Personal information Marijn Soeterbroek (4367626) #### Studio Architectural Engineering Design tutor: Pieter Stoutjesdijk Research tutor: Martin Tenpierik # P2 | Graduation Studio aE ## **Problem statement** Design question Research question Design criteria I - V ## Projected demand AC unit's # Global Concrete Block and Brick Manufacturing Market, by Region Problem statement **Design question** Research question Design criteria I - V **Design Criteria I:** Passively provide [adaptive] thermal comfort **Design Criteria II:** Fully bio-based **Design Criteria III:** Buildable with local construction workers **Design Criteria IV:** Adaptable to users from different regions **Design Criteria V:** Building system that can be implemented throughout tropical climate region How can a **fully biobased rural dwelling for a tropical climate** be designed that passively provides thermal comfort, is buildable by local construction workers, and can be adapted to the specific needs of users/communities from different regions? Problem statement Design question Research question Design criterial I - V How and to what extend do **bioclimatic strategies** in **vernacular architecture** provide adaptive **thermal comfort** in a tropical monsoon climate? Problem statement Design question Research question Design criteria I: Passively provide thermal comfort # Dry Bulb Temperature [Monthly plot] ### Netherlands # Dry Bulb Temperature [Hourly plot] ### Netherlands # Relative Humidity [Monthly plot] #### **Netherlands** # Relative Humidity [Hourly plot] ### Netherlands # Solar radiation [Hourly plot] ### Netherlands # Sun path ## Netherlands # Solar radiation [Monthly plot] #### **Netherlands** ## Tropical monsoon climate city: Douala.AP country: CMR time-zone: 1.0 source: SRC-TMYx # Wind direction and speed [m/s] #### **Netherlands** # Precipitation [mm] #### **Netherlands** ## Tropical monsoon climate characteristics High solar radiation on west, east and horizontal surfaces (constant throughout the day and season) **High average temperature** (constant throughout the day and season) **High average relative humidity** (constant throughout the day and season) High precipitation (constant throughout season and increase during monsoons) | 1.Building orientation and shape | 9.Passive cooling by using color | |---|---| | 2.Solar shading | 10.Thermal insulation by material | | 3.Natural ventilation (cross ventilation (a), stack ventilation (b), single-side ventilation (c)) | 11.Thermal insulation by design (e.g., well ventilated attic, double-skin façade) | | 4.Natural lighting techniques | 12.Passive solar energy | | 5.Light weight construction | 13.Storm prevention | | 6.High thermal mass | 14.Flood prevention | | 7.Evaporative cooling | 15.Rainwater discharge | | 8.Earth cooling | 16.Moisture and condensation prevention | | | 17.0thers | | | | | Climatic
Feature | Vernacular house Kerala | | Vernacular house Bamiléké | | Vernacular house Piaroa | | | | | |---|--|-----|---------------------------------------|--|-------------------------|--|---|-----|-------| | | Description
Bioclimatic strategy | No. | Image | Description
Bioclimatic
strategy | No. | Image | Description
Bioclimatic
strategy | No. | Image | | High solar
radiation on
west, east
and
horizontal
surfaces | Deep eaves (0,7m)
and external
verandahs to protect
(west) walls from
excessive heat gain. | | | granaries
between the
roofs and
ceilings to
insulate from
heat gain. | | | Absence of
windows to
prevent heat
gain on west
and east walls. | | | | | Opposite roof
windows at the ridge
to stimulate cross
and stack ventilation,
that prevents heat
accumulation. | | | 0,4-0,5m thick
grass thatched
roofs for
insulate
against heat
gain. | | m we | Use of natural
roofing
material (palm
thatch) for
high insulation
value. | | | | | Wood fenestration
opposite walls to
improve cross
ventilation. | | | Small door and
Absence of
windows to
prevent solar
radiation
entering the
building. | | | | | | | High average
temperature | Central courtyard
improves natural
ventilation by
inducing air
temperature
differences. | | | Second facade
to protect inner
walls from
solar radiation
on west and
east façade. | | | Open facade
towards
courtyard to
naturally
ventilate
dwelling. | | | | High average
humidity | Lifted plinth to prevent moisture accumulating. | | | Waffled wall
that allows for
infiltration to
mitigate
accumulated
heat and
humidity. | | | Open facade
towards
courtyard to
naturally
ventilate
dwelling. | | | | | Heigh room and
ceiling height (3-5m)
to vertically stratify
thermal comfort. | | | | | | | | | | High
precipitation | Deep eaves (0,7m)
Discharge water
improves lifespan of
window and
doorframes. | | | 0,7m eaves al
around the
building to
protect facades
from heavy
rainfall. | | | Multiple drains
to manage
large amounts
of
precipitation. | | | | | Steep roof angle (30-
40°) to quickly
discharge
precipitation and
prevent moisture
accumulation. | | | Steep roof
angle (45-60°)
to quickly
discharge
precipitation
and prevent
moisture
accumulation. | | The same of sa | | | | | | Verandahs externally
