
Delft Institute for Applied Mathematics

Development of a deflation-
based linear solver in reservoir
simulation

Joost van der Linden

M
as

te
ro

fS
cie

nc
e

Th
es

is

Development of a deflation-based
linear solver in reservoir simulation

Master of Science Thesis

For the degree of Master of Science in Applied Mathematics at
Delft University of Technology

Joost van der Linden

November 25, 2013

Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS)
Delft University of Technology

The work in this thesis was supported by Schlumberger Oilfield UK Plc. Their cooper-
ation is hereby gratefully acknowledged.

Copyright © Delft Institute of Applied Mathematics (DIAM)
All rights reserved.

Delft University of Technology
Department of

Delft Institute of Applied Mathematics (DIAM)

The undersigned hereby certify that they have read and recommend to the
Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS)

for acceptance a thesis entitled

Development of a deflation-based linear solver in reservoir
simulation

by

Joost van der Linden

in partial fulfillment of the requirements for the degree of

Master of Science Applied Mathematics

Dated: November 25, 2013

Committee members:
Prof.dr.ir. C. Vuik

Dr.ir. T.B. Jönsthövel

Prof.dr.ir. H.X. Lin

Abstract

Extreme and isolated eigenvalues are known to be harmful to the convergence of the
iterative solver. These eigenvalues are produced by strong heterogeneity in the under-
lying physics. We can improve the quality of the spectrum by ‘deflating’ the harmful
eigenvalues. In this thesis, deflation is applied to linear systems in reservoir simulation.
We show that large, sudden differences in the permeability produce extreme eigenval-
ues. For small cases, the number and magnitude of these eigenvalues is linked to the
number and magnitude of the permeability jumps. Two deflation methods are investi-
gated. Firstly, we show that harmonic Ritz eigenvector deflation, which computes the
deflation vectors from the information produced by the linear solver, can improve con-
vergence. The computational cost of this method, however, is relatively high and the
method cannot be implemented in parallel. Secondly, we test a physics-based deflation
algorithm that constructs the deflation vectors a priori. The method is shown to improve
the performance of the linear solver. We compare manually constructed deflation vec-
tors to a partitioner algorithm, which automatically identifies large permeability jumps
and constructs the deflation vectors using the subdomain-levelset method. Automatic
(parallel) physics-based deflation works well for small cases, but we also show that the
partitioner algorithm is not robust in large, realistic cases. We make several suggestions
for improvement, such as assigning deflation vectors only to regions where flow occurs.
For cases with well-defined permeability jumps of a factor 104 or higher, we believe that
physics-based deflation has a large potential.

Master of Science Thesis Joost van der Linden

ii

Joost van der Linden Master of Science Thesis

Contents

Preface & acknowledgments xi

1 Introduction 1
1-1 Scope . 2
1-2 Outline . 3
1-3 Notation and conventions . 3

2 Framework 5
2-1 Formulation . 6
2-2 Newton-Raphson . 9

2-2-1 Time step size . 10
2-3 Krylov-subspace methods . 10

2-3-1 Arnoldi . 12
2-4 GMRES . 16

2-4-1 Givens rotations . 18
2-4-2 Computing the residual . 21
2-4-3 Convergence . 21
2-4-4 Preconditioning . 23

2-5 CPR . 26
2-5-1 CPR stage 1: AMG . 28
2-5-2 CPR stage 2: ILU . 32

3 Deflation 33
3-1 Motivation . 33
3-2 Overview . 34
3-3 Framework . 36

3-3-1 Galerkin matrix . 36
3-3-2 Deflated system . 38
3-3-3 Geometric illustration . 39
3-3-4 Convergence . 40

3-4 Computing the deflation vectors . 43
3-4-1 Exact eigenvectors . 44
3-4-2 Ritz vectors . 44
3-4-3 Harmonic Ritz vectors . 45
3-4-4 Domain-based vectors . 47
3-4-5 Solution deflation . 49

Master of Science Thesis Joost van der Linden

iv Contents

4 Implementation 51
4-1 Harmonic Ritz deflation . 51
4-2 Subdomain-levelset deflation . 53

4-2-1 Partitioner . 54
4-3 Parallel implementation . 60

5 Results 65
5-1 Case descriptions . 65

5-1-1 BO . 66
5-1-2 SPE5 . 67
5-1-3 SAGD-SMALL . 69
5-1-4 SAGD-MEDIUM . 72
5-1-5 SAGD-LARGE . 74

5-2 Eigenvalues and eigenvectors . 75
5-2-1 BO spectrum . 76
5-2-2 SPE5 spectrum . 77
5-2-3 SAGD-SMALL spectrum . 82
5-2-4 Effect of the (parallel) preconditioner 85
5-2-5 Summary of findings . 88

5-3 Harmonic Ritz deflation . 89
5-3-1 Matlab experiments . 89
5-3-2 IX experiments . 95
5-3-3 Summary of findings . 100

5-4 Physics-based deflation . 102
5-4-1 Manual physics-based deflation . 102
5-4-2 Automatic physics-based deflation 106
5-4-3 Summary of findings . 118

5-5 Other strategies . 119
5-5-1 Deflation using saturation or mobility 119
5-5-2 ILU damage . 120

6 Conclusions 121
6-1 Summary of theory . 121
6-2 Conclusions in the results . 122
6-3 Future research . 124

A Partitioner pseudocode 127
A-1 IX partitioner result . 134

Joost van der Linden Master of Science Thesis

List of Figures

2-0.1 IX overview . 5
2-1.1 Arr on a 6× 3× 3 grid [2]. 8
2-5.1 Coarsening of AMG. Colors towards the right of the colorbar imply more

frequent inclusion of the node on coarser levels. 31

3-1.1 GMRES example with tolerance 1e-6. 33
3-1.2 Smallest Ritz values for (a) GMRES(20) and (b) GMRES(100), and the

spectrum of A (c). 34
3-3.1 2D illustration of deflation. 40
3-4.1 Subdomain (a), levelset (b) and subdomain-levelset deflation (c). 48

4-2.1 Example of isolated regions in a heterogeneous domain. 55
4-2.2 Examples of heterogeneous domains. 55
4-2.3 Step 2 of the partitioner applied to Figure 4-2(a). 57
4-2.4 Step 3 of the partitioner applied to Figure 4-2.3. 57
4-2.5 Step 5 of the partitioner applied to Figure 4-2.4. 58
4-2.6 Result of the partitioning. 58
4-2.7 Overview of the partitioner. 60
4-3.1 Parallel computation of the Galerkin matrix. 62

5-1.1 Oil saturation, pressure distribution and permeability field of the BO case. . 66
5-1.2 Cumulative non-linear iterations for the BO case. 67
5-1.3 Permeability in x, y and z-direction. 67
5-1.4 Oil saturation at T = 1, T = 5 and T = 10. 68
5-1.5 Water saturation at T = 1, T = 5 and T = 10. 68
5-1.6 Cumulative non-linear iterations for the SPE5 case. 69
5-1.7 Permeability in x, y and z directions. 70
5-1.8 Oil viscosity at T = 1, T = 25 and T = 70. 70
5-1.9 Oil saturation at T = 1, T = 25 and T = 70. 70
5-1.10 Pressure at T = 1, 10, 25, 43, 55, 70. 71
5-1.11 Cumulative non-linear iterations for the SAGD-SMALL case. 72
5-1.12 Permeability in x, y and z directions (SAGD-MEDIUM). 72
5-1.13 Oil viscosity (left) and oil saturation (right) at the end of the simulation

(SAGD-MEDIUM). 73

Master of Science Thesis Joost van der Linden

vi List of Figures

5-1.14 Cumulative non-linear iterations for the SAGD-MEDIUM case. 73
5-1.15 Permeability in x, y and z directions (SAGD-LARGE). 74
5-1.16 Oil viscosity (left) and oil saturation (right) at the end of the simulation

(SAGD-LARGE). 74
5-1.17 Cumulative non-linear iterations for the SAGD-LARGE case. 75
5-2.1 Eigenvalues of the diagonally scaled BO pressure matrix. 76
5-2.2 Convergence of restarted and non-restarted GMRES for the BO pressure

matrix. 76
5-2.3 Five smallest Ritz values for (a) GMRES(20) and (b) GMRES(200). 77
5-2.4 Eigenvectors of the diagonally scaled SPE5 pressure matrix at T = 1, . . . , 10. 78
5-2.5 Eigenvalues of the diagonally scaled SPE5 pressure matrix at T = 1, T = 5

and T = 10. 79
5-2.6 Modified SPE5 permeability field. 79
5-2.7 Spectra at T = 4 for the modified permeability field with high permeability

(a) 101, (b) 102, (c) 103 and (d) 104. 80
5-2.8 Spectrum at T = 4 for the modified permeability field with high perme-

ability 108. 80
5-2.9 Convergence of (Jacobi) preconditioned GMRES(100), with σ = high per-

meability. 82
5-2.10 Spectrum of SAGD-SMALL pressure matrix before and after the heating is

started. 83
5-2.11 Spectrum of SAGD-SMALL pressure matrix at T = 30, 40 and 70. 83
5-2.12 Absolute values of the eigenvectors for (a) T = 1, (b) T = 10, (c) T = 20,

(d) T = 50, (e) T = 60 and (f) T = 70. 84
5-2.13 Spectrum of the CPR-preconditioned (AMG & ILU) SAGD-SMALL pressure

matrix at non-linear iteration three and five. 85
5-2.14 Spectrum of the CPR-preconditioned (Jacobi & ILU) SAGD-SMALL pres-

sure matrix at non-linear iteration three and five. 86
5-2.15 Spectrum of the CPR-preconditioned (Jacobi & ILU) SAGD-SMALL reser-

voir matrix. 86
5-2.16 Spectrum of the CPR-preconditioned (AMG & ILU) SAGD-SMALL reser-

voir matrix with (a) np = 1 and (b) np = 8. 87
5-2.17 Several eigenvectors corresponding to the smallest eigenvalues of the CPR-

preconditioned SAGD-SMALL reservoir matrix with np = 2. 87
5-3.1 (D)GMRES(20) residual convergence for the SPE5 case with modified per-

meability and σ = 106. 89
5-3.2 (D)GMRES(100) residual convergence for the SPE5 case with modified

permeability and σ = 106. 90
5-3.3 (D)GMRES residual convergence for the BO case. 91
5-3.4 (D)GMRES residual convergence for varying m. 91
5-3.5 The harmonic Ritz vector and the exact eigenvector after (a) five and (b)

thirty iterations. 92
5-3.6 Convergence of (a) left- and (b) right-preconditioned (D)GMRES for the

BO case. 93
5-3.7 Comparison of freezing the deflation vectors versus appending the deflation

vectors in the BO case. 94
5-3.8 Linear solves and cumulative Newton iterations of the SPE5 case.. 97
5-4.1 Manually constructed deflation vectors for (a) BO, (b) SPE5 and (c) SAGD-

SMALL. 103
5-4.2 Comparison of no deflation, harmonic Ritz deflation (RDGMRES) and

(manual) physics-based deflation (PDGMRES) for (a) BO and (b) SAGD-
SMALL. 104

Joost van der Linden Master of Science Thesis

List of Figures vii

5-4.3 Comparison of no deflation, harmonic Ritz deflation (RDGMRES) and
(manual) physics-based deflation (PDGMRES) for (a) SPE5 and (b) SPE5
with modified permeability (σ = 106). 104

5-4.4 (a) Deflation vectors in the focus region and (b) SAGD-SMALL permeability.107
5-4.5 Comparison of physics-based deflation (PDGMRES) using manual or auto-

matic construction of the deflation vectors. 107
5-4.6 10 manual deflation vectors split in 2. 108
5-4.7 Comparison of deflation with 10 manual deflation vectors (PDGMRES(20,10)),

10 manual deflation vectors split in 2 (PDGMRES(20,20)) and 10 manual
deflation vectors split in 4 (PDGMRES(20,40)). 109

5-4.8 Parallel subdomains for np = 8 and the permeability in x direction. 110
5-4.9 Deflation vectors in the (a) first, (b) fifth and (c) sixth parallel subdomain. 110
5-4.10 Comparison of parallel physics-based deflation (PPDGMRES) using eight

processors and a varying maximum number of deflation vectors per parallel
subdomain. 111

5-4.11 Comparison of serial physics-based deflation (PDGMRES) and parallel physics-
based deflation (PPDGMRES) in terms of (a) outer linear iterations and
(b) CPU time of the linear solve in the SAGD-SMALL case (max. iterations
= 2). 112

5-4.12 Comparison of serial physics-based deflation (PDGMRES) and parallel physics-
based deflation (PPDGMRES) in terms of (a) outer linear iterations and
(b) CPU time of the linear solve in the SAGD-SMALL case (max. iterations
= 40). 113

5-4.13 The permeability, deflation vectors and permeability projected on the 53rd
deflation vector. 114

5-4.14 Comparison of serial physics-based deflation (PDGMRES) and parallel physics-
based deflation (PPDGMRES) in terms of (a) outer linear iterations and (b)
CPU time of the linear solve in the SAGD-MEDIUM case (max. iterations
= 2). 114

