has been done using 3D modeling software
called Rhinoceros and Grasshopper. A custom tool has been programmed to derive the
support heights. Within this tool the intersection are made between the shape and the grid
at which the supports are placed. The advantage of this software is the parametric setup. For
example the support distance can be changed and the intersection heights change accordingly.
In Figure 4-22 the tool is shown. The tool also provides information that can be used for
structural calculations in the next step. Figure 4-23 shows the locations of the intersections
with the geometry according to the parameters provided to the Grasshopper component.

Step 3 Calculate the shape and reaction forces of surface: structural calculation have
been performed according to Section 4-1. First the strips in the top layer have been calculated.
After that the strips in the bottom layer. Structural calculations involve repetition of the
same calculations with varying parameters. Here the parametric setup of the Grasshopper
tool reduces the calculation time. The most left box in Figure 4-22 can be exported as
text file. Software packages like Matlab are able to read the data an perform the structural
calculations. Structural calculation have been performed using the software packages Matlab
and Maple. The advantage of Matlab is that it uses a similar programming language compared
to the custom Grasshopper components. Therefore the calculations could be transferred to
the Grasshopper component and all calculation can be done within the component. For future
use this is preferred since it will be most practical.

Step 4 Calculate the compensation of the heights: the compensation of the support
heights was based on the approximation of the horizontal displacement and angle at the
supports. This was described in Section 4-2. Additionally the height was also compensated
for the deviations caused by the buildup of the mould. Since it was built by hand some
part may have been made a view millimeter longer or shorter as intended. A benchmark
measurement was performed to determine this deviation. As result a list of support height is
created which can be used to setup the supports of the flexible mould.
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Figure 4-22: Custom Grasshopper component determines the initial support heights according to
the distance between the support. The component also provides other information for structural
calculation. This information can be read by other software. For example Matlab.

Figure 4-23: The initial support points determined by the grasshopper component.
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4-4 Conclusions

A method has been developed which can be used to determine the required support heights
given the geometry of a curtain shape. The method implements structural calculations for
the strips of the mould and kinematic calculations for compensating of initial support heights
for deviations caused by displacements and rotations of the mould surface.

For structural calculations single bending is considered although assumptions of the theory
are not fulfilled. Would result be insufficient then double bending and torsion could be
implemented for more accurate results.

If calculations are made by hand they take a lot of time. Currently calculations are made
using Maple, but since there is a lot of repetition using varying parameters they could be pro-
grammed for Matlab or a Grasshopper parametric component. This would give the advantage
of much shorter calculation time.

The proposed method for approximation of horizontal displacements could also be used to de-
termine the location of the edges in horizontal position of the mould. This is not implemented
within this research.

There is one disadvantage that can be observed. The shape of the fields between the outer
ring of support points and the second-outer ring can only be influenced by the height of the
support points. Since the bending moment on the end of each individual strip is zero, the
curvature of the outer edge of the plane is also zero. This is contradictory to the wish that
in a shape with constant curvature like for spherical shapes were the radius is constant over
the full area. Therefore it could be decided not to use the outside of the mould surface.
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Chapter 5

Testing of new prototype and accuracy
of the mould surface

In order to check the functionality and performance tests have been performed with the new
prototype. Therefore four different shapes have been tested. Deformations have been observed
visually and by measurements which were performed using a 3D laser scanner. The results
of these scans have been compared to the intended shape to gain insight in the accuracy of
the mould.

5-1 Description of tests and measurements

For the test with the new prototype of the flexible mould four shapes have been chosen with
varying Gaussian curvature. Namely; zero, positive and negative. Zero Gaussian curvature
means that the shape is flat or single curved. The latter was applied in the first test. A
second shape had positive curvature, which means that both principle curvatures point in the
same direction. The third shape had negative Gaussian curvature. Therefore the principle
curvatures point in perpendicular direction. The fourth and last shape had varying curvature
because it was free of form. The shapes can be seen in the Figures 5-1 to 5-4. The radii of
curvature for the first three shape was 1000 millimeter. These radii are quite small compared
to earlier tests and were chosen to see if limitations of the mould would show. These shapes
have been processed using the method which was described in the Chapter 4 which has
resulted in heights of the supports. An overview of these results can be found Appendix E.
This appendix also include all test results.

After setup of the support height and deforming of the mould the geometry has been obtained
using a laser scanner which measures millions of points in three-dimensional space. The
scanner that was used was a FARO Photon 120/20 as is shown in Figure 5-5. Using a
3D scanner has the advantage of being accurate (under certain conditions) and fast. The
available alternative was measuring by hand as. These conditions were decisive for using this
method. One scan was made of each tested shape, but the scan could be used for two types of
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Figure 5-1: Shape 1 with zero Gaussian
curvature. Rmin = 1000 mm.

Figure 5-2: Shape 2 with positive Gaus-
sian curvature. Rmin = Rmax = 1000 mm.

Figure 5-3: Shape 3 with negative Gaus-
sian curvature. Rmin = Rmax = 1000 mm.

Figure 5-4: Shape 4 with positive and
negative Gaussian curvature. Rmin = 275
mm, Rmax = 11210 mm.
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Figure 5-5: FARO Laser Scanner Photon
120/20.

Figure 5-6: Scanning of the tested shape
in the laboratory.

measurements. Namely, displacements of targets placed on the mould surface and the overall
accuracy.

To measure a specific location on the mould targets were used. These targets were designed
such that their location could be determined using the 3D scanner. The scanner can not
only determine the location of points, but can also determine the gray scale of the measured
object. This property was used to isolate the targets from the rest of the mould surface. The
scanned data was imported in the software package Matlab and analyzed using a threshold
value for the distinction between black and white points. White point were removed so that
only black point would be used. The Figures 5-7 and 5-8 illustrated this method showing the
scan of one of the tested shapes. For each target the middle point was determined by taking
the average coordinate of all isolated points of that target. After the scans were processed it
was found the accuracy of the target locations was limited. Earlier made trial scan showed
more accurate results. A more detailed description of the accuracy of the scans can be found
in Appendix E. It was found that the location of the targets was measured with an Root Mean
Square Error of 1.14 millimeter in the x-direction, 1.33 millimeter in the y-direction and 1.54
millimeter in the z-direction. The result was not as good expected. The relative large error
could be explained by bad reflection of the targets. The results of the measurements are
described in the following section. However due to the relative large measuring error they
are indicative for the horizontal displacements. For validation of the approximations of the
displacement the measurements are insufficient. In some cases the measuring error is larger
than the expected displacement. Therefore it would be required to perform more accurate
tests. For that purpose a suggestion for a new target is described in Appendix E.

To determine the horizontal displacements of the mould surface during deformation the lo-
cation of specific point were compared to a benchmark scan which was done. The difference
between the points was taken as horizontal displacement. The middle support of the mould
has been fixed so that it could be used as a reference point. Horizontal displacements have been
determined only for the support near the edges of the surface. At these positions the largest
displacements were expected. By comparing the displacements to the expected horizontal
displacements insight could be gained in the accuracy of the approximation of displacements.
These approximations have been described in Chapter 4.

The second type of measurement is the overall accuracy of the mould surface. Therefore the
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Figure 5-7: Full scan of one of the tested
shapes.

Figure 5-8: Isolated target point from
the scan.

Figure 5-9: Shape of fourth and last test. Figure 5-10: Point deviation of the
scanned points compared the intended
surface.

scanned data of the total surface was compared to the intended geometry of the surface. For
this comparison the scanned points of the surface were isolated instead of the targets and
a point cloud was the result. The isolated points were imported in the modeling software
package Rhinoceros which included a point deviation tool. This tool determine the shortest
distance of a point to a reference surface. The Figures 5-9 and 5-10 show a tested shape and
the point deviation in Rhinoceros. As result it provides statistic information about the points.
A better insight in the overall accuracy of the mould could be gained. As reference a scan was
made of the horizontal leveled surface. This scan showed a mean distance was 0.73 millimeter,
median distance 0.59 millimeter and the standard deviation 0.59 millimeter. Therefore the
measurements of the total mould surface geometry is more accuracy than measurements of
specific points on the surface.

5-2 Test results

Four test have been performed with the new prototype of the flexible mould. During these
tests better insight was gained in the performance and accuracy of the mould surface. The
measurements of the scans can be found in the Appendix G.
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Figure 5-11: Shape of first test with the
new flexible mould prototype.

Figure 5-12: The surface deformed into
a smooth shape with continuous looking
curvature in the middle.

Figure 5-13: A smooth and flat surface
perpendicular to the direction of the cur-
vature.

Figure 5-14: Horizontal displacement
was observed at the support. No jamming
of the support was found.

Test 1: zero Gaussian curvature

The first test is based on a surface which is single curved. Therefore strips are loading by
bending only and supports should displace horizontally in the same direction as the curvature.
The Figures 5-11 and 5-12 show the results of this first test. The mould appeared smooth
with a continues curvature at the middle of the surface. Near the end of the strips the shape
became more flat. This was expected because there is no bending moment in the strips at that
point. In perpendicular direction the mould was flat. Compared to the previous version of
the mould neighbor strips where consistent in height as can be seen in Figure 5-13. Horizontal
displacements of the supports were observed as can be seen in Figure 5-14. The mould could
handle the radius of curvature easily and would be able to manage smaller radii. During
deformation no sign of jamming of the supports could be found.

Measurements of the horizontal displacement showed that direction of the expected displace-
ments was correct. The Root mean Square Error of the displacements in x-direction was 1.27
millimeter. For the point deviation of the overall mould surface compared to the intended
surface the mean distance was 0.91 millimeter, median distance 0.75 millimeter and the stan-
dard deviation 0.73 millimeter. Near the edge and only locally a maximum point deviation

Flexible mould for production of double-curved concrete elements Msc Thesis



54 Testing of new prototype and accuracy of the mould surface

Figure 5-15: Top view of point de-
viation for the first test.

Figure 5-16: Bottom view of point
deviation for the first test.

Figure 5-17: Top view of point de-
viation for middle surface of the first
test.

Figure 5-18: Bottom view of point
deviation for middle surface of the
first test.

was found between 4 and 5 millimeter. For the middle part of the surface the point deviation
reduced. The mean distance was 0.78 millimeter, median distance 0.67 millimeter and the
standard deviation 0.58 millimeter. In the middle of the surface a maximum point deviation
was found between three and four millimeter. Results are shown in the Figures 5-15 to 5-18.

Test 2: positive Gaussian curvature

The second test was performed using double curved shape with positive Gaussian curvature.
The Figures 5-19 and 5-20 show the result after deformation of the mould. Similar to the
first test, continuous curvature was observed in the middle of the surface. At the edges of
the surface the shape became more flat. It was observed that the paper targets, that were
glued on the surface, deformed. The targets appear to come loose from the surface which
can be seen in Figure 5-21. This was expected as the surface would be subjected to shear
and the paper target would not able to follow this deformation but the strips could. The
shear deformation could also be observed at the edges of the surface. Initially the edges were
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Figure 5-19: Shape of second test with
the new flexible mould prototype.

Figure 5-20: A smooth surface with con-
tinuous looking curvature in the middle of
the surface.

straight. Figure 5-22 shows that the edge has deform in-plane. These two observations shows
that the expected shear deformation occurred.

A second observation was done when weights were added to the supports. At the moment that
not all weights were placed an effect appeared which showed resemblance to the observation by
Bas Janssen for a solid plate. The edge deformed in a way that could be a sign of buckling.
However negative supports reaction where expected and the additional weights were not
placed yet. Therefore the shape could also be the result resistance to bending deformation.
The deformation can be seen in Figure 5-23. Here the white line is the exaggerated shape of
the edge. The effect was compensated after all the required weights were placed. Thereby the
surface was forced into the set shape. The effect on the shape of the middle part of the surface
is therefore small. This effect is expected to increase when a larger mould surface would be
made. Forcing the surface into the required shape will be a solution to a curtain extent but
has its limitations. Additional optimization of the surface stiffness would be required. This
could be done by varying the depth and distance between the notches, which allow the surface
to deform in plane.

Locally differences in height were found at the edges strips. This can be seen in Figure 5-24.
This would reduce when a layer of foam is placed on the surface. This is used to cast the
concrete. However a more precisely produced strips would also result in smaller differences,
since the strips where now made by hand. Also the tightness of the nut and bolt connection
between the strips is of influence.

The measurements of the horizontal displacement showed not as good results as the first test.
The directions of the displacements was correct except for one point. For the displacements
in x-directions the difference between the expected and the measured displacements was
large. The Root mean Square Error of the displacements was 3.18 millimeter. This could
be explained by bad reflection of the targets. More scans would be required to confirm
this. For the displacement in y-direction the measurements showed better results. The Root
mean Square Error of the displacements was 1.56 millimeter. For the point deviation of the
overall mould surface compared to the intended surface the mean distance was 1.25 millimeter,
median distance 1.04 millimeter and the standard deviation 0.98 millimeter. Near the edges a
maximum point deviation was found between 4 and 5 millimeter. For the middle part of the
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Figure 5-21: A paper target was not ca-
pable of following the deformation of the
mould surface. The surface is subjected
to shear deformation.

Figure 5-22: Shear deformation of the
edges was also observed at the edges.

Figure 5-23: Shape of the edge of the
surface when additional weights have not
been placed yet. The white line is the
exaggerated shape of the edge.

Figure 5-24: Locally the edges of the
strips showed a difference in height.
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Figure 5-25: Top view of point de-
viation for the second test.

Figure 5-26: Bottom view of point
deviation for the second test.

Figure 5-27: Top view of point devi-
ation for middle surface of the second
test.

Figure 5-28: Bottom view of point
deviation for middle surface of the
second test.

surface the point deviation reduced. The mean distance was 0.96 millimeter, median distance
0.82 millimeter and the standard deviation 0.72 millimeter. Like in the first test a maximum
point deviation between three and four millimeter was found for the middle surface. Results
are shown in the Figures 5-25 to 5-28.

Test 3: negative Gaussian curvature

The third shape is also double curved. However principle curvatures are pointed in perpendic-
ular directions. The results of the test can be seen in the Figures 5-29 and 5-30. The surface
appeared smooth and horizontal displacements of the support were observed as expected.
Compared to the previous shape it was notable that the surface also showed very smooth at
the edges. Like in the first test, it seemed that the limitations of the mould where not yet
reached by these radii of 1000 millimeter. The Figures 5-21 and 5-32 show this smoothness
of the mould surface.

Like in the second test the measurement of the horizontal displacement showed better result
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Figure 5-29: Shape of third test with the
new flexible mould prototype.

Figure 5-30: A smooth surface with con-
tinuous looking curvature in the middle of
the surface.

Figure 5-31: A smooth surface after de-
formation.

Figure 5-32: Edges showed no sign of
local buckling.
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Figure 5-33: Top view of point de-
viation for the third test.

Figure 5-34: Bottom view of point
deviation for the third test.

Figure 5-35: Top view of point de-
viation for middle surface of the third
test.

Figure 5-36: Bottom view of point
deviation for middle surface of the
third test.

for the displacements in the y-direction. However the directions of the displacements was
correct for all points. For the displacements in x-directions the Root mean Square Error of
the displacements was 2.01 millimeter. For the displacement in y-direction the Root mean
Square Error of the displacements was 1.14 millimeter. For the point deviation of the overall
mould surface compared to the intended surface the mean distance was 1.22 millimeter,
median distance 1.05 millimeter and the standard deviation 0.90 millimeter. Near the edges
a larger area showed a maximum point deviation was found between 3 and 5 millimeter. For
the middle part of the surface the point deviation reduced. The mean distance was 0.86
millimeter, median distance 0.72 millimeter and the standard deviation 0.67 millimeter. A
maximum point deviation between three and four millimeter was found for the middle surface.
Results are shown in the Figures 5-33 to 5-36.

Test 4: varying Gaussian curvature

The fourth shape was free of form. The Figures 5-37 to 5-38 show the result of the last test
which looked smooth. However locally the height differences between the strips, like in the
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Figure 5-37: Shape of fourth and last
test with the new flexible mould proto-
type.

Figure 5-38: A smooth surface with lo-
cally differences in height between the
strips.

Figure 5-39: A slight wave-like shape can
be seen in the surface. This can be seen
in the gaps between the strips.

Figure 5-40: The edge strips clearly
demonstrates deformation in two direc-
tions and torsion.

previous test was present more clearly. This could be caused by a locally small radius of
curvature. Also a slight wave-like shape was found. In Figure 5-39 this can be seen at the
gaps between the strips. The shape looked very similar to the intended shape and it can be
expected the local height differences will reduce due to an additional layer of foam with silicon
and the weight of the concrete. This shape was closest to the limitations of the mould, but
still performed well. The edge of this shape demonstrates the deformations which the strips
are subjected to. It clearly showed deformation in two directions and torsion as can be seen
in Figure 5-40.

The measurement of the horizontal displacement showed larger differences for both x- and
y-direction. However, again all the directions of the displacements were correct for all points.
For the displacements in x-directions the Root mean Square Error of the displacements was
2.60 millimeter. For the displacement in y-direction the Root mean Square Error of the
displacements was 1.55 millimeter. For the point deviation of the overall mould surface
compared to the intended surface the mean distance was 1.63 millimeter, median distance 1.44
millimeter and the standard deviation 1.15 millimeter. Near the edges a large areas showed
a maximum point deviation was found between 3 and 7 millimeter. For the middle part of
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Figure 5-41: Top view of point de-
viation for the third test.

Figure 5-42: Bottom view of point
deviation for the third test.

Figure 5-43: Top view of point de-
viation for middle surface of the third
test.

Figure 5-44: Bottom view of point
deviation for middle surface of the
third test.

the surface the point deviation reduced. The mean distance was 1.11 millimeter, median
distance 0.98 millimeter and the standard deviation 0.78 millimeter. Again a maximum point
deviation between three and four millimeter was found for the middle surface. Results are
shown in the Figures 5-41 to 5-44.

5-3 Conclusions

To gain more insight in the performance and the accuracy of the new mould prototype four
different shapes have been tested. The set shapes showed smooth surfaces and predicted
displacements and rotations have been observed visually. This showed that the conceptual
ideas introduced in previous chapters worked.

Two types of measurements have been performed. Displacements of supports and accuracy of
the mould surface have been obtained. The accuracy of the measurements of displacements
was insufficient to validate the approximations of the horizontal displacements. Bad reflection
by the targets caused a relative large measuring error. However most measurements showed
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displacements in directions as where expected. Additional more accurate measurements would
be required are required.

The accuracy of the total mould surface was determined more accurately than the horizontal
displacements. The mean deviation of the four tested shaped were respectively 0.91, 1.25,
1.22 and 1.63 millimeter. Locally three of the four test showed a maximum point deviation
between 4 and 5 millimeter. Only the last test, which was free of form, showed a maximum
point deviation between 4 and 7 millimeter.

If only the middle of the surface is considered the mean deviation reduces to respectively 0.78,
0.96, 0.86 and 1.11 millimeter. Locally all tests showed a maximum point deviation between
3 and 4 millimeter.
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Chapter 6

Discussion

This research was started to gain more insight in behavior of the flexible mould during the
deformation. It was expected that the mould would have some shortcomings that influence
the accuracy of the mould since the mould was build to fulfill research requirement within a
limited budget. The shortcomings were observed during a series of test with the, at that time,
version of the flexible mould. The buildup of the mould did not provide sufficient control over
horizontal displacement and rotations of the mould surface. Therefore the accuracy of the
mould could not be ensured.

The behavior of the mould during deformation is complex due to its three-dimensional char-
acter. Insight in this has been gained after a study on the relation between the change of
Gaussian curvature and strain of a surface. There are three components of strain that are
important. Two components of extension and one of shear. The latter has a significant con-
tribution to the deformation as can be seen in Figure 6-7. This study has led to a basic
understanding of strain, displacements and rotations of the mould surface. The surface of
the mould is an topic which is could be researched more. In existing concepts for a flexible
moulds the surface is often not described in detail. This was a surprising finding since in this
research the deformation and buildup of the surface and its support have an essential role.

During this research a balance was sought between theory and practice. A solely theoretical
approach would have resulted in level of complexity which would hardly have added value
to the practical side. A solely practical approach would not have lead to the gained results.
The research has been alternating between studying theoretical aspects and trial and error
of small test of the performance of new ideas. Eventually this has led to the introduction
of a new prototype as in the Figures 6-1 and 6-2. The prototype, which was described in
described in Chapter 3, could be used to study the behavior of the mould in more detail. The
prototype implemented the following ideas, which can also be seen in the Figures 6-3 to 6-6:

• Plastic strips with notches. Strips have been bolted together, but not fully tightened.
Self locking nuts have been used. Notches where made to reduce the resistance to
deformation of the strips. Most importantly in their strong direction.
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Figure 6-1: Design of a new prototype of
the flexible mould.

Figure 6-2: Finished prototype of the
flexible mould.

Figure 6-3: Plastic strips with notches.
Notches reduce the resistance to deforma-
tion of the strips. Most importantly in
their strong direction.

Figure 6-4: Universal joint connections
allow rotation of the mould surface and
are capable to transfer a force.

• Universal joints as connections that allow rotation while being capable of transferring
a force

• Three-dimensional pendulum supports that allow horizontal displacement while being
capable of transferring a force

• Weights as alternative way to apply additional loading to the surface

Deformation of the mould surface results in horizontal displacements and rotations of the
mould surface. These cause a deviation of the intended shape. A method has been devel-
oped compensates the aims to compensate for these deviations by calculating and adjusting
the support heights. Therefore the method approximates the horizontal displacements and
rotations. These cause deviations from the intended shape. However these deviations can be
compensated for by adjusting the support heights. The compensation can be calculated by
kinematic calculations which use the result of structural calculations. Within this method
structural calculations are performed based on equations for single bending beams. However
the assumptions for this theory are not met. For example the change of angle of the strips
is not small, but rather large. It was chosen to perform these calculations because their
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Figure 6-5: Three dimensional pendulum
supports allow horizontal displacements
and are capable to transfer a force.

Figure 6-6: Weight applied for additional
loading such that no extra loading of the
mould surface is required.

limited complexity. Double bending and theory of large displacement could be implemented
to obtain more accurate results. However the complexity of calculations would be increased
significantly. A justification of applying the single bending beam theory was sought in the
deviation of the intended shape from the measured shape during test. If the deviation would
be small, there would be less reason make the calculations more complex.

Tests with the new prototype mould showed that the mould performed as intended. All
expected displacements and rotations were allowed by the connections and also appeared. Two
types of measurements have been performed. The horizontal displacements where measured
using targets and the overall shape of the tests was scanned. However the accuracy of the
applied measuring method was not sufficient to confirm the predicted displacements. It
should be noted that this does not imply that they were not correctly predicted. But the
measurements did show that displacement in the were predicted in the correct direction. Also
visually the displacements have been observed. Additional measurements would be needed
to obtain more accurate results. For this purpose suggestions have been made to increase
accuracy of measurements. The suggestions focused on the used targets. The second type of
measurement was a scan of the total surface. The mean deviation of the four tested shaped
were respectively 0.91, 1.25, 1.22 and 1.63 millimeter. These result show that the final shape
of the surface come close to the intended shape. Locally three of the four test showed a
maximum point deviation between 4 and 5 millimeter. Only the last test, which was free of
form, showed a maximum point deviation between 4 and 7 millimeter. Therefore it would be
possible to produce element with an accuracy of approximately 7 millimeter. Since only the
support heights can be adjusted no moments can occur at the ends of the strips. Therefore the
curvature becomes zero. Based on this it was expected that near the edges a larger deviation
from the intended surface would occur. And if these parts would not be used the deviation
should be reduced. The mean deviation of the surface without the edges for the tested shapes
were respectively 0.78, 0.96, 0.86 and 1.11 millimeter. Which is less than the total surface.
Locally all tests showed a maximum point deviation between 3 and 4 millimeter. Therefore,
if the edge parts of the mould surface would not be used the elements would be produced
with an accuracy of approximately 4 millimeter.

Something which could give rise to problems in the future is the scale of the mould. Strain
of the surface will increase in case the mould would be bigger. Buckling could become a
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Figure 6-7: Shear deformation in gradually increasing Gaussian curvature of a surface.

problem again. However since a new mould surface has been designed to follow the in-plane
deformation it is not expected that the effect will be the same compared to a solid plate. An
aspect of the behavior of the mould during deformation that could be researched min more
detail is the influence of the interaction between bending moments and torsional moment of
the strips in perpendicular direction. It was assumed that the influence is small because strips
where very flexible in torsional direction.

Considering the varies types of flexible moulds that have been developed by different people
it is clear that there is no one superior way for production of double curved elements. This
research aimed to contributed to the understanding of deformation of the mould surface and
increasing the control over the geometry. This has resulted in the introduction of solutions
that where implemented in a new prototype mould.

The described relation between change of Gaussian curvature and straining of a surface has
not been obtained by me. I solely associated this relation with the topic of the flexible mould.
This I have not found in any other description related to the flexible mould. From the relation
I have deduced the consequences for the flexible mould and implemented this in the design
for the new prototype of the flexible mould. It should be noted that the relation is relevant
for all types of flexible moulds.

Not much is known yet about application of plastic as material for the strips. Plastics can
have a large variety of material properties. For example varying non-linear elasticity, a non-
homogeneous cross section or long term deformation. The latter would be important if it
would occur already during the curing time of the concrete. The applied material could be
optimized for the application in the flexible mould.

The goal of this research was to gain more insight in the behavior of the mould surface during
the deformation and the research question was aimed at finding the aspect that influence
the geometry of the mould surface. It was found that the following aspects have significant
influence on the geometry of the mould surface are:

• Level of change of Gaussian curvature following directly from the required shape

• Stiffness of the mould surface. And especially the resistance to in plane shear deforma-
tion

• Loading of the surface

• Direction and size of displacements and rotations of the mould surface
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• Type of material used for the strips

• Buildup and connection details of the mould
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Chapter 7

Conclusions and recommendations

This research was set out to find aspect that influence the accuracy of the flexible mould for
production of double curved concrete elements. Therefore observations have been done and
studies have been performed on the deformation of the mould surface. A new prototype of a
flexible mould has been designed and build. And finally the mould has been tested.

Based on the observations of the previous mould it was concluded that the accuracy of the
mould could not be ensured. Displacements and rotations caused deviation from the intended
shape and could not be controlled sufficiently.

From a study on the relation between change of Gaussian curvature and straining of a general
surface it was concluded that shear deformation of the mould surface plays an essential role.
The design of the mould surface should be such that this deformation can occur without too
much resistance.

A design for a new prototype was made and the following solutions were introduced that
aimed to improved control over the mould surface and increase the accuracy of the mould
surface:

• Plastic strips with notches. Strips have been bolted together. Notches where made to
reduce the resistance of the strips in their strong direction

• Universal joints as connections that allow rotation while being capable of transferring
a force

• Three-dimensional pendulum supports that allow horizontal displacement while being
capable of transferring a force

• Weights as alternative way to apply additional loading to the surface

For preparation of production of element a method has been developed that provides the
support heights which need are needed to obtain a required shape. Therefore approximations
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are made of horizontal displacements and rotations of the surface. Structural and kinematic
calculation are needed to determine the support heights.

Structural calculation of the strips in the mould showed that the largest deviation from the
intended shape can be found between the two last supports at the end of each strip. The
curvature reduces because the moment in the strips reduces to zero at the last support.

A 3D scanner was used to obtain two types of measurements for four shapes that were tested
with the new prototype of the flexible mould. Namely; displacement of the supports and
the accuracy of the mould surface. The measurements of horizontal displacements at the
supports after deformation were not sufficiently accurate to confirm the expected horizontal
displacements. However the directions of the displacement were correct.

By measuring the geometry of the mould surface more insight has been gained in the accuracy
of the mould. However no references was found to compare the results. The scans showed
that the maximum deviation from the intended shape was 7 millimeter if the full surface was
taken into account. When the area between the last two supports would not be used the
maximum deviation reduced to 4 millimeter.

The accuracy of the measurements could be improved, but the overall measured geometry
of the mould showed good resemblance to the intended geometry. No indication was found
that the used theory for structural calculations of single bending beams would be insufficient.
More accurate tests would provide better insight in this.

During the research process and development of the new mould aspects were found which could
be developed further or optimized. A distinction can be made between recommendation for
further research and development of the mould.

For further research:

• Accuracy of horizontal displacements and rotations of the strips

• Performance of the mould for larger surfaces

• Material of the strips: non-linear material properties, long term deformation, durability
and maximum amount of load cycles

• Positioning of the mould edges

For further development:

• Ratio of stiffness of the strips versus loading by the concrete

• Reducing the amount of play in the universal joint connections

• More accurate setting of support height
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Appendix A

Equations beam theory

For the purpose of structural calculations equations will here be derived for single bending,
double bending and torsion according to the coordinate system and positive direction in
Figure A-1.

A-1 Single bending

For single bending of a beam a fourth order differential equation can be used to derived
equations for structural calculations. The differential equation describes a relation between
a distributed load qz(x) and deflection wz(x) of beam with axis in x-direction according to
Figure A-1. Adapted from Hartsuijker and Welleman [2011]. For calculations the following
assumptions have been made before deriving the equations:

• Plane cross sections remain plane after deformation. This is also known the hypothesis
of Bernoulli.

• Rotation of the cross section remains small

• The beam is considered to be slender. Extensional and shear deformation are small and
therefore neglected

• Cross section is prismatic.

• Cross section is homogeneous and made of linear elastic material. Its behavior can be
described by Hooke’s law: σ = E · ε

The governing fourth order differential equation for a single bending beam is:

qz = E · Izz · d
4wz

dx4 (A-1)
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Figure A-1: Coordinate system and assumptions for positive directions.

This equation can be integrated four times. Doing so, an equation for the deflection is derived
and four unknown constants are introduced. When only distributed loads are considered a
equation is required for all parts of the strips between two supports. The equation for the
deflection is:

wz(x) = qz(x) · x4

24 · EI
+ C1 · x3 + C2 · x2 + C3 · x+ C4 (A-2)

The rotation of the cross section can be described with a kinematic relation:

φy = −dwz

dx
(A-3)

The curvature of a cross section can also be described by a kinematic relation:

κz = dϕy

dx
(A-4)

The moment can be described by a constitutive relation:

Mz = E · Izz · κz (A-5)

The shear force is described by:

Vz = dMz

dx
(A-6)
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The equilibrium equation for an equally distributed load and shear force is:

qz = −dVz

dx
(A-7)

Substitution of Equations A-2 to A-7 results in the governing differential equation:

qz = E · Izz · d
4wz

dx4

A-2 Double bending

For double bending of a beam two fourth order differential equations can be used to derived
equations for structural calculations in y- and z-direction. The differential equations describe
relations between a distributed loads qz(x) and qy(x) and deflection wz(x) and wy(x) of a beam
with axis in x-direction according to Figure A-1. Adapted from Hartsuijker and Welleman
[2011]. For calculations the same assumptions have been made as described in Section A-1.