around the building
to protect walls from
sun and rain. | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | | | 1.Building orientation and shape | 9.Passive cooling by using color | | | | |---|---|--|--|--| | 2.Solar shading | 10.Thermal insulation by material | | | | | 3.Natural ventilation (cross ventilation (a), stack ventilation (b), single-side ventilation (c)) | 11.Thermal insulation by design (e.g., well ventilated attic, double-skin façade) | | | | | 4.Natural lighting techniques | 12.Passive solar energy | | | | | 5.Light weight construction | 13.Storm prevention | | | | | 6.High thermal mass | 14.Flood prevention | | | | | 7.Evaporative cooling | 15.Rainwater discharge | | | | | 8.Earth cooling | 16.Moisture and condensation prevention | | | | | | 17.0thers | | | | | | | | | | Problem statement Design question Research question Design criteria II: Fully bio-based ## Palm thatched roofing - Grass thatched roofing - Clay tile roofing ## Infestation and frequent need for repair, especially in critical areas ## Lower insolation value, thus needing additional insolation ### Mud wattle walls – Laterite block walls ## Not compatible with building method ## Economic status, cracks, infestation Problem statement Design question Research question Design criteria III: Buildable with local construction workers Design proposal Lack of construction system Nothing is demountable Availability of construction equipment No cranes used Safety Problem statement Design question Research question Design criteria IV: Adaptable to users from different regions Design proposal GDP per capita in Kerala was \$2,900 GDP per capita in Cameroon was \$1500 GGP per capita in Venezuela was <\$1500 # Cameroon agriculture: 70% industry: 13% **services:** 17% (2001 est.) ## <u>India</u> agriculture: 47% industry: 22% services: 31% (FY 2014 est.) ## <u>Labor force - by occupation</u> agriculture: 7.3% industry: 21.8% services: 70.9% (4th quarter, 2011 est.) Nuclear family It consists of two parents and children Single parents A mother or father alone raises a child Extended family It comprising of uncles, aunts, nieces, and nephews is becoming common Childless family The one that choosesto no have children Grandparent family Grandparents raise their grandchildren Stepfamily Many divorced, separated or single form new relationships ### **Nuclear family** It consists of two parents and children ### **Extended family** It comprising of uncles, aunts, nieces, and nephews is becoming common **Single parents**A mother or father alone raises a child ### **Grandparent family** Grandparents raise their grandchildren ### Stepfamily Many divorced, separated or single form new relationships Problem statement Design question Research question # Design criteria V: Building system that can be implemented throughout tropical climate region Design proposal ### Digital production technologies: three principle areas ### **Generative procedures** also called primary shaping – describe technologies whereby a component part is manufactured from formless material, e.g. tiny particles. Transferred to the architectural setting, larger construction elements are made from small individual parts (e.g. 3D printing). ### Subtractive procedures Subtractive procedures sever the cohesion of the component part at the point where it is processed. Here differentiations are made between cleaving, machining and removal procedures (e.g. milling). ### **Transformative procedures** Transformative procedures retain the cohesion of the material and generate component parts through a lasting alteration to the shape of the unfinished parts. Generally this allows for the optimization of their initial condition (e.g. bending). ## Digital production technologies: three principle areas **Generative procedures** Subtractive procedures Transformative procedures ## **Subtractive procedures** T2: Overview of the most important subtractive procedures with a comparison of the most important process parameters relevant for the designer Before commissioning, a comparison of the cost-effectiveness and any necessary finishing is recommended. The manufacturing of processing templates may be worthwhile. | | CNC punch
TruPunch
5000 | Lasering | Water jet
(pure) | Water jet
(abrasive) | Nibbling
TruMatic
5000 | Plasma
cutting
MicroStep | Milling
2-axial
Bima 310 | Milling
5-axial
HERMLE
C50U
dynamic | Robotic
lasering
(multi-axial)
ABB IRB
6650S | |-------------------------------------|--|---|---|---|--|--|---|--|--| | Material | Sheets of
steel, stain-
less steel,
brass,
aluminium
and copper | Almost all
materials | Rubber, plas-
tic, foil, tex-
tiles, plywood,
foam, paper,
foodstuffs | Concrete,
harder metals,
glass, ceram-
ics: also multi-
layered and
combination
materials | Sheets of
steel, stain-
less steel,
brass,
aluminium
and copper | Conductive
metal, raw
materials | Wood,
(aluminium),
foam, card-
board | All common
types of mate-
rial including
soft plastics | All common
materials | | Material
thickness | Up to 8 mm | 400 mm (tube
diameter) | Up to 350 mm | Up to 350 mm | Up to 8 mm | 3000 mm | Up to
approx.