5-4.15 Comparison of serial physics-based deflation (PDGMRES) and parallel physics-
based deflation (PPDGMRES) in terms of (a) outer linear iterations and
(b) CPU time of the linear solve in the SAGD-LARGE case (max. iterations
= 2). 115

5-4.16 Inflated permeability field of the SAGD-MEDIUM case. 116
5-4.17 Spectrum of the first inflated SAGD-SMALL case. 116
5-4.18 Comparison of serial physics-based deflation (PDGMRES) and parallel physics-

based deflation (PPDGMRES) in terms of (a) outer linear iterations and
(b) CPU time of the linear solve in the first inflated SAGD-MEDIUM case
(max. iterations = 2). 117

5-4.19 Spectrum of the second inflated SAGD-SMALL case. 117
5-4.20 Comparison of serial physics-based deflation (PDGMRES) and parallel physics-

based deflation (PPDGMRES) in terms of (a) outer linear iterations and
(b) CPU time of the linear solve in the second inflated SAGD-MEDIUM
case (max. iterations = 2). 118

A-1.1 Deflation vectors for each parallel subdomain P 134

Master of Science Thesis Joost van der Linden

viii List of Figures

Joost van der Linden Master of Science Thesis

List of Tables

1-3.1 Standard notation. 4
1-3.2 Units. 4
5-2.1 Smallest eigenvalue for different permeability jumps. 81
5-3.1 Default settings in IX. 96
5-3.2 Settings for the results in 5-3.3. 96
5-3.3 Comparison of GMRES and DGMRES(30,3) in IX. 97
5-3.4 Comparison of DGMRES(30,3) (with Jacobi) and GMRES(30) (with AMG)

in IX. 98
5-3.5 Comparison of (switched) DGMRES with GMRES and AMG in IX. 99
5-3.6 Switched DGMRES for a varying number of deflation vectors in IX. 100
5-3.7 Switched DGMRES for a varying number of deflation vectors in IX. 100
5-4.1 PDGMRES and GMRES in the SAGD-SMALL case for varying M 105
5-4.2 Comparison of PDGMRES(20,10) (10 manual deflation vectors) and PDGM-

RES(20,20) (10 manual deflation vectors split in 2) in IX. 109

A-0.1 Partitioner pseudocode notation. 128

Master of Science Thesis Joost van der Linden

x List of Tables

Joost van der Linden Master of Science Thesis

Preface & acknowledgments

The practical research in this thesis was conducted in the United Kingdom, at the
Schlumberger Abingdon Technology Center (AbTC). Schlumberger developers at AbTC
provide support for existing reservoir simulation software, such as Eclipse. Furthermore,
to meet the increased demand for fast, scalable software, Intersect has been developed
as the successor of Eclipse. Under the supervision of Dr. Tom Jönsthövel, I spent six
months working at AbTC on the Intersect engine. On behalf of the Delft University of
Technology, the research was supervised by Prof. Kees Vuik.

During my time in the United Kingdom, I was given the opportunity to attend the
‘International Conference On Preconditioning Techniques For Scientific And Industrial
Applications,’ held at Oxford University. I subsequently reported the latest develop-
ments to the global applied mathematics community in Schlumberger. Furthermore, I
presented my progress on an internal applied mathematics seminar at AbTC. Lastly, I
presented our work, through teleconference, on a high-performance computing workshop
held in Houston, USA.

The topic of this thesis is deflation. Intuitively, deflation can be understood as a method
to improve convergence of the iterative solver by removing harmful components from
the discretized partial differential equation. In particular, the iterative solver encounters
difficulties with reservoirs that exhibit strong heterogeneity. The large jumps of, in this
case, the permeability produce the harmful components (extreme eigenvalues). With
deflation, these components can be targeted and removed from the iterative solve. As
will be demonstrated, the effectiveness of deflation hinges on the ability to identify the
permeability jumps.

Conducting research on deflation has been a profoundly enriching experience. First and
foremost, I would like to thank Tom for his efforts in making this research a success.
After a warm welcome, Tom has continuously shown passion and enthusiasm for our
collaboration. I am deeply indebted to him for his helpful suggestions and answers to
my questions. Our discussions were both worthwhile and inspiring. In particular, I
am grateful to Tom for his endless patience in introducing me to C++ and Intersect.

Master of Science Thesis Joost van der Linden

xii Preface & acknowledgments

Furthermore, I am thankful that Tom encouraged me to participate and present in a
conference at Oxford University, an internal seminar and an external workshop. These
events have been very helpful for my future career. In addition to the research, I have
learned a lot from Tom’s views on doing a PhD and working in industry. His experiences
have helped me set out a path for the future. A warm welcome was followed by a warm
goodbye, for which I would also like to thank the future Mrs. Jönsthövel. I wish you
both a very happy life together.

I am grateful for the supervision of Prof. Kees Vuik. His effort to steer the research in
the right direction, and his consistent feedback on my updates, has been very helpful.
It was a privilege to attend the preconditioning conference in Oxford together. I would
like to thank Dr. Alex Lukyanov for his interest in my research. We identified an
overlap in our research (meshless deflation methods), which resulted in an interesting
collaboration. Alex’s feedback on the theoretical sections of this report, as well as his
invitation to speak at the internal seminar, is much appreciated. It has been a privilege
to work with my colleagues at AbTC. I owe much gratitude to my manager, Gareth
Shaw, for his input on the project, his guidance for the coding and for the lunch on my
last day. I thank Schlumberger for the financial support during my time in the United
Kingdom. The trip would not have been possible without the support of my parents
either, to whom I also dedicate my academic achievements. Last but not least, I thank
my future wife, Katie Sundberg. She has sacrificed a lot to join me on my journeys, for
which I am eternally grateful. I cannot imagine a better partner in life.

Delft, University of Technology Joost van der Linden
November 25, 2013

Joost van der Linden Master of Science Thesis

Chapter 1

Introduction

Recent developments in the petroleum industry lead to the challenge of managing more
data, providing higher field resolutions and computing more accurate multiphase flow
predictions. The geological formations in petroleum reservoirs are subject to complex
geometries and high physical contrasts, which also imposes constraints on the develop-
ment. At the same time, advancements in hardware, such as (cheap) parallel systems
and GPU-acceleration, demand the development of new algorithms that exceed previous
performance records. This continuous interplay between computational demand and
supply has led to initial development of the Intersect (IX) software. Through a joint
venture of Schlumberger, Chevron and Total, the next-generation reservoir simulation
software is continuously adapted to account for more complex geology and wells. IX
is based on the company’s previous, yet still widely used, reservoir simulator Eclipse.
Over the last decade, IX has been designed to include a multi-segment well model, a
scalable parallel computing infrastructure and a complete field management workflow
[1]. Results are visualized with Schlumberger’s model environment Petrel.

At the core of any reservoir simulator is the solver mechanism. A non-linear solver
progresses the solution over time, constructing the Jacobian and solving a set of linear
problems at each time step. The linear solver is an iterative method, usually precondi-
tioned to counter the severe ill-conditioning effects caused by the highly heterogeneous
porous media flow. The preconditioner in IX decouples the linear system in two sets of
equations, exploiting the specific properties of each decoupled system. In this report, we
will investigate the potential of an additional preconditioning technique: deflation. By
removing unfavorable eigenvalues from the spectrum of our linear system, the deflation
preconditioner can be used to improve convergence.

Deflation was first proposed for symmetric linear systems and the CG method by Nico-
laides [23] and Dostál [24]. Both construct a deflation subspace consisting of deflation

Master of Science Thesis Joost van der Linden

2 Introduction

vectors to deflate unfavorable eigenvalues from the linear system. A range of widely
used deflation algorithms have been developed since, differing primarily in the method
of application of the deflation operator and the approach to construct the deflation vec-
tors. Deflation has been successfully used in a large number of applications, including,
for example, electromagnetics [25], bubbly flow [26, 27, 28, 29, 30, 31, 32], structural
mechanics and composite materials [33, 34, 35, 36], unsteady turbulent airfoil problems
[20] and wave models in ship simulations [37]. The work by Vuik and co-authors on
layered problems in reservoir simulation [8, 11, 38, 39, 40, 41] is the most relevant for
this thesis.

The two most prominent deflation methods used in this work are:

1. Harmonic-Ritz eigenvector deflation uses approximate eigenvectors as defla-
tion vectors in a black-box type of method. The deflation vectors are obtained
after a full cycle of the linear solver. As will become clear, this imposes a severe
computational burden on the software. We investigate if the costs outweigh the
benefit of deflating a number of extreme eigenvalues.

2. Physics-based deflation circumvents the approximation by constructing the de-
flation a priori. Central to the investigation by Vuik and co-authors is the rela-
tion between the occurrence of extreme eigenvalues and large jumps in the PDE
coefficients. In [11], for example, the number of extreme eigenvalues is proven
to be equal to the number of high-permeability layers (e.g. sand) between low-
permeability layers (e.g. shale). Having observed this, the question arises how
to utilize the predictable spectrum in layered problems. In [11] and subsequent
work, it is shown that the subspace spanned by the eigenvectors corresponding to
the extreme eigenvalues can be approximated by a pre-determined space of alge-
braic deflation vectors. Convergence of the deflated CG method is shown to be
independent of the size of the jumps in the coefficients.

We extend the work by Vuik and co-authors to non-symmetric linear systems in IX.
Moreover, we will show that the particular physics-based deflation method used in this
study allows for an efficient parallel implementation. Numerical experiments in IX, using
a number of cases with varying size and degree of complexity, are used to analyze the
performance.

1-1 Scope

In this thesis, an extensive overview will be provided of the current linear solver in
IX, discussing formulation of the linear system, the Newton-Raphson method, GMRES
and the two-stage AMG/ILU preconditioner. Deflation will be introduced through a
discussion of variations of the method, the mathematical derivation, and the techniques
to select the deflation vectors. After narrowing the focus to the two most promising
approaches, we discuss the implementation. The first method, harmonic Ritz deflation, is

Joost van der Linden Master of Science Thesis

1-2 Outline 3

implemented in serial. The second method, a physics-based subdomain-levelset deflation
algorithm, is coded both in serial and in parallel. Both methods are first prototyped in
Matlab for validation, followed by a C++ implementation in IX. Finally, we explore if
deflation can be used to speed up the linear solver.

1-2 Outline

The chapter overview of this report is as follows:

Chapter 2: Framework. The Intersect engine consists of a non-linear solver and
a preconditioned linear solver. In Chapter 2, we discuss each individual component:
Newton-Raphson, Arnoldi, GMRES and CPR preconditioning.

Chapter 3: Deflation. In Chapter 3, we introduce deflation. We motivate the use
of deflation using an example, in which we link natural deflation to the convergence of
the Ritz values. Natural deflation gives rise to artificial deflation, which we examine in
detail. Several methods to compute the deflation vectors are investigated in terms of
advantages and disadvantages.

Chapter 4: Implementation. The implementation of the preferred deflation methods
from Chapter 3, harmonic Ritz deflation and subdomain-levelset deflation, is presented
in Chapter 4. We introduce a partitioner algorithm to construct the deflation vectors a
priori, and discuss the parallel implementation of deflation.

Chapter 5: Results. The results of our numerical experiments are presented in Chap-
ter 5. Using five cases with varying dimensions and complexity, we test and compare
harmonic Ritz deflation and subdomain-levelset deflation. We use the number of pres-
sure iterations and the CPU time for the linear solve to draw conclusions about the
speed and robustness of the methods.

Chapter 6: Conclusion. In the last chapter, we summarize the most important results
and present suggestions for future research.

1-3 Notation and conventions

Table 1-3.1 lists the elementary notation that will be used throughout the report:

Master of Science Thesis Joost van der Linden

4 Introduction

Notation Meaning

I Identity matrix with appropriate dimension
ek k’th natural basis vector
1eP 1× 10P

H̄m Matrix obtained from Hm by omitting the last row
x̂ Solution of the deflated linear system
Pm Set of polynomials of degree at most m
A[i,j] The (i, j)’th sub (block) matrix of the matrix A
aij The (i, j)’th element of the matrix A
vi or v[i] The i’th element of the vector v (context provided)

Table 1-3.1: Standard notation.

Vectors are always denoted without an overhead arrow or bold script. Context will be
provided whenever this can cause confusion with a scalar.

The units for the most commonly-used variables in this report are given in Table 1-
3.2.

Variable Unit Name

Permeability mD (10−15m2 Milidarcy
Porosity m3/m3 Void space / total volume
Pressure Pa (kg/(m · s2)) Pascal
Temperature ◦C Degree Celsius

Table 1-3.2: Units.

Joost van der Linden Master of Science Thesis

Chapter 2

Framework

To outline the mathematical framework in this report, we use IX to guide the discussion.
Figure 2-0.1 provides an overview of the IX engine.