The governing fourth order differential equations for double bending are:

qz = E · Izz · d
4wz

dx4 + E · Izy · d
4wy

dx4 (A-8)

qy = E · Iyz · d
4wz

dx4 + E · Iyy · d
4wy

dx4 (A-9)

These equations can be integrated four times. Doing so, equations for the deflection in z- and
y-direction are derived and eight unknown constants are introduced. When only distributed
loads are considered equations are required for all parts of the strips between two supports.
The equations for the deflection in z- and y-direction are:

wz = (qz · Iyy − qy · Izy) · x4

24 · E · (Izz · Iyy − Iyz · Izy) + C5 · x3 + C6 · x2 + C7 · x+ C8 (A-10)

wy = (qy · Izz − qz · Iyz) · x4

24 · E · (Iyy · Izz − Izy · Iyz) + C1 · x3 + C2 · x2 + C3 · x+ C4 (A-11)

The rotation of the cross section around the y- and z-axis can be described with two kinematic
relations:

ϕy = −dwz

dx
(A-12)

ϕz = dwy

dx
(A-13)
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The curvature of a cross section in y- and z-direction can also be described by two kinematic
relations:

κy = −dϕz

dx
(A-14)

κz = dϕy

dx
(A-15)

The moment in z- and y-direction can be described by constitutive relations:

Mz = E · Izz · κz + E · Izy · κy (A-16)
My = E · Iyz · κz + E · Iyy · κy (A-17)

The shear forces in z- and y-direction are described by:

Vz = dMz

dx
(A-18)

Vy = dMy

dx
(A-19)

The equilibrium equations for equally distributed loads and shear forces in z- and y-direction
are:

qz = −dVz

dx
(A-20)

qy = −dVy

dx
(A-21)

Substitution of Equations A-10 to A-21 results in the governing differential equations:

qz = E · Izz · d
4wz

dx4 + E · Izy · d
4wy

dx4

qy = E · Iyz · d
4wz

dx4 + E · Iyy · d
4wy

dx4

A-3 Torsion

For torsion of a beam a thirst order differential equation can be used to derived equations
for structural calculations. The differential equation describes a relation between a torsional
moment Mt(x) and rotation φt(x) of beam with axis in x-direction according to Figure A-1.
Adapted from Hartsuijker [2007]. For calculations the same assumptions have been made as
described in Section A-1.
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The governing differential equation for torsion of a beam is:

Mt = G · It · dφx

dx
(A-22)

This equation can be integrated. Doing so, an equation for the rotation is derived and one
unknown constant is introduced. An equation is required for all parts of the strips between
two supports. The equation for the rotation is:

φx = Mt · x
G · It

+ C1 (A-23)

The torsion of the cross section can be described with a kinematic relation:

κ = dφx

dx
(A-24)

The torsional moment can be described by a constitutive relation:

Mt = G · It · κ (A-25)

Substitution of Equations A-23 and A-25 results in the governing differential equation:

Mt = G · It · dφx

dx
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Appendix B

Building the new mould prototype

After the design for the new prototype of the flexible mould was finished it has been build.
This appendix mainly shows visually the process of building the prototype and highlights a
view aspects.

At first al the material where ordered and cut to size. The number of support that was chosen
was 25 in a grid of five times five. However the dimensions of the base plate and the middle
plate where chosen larger so that in the future the mould could be enlarged without having
to order new plates.

Figure B-1 shows the base plate and threaded ends that were used for the supports. The
threaded ends where cut approximately thirty centimeters so that three support could be
taken from one bar of one meter. The mould was build in the Stevin two laboratory of
the faculty of Civil Engineering and Geosciences. Figure B-2 shows and additional plate to
keep the support in horizontal position. Also the mould surface, including the universal joint
connectors, was already finished and waiting to be placed onto the mould.

Figure B-1: Base plate with threaded
ends which will be used as supports.

Figure B-2: An additional plate was
placed over the supports. On the left the
mould surface can be seen.
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Figure B-3: Aluminum tube and plastic
connectors for universal joints.

Figure B-4: First finished universal joint.
The ring came from an old tent pole.

The universal joints where made with basic materials that can be bought in a local hardware
store. The tube are aluminum and the white connectors have been cut from an u-shaped
plastic profile. The result can be seen in Figure B-3. The rings in the universal joints where
cut from an old tent pole. This pole happened to have the required diameter. The first
finished universal joint can be seen in Figure B-4. Fixing all the parts of the universal joints
toke the most time of assembling the mould.

The complete mould consists of many parts which. Al parts have been made by hand. Total
assembly time of the mould was about fifteen days. Which was more than expected. It was
found during building of them mould that some connections needed small adjustments. For
example the direction from which the bolts where placed determined whether it could be
reached with a screwdriver. In some cases this was not possible. Another example was the
dimensions of the parts needed to be changed slightly because the universal joints could not
make an large enough angle. These problems where typical during building. It was difficult
to make all part the same dimension because everything was made by hand. It would be
advantageous to order the parts and make them using machines. The parts would be more
accurately produced. This would also be possible since the mould has been designed using as
less different parts as possible. Therefore production costs would be limited and less different
spare parts are needed.

Figure B-5 shows a stage of assembly where the lower joints of the pendulum supports are
finished. After long and hard work finally the mould was finished as can be seen in Figure
B-6.

After finishing the mould the weight needed to be made. This was done using a regular
sewage pipe which was cut to the required length. An additional cut was made so that a
piece of wood could be fitted in. This way there would be a slot in the shape of the weights.
The combination was used as formwork for the concrete as can be seen in Figure B-7. An
foil was needed to prevent the wood to become stuck in the hardened concrete. The tubes
where fixed to a plate using silicon. This was to prevent the formwork from drifting up and
concrete flowing out of the formwork. Also the tubes where oiled so that the formwork could
be detached easily. This can be seen in Figure B-8.

After the formwork was ready a concrete mixture was made as can be seen in Figure B-9.
After pouring the concrete it was found that an additional piece of tape was needed around
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Figure B-5: Finished pendulum supports. Figure B-6: Finished prototype of the
flexible mould.

Figure B-7: Sewage pipes which were cut
to required length where use as formwork
for the concrete.

Figure B-8: A foil would prevent the
wood from becoming stuck in the hard-
ened concrete. Also the formwork was
oiled to make so that the formwork would
detach easily.
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Figure B-9: Mixing of the concrete using
an ordinary mixer.

Figure B-10: Filled formworks. tape was
placed around the formwork to prevent ex-
panding.

Figure B-11: A miter saw was used to
make notches in the strips.

Figure B-12: Wooden strips in the mould
surface have been replaced with plastic
strips with notches.

the formwork. The formwork expanded due to the pressure of the concrete.

After the flexible mould was finished it was found that the mould surface needed to be
redesigned. The surface was build using wooden strips which were too stiff although the
dimensions where reduced. When a new surface was designed new strips needed to be made.
Notches where made in the strips by using a miter saw as in Figure B-11. When the strips
where finished the wooden surface could be replaced. Figure B-12 shows how the strips where
replaced. Notches in the strips make them more flexible. In Figure B-13 the distance and
depth of the notches can be seen. The nuts and bolts in the wooden surface where reused.
The final result is shown in Figure B-14. At this point the mould was ready for testing.

Designing and building was a good learning and developing experience. It was found that the
details are very important for a good performance of the mould.
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Figure B-13: Notches in the strips. Figure B-14: Final result. The mould
was ready for testing.
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Appendix C

Strain test for material of strips

Plastic was used as material for the strips of the mould surface. Plastic are available many
different variations. For this research it was chosen because of the flexibility and available
size of the strips. Also the strips where very straight which was a advantage compared to
wooden strips.

C-1 Material properties of plastics

Plastic is an artificial material which consists of polymers. Polymers are made from molecules
which together form chains. Together the chains form a network which determine the material
properties. Plastics can have varying material properties which could be advantageous and
disadvantageous for application of the flexible mould. In this research only the Young’s
modulus was determined by test. However to obtain good insight more research is required
on the type of plastic to use.

The material properties of plastics can be influenced during production. Thereby a wide
range of material properties can be created. This is illustrated in Figure C-1. Here is can be
seen that plastics may not have a Young’s modulus as clear as for example steel. In these
cases the Young’s modulus at the start of the curve as used to characterize the material. In
hardened state this values often varies between 3000 and 4000 N/mm2 van der Vegt [1994].
For application of plastics the following aspects are of importance:

• Orientation of the polymers

• Admixtures during production

• Temperature

• Creep

Flexible mould for production of double-curved concrete elements Msc Thesis



84 Strain test for material of strips

Figure C-1: Stress and strain relations for the range of different types of plastic. Adapted from
van der Vegt [1994].

Figure C-2: Setup of the strain tests. Figure C-3: Weight where added in
steps. The extension was measured af-
ter each weight.

C-2 Strain tests

A strain test has been performed for the material of the strips in the mould surface. Because
the material was bought in a local hardware store no properties where available. However a
value for the Young’s modulus has been derived from the tests. Thereby a value was obtain
that could be used in structural calculation.

The strain tests were performed in a very basic setup. A strip was clamped at the top and
weights where added in steps. The extension was measured after each weight. The Figures
C-2 and C-3 show the setup of the tests.

The extension of the strip was measured accurately on two sides of the strips. Clamps held
the sensors on place and determined the distance over which the extension was measured.
The sensor reached half way the distance. Therefore an additional bar was placed on the
lower part so the distance could be measured. The Figures C-4 and C-5 show the sensors and
the clamps.

C-3 Test results

The results of the test have been processed to obtain σ-ε-diagrams. Therefore it was needed
to calculated the stress and the strain. By dividing the load by the area of the cross section
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Figure C-4: Two sensors where clamped
on two sides of the strip.

Figure C-5: An bar was placed at the
lower part. The sensor and bar meet in
the middle.

the stress was obtained. The load was calculated by mass times the gravitational constant.
From the dimensions of the strips, 30 times 2 millimeters, the area of the cross section was
known. To obtain the strain the extension was divided by the distance between the clamps.
These two calculations are written in the Equation C-1 and C-2.

σ = m · g
A

(C-1)

ε = ∆l
l

(C-2)

The Young’s modulus can be determined by calculating the ratio of σ and ε of the data;

E = σ

ε
(C-3)

The results of the test are shown in Figure C-6. In each plot processed data can be seen for
two measurements. The line in between is the average of the data. To determine the ratio of σ
and ε a first order polynomial function was fitted thorough the average data. The directional
coefficient is taken as this ratio. The results are respectively: 4321 N/mm2 (RMSE: 0.04563),
3633 N/mm2 (RMSE: 0.02406) and 3599 N/mm2 (RMSE: 0.06922). The average of these
three measurements is 3851 N/mm2 which is in the range as could be expected.

From the diagrams can be seen that measurements on both sides of the strips do not strain
equally. Possible explanations of this are; at first the applied test setup was not accurately
enough or the way the weight where added would have influenced the results. More tests
would be needed to gain more insight in this. A second possibility would be that the material
is not homogeneous. Which would not be strange since the plastic consists of chains of
polymer and its network depend on the production method.
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Figure C-6: Stress-strain diagrams for three tests.
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C-4 Matlab script

1 %% 2013 Peter Eigenraam
2 % This script processes the data obtained from three strain tests of
3 % plastic strips. The goal is to obtain an Youngs modulus.
4
5 % Clear
6 clc ; clear ; close all ;
7 format long
8
9 % Get results of first test.

10 filename1 = ’strain_test_1.txt’ ;
11 test1 = textscan ( fopen ( filename1 ) , ’%f %f %f’ ) ;
12
13 % Get results of second test.
14 filename2 = ’strain_test_2.txt’ ;
15 test2 = textscan ( fopen ( filename2 ) , ’%f %f %f’ ) ;
16
17 % Get results of third test.
18 filename3 = ’strain_test_3.txt’ ;
19 test3 = textscan ( fopen ( filename3 ) , ’%f %f %f’ ) ;
20
21 % Length of test strips.
22 l1 = test1 {1 ,1}(1) ;
23 l2 = test2 {1 ,1}(1) ;
24 l3 = test3 {1 ,1}(1) ;
25
26 % Area of crosssection of strips.
27 a1 = test1 {1 ,1}(2) ;
28 a2 = test2 {1 ,1}(2) ;
29 a3 = test3 {1 ,1}(2) ;
30
31 % Number of points to calculate.
32 nd1 = length ( test1 {1 ,1}) − 3 ;
33 nd2 = length ( test2 {1 ,1}) − 3 ;
34 nd3 = length ( test3 {1 ,1}) − 3 ;
35
36 % Calculate values for sigma -epsilon diagram
37 R1 = zeros (nd1 , 4) ;
38 R2 = zeros (nd2 , 4) ;
39 R3 = zeros (nd3 , 4) ;
40
41 % For first test.
42 kg_temp = test1 {1 ,1}(3) ;
43 e_1_temp = 0 ;
44 e_2_temp = 0 ;
45 e_ave_temp = 0 ;
46 for i = 1 : nd1
47 % Sigma.
48 kg_temp = kg_temp + test1 {1 ,1}(i + 3) ;
49 R1 (i , 1) = kg_temp ∗ 9 .81 / a1 ;
50
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51 % Epsilon 1.
52 e_1_temp = e_1_temp + (( test1 {1 ,2}(i + 3) − test1 {1 ,2}(i + 2) ) / l1 ) ;
53 R1 (i , 2) = e_1_temp ;
54
55 % Epsilon 2.
56 e_2_temp = e_2_temp + (( test1 {1 ,3}(i + 3) − test1 {1 ,3}(i + 2) ) / l1 ) ;
57 R1 (i , 3) = e_2_temp ;
58
59 % Epsilon average.
60 e_ave_temp = ( e_1_temp + e_2_temp ) / 2 ;
61 R1 (i , 4) = e_ave_temp ;
62 end
63
64 % Fit a first order polynome.
65 cftool (R1 ( : , 4 ) ,R1 ( : , 1 ) ) ;
66 fit (R1 ( : , 4 ) ,R1 ( : , 1 ) ,’poly1’ ) ;
67
68 % For second test.
69 kg_temp = test2 {1 ,1}(3) ;
70 e_1_temp = 0 ;
71 e_2_temp = 0 ;
72 e_ave_temp = 0 ;
73 for i = 1 : nd2
74 % Sigma.
75 kg_temp = kg_temp + test2 {1 ,1}(i + 3) ;
76 R2 (i , 1) = kg_temp ∗ 9 .81 / a2 ;
77
78 % Epsilon 1.
79 e_1_temp = e_1_temp + (( test2 {1 ,2}(i + 3) − test2 {1 ,2}(i + 2) ) / l2 ) ;
80 R2 (i , 2) = e_1_temp ;
81
82 % Epsilon 2
83 e_2_temp = e_2_temp + (( test2 {1 ,3}(i + 3) − test2 {1 ,3}(i + 2) ) / l2 ) ;
84 R2 (i , 3) = e_2_temp ;
85
86 % Epsilon average.
87 e_ave_temp = ( e_1_temp + e_2_temp ) / 2 ;
88 R2 (i , 4) = e_ave_temp ;
89 end
90
91 % Fit a first order polynome.
92 cftool (R2 ( : , 4 ) ,R2 ( : , 1 ) ) ;
93
94 % For third test.
95 kg_temp = test3 {1 ,1}(3) ;
96 e_1_temp = 0 ;
97 e_2_temp = 0 ;
98 e_ave_temp = 0 ;
99 for i = 1 : nd3

100 % Sigma.
101 kg_temp = kg_temp + test3 {1 ,1}(i + 3) ;
102 R3 (i , 1) = kg_temp ∗ 9 .81 / a3 ;
103
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104 % Epsilon 1.
105 e_1_temp = e_1_temp + (( test3 {1 ,2}(i + 3) − test3 {1 ,2}(i + 2) ) / l3 ) ;
106 R3 (i , 2) = e_1_temp ;
107
108 % Epsilon 2
109 e_2_temp = e_2_temp + (( test3 {1 ,3}(i + 3) − test3 {1 ,3}(i + 2) ) / l3 ) ;
110 R3 (i , 3) = e_2_temp ;
111
112 % Epsilon average.
113 e_ave_temp = ( e_1_temp + e_2_temp ) / 2 ;
114 R3 (i , 4) = e_ave_temp ;
115 end
116
117 % Fit a first order polynome.
118 cftool (R3 ( : , 4 ) ,R3 ( : , 1 ) ) ;
119
120 % Plot results of first test.
121 subplot ( 1 , 3 , 1 )
122 scatter (R1 ( (1 : nd1 ) , 2 ) , R1 ( (1 : nd1 ) , 1 ) , ’cyan’ ) ;
123 hold on
124 scatter (R1 ( (1 : nd1 ) , 3 ) , R1 ( (1 : nd1 ) , 1 ) , ’blue’ ) ;
125 plot (R1 ( (1 : nd1 ) , 4 ) , R1 ( (1 : nd1 ) , 1 ) , ’black’ ) ;
126 %plot(f1, ’green ’);
127 hold off
128 title (’Test 1’ )
129 xlabel (’Epsilon [-]’ ) ;
130 ylabel (’Sigma [N/mm^2]’ ) ;
131
132 % Plot results of second test.
133 subplot ( 1 , 3 , 2 )
134 scatter (R2 ( (1 : nd2 ) , 2 ) , R2 ( (1 : nd2 ) , 1 ) , ’cyan’ ) ;
135 hold on
136 scatter (R2 ( (1 : nd2 ) , 3 ) , R2 ( (1 : nd2 ) , 1 ) , ’blue’ ) ;
137 plot (R2 ( (1 : nd2 ) , 4 ) , R2 ( (1 : nd2 ) , 1 ) , ’black’ ) ;
138 hold off
139 title (’Test 2’ )
140 xlabel (’Epsilon [-]’ ) ;
141 ylabel (’Sigma [N/mm^2]’ ) ;
142
143 % Plot results of third test.
144 subplot ( 1 , 3 , 3 )
145 scatter (R3 ( (1 : nd3 ) , 2 ) , R3 ( (1 : nd3 ) , 1 ) , ’cyan’ ) ;
146 hold on
147 scatter (R3 ( (1 : nd3 ) , 3 ) , R3 ( (1 : nd3 ) , 1 ) , ’blue’ ) ;
148 plot (R3 ( (1 : nd3 ) , 4 ) , R3 ( (1 : nd3 ) , 1 ) , ’black’ ) ;
149 hold off
150 title (’Test 3’ )
151 xlabel (’Epsilon [-]’ ) ;
152 ylabel (’Sigma [N/mm^2]’ ) ;
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Appendix D

Maple sheet for structural and
kinematic calculations
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> > 

(1)(1)

> > 

> > 

> > 

restart;
This calculationsheet performs structutal and kinematic calculations required for the setup of a flexible 
mould. The calculations a bending beam (or strips) is considered on five supports. The beams (strips) 
are loaded by a combination of triangular distributed loads on each beam (strip). After solving the 
equations the sheet perform kinematic calculation for the setup of support heights of the flexible mould.
Define parameters for distance between support (d), height of each support (h), lengths of parts in 
connection of supports (l), value of load above supports (qrep) (remark: load is linear between supports)
and bending stiffness (EI):

Define load functions:

Define equations for each part of the beam (strip) between the supports. Start with the basic 4th order 
differential equation for a bending beam. Integrate this four time to derive the basic function for the 
deflection of the beam. There are four unknown constants for each beam (strip).
For the first part:
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(3)(3)

(4)(4)

> > 

(2)(2)

For the second part:

For the third part:

For the fouth part:
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> > 
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> > 
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> > 
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Define the boundary conditions at the support. There are 16 unknown constants. Therefore 16 boundary
condition are required. 
Define boundary conditions at first support:

Define boundary conditions at second support:

Define boundary condition at third support:

Define boundary conditions at fouth support:

Define boundary conditions at fifth support:

Solve the constants:

Set variable x back to variable:

The equation are now solved. The values for supports heights, loads and bending stiffness can be 
assigned.
Set values of dimensional parameters:

Set values for loads and bending stiffness:
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> > 

> > 

> > 

Possible check of constants:

Plot functions for loading:
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Plot functions of deflection:
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Plot difference between deflection and continious curvature (optional):
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Plot angle (optional):

Plot curvature (optional):
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> > 

> > 

> > 

(6)(6)

(5)(5)

> > 

> > 

> > 

> > 

Plot moment (optional):

Plot shear (optional):

Displacements of the beams (strips) cause deviation of the required shape. This can be compensated by 
adjusting the the support heights. Based on a approximation of the horizontal displacement of supprts 
and the angle at the supports the compensation is calculated. Since the beams (strips) deflect relative 
large distance there will be a horizontal displacement as well. This is not included in the solution of the 
equations. An approximation of the horizontal displacement is made by calculating the the length of the
function between the support distance and comparing to the original length. 
Define the approximation of the horizontal displacements:

Define approximation of horizontal displacement at midspan of beams (strips):
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> > 

> > 

(8)(8)

(7)(7)

> > 

(6)(6)

> > 

> > 

Calculate the angle at the supports:

Calculate compensation of the height of the supports:
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(8)(8)

> > 

(6)(6)

> > 

> > 

> > 
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> > 

> > 

> > 

(10)(10)

(8)(8)

(6)(6)

> > 

> > 

> > 

(9)(9)

> > 

Calculate support reactions:

Check vertical equilibrium.

Calculate heights of displaced support:
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> > 

(11)(11)

> > 

> > 

> > 

> > 

> > 

(8)(8)

(6)(6)

> > 

(12)(12)

> > 

Calculate height of displaced at midspan:
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Appendix E

Accuracy of measurements with 3D
scanner and processing data

The geometry of the mould during tests was by measurements with a 3D scanner. The used
scanner was a Faro laser scanner Photon120/20. This scanner is capable of measuring millions
of points. At the end of this annex a tech sheet is included of the manufacturer FARO [2012].
According to this information the accuracy of the laser is 2 [mm] at a distance of 25 [m].
However this accuracy cannot always be obtained. To determine the accuracy for application
of the flexible mould test scans were made as shown in Figure E-1. To determine horizontal
displacement of locations on the mould surface it is required to obtain specific locations.
Therefore targets were used. There are different types of targets that can be used for this
purpose. Two of these have been compared to determine the most suitable for application
with the flexible mould. The two type of targets are half spheres and black and white flat
targets as in Figure E-2. The position of the target is shown in Figure E-3. After the scans
are made the data which is available is a list of coordinates of many points. Also called a
point cloud. Since not all data is needed it must be processed using point cloud modification
software. Here the program Leica Cyclone was used Geosystems [2013]. This software was
able to select a region of points.

E-1 Comparison of targets

The two types of target were placed on a test sheet and then scanned. Two different diameters,
30 and 40 millimeter, of half spheres were tested and compared to flat black and white targets.
A location could be obtained from the half spheres by fitting a virtual sphere onto the data of
the spheres. This is a method which was included in the software package that was used. The
center point of the sphere was taken as the location of the point that was required. The black
and white targets were made. The scanner does not only determines the location of point, but
also the gray scale. This property was used to isolate the targets from the rest of the mould
surface. The scanned data was imported in Matlab and analyzed using a threshold value for
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Figure E-1: Test scan of mould and tar-
gets.

Figure E-2: Two types of targets were
scanned and compared for accuracy.

Figure E-3: Measured distances between targets
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E-1 Comparison of targets 107

Figure E-4: Distances and deviation of sphere fitting d = 40mm. Average deviation 0.95 [mm].

Figure E-5: Distances and deviation of sphere fitting d = 30mm. Average deviation 0.95 [mm].

the distinction between black and white points. The middle of a target was determined by
taking the average coordinate of all isolated black points of one target. The Matlab sheet is
included at the end of this Appendix.

The result of processing the data for the half spheres can be found in the Figures E-4 to E-6.
For both the spheres with 30 and 40 millimeter half the average error is 0.95 millimeter. These
measurement are the distance between two points on horizontal direction. It was found that
for the vertical direction the fit of the sphere object was as accurate. The spheres were fitted
too low varying between 5 and 10 millimeter. This could be due the amount of points that
can be used. This is reduced since half spheres are used and the scanner is only capable of
measuring point from its own viewpoint. Points at the back of the sphere cannot be measured.
From a practical point of view these target are difficult to place accurately.

The flat black and white targets had an average error on 1 millimeter, which more than for
the half sphere targets. Results can be seen in Figure E-7. In vertical direction a difference of
0.6 millimeter was found between the average target height and the surrounding surface. The
flat targets were easier to place and more accurate since the location can be measured easier
by hand. These two aspect are an advantage compared to the half sphere targets. Therefore
these targets were chosen to implement in the test with the flexible mould.
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Figure E-6: Distances and deviation of square targets. Average deviation 1.00 [mm].

Figure E-7: Pointcloud in Leica Cyclone. Figure E-8: Sphere fitted on data. Fit of
spheres is too low varying between 5 and
10 millimeter
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Figure E-9: Targets placed on the mould
surface.

Figure E-10: Scan of the mould surface
and targets. Points on the target have
been measured in an area around the real
target.

Figure E-11: Used target for test scans. Figure E-12: Suggestion for alternative
target that can be used for future scans.

E-2 Accuracy of test results

To determine the accuracy of the scans a benchmark scan was made of the horizontal and
leveled position of the mould surface. This position was setup by hand and distances between
the target were 150 millimeter. The design of the targets was changed such that black area
of the target is larger. Therefore more black points would be scanned and the average of
all point would be a more detailed description of the location of the center of the target.
However a difference was found in the result for the accuracy compared to the earlier made
scans. The measured points of the targets were located in an area around the target. Possibly
the laser did not reflect as well as for the earlier used targets. Another printer was used to
print the targets. The targets and the scan can be seen in the Figures E-9 and E-10. The
root mean square error of the targets located near the edge was calculated to determine the
accuracy. The result is: 1.14 mm for the x-direction, 1.33 mm for y-direction and 1.54 for the
z-direction.

The used targets are shown in Figure E-11. It was found that white a white surface results in
more accurate measurements. Also the target could me smaller since the density of the scans
can high. Therefore a suggestion for an alternative target is shown in Figure E-12. Instead
of the black points, white points should be filtered. Small white lines were added so that the
target can be positioned accurately.
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Wireless Operability
Independent web server; data recording 
on 80GB internal hard disk; control via iPod® 

touch or most wireless PDAs

Best-in-Class Field-of-View 
360º horizontal and 320º vertical -  
the largest field-of-view on the market

Longest Range 3D Phase-Shift Laser Scanner 
Produce virtual images comprised of 
millions of 3D measurement points 
collected within an unprecedented range - 
up to 120m (395ft.)1 

Universal Quick Mount
For mounting on a surveyor tripod

A high-speed 3D scanner for full-detail survey and documentation! Utilizing non-
contact laser technology, the FARO Photon generates highly detailed 3D replicas 
of complex environments and geometries in a matter of minutes. Photon recreates 
the real world and defines it within a virtual space. The resulting image is a collection 
of millions of 3D measurements, providing an accurate digital representation of as-
built or as-is conditions. Capable of scanning at the blistering rate of 976,000 points-
per-second and a maximum reach of 120m, the Photon 120 offers the most efficient 
method for documenting conditions in three dimensions.

The Photon 120: Large Scale Scanning at its Fastest

  Camera option for photo-realistic 	
    high-resolution color scans

  Mobile scanning interface for       	
    scanning along roads, rails, and 	
    tunnels with optional integration      	
    software  

  Optimized for exceptional image 	
    quality in outdoor conditions

  Automatic target recognition, 	
    naming, and registration

  Crisp object definition

Additional Features

Document with Confidence
Never again miss critical dimensions. With Photon, digitally capture all the required 
documentation for engineering, procurement, construction, and investigation - in 
complete detail. Replace cumbersome data collection via tape measures, laser 
range finders, digital cameras, and total stations that involve additional effort and 
risk. Photon, also available in a 20m model, is the ultimate digital documentation 
instrument - the only limit to what you can do is your imagination.

High Speed Survey and Inspection
Scan at rates of up to 976,000 points-per-
second

Speed Control
Balance speed and scan quality according 
to application

Compact Power base (option)
Provides 6 hours of operation per charge

Modular Design
Removable sealed modules for convenient 
system upgrade and maintenance

FARO Laser Scanner Photon 120/20

High Accuracy
± 2mm ranging error2 at 25 m

w w w . f a r o - L a s e r S c a n n e r - a s i a . c o m

www.faroasia.com
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To learn more, visit www.faro-LaserScanner-asia.com
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Specifications 

Applications

General 

Ranging unit
Unambiguity interval: 153.49m (503.58ft)
Range3 (Ph: 0.6m - 120m indoor or outdoor with low ambient light on 90% 
reflective surface
Range3 (Photon 20): 0.6m - 20m on >2% matte reflective surface
Measurement speed: 122,000 / 244,000 / 488,000 / 976,000 points/sec
Ranging error2: ±2mm at 10m and 25m, each at 90% and 10% reflectivity
Ranging noise4: standard deviation
@10m - raw data: 0.8mm @ 90% refl. | 1.4mm rms @ 10% refl.
@10m - noise compressed5: 0.4mm @ 90% refl. | 0.7mm @ 10% refl.
@25m - raw data: 1.0mm @ 90% refl. | 2.7mm @ 10% refl.
@25m - noise compressed5: 0.5mm @ 90% refl. | 1.35mm @ 10% refl.

	 Size (LxWxH): 410mm x 160mm x 280mm	      
	 Maintenance calibration: Once a year
	 Exchange modules: Distance sensor / mirror axis / PC
	 Georeferencing: Yes
	 Cable connector: Located in scanner mount
	 Parallax-free color overlay (with color camera option)

Deflection unit
	 Vertical field of view: 320°
	 Horizontal field of view: 360°
	 Vertical step size: 0.009° (40,000 3D pixel on 360°) 
	 Horizontal step size: 0.009° (40,000 3D pixel on 360°)
	 Max. vertical scan speed: 2,880 rpm

Laser (Optical transmitter)
	 Laser power (cw Ø): 20 mW  (Laser class 3R)
	 Wavelength: 785 nm				  
	 Beam divergence: Typical 0.16 mrad (0.009°) 
	 Beam diameter at exit: 3.3 mm, circular 

Handling of data
	 Internal PC: Intel Celeron-M 600MHz, 512 MB RAM, 80 GB HD 
	 Data storage: Local: on internal hard disk drive 
	 (for most resolutions)
	 Remote: via Ethernet on external PC or laptop
	 Scanner control: via Ethernet or WLAN by PC or PDA, on 

local network, internet or independent operation

Commercial Industrial Residential Manufacturing

FARO Laser Scanner Photon 120/20

1) Range specification applies to the Photon 120.
2) Depends on ambient light, which can act as a source of noise. Bright 
ambient light (e.g. sunshine) may shorten the actual range of the scanner to 
lesser distances. In low ambient light, the range can be more than 120m for 
normal incidence on high-reflective surfaces. 
3) Ranging error is defined as the maximum error in the distance measured by 
the scanner from its origin point to a point on a planar target.
4) Ranging noise is defined as standard deviation of values about the best-fit 
plane.
5) A noise-compression algorithm may be activated to average points in sets 
of four or sixteen, thereby compressing raw data noise by a factor of 2 or 4.
6) Based on vendor specification.
Subject to change without prior notice.  
More information available at www.faro-LaserTracker-asia.com.