250 mm (with
100 mm drill) | Ø 700 mm to
Ø 1150 mm | Dependent
on laser | | Size of con-
struction part | 2550 ×
1280 mm
3070 ×
1660 mm | 4000 x
3000 mm
6000 x
2000 mm
16 x 2.5m | 3000 ×
4500 mm | 2000 ×
1000 mm
4000 ×
3000 mm | 2500 x
1250 mm
3000 x
1650 mm | 30,000 ×
8000 mm | 1450 ×
3900 mm
1630 ×
5000 mm | Ø 700 mm to
Ø 1150 mm
Large-scale
mill up to
15 x 60 m | Almost any,
Arm: 3.9 m | | Speed
(depending
on material) | 1400 strokes/
min | 300 m/min | 35 m/min | 35 m/min | 1200-2800
strokes/min | 6 m/min | Approx.
10 m/min | Up to
40 m/min | Dependent
on laser | | Accuracy | ± 0.1 mm | 0.05 mm | 0.025 mm | 0.025 mm | 0.03-
0.01 mm | 0.2-0.5 mm/
depends on
type of mate-
rial/shape | 0.1-0.2 mm | Very accu-
rate, in the
µ region | Dependent
on laser | | Quality of cut | 2/5 of the
length is
waste edge | Very good,
may leave
behind black
marks | Rough to very good | Rough to
very good | 2/s of the
length is
waste edge | Not a consist-
ently smooth
cut surface/
surface
roughness | Ribbed to smooth | Very good | Dependent
on laser | | Waste caused
by tool | 0 to 3 mm | 0.1-0.5 mm | 0.1-0.25 mm | 1 mm | 0 to 5 mm | 0.8–1.5 mm | 1 mm,
dependent
on the milling
head | Slight,
dependent
on tool in
to the µ
region | Dependent
on laser | | Finishing
needed | Yes, grinding
the edges | Dependent on
the material | Dependent on
the material | Dependent on the material | Yes, grinding the edges | Yes, grinding | Grinding | Not neces-
sary | Dependent
on laser | | Possible to
parameterize | no | yes | yes | yes | no | yes | yes | yes | yes | | Geometry
options | 2D | 2D (3D) | 2D | 2D | 2D | 2D (3D) | 2D (3D) | 5-axial 3D | Multi-axial (6)
3D | | Overall energy consumption | 25-50 kW | 100 kW | 37 kW
dependent
on pump | 37 kW
dependent
on pump | 25-50 kW | Approx. 80 A | 18 kW | 39-60 kW | Dependent
on laser | | Control data | e.g. dxf | e.g. dxf | 2D construc-
tion data,
e.g. dxf | 2D construc-
tion data,
e.g. dxf | e.g. dxf | e.g. dxf | dxf, dwg,
IGES, STEP | IGES, SEP | Dependent
on laser | | Interim
software | TrueTops | TrueTops
Laser | No,
plug & play | No,
plug & play | ToPs 300 | AsperWin | Imawop | e.g. ITNC 530 | Mechanical
cut/dependent
on laser | ## **Subtractive procedures** T2: Overview of the most important subtractive procedures with a comparison of the most important process parameters relevant for the designer Before commissioning, a comparison of the cost-effectiveness and any necessary finishing is recommended. The manufacturing of processing templates may be exactly the cost-effectiveness and any necessary finishing is recommended. | CNC punch
TruPunch
5000 | Lasering | Water jet
(pure) | Water jet
(abrasive) | Nibbling
TruMatic
5000 | Plasma
cutting
MicroStep | Milling
2-axial
Bima 310 | Milling
5-axial
HERMLE
C50U
dynamic | Robotic
lasering
(multi-axial)
ABB IRB
6650S | |-------------------------------|----------|---------------------|-------------------------|------------------------------|--------------------------------|---|--|--| | | | | | | | Wood,
(aluminium),
foam, card-
board | All common
types of mate-
rial including
soft plastics | | | | | | | | | Up to
approx.