Section 2-5

Section 2-5.2

Section 2-5.1

Section 2-4

Section 2-2

Newton-Raphson

GMRES 1 GMRES cycle ILU

AMG

Section 2-1

Formulation CPR

Figure 2-0.1: IX overview

In the simulation of a reservoir, the IX engine utilizes the linear and non-linear solver
to progress the solution over time. For a given time step, GMRES solves the linear
system produced by the Newton-Raphson method. GMRES is preconditioned by the
constrained pressure residual (CPR), which consists of two stages to individually tackle
the elliptic (stage one) and hyperbolic (stage two) part of the discrete operator [43].
The first stage of the CPR preconditioner restricts the linear system to the pressure

Master of Science Thesis Joost van der Linden

6 Framework

equations, followed by the construction of a GMRES-accelerated AMG preconditioner.
Stage two entails an incomplete LU (ILU) factorization applied to the complete system.
Since the stage two preconditioner uses the pressure solution, an arrow in Figure 2-0.1
connects GMRES in stage one to the ILU preconditioner in stage two.

In the upcoming subsections, we will discuss each component of the IX engine in de-
tail.

2-1 Formulation

We focus on the reservoir equation formulation, and refer to the IX Technical Documen-
tation [2] for more details on modeling of aquifer1, thermal effects and wells. A general
phase-component partitioning, called the "general formulation", has been used in IX to
produce a single, unified code for the reservoir physics [3]. A number of components
(e.g. oil, water, gas) can exist in a number of phases (e.g. solid, liquid, gas). Rather
than having custom extensions for different phase- and component mixes, the general
formulation allows for any number of phases and components. Each component can exist
in any state and no particular ordering is assumed. For the simulator, the only input
necessary is to specify which components can exist in which phase.

For illustrative purposes, we consider the case of two-phase (oil and water) flow. For a
discussion of this model, see for example [42]. The assumptions are outlined next.

Assumption 2-1.1.
• The flow is immiscible, i.e. the components do not dissolve.

• Fluids and rock are incompressible, i.e. the density remains constant.

• The effect of cappillary action, i.e. the ability of a liquid to flow against gravity in
a narrow space such as pores, is ignored.

• Gravity effects in the rock and fluids are ignored.

The governing conservation equations for the two-phase flow under these assumptions
are: {

φ∂Sw
∂t +∇ · (λw∇p) = −qw,

φ∂So
∂t +∇ · (λo∇p) = −qo.

(2-1.1)

Subscripts w and o are used to indicate water and oil, respectively. The variable φ
represents the porosity, or the ratio of void spaces (pores) over the total volume. The
porosity is multiplied with the derivative of the saturation S. In the second term of the
left-hand-side, λ is called the phase mobility, discussed below, and p is the pressure. The
variable q in the right-hand-side gives the contribution of sources and/or sinks in the

1Aquifers are underground layers of water-bearing permeable rock or soil

Joost van der Linden Master of Science Thesis

2-1 Formulation 7

reservoir. Summing the equations in (2-1.1) and using the fact that Sw + So = 1, we
obtain the pressure equation

∇ · λ∇p = q, (2-1.2)

where λ = λw + λo is the total mobility and q = qw + qo. Because the mobility is
the PDE coefficient possibly containing severe discontinuities, the discretized pressure
equation will be central to our discussion on deflation algorithms. The total mobility is
computed by summing

λw = k(x)krw(Sw)
µw

, and (2-1.3)

λo = k(x)kro(So)
µo

. (2-1.4)

Here, µ is the viscosity2, k is the absolute permeability3 and kr is the relative permeabil-
ity. The absolute permeability is dependent on the geological structure of the reservoir,
usually determined through some form of geophysical imaging. As the absolute perme-
ability is determined a priori, we often refer to k as the initial permeability. The relative
permeability, on the other hand, depends on the saturation and will vary throughout the
simulation. Both k and kr may exhibit large jumps, although the initial permeability
will often be dominant [42].

The overall flow problem is handled by solving (2-1.2) for p, and using Darcy’s law4

to obtain the fluid velocity u = −λ∇p. The saturations can then be computed from
(2-1.1). Since the mobility depends on the saturation, the combined nonlinear system
of equations is coupled.

The IX formulation is more complex than the two-phase framework presented here. Ex-
tra terms are included for additional components, such as natural gas, and omitting the
assumptions in 2-1.1 requires a number of supplementary equations. When a compo-
nent can exist in more than one phase, the phase equilibrium equation is needed. This
relation between a pair of phases describes the balance in fugacity5. In addition, phase
saturation and mole fraction constraints are used to eliminate variables and reduce the
overall system size. Although used in implicit form, the pressure equation (2-1.2) in IX
is very similar to (2-1.2), and the contribution of the mobility λ will also be present.
This has important implications for our discussion on deflation methods, where we aim
to exploit knowledge about k, kr and µ to construct the deflation vectors.

2The viscosity is a measure of resistance to deformation, or the ‘thickness’ of the fluid.
3The permeability, usually determined by lab experiments, is proportional to rate of flow in a porous

media.
4Darcy’s equation describes the ability of a component to flow through porous media. The latter

depends on the difference in pressure and permeability of the media between two points, as well as the
distance.

5Fugacity can be described as the ’escaping tendency’ of a component from one phase to another.

Master of Science Thesis Joost van der Linden

8 Framework

The discretization, which is done in IX using the finite volume method, will not be
further discussed in this report. After inclusion of the well equations and several steps
of reduction, the coupled linear system can be expressed as

Ax =
[
Arr Arw

Awr Aww

] [
xr

xw

]
=
[
br

bw

]
= b. (2-1.5)

Remark 2-1.1.
• The subscript r refers to reservoir and w stands for well. We assume A ∈ Rn×n,
br, xr ∈ Rnr, bw, xw ∈ Rnw. The sub-matrices Arr and Aww are square nr × nr
and nw × nw matrices respectively.

• Each sub-matrix of the Jacobian represents a derivative, e.g. Awr is the derivative
matrix of the well equations with respect to the reservoir variables.

As not every cell will contain all components in all phases at all times, the order and
number of equations and variables in the linear system may vary per time step. Re-
gardless, A is typically very sparse. For example, in a three-dimensional 6× 3× 3 grid,
the matrix Arr is illustrated in Figure 2-1.1. Squares indicate the block structure of
A.

Figure 2-1.1: Arr on a 6× 3× 3 grid [2].

As shown in the two-phase flow, the coupled system of equations consists of two parts:
the pressure equation and the saturation or mass balance equations. The former tends
to be elliptic, because of short-range coupling, while the latter typically have a more
global dependency and are therefore hyperbolic.

The linear solver, discussed in Section 2-3, is not directly applied to (2-1.5). Instead,
the Schur complement is used:

(Arr −ArwA
−1
wwAwr)xr = br −ArwA

−1
wwbw. (2-1.6)

xw can then be recovered by computing

xw = A−1
ww(bw −Awrxr).

Joost van der Linden Master of Science Thesis

2-2 Newton-Raphson 9

In the upcoming sections, we will refer to Ax = b using

A := Arr −ArwA
−1
wwAwr,

b := br −ArwA
−1
wwbw.

(2-1.7)

Throughout this report, we assume that matrix A has the following properties:

• The computational grid consists of nc cells or ‘points’, and each cell contains nu

unknowns. Hence, n = nc × nu.

• A ∈ Rn×n as given by (2-1.6).

• A 6= AT , i.e. A is non-symmetric.

• λ 6= 0 ∀ λ ∈ σ(A), i.e. all eigenvalues are non-zero.

2-2 Newton-Raphson

Suppose F (x) is a differentiable vector function from some interval in Rn to Rn. Newton-
Raphson attempts to solve the general non-linear system

F (x) = 0, x ∈ Rn. (2-2.1)

F represents the equations of the coupled system of reservoirs, wells and aquifers. The
input vector x contains the solution variables for the pressure and the saturation. A
Taylor expansion of (2-2.1) around the point x yields

F (x+ ∆x) = F (x) + ∆x · ∇F |x +1
2(∆x · ∇2)F |x +O(∆x3),

where ∆x is the difference between x and an arbitrary point close to x. Setting this
expression equal to zero, ignoring higher-order terms and rearranging gives us

∇F (x)∆x = −F (x).

An iterative method is obtained by letting ∆x = xj+1 − xj , i.e.

∇F (xj)∆x = −F (xj), (2-2.2)

where, after this system is solved for ∆x, xj+1 = xj + ∆x. Note that after linearization,
Equation (2-2.2) corresponds to the the coupled linear system (2-1.5). In each iteration
of Newton-Raphson, the Jacobian matrix is formed and (2-1.5) is solved for x using the
linear solver described in the next section.

Master of Science Thesis Joost van der Linden

10 Framework

2-2-1 Time step size

The convergence criterion for Newton-Raphson in IX is based on a dynamic mix of
the absolute solution error, overall mass balance error and the minimum and maximum
number of iterations. After convergence, a new time step is selected. The length of this
step is determined by a number of selection criteria:

• The minimum and maximum time step, and the ratio of increase compared to the
previous time step.

• The first upcoming ’report date’, i.e. the user-requested time at which the solution
should be computed. Instead of taking a large step followed by a very short step to
reach the report date, it can be more beneficial to take two steps of equal length.

• The time truncation error limit, which prevents propagation of the truncation error
due to linearization.

• The maximum rate of change for the solution. Each of the solution variables (pres-
sure, saturation, thermal) is bounded by a maximum change criteria, to guarantee
convergence.

• The Courant-Friedrichs-Lewy (CFL) stability criterion. Unless a fully implicit sim-
ulation is used, the time step size is restricted by the CFL condition, to guarantee
convergence of the full solution.

In practice, a balance is required between implicit and explicit formulation of the dif-
ferent variables (e.g. pressure, saturation). For increased implicitness, we obtain better
stability. Larger timesteps can be taken, but the cost of the linearization and the lin-
ear solve increase quadratically. In practice, the Adaptive Implicit Method (AIM) is
used. Using the CFL condition, each cell is tested for stability. The most unstable cells
are treated fully implicit, whereas IMPES (implicit pressure, explicit saturations mole
fractions) and IMPSAT (implicit pressure and saturations, explicit mole fractions) are
used for the variables in more stable cells. The formulation of the variables is beyond
the scope of this thesis. Therefore, a fully implicit model is used for all cells, which is
unconditionally stable.

2-3 Krylov-subspace methods

Consider the coupled linear system

Ax = b (2-3.1)

satisfying the properties outlined in section 2-1. A common denominator for most ex-
isting iterative techniques is the use of a certain projection method, arising from the
Petrov-Galerkin conditions [4]. Two m-dimensional subspaces of Rn are used in this
context: Km, which is referred to in literature as the search, solution or ansatz space,

Joost van der Linden Master of Science Thesis

2-3 Krylov-subspace methods 11

and Lm, which is called the test or constraints space. The subspace Km contains the
candidate approximations for the solution of (2-3.1), while Lm accommodates a set of
m orthogonality constraints. The Petrov-Galerkin conditions state that the residual
r = b−Ax should be orthogonal to Lm.

Let x0 be an initial guess for the approximate solution xm of (2-3.1), and denote the
exact solution by x∗. Given Km and Lm, the Petrov-Galerkin conditions imply

Find xm ∈ x0 +Km such that b−Axm ⊥ Lm. (2-3.2)

This expression can be translated in a general procedure for Krylov subspace meth-
ods.

1. Construct an n×m orthonormal basis Vm of Km.

2. Construct an n×m basis Wm of Lm.

3. Approximate the solution of (2-3.1) by xm = x0 + Vmum, where um ∈ Rm is a
weights vector, while imposing the Petrov-Galerkin conditions W T

m(b−Axm) = 0.

Substitution of xm = x0 + Vmum in step 3 and rearranging yields

{
xm = x0 + Vmum,

um = (W T
mAVm)−1W T

mr0.
(2-3.3)

In the next section an efficient algorithm to compute a basis for Km will be presented.
The Generalized Minimal Residual (GMRES) method, proposed by Saad and Schultz
[46], is essentially a clever way of solving an m-dimensional linear system equivalent to
(2-3.3) [6].

For the particular case of GMRES, the orthogonality constraints are given by Lm =
AKm. A closely related approach for symmetric (semi-)positive definite matrices is the
Conjugate Gradient (CG) method, in which case each search direction is also an orthog-
onality constraint: Lm = Km. In fact, the GMRES method and the CG method are
part of broader classes of projection methods, known as (Galerkin) orthogonal residual
methods and minimal residual methods, respectively [47]. For nonsingular Hermitian in-
definite matrices, for example, the MINRES method is also a minimal residual method.
Both the GMRES and the CG method are called Krylov-subspace methods, for their
solution subspaces Km are of the particular form presented in Definition 2-3.1.

Definition 2-3.1. Let A ∈ Rn×n and r0 ∈ Rn, given by (2-3.1) and r0 = b − Ax0
respectively. Then, for m ≤ n, a Krylov subspace is defined as a subspace Km of the
form

Km(A, r0) = span{r0, Ar0, A
2r0, . . . , A

m−1r0}. (2-3.4)

Master of Science Thesis Joost van der Linden

12 Framework

A Krylov subspace can also be understood by first applying the splitting A = M −N ,
followed by a rearrangement of (2-3.1) which yields the basic iterative method

Mxm+1 = b+Nxm.