	 Power supply voltage: 24 V DC (Battery pack or AC converter)
	 Power consumption: ~60 W
	 Ambient temperature: 5° - 40° C
	 Humidity: Non condensing
	 Inclination sensor: Accuracy 0.02°; Resolution 0.001°; Range ±15° 
	 Weight: 14.5 kg (31.97lb)
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Appendix F

Matlab sheet for processing scanned
data

1 %% 2013 Peter Eigenraam and Daan Eigenraam
2 % Get target points from pointclouds based on gratscale value.
3 % Prepare pointcloud .pts files with indices from 01 to max 99.
4
5 % Clear
6 clc ; clear ; close all ;
7 format long ;
8
9 % Enter filename of scan, filename of targets , number of targets and

10 % threshold value for black and white.
11 filename_prefix_scan = ’scan_20130523014’ ;
12 filename_prefix_surface = ’scan_20130523014_surface’ ;
13 filename_prefix_surface_mid = ’scan_20130523014_surface_mid’ ;
14 filename_prefix_target = ’target_’ ;
15 file_extention = ’.pts’ ;
16 N = 68 ;
17 threshold_black = 120 ;
18 threshold_white = 180 ;
19
20 %% Filter black points from total scan.
21
22 % Read points from file.
23 %m_t = read_points([filename_prefix_scan , file_extention]);
24
25 %Filter out wanted points and put data in matrix P_t
26 %[x_t,y_t,z_t,l_t,r_t,g_t,b_t] = threshold_filter(m_t, threshold);
27
28 % Create a .pts file for the points in the targets.
29 %fileId = fopen([filename_prefix_scan , ’_targets ’, file_extention], ’a’);
30 %fprintf(fileId , ’%d\n’, length(x_t));
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31 %fprintf(fileId , ’%f %f %f %d %d %d %d\n’, [x_t,y_t,z_t,l_t,r_t,g_t,b_t
]’);

32 %fclose(fileId);
33
34 %% Filter white points from surface scan.
35
36 %Read points of files based on a generated string for file name
37 %Results are put into m where each cell is a vector
38 %m_s = read_points([filename_prefix_surface , file_extention]);
39
40 %Filter out wanted points and put data in matrix P_t
41 %[x_s,y_s,z_s,l_s,r_s,g_s,b_s] = threshold_filter(m_s, threshold_white ,

1);
42
43 % Create a .txt file for the resulting points.
44 %fileId = fopen([filename_prefix_surface , ’.txt’], ’a’);
45 %fprintf(fileId , ’%f %f %f\n’, [x_s,y_s,z_s]’);
46 %fclose(fileId);
47
48 %% Filter white points from middle surface scan.
49
50 %Read points of files based on a generated string for file name
51 %Results are put into m where each cell is a vector
52 m_s_mid = read_points ( [ filename_prefix_surface_mid , file_extention ] ) ;
53
54 %Filter out wanted points and put data in matrix P_t
55 [ x_s_mid , y_s_mid , z_s_mid , l_s_mid , r_s_mid , g_s_mid , b_s_mid ] =

threshold_filter ( m_s_mid , threshold_white , 1) ;
56
57 % Create a .txt file for the resulting points.
58 fileId = fopen ( [ filename_prefix_surface_mid , ’.txt’ ] , ’a’ ) ;
59 fprintf ( fileId , ’%f %f %f\n’ , [ x_s_mid , y_s_mid , z_s_mid ] ’ ) ;
60 fclose ( fileId ) ;
61
62 %% Filter black points from target scans.
63
64 % Define matrix for coordinates in x, y and z.
65 MP = zeros (N , 3 ) ;
66
67 % Retreive and process data from files.
68 for i=1:N
69 %For files with index below 10.
70 if (i < 10)
71 %Read points of files based on a generated string for file name
72 %Results are put into m where each cell is a vector
73 m = read_points ( [ filename_prefix_target , ’0’ , int2str (i ) ,

file_extention ] ) ;
74
75 %Filter out wanted points and put data in matrix P
76 [ x , y , z , l , r , g , b ] = threshold_filter (m , threshold_black , 0) ;
77 P = [ x , y , z ] ;
78
79 %Calculate the average
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80 MP (i , : ) = mean (P ) ;
81
82 % Create a .pts file for the points in the target.
83 %fileId = fopen([filename_prefix_target , ’0’, int2str(i),’

_reduced ’, file_extention], ’a’);
84 %fprintf(fileId , ’%d\n’, length(x));
85 %fprintf(fileId , ’%f %f %f %d %d %d %d\n’, [x,y,z,l,r,g,b]’);
86 %fclose(fileId);
87
88 %For other files
89 else
90 %Read points of files based on a generated string for file name
91 %Results are put into m where each cell is a vector
92 m = read_points ( [ filename_prefix_target , int2str (i ) ,

file_extention ] ) ;
93
94 %Filter out wanted points and put data in matrix P
95 [ x , y , z , l , r , g , b ] = threshold_filter (m , threshold_black , 0) ;
96 P = [ x , y , z ] ;
97 R = [ x , y , z , l , r , g , b ] ;
98
99 %Calculate the average

100 MP (i , : ) = mean (P ) ;
101
102 % Create a .pts file for the points in the target.
103 %fileId = fopen([filename_prefix_target , int2str(i),’_reduced ’,

file_extention], ’a’);
104 %fprintf(fileId , ’%d\n’, length(x));
105 %fprintf(fileId , ’%f %f %f %d %d %d %d\n’, [x,y,z,l,r,g,b]’);
106 %fclose(fileId);
107 end
108 end
109
110 % Create .txt file of resulting target points.
111 fileId = fopen ( [ filename_prefix_scan , ’_points.txt’ ] , ’a’ ) ;
112 fprintf ( fileId , ’%f %f %f\n’ , [ MP ( : , 1 ) ,MP ( : , 2 ) ,MP ( : , 3 ) ] ’ ) ;
113 fclose ( fileId ) ;

1 function [ m ] = read_points ( filename )
2 %READ_POINTS Summary of this function goes here
3 % Detailed explanation goes here
4 fileID = fopen ( filename ) ;
5 m = textscan ( fileID , ’%f %f %f %f %f %f %f’ ) ;
6 fclose ( fileID ) ;
7 end

1 function [ x , y , z , l , r , g , b ] = threshold_filter ( m , threshold , hl )
2 %THRESHOLD_FILTER
3 % This function determines which points are used
4
5 if hl == 0 ;
6 % Find indices of r values higher than threshold
7 I = find (m{5} < threshold ) ;
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8
9 % Select only the values that make the threshold

10 x = m{1}(I ) ;
11 y = m{2}(I ) ;
12 z = m{3}(I ) ;
13 l = m{4}(I ) ;
14 r = m{5}(I ) ;
15 g = m{6}(I ) ;
16 b = m{7}(I ) ;
17
18 else
19 % Find indices of r values lower than threshold
20 I = find (m{5} > threshold ) ;
21
22 % Select only the values that make the threshold
23 x = m{1}(I ) ;
24 y = m{2}(I ) ;
25 z = m{3}(I ) ;
26 l = m{4}(I ) ;
27 r = m{5}(I ) ;
28 g = m{6}(I ) ;
29 b = m{7}(I ) ;
30 end
31
32 end
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Test data
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Mould setup data
Do not modify

Number of support in x-direction [-]: 5
Number of support in y-direction [-]: 5
Number of strips between supports: 5
Distance between supports [mm]: 150
Reference height [mm]: 150
Length connection top [mm]: 18,3
Length connection bottom [mm]: 127,7
Length connection bottom 2 [mm]: 145,7
Youngs modulus [N/mm^2]: 3851
Moment of innertia single strip [mm^4]: 10
Thickness concrete [mm]: 0
Density concrete [kg/m^3]: 2400

Flexible mould

Compensation for support length deviation (z-direction) [mm]
1 2 3 4 5

5 6 6 7 9 7
4 9 8 4 6 7
3 5 5 0 5 2
2 5 7 6 7 9
1 5 4 4 5 5
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Scan and results benchmark
Do not modify
All measurements are relative to the middle support (3,3).

Min. radius of curvature [1/mm]: inf
Max. radius of curvature [1/mm]: inf

Surface

Scan
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Location x-direction [mm]
1 2 3 4 5

5 -300,00 -150,00 0,00 150,00 300,00

4 -300,00 300,00

3 -300,00 Ref. 300,00

2 -300,00 300,00

1 -300,00 -150,00 0,00 150,00 300,00

Measured location target x-direction [mm]
1 2 3 4 5

5 -300,53 -149,65 0,59 150,99 300,15

4 -300,32 300,09

3 -300,98 Ref. 299,95

2 -301,47 298,60

1 -301,44 -151,92 -1,45 149,76 297,59

Difference location x-direction [mm]
1 2 3 4 5

5 0,53 -0,35 -0,59 -0,99 -0,15

4 0,32 -0,09

3 0,98 Ref. 0,05

2 1,47 1,40

1 1,44 1,92 1,45 0,25 2,41

RMSE location (x-direction) [mm]: 1,14
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Location y-direction [mm]
1 2 3 4 5

5 300,00 300,00 300,00 300,00 300,00

4 150,00 150,00

3 0,00 Ref. 0,00

2 -150,00 -150,00

1 -300,00 -300,00 -300,00 -300,00 -300,00

Measured location target y-direction [mm]
1 2 3 4 5

5 298,82 300,05 300,27 299,93 298,09

4 150,76 148,81

3 -0,47 Ref. -1,46

2 -150,86 -152,68

1 -300,50 -301,36 -300,97 -300,55 -302,78

Difference location y-direction [mm]
1 2 3 4 5

5 1,18 -0,05 -0,27 0,07 1,92

4 -0,75 1,19

3 0,47 Ref. 1,46

2 0,86 2,68

1 0,50 1,36 0,97 0,55 2,78

RMSE location (y-direction) [mm]: 1,33

Location z-direction [mm]
1 2 3 4 5

5 0,00 0,00 0,00 0,00 0,00

4 0,00 0,00

3 0,00 Ref. 0,00

2 0,00 0,00

1 0,00 0,00 0,00 0,00 0,00

Measured location target y-direction [mm]
1 2 3 4 5

5 1,60 0,74 1,14 -1,72 3,18

4 -0,89 2,01

3 0,43 Ref. 1,67

2 0,88 2,12

1 -0,92 0,07 0,27 -0,99 2,34

Difference location y-direction [mm]
1 2 3 4 5

5 -1,60 -0,74 -1,14 -1,72 -3,18

4 0,89 -2,01

3 -0,43 Ref. -1,67

2 -0,88 -2,12

1 0,92 -0,07 -0,27 0,99 -2,34

RMSE location (y-direction) [mm]: 1,54

RMSE total [mm]: 2,33
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Deviation of surface (top view) [mm]
0 – 1
1 – 2
2 – 3
3 – 4
4 – 5

Deviation of surface (bottom view) [mm]
0 – 1
1 – 2
2 – 3
3 – 4
4 – 5

Number of points [–]: 1.469.011

Mean distance [mm]: 0,73

Median distance [mm]: 0,59

Standard deviation [mm]: 0,59
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Setup shape 1
Do not modify

Distance between supports [mm]: 150
Reference height [mm]: 150
Load [N/m^2]: -0
Load top edge strips [N/mm]: 0,00
Load top middle strips [N/mm]: 0,00
Youngs modulus [N/mm^2]: 3851
Moment of innertia top edge strip [mm^4]: 25
Moment of innertia top middle strip [mm^4]: 50
Moment of innertia lower strip [mm^4]: 50
Length connection top [mm]: 18,3
Length connection bottom [mm]: 127,7
Length connection bottom 2 [mm]: 145,7
Min. radius of curvature [1/mm]: 1000
Max. radius of curvature [1/mm]: Inf

Surface

Support relative intersection heights [mm]
1 2 3 4 5

5 0,00 34,75 46,06 34,75 0,00
4 0,00 34,75 46,06 34,75 0,00
3 0,00 34,75 46,06 34,75 0,00
2 0,00 34,75 46,06 34,75 0,00
1 0,00 34,75 46,06 34,75 0,00

Horizontal support displacement in x-direction [mm]
1 2 3 4 5

5 4,63 0,60 0,00 -0,60 -4,63
4 4,63 0,60 0,00 -0,60 -4,63
3 4,63 0,60 0,00 -0,60 -4,63
2 4,63 0,60 0,00 -0,60 -4,63
1 4,63 0,60 0,00 -0,60 -4,63

Compensation supports in x-direction [mm]
1 2 3 4 5

5 2,19 0,39 0,00 0,39 2,19
4 2,19 0,39 0,00 0,39 2,19
3 2,15 0,39 0,00 0,39 2,15
2 2,19 0,39 0,00 0,39 2,19
1 2,19 0,39 0,00 0,39 2,19

Support reactions for strips in x-direction [N]
1 2 3 4 5

5 -0,87 1,21 -0,67 1,21 -0,87
4 -1,74 2,41 -1,35 2,41 -1,74
3 -1,74 2,41 -1,35 2,41 -1,74
2 -1,74 2,41 -1,35 2,41 -1,74
1 -0,87 1,21 -0,67 1,21 -0,87
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Loading (qrep) at supports of strips in y-direction [N/mm]
1 2 3 4 5

5 0,0116 -0,0161 0,0090 -0,0161 0,0116
4 0,0116 -0,0161 0,0090 -0,0161 0,0116
3 0,0116 -0,0161 0,0090 -0,0161 0,0116
2 0,0116 -0,0161 0,0090 -0,0161 0,0116
1 0,0116 -0,0161 0,0090 -0,0161 0,0116

Horizontal support displacement in y-direction [mm]
1 2 3 4 5

5 0,00 0,00 0,00 0,00 0,00
4 0,00 0,00 0,00 0,00 0,00
3 0,00 0,00 0,00 0,00 0,00
2 0,00 0,00 0,00 0,00 0,00
1 0,00 0,00 0,00 0,00 0,00

Compensation supports in y-direction [mm]
1 2 3 4 5

5 0,00 0,00 0,00 0,00 0,00
4 0,00 0,00 0,00 0,00 0,00
3 0,00 0,00 0,00 0,00 0,00
2 0,00 0,00 0,00 0,00 0,00
1 0,00 0,00 0,00 0,00 0,00

Support reactions for strips in y-direction [N]
1 2 3 4 5

5 -0,68 0,95 -0,53 0,95 -0,68
4 -1,99 2,76 -1,54 2,76 -1,99
3 -1,62 2,24 -1,25 2,24 -1,62
2 -1,99 2,76 -1,54 2,76 -1,99
1 -0,68 0,95 -0,53 0,95 -0,68

Total compensation [mm]
1 2 3 4 5

5 2,19 0,39 0,00 0,39 2,19
4 2,19 0,39 0,00 0,39 2,19
3 2,15 0,39 0,00 0,39 2,15
2 2,19 0,39 0,00 0,39 2,19
1 2,19 0,39 0,00 0,39 2,19

Setup height supports (including support length compensation) [mm]
1 2 3 4 5

5 112,13 145,08 157,00 148,08 113,13
4 115,13 147,08 154,00 145,08 113,13
3 111,09 144,08 150,00 144,08 108,09
2 111,13 146,08 156,00 146,08 115,13
1 111,13 143,08 154,00 144,08 111,13
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Scan and results shape 1
Do not modify
All measurements are relative to the middle support (3,3).

Min. radius of curvature [1/mm]: 1000
Max. radius of curvature [1/mm]: Inf

Surface

Scan
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Predicted target displacement (x-direction) [mm]
1 2 3 4 5

5 4,63 -4,63

4 4,63 -4,63

3 4,63 Ref. -4,63

2 4,63 -4,63

1 4,63 -4,63

Measured target displacement (x-direction) [mm]
1 2 3 4 5

5 3,66 -6,69

4 3,56 -6,28

3 3,83 Ref. -6,29

2 4,39 -6,08

1 4,35 -5,85

Difference displacement (x-direction) [mm]
1 2 3 4 5

5 0,97 2,06

4 1,07 1,65

3 0,80 Ref. 1,66

2 0,23 1,45

1 0,27 1,22

Ratio displacement difference vs prediction (x-direction) [%]
1 2 3 4 5

5 74% 69%

4 70% 74%

3 79% Ref. 74%

2 95% 76%

1 94% 79%

RMSE displacement (x-direction) [mm]: 1,27

Average absolute accuracy of predicted displacement [mm]: 78%
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Deviation of surface (top view) [mm]
0 – 1
1 – 2
2 – 3
3 – 4
4 – 5

Deviation of surface (bottom view) [mm]
0 – 1
1 – 2
2 – 3
3 – 4
4 – 5

Number of points [–]: 1.432.488

Mean distance [mm]: 0,91

Median distance [mm]: 0,75

Standard deviation [mm]: 0,73
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Deviation of middle surface (top view) [mm]
0 – 1
1 – 2
2 – 3
3 – 4
4 – 5

Deviation of surface (bottom view) [mm]
0 – 1
1 – 2
2 – 3
3 – 4
4 – 5

Number of points [–]: 364.384

Mean distance [mm]: 0,78

Median distance [mm]: 0,67

Standard deviation [mm]: 0,58
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Setup element 2
Do not modify

Distance between supports [mm]: 150
Reference height [mm]: 150
Load [N/m^2]: -0
Load top edge strips [N/mm]: 0,00
Load top middle strips [N/mm]: 0,00
Youngs modulus [N/mm^2]: 3851
Moment of innertia top edge strip [mm^4]: 25
Moment of innertia top middle strip [mm^4]: 50
Moment of innertia lower strip [mm^4]: 50
Length connection top [mm]: 18,3
Length connection bottom [mm]: 127,7
Length connection bottom 2 [mm]: 145,7
Min. radius of curvature [1/mm]: 1000
Max. radius of curvature [1/mm]: Inf

Surface

Support relative intersection heights [mm]
1 2 3 4 5

5 0,00 36,53 48,40 36,53 0,00
4 36,53 71,70 83,15 71,70 36,53
3 48,40 83,15 94,46 83,15 48,40
2 36,53 71,70 83,15 71,70 36,53
1 0,00 36,53 48,40 36,53 0,00

Horizontal support displacement in x-direction [mm]
1 2 3 4 5

5 5,11 0,66 0,00 -0,66 -5,11
4 4,69 0,61 0,00 -0,61 -4,69
3 4,63 0,60 0,00 -0,60 -4,63
2 4,69 0,61 0,00 -0,61 -4,69
1 5,11 0,66 0,00 -0,66 -5,11

Compensation supports in x-direction [mm]
1 2 3 4 5

5 2,50 0,44 0,00 0,44 2,50
4 2,23 0,40 0,00 0,40 2,23
3 2,15 0,39 0,00 0,39 2,15
2 2,23 0,40 0,00 0,40 2,23
1 2,50 0,44 0,00 0,44 2,50

Support reactions for strips in x-direction [N]
1 2 3 4 5

5 -0,92 1,27 -0,72 1,27 -0,92
4 -1,74 2,39 -1,30 2,39 -1,74
3 -1,74 2,41 -1,35 2,41 -1,74
2 -1,74 2,39 -1,30 2,39 -1,74
1 -0,92 1,27 -0,72 1,27 -0,92

129

Flexible mould for production of double-curved concrete elements Msc Thesis



Loading (qrep) at supports of strips in y-direction [N/mm]
1 2 3 4 5

5 0,0122 -0,0170 0,0095 -0,0170 0,0122
4 0,0116 -0,0159 0,0086 -0,0159 0,0116
3 0,0116 -0,0161 0,0090 -0,0161 0,0116
2 0,0116 -0,0159 0,0086 -0,0159 0,0116
1 0,0122 -0,0170 0,0095 -0,0170 0,0122

Horizontal support displacement in y-direction [mm]
1 2 3 4 5

5 -5,12 -4,72 -4,64 -4,72 -5,12
4 -0,66 -0,61 -0,60 -0,61 -0,66
3 0,00 0,00 0,00 0,00 0,00
2 0,66 0,61 0,60 0,61 0,66
1 5,12 4,72 4,64 4,72 5,12

Compensation supports in y-direction [mm]
1 2 3 4 5

5 2,57 2,18 2,19 2,18 2,57
4 0,43 0,41 0,38 0,41 0,43
3 0,00 0,00 0,00 0,00 0,00
2 0,43 0,41 0,38 0,41 0,43
1 2,57 2,18 2,19 2,18 2,57

Support reactions for strips in y-direction [N]
1 2 3 4 5

5 -2,54 -0,77 -2,29 -0,77 -2,54
4 0,54 5,21 0,90 5,21 0,54
3 -3,04 0,86 -2,58 0,86 -3,04
2 0,54 5,21 0,90 5,21 0,54
1 -2,54 -0,77 -2,29 -0,77 -2,54

Total compensation [mm]
1 2 3 4 5

5 5,07 2,62 2,19 2,62 5,07
4 2,66 0,81 0,38 0,81 2,66
3 2,15 0,39 0,00 0,39 2,15
2 2,66 0,81 0,38 0,81 2,66
1 5,07 2,62 2,19 2,62 5,07

Setup height supports (including support length compensation) [mm]
1 2 3 4 5

5 66,61 100,69 113,13 103,69 67,61
4 103,73 136,05 143,07 134,05 101,73
3 111,09 144,08 150,00 144,08 108,09
2 99,73 135,05 145,07 135,05 103,73
1 65,61 98,69 110,13 99,69 65,61
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Scan and results shape 2
Do not modify
All measurements are relative to the middle support (3,3).

Min. radius of curvature [1/mm]: 1000
Max. radius of curvature [1/mm]: Inf

Surface

Scan
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Predicted target displacement x-direction [mm]
1 2 3 4 5

5 5,11 -5,11

4 4,69 -4,69

3 4,63 Ref. -4,63

2 4,69 -4,69

1 5,11 -5,11

Measured target displacement x-direction [mm]
1 2 3 4 5

5 4,82 -9,71

4 3,51 -6,58

3 3,60 Ref. -5,44

2 5,87 -1,87

1 10,40 0,90

Difference displacement x-direction [mm]
1 2 3 4 5

5 0,29 4,60

4 1,18 1,89

3 1,03 Ref. 0,81

2 -1,18 -2,82

1 -5,29 -6,01

Ratio displacement difference vs prediction (x-direction) [%]
1 2 3 4 5

5 94% 53%

4 66% 71%

3 71% Ref. 85%

2 80% -51%

1 49% -569%

RMSE displacement (x-direction) [mm]: 3,18

Average absolute accuracy of predicted displacement [mm]: 119%
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Predicted target displacement y-direction [mm]
1 2 3 4 5

5 -5,12 -4,72 -4,64 -4,72 -5,12

4

3 Ref.

2

1 5,12 4,72 4,64 4,72 5,12

Measured target displacement y-direction [mm]
1 2 3 4 5

5 -4,70 -4,20 -4,21 -4,91 -8,59

4

3 Ref.

2

1 3,15 2,64 3,70 3,72 3,97

Difference displacement y-direction [mm]
1 2 3 4 5

5 -0,42 -0,52 -0,43 0,19 3,47

4

3 Ref.

2

1 1,98 2,08 0,94 1,01 1,16

Ratio displacement difference vs prediction (y-direction) [%]
1 2 3 4 5

5 92% 89% 91% 96% 32%

4

3 Ref.

2

1 61% 56% 80% 79% 77%

RMSE displacement (y-direction) [mm]: 1,56

Average absolute accuracy of predicted displacement [mm]: 75%
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Deviation of surface (top view) [mm]
0 – 1
1 – 2
2 – 3
3 – 4
4 – 5

Deviation of surface (bottom view) [mm]
0 – 1
1 – 2
2 – 3
3 – 4
4 – 5

Number of points [–]: 1.366.750

Mean distance [mm]: 1,25

Median distance [mm]: 1,04

Standard deviation [mm]: 0,98
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Deviation of middle surface (top view) [mm]
0 – 1
1 – 2
2 – 3
3 – 4
4 – 5

Deviation of surface (bottom view) [mm]
0 – 1
1 – 2
2 – 3
3 – 4
4 – 5

Number of points [–]: 361.596

Mean distance [mm]: 0,96

Median distance [mm]: 0,82

Standard deviation [mm]: 0,72
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Setup element 3
Do not modify

Distance between supports [mm]: 150
Reference height [mm]: 150
Load [N/m^2]: -0
Load top edge strips [N/mm]: 0,00
Load top middle strips [N/mm]: 0,00
Youngs modulus [N/mm^2]: 3851
Moment of innertia top edge strip [mm^4]: 25
Moment of innertia top middle strip [mm^4]: 50
Moment of innertia lower strip [mm^4]: 50
Length connection top [mm]: 18,3
Length connection bottom [mm]: 127,7
Length connection bottom 2 [mm]: 145,7
Min. radius of curvature [1/mm]: 1000
Max. radius of curvature [1/mm]: 1000

Surface

Support relative intersection heights [mm]
1 2 3 4 5

5 46,06 80,81 92,12 80,81 46,06
4 11,31 46,06 57,37 46,06 11,31
3 0,00 34,75 46,06 34,75 0,00
2 11,31 46,06 57,37 46,06 11,31
1 46,06 80,81 92,12 80,81 46,06

Horizontal support displacement in x-direction [mm]
1 2 3 4 5

5 4,63 0,60 0,00 -0,60 -4,63
4 4,63 0,60 0,00 -0,60 -4,63
3 4,63 0,60 0,00 -0,60 -4,63
2 4,63 0,60 0,00 -0,60 -4,63
1 4,63 0,60 0,00 -0,60 -4,63

Compensation supports in x-direction [mm]
1 2 3 4 5

5 2,19 0,39 0,00 0,39 2,19
4 2,19 0,39 0,00 0,39 2,19
3 2,15 0,39 0,00 0,39 2,15
2 2,19 0,39 0,00 0,39 2,19
1 2,19 0,39 0,00 0,39 2,19

Support reactions for strips in x-direction [N]
1 2 3 4 5

5 -0,87 1,21 -0,67 1,21 -0,87
4 -1,74 2,41 -1,35 2,41 -1,74
3 -1,74 2,41 -1,35 2,41 -1,74
2 -1,74 2,41 -1,35 2,41 -1,74
1 -0,87 1,21 -0,67 1,21 -0,87
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Loading (qrep) at supports of strips in y-direction [N/mm]
1 2 3 4 5

5 0,0116 -0,0161 0,0090 -0,0161 0,0116
4 0,0116 -0,0161 0,0090 -0,0161 0,0116
3 0,0116 -0,0161 0,0090 -0,0161 0,0116
2 0,0116 -0,0161 0,0090 -0,0161 0,0116
1 0,0116 -0,0161 0,0090 -0,0161 0,0116

Horizontal support displacement in y-direction [mm]
1 2 3 4 5

5 -4,62 -4,65 -4,62 -4,65 -4,62
4 -0,59 -0,60 -0,59 -0,60 -0,59
3 0,00 0,00 0,00 0,00 0,00
2 0,59 0,60 0,59 0,60 0,59
1 4,62 4,65 4,62 4,65 4,62

Compensation supports in y-direction [mm]
1 2 3 4 5

5 -0,57 -0,58 -0,57 -0,58 -0,57
4 0,17 0,16 0,17 0,16 0,17
3 0,00 0,00 0,00 0,00 0,00
2 0,17 0,16 0,17 0,16 0,17
1 -0,57 -0,58 -0,57 -0,58 -0,57

Support reactions for strips in y-direction [N]
1 2 3 4 5

5 1,06 2,69 1,21 2,69 1,06
4 -4,40 0,35 -3,96 0,35 -4,40
3 -0,27 3,59 0,09 3,59 -0,27
2 -4,40 0,35 -3,96 0,35 -4,40
1 1,06 2,69 1,21 2,69 1,06

Total compensation [mm]
1 2 3 4 5

5 1,62 -0,18 -0,57 -0,18 1,62
4 2,37 0,56 0,17 0,56 2,37
3 2,15 0,39 0,00 0,39 2,15
2 2,37 0,56 0,17 0,56 2,37
1 1,62 -0,18 -0,57 -0,18 1,62

Setup relative height supports (including support length compensation) [mm]
1 2 3 4 5

5 157,62 190,57 202,49 193,57 158,62
4 126,62 158,56 165,48 156,56 124,62
3 111,09 144,08 150,00 144,08 108,09
2 122,62 157,56 167,48 157,56 126,62
1 156,62 188,57 199,49 189,57 156,62
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Scan and results shape 3
Do not modify
All measurements are relative to the middle support (3,3).

Min. radius of curvature [1/mm]: 1000
Max. radius of curvature [1/mm]: 1000

Surface

Scan
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Predicted target displacement x-direction [mm]
1 2 3 4 5

5 4,63 -4,63

4 4,63 -4,63

3 4,63 Ref. -4,63

2 4,63 -4,63

1 4,63 -4,63

Measured target displacement x-direction [mm]
1 2 3 4 5

5 3,81 -5,82

4 3,34 -5,47

3 3,67 Ref. -5,34

2 3,25 -6,98

1 1,71 -8,93

Difference displacement x-direction [mm]
1 2 3 4 5

5 0,82 1,19

4 1,29 0,84

3 0,96 Ref. 0,71

2 1,38 2,35

1 2,91 4,30

Ratio displacement difference vs prediction (x-direction) [%]
1 2 3 4 5

5 82% 74%

4 72% 82%

3 79% Ref. 85%

2 70% 49%

1 37% 7%

RMSE displacement (x-direction) [mm]: 2,01

Average absolute accuracy of predicted displacement [mm]: 64%

139

Flexible mould for production of double-curved concrete elements Msc Thesis



Predicted target displacement y-direction [mm]
1 2 3 4 5

5 -4,62 -4,65 -4,62 -4,65 -4,62

4

3 Ref.

2

1 4,62 4,65 4,62 4,65 4,62

Measured target displacement y-direction [mm]
1 2 3 4 5

5 -5,77 -5,55 -5,18 -4,45 -4,40

4

3 Ref.

2

1 2,51 4,61 5,54 6,28 3,04

Difference displacement y-direction [mm]
1 2 3 4 5

5 1,16 0,90 0,56 -0,20 -0,21

4

3 Ref.

2

1 2,10 0,04 -0,92 -1,63 1,57

Ratio displacement difference vs prediction (y-direction) [%]
1 2 3 4 5

5 75% 81% 88% 96% 95%

4

3 Ref.

2

1 54% 99% 80% 65% 66%

RMSE displacement (y-direction) [mm]: 1,14

Average absolute accuracy of predicted displacement [mm]: 80%
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Deviation of surface (top view) [mm]
0 – 1
1 – 2
2 – 3
3 – 4
4 – 5

Deviation of surface (bottom view) [mm]
0 – 1
1 – 2
2 – 3
3 – 4
4 – 5

Number of points [–]: 1.429.664

Mean distance [mm]: 1,22

Median distance [mm]: 1,05

Standard deviation [mm]: 0,90

141

Flexible mould for production of double-curved concrete elements Msc Thesis



Deviation of middle surface (top view) [mm]
0 – 1
1 – 2
2 – 3
3 – 4
4 – 5

Deviation of surface (bottom view) [mm]
0 – 1
1 – 2
2 – 3
3 – 4
4 – 5

Number of points [–]: 364.889

Mean distance [mm]: 0,86

Median distance [mm]: 0,72

Standard deviation [mm]: 0,67
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Setup element 4
Do not modify

Distance between supports [mm]: 150
Reference height [mm]: 150
Load [N/m^2]: -0
Load top edge strips [N/mm]: 0,00
Load top middle strips [N/mm]: 0,00
Youngs modulus [N/mm^2]: 3851
Moment of innertia top edge strip [mm^4]: 25
Moment of innertia top middle strip [mm^4]: 50
Moment of innertia lower strip [mm^4]: 50
Length connection top [mm]: 18,3
Length connection bottom [mm]: 127,7
Length connection bottom 2 [mm]: 145,7
Min. radius of curvature [1/mm]: 600
Max. radius of curvature [1/mm]: 100000

Surface

Support relative intersection heights [mm]
1 2 3 4 5

5 19,12 3,25 0,87 14,62 47,12
4 59,50 69,85 55,42 33,23 20,30
3 75,87 86,14 70,45 41,66 12,58
2 70,87 79,83 72,51 52,94 25,08
1 47,12 78,81 88,28 80,13 58,82

Horizontal support displacement in x-direction [mm]
1 2 3 4 5

5 0,94 0,09 0,00 -0,73 -4,25
4 1,27 0,82 0,00 -1,64 -2,21
3 1,42 0,98 0,00 -2,74 -5,54
2 0,55 0,25 0,00 -1,30 -3,87
1 3,81 0,44 0,00 -0,29 -1,81

Compensation supports in x-direction [mm]
1 2 3 4 5

5 0,03 0,04 -0,01 0,14 -0,49
4 0,29 -0,01 -0,21 0,39 0,24
3 0,30 -0,01 -0,27 1,04 1,66
2 0,13 0,00 -0,09 0,53 1,32
1 1,72 0,29 0,00 0,15 0,61

Support reactions for strips in x-direction [N]
1 2 3 4 5

5 0,48 -0,56 0,39 -1,01 0,70
4 -2,03 3,67 -0,38 -2,15 0,89
3 -2,06 3,48 -0,65 -0,91 0,14
2 -1,24 1,89 -0,61 0,52 -0,56
1 -0,84 1,26 -0,44 0,48 -0,46
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Loading (qrep) at supports of strips in y-direction [N/mm]
1 2 3 4 5

5 -0,0064 0,0075 -0,0052 0,0135 -0,0094
4 0,0135 -0,0245 0,0025 0,0144 -0,0059
3 0,0137 -0,0232 0,0043 0,0061 -0,0009
2 0,0083 -0,0126 0,0041 -0,0035 0,0037
1 0,0112 -0,0168 0,0059 -0,0064 0,0061

Horizontal support displacement in y-direction [mm]
1 2 3 4 5

5 -6,48 -15,81 -10,88 -1,43 -2,75
4 -1,08 -1,42 -1,09 -0,25 -0,32
3 0,00 0,00 0,00 0,00 0,00
2 0,21 0,14 0,03 0,47 0,66
1 2,12 0,16 0,89 2,96 4,46

Compensation supports in y-direction [mm]
1 2 3 4 5

5 3,31 12,37 7,17 0,48 -0,17
4 0,67 1,30 0,88 0,10 0,11
3 -0,01 0,00 0,00 -0,02 0,00
2 0,14 0,02 0,03 0,10 0,16
1 0,84 0,00 0,04 -0,21 -0,53

Support reactions for strips in y-direction [N]
1 2 3 4 5

5 -1,68 -4,04 -3,02 -1,73 1,90
4 0,92 10,00 5,62 -0,34 -0,74
3 -3,01 2,24 -1,23 -0,72 1,10
2 0,05 -0,12 -4,06 -1,98 -2,78
1 -1,96 1,65 1,01 1,68 1,23

Total compensation [mm]
1 2 3 4 5

5 3,34 12,41 7,16 0,62 -0,65
4 0,96 1,29 0,67 0,49 0,36
3 0,29 -0,01 -0,27 1,02 1,66
2 0,27 0,02 -0,06 0,63 1,48
1 2,56 0,29 0,04 -0,06 0,08

Setup relative height supports (including support length compensation) [mm]
1 2 3 4 5

5 108,28 101,48 94,84 104,05 133,29
4 149,28 158,96 139,91 119,54 107,47
3 160,98 170,95 150,00 127,50 96,05
2 155,96 166,67 158,27 140,39 115,38
1 134,50 162,92 172,14 164,89 143,71
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Scan and results shape 4
Do not modify
All measurements are relative to the middle support (3,3).