250 mm (with
100 mm drill) | Ø 700 mm to
Ø 1150 mm | | | | | | | | | 1450 ×
3900 mm
1630 ×
5000 mm | Ø 700 mm to
Ø 1150 mm
Large-scale
mill up to
15 x 60 m | | | | | | | | | Approx.
10 m/min | Up to
40 m/min | | | | | | | | | 0.1-0.2 mm | Very accurate, in the
µ region | | | | | | | | | Ribbed to smooth | Very good | | | | | | | | | 1 mm,
dependent
on the milling
head | Slight,
dependent
on tool in
to the µ
region | | | | | | | | | Grinding | Not neces-
sary | | | | | | | | | yes | | | | | | | | | | 2D (3D) | 5-axial 3D | | | | | | | | | 18 kW | 39-60 kW | | | | | | | | | dxf, dwg,
IGES, STEP | IGES, SEP | | | | | | | | | Imawop | e.g. ITNC 530 | | ## **CNC Milling** Different structural systems ### **Technical Data G3** Base machine Dimensions, weight, material | Туре | Working area (D x C) | Overall dimensions, incl. workstation (B x A) | Machine
weight | |----------|---------------------------------|---|--------------------| | M-1600 | 1330 mm × 1600 mm / 52" × 63" | 2680 mm × 2510 mm / 106" × 98" | 670 kg / 1480 lbs | | M-2500 | 1330 mm x 2500 mm / 52" x 98" | 2680 mm × 3410 mm / 106" × 134" | 840 kg / 1855 lbs | | L-2500 | 1800 mm x 2500 mm / 70" x 98" | 3150mm × 3410 mm / 124" × 134" | 970 kg / 2140 lbs | | L-3200 | 1800 mm x 3200 mm / 70" x 125" | 3150 mm × 4110 mm / 124" × 162" | 1110 kg / 2450 lbs | | XL-1600 | 2270 mm x 1600 mm / 89" x 63" | 3620 mm × 2510 mm / 143" × 98" | 890 kg / 1965 lbs | | XL-3200 | 2270 mm x 3200 mm / 89" x 125" | 3620 mm × 4110 mm / 143" × 162" | 1280 kg / 2825 lbs | | 2XL-1600 | 2740 mm x 1600 mm / 107" x 63" | 4090 mm × 2510 mm / 161" ×98" | 980 kg / 2160 lbs | | 2XL-3200 | 2740 mm x 3200 mm / 107" x 125" | 4090mm × 4110 mm / 161" × 162" | 1420 kg / 3130 lbs | | 3XL-1600 | 3210 mm x 1600 mm / 126" × 63" | 4560 mm × 2510 mm / 180" × 98" | 1120 kg / 2470 lbs | | 3XL-2500 | 3210 mm x 2500 mm / 126" × 98" | 4560 mm × 3410 mm / 180" × 134" | 1430 kg / 3155 lbs | | 3XL-3200 | 3210 mm x 3200 mm / 126" × 125" | 4560 mm × 4110 mm / 180" × 162" | 1610 kg / 3550 lbs | | Туре | max. materialwidth
cutter with static work surface | max. materialwidth
cutter with material transport | |------------|---|--| | M-series | 1610 mm / 63" | 1330 mm / 52" | | L-series | 2080 mm / 81" | 1800 mm / 70" | | XL-series | 2550 mm / 100" | 2270 mm / 89" | | 2XL-series | 3020 mm / 118" | 2740 mm / 107" | | 3XL-series | 3490 mm / 137" | 3210 mm / 126" | Technical data subject to change without notice. ### India - Cameroon - Venezuela Problem statement Design question Research question Design criteria I – V Design proposal **Design Criteria I:** Passively provide [adaptive] thermal comfort **Design Criteria II:** Fully bio-based **Design Criteria III:** Buildable with local construction workers **Design Criteria IV:** Adaptable to users from different regions **Design Criteria V:** Building system that can be implemented throughout tropical climate region # After P2 **Questions & reflection**