Using rm = b− Axm, the iterative method becomes xm+1 = xm +M−1rm. Developing
the iterations, we find

x0

x1 = x0 +M−1r0

x2 = x0 + 2M−1r0 −M−1AM−1r0

x3 = x0 + 3M−1r0 − 3M−1AM−1r0 + (M−1A)2M−1r0
...
xm+1 = x0 + pm(A)r0

(2-3.5)

where pm+1 ∈ Pm+1 is a polynomial of degree m+ 1. Hence,

xm+1 ∈ x0 +Km(A, r0)

Stationary Krylov methods apply the same operations every iteration. In the Jacobi
method, for instance, M is fixed as the main diagonal of A. Other examples of station-
ary Krylov methods are Gauss-Seidel and (Symmetric) Successive Overrelaxation. The
non-stationary counterpart, on the other hand, has iteration-dependent coefficients, as
will become clear when we discuss the GMRES method.

Remark 2-3.1. If we assume x0 = 0, note that A−1b ≈ xm+1 = pm(A)b. In other
words, we obtain an approximation for the inverse of the matrix A. This observation
relates back to the Cayley-Hamilton theorem, which implies that the inverse of a matrix
can be expressed in terms of a linear combination of its powers.

In the upcoming sections, we will denote Krylov subspaces as

Km(A, v) = span{v,Av,A2v, . . . , Am−1v}.

Before we can establish the fundamentals of GMRES, it is necessary to first discuss one
of its main components.

2-3-1 Arnoldi

To introduce the Arnoldi algorithm, we first discuss the power method [44]. This tech-
nique, also known as the Von Mises iteration, is used as an eigenvalue algorithm. When
a vector is repeatedly multiplied by the same matrix, the eigenvector corresponding to

Joost van der Linden Master of Science Thesis

2-3 Krylov-subspace methods 13

the largest eigenvalue of the matrix will dominate the result. Hence, given some starting
vector v1, the power method uses the iteration

vj+1 = Avj

‖Avj‖2
.

The sequence v1, Av1, A2v1, . . . , iteratively normalized and stored, converges to the
eigenvector corresponding to the largest eigenvalue of A. Convergence of the power
method can be slow, and only the dominant eigenvector of A is computed [5]. The
Arnoldi method is a variation of the power method that does not has these negative
properties. Starting with the vector v1 such that ‖v1‖2 = 1, we orthonormalize Avj ,
j = 1, . . . ,m against all previous entries using an orthogonalization scheme.

The classical Gram-Schmidt orthogonalization scheme is often replaced by the Modified
Gram-Schmidt (MGS) variant. In the latter case vectors are orthogonalized against
errors in the computation of all previous orthogonalization steps. As a result, MGS
produces the same result as GS in exact arithmetic, but with smaller errors in finite-
precision computations. The pseudo-code of the Arnoldi method using MGS is given in
Algorithm 1.

Algorithm 1 Arnoldi
1: Select v1 such that ‖v1‖2 = 1.
2: for j = 1, 2, . . . ,m do
3: wj = Avj

4: for i = 1, . . . , j do
5: hi,j = (wj , vi)
6: wj = wj − hijvi

7: end for
8: hj+1,j = ‖wj‖2
9: if hj+1,j = 0 then break

10: vj+1 = wj/hj+1,j

11: end for

Remark 2-3.2.
• The m matrix-vector products Avj are generally the primary cost of the algorithm.

• In the implementation wj does not have to be stored, and it is often replaced by
w. Consequently, the variable is overwritten in every Arnoldi iteration. Storage
requirements include n(m + 1) elements for the Arnoldi vectors vj, as well as
m(m+ 1) elements for the matrix H = hij , 1 ≤ i ≤ m+ 1, 1 ≤ j ≤ m.

• Line 9 of Algorithm 1 is included to prevent a division by zero. If hj+1,j = 0,
though, we will see shortly that the solution at iteration j will be the exact solution
of (2-3.1).

A useful property of the Arnoldi algorithm is proved next.

Master of Science Thesis Joost van der Linden

14 Framework

Proposition 2-3.1 (cf. [4, Prop. 6.4]). Assume hj+1,j 6= 0 for j = 1, 2, . . . ,m. Then
the vectors v1, v2, . . . , vm in Algorithm 1 constitute an orthonormal basis of of the Krylov
subspace

Km(A, v1) = span{v1, Av1, . . . , A
m−1v1}.

Proof. Since Algorithm 1 uses the MGS orthonormalization scheme, the vectors vj , j =
1, 2, . . . ,m are orthonormal by construction. To show that they are a basis of Km(A, v1),
we need to prove that vj = pj−1(A)v1 for all j. A simple induction argument can be
used in this case. For j = 1, clearly, v1 = p0(A)v1, where the polynomial p0 is equal to
one. Assuming the induction hypothesis vj = pj−1(A)v1, marked (∗), we get

vj+1 = wj

hj+1,j
= 1
hj+1,j

[
wj −

m∑
i=1

hijvi

]

= 1
hj+1,j

[
Avj −

m∑
i=1

hijvi

]
(∗)= 1

hj+1,j

[
pj(A)v1 −

m∑
i=1

hijpi−1(A)v1

]
,

so we find that vj+1 is of the form pj(A)v1, as required.

Proposition 2-3.1 will be employed in the next section to find an approximate solution
of the coupled linear system (2-3.1).

The Arnoldi algorithm produces the following matrices:

Vm+1 = [v1, v2, . . . , vm] and H̄m =



h1,1 h1,2 · · · h1,m−1 h1,m

h2,1 h2,2 · · · h2,m−1 h2,m

h3,2 · · · h3,m−1 h3,m

.
...

hm,m−1 hm,m

hm+1,m


(2-3.6)

The entries of the upper-Hessenberg matrix H̄m are defined as hi,j = (Avj)T vi. Vm+1
contains the basis vectors for the Krylov subspace K(v1, A), as shown in 2-3.1. The
following definition introduces Ritz values and Ritz vectors, which will play a crucial
role in approximating eigenvectors.

Definition 2-3.2. Let Hm be given as in Lemma 2-3.1. Then, the eigenvalues of Hm

are called Ritz values. The eigenvector corresponding to a Ritz value, multiplied by Vm,
is called a Ritz vector.

In the next lemma, we derive two expressions concerning the matrices Vm+1 and H̄m.

Joost van der Linden Master of Science Thesis

2-3 Krylov-subspace methods 15

Lemma 2-3.1 (cf. [4, Prop. 6.5]). Let Vm+1 and H̄m as in (2-3.6). Define Hm ∈ Rm×m

as the matrix obtained from H̄m by omitting the last row. Then the following expressions
hold:

(a) AVm = Vm+1H̄m = VmHm + hm+1,mvm+1e
T
m;

(b) Hm = V T
mAVm.

Proof. Part (a) follows by assembling

hm+1,mvm+1 = wm = Avj −
j∑

i=1
hi,jvi

for all j = 1, 2, . . . ,m, so that in matrix notation
hm+1,mvm+1e

T
m = AVm − VmHm

from which the first identity of the proposition is readily derived. Multiplying part (a)
by V T

m on both sides proves part (b):
V T

mAVm = V T
mVmHm + hm+1,mV

T
mvm+1e

T
m = Hm,

since V T
mVm = I and V T

mvm+1 = 0 by the orthogonality construction.

Part (b) implies that Arnoldi maps the matrix A to an upper Hessenberg matrix Hm,
using the orthogonality transformations given by Vm. From part (a) of Proposition 2-3.1
we find that in case of a breakdown, i.e. hm+1,m = 0,

AVm = VmHm.

As a result, the vectors in Vm form an invariant subspace of A. Proposition 2-3.2 shows
the consequence of a lucky breakdown.

Proposition 2-3.2 (cf. [4, Prop. 5.6]). Assume Km is invariant under A and r0 =
b−Ax0 ∈ Km. Then, the projection xm will be the exact solution of Ax = b.

Proof. Let Wm be the oblique projector onto Km, orthogonal to Lm, as given in equa-
tion (2-3.3). The approximate solution xm satisfies the Petrov-Galerkin orthogonality
conditions

W T
m(b−Axm) = 0. (2-3.7)

Recall xm ∈ x0 +Km. Let δ ∈ Km, then (2-3.7) yields
W T

m(b−A(x0 + δ)) = 0 ⇔ W T
m(r0 −Aδ) = 0

By assumption, W T
mr0 = r0. In addition, because δ ∈ Km and Km is invariant under A,

Aδ ∈ Km. Hence, W T
mAδ = Aδ. Equation (2-3.7) thus simplifies to
r0 −Aδ = 0 ⇔ b−Ax0 −A(xm − x0) = 0

⇔ b−Axm = 0,
which shows that xm is the exact solution.

Master of Science Thesis Joost van der Linden

16 Framework

2-4 GMRES

Recall the Petrov-Galerkin conditions (2-3.2)

Find xm ∈ x0 +Km such that (b−Axm, w) = 0 ∀ w ∈ Lm.

As noted before, the GMRES uses Lm = AKm for the constraints space. Hence, if we
set rm = b− Axm as before, then the Petrov-Galerkin conditions imply rm ⊥ AKm. In
the upcoming theorem we show that this is equivalent to minimizing the residual.

Theorem 2-4.1 (cf. [6, Lem. 10.1]). The Petrov-Galerkin conditions rm ⊥ AKm are
equivalent to

‖rm‖2 = min
x∈x0+Km

‖b−Ax‖2 = min
r∈r0+AKm

‖r‖2 (2-4.1)

Proof. Let x ∈ x0 +Km arbitrary, with residual r ∈ r0 +AKm, and denote AKm = Lm.
Write r = r0 + l with l ∈ Lm. Define Pm as the orthogonal projector onto Lm and
Qm = I − Pm as the projector on L⊥m. We can then decompose r0 as

r0 = Pmr0 +Qmr0 ∈ Lm ⊕ L⊥m.

Hence, r = (Pmr0+l)+Qmr0 ∈ Lm⊕L⊥m. Taking the two-norm and applying Pythagoras
yields

‖r‖22 = ‖Pmr0 + l‖22 + ‖Qmr0‖22, (2-4.2)

which attains its minimum when l = −Pmr0. For this particular choice, the residual rm

is

rm = r0 − Pmr0 = Qmr0 ∈ L⊥m ⊥ Lm,

i.e. rm ⊥ Lm which was to be proven.

Assuming r ⊥ Lm, on the other hand, implies Qmr = r, as Qm projects on L⊥m, which
already contains r. Therefore,

‖r‖22 = ‖Qmr‖2 = ‖Qm(r0 + l)‖22 = ‖Qmr0‖22,

since Qml = 0. Note that this is exactly the minimum value found from (2-4.2).

The Arnoldi procedure to construct an orthonormal basis for the Krylov subspace Km

is the core of the Generalized Minimum Residual Method. The matrices Hm and Vm

can be employed to compute the equivalent of (2-3.3) in an efficient way. In the next
proposition, assume the Arnoldi method is applied with v1 = r0/‖r0‖2, to obtain a basis
for the Krylov subspace Km(A, v1).

Joost van der Linden Master of Science Thesis

2-4 GMRES 17

Proposition 2-4.1. Let β = ‖r0‖2 and um the weight vector in xm = x0 + Vmum ∈
x0 +Km by Proposition 2-3.1. Then the optimality criterion from Theorem 2-4.1 can be
written as

min
x∈x0+Km

‖b−Ax‖2 = min
u∈Rm

‖βe1 − H̄mu‖2. (2-4.3)

Proof. First, note that r0 = βv1 = βVm+1e1. We derive,

b−Ax = b−A(x0 + Vmu)
= r0 −AVmu

= βVm+1e1 −AVmu

= βVm+1e1 − Vm+1H̄mu = Vm+1(βe1 − H̄mu),

where we used Lemma 2-3.1 in the last line. As a result,

‖b−Ax‖2 = ‖Vm+1(βe1 − H̄mu)‖2
= ‖βe1 − H̄mu‖2,

because the columns of Vm+1 are orthonormal.

The obtained least-squares problem has a unique solution as long as hj+1,j 6= 0, j =
1, . . . ,m − 1, in which case H̄m has full rank. For a minimum um ∈ Rm of (2-4.3), the
approximation xm to 2-3.1 is given by xm = x0 + Vmum.

Proposition 2-4.1 gives rise to the GMRES algorithm, stated next.

Algorithm 2 GMRES
1: Compute r0 = b−Ax0, β = ‖r0‖2, and v1 = r0/β.
2: for j = 1, 2, . . . ,m do
3: wj = Avj

4: for i = 1, . . . , j do
5: hi,j = (wj , vi)
6: wj = wj − hijvi

7: end for
8: hj+1,j = ‖wj‖2
9: if hj+1,j = 0 or converged then

10: set m = j and go to 14
11: end if
12: vj+1 = wj/hj+1,j

13: end for
14: Fill H̄m = {hij} for 1 ≤ i ≤ m+ 1, 1 ≤ j ≤ m.
15: Compute the minimizer um of ‖βe1 − H̄mu‖2 and set xm = x0 + Vmum.