Min. radius of curvature [1/mm]: 600
Max. radius of curvature [1/mm]: 100000

Surface

Scan
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Predicted target displacement x-direction [mm]
1 2 3 4 5

5 0,94 -4,25

4 1,27 -2,21

3 1,42 Ref. -5,54

2 0,55 -3,87

1 3,81 -1,81

Measured target displacement x-direction [mm]
1 2 3 4 5

5 -5,91 -6,39

4 -1,23 -3,54

3 0,93 Ref. -5,85

2 1,93 -4,21

1 5,99 -0,86

Difference displacement x-direction [mm]
1 2 3 4 5

5 6,85 2,13

4 2,50 1,32

3 0,50 Ref. 0,31

2 -1,37 0,34

1 -2,18 -0,96

Ratio displacement difference vs prediction (x-direction) [%]
1 2 3 4 5

5 -627% 50%

4 -97% 40%

3 65% Ref. 94%

2 -148% 91%

1 43% 47%

RMSE displacement (x-direction) [mm]: 2,60

Average absolute accuracy of predicted displacement [mm]: 130%
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Predicted target displacement y-direction [mm]
1 2 3 4 5

5 -6,48 -15,81 -10,88 -1,43 -2,75

4

3 Ref.

2

1 2,12 0,16 0,89 2,96 4,46

Measured target displacement y-direction [mm]
1 2 3 4 5

5 -9,53 -14,02 -9,22 -1,83 -2,91

4

3 Ref.

2

1 0,13 0,08 0,97 2,38 2,41

Difference displacement y-direction [mm]
1 2 3 4 5

5 3,05 -1,79 -1,67 0,40 0,16

4

3 Ref.

2

1 1,99 0,08 -0,08 0,58 2,05

Ratio displacement difference vs prediction (y-direction) [%]
1 2 3 4 5

5 53% 89% 85% 72% 94%

4

3 Ref.

2

1 6% 49% 91% 80% 54%

RMSE displacement (y-direction) [mm]: 1,55

Average absolute accuracy of predicted displacement [mm]: 67%
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Deviation of surface (top view) [mm]
0 – 1
1 – 2
2 – 3
3 – 4
4 – 7

Deviation of surface (bottom view) [mm]
0 – 1
1 – 2
2 – 3
3 – 4
4 – 7

Number of points [–]: 2.477.448

Mean distance [mm]: 1,63

Median distance [mm]: 1,44

Standard deviation [mm]: 1,15
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Deviation of middle surface (top view) [mm]
0 – 1
1 – 2
2 – 3
3 – 4
4 – 7

Deviation of surface (bottom view) [mm]
0 – 1
1 – 2
2 – 3
3 – 4
4 – 7

Number of points [–]: 308.567

Mean distance [mm]: 1,11

Median distance [mm]: 0,98

Standard deviation [mm]: 0,78

149
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Appendix H

Geometrical definitions (In
development)

Here the geometric definitions and assumptions for positive directions will be stated that are
used in this thesis. Definitions for lines and surfaces are treated separately. For strain and
curvature the difference can be seen by the used of double indices.

H-1 Coordinate systems

Geometric quantities and shapes are described in a global Cartesian coordinate system. Di-
rections of the axis are chosen according to the right hand rule as in Figure H-1. To describe
local properties of surfaces a local coordinates is chosen where the z-direction is perpendicular
to the surface and where the x- and y-direction are tangent to the surface. In Figure H-2
the axis of the global coordinate system are indicated with x̄, ȳ and z̄. The axis of the local
coordinate system are indicated with x, y and z.

H-2 Geometric quantities for lines

Geometric quantities describe how objects move, rotate and deform. Here the positive di-
rection of geometric quantities are defined. In Figure H-3 all positive directions are shown.
Displacements are indicated with w;

wx

wy

wz
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152 Geometrical definitions (In development)

Figure H-1: Right hand rule for coor-
dinate systems

Figure H-2: Global and local coordi-
nate system

Figure H-3: Positive displacements (w), strain (ε), rotation (ϕ) and curvature (k) for lines.
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H-3 Geometric quantities for surfaces 153

Rotations are a change of location measured at a distance perpendicular to the displacement.
Rotations indicated with the angle ϕ;

ϕx = dwz

dy
(used for torsion) (H-1)

ϕy = −dwz

dx
(H-2)

ϕz = dwy

dx
(H-3)

Strain is the change in length of a line where l0 is the original length and l the length after
straining. The strain is indicated with ε;

ε = l − l0
l0

εx = dwx

dx
(H-4)

Curvature is the change of rotation of a cross section. Curvature is indicated with k;

ky = −dϕz

dx
(H-5)

kz = dϕy

dx
(H-6)

(H-7)

Torsion is the change of the rotation of a cross section along an axis. Torsion is indicated
with κ;

κ = dϕx

dx
(H-8)

H-3 Geometric quantities for surfaces

Here the positive direction of geometric quantities for surfaces are defined. In Figure H-4 all
positive directions are shown. Displacements are indicated with w;

wx

wy

wz
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154 Geometrical definitions (In development)

Figure H-4: Positive displacements (w), strain (ε), rotation (ϕ) and curvature (k) for surfaces.

Rotations are a change of location measured at a distance perpendicular to the displacement.
Rotations indicated with the angle ϕ;

ϕx = −∂wz

∂y
(H-9)

ϕy = −∂wz

∂x
(H-10)

(H-11)

Strain is the change in length of a surface where l0 is the original length and l the length after
straining. The strain is indicated with ε;

ε = l − l0
l0

εxx = ∂wx

∂x
(H-12)

εyy = ∂wy

∂y
(H-13)

εxy = ∂wx

∂y
(H-14)

εyx = ∂wy

∂x
(H-15)

(H-16)

The shear deformation is the deformation that deforms the surface into a diamond shape and
is expressed as the angle γ. The total shear is the sum of contributions in x- and y-direction;

γxy = ∂wx

dy
+ ∂wy

dx
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H-3 Geometric quantities for surfaces 155

Curvature is indicated with k. Curvature is the change of rotation.

kxx = −∂ϕx

∂x
(H-17)

kyy = −∂ϕy

∂y
(H-18)

(H-19)

Twisting deformation changes the surface in to the shape of a hyperbolic paraboloid. Twisting
is defined as the change of angle perpendicular to its direction. There are two contributions
to twisting.

kxy = ∂ϕx

∂y
(H-20)

kyx = −∂ϕy

∂x
(H-21)

The total twist is the sum of twist of contributions in x- and y-direction. This is indicated
with ρ.

ρxy = ∂ϕx

∂y
− ∂ϕy

∂x
(H-22)

The principle directions of the curvature are the directions in which there is no twist. The
curvature is a second order tensor. Therefore the principle directions can be determined by
the circle of Mohr.

k1,2 = kxx + kyy

2 ±

√(
kxx − kyy

2

)2
+ k2

xy (H-23)

= A±B (for later use)

The directions of the tangent planes can be found with;

α1 = 1
2 arctan

(
2kxy

kxx − kyy

)
(H-24)

α2 = 1
2 arctan

(
2kxy

kxx − kyy

)
+ 1

2π (H-25)
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156 Geometrical definitions (In development)

Figure H-5: Circle of Mohr for curvature

H-4 Gaussian curvature

Carl Friedrich Gauss (1777-1855) was a German scientist who became famous for his work
in mathematics. In his paper ’General investigations of curved surfaces’ he described ex-
tensively the definition of the measure of curvature Gauss [1827] (translated version Gauss
et al. [1902]). Now known as Gaussian curvature. Essential, but often not mentioned, is the
notion that surfaces can be described , simultaneously, by intrinsic and extrinsic properties
features. Intrinsic properties depend only on measurements of length in two dimensions. Ex-
trinsic properties depend measurements in three-dimensional space. Gaussian curvature is
the mathematical connection between these two descriptions Calladine [1983].

G = k1 · k2

= (A+B) · (A−B) (note: A and B from H-23)
= A2 −B2

=
(
kxx + kyy

2

)2
−
[(

kxx − kyy

2

)2
+ k2

xy

]
= kxx · kyy − k2

xy (H-26)

Substitution of Equation H-17, H-18 and H-20 in Equation H-26 results in;

G = ∂2uz

∂x2 · ∂
2uz

∂y2 −
(
∂2uz

∂x∂y

)2

(H-27)

This definition of Gaussian curvature is the best known definition and is described in many
books, but there are more definitions. And they can be very useful according to Calladine
[1983] when analyzing shell structures. The definition in Equation H-27 is described in three
dimension in Euclidean space. Here different definitions of curvature of lines and surfaces will
be given to illustrate what curvature represents;
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H-4 Gaussian curvature 157

k = angle of embrace
length of arc (H-28)

k = 1
radius of curvature (H-29)

k = arc length cd of circular image
arc length CD of curve(H-30)

kG = area of spherical image
area region of surface(H-31)

kG = 1
R1

1
R2 (H-32)

kG = angular defect at a vertex
area associated with the vertex(H-33)
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Appendix I

Strain and change of Gaussian
curvature (In development)

An equation will be derived that describes the relation between straining of a surface due to a
change in the Gaussian curvature. First basic equations will be described then the straining
of respectively a bar and a surface in second order theory will de derived. Finally the relation
between strain and Gaussian curvature is derived based on compatibility equations.

I-1 First and second order theory

Theory of mechanics makes use of mathematical models to describe in this case the strain. To
derive these mathematical models assumptions are made. Commonly used is the first order
theory. Here it is assumed that strain in a curtain direction is only due displacements in
that direction. Displacements in other directions are considered very small and are therefore
neglected. However when describing kinematic properties of surfaces it can be shown that
assumptions of first order theory are insufficient.
The name second order theory does not refer to displacements in the directions of the bar or
surface. Like in the first order theory these terms are considered to be very small and are
therefore neglected. The essential difference compared to thirst order theory is an additional
contribution to strain of displacement perpendicular to the bar or surface.

I-2 Strain of a bar

Here the strain of a bar is derived. First order theory takes into account displacements u in
x-direction as in Figure I-1. Theory and figures are adapted from [Blaauwendraad and Kok,
1973, chap. 4.3].
According to the second order theory a second displacement w perpendicular to the bar is
also considered. This can be seen in Figure I-2. In this case the total displacements u and w
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160 Strain and change of Gaussian curvature (In development)

Figure I-1: Strain of a bar in first or-
der theory

Figure I-2: Strain of a bar in second
order theory

in x- and z-direction of the bar are described by two functions of the separate displacements
u and w;

u(x, z) = u(x) − y
dw(x)
dx

(I-1)

w(x, z) = w(x) (I-2)

The strain is an measure of extension expressed as the ratio of extension and initial length;

ε = l − l0
l0

(I-3)

The initial length l0 and length after deformation l of the bar in Figure I-2 can be expressed
as;

l0 = dx (I-4)

l = dx

√(
1 + ∂u

∂x

)2
+
(
∂w

∂x

)2
(I-5)

Substituting Equation I-4 and I-5 into Equation I-3 results in;

ε = l − l0
l0

=
dx

√(
1 + ∂u

∂x

)2
+
(

∂w
∂x

)2
− dx

dx

=

√(
1 + ∂u

∂x

)2
+
(
∂w

∂x

)2
− 1 (I-6)
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I-3 Strain of a surface 161

The root in this function makes evaluating a laborious job. Therefore I-6 is estimated using
a second order Taylor expansion of two variables. Higher order Taylor expansions include
higher order derivatives of the original functions. These are assumed to be very small and
are therefore not taken onto account. The result of the Taylor expansion is;

ε = ∂u

∂x
+ 1

2

(
∂w

∂x

)2
(I-7)

Now substitution of Equation I-1 and I-2 in I-7 results in;

ε(x, z) = du

dx
+ 1

2

(
dw

dx

)2
− z

d2w

dx2 (I-8)

The last part of Equation I-8 described the strain over the thickness of the cross section. In
this part d2w

dx2 can be recognized as the curvature of the bar;

κ = −d2w

dx2 (I-9)

For a cross section the first two terms are constant and therefore the last term becomes zero.
The final expression of the strain is now;

εxx = du

dx
+ 1

2

(
dw

dx

)2
(I-10)

Here the difference compared to the first order theory becomes clear. In first order theory the
expression of the strain is εxx = du

dx . By deriving this equation it shown how the additional
considered displacement in second order theory influences the strain.

I-3 Strain of a surface

To describe the strain of a surface a fiber in curtain direction is imagined. Further derivations
will consider this fiber as a bar, but now an additional displacement is added. In Figure I-
4 the total displacements u, v and w of the fiber in x-direction can be described by three
functions of the separate displacements u, v and w;

u(x, y, z) = u(x, y, z) − z
∂w(x, y)
∂x

(I-11)

v(x, y, z) = v(x, y, z) − z
∂w(x, y)
∂y

(I-12)

z(x, y, z) = w(x, y, z) (I-13)
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162 Strain and change of Gaussian curvature (In development)

Figure I-3: Strain of a surface in first
order theory

Figure I-4: Strain of a surface in sec-
ond order theory

To determine the strain in x-direction the length of a piece dx after displacement and defor-
mation is described as;

l = dx

√(
1 + ∂u

∂x

)2
+
(
∂v

∂x

)2
+
(
∂w

∂x

)2
(I-14)

Using I-3 and I-4 the expression for the strain in x-direction becomes;

εxx =

√(
1 + ∂u

∂x

)2
+
(
∂v

∂x

)2
+
(
∂w

∂x

)2
− 1 (I-15)

This function can be estimated using a second order Taylor expansion of three variables. This
results in;

εxx = ∂u

∂x
+ 1

2

(
∂v

∂x

)2
+ 1

2

(
∂w

∂x

)2
(I-16)

Substituting I-11, I-12 and I-13 results in;

εxx = du

dx
+ 1

2

(
dv

dx

)2
+ 1

2

(
dw

dx

)2
− z

d2w

dx2 (I-17)

In a similar way the strain in y-direction can be determined. This results in;

εyy = dv

dy
+ 1

2

(
du

dy

)2
+ 1

2

(
dw

dy

)2
− z

d2w

dy2 (I-18)

In Equation I-17 and I-18 the last part can be recognized as the curvature in x- and y-direction.
This part of the equation takes into account the bending of the surface.
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κxx = −d2w

dx2 (I-19)

κyy = −d2w

dy2 (I-20)

Assumptions of the second order theory allow to neglect the 2nd term in I-17 and I-18. The
first and third terms are constant for a cross section and therefore the last term becomes zero.
The equations become;

εxx = du

dx
+ 1

2

(
dw

dx

)2
(I-21)

εyy = dv

dy
+ 1

2

(
dw

dy

)2
(I-22)

[γxy can be derived according to Blaauwendraad or Timoshenco. I have not yet been able to
derived the equation for cosαxy that Blaauwendraad uses. He used cos where other mathe-
matic books use sin]

γxy = du

dy
+ dv

dx
+ dw

dx

dw

dy
(I-23)

I-4 Gaussian curvature

The functions for the strain derived in the previous section cannot be arbitrary functions
when they describe the strain in the surface after deformation. The surface is assumed to
remain intact after deformation. It is possible to find a combination of strain functions that
do not satisfy this assumption. Compatibility equations are the boundary conditions that
require the strain functions to satisfy the assumption. This is illustrated with an example of
a flat surface where the strain function are chosen in such a way the compatibility equations
are not met.

If the strain function are described by; εxx = εyy = 0 and γxy = cxy. Where c is a constant.
The corresponding deformation is in Figure I-5. It is clear that the surface has not remained
intact and the compatibility requirements are therefore not met. The surface in this example
is required to remain in plane. But it can also be seen that if the surface is allowed to displace
in perpendicular direction it would be possible to create a deformed curved surface. From
that it becomes clear that the curvature has changed due to straining.

For first order theory the compatibility equation can be found by differentiating twice the
first terms of Equation I-21, I-22 and I-23 [Koiter, 1985, chap. 15]. By choosing a linear
combination of these derivative that eliminate their contributions the following compatibility
equation appears;
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164 Strain and change of Gaussian curvature (In development)

Figure I-5: Combination of strain functions that does not meet the compatibility requirements.

∂2εxx

∂y2 = ∂3u

∂x∂y2

∂2εy

∂x2 = ∂3v

∂y∂x2

∂2γxy

∂x∂y
= ∂3u

∂x∂y2 + ∂3v

∂x2∂y

−∂2εxx

∂y2 − ∂2εy

∂x2 + ∂2γxy

∂x∂y
= 0 (I-24)

For second order theory the derivation of the compatibility equations can be derived in the
same way [[Calladine, 1983, chap. 6]]. But it is more extensive since all terms in Equation
I-21, I-22 and I-23 must be taken into account. The following derivatives are determined;

The first and second derivative of εxx to y are;

εxx = ∂u

∂x
+ 1

2

(
∂z

∂x

)2

∂εxx

∂y
= ∂2u

∂x∂y
+ ∂z

∂x

∂2z

∂x∂y

∂2εxx

∂y2 = ∂3u

∂x∂y2 + ∂z

∂x

∂3z

∂x∂y2 +
(
∂2z

∂x∂y

)2

(I-25)

= C +D + E

The derivatives of εyy to x are;
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εyy = ∂v

∂y
+ 1

2

(
∂z

∂y

)2

∂εyy

∂x
= ∂2v

∂x∂y
+ ∂z

∂y

∂2z

∂x∂y

∂2εyy

∂x2 = ∂3v

∂x2∂y
+ ∂z

∂y

∂3z

∂x2∂y
+
(
∂2z

∂x∂y

)2

(I-26)

= F +G+ E

The derivatives of γxy to x and then to y are;

γxy = ∂u

∂y
+ ∂v

∂x
+ ∂z

∂x

∂z

∂y

∂γxy

∂x
= ∂2u

∂x∂y
+ ∂2v

∂x2 + ∂z

∂x

∂2z

∂x∂y
+ ∂2z

∂x2
∂z

∂y

∂2γxy

∂x∂y
= ∂3u

∂x∂y2 + ∂3v

∂x2∂y
+ ∂z

∂x

∂3z

∂x∂y2 +
(
∂2z

∂x∂y

)2

+ ∂2z

∂x2
∂2z

∂y2 + ∂3z

∂x2∂y

∂z

∂y
(I-27)

= C + F +D + E +H +G

If now a linear combination is taken as in Equation I-24 if follows that;

−∂2εxx

∂y2 − ∂2εyy

∂x2 + ∂2γxy

∂x∂y
=

− (C +D + E) − (F +G+ E) + (C + F +D + E +H +G) =

H − E = ∂2z

∂x2
∂2z

∂y2 −
(
∂2z

∂x∂y

)2

(I-28)

This last expression can be recognized as the Gaussian curvature. Now the compatibility
equation in second order theory can be expressed. This equation describes the relation be-
tween straining of a surface and the change of Gaussian curvature;

−∂2εxx

∂y2 − ∂2εyy

∂x2 + ∂2γxy

∂x∂y
= kG (I-29)
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Appendix J

Visual Studio C# code for parametric
Grasshopper component (In

development)

This code was written the programming language C#. The code was written for a Grasshop-
per components that provide data for calculations in Matlab. The component is shown in
Figure J-1.

Flexible mould for production of double-curved concrete elements Msc Thesis



using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using Grasshopper.Kernel;
using Rhino.Geometry;
using System.Drawing;
using FlexMouldComponents.Properties;

namespace FlexMouldComponents
{
    //‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐
    //Create support points from surface component 
    //Develloped by Peter Eigenraam
    //20130328
    //20130410 Fixed index bug for creating matlab data of support points.
    //20130413 Changed input and output data. Removed EI. Added E, NS and T.
    //20130418 Changed units of loading from N/mm^2 to N/m^2.
    //‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐

    //‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐
    //SETUP OF CODE:
    //Create parameters for geometry.
    //Create parameters for calculations.
    //Create parameters for results.
    //Create parameters for presenting in Rhino.
    //Constructor.
    //Register input‐ and output parameters.
    //Clear lists.
    //Retreive input parameters.
    //Add data to list of Matlab data.
    //Create point for supports.
    //Create points of shape.
    //Assign data to output variables.
    //Create custom preview for presentation.
    //Methods for retreiving data from input parameters.
    //Manage Guid.
    //Manage icon.
    //‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐

    public class CreateSupportPointsSurfaceComponent : GH_Component
    {
        #region Create parameters for geometry.
        
        //Create parameters for geometry.
        Rhino.Geometry.Surface geo_s = null;

        //Create list for grid points for supports.
        //List<Rhino.Geometry.Point3d> geo_grid = new List<Rhino.Geometry.Point3d>();

        #endregion
        
        #region Create parameters for calculations.

        //Create parameters for calculation.
        int cal_sx = new int(); //Number of supports in x‐direction.
        int cal_sy = new int(); //Number of supports in y_direction
        double cal_d = new double(); //Distance between supports.
        double cal_q = new double(); //Distance between supports.
        
        #endregion

        #region Create parameters for results.

        //Create list of points for the supports.
        List<Rhino.Geometry.Point3d> res_supp = new List<Rhino.Geometry.Point3d>();

        //Create parameters for calculation.
        int res_sx = new int(); //Number of supports in x‐direction.
        int res_sy = new int(); //Number of supports in y‐direction.
        double res_d = new double(); //Distance between supports.
        double res_q = new double(); //Distributed load.
        double res_e = new double(); //Youngs modulus of material of strips.
        int res_n = new int(); //Number of strips between supports.
        double res_t = new double(); //Thickness of strips.
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        double res_l1 = new double(); //Length of top part of support.
        double res_l2 = new double(); //Length of top part of support.

        #endregion

        #region Create parameters for presenting in Rhino.

        //Create list of messages and matlab data.
        //Clear list at the start SolveInstance.
        List<string> pre_messages = new List<string>();
        List<string> pre_matlab = new List<string>();

        #endregion

        #region Constructor.

        public CreateSupportPointsSurfaceComponent()
            : base("Support points and matlab data from surface", "Supports", "This component creates support

 points and matlab data from a surface. Draw a surface and place it near the origin of the coordinate 
system on the positive sides of the X‐ and Y‐direction. (v20130418)", "FlexMould", "Multiple supports")

        { }

        #endregion

        #region Register input‐ and output parameters.

        protected override void RegisterInputParams(GH_Component.GH_InputParamManager pManager)
        {
            pManager.AddSurfaceParameter("Surface", "S", "Surface of the intended shape.",GH_ParamAccess.

item);
            pManager.AddIntegerParameter("Supports X‐direction", "Sx", "Number of supports of the strip in X‐

direction.",GH_ParamAccess.item);
            pManager.AddIntegerParameter("Supports Y‐direction", "Sy", "Number of supports of the strip in Y‐

direction.", GH_ParamAccess.item);
            pManager.AddNumberParameter("Distance", "D", "Distance between supports [mm].", GH_ParamAccess.

item);
            pManager.AddNumberParameter("Load", "q", "Equally distributed force [N/m^2].", GH_ParamAccess.

item);
            pManager.AddNumberParameter("Youngs modulus", "E", "Youngs modulus of material of strips [N/mm^2]

.", GH_ParamAccess.item);
            pManager.AddIntegerParameter("Strips", "N", "Number of strips between supports [‐].", 

GH_ParamAccess.item);
            pManager.AddNumberParameter("Thickness", "T", "Thickness of strips [mm].", GH_ParamAccess.item);
            pManager.AddNumberParameter("Length", "L1", "Length of top part of support [mm].", GH_ParamAccess

.item);
            pManager.AddNumberParameter("Length", "L2", "Length of bottom part of support [mm].", 

GH_ParamAccess.item);
        }

        protected override void RegisterOutputParams(GH_Component.GH_OutputParamManager pManager)
        {
            pManager.AddTextParameter("Messages", "M", "Messages.",GH_ParamAccess.list);
            pManager.AddTextParameter("Matlab", "Matlab", "Input for calculations in Matlab.", GH_ParamAccess

.list);
        }

        #endregion

        protected override void SolveInstance(IGH_DataAccess DA)
        {
            #region Clear lists.

            //Clear list of support points.
            res_supp.Clear();

            //Clear list of messages.
            pre_messages.Clear();

            //Clear list of matlab data.
            pre_matlab.Clear();
            
            #endregion

            #region Retreive input parameters.
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            //Retreive geometry.
            if (!DA.GetData(0, ref geo_s))
            {
                return;
            }

            //Retreive integer for number of supports in X‐ and Y‐direction.
            RetreiveInteger(DA, 1, ref cal_sx);
            RetreiveInteger(DA, 2, ref cal_sy);

            //Retreive double for support distance.
            RetrieveDouble(DA, 3, ref cal_d);

            //Retreive double for load.
            RetrieveDouble(DA, 4, ref cal_q);

            //Retreive double Youns modulus.
            RetrieveDouble(DA, 5, ref res_e);

            //Retreive integer number of strips between supports.
            RetreiveInteger(DA, 6, ref res_n);

            //Retreive double thickness of strips.
            RetrieveDouble(DA, 7, ref res_t);

            //Retreive double for length of top part of support.
            RetrieveDouble(DA, 8, ref res_l1);

            //Retreive double for length of bottom part of support.
            RetrieveDouble(DA, 9, ref res_l2);

            #endregion

            #region Add data to list of Matlab data.

            //Number of supports in x‐direction.
            res_sx = cal_sx;
            pre_matlab.Add(res_sx.ToString());

            //Number of supports in y‐direction.
            res_sy = cal_sy;
            pre_matlab.Add(res_sy.ToString());

            //Support distance.
            res_d = cal_d;
            pre_matlab.Add(res_d.ToString());

            //Loading.
            res_q = cal_q / Math.Pow(10, 6);
            pre_matlab.Add(res_q.ToString());

            //Youns mudulus of material of strips.
            pre_matlab.Add(res_e.ToString());

            //Number of strips between supports.
            pre_matlab.Add(res_n.ToString());
            
            //Thickness of strips.
            pre_matlab.Add(res_t.ToString());

            //Length of top part of support.
            pre_matlab.Add(res_l1.ToString());

            //Length of top bottom of support.
            pre_matlab.Add(res_l2.ToString());

            #endregion

            #region Create points for supports.

            //Add points to list of support points.
            for (int i = 0; i < cal_sy; i++)
            {
                for (int j = 0; j < cal_sx; j++)
                {
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                    //Create curve to intersect with surface.
                    Rhino.Geometry.Point3d i_point_1 = new Rhino.Geometry.Point3d((double)j * cal_d, (double)

i * cal_d, 0);
                    Rhino.Geometry.Point3d i_point_2 = new Rhino.Geometry.Point3d((double)j * cal_d, (double)

i * cal_d, geo_s.GetBoundingBox(true).Max.Z + (double)1);
                    Rhino.Geometry.Curve i_curve = new Rhino.Geometry.Line(i_point_1,i_point_2).ToNurbsCurve

();

                    //Find intersection events of curve and surface.
                    var intersection = Rhino.Geometry.Intersect.Intersection.CurveSurface(i_curve,geo_s,0.001

,0.0001);

                    //Add support points to list.
                    res_supp.Add(intersection[0].PointA);
                }
            }

            //Create messages and matlab data.
            pre_messages.Add("There are " + res_supp.Count.ToString() + " supports.");
            pre_messages.Add(" ");

            for (int i = 0; i < cal_sy; i++)
            {
                for (int j = 0; j < cal_sx; j++)
                {
                    int supp_nr_x = j + 1;
                    int supp_nr_y = i + 1;
                    int index = i * cal_sx + j;
                    pre_messages.Add("P[" + supp_nr_x.ToString() + "," + supp_nr_y.ToString() + "] = (" + 

String.Format("{0:F2}", res_supp[index].X) + ", " + String.Format("{0:F2}", res_supp[index].Y) + ", " + 
String.Format("{0:F2}", res_supp[index].Z) + ") [mm].");

                    pre_matlab.Add(String.Format("{0:F2}", res_supp[index].X) + " " + String.Format("{0:F2}",
 res_supp[index].Y) + " " + String.Format("{0:F2}", res_supp[index].Z));

                }
            }

            #endregion
            
            #region Create points of shape.

            //Add points of shape above strips in x‐direction to list of matlab data.
            for (int i = 0; i < cal_sy; i++)
            {
                for (int j = 0; j <= (cal_sx ‐ 1) * 10; j++)
                {
                    //Create curve to intersect with surface.
                    Rhino.Geometry.Point3d i_point_1 = new Rhino.Geometry.Point3d((double)j * cal_d / 10, 

(double)i * cal_d, 0);
                    Rhino.Geometry.Point3d i_point_2 = new Rhino.Geometry.Point3d((double)j * cal_d / 10, 

(double)i * cal_d, geo_s.GetBoundingBox(true).Max.Z + (double)1);
                    Rhino.Geometry.Curve i_curve = new Rhino.Geometry.Line(i_point_1, i_point_2).ToNurbsCurve

();

                    //Find intersection events of curve and surface.
                    var intersection = Rhino.Geometry.Intersect.Intersection.CurveSurface(i_curve, geo_s, 0.