Master of Science Thesis Joost van der Linden

18 Framework

Remark 2-4.1.
• Observe how the Arnoldi algorithm 1 is employed in two ways: to compute the

basis vectors vj for the Krylov subspace Km(A, v1), and to fill the upper Hessenberg
matrix H̄m. The latter two corresponding matrices constitute the main memory
requirements of the GMRES method.

• If the algorithm has not converged after m iterations, a restart can be performed
by setting x0 = xm and returning to line 1. This method is usually referred to
as restarted GMRES, or simply GMRES(m) where m is the maximum number of
iterations before a restart.

• In case restarted GMRES is used, the restart loop is called the ’outer’ loop, and
the computations for j = 1, 2, . . . ,m are referred to as being in the ’inner’ loop. A
full run of the inner loop is called a ’cycle’. The variable m is often referred to as
the ‘cycle size’.

Two components of the GMRES algorithm have not been explained yet. In the upcoming
two subsections, we will present an effective method to compute the minimizer um, and
show how to check for convergence.

2-4-1 Givens rotations

As shown in (2-3.6), the matrix H̄m is upper Hessenberg. Because this particular matrix-
shape is nearly upper diagonal, solving 2-4.3 by a QR-factorization is favorable. This
gives us

H̄m = QmR̄m, (2-4.4)

where Qm is an m+ 1×m+ 1 orthogonal matrix, and

R̄m =
[
Rm

0

]
,

where R̄m is m+ 1×m and Rm is m×m upper triangular and invertible. In addition,
let

ḡm = Qmβe1 =
[
gm

γm+1

]

where γm+1 is a scalar and ḡm and gm are vectors of length m + 1 and m respectively.
Note that because Qm is orthogonal, (2-4.4) is equivalent to QmH̄m = R̄m. As a result,
the norm in the right-hand-side of (2-4.3) becomes

‖βe1 − H̄mu‖22 = ‖Qm(βe1 − H̄mu)‖22
= ‖ḡm − R̄mu‖22
= |γm+1|2 + ‖gm −Rmu‖22. (2-4.5)

Joost van der Linden Master of Science Thesis

2-4 GMRES 19

The minimum of this expression is achieved when ‖gm − Rmu‖22 = 0. Hence, the least-
squares problem (2-4.3) can be tackled by solving Rmum = gm using back substitu-
tion.

The question that remains is: how do we obtain the QR-decomposition of H̄m? Recall
that the matrix is upper Hessenberg, i.e. all entries below the first subdiagonal are
zero. The QR-decomposition is thus obtained if we find an orthogonal matrix Qm that
eliminates the subdiagonal elements in H̄m, resulting in an upper diagonal matrix R̄m.
This can be achieved using Givens rotations.

The θ radians counterclockwise rotation of a vector y ∈ Rm is defined as

Gm
ij (θ) =



1 · · · i · · · j · · · m

1 1
... . . .
i c · · · s
...

...
j −s · · · c
... . . .
m 1


where c = cos(θ), s = sin(θ) and c2 + s2 = 1. The action of G on y is

Gm
ij (θ)y = ỹ; ỹk =


cyi + syj for k = i

cyj − syi for k = j

yk for k 6= i, j

.

Now if we choose

c = yi√
y2

i + y2
j

s = yj√
y2

i + y2
j

then yj = 0, while preserving the norm of y. We will assume j = i+ 1 and write Gm
i for

the Givens rotation that eliminates yi+1,i from an arbitrary matrix Y = {yij} with m
columns. As a result, a series of Givens rotations Qm = Gm

mG
m
m−1 . . . G

m
1 will transform

the upper Hessenberg matrix H̄m into the upper triangular matrix R̄m:

QmH̄m = Gm
mG

m
m−1 . . . G

m
1


• • · · · •
• • · · · •
• · · · •

.
•

 =


◦ ◦ · · · ◦
◦ · · · ◦

.
◦

 = R̄m.

Master of Science Thesis Joost van der Linden

20 Framework

We obtain the matrices Qm and R̄m as described in (2-4.4).

Each inner iteration of GMRES adds one column to the upper Hessenberg matrix. For
any H̄j , 1 ≤ j ≤ m− 1, the action of the first j Givens rotations on H̄j+1 is

Gj+1
j Gj+1

j−1 . . . G
j+1
1 H̄j+1 = Gj+1

j Gj+1
j−1 . . . G

j+1
1



• • · · · • h1,j+1
• • · · · • h2,j+1
• · · · • h3,j+1

.
...

• hj+1,j+1
hj+2,j+1



=



◦ ◦ · · · ◦ h̃1,j+1
◦ · · · ◦ h̃2,j+1

.
...

◦ h̃j,j+1
h̃j+1,j+1
hj+2,j+1


.

Note that the upper left j × j submatrix in the right-hand side is again R̄j , while in
the rightmost column only hj+2,j+1 remains unchanged. To obtain R̄j+1, we eliminate
hj+2,j+1 by using the Givens rotation Gj+1

j+1 with

c = hj+1,j+1√
h2

j+1,j+1 + h2
j+2,j+1

s = hj+2,j+1√
h2

j+1,j+1 + h2
j+2,j+1

(2-4.6)

The fact that hj+2,j+1 is not affected by the first j Givens rotations, combined with the
observation that Gj+1

j+1 only affects the j+1’th column in H̄j+1, gives rise to the following
iterative implementation of Givens rotations in GMRES:

1. Apply the previous rotations Gj+1
j Gj+1

j−1 . . . G
j+1
1 to the first j + 1 elements of the

new column in H̄j+1, i.e. h1,j+1, . . . , hj+1,j+1.

2. Compute the new rotation Gj+1
j+1 using (2-4.6), and apply to H̄j+1 and βe1.

3. Repeat until convergence, breakdown or the end of a cycle.

This update of H̄j+1 is relatively cheap, i.e. O(j). Storage of the Givens rotation ma-
trices can usually be avoided by saving the individual elements c and s in two vectors.
Although it is possible to use the procedure above after the inner loop has finished, it
is rather more efficient to directly apply the Givens rotations during each inner itera-
tion.

Joost van der Linden Master of Science Thesis

2-4 GMRES 21

2-4-2 Computing the residual

In Algorithm 2, the solution is not explicitly available in each iteration of the inner
loop. Hence, computing the residual cannot be done by the straight-forward computa-
tion

‖rm‖2 = ‖b−Axm‖2 = ‖βe1 − H̄mum‖2.

Instead, we will see next that the Givens rotations can be exploited to find the residual.

Proposition 2-4.2 (cf. [4, Prop. 6.9c]). The norm of the residual vector is given by

‖rm‖2 = |γm+1|

Proof. Recall from the proof of 2-4.1 that b − Ax = Vm+1(βe1 − H̄mu). Using the
orthogonal matrix Qm, we find

b−Ax = Vm+1(βe1 − H̄mu)
= Vm+1Q

T
mQm(βe1 − H̄mu)

= Vm+1Q
T
m(ḡm − R̄mu).

When u is computed as the minimizer of (2-4.5), we are left with

b−Ax = Vm+1Q
T
m(γm+1em+1),

or, in the two-norm,

‖b−Ax‖2 = ‖Vm+1Q
T
m(γm+1em+1)‖2 = ‖γm+1em+1‖2 = |γm+1|,

because the product of two orthogonal matrices is again orthogonal.

As a convergence criterion we compare, unless otherwise stated, the current residual
divided by the norm of the right-hand side against some predefined tolerance.

2-4-3 Convergence

Can the residual at each iteration be bounded? Unfortunately, this is not trivial for
non-symmetric systems. Whereas strong convergence bounds are known for normal
matrices, the known bounds on the residual in GMRES are not well defined. Moreover,
non-symmetric matrices are rarely normal. In theory, Greenbaum, Pták and Strakos [45]
show that, for any non-increasing convergence curve of the residual, there exists a matrix
A and an initial residual such that GMRES will follow this particular curve. Moreover,
the matrix A can be chosen to have any arbitrary eigenvalue distribution.

Master of Science Thesis Joost van der Linden

22 Framework

If A is normal, the relative residual can be bounded as

‖rm‖
‖r0‖

≤ min
p∈Pm

p(0)=1

max
k
|p(λk)| (2-4.7)

where Pm is the set of polynomials of degree at most m, satisfying p(0) = 1, and λk

denotes the k’th eigenvalue. This bound is sharp, i.e. it describes the worst-case scenario.
The relation between the bound in (2-4.7) and the eigenvalue distribution is nonlinear
and rather complicated [47]. For different properties of A, simplifications can be used.
If the largest and smallest eigenvalue are known in Hermitian positive definite matrices,
for example, Chebyshev polynomials can be used to approximate the min-max problem
for the CG method. The result is a bound on the relative A-norm of the error:

‖x∗ − xm‖
‖x∗ − x0‖

≤ 2
(√

κ2(A)− 1√
κ2(A)− 1

)m

, κ2(A) = λmax
λmin

.

For a general normal matrix, residual bounds for specific eigenvalue distributions are
given in Proposition 2-4.3.

Proposition 2-4.3.
1. Assume the eigenvalues of A are non-zero and contained in a disk with radius r > 0

and center c ∈ C. Then, it can be shown that

min
p∈Pm

p(0)=1

max
k
|p(λk)| ≤

∣∣∣∣rc
∣∣∣∣m

2. Assume the eigenvalues of A are non-zero and contained in an ellipse with center
c ∈ R, focal distance d > 0 and major semi axis a > 0. Then, it can be shown that

min
p∈Pm

p(0)=1

max
k
|p(λk)| ≤

(
a+
√
a2 − d2

c+
√
c2 − d2

)m

Proof. See [4, Section 6.11].

Proposition 2-4.4 gives a bound on the relative residual for general nonnormal matrices.

Proposition 2-4.4. Let A be nonnormal and diagonalizable, i.e. A = V DV −1 with
D = diag(λ1, . . . , λn) and V containing the eigenvectors. Then,

‖rm‖
‖r0‖

≤ κ2(V) min
p∈Pm

p(0)=1

max
k
|p(λk)|.

Proof. See [46, p. 866].

Joost van der Linden Master of Science Thesis

2-4 GMRES 23

The condition number can be computed as κ2(V) = ‖V ‖‖V −1‖. If the spectrum of A is
contained in a circle or an ellipse, away from the origin, then the bounds in Proposition
2-4.3 can be used to simplify the min-max problem. The bound in Proposition 2-4.4 is
only sharp when A is normal, though, and the aforementioned result in [45] demonstrates
that it is not useful when κ2(V) is very large.

Recall from Equation (2-3.5) that a GMRES iteration can be expressed as xm = x0 +
pm−1(A)r0. Using this identity, the m’th residual can be written as

‖rm‖2 = ‖b−Axm‖2 = ‖b−Ax0 −Apm−1(A)r0‖2
= ‖(I −Apm−1(A))r0‖2
= min

p∈Pm−1
‖(I −Ap(A))r0‖2 = min

p∈Pm,p(0)=1
‖p(A)r0‖2 (2-4.8)

Greenbaum and Trefethen [49] introduced the ‘ideal’ GMRES approximation problem,
to investigate which properties of A influence the residual bound, as follows:

‖rm‖
‖r0‖

= min
p∈Pm

p(0)=1

‖p(A)r0‖2
‖r0‖

≤ max
‖v‖=1

min
p∈Pm

p(0)=1

‖p(A)v‖

≤ min
p∈Pm

p(0)=1

‖p(A)‖. (2-4.9)

The last term in (2-4.9) can be bounded using the pseudospectrum [50, 51] or the field
of values of A [52, 53]. Although these methods can provide insight in the effectiveness
of preconditioning, the bound is again not sharp and it remains unclear how close ideal
GMRES (last line of (2-4.9)) approximates worst-case GMRES (second line of (2-4.9))
[47].

2-4-4 Preconditioning

Preconditioning a Krylov subspace method can significantly improve convergence and
robustness. The original system (2-3.1) is transformed into an equivalent system with
the same solution, but more suitable for iterative methods in terms of, for instance, the
condition number of the matrix. A preconditioner M can be applied either from the left
or from the right:

Left preconditioning : M−1Ax = M−1b

Right preconditioning : AM−1y = b, y = Mx

The preconditioner should be inexpensive to construct and, ideally, a good approxima-
tion of A. M−1A or AM−1 are not explicitly formed in practice, hence the system

Master of Science Thesis Joost van der Linden

24 Framework

Mx = z, for arbitrary x, z ∈ Rn, should be easy to solve using a direct or iterative
method. In preconditioned GMRES, Arnoldi is invoked to build an orthogonal basis for
the respective Krylov subspaces

Km(M−1A, r0) = span{r0,M
−1Ar0, (M−1A)2r0, . . . , (M−1A)m−1r0}, and

Km(AM−1, r0) = span{r0, AM
−1r0, (AM−1)2r0, . . . , (AM−1)m−1r0}.

The pseudocode for left preconditioning is given below.