001, 0.0001);

                    //Add support points to lists.
                    pre_matlab.Add(String.Format("{0:F2}", intersection[0].PointA.X) + " " + String.Format("

{0:F2}", intersection[0].PointA.Y) + " " + String.Format("{0:F2}", intersection[0].PointA.Z));
                }
            }

            //Add points of shape above strips in y‐direction to list of matlab data.
            for (int i = 0; i < cal_sx; i++)
            {
                for (int j = 0; j <= (cal_sy ‐ 1) * 10; j++)
                {
                    //Create curve to intersect with surface.
                    Rhino.Geometry.Point3d i_point_1 = new Rhino.Geometry.Point3d((double)i * cal_d, (double)

j * cal_d / 10, 0);
                    Rhino.Geometry.Point3d i_point_2 = new Rhino.Geometry.Point3d((double)i * cal_d, (double)

j * cal_d / 10, geo_s.GetBoundingBox(true).Max.Z + (double)1);
                    Rhino.Geometry.Curve i_curve = new Rhino.Geometry.Line(i_point_1, i_point_2).ToNurbsCurve

();
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                    //Find intersection events of curve and surface.
                    var intersection = Rhino.Geometry.Intersect.Intersection.CurveSurface(i_curve, geo_s, 0.

001, 0.0001);

                    //Add support points to lists.
                    pre_matlab.Add(String.Format("{0:F2}", intersection[0].PointA.X) + " " + String.Format("

{0:F2}", intersection[0].PointA.Y) + " " + String.Format("{0:F2}", intersection[0].PointA.Z));
                }
            }

            #endregion

            #region Assign data to output variables.

            //Assign messages to output parameter.
            DA.SetDataList(0, pre_messages);

            //Assign matlab data to output parameter.
            DA.SetDataList(1, pre_matlab);

            #endregion
        }

        #region Create custom preview for presentation

        public override void DrawViewportWires(IGH_PreviewArgs args)
        {
            //Create preview of support points. Call the base for drawviewport.
            base.DrawViewportWires(args);

            //Display support points.
            args.Display.DrawPoints(res_supp, Rhino.Display.PointStyle.X, 10, Color.Black);
        }

        #endregion

        #region Methods for retreiving data from input parameters.

        /// <summary>
        /// Retreive double from input of component.
        /// </summary>
        /// <param name="DA">Use "DA".</param>
        /// <param name="i">Index of input parameter (zero based).</param>
        /// <param name="d">Double to store data in.</param>
        private static void RetrieveDouble(IGH_DataAccess DA, int i, ref double result)
        {
            if (!DA.GetData(i, ref result))
            {
                return;
            }

            if (!Rhino.RhinoMath.IsValidDouble(result))
            {
                return;
            }
        }

        /// <summary>
        /// Retreive integer from input of component.
        /// </summary>
        /// <param name="DA">Use "DA"</param>
        /// <param name="i">Index of input parameter (zero based).</param>
        /// <param name="result">Integer to store data in.</param>
        private static void RetreiveInteger(IGH_DataAccess DA, int i, ref int result)
        {
            if (!DA.GetData(i, ref result))
            {
                return;
            }
        }

        #endregion

        #region Manage Guid.
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        public override Guid ComponentGuid
        {
            get
            {
                return new Guid("{96A2E018‐2DF2‐46ab‐AC0F‐3633BEDDF660}");
            }
        }

        #endregion

        #region Manage icon.

        protected override Bitmap Icon
        {
            get
            {
                return Resources.CreateSupportPointsSurface;
            }
        }

        #endregion
    }

}
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Figure J-1: Custom Grasshopper component determines the initial support heights according to
the distance between the support. The component also provides other information for structural
calculation. This information can be read by other software. For example Matlab.
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Appendix K

Parametric Matlab script (In
development)

1 %% Calculation of strip displacements and reaction forces of the flexible
mould.

2 % Peter Eigenraam March -April 2013
3 % Import support data file from Grasshopper
4
5 %% Outline of calculations
6 % This calculation script consists of three parts:
7 % 1. Importing data
8 % 2. Structural and kinematic calculations
9 % 3. Presenting results

10
11 % Clear
12 clc ; clear ; close all ;
13 format long
14
15 % Enter filename.
16 filename = ’data.txt’ ;
17
18 %% PART 1 IMPORTING DATA
19 % Calculations start here.
20
21 % Read file data.
22 data = textscan ( fopen ( filename ) , ’%f %f %f’ ) ;
23 fclose ( fopen ( filename ) ) ;
24
25 % Set variables.
26 sx = data {1 ,1}(1) ; % Number of supports in x-direction.
27 sy = data {1 ,1}(2) ; % Number of supports in y-direction.
28 d = data {1 ,1}(3) ; % Distance between supports.
29 q = data {1 ,1}(4) ; % Loading [N/mm^2].
30 e = data {1 ,1}(5) ; % Youngs mudulus [N/mm^2]
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31 n = data {1 ,1}(6) ; % Number of strips between supports [-].
32 t = data {1 ,1}(7) ; % Thickness of strip [mm].
33 l1 = data {1 ,1}(8) ; % Length of top part of support [mm].
34 l2 = data {1 ,1}(9) ; % Length of bottom part of support [mm].
35 ni = 9 ; % Number of input variables.
36
37 % Check the number of supports in two directions. If not an odd integer

create a warning.
38 % If number of supports in x-direction is an even number.
39 if mod (sx , 2 )==0
40 disp (’WARNING:’ )
41 disp (’Number of supports in x-direction is an even number. This should

’ )
42 disp (’be odd since the middle support is assumed to be fixed.’ )
43 disp (’ ’ )
44 break
45 end
46
47 % If number of supports in y-direction is an even number.
48 if mod (sy , 2 )==0
49 disp (’WARNING:’ )
50 disp (’Number of supports in y-direction is an even number. This should

’ )
51 disp (’be odd since the middle support is assumed to be fixed.’ )
52 disp (’ ’ )
53 break
54 end
55
56 % Total number of support points.
57 st = sx ∗ sy ;
58
59 % If q is zero replace with very small number.
60 if q==0
61 q = 1e−16;
62 end
63
64 % Width of strips.
65 w = d / n − 1 ;
66
67 % Reduction factor for width of strip due to notches.
68 rw = 0 . 5 ;
69
70 % Factor for increase in stiffness of strips in y-direction.
71 fsy = 2 ;
72
73 % Number of unknown constants. There are four constants for each strip/

equation.
74 nc = (( sx − 1) ∗ sy + (sy − 1) ∗ sx ) ∗ 4 ;
75
76 % Number of unknown constants for strips in x- and y-direction.
77 ncx = sy ∗ (sx − 1) ∗ 4 ;
78 ncy = sx ∗ (sy − 1) ∗ 4 ;
79
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80 % Number of devision to visualize deflection.
81 dev = 10 ;
82
83 % Number of data points in x- and y-direction for shape.
84 ndx = sy ∗ ( ( sx − 1) ∗ dev + 1) ;
85 ndy = sx ∗ ( ( sy − 1) ∗ dev + 1) ;
86
87 % Explain which calculations are done:
88 disp (’CALCULATIONS:’ ) ;
89 disp (’For the flexible mould the deflection of the strips in two

directions’ ) ;
90 disp (’is calculated. Only strips above supports are considered and to be’

) ;
91 disp (’seperate so there is no interaction.’ ) ;
92 %disp(’ ’);
93 %disp(’ASSUMPTIONS:’);
94 %disp(’ - Only single bending occurs ’);
95 %disp(’ - Small deflections ’);
96 disp (’ ’ ) ;
97 disp (’!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!’ ) ;
98 disp (’!! Note that the assumptions are not fullfilled !!’ ) ;
99 disp (’!! Calculations are indicative !!’ ) ;

100 disp (’!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!’ ) ;
101 disp (’ ’ ) ;
102
103 % Display basic parameters.
104 disp (’INPUT FOR CALCULATIONS:’ ) ;
105 disp ( [ ’Number of supports in x-direction: ’ , num2str (sx ) , ’ [-]’ ] ) ;
106 disp ( [ ’Number of supports in y-direction: ’ , num2str (sy ) , ’ [-]’ ] ) ;
107 disp ( [ ’Distance between supports: ’ , num2str (d ) , ’ [mm]’ ] ) ;
108 disp ( [ ’Loading of surface: ’ , num2str (q ) , ’ [N/mm^2]’ ] ) ;
109 disp ( [ ’Youngs modulus: ’ , num2str (e ) , ’ [N/mm^2]’ ] ) ;
110 disp ( [ ’Number of strips between supports: ’ , num2str (n ) , ’ [-]’ ] ) ;
111 disp ( [ ’Width of strips: ’ , num2str (w ) , ’ [mm]’ ] ) ;
112 disp ( [ ’Thickness of strips: ’ , num2str (t ) , ’ [mm]’ ] ) ;
113 disp ( [ ’Length of top part of support: ’ , num2str (l1 ) , ’ [mm]’ ] ) ;
114 disp ( [ ’Length of bottom part of support: ’ , num2str (l2 ) , ’ [mm]’ ] ) ;
115 disp ( [ ’Number of unknowns to solve: ’ , num2str (nc ) , ’ [-]’ ] ) ;
116 disp ( [ ’Number of devision per strips for plots: ’ , num2str ( dev ) , ’ [-]’ ] )

;
117 disp (’ ’ ) ;
118
119 %% PART TWO Structural and kinematic calculations
120
121 % Fill matrices for system of equations for strips in x-direction.
122
123 % Create matrices to solve.
124 AX = zeros (ncx , ncx + 1) ;
125
126 % Create loop to fill the matrix for strips in x-direction.
127 for i = 1 : sy
128 if i == 1
129 % Bending stiffness of representative strip.
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130 % Reduction is 0.5.
131 ei = e ∗ 0 .5 ∗ n ∗ (1/12) ∗ rw ∗ w ∗ t^3;
132 %ei = 1; % Used for checking the script.
133
134 % First support.
135 % Set variables.
136 i_temp = 1 + (i − 1) ∗ (sx − 1) ∗ 4 ; % Index of first entry per

loop.
137 var_temp = data {1 ,1}( ni + 1 + (i − 1) ∗ sx ) ; % x-coordinate of

first support.
138
139 % Deflection is known.
140 AX ( i_temp , i_temp ) = var_temp ^3;
141 AX ( i_temp , i_temp + 1) = var_temp ^2;
142 AX ( i_temp , i_temp + 2) = var_temp ;
143 AX ( i_temp , i_temp + 3) = 1 ;
144
145 % Moment is known.
146 AX ( i_temp + 1 , i_temp ) = −(ei ∗ 6 ∗ var_temp ) ;
147 AX ( i_temp + 1 , i_temp + 1) = −(ei ∗ 2) ;
148 AX ( i_temp + 1 , i_temp + 2) = 0 ;
149 AX ( i_temp + 1 , i_temp + 3) = 0 ;
150
151 % Middle supports.
152 for j = 1 : sx − 2
153 % Set variables.
154 i_temp = 3 + (i − 1) ∗ (sx − 1) ∗ 4 + (j − 1) ∗ 4 ; % Index of

entry per loop.
155 var_temp = data {1 ,1}( ni + 1 + (i − 1) ∗ sx + j ) ; % x-

coordinate of support.
156
157 % Deflection is known.
158 AX ( i_temp , i_temp − 2) = var_temp ^3;
159 AX ( i_temp , i_temp − 1) = var_temp ^2;
160 AX ( i_temp , i_temp ) = var_temp ;
161 AX ( i_temp , i_temp + 1) = 1 ;
162 AX ( i_temp , i_temp + 2) = 0 ;
163 AX ( i_temp , i_temp + 3) = 0 ;
164 AX ( i_temp , i_temp + 4) = 0 ;
165 AX ( i_temp , i_temp + 5) = 0 ;
166
167 % Deflection left and right of the support are equal.
168 AX ( i_temp + 1 , i_temp − 2)= var_temp ^3;
169 AX ( i_temp + 1 , i_temp − 1) = var_temp ^2;
170 AX ( i_temp + 1 , i_temp ) = var_temp ;
171 AX ( i_temp + 1 , i_temp + 1) = 1 ;
172 AX ( i_temp + 1 , i_temp + 2) = −(var_temp^3) ;
173 AX ( i_temp + 1 , i_temp + 3) = −(var_temp^2) ;
174 AX ( i_temp + 1 , i_temp + 4) = −(var_temp ) ;
175 AX ( i_temp + 1 , i_temp + 5)= −1;
176
177 % Rotation left and right of the support are equal.
178 AX ( i_temp + 2 , i_temp − 2)= −(3 ∗ var_temp^2) ;
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179 AX ( i_temp + 2 , i_temp − 1) = −(2 ∗ var_temp ) ;
180 AX ( i_temp + 2 , i_temp ) = −1;
181 AX ( i_temp + 2 , i_temp + 1) = 0 ;
182 AX ( i_temp + 2 , i_temp + 2) = 3 ∗ var_temp ^2;
183 AX ( i_temp + 2 , i_temp + 3) = 2∗ var_temp ;
184 AX ( i_temp + 2 , i_temp + 4) = 1 ;
185 AX ( i_temp + 2 , i_temp + 5)= 0 ;
186
187 % Moment left and right of the support is equal.
188 AX ( i_temp + 3 , i_temp − 2)= −(ei ∗ 6 ∗ var_temp ) ;
189 AX ( i_temp + 3 , i_temp − 1) = −(ei ∗ 2) ;
190 AX ( i_temp + 3 , i_temp ) = 0 ;
191 AX ( i_temp + 3 , i_temp + 1) = 0 ;
192 AX ( i_temp + 3 , i_temp + 2) = ei ∗ 6 ∗ var_temp ;
193 AX ( i_temp + 3 , i_temp + 3) = ei ∗ 2 ;
194 AX ( i_temp + 3 , i_temp + 4) = 0 ;
195 AX ( i_temp + 3 , i_temp + 5)= 0 ;
196 end
197
198 % Last support.
199 % Set variables.
200 i_temp = i ∗ (sx − 1) ∗ 4 − 1 ; % Index of first entry per loop.
201 var_temp = data {1 ,1}( ni + i ∗ sx ) ; % x-coordinate of last support

.
202
203 % Deflection is known.
204 AX ( i_temp , i_temp − 2) = var_temp ^3;
205 AX ( i_temp , i_temp − 1) = var_temp ^2;
206 AX ( i_temp , i_temp ) = var_temp ;
207 AX ( i_temp , i_temp + 1) = 1 ;
208
209 % Moment is known.
210 AX ( i_temp + 1 , i_temp − 2) = −(ei ∗ 6 ∗ var_temp ) ;
211 AX ( i_temp + 1 , i_temp − 1) = −(ei ∗ 2) ;
212 AX ( i_temp + 1 , i_temp ) = 0 ;
213 AX ( i_temp + 1 , i_temp + 1) = 0 ;
214
215 elseif i < sy
216 % Bending stiffness of representative strip.
217 ei = e ∗ n ∗ (1/12) ∗ rw ∗ w ∗ t^3;
218 %ei = 1; % Used for checking the script.
219
220 % First support.
221 % Set variables.
222 i_temp = 1 + (i − 1) ∗ (sx − 1) ∗ 4 ; % Index of first entry per

loop.
223 var_temp = data {1 ,1}( ni + 1 + (i − 1) ∗ sx ) ; % x-coordinate of

first support.
224
225 % Deflection is known.
226 AX ( i_temp , i_temp ) = var_temp ^3;
227 AX ( i_temp , i_temp + 1) = var_temp ^2;
228 AX ( i_temp , i_temp + 2) = var_temp ;

Flexible mould for production of double-curved concrete elements Msc Thesis



180 Parametric Matlab script (In development)

229 AX ( i_temp , i_temp + 3) = 1 ;
230
231 % Moment is known.
232 AX ( i_temp + 1 , i_temp ) = −(ei ∗ 6 ∗ var_temp ) ;
233 AX ( i_temp + 1 , i_temp + 1) = −(ei ∗ 2) ;
234 AX ( i_temp + 1 , i_temp + 2) = 0 ;
235 AX ( i_temp + 1 , i_temp + 3) = 0 ;
236
237 % Middle supports.
238 for j = 1 : sx − 2
239 % Set variables.
240 i_temp = 3 + (i − 1) ∗ (sx − 1) ∗ 4 + (j − 1) ∗ 4 ; % Index of

entry per loop.
241 var_temp = data {1 ,1}( ni + 1 + (i − 1) ∗ sx + j ) ; % x-

coordinate of support.
242
243 % Deflection is known.
244 AX ( i_temp , i_temp − 2) = var_temp ^3;
245 AX ( i_temp , i_temp − 1) = var_temp ^2;
246 AX ( i_temp , i_temp ) = var_temp ;
247 AX ( i_temp , i_temp + 1) = 1 ;
248 AX ( i_temp , i_temp + 2) = 0 ;
249 AX ( i_temp , i_temp + 3) = 0 ;
250 AX ( i_temp , i_temp + 4) = 0 ;
251 AX ( i_temp , i_temp + 5) = 0 ;
252
253 % Deflection left and right of the support are equal.
254 AX ( i_temp + 1 , i_temp − 2)= var_temp ^3;
255 AX ( i_temp + 1 , i_temp − 1) = var_temp ^2;
256 AX ( i_temp + 1 , i_temp ) = var_temp ;
257 AX ( i_temp + 1 , i_temp + 1) = 1 ;
258 AX ( i_temp + 1 , i_temp + 2) = −(var_temp^3) ;
259 AX ( i_temp + 1 , i_temp + 3) = −(var_temp^2) ;
260 AX ( i_temp + 1 , i_temp + 4) = −(var_temp ) ;
261 AX ( i_temp + 1 , i_temp + 5)= −1;
262
263 % Rotation left and right of the support are equal.
264 AX ( i_temp + 2 , i_temp − 2)= −(3 ∗ var_temp^2) ;
265 AX ( i_temp + 2 , i_temp − 1) = −(2 ∗ var_temp ) ;
266 AX ( i_temp + 2 , i_temp ) = −1;
267 AX ( i_temp + 2 , i_temp + 1) = 0 ;
268 AX ( i_temp + 2 , i_temp + 2) = 3 ∗ var_temp ^2;
269 AX ( i_temp + 2 , i_temp + 3) = 2∗ var_temp ;
270 AX ( i_temp + 2 , i_temp + 4) = 1 ;
271 AX ( i_temp + 2 , i_temp + 5)= 0 ;
272
273 % Moment left and right of the support is equal.
274 AX ( i_temp + 3 , i_temp − 2)= −(ei ∗ 6 ∗ var_temp ) ;
275 AX ( i_temp + 3 , i_temp − 1) = −(ei ∗ 2) ;
276 AX ( i_temp + 3 , i_temp ) = 0 ;
277 AX ( i_temp + 3 , i_temp + 1) = 0 ;
278 AX ( i_temp + 3 , i_temp + 2) = ei ∗ 6 ∗ var_temp ;
279 AX ( i_temp + 3 , i_temp + 3) = ei ∗ 2 ;
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280 AX ( i_temp + 3 , i_temp + 4) = 0 ;
281 AX ( i_temp + 3 , i_temp + 5)= 0 ;
282 end
283
284 % Last support.
285 % Set variables.
286 i_temp = i ∗ (sx − 1) ∗ 4 − 1 ; % Index of first entry per loop.
287 var_temp = data {1 ,1}( ni + i ∗ sx ) ; % x-coordinate of last support

.
288
289 % Deflection is known.
290 AX ( i_temp , i_temp − 2) = var_temp ^3;
291 AX ( i_temp , i_temp − 1) = var_temp ^2;
292 AX ( i_temp , i_temp ) = var_temp ;
293 AX ( i_temp , i_temp + 1) = 1 ;
294
295 % Moment is known.
296 AX ( i_temp + 1 , i_temp − 2) = −(ei ∗ 6 ∗ var_temp ) ;
297 AX ( i_temp + 1 , i_temp − 1) = −(ei ∗ 2) ;
298 AX ( i_temp + 1 , i_temp ) = 0 ;
299 AX ( i_temp + 1 , i_temp + 1) = 0 ;
300
301 else
302 % Bending stiffness of representative strip.
303 % Reduction is 0.5.
304 ei = e ∗ 0 .5 ∗ n ∗ (1/12) ∗ rw ∗ w ∗ t^3;
305 %ei = 1; % Used for checking the script.
306
307 % First support.
308 % Set variables.
309 i_temp = 1 + (i − 1) ∗ (sx − 1) ∗ 4 ; % Index of first entry per

loop.
310 var_temp = data {1 ,1}( ni + 1 + (i − 1) ∗ sx ) ; % x-coordinate of

first support.
311
312 % Deflection is known.
313 AX ( i_temp , i_temp ) = var_temp ^3;
314 AX ( i_temp , i_temp + 1) = var_temp ^2;
315 AX ( i_temp , i_temp + 2) = var_temp ;
316 AX ( i_temp , i_temp + 3) = 1 ;
317
318 % Moment is known.
319 AX ( i_temp + 1 , i_temp ) = −(ei ∗ 6 ∗ var_temp ) ;
320 AX ( i_temp + 1 , i_temp + 1) = −(ei ∗ 2) ;
321 AX ( i_temp + 1 , i_temp + 2) = 0 ;
322 AX ( i_temp + 1 , i_temp + 3) = 0 ;
323
324 % Middle supports.
325 for j = 1 : sx − 2
326 % Set variables.
327 i_temp = 3 + (i − 1) ∗ (sx − 1) ∗ 4 + (j − 1) ∗ 4 ; % Index of

entry per loop.
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328 var_temp = data {1 ,1}( ni + 1 + (i − 1) ∗ sx + j ) ; % x-
coordinate of support.

329
330 % Deflection is known.
331 AX ( i_temp , i_temp − 2) = var_temp ^3;
332 AX ( i_temp , i_temp − 1) = var_temp ^2;
333 AX ( i_temp , i_temp ) = var_temp ;
334 AX ( i_temp , i_temp + 1) = 1 ;
335 AX ( i_temp , i_temp + 2) = 0 ;
336 AX ( i_temp , i_temp + 3) = 0 ;
337 AX ( i_temp , i_temp + 4) = 0 ;
338 AX ( i_temp , i_temp + 5) = 0 ;
339
340 % Deflection left and right of the support are equal.
341 AX ( i_temp + 1 , i_temp − 2)= var_temp ^3;
342 AX ( i_temp + 1 , i_temp − 1) = var_temp ^2;
343 AX ( i_temp + 1 , i_temp ) = var_temp ;
344 AX ( i_temp + 1 , i_temp + 1) = 1 ;
345 AX ( i_temp + 1 , i_temp + 2) = −(var_temp^3) ;
346 AX ( i_temp + 1 , i_temp + 3) = −(var_temp^2) ;
347 AX ( i_temp + 1 , i_temp + 4) = −(var_temp ) ;
348 AX ( i_temp + 1 , i_temp + 5)= −1;
349
350 % Rotation left and right of the support are equal.
351 AX ( i_temp + 2 , i_temp − 2)= −(3 ∗ var_temp^2) ;
352 AX ( i_temp + 2 , i_temp − 1) = −(2 ∗ var_temp ) ;
353 AX ( i_temp + 2 , i_temp ) = −1;
354 AX ( i_temp + 2 , i_temp + 1) = 0 ;
355 AX ( i_temp + 2 , i_temp + 2) = 3 ∗ var_temp ^2;
356 AX ( i_temp + 2 , i_temp + 3) = 2∗ var_temp ;
357 AX ( i_temp + 2 , i_temp + 4) = 1 ;
358 AX ( i_temp + 2 , i_temp + 5)= 0 ;
359
360 % Moment left and right of the support is equal.
361 AX ( i_temp + 3 , i_temp − 2)= −(ei ∗ 6 ∗ var_temp ) ;
362 AX ( i_temp + 3 , i_temp − 1) = −(ei ∗ 2) ;
363 AX ( i_temp + 3 , i_temp ) = 0 ;
364 AX ( i_temp + 3 , i_temp + 1) = 0 ;
365 AX ( i_temp + 3 , i_temp + 2) = ei ∗ 6 ∗ var_temp ;
366 AX ( i_temp + 3 , i_temp + 3) = ei ∗ 2 ;
367 AX ( i_temp + 3 , i_temp + 4) = 0 ;
368 AX ( i_temp + 3 , i_temp + 5)= 0 ;
369 end
370
371 % Last support.
372 % Set variables.
373 i_temp = i ∗ (sx − 1) ∗ 4 − 1 ; % Index of first entry per loop.
374 var_temp = data {1 ,1}( ni + i ∗ sx ) ; % x-coordinate of last support

.
375
376 % Deflection is known.
377 AX ( i_temp , i_temp − 2) = var_temp ^3;
378 AX ( i_temp , i_temp − 1) = var_temp ^2;
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379 AX ( i_temp , i_temp ) = var_temp ;
380 AX ( i_temp , i_temp + 1) = 1 ;
381
382 % Moment is known.
383 AX ( i_temp + 1 , i_temp − 2) = −(ei ∗ 6 ∗ var_temp ) ;
384 AX ( i_temp + 1 , i_temp − 1) = −(ei ∗ 2) ;
385 AX ( i_temp + 1 , i_temp ) = 0 ;
386 AX ( i_temp + 1 , i_temp + 1) = 0 ;
387 end
388 end
389
390 % Create loop to fill the matrix for strips in x-direction.
391 for i = 1 : sy
392 if i ==1
393 % Bending stiffness of representative strip.
394 % Reduction is 0.5.
395 ei = e ∗ 0 .5 ∗ n ∗ (1/12) ∗ rw ∗ w ∗ t^3;
396 %ei = 1; % Used for checking the script.
397
398 % Representative load on strip.
399 % Reduction is 0.5.
400 qs = 0.5 ∗ q ∗ d ;
401 %qs = 1; % Used for checking the script. % Reduction is 0.5.
402
403 % First support.
404 % Set variables.
405 i_temp = 1 + (i − 1) ∗ (sx − 1) ∗ 4 ; % Index of first entry per

loop.
406 var_temp = data {1 ,1}( ni + 1 + (i − 1) ∗ sx ) ; % x-coordinate of

first support.
407
408 % Deflection is known.
409 AX ( i_temp , ncx + 1) = data {1 ,3}( ni + 1 + (i − 1) ∗ sx ) − ( ( qs ∗

var_temp^4) / (24 ∗ ei ) ) ;
410
411 % Moment is known.
412 AX ( i_temp + 1 , ncx + 1) = 0 + ( ( qs ∗ var_temp^2) / 2) ;
413
414 % Middle supports.
415 for j = 1 : sx − 2
416 % Set variables.
417 i_temp = 3 + (i − 1) ∗ (sx − 1) ∗ 4 + (j − 1) ∗ 4 ; % Index of

entry per loop.
418 var_temp = data {1 ,1}( ni + 1 + (i − 1) ∗ sx + j ) ; % x-

coordinate of support.
419
420 % Deflection is known.
421 AX ( i_temp , ncx + 1) = data {1 ,3}( ni + 1 + (i − 1) ∗ sx + j ) −

( ( qs ∗ var_temp^4) / (24 ∗ ei ) ) ;
422
423 % Deflection left and right of the support are equal.
424 AX ( i_temp + 1 , ncx + 1) = 0 ;
425
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426 % Rotation left and right of the support are equal.
427 AX ( i_temp + 2 , ncx + 1) = 0 ;
428
429 % Moment left and right of the support are equal.
430 AX ( i_temp + 3 , ncx + 1) = 0 ;
431 end
432
433 % Last support.
434 % Set variables.
435 i_temp = i ∗ (sx − 1) ∗ 4 − 1 ; % Index of first entry per loop.
436 var_temp = data {1 ,1}( ni + i ∗ sx ) ; % x-coordinate of last support

.
437
438 % Deflection is known.
439 AX ( i_temp , ncx + 1) = data {1 ,3}( ni + i ∗ sx ) − ( ( qs ∗ var_temp^4)

/ (24 ∗ ei ) ) ;
440
441 % Moment is known.
442 AX ( i_temp + 1 , ncx + 1) = 0 + ( ( qs ∗ var_temp^2) / 2) ;
443
444 elseif i < sy
445 % Bending stiffness of representative strip.
446 ei = e ∗ n ∗ (1/12) ∗ rw ∗ w ∗ t^3;
447 %ei = 1; % Used for checking the script.
448
449 % Representative load on strip.
450 qs = q ∗ d ;
451 %qs = 1; % Used for checking the script.
452
453 % First support.
454 % Set variables.
455 i_temp = 1 + (i − 1) ∗ (sx − 1) ∗ 4 ; % Index of first entry per

loop.
456 var_temp = data {1 ,1}( ni + 1 + (i − 1) ∗ sx ) ; % x-coordinate of

first support.
457
458 % Deflection is known.
459 AX ( i_temp , ncx + 1) = data {1 ,3}( ni + 1 + (i − 1) ∗ sx ) − ( ( qs ∗

var_temp^4) / (24 ∗ ei ) ) ;
460
461 % Moment is known.
462 AX ( i_temp + 1 , ncx + 1) = 0 + ( ( qs ∗ var_temp^2) / 2) ;
463
464 % Middle supports.
465 for j = 1 : sx − 2
466 % Set variables.
467 i_temp = 3 + (i − 1) ∗ (sx − 1) ∗ 4 + (j − 1) ∗ 4 ; % Index of

entry per loop.
468 var_temp = data {1 ,1}( ni + 1 + (i − 1) ∗ sx + j ) ; % x-

coordinate of support.
469
470 % Deflection is known.
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471 AX ( i_temp , ncx + 1) = data {1 ,3}( ni + 1 + (i − 1) ∗ sx + j ) −
( ( qs ∗ var_temp^4) / (24 ∗ ei ) ) ;

472
473 % Deflection left and right of the support are equal.
474 AX ( i_temp + 1 , ncx + 1) = 0 ;
475
476 % Rotation left and right of the support are equal.
477 AX ( i_temp + 2 , ncx + 1) = 0 ;
478
479 % Moment left and right of the support are equal.
480 AX ( i_temp + 3 , ncx + 1) = 0 ;
481 end
482
483 % Last support.
484 % Set variables.
485 i_temp = i ∗ (sx − 1) ∗ 4 − 1 ; % Index of first entry per loop.
486 var_temp = data {1 ,1}( ni + i ∗ sx ) ; % x-coordinate of last support

.
487
488 % Deflection is known.
489 AX ( i_temp , ncx + 1) = data {1 ,3}( ni + i ∗ sx ) − ( ( qs ∗ var_temp^4)

/ (24 ∗ ei ) ) ;
490
491 % Moment is known.
492 AX ( i_temp + 1 , ncx + 1) = 0 + ( ( qs ∗ var_temp^2) / 2) ;
493
494 else
495 % Bending stiffness of representative strip.
496 % Reduction is 0.5.
497 ei = e ∗ 0 .5 ∗ n ∗ (1/12) ∗ rw ∗ w ∗ t^3;
498 %ei = 1; % Used for checking the script.
499
500 % Representative load on strip.
501 % Reduction is 0.5.
502 qs = 0.5 ∗ q ∗ d ;
503 %qs = 1; % Used for checking the script.
504
505 % First support.
506 % Set variables.
507 i_temp = 1 + (i − 1) ∗ (sx − 1) ∗ 4 ; % Index of first entry per

loop.
508 var_temp = data {1 ,1}( ni + 1 + (i − 1) ∗ sx ) ; % x-coordinate of

first support.
509
510 % Deflection is known.
511 AX ( i_temp , ncx + 1) = data {1 ,3}( ni + 1 + (i − 1) ∗ sx ) − ( ( qs ∗

var_temp^4) / (24 ∗ ei ) ) ;
512
513 % Moment is known.
514 AX ( i_temp + 1 , ncx + 1) = 0 + ( ( qs ∗ var_temp^2) / 2) ;
515
516 % Middle supports.
517 for j = 1 : sx − 2
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518 % Set variables.
519 i_temp = 3 + (i − 1) ∗ (sx − 1) ∗ 4 + (j − 1) ∗ 4 ; % Index of

entry per loop.
520 var_temp = data {1 ,1}( ni + 1 + (i − 1) ∗ sx + j ) ; % x-

coordinate of support.
521
522 % Deflection is known.
523 AX ( i_temp , ncx + 1) = data {1 ,3}( ni + 1 + (i − 1) ∗ sx + j ) −

( ( qs ∗ var_temp^4) / (24 ∗ ei ) ) ;
524
525 % Deflection left and right of the support are equal.
526 AX ( i_temp + 1 , ncx + 1) = 0 ;
527
528 % Rotation left and right of the support are equal.
529 AX ( i_temp + 2 , ncx + 1) = 0 ;
530
531 % Moment left and right of the support are equal.
532 AX ( i_temp + 3 , ncx + 1) = 0 ;
533 end
534
535 % Last support.
536 % Set variables.
537 i_temp = i ∗ (sx − 1) ∗ 4 − 1 ; % Index of first entry per loop.
538 var_temp = data {1 ,1}( ni + i ∗ sx ) ; % x-coordinate of last support

.
539
540 % Deflection is known.
541 AX ( i_temp , ncx + 1) = data {1 ,3}( ni + i ∗ sx ) − ( ( qs ∗ var_temp^4)

/ (24 ∗ ei ) ) ;
542
543 % Moment is known.
544 AX ( i_temp + 1 , ncx + 1) = 0 + ( ( qs ∗ var_temp^2) / 2) ;
545 end
546 end
547
548 % Solve matices. Use sufficient accuracy!!!
549 CX = rref (AX , 1e−16) ;
550
551 %% Create results for strips in x-direction.
552 % - deflection
553 % - rotation
554 % - curvature
555 % - moment
556
557 % Create matrices for results of strips in x-direction.
558 WX = zeros (ndx , 3) ;
559 PHIX = zeros (ndx , 3) ;
560 KX = zeros (ndx , 3) ;
561 MX = zeros (ndx , 3) ;
562 VX = zeros (ndx , 3) ;
563
564 % Results for strips in x-direction.
565 for i = 1 : sy
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566 if i == 1
567 % Bending stiffness of representative strip.
568 ei = e ∗ 0 .5 ∗ n ∗ (1/12) ∗ rw ∗ w ∗ t^3;
569 %ei = 1; % Used for checking the script.
570
571 % Representative load on strip.
572 % Reduction is 0.5.
573 qs = 0.5 ∗ q ∗ d ;
574 %qs = 1; % Used for checking the script.
575
576 % First entry of strip.
577 % Set variables.
578 i_temp = 1 + (i − 1) ∗ (sx − 1) ∗ 4 ;
579 c1_temp = CX ( i_temp , ncx + 1) ; % first constant.
580 c2_temp = CX ( i_temp + 1 , ncx + 1) ; % second constant.
581 c3_temp = CX ( i_temp + 2 , ncx + 1) ; % third constant.
582 c4_temp = CX ( i_temp + 3 , ncx + 1) ; % fourth constant.
583 var_x_temp = data {1 ,1}( ni + 1 + ( ( i − 1) ∗ sx ) ) ; % x-coordinate

of first support.
584 var_y_temp = data {1 ,2}( ni + 1 + ( ( i − 1) ∗ sx ) ) ; % y-coordinate

of first support.
585 i_temp = 1 + (i − 1) ∗ ( ( sx − 1) ∗ dev + 1) ;
586
587 % Assign first entries for deflection.
588 WX ( i_temp , 1 ) = var_x_temp ;
589 WX ( i_temp , 2 ) = var_y_temp ;
590 WX ( i_temp , 3 ) = w_deflection ( var_x_temp , ei , qs , c1_temp , c2_temp ,

c3_temp , c4_temp ) ;
591
592 % Assign first entries for rotation.
593 PHIX ( i_temp , 1 ) = var_x_temp ;
594 PHIX ( i_temp , 2 ) = var_y_temp ;
595 PHIX ( i_temp , 3 ) = phi_rotation ( var_x_temp , ei , qs , c1_temp ,

c2_temp , c3_temp ) ;
596
597 % Assign first entries for curvature.
598 KX ( i_temp , 1 ) = var_x_temp ;
599 KX ( i_temp , 2 ) = var_y_temp ;
600 KX ( i_temp , 3 ) = k_curvature ( var_x_temp , ei , qs , c1_temp , c2_temp ) ;
601
602 % Assign first entries for moment.
603 MX ( i_temp , 1 ) = var_x_temp ;
604 MX ( i_temp , 2 ) = var_y_temp ;
605 MX ( i_temp , 3 ) = m_moment ( var_x_temp , ei , qs , c1_temp , c2_temp ) ;
606
607 % Assign first entries for shear.
608 VX ( i_temp , 1 ) = var_x_temp ;
609 VX ( i_temp , 2 ) = var_y_temp ;
610 VX ( i_temp , 3 ) = v_shear ( var_x_temp , ei , qs , c1_temp ) ;
611
612 % Other entries of strip.
613 for j = 1 : sx − 1
614 % Set variables.
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615 i_temp = 1 + (i − 1) ∗ (sx − 1) ∗ 4 + (j − 1) ∗ 4 ;
616 c1_temp = CX ( i_temp , ncx + 1) ; % first constant.
617 c2_temp = CX ( i_temp + 1 , ncx + 1) ; % second constant.
618 c3_temp = CX ( i_temp + 2 , ncx + 1) ; % third constant.
619 c4_temp = CX ( i_temp + 3 , ncx + 1) ; % fourth constant.
620
621 % Assign entries.
622 for k = 1 : dev
623 % Set variables.
624 var_x_temp = data {1 ,1}( ni + j ) + k ∗ (d / dev ) ; % x-

coordinate.
625 var_y_temp = data {1 ,2}( ni + 1 + ( ( i − 1) ∗ sx ) ) ; % y-

coordinate.
626 i_temp = 1 + (i − 1) ∗ ( ( sx − 1) ∗ dev + 1) + (j − 1) ∗

dev + k ;
627
628 % Assign entries for deflection.
629 WX ( i_temp , 1) = var_x_temp ;
630 WX ( i_temp , 2) = var_y_temp ;
631 WX ( i_temp , 3) = w_deflection ( var_x_temp , ei , qs , c1_temp ,

c2_temp , c3_temp , c4_temp ) ;
632
633 % Assign entries for rotation.
634 PHIX ( i_temp , 1) = var_x_temp ;
635 PHIX ( i_temp , 2) = var_y_temp ;
636 PHIX ( i_temp , 3) = phi_rotation ( var_x_temp , ei , qs ,

c1_temp , c2_temp , c3_temp ) ;
637
638 % Assign entries for curvature.
639 KX ( i_temp , 1) = var_x_temp ;
640 KX ( i_temp , 2) = var_y_temp ;
641 KX ( i_temp , 3) = k_curvature ( var_x_temp , ei , qs , c1_temp ,

c2_temp ) ;
642
643 % Assign entries for moment.
644 MX ( i_temp , 1) = var_x_temp ;
645 MX ( i_temp , 2) = var_y_temp ;
646 MX ( i_temp , 3) = m_moment ( var_x_temp , ei , qs , c1_temp ,

c2_temp ) ;
647
648 % Assign entries for shear.
649 VX ( i_temp , 1) = var_x_temp ;
650 VX ( i_temp , 2) = var_y_temp ;
651 VX ( i_temp , 3) = v_shear ( var_x_temp , ei , qs , c1_temp ) ;
652 end
653 end
654
655 elseif i < sy
656 % Bending stiffness of representative strip.
657 ei = e ∗ n ∗ (1/12) ∗ rw ∗ w ∗ t^3;
658 %ei = 1; % Used for checking the script.
659
660 % Representative load on strip.
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661 qs = q ∗ d ;
662 %qs = 1; % Used for checking the script.
663
664 % First entry of strip.
665 % Set variables.
666 i_temp = 1 + (i − 1) ∗ (sx − 1) ∗ 4 ;
667 c1_temp = CX ( i_temp , ncx + 1) ; % first constant.
668 c2_temp = CX ( i_temp + 1 , ncx + 1) ; % second constant.
669 c3_temp = CX ( i_temp + 2 , ncx + 1) ; % third constant.
670 c4_temp = CX ( i_temp + 3 , ncx + 1) ; % fourth constant.
671 var_x_temp = data {1 ,1}( ni + 1 + ( ( i − 1) ∗ sx ) ) ; % x-coordinate

of first support.
672 var_y_temp = data {1 ,2}( ni + 1 + ( ( i − 1) ∗ sx ) ) ; % y-coordinate

of first support.
673 i_temp = 1 + (i − 1) ∗ ( ( sx − 1) ∗ dev + 1) ;
674
675 % Assign first entries for deflection.
676 WX ( i_temp , 1 ) = var_x_temp ;
677 WX ( i_temp , 2 ) = var_y_temp ;
678 WX ( i_temp , 3 ) = w_deflection ( var_x_temp , ei , qs , c1_temp , c2_temp ,

c3_temp , c4_temp ) ;
679
680 % Assign first entries for rotation.
681 PHIX ( i_temp , 1 ) = var_x_temp ;
682 PHIX ( i_temp , 2 ) = var_y_temp ;
683 PHIX ( i_temp , 3 ) = phi_rotation ( var_x_temp , ei , qs , c1_temp ,

c2_temp , c3_temp ) ;
684
685 % Assign first entries for curvature.
686 KX ( i_temp , 1 ) = var_x_temp ;
687 KX ( i_temp , 2 ) = var_y_temp ;
688 KX ( i_temp , 3 ) = k_curvature ( var_x_temp , ei , qs , c1_temp , c2_temp ) ;
689
690 % Assign first entries for moment.
691 MX ( i_temp , 1 ) = var_x_temp ;
692 MX ( i_temp , 2 ) = var_y_temp ;
693 MX ( i_temp , 3 ) = m_moment ( var_x_temp , ei , qs , c1_temp , c2_temp ) ;
694
695 % Assign first entries for shear.
696 VX ( i_temp , 1 ) = var_x_temp ;
697 VX ( i_temp , 2 ) = var_y_temp ;
698 VX ( i_temp , 3 ) = v_shear ( var_x_temp , ei , qs , c1_temp ) ;
699
700 % Other entries of strip.
701 for j = 1 : sx − 1
702 % Set variables.
703 i_temp = 1 + (i − 1) ∗ (sx − 1) ∗ 4 + (j − 1) ∗ 4 ;
704 c1_temp = CX ( i_temp , ncx + 1) ; % first constant.
705 c2_temp = CX ( i_temp + 1 , ncx + 1) ; % second constant.
706 c3_temp = CX ( i_temp + 2 , ncx + 1) ; % third constant.
707 c4_temp = CX ( i_temp + 3 , ncx + 1) ; % fourth constant.
708
709 % Assign entries.
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710 for k = 1 : dev
711 % Set variables.
712 var_x_temp = data {1 ,1}( ni + j ) + k ∗ (d / dev ) ; % x-

coordinate.
713 var_y_temp = data {1 ,2}( ni + 1 + ( ( i − 1) ∗ sx ) ) ; % y-

coordinate.
714 i_temp = 1 + (i − 1) ∗ ( ( sx − 1) ∗ dev + 1) + (j − 1) ∗

dev + k ;
715
716 % Assign entries for deflection.
717 WX ( i_temp , 1) = var_x_temp ;
718 WX ( i_temp , 2) = var_y_temp ;
719 WX ( i_temp , 3) = w_deflection ( var_x_temp , ei , qs , c1_temp ,

c2_temp , c3_temp , c4_temp ) ;
720
721 % Assign entries for rotation.
722 PHIX ( i_temp , 1) = var_x_temp ;
723 PHIX ( i_temp , 2) = var_y_temp ;
724 PHIX ( i_temp , 3) = phi_rotation ( var_x_temp , ei , qs ,

c1_temp , c2_temp , c3_temp ) ;
725
726 % Assign entries for curvature.
727 KX ( i_temp , 1) = var_x_temp ;
728 KX ( i_temp , 2) = var_y_temp ;
729 KX ( i_temp , 3) = k_curvature ( var_x_temp , ei , qs , c1_temp ,

c2_temp ) ;
730
731 % Assign entries for moment.
732 MX ( i_temp , 1) = var_x_temp ;
733 MX ( i_temp , 2) = var_y_temp ;
734 MX ( i_temp , 3) = m_moment ( var_x_temp , ei , qs , c1_temp ,

c2_temp ) ;
735
736 % Assign entries for shear.
737 VX ( i_temp , 1) = var_x_temp ;
738 VX ( i_temp , 2) = var_y_temp ;
739 VX ( i_temp , 3) = v_shear ( var_x_temp , ei , qs , c1_temp ) ;
740 end
741 end
742
743 else
744 % Bending stiffness of representative strip.
745 ei = e ∗ 0 .5 ∗ n ∗ (1/12) ∗ rw ∗ w ∗ t^3;
746 %ei = 1; % Used for checking the script.
747
748 % Representative load on strip.
749 % Reduction is 0.5.
750 qs = 0.5 ∗ q ∗ d ;
751 %qs = 1; % Used for checking the script.
752
753 % First entry of strip.
754 % Set variables.
755 i_temp = 1 + (i − 1) ∗ (sx − 1) ∗ 4 ;
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756 c1_temp = CX ( i_temp , ncx + 1) ; % first constant.
757 c2_temp = CX ( i_temp + 1 , ncx + 1) ; % second constant.
758 c3_temp = CX ( i_temp + 2 , ncx + 1) ; % third constant.
759 c4_temp = CX ( i_temp + 3 , ncx + 1) ; % fourth constant.
760 var_x_temp = data {1 ,1}( ni + 1 + ( ( i − 1) ∗ sx ) ) ; % x-coordinate

of first support.
761 var_y_temp = data {1 ,2}( ni + 1 + ( ( i − 1) ∗ sx ) ) ; % y-coordinate

of first support.
762 i_temp = 1 + (i − 1) ∗ ( ( sx − 1) ∗ dev + 1) ;
763
764 % Assign first entries for deflection.
765 WX ( i_temp , 1 ) = var_x_temp ;
766 WX ( i_temp , 2 ) = var_y_temp ;
767 WX ( i_temp , 3 ) = w_deflection ( var_x_temp , ei , qs , c1_temp , c2_temp ,

c3_temp , c4_temp ) ;
768
769 % Assign first entries for rotation.
770 PHIX ( i_temp , 1 ) = var_x_temp ;
771 PHIX ( i_temp , 2 ) = var_y_temp ;
772 PHIX ( i_temp , 3 ) = phi_rotation ( var_x_temp , ei , qs , c1_temp ,

c2_temp , c3_temp ) ;
773
774 % Assign first entries for curvature.
775 KX ( i_temp , 1 ) = var_x_temp ;
776 KX ( i_temp , 2 ) = var_y_temp ;
777 KX ( i_temp , 3 ) = k_curvature ( var_x_temp , ei , qs , c1_temp , c2_temp ) ;
778
779 % Assign first entries for moment.
780 MX ( i_temp , 1 ) = var_x_temp ;
781 MX ( i_temp , 2 ) = var_y_temp ;
782 MX ( i_temp , 3 ) = m_moment ( var_x_temp , ei , qs , c1_temp , c2_temp ) ;
783
784 % Assign first entries for shear.
785 VX ( i_temp , 1 ) = var_x_temp ;
786 VX ( i_temp , 2 ) = var_y_temp ;
787 VX ( i_temp , 3 ) = v_shear ( var_x_temp , ei , qs , c1_temp ) ;
788
789 % Other entries of strip.
790 for j = 1 : sx − 1
791 % Set variables.
792 i_temp = 1 + (i − 1) ∗ (sx − 1) ∗ 4 + (j − 1) ∗ 4 ;
793 c1_temp = CX ( i_temp , ncx + 1) ; % first constant.
794 c2_temp = CX ( i_temp + 1 , ncx + 1) ; % second constant.
795 c3_temp = CX ( i_temp + 2 , ncx + 1) ; % third constant.
796 c4_temp = CX ( i_temp + 3 , ncx + 1) ; % fourth constant.
797
798 % Assign entries.
799 for k = 1 : dev
800 % Set variables.
801 var_x_temp = data {1 ,1}( ni + j ) + k ∗ (d / dev ) ; % x-

coordinate.
802 var_y_temp = data {1 ,2}( ni + 1 + ( ( i − 1) ∗ sx ) ) ; % y-

coordinate.
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803 i_temp = 1 + (i − 1) ∗ ( ( sx − 1) ∗ dev + 1) + (j − 1) ∗
dev + k ;

804
805 % Assign entries for deflection.
806 WX ( i_temp , 1) = var_x_temp ;
807 WX ( i_temp , 2) = var_y_temp ;
808 WX ( i_temp , 3) = w_deflection ( var_x_temp , ei , qs , c1_temp ,

c2_temp , c3_temp , c4_temp ) ;
809
810 % Assign entries for rotation.
811 PHIX ( i_temp , 1) = var_x_temp ;
812 PHIX ( i_temp , 2) = var_y_temp ;
813 PHIX ( i_temp , 3) = phi_rotation ( var_x_temp , ei , qs ,

c1_temp , c2_temp , c3_temp ) ;
814
815 % Assign entries for curvature.
816 KX ( i_temp , 1) = var_x_temp ;
817 KX ( i_temp , 2) = var_y_temp ;
818 KX ( i_temp , 3) = k_curvature ( var_x_temp , ei , qs , c1_temp ,

c2_temp ) ;
819
820 % Assign entries for moment.
821 MX ( i_temp , 1) = var_x_temp ;
822 MX ( i_temp , 2) = var_y_temp ;
823 MX ( i_temp , 3) = m_moment ( var_x_temp , ei , qs , c1_temp ,

c2_temp ) ;
824
825 % Assign entries for shear.
826 VX ( i_temp , 1) = var_x_temp ;
827 VX ( i_temp , 2) = var_y_temp ;
828 VX ( i_temp , 3) = v_shear ( var_x_temp , ei , qs , c1_temp ) ;
829 end
830 end
831 end
832 end
833
834 %% Create results for support reactions of strips in x-direction.
835
836 % Create matrix for support reactions of strips in x-direction.
837 RX = zeros (st , 3) ;
838
839 % Create matrix for total of support reactions per strip.
840 FX = zeros (sy , 3) ;
841
842 % Support reaction for strips in x-direction.
843 for i = 1 : sy
844 if i == 1
845 % Bending stiffness of representative strip.
846 ei = e ∗ 0 .5 ∗ n ∗ (1/12) ∗ rw ∗ w ∗ t^3;
847 %ei = 1; % Used for checking the script.
848
849 % Representative load on strip.
850 % Reduction is 0.5.
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851 qs = 0.5 ∗ q ∗ d ;
852 %qs = 1; % Used for checking the script.
853
854 % First support.
855 % Set variables.
856 i_temp = 1 + (i − 1) ∗ (sx − 1) ∗ 4 ;
857 c1_right_temp = CX ( i_temp , ncx + 1) ; % constant of equation

right of first support.
858 var_x_temp = data {1 ,1}( ni + 1 + ( ( i − 1) ∗ sx ) ) ; % x-coordinate

of first support.
859 var_y_temp = data {1 ,2}( ni + 1 + ( ( i − 1) ∗ sx ) ) ; % y-coordinate

of first support.
860 i_temp = 1 + (i − 1) ∗ sx ;
861
862 % Assign first entries.
863 RX ( i_temp , 1 ) = var_x_temp ;
864 RX ( i_temp , 2 ) = var_y_temp ;
865 RX ( i_temp , 3 ) = 0 − v_shear ( var_x_temp , ei , qs , c1_right_temp ) ;
866
867 % Middle supports.
868 for j = 1 : sx − 2
869 % Set variables.
870 i_temp = 1 + (i − 1) ∗ (sx − 1) ∗ 4 + (j − 1) ∗ 4 ;
871 c1_left_temp = CX ( i_temp , ncx + 1) ; % constant of equation

left of support.
872 c1_right_temp = CX ( i_temp + 4 , ncx + 1) ; % constant of

equation right of support.
873 var_x_temp = data {1 ,1}( ni + 1 + j + (( i − 1) ∗ sx ) ) ; % x-

coordinate of support.
874 var_y_temp = data {1 ,2}( ni + 1 + j + (( i − 1) ∗ sx ) ) ; % y-

coordinate of support.
875 i_temp = 1 + j +(i − 1) ∗ sx ;
876
877 % Assign first entries.
878 RX ( i_temp , 1 ) = var_x_temp ;
879 RX ( i_temp , 2 ) = var_y_temp ;
880 RX ( i_temp , 3 ) = v_shear ( var_x_temp , ei , qs , c1_left_temp ) −

v_shear ( var_x_temp , ei , qs , c1_right_temp ) ;
881 end
882
883 % Set variables.
884 i_temp = 1 + (sx − 2) ∗ 4 + (i − 1) ∗ (sx − 1) ∗ 4 ;
885 c1_left_temp = CX ( i_temp , ncx + 1) ; % constant of equation left

of last support.
886 var_x_temp = data {1 ,1}( ni + i ∗ sx ) ; % x-coordinate of support.
887 var_y_temp = data {1 ,2}( ni + i ∗ sx ) ; % y-coordinate of support.
888 i_temp = i ∗ sx ;
889
890 % Assign first entries.
891 RX ( i_temp , 1 ) = var_x_temp ;
892 RX ( i_temp , 2 ) = var_y_temp ;
893 RX ( i_temp , 3 ) = v_shear ( var_x_temp , ei , qs , c1_left_temp ) ;
894
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895 % Total of support reactions per strip.
896 s_temp = 1 + (i − 1) ∗ sx ;
897 e_temp = sx + (i − 1) ∗ sx ;
898 FX (i , 2 ) = RX ( s_temp , 2 ) ;
899 FX (i , 3 ) = sum (RX ( ( s_temp : e_temp ) , 3 ) ) ;
900
901 elseif i < sy
902 % Bending stiffness of representative strip.
903 ei = e ∗ n ∗ (1/12) ∗ rw ∗ w ∗ t^3;
904 %ei = 1; % Used for checking the script.
905
906 % Representative load on strip.
907 qs = q ∗ d ;
908 %qs = 1; % Used for checking the script.
909
910 % First support.
911 % Set variables.
912 i_temp = 1 + (i − 1) ∗ (sx − 1) ∗ 4 ;
913 c1_right_temp = CX ( i_temp , ncx + 1) ; % constant of equation

right of first support.
914 var_x_temp = data {1 ,1}( ni + 1 + ( ( i − 1) ∗ sx ) ) ; % x-coordinate

of first support.
915 var_y_temp = data {1 ,2}( ni + 1 + ( ( i − 1) ∗ sx ) ) ; % y-coordinate

of first support.
916 i_temp = 1 + (i − 1) ∗ sx ;
917
918 % Assign first entries.
919 RX ( i_temp , 1 ) = var_x_temp ;
920 RX ( i_temp , 2 ) = var_y_temp ;
921 RX ( i_temp , 3 ) = 0 − v_shear ( var_x_temp , ei , qs , c1_right_temp ) ;
922
923 % Middle supports.
924 for j = 1 : sx − 2
925 % Set variables.
926 i_temp = 1 + (i − 1) ∗ (sx − 1) ∗ 4 + (j − 1) ∗ 4 ;
927 c1_left_temp = CX ( i_temp , ncx + 1) ; % constant of equation

left of support.
928 c1_right_temp = CX ( i_temp + 4 , ncx + 1) ; % constant of

equation right of support.
929 var_x_temp = data {1 ,1}( ni + 1 + j + (( i − 1) ∗ sx ) ) ; % x-

coordinate of support.
930 var_y_temp = data {1 ,2}( ni + 1 + j + (( i − 1) ∗ sx ) ) ; % y-

coordinate of support.
931 i_temp = 1 + j +(i − 1) ∗ sx ;
932
933 % Assign first entries.
934 RX ( i_temp , 1 ) = var_x_temp ;
935 RX ( i_temp , 2 ) = var_y_temp ;
936 RX ( i_temp , 3 ) = v_shear ( var_x_temp , ei , qs , c1_left_temp ) −

v_shear ( var_x_temp , ei , qs , c1_right_temp ) ;
937 end
938
939 % Set variables.
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940 i_temp = 1 + (sx − 2) ∗ 4 + (i − 1) ∗ (sx − 1) ∗ 4 ;
941 c1_left_temp = CX ( i_temp , ncx + 1) ; % constant of equation left

of last support.
942 var_x_temp = data {1 ,1}( ni + i ∗ sx ) ; % x-coordinate of support.
943 var_y_temp = data {1 ,2}( ni + i ∗ sx ) ; % y-coordinate of support.
944 i_temp = i ∗ sx ;
945
946 % Assign first entries.
947 RX ( i_temp , 1 ) = var_x_temp ;
948 RX ( i_temp , 2 ) = var_y_temp ;
949 RX ( i_temp , 3 ) = v_shear ( var_x_temp , ei , qs , c1_left_temp ) ;
950
951 % Total of support reactions per strip.
952 s_temp = 1 + (i − 1) ∗ sx ;
953 e_temp = sx + (i − 1) ∗ sx ;
954 FX (i , 2 ) = RX ( s_temp , 2 ) ;
955 FX (i , 3 ) = sum (RX ( ( s_temp : e_temp ) , 3 ) ) ;
956
957 else
958 % Bending stiffness of representative strip.
959 ei = e ∗ 0 .5 ∗ n ∗ (1/12) ∗ rw ∗ w ∗ t^3;
960 %ei = 1; % Used for checking the script.
961
962 % Representative load on strip.
963 % Reduction is 0.5.
964 qs = 0.5 ∗ q ∗ d ;
965 %qs = 1; % Used for checking the script.
966
967 % First support.
968 % Set variables.
969 i_temp = 1 + (i − 1) ∗ (sx − 1) ∗ 4 ;
970 c1_right_temp = CX ( i_temp , ncx + 1) ; % constant of equation

right of first support.
971 var_x_temp = data {1 ,1}( ni + 1 + ( ( i − 1) ∗ sx ) ) ; % x-coordinate

of first support.
972 var_y_temp = data {1 ,2}( ni + 1 + ( ( i − 1) ∗ sx ) ) ; % y-coordinate

of first support.
973 i_temp = 1 + (i − 1) ∗ sx ;
974
975 % Assign first entries.
976 RX ( i_temp , 1 ) = var_x_temp ;
977 RX ( i_temp , 2 ) = var_y_temp ;
978 RX ( i_temp , 3 ) = 0 − v_shear ( var_x_temp , ei , qs , c1_right_temp ) ;
979
980 % Middle supports.
981 for j = 1 : sx − 2
982 % Set variables.
983 i_temp = 1 + (i − 1) ∗ (sx − 1) ∗ 4 + (j − 1) ∗ 4 ;
984 c1_left_temp = CX ( i_temp , ncx + 1) ; % constant of equation

left of support.
985 c1_right_temp = CX ( i_temp + 4 , ncx + 1) ; % constant of

equation right of support.
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986 var_x_temp = data {1 ,1}( ni + 1 + j + (( i − 1) ∗ sx ) ) ; % x-
coordinate of support.

987 var_y_temp = data {1 ,2}( ni + 1 + j + (( i − 1) ∗ sx ) ) ; % y-
coordinate of support.

988 i_temp = 1 + j +(i − 1) ∗ sx ;
989
990 % Assign first entries.
991 RX ( i_temp , 1 ) = var_x_temp ;
992 RX ( i_temp , 2 ) = var_y_temp ;
993 RX ( i_temp , 3 ) = v_shear ( var_x_temp , ei , qs , c1_left_temp ) −

v_shear ( var_x_temp , ei , qs , c1_right_temp ) ;
994 end
995
996 % Set variables.
997 i_temp = 1 + (sx − 2) ∗ 4 + (i − 1) ∗ (sx − 1) ∗ 4 ;
998 c1_left_temp = CX ( i_temp , ncx + 1) ; % constant of equation left

of last support.
999 var_x_temp = data {1 ,1}( ni + i ∗ sx ) ; % x-coordinate of support.