Algorithm 3 left-preconditioned restarted GMRES
1: Compute r0 = M−1(b−Ax0), β = ‖r0‖2, and v1 = r0/β.
2: for j = 1, 2, . . . ,m do
3: wj = M−1Avj

4: for i = 1, . . . , j do
5: hi,j = (wj , vi)
6: wj = wj − hijvi

7: end for
8: hj+1,j = ‖wj‖2
9: if hj+1,j = 0 or converged then

10: set m = j and go to 14
11: end if
12: vj+1 = wj/hj+1,j

13: end for
14: Fill H̄m = {hij} for 1 ≤ i ≤ m+ 1, 1 ≤ j ≤ m.
15: Compute the minimizer um of ‖βe1 − H̄mu‖2 and set xm = x0 + Vmum.
16: if converged then return else set x0 = xm and go to 1

For right preconditioning, we have r0 = b−Ax0 = b−AM−1y0. Therefore, we can take
b−Ax0 for the initial residual and multiply

ym = y0 + Vmum

on both sides by M−1, to get

xm = x0 +M−1Vmum.

The pseudocode is given in Algorithm 4.

Joost van der Linden Master of Science Thesis

2-4 GMRES 25

Algorithm 4 right-preconditioned restarted GMRES
1: Compute r0 = b−Ax0, β = ‖r0‖2, and v1 = r0/β.
2: for j = 1, 2, . . . ,m do
3: wj = AM−1vj

4: for i = 1, . . . , j do
5: hi,j = (wj , vi)
6: wj = wj − hijvi

7: end for
8: hj+1,j = ‖wj‖2
9: if hj+1,j = 0 or converged then

10: set m = j and go to 14
11: end if
12: vj+1 = wj/hj+1,j

13: end for
14: Fill H̄m = {hij} for 1 ≤ i ≤ m+ 1, 1 ≤ j ≤ m.
15: Compute the minimizer um of ‖βe1 − H̄mu‖2 and set xm = x0 +M−1Vmum.
16: if converged then return else set x0 = xm and go to 1

In our applications, we focus on right preconditioning. The formulation of M will be
discussed in Section 2-5. A clear advantage of right-preconditioned GMRES is that
the intermediate residual norm can be obtained more easily than in left-preconditioned
GMRES. When Algorithm 3 is used, any residual vector qj computed inside the outer
loop at iteration j will be preconditioned, i.e. qj = M−1(b − Axj). To compute the
intermediate residual norm, line 15 has to be used to explicitly solve for xj , from which
‖qj‖2 can be computed. In the right-preconditioned case of Algorithm 4, on the other
hand, we have

b−AM−1yj = b−Axj .

Therefore, Proposition 2-4.2 holds, and the residual can be obtained from γj+1 in the
QR-decomposition of Hj .

The specific preconditioner used in IX will be introduced in the next section.

Master of Science Thesis Joost van der Linden

26 Framework

2-5 CPR

The Constraint Pressure Residual (CPR) scheme was developed by Wallis et al. as an
efficient preconditioner for applications in reservoir simulation [64, 65]. The idea was
further developed in a parallel environment and implemented in IX by Cao et al. [66].
The CPR method was originally motivated by the challenging nature of linear systems
in reservoir simulation. Difficulties arise due to the following characteristics:

1. Strong global coupling of the variables, rendering the problems unsuitable for a
straightforward parallel implementation.

2. Large and nonsymmetric systems with a varying number of unknowns per gridcell.

3. Highly heterogeneous coefficients.

Furthermore, whereas previous efforts in the reservoir simulation community were mainly
directed towards solving problems on structured grids, present-day simulations often
require the use of unstructured grids. Problems on complex unstructured grids, combined
with the challenging factors mentioned above, result in linear systems that call for more
advanced linear solvers. The preconditioners in these solvers should be sensitive to
the mix of near-elliptic pressure equations and near-hyperbolic saturation equations
[66, 67].

The CPR scheme employs a multi-stage preconditioner to individually tackle the nu-
merical properties of the different variables. In particular, the pressure equations are
resolved separately from the complete system. These equations exhibit an elliptic na-
ture, which we can efficiently deal with using a multigrid preconditioner. The remaining
equations are near-hyperbolic, which is efficiently solved with an Incomplete LU (ILU)
preconditioner.

Remark 2-5.1. In IX, preconditioners are based on Arr (with the well terms included
in the diagonal) and br, rather than the full Schur complement as defined in (2-1.7). By
doing so, we avoid computing an inverse and several matrix-matrix multiplications. The
underlying assumption is that Arr ≈ Arr − ArwA

−1
wwAwr and br ≈ br − ArwA

−1
wwbw. For

simplicity, this distinction is omitted in the notation.

The multigrid and ILU preconditioner will be discussed in Sections 2-5-1 and 2-5-2,
respectively. For an introduction to matrix splitting and basic iterative methods, we
refer to [4]. Assuming that both preconditioners can be expressed in matrix form, the
two subsequent solution corrections to proceed from iteration i to iteration i + 1 in a
two-stage preconditioner can be expressed as

xi+ 1
2

= xi + d1 = xi +M−1
1 (b−Axi),

xi+1 = xi+ 1
2

+ d2 = xi+ 1
2

+M−1
2 (b−Axi+ 1

2
).

(2-5.1)

Elementary choices include M = A (convergence in one step, expensive) and M = I
(slow convergence, cheap). By weighing speed and computational costs, we often seek a

Joost van der Linden Master of Science Thesis

2-5 CPR 27

balance between these two choices. Combining the identities in (2-5.1) results in

xi+1 = xi +M−1
CPR(b−Axi),

where

M−1
CPR = M−1

1 +M−1
2 −M−1

2 AM−1
1

= M−1
1 +M−1

2 (I −AM−1
1).

In the CPR scheme, M−1
2 represents the stage two ILU preconditioner denoted as M−1

ILU.
M−1

1 corresponds to stage one and is chosen as

M−1
1 = C(CTdiag−1(A)AC)−1CT ,

where diag(A) ∈ Rn×n holds the block diagonal of A and, assuming the pressure variable
is the last unknown in each cell, C is the n× nc matrix6

C =


epres

epres

. . .
epres

 , epres =


0
...
0
1

 ∈ Rnu×1, (2-5.2)

restricting the linear system to the pressure equations. The expression for M−1
CPRri thus

becomes

M−1
CPRri = M−1

ILU(ri −AC(CTdiag−1(A)AC)−1CT ri) (2-5.3)
+C(CTdiag−1(A)AC)−1CT ri. (2-5.4)

In the actual implementation, M−1
1 and M−1

2 are not computed explicitly. Instead, the
following procedure is followed to evaluate (2-5.3) [66]:

1. Restrict the full system residual to the pressure residual, i.e.

rpres
i = CT ri.

2. Compute the stage one (pressure) solution correction dpres
1 in (2-5.1) by solving

(CTdiag−1(A)AC)dpres
1 = ri.

3. Expand d1 to the full system, i.e.

d1 = Cdpres
1 .

6Recall that we assumed that there are nc cells in the computational grid.

Master of Science Thesis Joost van der Linden

28 Framework

4. Correct the full system residual with the pressure solution correction, i.e.

rcorr
i = ri −Ad1.

5. Compute the stage two solution correction d2 in (2-5.1) by solving

MILUd2 = rcorr
i .

Having obtained d1 and d2, the next iteration is xi+1 = xi +M−1
CPRri = xi +d2 +d1.

Stage one (the pressure solve) of the CPR preconditioner eliminates the low-frequency
errors. Stage two, which incorporates the result of stage one in a residual correction,
tackles the high-frequency errors. Equivalently, stage one works on the long-range error
components of the pressure field, whereas stage two is applied to variables with a local
dependency. The motivation for this idea is that dealing with long-range dependency is
computationally more demanding. By applying the multigrid preconditioner to a smaller
linear (pressure) system, the computational cost is reduced and the error characteristics
are effectively handled. In addition, algebraic multigrid with a single V-cycle is not
effective when applied to hyperbolic systems.

2-5-1 CPR stage 1: AMG

Algebraic multigrid (AMG) is a multigrid method [69, 70]. For a detailed introduction,
we refer to [68, pp. 413-532]. The error is first smoothed on the fine grid, after which
the result is restricted to the coarse grid with a restriction operator. On the coarse grid,
the slowly varying error modes are resolved to obtain a solution correction, which is pro-
longated back to the fine grid with a prolongation operator. In contrast with geometric
multigrid, coarsening and interpolation operators in AMG are determined algebraically
using only the coefficients of the fine-grid matrix. AMG follows a similar approach taken
in the Black Box Multigrid Method (BoxMG) [71], in which the coefficients of the in-
terpolation operator are derived from the connectivity graph of each gridpoint and the
corresponding coefficient values.

The advantage of AMG is that the method, in contrast to BoxMG, can also be used for
unstructured grids. It is notoriously difficult to apply multigrid to non-rectangular grids,
especially in three dimensions [4]. Furthermore, geometric multigrid does not efficiently
account for heterogeneous and anisotropic coefficients. By construction, AMG is more
robust for these types of problems. The increased robustness comes at a cost, though,
in the following disadvantages of AMG:

• High set up cost

• Unstructured grid hierarchy

• Difficult to parallelize

Joost van der Linden Master of Science Thesis

2-5 CPR 29

Regardless, because of the increased robustness and black box nature of the method,
AMG has gained widespread popularity in commercial codes [12].

The next lemma relates a property of the error to the coefficients aij of A, when A is
positive definite.

Lemma 2-5.1. For a smooth error vector s and A positive definite, we have

∑
j 6=i

|aij |
aii

(
si − sj

si

)2
� 1 (2-5.5)

Proof. See e.g. [4, p.457] or [68, p.439].

Note that A is not positive definite in our case. No comparable theory exists for non-
symmetric matrices, but practical experience indicates that other other properties of the
matrix, such as a lack of (weak) diagonal dominance, influence the performance of AMG
more than a lack of symmetry [68].

Remark 2-5.2. An ambiguity exists regarding the term ‘smooth’. In geometric multigrid,
a smooth error is interpreted as being smooth relative to the coarser level. That is, we
say the error is smooth when the the result of the smoothing is slowly-varying on the
predefined coarse level. In algebraic multigrid, on the other hand, there is no predefined
coarse level. Hence, a ‘smooth’ error in AMG is defined as being smooth relative to the
predefined smoother. We say the error e is algebraically smooth when the smoother S has
little effect, i.e. Se ≈ e. Very small eigenvalues, as we will see in Chapter 3, generally
slow down the convergence of the smoother. Therefore, these eigenvalues correspond to
algebraically smooth error. More details on this topic can be found in [68].

From Lemma 2-5.1 we derive that for (2-5.5) to hold, (si − sj)/si should be small when
|aij |/aii is large. Equivalently, the error s is slowly-varying in the direction of the con-
nection between node i and node j if the corresponding weight is relatively large. The
latter idea is captured in Definition 2-5.1.

Definition 2-5.1. A connection of a coarse node i to an adjacent node j, i.e. aij 6= 0,
is said to be ‘strong’ when |aij |/aii is larger than a certain threshold. If the fraction is
smaller than the threshold, then the connection is said to be ‘weak’.

A coarse grid is formed by taking a maximal independent set of the strong connections.
To account for the many variations on the process of identifying strong connections (for
different classes of matrices), a general AMG framework has been developed in [72].
The auxiliary matrix P is defined as the ‘primary’ matrix and is used (instead of A) to
establish the set of strong connections [73].

In general, AMG methods fall into one of the following three categories [72]:

Master of Science Thesis Joost van der Linden

30 Framework

1. In classical, Variable-based AMG [68], we simply take P = A. This approach
does not account for the scenario in which multiple unknowns (pressure and sat-
uration, for example) are defined on the same gridpoints. Hence, variable-based
AMG only works for scalar PDEs with a single unknown.

2. In Unknown-based AMG [69], the linear system Ax = b is reordered ‘unknown-
wise’, as 

A[1,1] . . . A[1,nu]
...

A[nu,1] . . . A[nu,nu]

 =


x[1]
...

x[nu]

 =


b[1]
...

b[nu]

 ,
where nu denotes the number of unknowns per gridcell. Each submatrix A[i,j],
1 ≤ i, j ≤ nu, i 6= j, corresponds to the coupling between two unknowns. The
primary matrix P is then defined by ignoring the cross-coupling:

P =

A[1, 1]
. . .

A[nu, nu]

 .
In unknown-based AMG, variable-based AMG is applied to each diagonal block
in P . Consequently, coarsening and interpolation are performed separately for
each unknown. The advantage of this approach is that distinct heterogeneity in
different unknowns can be efficiently dealt with. If error characteristics of different
unknowns are connected, however, ignoring strong cross-coupling is ineffective.

3. In Point-based AMG [69, 76], the linear system Ax = b is reordered ’point-wise’,
as 

A[1,1] . . . A[1,nc]
...

A[nc,1] . . . A[nc,nc]

 =


x[1]
...

x[nc]

 =


b[1]
...

b[nc]

 ,
where nc denotes the number of cells in the grid. In this case, each submatrix A[ij],
1 ≤ i, j ≤ nc, i 6= j, represents the coupling between two gridpoints. Different
unknowns are required to be discretized on the same grid (i.e. no staggered grids),
but not all unknowns have to be defined on each gridpoint. Two possibilities for
entries pij of P in this method are the block approaches [72]

pij = −‖A[i,j]‖ and pii = ‖A[i,i]‖, or

pij = −‖A[i,j]‖ and pii = −
∑
i 6=j

pij .

Alternatively, entries of P can be based on distances between points, which is
closely related to geometric multigrid.

Joost van der Linden Master of Science Thesis

2-5 CPR 31

Having established the coarsening operator using the primary matrix, there are various
ways to construct the interpolation operator, such as:

• Separate for each unknown, i.e. using the blocks in an unknown-wise reordering
of A.

• Equivalent for each unknown, using the blocks in a point-wise reordering of A

• Equivalent for each unknown, based on the coordinates.

Finding the optimal combination of a coarsening approach and an interpolation scheme
for different applications is the subject of continuous research [74].

In IX, the implementation of AMG is closely related to the unknown-based approach.
Using the restriction matrix C from (2-5.2), the full system is restricted to the pressure
system. AMG is applied to the primary matrix

P = CTdiag−1(A)AC.

Interpolation is based on the values in P . Although AMG can be used as a solver,
it is used as a preconditioner for GMRES in IX. This process, which is referred to
as ‘acceleration’ of AMG, is generally more robust [68, 75]. A single step of GMRES
is preconditioned by a V-cycle of AMG. The default amount of coarsening steps is
twenty.

To illustrate coarsening in IX, a 81× 2 sideview of a reservoir is shown in Figure 2-5.1.
Nodes with colors towards the right of the colorbar are included more frequently on
coarser levels. Some nodes, which are not shown at all, are never included. Observe that
nodes around the well, where flow occurs, are included more often.

Figure 2-5.1: Coarsening of AMG. Colors towards the right of the colorbar imply more
frequent inclusion of the node on coarser levels.

Master of Science Thesis Joost van der Linden

32 Framework

2-5-2 CPR stage 2: ILU

For a detailed discussion of Incomplete LU factorization, we refer to [4, 77]. The LU
decomposition can be used as a direct solver by computing the upper triangular matrix
U and the lower triangular matrix L such that A = LU . Ax = b is then easily solved by
doing a forward substitution in Ly = b followed by a backward substitution in Ux = y.
For symmetric positive definite matrices, the Cholesky decomposition follows a similar
approach using A = LLT .

Due to the fill in, performing an LU decomposition on a large, sparse matrix is expen-
sive. For A ∈ Rn×n, approximately O(n2) flops are required for an LU solve, which is
not competitive with iterative solvers [78]. Hence, in practice the LU method is often
used in incomplete form as a preconditioner for an iterative solver. We apply the LU
decomposition such that

R = A− LU (2-5.6)

satisfies certain constraints, such as a predefined zero pattern. In ILU(0), for example,
we require {

(LU)ij = aij for aij 6= 0
(LU)ij = 0 for aij = 0

(2-5.7)

where aij and (LU)ij are the coefficients of A and LU , respectively. To satisfy (2-5.6),
equation (2-5.7) implies rij = aij for aij = 0. ILU(0) is referred to as ‘zero-order fill
in’. To obtain first-order fill in, ILU(1), ILU(0) is applied a second time, using the zero
pattern from the first ILU(0) step. This process can be repeated p times to obtain the
ILU(p) factorization.

Instead of treating A point-wise, ILU can also be applied in a block-wise approach,
i.e. {

(LU)[i,j] = A[i,j] for A[i,j] 6= 0
(LU)[i,j] = 0 for A[i,j] = 0

(2-5.8)

Since this method is more efficient, IX contains a block-wise ILU factorization.

The advantages of ILU methods are the simplicity and the robustness for a broad class
of problems. The main drawback of ILU is the lack of scalability. The algorithm is
inherently sequential, because the LU factorization is executed column by column. Fur-
thermore, applying the ILU preconditioner requires a forward and backward solve, which
are also sequential. The optimal use of ILU in the second stage of the CPR precondi-
tioner is subject of further research. Depending on the application, a balance is sought
between the cheap but inaccurate ILU(0) method and the more expensive but also more
accurate ILU(1) method. Multicoloring can be used to parallelize the sequential steps in
the factorization. In most of the cases under consideration in Chapter 5, ILU(1) is used
as a preconditioner to single iteration of GMRES. For more details, see e.g. [75].

Joost van der Linden Master of Science Thesis

Chapter 3

Deflation

3-1 Motivation

As a motivation for deflation methods, consider the following example of the convergence
of GMRES.

10 20 30 40 50 60 70 80 90 100

10
−6

10
−4

10
−2

10
0

Iteration

R
el

at
iv

e
re

si
du

al
 n

or
m

GMRES(100)
GMRES(20)

Figure 3-1.1: GMRES example with tolerance 1e-6.

Full GMRES corresponds to Algorithm 4 with a sufficiently large m to prevent restart-
ing. In this case, m = 100. The dashed line results from choosing m = 20. GMRES(20)
does not convergence, whereas GMRES(100) converges only aftert about 40 iterations.
A major drawback of full GMRES, in this case GMRES(100), is the fact that the compu-
tational costs increase quadratically with the number of iterations. As the matrices H̄m

and Vm grow, solving (2-4.3) becomes increasingly more difficult. Hence, in practice, full
GMRES is seldom used. The example shows, however, that restarted GMRES might
not converge. Hence, explaining the difference between the two lines in Figure 3-1.1 is
crucial.

Master of Science Thesis Joost van der Linden

34 Deflation

The superlinear convergence of GMRES was associated by Van der Vorst and Vuik [7]
with the convergence of the Ritz values of H̄m to the eigenvalues of the operator A. If the
Krylov subspace reaches a sufficient size, the Ritz values will be close to the eigenvalues
of A. From that point on, GMRES will behave as if these approximated eigenvalues
have been naturally deflated from A, resulting in faster convergence. To illustrate this
idea, the Ritz values corresponding to the convergence history in Figure 3-1.1 are plotted
below.

0 20 40 60 80 100

10
−5

10
0

Iteration

V
al

ue

(a)

0 10 20 30 40 50 60 70

10
−5

10
0

Iteration

V
al

ue

(b)

0 50 100 150

10
−5

10
0

Eigenvalue

S
iz

e

(c)

Figure 3-1.2: Smallest Ritz values for (a) GMRES(20) and (b) GMRES(100), and the
spectrum of A (c).

In Figure 3-1.2(a), the five smallest Ritz values of the restarted GMRES case in Fig-
ure 3-1.1 are plotted. Clearly, the convergence of the Ritz values towards the exact
eigenvalues is reset after each restart. In Figure 3-1.2(b), GMRES is not restarted, and
the two smallest Ritz values convergence to the two smallest eigenvalues in Figure 3-
1.2(c). Comparing this result to Figure 3-1.1 shows that precisely as the Ritz values
approach the exact eigenvalues, at about 40 iterations, convergence of GMRES becomes
superlinear.

Natural deflation occurs, because eigenvector components corresponding to eigenvalues
are removed from the linear system. Extreme eigenvalues, in particular, are detrimental
to the converge of GMRES [8, 9, 10]. Unfortunately, a restart in GMRES erases the
obtained Krylov subspace before it might reach sufficient size to allow for natural defla-
tion, as illustrated in Figure 3-1.2. In addition, even if the Krylov subspace grows big
enough and deflation occurs, it will only aid to convergence in the current cycle. This
discussion suggests convergence would improve if (small) eigenvalues could be removed
artificially. This idea gives rise to the method of deflation.

3-2 Overview

After the introduction of deflation by Nicolaides [23] and Dostál [24], deflation was
further developed for symmetric and non-symmetric linear systems in a wide range of
applications. Deflation algorithms differ mainly in the way the deflation operator is
constructed, and the way it is applied. As for the application, two general approaches
can be distinguished:

Joost van der Linden Master of Science Thesis

3-2 Overview 35

1. Augmented subspace deflation. In a series of papers, Morgan [17, 54, 55], and
Chapman and Saad [16] introduced the idea to apply deflation after a restart of
GMRES. At the end of a GMRES cycle, augmented subspace deflation methods
retain information from the generated Krylov subspace. Information is added to
the search space of the next cycle, in order to directly reveal knowledge about the
search space that the Krylov subspace method itself would take much longer to find.
Instead of starting fresh, for example, approximated eigenvectors corresponding to
the smallest eigenvalues of A can be selected to augment the search space of the
next cycle.

2. Deflation by preconditioning. In contrast to augmented subspace approaches,
preconditioning deflation methods use approximated eigenvectors to construct a
preconditioner; see for example [9, 10, 56, 57, 63]. This preconditioner can be frozen
for all subsequent cycles, or refreshed when necessary. In some work, harmful eigen-
values are projected to zero, while others have proposed to move extreme parts
of the spectrum to the vicinity of the largest eigenvalue. In projection precondi-
tioning, the harmful eigenvector components are explicitly deflated by a projection,
after which the Krylov subspace method is used to solve the deflated linear system.

In dynamic deflation, the information generated during a GMRES cycle is employed
to construct the deflation vectors. After each restart, the deflation subspace can be
updated. An alternative approach is static deflation, which uses a fixed set of deflation
vectors that are available a priori. Physical information, such as the properties of shale
and sandstone layers underground, can be exploited to construct the deflation subspace
[11]. The latter approach is part of a technique known as domain-based deflation, which
will be further discussed in Section 3-4. Because static deflation requires the deflation
operator to be computed only once, we prefer this approach for reasons of computational
efficiency.

Simplicity plays an important role in commercial software packages such as IX. Hence,
a black-box deflation method is favored over algorithms that require the user to tune
certain parameters. Although to a certain extent user input will always be necessary for
efficient deflation, we believe deflation by preconditioning is easier to use, and easier to
implement, than augmented subspace deflation. A deflation preconditioner can simply
be incorporated in the existing CPR, AMG or ILU operator, to obtain a deflated two-
level preconditioned algorithm. Due to the large cases used in IX, explicitly building
and multiplying a preconditioner with the size of A is undesirable. As will become clear
in the next section, we can avoid this by using projection preconditioning.

Deflation can be applied to either the full (reservoir) system with all unknowns, or the
pressure system only. In the full system, deflation will form a two-level preconditioning
method with the ILU preconditioner, while in the pressure system deflation is com-
bined with AMG. The interplay of the preconditioner and deflation will influence our
experiments, as we will demonstrate in Section 5.

Master of Science Thesis Joost van der Linden

36 Deflation

In conclusion, our focus will be on static deflation methods using a projection precon-
ditioner, applied to both the full (non-symmetric) system and the pressure system. In
the upcoming sections, the corresponding mathematical framework will be presented. In
particular, we will discuss a number of approaches to compute the deflation vectors in
Section 3-4.

3-3 Framework

For a thorough introduction of deflation methods for symmetric problems, we refer to
[12]. We will follow the derivation for the non-symmetric case, discussed in [8].

Definition 3-3.1. Let A ∈ Rn×n be a non-symmetric matrix as given in (2-3.1), and
assume that the deflation matrix Z ∈ Rn×d is given. Then we define the matrix E ∈ Rd×d

as

E = ZTAZ, (3-3.1)

and the deflation matrices P1 and P2 as

P1 = I −AZE−1ZT ,

P2 = I − ZE−1ZTA.

Remark 3-3.1.
• Inverting E is relatively cheap, since, in general, d << n.

• In the symmetric case we have P T
1 = P2.

3-3-1 Galerkin matrix

E is essentially the result of a prolongation-restriction operation, known in multigrid
terminology as a Galerkin matrix. Indeed, deflation and multigrid are related. The
columns of Z should approximate slow-varying error modes, which are often determined
by eigenvector components corresponding to small eigenvalues. ZT and Z are the restric-
tion operator and the projection operator, respectively, and P1 and P2 can be interpreted
as coarse-grid corrections. In the symmetric case, these coarse-grid corrections are of
the form

P = I + ZE−1ZT . (3-3.2)

Nabben and Vuik show, however, that a symmetric linear system preconditioned by 3-3.2
always has a larger effective condition number than the deflated preconditioned system
[58]. Hence, the latter can be expected to show faster convergence when the CG method
is used.

Joost van der Linden Master of Science Thesis

3-3 Framework 37

If A is (symmetric) positive definite, then, as we show the next lemma, E is nonsingular.

Lemma 3-3.1 (cf. [12, Lemma 3.1] and [8, Lemma 5.2]). Let Z and E be given as
in Definition 3-3.1, and assume A is positive definite and Z has full rank. Then, E is
nonsingular.

Proof. Because every positive definite matrix is invertible, it is sufficient to show that
E is positive definite. For A positive definite, we have

yTAy > 0 ∀ y ∈ Rn, y 6= 0.

In particular, let y = Zỹ, where ỹ satisfies the same requirements as y, then

ỹTEỹ = ỹTZTAZỹ = (Zỹ)TA(Zỹ) = yTAy > 0, ∀ ỹ ∈ Rn, ỹ 6= 0,

as required.

In our case, however, A cannot be guaranteed to be symmetric or positive (semi-)definite.
Fortunately, a proof that E is nonsingular can also be given under the assumption that
the columns of Z form a basis for an A-invariant subspace. A trivial example of an
A-invariant subspace is Z = [v1, . . . , vd], 1 ≤ d ≤ n, where v1, . . . , vn are the exact eigen-
vectors of A.