1000 var_y_temp = data {1 ,2}( ni + i ∗ sx ) ; % y-coordinate of support.
1001 i_temp = i ∗ sx ;
1002
1003 % Assign first entries.
1004 RX ( i_temp , 1 ) = var_x_temp ;
1005 RX ( i_temp , 2 ) = var_y_temp ;
1006 RX ( i_temp , 3 ) = v_shear ( var_x_temp , ei , qs , c1_left_temp ) ;
1007
1008 % Total of support reactions per strip.
1009 s_temp = 1 + (i − 1) ∗ sx ;
1010 e_temp = sx + (i − 1) ∗ sx ;
1011 FX (i , 2 ) = RX ( s_temp , 2 ) ;
1012 FX (i , 3 ) = sum (RX ( ( s_temp : e_temp ) , 3 ) ) ;
1013 end
1014 end
1015
1016 %% Create results for loading of strips in y-direction.
1017
1018 %Create matrix for loading of strips in y-direction.
1019 QY = zeros (sx ∗ (sy − 1) , 1) ;
1020
1021 for i = 1 : sx
1022 for j = 1 : sy − 1
1023 if j == 1
1024 i_temp = (i − 1) ∗ (sy − 1) + j ;
1025 QY ( i_temp , 1) = −((RX (i , 3) + RX (i + sx , 3) ∗ 0 . 5 ) / d ) ;
1026 elseif j < sy − 1
1027 i_temp = (i − 1) ∗ (sy − 1) + j ;
1028 QY ( i_temp , 1) = −((RX (i + (j − 1) ∗ sx , 3) ∗ 0 .5 + RX (i + j ∗

sx , 3) ∗ 0 . 5 ) / d ) ;
1029 else
1030 i_temp = (i − 1) ∗ (sy − 1) + j ;
1031 QY ( i_temp , 1) = −((RX (i + (j − 1) ∗ sx , 3) ∗ 0 .5 + RX (i + j ∗

sx , 3) ) / d ) ;
1032 end
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1033 end
1034 end
1035
1036 %% Fill matrices for system of equations for strips in y-direction.
1037
1038 % Create matrices to solve.
1039 AY = zeros (ncy , ncy + 1) ;
1040
1041 % Create loop to fill the matrix for strips in y-direction.
1042 for i = 1 : sx
1043 % Bending stiffness of representative strip.
1044 ei = fsy ∗ e ∗ (1/12) ∗ rw ∗ w ∗ t^3;
1045 %ei = 1; % Used for checking the script.
1046
1047 % First support.
1048 % Set variables.
1049 i_temp = 1 + (i − 1) ∗ (sy − 1) ∗ 4 ; % Index of first entry per loop.
1050 var_temp = data {1 ,2}( ni + i ) ; % y-coordinate of first support.
1051
1052 % Deflection is known.
1053 AY ( i_temp , i_temp ) = var_temp ^3;
1054 AY ( i_temp , i_temp + 1) = var_temp ^2;
1055 AY ( i_temp , i_temp + 2) = var_temp ;
1056 AY ( i_temp , i_temp + 3) = 1 ;
1057
1058 % Moment is known.
1059 AY ( i_temp + 1 , i_temp ) = −(ei ∗ 6 ∗ var_temp ) ;
1060 AY ( i_temp + 1 , i_temp + 1) = −(ei ∗ 2) ;
1061 AY ( i_temp + 1 , i_temp + 2) = 0 ;
1062 AY ( i_temp + 1 , i_temp + 3) = 0 ;
1063
1064 % Middle supports.
1065 for j = 1 : sy − 2
1066 % Set variables.
1067 i_temp = 3 + (i − 1) ∗ (sy − 1) ∗ 4 + (j − 1) ∗ 4 ; % Index of

entry per loop.
1068 var_temp = data {1 ,2}( ni + i + j ∗ sx ) ; % y-coordinate of support.
1069
1070 % Deflection is known.
1071 AY ( i_temp , i_temp − 2) = var_temp ^3;
1072 AY ( i_temp , i_temp − 1) = var_temp ^2;
1073 AY ( i_temp , i_temp ) = var_temp ;
1074 AY ( i_temp , i_temp + 1) = 1 ;
1075 AY ( i_temp , i_temp + 2) = 0 ;
1076 AY ( i_temp , i_temp + 3) = 0 ;
1077 AY ( i_temp , i_temp + 4) = 0 ;
1078 AY ( i_temp , i_temp + 5) = 0 ;
1079
1080 % Deflection left and right of the support are equal.
1081 AY ( i_temp + 1 , i_temp − 2)= var_temp ^3;
1082 AY ( i_temp + 1 , i_temp − 1) = var_temp ^2;
1083 AY ( i_temp + 1 , i_temp ) = var_temp ;
1084 AY ( i_temp + 1 , i_temp + 1) = 1 ;
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1085 AY ( i_temp + 1 , i_temp + 2) = −(var_temp^3) ;
1086 AY ( i_temp + 1 , i_temp + 3) = −(var_temp^2) ;
1087 AY ( i_temp + 1 , i_temp + 4) = −(var_temp ) ;
1088 AY ( i_temp + 1 , i_temp + 5)= −1;
1089
1090 % Rotation left and right of the support are equal.
1091 AY ( i_temp + 2 , i_temp − 2)= −(3 ∗ var_temp^2) ;
1092 AY ( i_temp + 2 , i_temp − 1) = −(2 ∗ var_temp ) ;
1093 AY ( i_temp + 2 , i_temp ) = −1;
1094 AY ( i_temp + 2 , i_temp + 1) = 0 ;
1095 AY ( i_temp + 2 , i_temp + 2) = 3 ∗ var_temp ^2;
1096 AY ( i_temp + 2 , i_temp + 3) = 2∗ var_temp ;
1097 AY ( i_temp + 2 , i_temp + 4) = 1 ;
1098 AY ( i_temp + 2 , i_temp + 5)= 0 ;
1099
1100 % Moment left and right of the support is equal.
1101 AY ( i_temp + 3 , i_temp − 2)= −(ei ∗ 6 ∗ var_temp ) ;
1102 AY ( i_temp + 3 , i_temp − 1) = −(ei ∗ 2) ;
1103 AY ( i_temp + 3 , i_temp ) = 0 ;
1104 AY ( i_temp + 3 , i_temp + 1) = 0 ;
1105 AY ( i_temp + 3 , i_temp + 2) = ei ∗ 6 ∗ var_temp ;
1106 AY ( i_temp + 3 , i_temp + 3) = ei ∗ 2 ;
1107 AY ( i_temp + 3 , i_temp + 4) = 0 ;
1108 AY ( i_temp + 3 , i_temp + 5)= 0 ;
1109
1110 end
1111
1112 % Last support.
1113 % Set variables.
1114 i_temp = i ∗ (sy − 1) ∗ 4 − 1 ; % Index of first entry per loop.
1115 var_temp = data {1 ,2}( ni + i + (sy − 1) ∗ sx ) ; % y-coordinate of last

support.
1116
1117 % Deflection is known.
1118 AY ( i_temp , i_temp − 2) = var_temp ^3;
1119 AY ( i_temp , i_temp − 1) = var_temp ^2;
1120 AY ( i_temp , i_temp ) = var_temp ;
1121 AY ( i_temp , i_temp + 1) = 1 ;
1122
1123 % Moment is known.
1124 AY ( i_temp + 1 , i_temp − 2) = −(ei ∗ 6 ∗ var_temp ) ;
1125 AY ( i_temp + 1 , i_temp − 1) = −(ei ∗ 2) ;
1126 AY ( i_temp + 1 , i_temp ) = 0 ;
1127 AY ( i_temp + 1 , i_temp + 1) = 0 ;
1128
1129 end
1130
1131 % Create loop to fill the matrix for strips in y-direction.
1132 for i = 1 : sx
1133 % Bending stiffness of representative strip.
1134 ei = fsy ∗ e ∗ (1/12) ∗ rw ∗ w ∗ t^3;
1135 %ei = 1; % Used for checking the script.
1136
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1137 % Representative load on strip.
1138 qs_right_temp = QY (1 + (i − 1) ∗ (sy − 1) , 1) ;
1139 %qs_right_temp = 1; % Used for checking the script.
1140
1141 % First support.
1142 % Set variables.
1143 i_temp = 1 + (i − 1) ∗ (sy − 1) ∗ 4 ; % Index of first entry per loop.
1144 var_temp = data {1 ,2}( ni + i ) ; % y-coordinate of first support.
1145
1146 % Deflection is known.
1147 AY ( i_temp , ncy + 1) = data {1 ,3}( ni + i ) − ( ( qs_right_temp ∗ var_temp

^4) / (24 ∗ ei ) ) ;
1148
1149 % Moment is known.
1150 AY ( i_temp + 1 , ncy + 1) = 0 + ( ( qs ∗ var_temp^2) / 2) ;
1151
1152 % Middle supports.
1153 for j = 1 : sy − 2
1154 % Representative load on strip.
1155 qs_left_temp = QY ( ( i − 1) ∗ (sy − 1) + j , 1) ;
1156 %qs_left_temp = 1; % Used for checking the script.
1157 qs_right_temp = QY (1 + (i − 1) ∗ (sy − 1) + j , 1) ;
1158 %qs_right_temp = 1; % Used for checking the script.
1159
1160 % Set variables.
1161 i_temp = 3 + (i − 1) ∗ (sy − 1) ∗ 4 + (j − 1) ∗ 4 ; % Index of

entry per loop.
1162 var_temp = data {1 ,2}( ni + i + j ∗ sx ) ; % y-coordinate of support.
1163
1164 % Deflection is known.
1165 AY ( i_temp , ncy + 1) = data {1 ,3}( ni + i + j ∗ sx ) − ( ( qs_left_temp

∗ var_temp^4) / (24 ∗ ei ) ) ;
1166
1167 % Deflection left and right of the support are equal.
1168 AY ( i_temp + 1 , ncy + 1) = −((qs_left_temp ∗ var_temp^4) / (24 ∗

ei ) ) + ( ( qs_right_temp ∗ var_temp^4) / (24 ∗ ei ) ) ;
1169
1170 % Rotation left and right of the support are equal.
1171 AY ( i_temp + 2 , ncy + 1) = −((qs_left_temp ∗ var_temp^3) / (6 ∗ ei

) ) + ( ( qs_right_temp ∗ var_temp^3) / (6 ∗ ei ) ) ;
1172
1173 % Moment left and right of the support are equal.
1174 AY ( i_temp + 3 , ncy + 1) = −((qs_left_temp ∗ var_temp^2) / 2) + ( (

qs_right_temp ∗ var_temp^2) / 2) ;
1175 end
1176
1177 % Last support.
1178 % Set variables.
1179 % Representative load on strip.
1180 qs = QY (i ∗ (sy − 1) , 1) ;
1181 %qs = 1; % Used for checking the script.
1182 i_temp = i ∗ (sy − 1) ∗ 4 − 1 ; % Index of first entry per loop.
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1183 var_temp = data {1 ,2}( ni + i + sx ∗ (sy − 1) ) ; % y-coordinate of last
support.

1184
1185 % Deflection is known.
1186 AY ( i_temp , ncy + 1) = data {1 ,3}( ni + i + sx ∗ (sy − 1) ) − ( ( qs ∗

var_temp^4) / (24 ∗ ei ) ) ;
1187
1188 % Moment is known.
1189 AY ( i_temp + 1 , ncy + 1) = 0 + ( ( qs ∗ var_temp^2) / 2) ;
1190
1191 end
1192
1193 % Solve matices. Use sufficient accuracy!!!
1194 CY = rref (AY , 1e−16) ;
1195
1196 %% Create results for strips in y-direction.
1197 % - deflection
1198 % - rotation
1199 % - curvature
1200 % - moment
1201
1202 % Create matrices for results of strips in y-direction.
1203 WY = zeros (ndy , 3) ;
1204 PHIY = zeros (ndy , 3) ;
1205 KY = zeros (ndy , 3) ;
1206 MY = zeros (ndy , 3) ;
1207 VY = zeros (ndy , 3) ;
1208
1209 % Results for strips in y-direction.
1210 for i = 1 : sx
1211 % Bending stiffness of representative strip.
1212 ei = fsy ∗ e ∗ (1/12) ∗ rw ∗ w ∗ t^3;
1213 %ei = 1; % Used for checking the script.
1214
1215 % Representative load on strip.
1216 qs = QY (1 + (i − 1) ∗ (sy − 1) , 1) ;
1217 %qs = 1; % Used for checking the script.
1218
1219 % First entry of strip.
1220 % Set variables.
1221 i_temp = 1 + (i − 1) ∗ (sy − 1) ∗ 4 ; % Index of first entry per loop.
1222 c1_temp = CY ( i_temp , ncy + 1) ; % first constant.
1223 c2_temp = CY ( i_temp + 1 , ncy + 1) ; % second constant.
1224 c3_temp = CY ( i_temp + 2 , ncy + 1) ; % third constant.
1225 c4_temp = CY ( i_temp + 3 , ncy + 1) ; % fourth constant.
1226 var_x_temp = data {1 ,1}( ni + i ) ; % x-coordinate of first support.
1227 var_y_temp = data {1 ,2}( ni + i ) ; % y-coordinate of first support.
1228 i_temp = 1 + (i − 1) ∗ ( ( sy − 1) ∗ dev + 1) ;
1229
1230 %Assign first entries for deflection.
1231 WY ( i_temp , 1 ) = var_x_temp ;
1232 WY ( i_temp , 2 ) = var_y_temp ;
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1233 WY ( i_temp , 3 ) = w_deflection ( var_y_temp , ei , qs , c1_temp , c2_temp ,
c3_temp , c4_temp ) ;

1234
1235 % Assign first entries for rotation.
1236 PHIY ( i_temp , 1 ) = var_x_temp ;
1237 PHIY ( i_temp , 2 ) = var_y_temp ;
1238 PHIY ( i_temp , 3 ) = phi_rotation ( var_y_temp , ei , qs , c1_temp , c2_temp ,

c3_temp ) ;
1239
1240 % Assign first entries for curvature.
1241 KY ( i_temp , 1 ) = var_x_temp ;
1242 KY ( i_temp , 2 ) = var_y_temp ;
1243 KY ( i_temp , 3 ) = k_curvature ( var_y_temp , ei , qs , c1_temp , c2_temp ) ;
1244
1245 % Assign first entries for moment.
1246 MY ( i_temp , 1 ) = var_x_temp ;
1247 MY ( i_temp , 2 ) = var_y_temp ;
1248 MY ( i_temp , 3 ) = m_moment ( var_y_temp , ei , qs , c1_temp , c2_temp ) ;
1249
1250 % Assign first entries for shear.
1251 VY ( i_temp , 1 ) = var_x_temp ;
1252 VY ( i_temp , 2 ) = var_y_temp ;
1253 VY ( i_temp , 3 ) = v_shear ( var_y_temp , ei , qs , c1_temp ) ;
1254
1255 % Other entries of strip.
1256 for j = 1 : sy − 1
1257 % Representative load on strip.
1258 qs = QY ( ( i − 1) ∗ (sy − 1) + j , 1) ;
1259 %qs = 1; % Used for checking the script.
1260
1261 % Set variables.
1262 i_temp = 1 + (i − 1) ∗ (sy − 1) ∗ 4 + (j − 1) ∗ 4 ;
1263 c1_temp = CY ( i_temp , ncy + 1) ; % first constant.
1264 c2_temp = CY ( i_temp + 1 , ncy + 1) ; % second constant.
1265 c3_temp = CY ( i_temp + 2 , ncy + 1) ; % third constant.
1266 c4_temp = CY ( i_temp + 3 , ncy + 1) ; % fourth constant.
1267
1268 % Assign entries.
1269 for k = 1 : dev
1270 % Set variables.
1271 var_x_temp = data {1 ,1}( ni + i + (j − 1) ∗ sx ) ; % x-coordinate

.
1272 var_y_temp = data {1 ,2}( ni + i + (j − 1) ∗ sx ) + k ∗ (d / dev )

; % y-coordinate.
1273 i_temp = 1 + (i − 1) ∗ ( ( sy − 1) ∗ dev + 1) + (j − 1) ∗ dev +

k ;
1274
1275 % Assign entries for deflection.
1276 WY ( i_temp , 1) = var_x_temp ;
1277 WY ( i_temp , 2) = var_y_temp ;
1278 WY ( i_temp , 3) = w_deflection ( var_y_temp , ei , qs , c1_temp ,

c2_temp , c3_temp , c4_temp ) ;
1279
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1280 % Assign entries for rotation.
1281 PHIY ( i_temp , 1) = var_x_temp ;
1282 PHIY ( i_temp , 2) = var_y_temp ;
1283 PHIY ( i_temp , 3) = phi_rotation ( var_y_temp , ei , qs , c1_temp ,

c2_temp , c3_temp ) ;
1284
1285 % Assign entries for curvature.
1286 KY ( i_temp , 1) = var_x_temp ;
1287 KY ( i_temp , 2) = var_y_temp ;
1288 KY ( i_temp , 3) = k_curvature ( var_y_temp , ei , qs , c1_temp ,

c2_temp ) ;
1289
1290 % Assign entries for moment.
1291 MY ( i_temp , 1) = var_x_temp ;
1292 MY ( i_temp , 2) = var_y_temp ;
1293 MY ( i_temp , 3) = m_moment ( var_y_temp , ei , qs , c1_temp , c2_temp

) ;
1294
1295 % Assign entries for shear.
1296 VY ( i_temp , 1) = var_x_temp ;
1297 VY ( i_temp , 2) = var_y_temp ;
1298 VY ( i_temp , 3) = v_shear ( var_y_temp , ei , qs , c1_temp ) ;
1299
1300 end
1301 end
1302 end
1303
1304 %% Create results for support reactions of strips in y-direction.
1305
1306 % Create matrix for support reactions of strips in y-direction.
1307 RY = zeros (st , 3) ;
1308
1309 % Create matrix for total of support reactions per strip.
1310 FY = zeros (sy , 3) ;
1311
1312 % Support reaction for strips in y-direction.
1313 for i = 1 : sx
1314 % Bending stiffness of representative strip.
1315 ei = fsy ∗ e ∗ (1/12) ∗ rw ∗ w ∗ t^3;
1316 %ei = 1; % Used for checking the script.
1317
1318 % First support.
1319 % Representative load on strip.
1320 qs_right_temp = QY (1 + (i − 1) ∗ (sy − 1) , 1) ;
1321 %qs_right_temp = 1; % Used for checking the script.
1322
1323 % Set variables.
1324 i_temp = 1 + (i − 1) ∗ (sy − 1) ∗ 4 ;
1325 c1_right_temp = CY ( i_temp , ncy + 1) ; % Constant of equation right of

first support.
1326 var_x_temp = data {1 ,1}( ni + i ) ; % x-coordinate of first support.
1327 var_y_temp = data {1 ,2}( ni + i ) ; % y-coordinate of first support.
1328 i_temp = 1 + (i − 1) ∗ sy ;
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1329
1330 % Assign first entries.
1331 RY ( i_temp , 1 ) = var_x_temp ;
1332 RY ( i_temp , 2 ) = var_y_temp ;
1333 RY ( i_temp , 3 ) = 0 − v_shear ( var_y_temp , ei , qs_right_temp ,

c1_right_temp ) ;
1334
1335 % Middle supports.
1336 for j = 1 : sy − 2
1337 % Representative load on strip.
1338 qs_left_temp = QY ( ( i − 1) ∗ (sy − 1) + j , 1) ;
1339 %qs_left_temp = 1; % Used for checking the script.
1340 qs_right_temp = QY (1 + (i − 1) ∗ (sy − 1) + j , 1) ;
1341 %qs_right_temp = 1; % Used for checking the script.
1342
1343 % Set variables.
1344 i_temp = 1 + (i − 1) ∗ (sy − 1) ∗ 4 + (j − 1) ∗ 4 ;
1345 c1_left_temp = CY ( i_temp , ncy + 1) ; % Constant of equation left

of support.
1346 c1_right_temp = CY ( i_temp + 4 , ncy + 1) ; % Constant of equation

right of support.
1347 var_x_temp = data {1 ,1}( ni + i + (j − 1) ∗ sx ) ; % x-coordinate of

support.
1348 var_y_temp = data {1 ,2}( ni + 1 + j + (( i − 1) ∗ sx ) ) ; % y-

coordinate of support.
1349 i_temp = 1 + (i − 1) ∗ sy + j ;
1350
1351 % Assign first entries.
1352 RY ( i_temp , 1 ) = var_x_temp ;
1353 RY ( i_temp , 2 ) = var_y_temp ;
1354 RY ( i_temp , 3 ) = v_shear ( var_y_temp , ei , qs_left_temp , c1_left_temp

) − v_shear ( var_y_temp , ei , qs_right_temp , c1_right_temp ) ;
1355 end
1356
1357 % Representative load on strip.
1358 qs_left_temp = QY ( ( i − 1) ∗ (sy − 1) + j , 1) ;
1359 %qs_left_temp = 1; % Used for checking the script.
1360
1361 % Set variables.
1362 i_temp = 1 + (sy − 2) ∗ 4 + (i − 1) ∗ (sy − 1) ∗ 4 ;
1363 c1_left_temp = CY ( i_temp , ncy + 1) ; % Constant of equation left of

last support.
1364 var_x_temp = data {1 ,1}( ni + i + sx ∗ (sy − 1) ) ; % x-coordinate of

support.
1365 var_y_temp = data {1 ,2}( ni + i + sx ∗ (sy − 1) ) ; % y-coordinate of

support.
1366 i_temp = i ∗ sy ;
1367
1368 % Assign first entries.
1369 RY ( i_temp , 1 ) = var_x_temp ;
1370 RY ( i_temp , 2 ) = var_y_temp ;
1371 RY ( i_temp , 3 ) = v_shear ( var_y_temp , ei , qs_left_temp , c1_left_temp ) ;
1372
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1373 % Total of support reactions per strip.
1374 s_temp = 1 + (i − 1) ∗ sy ;
1375 e_temp = sy + (i − 1) ∗ sy ;
1376 FY (i , 2 ) = RY ( s_temp , 2 ) ;
1377 FY (i , 3 ) = sum (RY ( ( s_temp : e_temp ) , 3 ) ) ;
1378 end
1379
1380 %% Create results for shape of strips in x-direction.
1381
1382 % Create matrices for shape of strips in x-direction.
1383 SHX = zeros (ndx , 3) ;
1384 SHY = zeros (ndy , 3) ;
1385
1386 % Position of data points of strips in x-direction.
1387 for i = 1 : ndx
1388 SHX (i , 1) = data {1 ,1}( ni + st + i ) ;
1389 SHX (i , 2) = data {1 ,2}( ni + st + i ) ;
1390 SHX (i , 3) = data {1 ,3}( ni + st + i ) ;
1391 end
1392
1393 % Position of data points of strips in y-direction.
1394 for i = 1 : ndy
1395 SHY (i , 1) = data {1 ,1}( ni + st + i + ndx ) ;
1396 SHY (i , 2) = data {1 ,2}( ni + st + i + ndx ) ;
1397 SHY (i , 3) = data {1 ,3}( ni + st + i + ndx ) ;
1398 end
1399
1400 %% Create results for deviation of strips from shape in x- and y-

direction.
1401
1402 % Create matrices for deviation of strips from shape in x- and y-

direction.
1403 DX = zeros (ndx , 3) ;
1404 DY = zeros (ndy , 3) ;
1405
1406 % Calculate deviation of strips in x-direction.
1407 for i = 1 : ndx
1408 DX (i , 1) = WX (i , 1) ;
1409 DX (i , 2) = WX (i , 2) ;
1410 DX (i , 3) = SHX (i , 3) − WX (i , 3) ;
1411 end
1412
1413 % Calculate deviation of strips in y-direction.
1414 for i = 1 : ndy
1415 DY (i , 1) = WY (i , 1) ;
1416 DY (i , 2) = WY (i , 2) ;
1417 DY (i , 3) = SHY (i , 3) − WY (i , 3) ;
1418 end
1419
1420 %% Create support points.
1421
1422 % Create matrix for support points.
1423 S = zeros (st , 3) ;
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1424
1425 % Position of supports.
1426 for i = 1 : st
1427 S (i , 1 ) = data {1 ,1}( ni + i ) ;
1428 S (i , 2 ) = data {1 ,2}( ni + i ) ;
1429 S (i , 3 ) = data {1 ,3}( ni + i ) ;
1430 end
1431
1432 %% Create results for length of strips in x- and y-direction.
1433
1434 % Create matrices for length of strips in x- and y-direction.
1435 LX = zeros (sy , (sx − 1) ) ;
1436 LY = zeros (sy , (sy − 1) ) ;
1437
1438 % Length of strips in x-direction.
1439 for i = 1 : sy
1440 if i ==1
1441 % Bending stiffness of representative strip.
1442 ei = e ∗ 0 .5 ∗ n ∗ (1/12) ∗ rw ∗ w ∗ t^3;
1443 %ei = 1; % Used for checking the script.
1444
1445 % Representative load on strip.
1446 % Reduction is 0.5.
1447 qs = 0.5 ∗ q ∗ d ;
1448 %qs = 1; % Used for checking the script.
1449
1450 % Calculate length of strips between two supports.
1451 for j = 1 : sx − 1
1452 % Set variables.
1453 i_temp = 1 + (i − 1) ∗ (sx − 1) ∗ 4 + (j − 1) ∗ 4 ;
1454 c1_temp = CX ( i_temp , ncx + 1) ; % first constant.
1455 c2_temp = CX ( i_temp + 1 , ncx + 1) ; % second constant.
1456 c3_temp = CX ( i_temp + 2 , ncx + 1) ; % third constant.
1457
1458 % Assign parameter for length.
1459 l_temp = 0 ;
1460
1461 % Calculate length of strips between two supports.
1462 for k = 1 : dev
1463 % Set variables.
1464 var_xs_temp = data {1 ,1}( ni + (( i − 1) ∗ sx ) + j ) + ( ( k −

1) ∗ d / dev ) ;
1465 var_xe_temp = data {1 ,1}( ni + (( i − 1) ∗ sx ) + j ) + (k ∗ d

/ dev ) ;
1466 s_temp = sqrt (1 + ( phi_rotation ( var_xs_temp , ei , qs ,

c1_temp , c2_temp , c3_temp ) ) ^2) ;
1467 e_temp = sqrt (1 + ( phi_rotation ( var_xe_temp , ei , qs ,

c1_temp , c2_temp , c3_temp ) ) ^2) ;
1468 trapezium = (d / dev ) ∗ ( s_temp + e_temp ) / 2 ;
1469
1470 % Assign length.
1471 l_temp = l_temp + trapezium ;
1472 end
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1473
1474 % Assign length.
1475 LX (i , j ) = l_temp ;
1476 end
1477
1478 elseif i < sy
1479 % Bending stiffness of representative strip.
1480 ei = e ∗ n ∗ (1/12) ∗ rw ∗ w ∗ t^3;
1481 %ei = 1; % Used for checking the script.
1482
1483 % Representative load on strip.
1484 qs = q ∗ d ;
1485 %qs = 1; % Used for checking the script.
1486
1487 % Calculate length of strips between two supports.
1488 for j = 1 : sx − 1
1489 % Set variables.
1490 i_temp = 1 + (i − 1) ∗ (sx − 1) ∗ 4 + (j − 1) ∗ 4 ;
1491 c1_temp = CX ( i_temp , ncx + 1) ; % first constant.
1492 c2_temp = CX ( i_temp + 1 , ncx + 1) ; % second constant.
1493 c3_temp = CX ( i_temp + 2 , ncx + 1) ; % third constant.
1494
1495 % Assign parameter for length.
1496 l_temp = 0 ;
1497
1498 % Calculate length of strips between two supports.
1499 for k = 1 : dev
1500 % Set variables.
1501 var_xs_temp = data {1 ,1}( ni + (( i − 1) ∗ sx ) + j ) + ( ( k −

1) ∗ d / dev ) ;
1502 var_xe_temp = data {1 ,1}( ni + (( i − 1) ∗ sx ) + j ) + (k ∗ d

/ dev ) ;
1503 s_temp = sqrt (1 + ( phi_rotation ( var_xs_temp , ei , qs ,

c1_temp , c2_temp , c3_temp ) ) ^2) ;
1504 e_temp = sqrt (1 + ( phi_rotation ( var_xe_temp , ei , qs ,

c1_temp , c2_temp , c3_temp ) ) ^2) ;
1505 trapezium = (d / dev ) ∗ ( s_temp + e_temp ) / 2 ;
1506
1507 % Assign length.
1508 l_temp = l_temp + trapezium ;
1509 end
1510
1511 % Assign length.
1512 LX (i , j ) = l_temp ;
1513 end
1514
1515 else
1516 % Bending stiffness of representative strip.
1517 ei = e ∗ 0 .5 ∗ n ∗ (1/12) ∗ rw ∗ w ∗ t^3;
1518 %ei = 1; % Used for checking the script.
1519
1520 % Representative load on strip.
1521 % Reduction is 0.5.
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1522 qs = 0.5 ∗ q ∗ d ;
1523 %qs = 1; % Used for checking the script.
1524
1525 % Calculate length of strips between two supports.
1526 for j = 1 : sx − 1
1527 % Set variables.
1528 i_temp = 1 + (i − 1) ∗ (sx − 1) ∗ 4 + (j − 1) ∗ 4 ;
1529 c1_temp = CX ( i_temp , ncx + 1) ; % first constant.
1530 c2_temp = CX ( i_temp + 1 , ncx + 1) ; % second constant.
1531 c3_temp = CX ( i_temp + 2 , ncx + 1) ; % third constant.
1532
1533 % Assign parameter for length.
1534 l_temp = 0 ;
1535
1536 % Calculate length of strips between two supports.
1537 for k = 1 : dev
1538 % Set variables.
1539 var_xs_temp = data {1 ,1}( ni + (( i − 1) ∗ sx ) + j ) + ( ( k −

1) ∗ d / dev ) ;
1540 var_xe_temp = data {1 ,1}( ni + (( i − 1) ∗ sx ) + j ) + (k ∗ d

/ dev ) ;
1541 s_temp = sqrt (1 + ( phi_rotation ( var_xs_temp , ei , qs ,

c1_temp , c2_temp , c3_temp ) ) ^2) ;
1542 e_temp = sqrt (1 + ( phi_rotation ( var_xe_temp , ei , qs ,

c1_temp , c2_temp , c3_temp ) ) ^2) ;
1543 trapezium = (d / dev ) ∗ ( s_temp + e_temp ) / 2 ;
1544
1545 % Assign length.
1546 l_temp = l_temp + trapezium ;
1547 end
1548
1549 % Assign length.
1550 LX (i , j ) = l_temp ;
1551 end
1552 end
1553 end
1554
1555 % Length of strips in y-direction.
1556 for i = 1 : sx
1557 % Bending stiffness of representative strip.
1558 ei = fsy ∗ e ∗ (1/12) ∗ rw ∗ w ∗ t^3;
1559 %ei = 1; % Used for checking the script.
1560
1561 % Calculate length of strips between two supports.
1562 for j = 1 : sy − 1
1563 % Set variables.
1564 qs = QY ( ( i − 1) ∗ (sy − 1) + j , 1) ;
1565 %qs = 1; % Used for checking the script.
1566 i_temp = 1 + (i − 1) ∗ (sy − 1) ∗ 4 + (j − 1) ∗ 4 ;
1567 c1_temp = CY ( i_temp , ncy + 1) ; % first constant.
1568 c2_temp = CY ( i_temp + 1 , ncy + 1) ; % second constant.
1569 c3_temp = CY ( i_temp + 2 , ncy + 1) ; % third constant.
1570
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1571 % Assign parameter for length.
1572 l_temp = 0 ;
1573
1574 % Calculate length of strips between two supports.
1575 for k = 1 : dev
1576 % Set variables.
1577 var_ys_temp = data {1 ,2}( ni + i + (j − 1) ∗ sx ) + ( ( k − 1) ∗ d

/ dev ) ;
1578 var_ye_temp = data {1 ,2}( ni + i + (j − 1) ∗ sx ) + (k ∗ d / dev

) ;
1579 s_temp = sqrt (1 + ( phi_rotation ( var_ys_temp , ei , qs , c1_temp ,

c2_temp , c3_temp ) ) ^2) ;
1580 e_temp = sqrt (1 + ( phi_rotation ( var_ye_temp , ei , qs , c1_temp ,

c2_temp , c3_temp ) ) ^2) ;
1581 trapezium = (d / dev ) ∗ ( s_temp + e_temp ) / 2 ;
1582
1583 % Assign length.
1584 l_temp = l_temp + trapezium ;
1585 end
1586
1587 % Assign length.
1588 LY (i , j ) = l_temp ;
1589 end
1590 end
1591
1592
1593 %% Create results for horizontal displacement of supports in x- and y-

direction.
1594
1595 % Create matrices for horizontal displacement of supports in x- and y-

direction.
1596 SDX = zeros (st , 3) ;
1597 SDY = zeros (st , 3) ;
1598
1599 % Horizontal displacement in x-direction.
1600 for i = 1 : sy
1601 % For every support on a strip in x-direction.
1602 for j = 1 : sx
1603 % Index for middle node.
1604 i_m = (sx + 1) / 2 ;
1605
1606 % Fill x- and y-position of support.
1607 SDX (j + (i − 1) ∗ sx , 1) = data {1 ,1}( ni + j + (i − 1) ∗ sx ) ;
1608 SDX (j + (i − 1) ∗ sx , 2) = data {1 ,2}( ni + j + (i − 1) ∗ sx ) ;
1609
1610 % Support x-position smaller then x-position middle node.
1611 if (j < i_m )
1612 for k = 1 : i_m − j
1613 SDX (j + (i − 1) ∗ sx , 3) = SDX (j + (i − 1) ∗ sx , 3) + (LX

(i , i_m − k ) − d ) ;
1614 end
1615 end
1616
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1617 % Support x-position larger then x-position middle node.
1618 if (j > i_m )
1619 for k = 1 : j − i_m
1620 SDX (j + (i − 1) ∗ sx , 3) = ( SDX (j + (i − 1) ∗ sx , 3) − (

LX (i , i_m + k − 1) − d ) ) ;
1621 end
1622 end
1623 end
1624 end
1625
1626 % Horizontal displacement in y-direction.
1627 for i = 1 : sx
1628 % For every support on a strip in y-direction.
1629 for j = 1 : sy
1630 % Index for middle node.
1631 i_m = (sy + 1) / 2 ;
1632
1633 % Fill x- and y-position of support.
1634 SDY (j + (i − 1) ∗ sy , 1) = data {1 ,1}( ni + i + (j − 1) ∗ sx ) ;
1635 SDY (j + (i − 1) ∗ sy , 2) = data {1 ,2}( ni + i + (j − 1) ∗ sx ) ;
1636
1637 % Support y-position smaller then y-position middle node.
1638 if (j < i_m )
1639 for k = 1 : i_m − j
1640 SDY (j + (i − 1) ∗ sy , 3) = SDY (j + (i − 1) ∗ sy , 3) + (LY

(i , i_m − k ) − d ) ;
1641 end
1642 end
1643
1644 % Support y-position larger then x-position middle node.
1645 if (j > i_m )
1646 for k = 1 : j − i_m
1647 SDY (j + (i − 1) ∗ sy , 3) = ( SDY (j + (i − 1) ∗ sy , 3) − (

LY (i , i_m + k − 1) − d ) ) ;
1648 end
1649 end
1650 end
1651 end
1652
1653 %% Create results for angle at supports in x- and y-direction.
1654
1655 % Create matrices for angle at supports in x- and y-direction.
1656 SAX = zeros (st , 3) ;
1657 SAY = zeros (st , 3) ;
1658
1659 % Angle at supports in x-direction.
1660 for i = 1 : sy
1661 if i == 1
1662 % Bending stiffness of representative strip.
1663 ei = e ∗ 0 .5 ∗ n ∗ (1/12) ∗ rw ∗ w ∗ t^3;
1664 %ei = 1; % Used for checking the script.
1665
1666 % Representative load on strip.
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1667 % Reduction is 0.5.
1668 qs = 0.5 ∗ q ∗ d ;
1669 %qs = 1; % Used for checking the script.
1670
1671 % First entries.
1672 % Set variables.
1673 i_temp = 1 + (i − 1) ∗ (sx − 1) ∗ 4 ;
1674 c1_temp = CX ( i_temp , ncx + 1) ; % first constant.
1675 c2_temp = CX ( i_temp + 1 , ncx + 1) ; % second constant.
1676 c3_temp = CX ( i_temp + 2 , ncx + 1) ; % third constant.
1677 var_x_temp = data {1 ,1}( ni + 1 + (i − 1) ∗ sx ) ; % x-coordinate of

first support.
1678 var_y_temp = data {1 ,2}( ni + 1 + (i − 1) ∗ sx ) ; % y-coordinate of

first support.
1679 i_temp = 1 + (i − 1) ∗ sx ;
1680
1681 % Assign first entries.
1682 SAX ( i_temp , 1 ) = var_x_temp ;
1683 SAX ( i_temp , 2 ) = var_y_temp ;
1684 SAX ( i_temp , 3 ) = phi_rotation ( var_x_temp , ei , qs , c1_temp , c2_temp

, c3_temp ) ;
1685
1686 % Other entries.
1687 for j = 1 : sx − 1
1688 % Set variables.
1689 i_temp = 1 + (i − 1) ∗ (sx − 1) ∗ 4 + (j − 1) ∗ 4 ;
1690 c1_temp = CX ( i_temp , ncx + 1) ; % first constant.
1691 c2_temp = CX ( i_temp + 1 , ncx + 1) ; % second constant.
1692 c3_temp = CX ( i_temp + 2 , ncx + 1) ; % third constant.
1693 var_x_temp = data {1 ,1}( ni + 1 + j + (i − 1) ∗ sx ) ; % x-

coordinate of support.
1694 var_y_temp = data {1 ,2}( ni + 1 + j + (i − 1) ∗ sx ) ; % y-

coordinate of support.
1695 i_temp = 1 + j + (i − 1) ∗ sx ;
1696
1697 % Assign entries.
1698 SAX ( i_temp , 1) = var_x_temp ;
1699 SAX ( i_temp , 2) = var_y_temp ;
1700 SAX ( i_temp , 3) = phi_rotation ( var_x_temp , ei , qs , c1_temp ,

c2_temp , c3_temp ) ;
1701 end
1702
1703 elseif i < sy
1704 % Bending stiffness of representative strip.
1705 ei = e ∗ n ∗ (1/12) ∗ rw ∗ w ∗ t^3;
1706 %ei = 1; % Used for checking the script.
1707
1708 % Representative load on strip.
1709 qs = q ∗ d ;
1710 %qs = 1; % Used for checking the script.
1711
1712 % First entries.
1713 % Set variables.
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1714 i_temp = 1 + (i − 1) ∗ (sx − 1) ∗ 4 ;
1715 c1_temp = CX ( i_temp , ncx + 1) ; % first constant.
1716 c2_temp = CX ( i_temp + 1 , ncx + 1) ; % second constant.
1717 c3_temp = CX ( i_temp + 2 , ncx + 1) ; % third constant.
1718 var_x_temp = data {1 ,1}( ni + 1 + (i − 1) ∗ sx ) ; % x-coordinate of

first support.
1719 var_y_temp = data {1 ,2}( ni + 1 + (i − 1) ∗ sx ) ; % y-coordinate of

first support.
1720 i_temp = 1 + (i − 1) ∗ sx ;
1721
1722 % Assign first entries.
1723 SAX ( i_temp , 1 ) = var_x_temp ;
1724 SAX ( i_temp , 2 ) = var_y_temp ;
1725 SAX ( i_temp , 3 ) = phi_rotation ( var_x_temp , ei , qs , c1_temp , c2_temp

, c3_temp ) ;
1726
1727 % Other entries.
1728 for j = 1 : sx − 1
1729 % Set variables.
1730 i_temp = 1 + (i − 1) ∗ (sx − 1) ∗ 4 + (j − 1) ∗ 4 ;
1731 c1_temp = CX ( i_temp , ncx + 1) ; % first constant.
1732 c2_temp = CX ( i_temp + 1 , ncx + 1) ; % second constant.
1733 c3_temp = CX ( i_temp + 2 , ncx + 1) ; % third constant.
1734 var_x_temp = data {1 ,1}( ni + 1 + j + (i − 1) ∗ sx ) ; % x-

coordinate of support.
1735 var_y_temp = data {1 ,2}( ni + 1 + j + (i − 1) ∗ sx ) ; % y-

coordinate of support.
1736 i_temp = 1 + j + (i − 1) ∗ sx ;
1737
1738 % Assign entries.
1739 SAX ( i_temp , 1) = var_x_temp ;
1740 SAX ( i_temp , 2) = var_y_temp ;
1741 SAX ( i_temp , 3) = phi_rotation ( var_x_temp , ei , qs , c1_temp ,

c2_temp , c3_temp ) ;
1742 end
1743
1744 else
1745 % Bending stiffness of representative strip.
1746 ei = e ∗ 0 .5 ∗ n ∗ (1/12) ∗ rw ∗ w ∗ t^3;
1747 %ei = 1; % Used for checking the script.
1748
1749 % Representative load on strip.
1750 % Reduction is 0.5.
1751 qs = 0.5 ∗ q ∗ d ;
1752 %qs = 1; % Used for checking the script.
1753
1754 % First entries.
1755 % Set variables.
1756 i_temp = 1 + (i − 1) ∗ (sx − 1) ∗ 4 ;
1757 c1_temp = CX ( i_temp , ncx + 1) ; % first constant.
1758 c2_temp = CX ( i_temp + 1 , ncx + 1) ; % second constant.
1759 c3_temp = CX ( i_temp + 2 , ncx + 1) ; % third constant.
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1760 var_x_temp = data {1 ,1}( ni + 1 + (i − 1) ∗ sx ) ; % x-coordinate of
first support.

1761 var_y_temp = data {1 ,2}( ni + 1 + (i − 1) ∗ sx ) ; % y-coordinate of
first support.

1762 i_temp = 1 + (i − 1) ∗ sx ;
1763
1764 % Assign first entries.
1765 SAX ( i_temp , 1 ) = var_x_temp ;
1766 SAX ( i_temp , 2 ) = var_y_temp ;
1767 SAX ( i_temp , 3 ) = phi_rotation ( var_x_temp , ei , qs , c1_temp , c2_temp

, c3_temp ) ;
1768
1769 % Other entries.
1770 for j = 1 : sx − 1
1771 % Set variables.
1772 i_temp = 1 + (i − 1) ∗ (sx − 1) ∗ 4 + (j − 1) ∗ 4 ;
1773 c1_temp = CX ( i_temp , ncx + 1) ; % first constant.
1774 c2_temp = CX ( i_temp + 1 , ncx + 1) ; % second constant.
1775 c3_temp = CX ( i_temp + 2 , ncx + 1) ; % third constant.
1776 var_x_temp = data {1 ,1}( ni + 1 + j + (i − 1) ∗ sx ) ; % x-

coordinate of support.
1777 var_y_temp = data {1 ,2}( ni + 1 + j + (i − 1) ∗ sx ) ; % y-

coordinate of support.
1778 i_temp = 1 + j + (i − 1) ∗ sx ;
1779
1780 % Assign entries.
1781 SAX ( i_temp , 1) = var_x_temp ;
1782 SAX ( i_temp , 2) = var_y_temp ;
1783 SAX ( i_temp , 3) = phi_rotation ( var_x_temp , ei , qs , c1_temp ,

c2_temp , c3_temp ) ;
1784 end
1785 end
1786 end
1787
1788 % Angle at supports in y-direction.
1789 for i = 1 : sx
1790 % For the first support.
1791 % Bending stiffness of representative strip.
1792 ei = fsy ∗ e ∗ (1/12) ∗ rw ∗ w ∗ t^3;
1793 %ei = 1; % Used for checking the script.
1794
1795 % Representative load on strip.
1796 qs = QY (1 + (i − 1) ∗ (sy − 1) , 1) ;
1797 %qs = 1; % Used for checking the script.
1798
1799 % Set variables.
1800 i_temp = 1 + (i − 1) ∗ (sy − 1) ∗ 4 ; % Index of first entry per loop.
1801 c1_temp = CY ( i_temp , ncy + 1) ; % first constant.
1802 c2_temp = CY ( i_temp + 1 , ncy + 1) ; % second constant.
1803 c3_temp = CY ( i_temp + 2 , ncy + 1) ; % third constant.
1804 var_x_temp = data {1 ,1}( ni + i ) ; % x-coordinate of first support.
1805 var_y_temp = data {1 ,2}( ni + i ) ; % y-coordinate of first support.
1806 i_temp = 1 + (i − 1) ∗ sy ;
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1807 %i_temp = 1 + (i - 1) * ((sy - 1) * dev + 1);
1808
1809 % Assign first entries.
1810 SAY ( i_temp , 1 ) = var_x_temp ;
1811 SAY ( i_temp , 2 ) = var_y_temp ;
1812 SAY ( i_temp , 3 ) = phi_rotation ( var_y_temp , ei , qs , c1_temp , c2_temp ,

c3_temp ) ;
1813
1814 % For the other supports.
1815 for j = 1 : sy − 1
1816 % Representative load on strip.
1817 qs = QY ( ( i − 1) ∗ (sy − 1) + j , 1) ;
1818 %qs = 1; % Used for checking the script.
1819
1820 % Set variables.
1821 i_temp = 1 + (i − 1) ∗ (sy − 1) ∗ 4 + (j − 1) ∗ 4 ;
1822 c1_temp = CY ( i_temp , ncy + 1) ; % first constant.
1823 c2_temp = CY ( i_temp + 1 , ncy + 1) ; % second constant.
1824 c3_temp = CY ( i_temp + 2 , ncy + 1) ; % third constant.
1825 c4_temp = CY ( i_temp + 3 , ncy + 1) ; % fourth constant.
1826 var_x_temp = data {1 ,1}( ni + i + j ∗ sx ) ; % x-coordinate of

support.
1827 var_y_temp = data {1 ,2}( ni + i + j ∗ sx ) ; % y-coordinate of

support.
1828 i_temp = 1 + (i − 1) ∗ sy + j ;
1829
1830 % Assign entries.
1831 SAY ( i_temp , 1) = var_x_temp ;
1832 SAY ( i_temp , 2) = var_y_temp ;
1833 SAY ( i_temp , 3) = phi_rotation ( var_y_temp , ei , qs , c1_temp ,

c2_temp , c3_temp ) ;
1834 end
1835 end
1836
1837
1838 %% Create results for compensation at supports in x- and y-direction.
1839
1840 % Create matrices for compensation at supports in x- and y-direction.
1841 SCX = zeros (st , 3 ) ;
1842 SCY = zeros (st , 3 ) ;
1843
1844 % Compensation in x-direction.
1845 for i = 1 : sy
1846 % For every support on a strip in x-direction.
1847 for j = 1 : sx
1848 % Index for middle node.
1849 i_m = (sx + 1) / 2 ;
1850
1851 % Fill x- and y-position of support.
1852 SCX (j + (i − 1) ∗ sx , 1) = data {1 ,1}( ni + j + (i − 1) ∗ sx ) ;
1853 SCX (j + (i − 1) ∗ sx , 2) = data {1 ,2}( ni + j + (i − 1) ∗ sx ) ;
1854
1855 % Support x-position smaller then x-position middle node.
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1856 if (j < i_m )
1857 SCX (j + (i − 1) ∗ sx , 3) = hc_compensation(−SAX (j + (i − 1) ∗

sx , 3) , −SDX (j + (i − 1) ∗ sx , 3) , l1 , l2 ) ;
1858 end
1859
1860 % Support x-position smaller then x-position middle node.
1861 if (j > i_m )
1862 SCX (j + (i − 1) ∗ sx , 3) = hc_compensation ( SAX (j + (i − 1) ∗

sx , 3) , SDX (j + (i − 1) ∗ sx , 3) , l1 , l2 ) ;
1863 end
1864 end
1865 end
1866
1867 % Compensation in y-direction.
1868 for i = 1 : sx
1869 % For every support on a strip in y-direction.
1870 for j = 1 : sy
1871 % Index for middle node.
1872 i_m = (sy + 1) / 2 ;
1873
1874 % Fill x- and y-position of support.
1875 SCY (j + (i − 1) ∗ sy , 1) = data {1 ,1}( ni + i + (j − 1) ∗ sx ) ;
1876 SCY (j + (i − 1) ∗ sy , 2) = data {1 ,2}( ni + i + (j − 1) ∗ sx ) ;
1877
1878 % Support y-position smaller then y-position middle node.
1879 if (j < i_m )
1880 SCY (j + (i − 1) ∗ sy , 3) = hc_compensation(−SAY (j + (i − 1) ∗

sy , 3) , −SDY (j + (i − 1) ∗ sy , 3) , l1 , l2 ) ;
1881 end
1882
1883 % Support x-position smaller then y-position middle node.
1884 if (j > i_m )
1885 SCY (j + (i − 1) ∗ sy , 3) = hc_compensation ( SAY (j + (i − 1) ∗

sy , 3) , SDY (j + (i − 1) ∗ sy , 3) , l1 , l2 ) ;
1886 end
1887 end
1888 end
1889
1890 % Combine compensation in x- and y-direction.
1891 % Create matrix for combined compensation.
1892 SC = zeros (st , 3 ) ;
1893 for i = 1 : sy
1894 for j = 1 : sx
1895 SC (j + (i − 1) ∗ sx , 1) = SCX (j + (i − 1) ∗ sx , 1) ;
1896 SC (j + (i − 1) ∗ sx , 2) = SCX (j + (i − 1) ∗ sx , 2) ;
1897 SC (j + (i − 1) ∗ sx , 3) = SCX (j + (i − 1) ∗ sx , 3) + SCY (i + (j −

1) ∗ sy , 3) ;
1898 end
1899 end
1900
1901 %% PART THREE Presenting results
1902 % Plot results for shape of strips in x- and y-direction.
1903
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1904 % Shape of strips in x- and y-direction.
1905 subplot ( 4 , 4 , 1 )
1906
1907 % Plot results shape of strips in x-direction.
1908 for i = 1 : sy
1909 s_temp = 1 + (i − 1) ∗ ( ( sx − 1) ∗ dev + 1) ;
1910 e_temp = i ∗ ( ( sx − 1) ∗ dev + 1) ;
1911 plot3 ( SHX ( ( s_temp : e_temp ) , 1 ) , SHX ( ( s_temp : e_temp ) , 2 ) , SHX ( ( s_temp

: e_temp ) , 3 ) , ’black’ ) ;
1912 grid on ;
1913 hold on ;
1914 end
1915
1916 % Plot results shape of strips in x-direction.
1917 for i = 1 : sx
1918 s_temp = 1 + (i − 1) ∗ ( ( sy − 1) ∗ dev + 1) ;
1919 e_temp = i ∗ ( ( sy − 1) ∗ dev + 1) ;
1920 plot3 ( SHY ( ( s_temp : e_temp ) , 1 ) , SHY ( ( s_temp : e_temp ) , 2 ) , SHY ( ( s_temp

: e_temp ) , 3 ) , ’black’ ) ;
1921 grid on ;
1922 hold on ;
1923 end
1924
1925 % Set axes range.
1926 axis ( [ min ( SHX ( : , 1 ) ) max ( SHX ( : , 1 ) ) min ( SHX ( : , 2 ) ) max ( SHX ( : , 2 ) ) min ( SHX

( : , 3 ) ) max ( SHX ( : , 3 ) ) ] )
1927
1928 hold off
1929
1930 title (’Shape [mm]’ )
1931
1932
1933 %% Plot results for deflection of strips in x- and y-direction and

supports.
1934
1935 % Deflection of strips in x-direction.
1936 subplot ( 4 , 4 , 2 )
1937
1938 % Plot results.
1939 for i = 1 : sy
1940 s_temp = 1 + (i − 1) ∗ ( ( sx − 1) ∗ dev + 1) ;
1941 e_temp = i ∗ ( ( sx − 1) ∗ dev + 1) ;
1942 plot3 (WX ( ( s_temp : e_temp ) , 1 ) , WX ( ( s_temp : e_temp ) , 2 ) , WX ( ( s_temp :

e_temp ) , 3 ) , ’black’ ) ;
1943 grid on ;
1944 hold on ;
1945 end
1946
1947 % Deflection of strips in y-direction.
1948 subplot ( 4 , 4 , 2 )
1949
1950 % Plot results.
1951 for i = 1 : sx
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1952 s_temp = 1 + (i − 1) ∗ ( ( sy − 1) ∗ dev + 1) ;
1953 e_temp = i ∗ ( ( sy − 1) ∗ dev + 1) ;
1954 plot3 (WY ( ( s_temp : e_temp ) , 1 ) , WY ( ( s_temp : e_temp ) , 2 ) , WY ( ( s_temp :

e_temp ) , 3 ) , ’black’ ) ;
1955 grid on ;
1956 hold on ;
1957 end
1958
1959 % Supports
1960 scatter3 (S ( : , 1 ) , S ( : , 2 ) , S ( : , 3 ) , 50 , ’filled’ , ’black’ ) ;
1961
1962 % Set axes range.
1963 axis ( [ min (WX ( : , 1 ) ) max (WX ( : , 1 ) ) min (WX ( : , 2 ) ) max (WX ( : , 2 ) ) min (WX ( : , 3 ) )

max (WX ( : , 3 ) ) ] )
1964
1965 hold off ;
1966
1967 title (’Deflection and supports [mm]’ )
1968
1969 %% Plot results for deviation of strips in x- and y-direction and

supports.
1970
1971 % Deviation of strips in x-direction.
1972 subplot ( 4 , 4 , 3 )
1973
1974 % Plot results.
1975 for i = 1 : sy
1976 s_temp = 1 + (i − 1) ∗ ( ( sx − 1) ∗ dev + 1) ;
1977 e_temp = i ∗ ( ( sx − 1) ∗ dev + 1) ;
1978 plot3 (DX ( ( s_temp : e_temp ) , 1 ) , DX ( ( s_temp : e_temp ) , 2 ) , DX ( ( s_temp :

e_temp ) , 3 ) , ’black’ ) ;
1979 grid on ;
1980 hold on ;
1981 end
1982
1983 % Plot lines between results and zero.
1984 for i = 1 : sy
1985 s_temp = 1 + (i − 1) ∗ ( ( sx − 1) ∗ dev + 1) ;
1986 e_temp = i ∗ ( ( sx − 1) ∗ dev + 1) ;
1987 stem3 (DX ( ( s_temp : e_temp ) , 1 ) , DX ( ( s_temp : e_temp ) , 2 ) , DX ( ( s_temp :

e_temp ) , 3 ) , ’Color’ , [ 0 . 8 0 . 8 0 . 8 ] , ’Marker’ , ’none’ ) ;
1988 grid on ;
1989 hold on ;
1990 end
1991
1992 % Set axes range.
1993 axis ( [ min (DX ( : , 1 ) ) max (DX ( : , 1 ) ) min (DX ( : , 2 ) ) max (DX ( : , 2 ) ) min (DX ( : , 3 ) )

max (DX ( : , 3 ) ) ] )
1994
1995 hold off
1996
1997 title (’Deviation x-direction [mm]’ )
1998
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1999 % Deviation of strips in y-direction.
2000 subplot ( 4 , 4 , 4 )
2001
2002 % Plot results.
2003 for i = 1 : sx
2004 s_temp = 1 + (i − 1) ∗ ( ( sy − 1) ∗ dev + 1) ;
2005 e_temp = i ∗ ( ( sy − 1) ∗ dev + 1) ;
2006 plot3 (DY ( ( s_temp : e_temp ) , 1 ) , DY ( ( s_temp : e_temp ) , 2 ) , DY ( ( s_temp :

e_temp ) , 3 ) , ’black’ ) ;
2007 grid on ;
2008 hold on ;
2009 end
2010
2011 % Plot lines between results and zero.
2012 for i = 1 : sx
2013 s_temp = 1 + (i − 1) ∗ ( ( sy − 1) ∗ dev + 1) ;
2014 e_temp = i ∗ ( ( sy − 1) ∗ dev + 1) ;
2015 stem3 (DY ( ( s_temp : e_temp ) , 1 ) , DY ( ( s_temp : e_temp ) , 2 ) , DY ( ( s_temp :

e_temp ) , 3 ) , ’Color’ , [ 0 . 8 0 . 8 0 . 8 ] , ’Marker’ , ’none’ ) ;
2016 grid on ;
2017 hold on ;
2018 end
2019
2020 % Set axes range.
2021 axis ( [ min (DY ( : , 1 ) ) max (DY ( : , 1 ) ) min (DY ( : , 2 ) ) max (DY ( : , 2 ) ) min (DY ( : , 3 ) )

max (DY ( : , 3 ) ) ] )
2022
2023 hold off
2024
2025 title (’Deviation y-direction [mm]’ )
2026
2027 %% Plot results for rotation of strips in x- and y-direction.
2028
2029 % Rotation of strips in x-direction.
2030 subplot ( 4 , 4 , 5 )
2031
2032 % Plot results.
2033 for i = 1 : sy
2034 s_temp = 1 + (i − 1) ∗ ( ( sx − 1) ∗ dev + 1) ;
2035 e_temp = i ∗ ( ( sx − 1) ∗ dev + 1) ;
2036 plot3 ( PHIX ( ( s_temp : e_temp ) , 1 ) , PHIX ( ( s_temp : e_temp ) , 2 ) , PHIX ( (

s_temp : e_temp ) , 3 ) , ’black’ ) ;
2037 grid on ;
2038 hold on ;
2039 end
2040
2041 % Plot lines between results and zero.
2042 for i = 1 : sy
2043 s_temp = 1 + (i − 1) ∗ ( ( sx − 1) ∗ dev + 1) ;
2044 e_temp = i ∗ ( ( sx − 1) ∗ dev + 1) ;
2045 stem3 ( PHIX ( ( s_temp : e_temp ) , 1 ) , PHIX ( ( s_temp : e_temp ) , 2 ) , PHIX ( (

s_temp : e_temp ) , 3 ) , ’Color’ , [ 0 . 8 0 .8 0 . 8 ] , ’Marker’ , ’none’ ) ;
2046 grid on ;
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2047 hold on ;
2048 end
2049
2050 % Set axes range.
2051 axis ( [ min ( PHIX ( : , 1 ) ) max ( PHIX ( : , 1 ) ) min ( PHIX ( : , 2 ) ) max ( PHIX ( : , 2 ) ) min (

PHIX ( : , 3 ) ) max ( PHIX ( : , 3 ) ) ] )
2052
2053 hold off
2054
2055 title (’Rotation x-direction [rad]’ )
2056
2057 % Rotation of strips in y-direction.
2058 subplot ( 4 , 4 , 6 )
2059
2060 % Plot results.
2061 for i = 1 : sx
2062 s_temp = 1 + (i − 1) ∗ ( ( sy − 1) ∗ dev + 1) ;
2063 e_temp = i ∗ ( ( sy − 1) ∗ dev + 1) ;
2064 plot3 ( PHIY ( ( s_temp : e_temp ) , 1 ) , PHIY ( ( s_temp : e_temp ) , 2 ) , PHIY ( (

s_temp : e_temp ) , 3 ) , ’black’ ) ;
2065 grid on ;
2066 hold on ;
2067 end
2068
2069 % Plot lines between results and zero.
2070 for i = 1 : sx
2071 s_temp = 1 + (i − 1) ∗ ( ( sy − 1) ∗ dev + 1) ;
2072 e_temp = i ∗ ( ( sy − 1) ∗ dev + 1) ;
2073 stem3 ( PHIY ( ( s_temp : e_temp ) , 1 ) , PHIY ( ( s_temp : e_temp ) , 2 ) , PHIY ( (

s_temp : e_temp ) , 3 ) , ’Color’ , [ 0 . 8 0 . 8 0 . 8 ] , ’Marker’ , ’none’ ) ;
2074 grid on ;
2075 hold on ;
2076 end
2077
2078 % Set axes range.
2079 axis ( [ min ( PHIY ( : , 1 ) ) max ( PHIY ( : , 1 ) ) min ( PHIY ( : , 2 ) ) max ( PHIY ( : , 2 ) ) min (

PHIY ( : , 3 ) ) max ( PHIY ( : , 3 ) ) ] )
2080
2081 hold off
2082 title (’Rotation y-direction [rad]’ )
2083
2084 %% Plot results for curvature of strips in x- and y-direction.
2085
2086 % Curvature of strips in x-direction.
2087 subplot ( 4 , 4 , 7 )
2088
2089 % Plot results.
2090 for i = 1 : sy
2091 s_temp = 1 + (i − 1) ∗ ( ( sx − 1) ∗ dev + 1) ;
2092 e_temp = i ∗ ( ( sx − 1) ∗ dev + 1) ;
2093 plot3 (KX ( ( s_temp : e_temp ) , 1 ) , KX ( ( s_temp : e_temp ) , 2 ) , KX ( ( s_temp :

e_temp ) , 3 ) , ’black’ ) ;
2094 grid on ;
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2095 hold on ;
2096 end
2097
2098 % Plot lines between results and zero.
2099 for i = 1 : sy
2100 s_temp = 1 + (i − 1) ∗ ( ( sx − 1) ∗ dev + 1) ;
2101 e_temp = i ∗ ( ( sx − 1) ∗ dev + 1) ;
2102 stem3 (KX ( ( s_temp : e_temp ) , 1 ) , KX ( ( s_temp : e_temp ) , 2 ) , KX ( ( s_temp :

e_temp ) , 3 ) , ’Color’ , [ 0 . 8 0 . 8 0 . 8 ] , ’Marker’ , ’none’ ) ;
2103 grid on ;
2104 hold on ;
2105 end
2106
2107 % Set axes range.
2108 axis ( [ min (KX ( : , 1 ) ) max (KX ( : , 1 ) ) min (KX ( : , 2 ) ) max (KX ( : , 2 ) ) min (KX ( : , 3 ) )

max (KX ( : , 3 ) ) ] )
2109
2110 hold off
2111
2112 title (’Curvature x-direction [1/mm]’ )
2113
2114 % Curvature of strips in y-direction.
2115 subplot ( 4 , 4 , 8 )
2116
2117 % Plot results.
2118 for i = 1 : sx
2119 s_temp = 1 + (i − 1) ∗ ( ( sy − 1) ∗ dev + 1) ;
2120 e_temp = i ∗ ( ( sy − 1) ∗ dev + 1) ;
2121 plot3 (KY ( ( s_temp : e_temp ) , 1 ) , KY ( ( s_temp : e_temp ) , 2 ) , KY ( ( s_temp :

e_temp ) , 3 ) , ’black’ ) ;
2122 grid on ;
2123 hold on ;
2124 end
2125
2126 % Plot lines between results and zero.
2127 for i = 1 : sx
2128 s_temp = 1 + (i − 1) ∗ ( ( sy − 1) ∗ dev + 1) ;
2129 e_temp = i ∗ ( ( sy − 1) ∗ dev + 1) ;
2130 stem3 (KY ( ( s_temp : e_temp ) , 1 ) , KY ( ( s_temp : e_temp ) , 2 ) , KY ( ( s_temp :

e_temp ) , 3 ) , ’Color’ , [ 0 . 8 0 . 8 0 . 8 ] , ’Marker’ , ’none’ ) ;
2131 grid on ;
2132 hold on ;
2133 end
2134
2135 % Set axes range.
2136 axis ( [ min (KY ( : , 1 ) ) max (KY ( : , 1 ) ) min (KY ( : , 2 ) ) max (KY ( : , 2 ) ) min (KY ( : , 3 ) )

max (KY ( : , 3 ) ) ] )
2137
2138 hold off
2139
2140 title (’Curvature y-direction [1/mm]’ )
2141
2142 %% Plot results for moment of strips in x-direction.
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2143
2144 % Moment of strips in x-direction.
2145 subplot ( 4 , 4 , 9 )
2146
2147 for i = 1 : sy
2148 s_temp = 1 + (i − 1) ∗ ( ( sx − 1) ∗ dev + 1) ;
2149 e_temp = i ∗ ( ( sx − 1) ∗ dev + 1) ;
2150 plot3 (MX ( ( s_temp : e_temp ) , 1 ) , MX ( ( s_temp : e_temp ) , 2 ) , MX ( ( s_temp :

e_temp ) , 3 ) , ’black’ ) ;
2151 grid on ;
2152 hold on ;
2153 end
2154
2155 hold off
2156
2157 title (’Moment x-direction [Nmm]’ )
2158
2159 % Moment of strips in y-direction.
2160 subplot (4 , 4 , 10 )
2161
2162 for i = 1 : sx
2163 s_temp = 1 + (i − 1) ∗ ( ( sy − 1) ∗ dev + 1) ;
2164 e_temp = i ∗ ( ( sy − 1) ∗ dev + 1) ;
2165 plot3 (MY ( ( s_temp : e_temp ) , 1 ) , MY ( ( s_temp : e_temp ) , 2 ) , MY ( ( s_temp :

e_temp ) , 3 ) , ’black’ ) ;
2166 grid on ;
2167 hold on ;
2168 end
2169
2170 hold off
2171
2172 title (’Moment y-direction [Nmm]’ )
2173
2174 %% Plot results for shear of strips in x-direction.
2175
2176 % Shear of strips in x-direction.
2177 subplot (4 , 4 , 11 )
2178
2179 for i = 1 : sy
2180 s_temp = 1 + (i − 1) ∗ ( ( sx − 1) ∗ dev + 1) ;
2181 e_temp = i ∗ ( ( sx − 1) ∗ dev + 1) ;
2182 plot3 (VX ( ( s_temp : e_temp ) , 1 ) , VX ( ( s_temp : e_temp ) , 2 ) , VX ( ( s_temp :

e_temp ) , 3 ) , ’black’ ) ;
2183 grid on ;
2184 hold on ;
2185 end
2186
2187 hold off
2188
2189 title (’Shear x-direction [N]’ )
2190
2191 % Shear of strips in y-direction.
2192 subplot (4 , 4 , 12 )
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2193
2194 for i = 1 : sx
2195 s_temp = 1 + (i − 1) ∗ ( ( sy − 1) ∗ dev + 1) ;
2196 e_temp = i ∗ ( ( sy − 1) ∗ dev + 1) ;
2197 plot3 (VY ( ( s_temp : e_temp ) , 1 ) , VY ( ( s_temp : e_temp ) , 2 ) , VY ( ( s_temp :

e_temp ) , 3 ) , ’black’ ) ;
2198 grid on ;
2199 hold on ;
2200 end
2201
2202 hold off
2203
2204 title (’Shear y-direction [N]’ )
2205
2206 %% Create messages for checks of vertical forces.
2207
2208 disp (’CHECKS VERTICAL FORCES:’ ) ;
2209 disp ( [ ’Total load: ’ , num2str (q ∗ (sx − 1) ∗ (sy − 1) ∗ d^2) , ’ [N]’ ] ) ;
2210 disp ( [ ’Sum of support reactions top strips: ’ , num2str ( sum (FX ( : , 3 ) ) ) , ’ [

N]’ ] ) ;
2211 disp ( [ ’Sum of support reactions lower strips: ’ , num2str ( sum (FY ( : , 3 ) ) ) , ’

[N]’ ] ) ;
2212 disp (’(Note: when q = 0 a load of 1e-16 [N/mm] is used!!!)’ ) ;
2213 disp (’ ’ )
2214
2215 %% Plot results for compensation of supports.
2216
2217 subplot (4 , 4 , 13 )
2218
2219 scatter3 (SC ( : , 1 ) , SC ( : , 2 ) , SC ( : , 3 ) , 50 , ’filled’ , ’black’ ) ;
2220
2221 title (’Compensation of supports [mm]’ )
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