Lemma 3-3.2 (cf. [15, Proposition 3.2]). Let Z and E be given as in Definition 3-3.1,
and assume A is nonsingular and the columns of Z form a basis for an A-invariant
subspace Z. In addition, let W ∈ Rn×(n−d) be the matrix whose columns form a basis
for Z⊥. Then, E is nonsingular, and A can be decomposed as

A = [Z,W]B[Z,W]−1, with B =
[
B11 B12
0 B22

]
(3-3.3)

for some B11 ∈ Rd×d, B12 ∈ Rd×(n−d) and B22 ∈ R(n−d)×(n−d).

Proof. First, note that the decomposition of A follows from

A[Z,W] = [AZ,AW] (3-3.4)
= [ZB11, B12Z +B22W] (3-3.5)

= [Z,W]
[
B11 B12
0 B22

]
, (3-3.6)

for some B11, B12 and B22 given as given above. We used that Z is an A-invariant
subspace, i.e. AZ = ZB11, which can also be used to write

E = ZTAZ = ZTZB11. (3-3.7)

As long as Z is a basis, the columns are linearly independent and ZTZ will be non-
singular. In addition, det(A) = det(B11) det(B22) and A is nonsingular, hence B11 is
nonsingular. Combining the latter two conclusions in (3-3.7) leads to the nonsingularity
of E.

Master of Science Thesis Joost van der Linden

38 Deflation

3-3-2 Deflated system

Before deriving the deflated system, we first prove a number of useful properties.

Lemma 3-3.3. Let A, E, P1 and P2 be given as in Definition 3-3.1. Then, the following
equalities hold:

(a) P 2
1 = P1 and P 2

2 = P2;

(b) P1A = AP2;

(c) P1AZ = 0;

(d) P2Z = 0;

(e) (I − P2)x = ZE−1ZT b.

Proof.
(a) P 2

1 = (I −AZE−1ZT)2 = I − 2AZE−1ZT +AZE−1(ZTAZ)E−1ZT

= I − 2AZE−1ZT +AZE−1ZT = P1, and
P 2

2 = (I − ZE−1ZTA)2 = I − 2ZE−1ZTA+ ZE−1(ZTAZ)E−1ZTA
= I − 2ZE−1ZTA+ ZE−1ZTA = P2;

(b) P1A = (I −AZE−1ZT)A = A−AZE−1ZTA = A(I − ZE−1ZTA) = AP2;

(c) P1AZ = (I −AZE−1ZT)AZ = AZ −AZ(ZTAZ)−1ZTAZ = AZ −AZ = 0;

(d) P2Z = (I − ZE−1ZTA)Z = Z − Z(ZTAZ)−1ZTAZ = Z − Z = 0;

(e) (I − P2)x = ZE−1ZTAx = ZE−1ZT b.

Corollary 3-3.1. Let A, E, P1 and P2 be given as in Definition 3-3.1. Then, P1A has
d zero eigenvalues.

Proof. Lemma 3-3.3(c) implies that each column in Z corresponds to one zero eigenvalue,
i.e. Z is the nullspace of P1A.

Following the presentation in [8], we split the solution x to (2-3.1) in two parts:

x = (I − P2)x+ P2x. (3-3.8)

The first part can be simplified using Lemma 3-3.3e, which eliminates dependency on x.
Substituting this result in (3-3.8) and left-multiplication by A yields

Ax = AZE−1ZT b+AP2x ⇔ b = AZE−1ZT b+ P1Ax

⇔ (I −AZE−1ZT)b = P1Ax

⇔ P1b = P1Ax, (3-3.9)

Joost van der Linden Master of Science Thesis

3-3 Framework 39

where we also used Lemma 3-3.3b. Note that P1A has at least one zero eigenvalue, by
Corallary 3-3.1, so the system is singular. Consequently, the solution x is not necessarily
the solution of the original linear system Ax = b, as x may contain components in the
nullspace of P1A. Rather, we refer to 3-3.9 as the ’deflated system’, and define x̂ as its
solution, i.e.

P1Ax̂ = P1b. (3-3.10)

The following proposition relates the deflated solution back to the original solution.

Proposition 3-3.1 (cf. [12, Lemma 3.5]). Let x and x̂ be the solutions of (2-3.1) and
(3-3.10), respectively, and let P2 and Z be given as in Definition 3-3.1. Then,

P2x̂ = P2x.

Proof. Decompose the solution to the deflated system as x̂ = x+ z, with z ∈ N (P1A) =
R(Z) (Lemma 3-3.3c). Using Lemma 3-3.3d, we find

P2x̂ = P2x+ P2z = P2x, (3-3.11)

as required.

Hence, even though (3-3.10) is singular, the projected solution P2x̂ is unique because it
has no components in the null space N (P1A).

In conclusion, the solution to the original linear system can be found by solving (3-3.10)
for x̂, and substituting the result in

x = ZE−1ZT b+ P2x̂. (3-3.12)

In the upcoming sections, we will use the notation x∗ = ZE−1ZT b.

3-3-3 Geometric illustration

An intuitive two-dimensional geometric illustration of the splitting x̂ = x+ z is given in
Figure 3-3.1. We assume λ1 << λ2, with corresponding eigenvectors v1 and v2.

Master of Science Thesis Joost van der Linden

40 Deflation

Figure 3-3.1: 2D illustration of deflation.

Taking the eigenvector corresponding to the small eigenvalue as the deflation matrix Z,
we get v1 = R(Z) and v2 = R⊥(Z). The action of the projector P2 then becomes

{
P2z = 0
P2x = x̂,

which leads to the result of (3-3.11). By projecting on the subspace perpendicular to
R(Z), the eigenvector component corresponding to the small eigenvalue λ1 is omitted
in the deflated system.

3-3-4 Convergence

To discuss the effect deflation has on the convergence of GMRES, we first analyze the
spectrum. Corollary 3-3.2 is an extension of Corollary 3-3.1.

Corollary 3-3.2 (cf. [15, Proposition 3.2 and Corollary 3.3]). Let A and P1 be given as
in Definition 3-3.1, and consider (3-3.3) under the corresponding assumption of Lemma
3-3.2. Then, σ(A) = σ(B11)∪σ(B22) in the original linear system (2-3.1), and σ(P1A) =
{0, . . . , 0} ∪ σ(B22) in the deflated system (3-3.10).

Proof. The spectrum of A follows directly from Equation (3-3.3). Furthermore, recall
from Lemma 3-3.2 that AZ = ZB11, AW = ZB12 +WB22 and ZTW = 0. As a result,

Joost van der Linden Master of Science Thesis

3-3 Framework 41

we find

P1AW = (I −AZE−1ZT)AW
= AW −AZ(ZTAZ)−1ZTAW

= AW −AZ(ZTAZ)−1ZT (ZB12 +WB22)
= AW −AZ(ZTAZ)−1ZTZB12

= AW − ZB11(ZTZB11)−1ZTZB12

= AW − ZB11B
−1
11 Z

−1Z−TZTZB12

= AW − ZB12

= WB22.

In addition, by Lemma 3-3.3(c), P1AZ = 0. In conclusion,

P1A[Z,W] = [0,WB22] = [Z,W]
[
0 0
0 B22

]
,

from which we derive the spectrum σ(P1A) = {0, . . . , 0} ∪ σ(B22).

The Corollary shows that in the deflated system the first d (sorted) eigenvalues are
projected to 0, while the remaining n−d eigenvalues remain untouched. In the symmetric
case, this would be sufficient to show that the condition number of the deflated system
is better than the condition number of the original linear system [8, Theorem 2.2]. In
the nonsymmetric case, this result does not hold, although similar convergence behavior
was observed by the authors of [8] as long as the asymmetric part of A is not too
dominant.

While a proof involving the condition number cannot be given for nonsymmetric A, we
can show that the residuals in deflated GMRES are smaller than or equal to the residual
in regular GMRES, as long as Z contains a basis for some A-invariant subspace [15]. We
begin by carrying out a QR decomposition on [Z, Z̃] = [z1, . . . , zd, zd+1, . . . , zn], where
z1, . . . , zn are the deflation vectors, and zd+1, . . . , zn are appended to form a basis of
Rn:

[Z, Z̃] = QR = [Q1, Q2]
[
R11 R12
0 R22

]
, (3-3.13)

where Q1 ∈ Rn×d, Q2 ∈ Rn×(n−d), R11 ∈ Rd×d, R12 ∈ Rd×(n−d) and R22 ∈ R(n−d)×(n−d).
We can then express P and PA in terms of elements of (3-3.3) and (3-3.13).

Lemma 3-3.4. Let P1 and A be given as in Definition 3-3.1 and Lemma 3-3.2. We
then have

(a) P1 = Q2Q
T
2 ;

Master of Science Thesis Joost van der Linden

42 Deflation

(b) P1A = Q2B22QT
2 ;

(c) P1AP1 = P1A.

Proof. See [15, Lemma 4.1].

Lemma 3-3.4 can be used to prove the following theorem regarding the convergence of
deflated GMRES.

Theorem 3-3.1 (cf. [15, Theorem 5.1]). Assume the columns of the deflation matrix Z
form a basis of some A-invariant subspace. Let rm and r̂m be the m’th residual of the
original linear system (2-3.1) and the deflated system (3-3.10), respectively, solved using
GMRES. Then, starting with the same initial guess, we have

‖r̂m‖2 ≤ ‖rm‖2 ∀ m = 1, 2, . . .

Proof. The proof consists of elements throughout the paper [15], but will be given here
for completeness. Let x0 ∈ Rn be the initial guess, and r0 = b−Ax0 the corresponding
intial residual. Recall from (2-4.8),

‖rm‖2 = min
p∈Pm,p(0)=1

‖p(A)r0‖2.

The initial residual of the deflated system satisfies the relation r̂0 = P1b−P1Ax0 = P1r0.
Let pm(B) = 1 +

∑m
k=1 ckB

k for any matrix B and scalars c1, c2, . . . , cm, then,

pm(P1A)r̂0 = pm(P1A)P1r0 = P1r0 +
m∑

k=1
ck(P1A)kP1r0

= P1r0 +
m∑

k=1
ckP1A

kr0

= P1(r0 +
m∑

k=1
ckA

kr0 = P1pm(A)r0, (3-3.14)

where we used Lemma 3-3.4(c). Combining results yields

‖r̂m‖2 = min
p∈Pm,p(0)=1

‖p(P1A)r̂0‖2 ≤ ‖pm(P1A)r̂0‖2 by (2-4.8),

= ‖P1pm(A)r0‖2 by (3-3.14),
= ‖Q2Q

T
2 pm(A)r0‖2 by Lemma 3− 3.4(a),

= ‖QT
2 pm(A)r0‖2 by orthogonality,

for all pm ∈ Pm with pm(0) = 1. Hence, we found

‖r̂m‖2 ≤ ‖QT
2 pm(A)r0‖2. (3-3.15)

Joost van der Linden Master of Science Thesis

3-4 Computing the deflation vectors 43

Next, note that

pm(A)r0 = QQT pm(A)r0 = Q1Q
T
1 pm(A)r0 +Q2Q

T
2 pm(A)r0,

since QQT = I. Also by orthogonality, (Q1Q
T
1 pm(A)r0)T (Q2Q

T
2 pm(A)r0) = 0, and hence

Pythagoras gives

‖pm(A)r0‖22 = ‖QT
1 pm(A)r0‖22 + ‖QT

2 pm(A)r0‖22.

The deflated residual in Equation (3-3.15) can now be written as

‖r̂m‖22 ≤ ‖QT
2 pm(A)r0‖22 = ‖pm(A)r0‖22 − ‖QT

1 pm(A)r0‖22.

In particular, let pm(A)r0 = rm, then

‖r̂m‖22 ≤ ‖QT
2 pm(A)r0‖22 = ‖rm‖22 − ‖QT

1 rm‖22.

The theorem is readily derived from this result.

Yeung, Tang and Vuik also show that the deflated residual can be bounded by the
spectrum, if all eigenvalues of A are contained in an ellipse away from the origin.

‖r̂m‖
‖r̂0‖

≤ min
p∈Pm

p(0)=1

max
k>d

κ2(R22)|p(λk)| ≤ κ2(R22)
(
a+
√
a2 − d2

c+
√
c2 − d2

)m

The result is similar to Propositions 2-4.3(b) and 2-4.4. In this case, however, the min-
max problem is restricted to the set of eigenvalues λk ∈ {λd+1, . . . , λn}, since the first d
eigenvalues are zero. Furthermore, the bound depends on R22, given in (3-3.13), instead
of the eigenvectors V .

In conclusion, as long as Z contains a basis for an A-invariant subspace, deflated GMRES
will converge faster than regular GMRES, and the residual is bounded by the undeflated
part of the spectrum. Although theoretical proof does not exist, we expect similar behav-
ior when near-invariant subspaces are used. Since the eigenvectors are by construction
an invariant subspace of A, the next section introduces methods to approximate the
eigenspace.

3-4 Computing the deflation vectors

A number of approaches to compute the deflation subspace Z a proposed in deflation-
related literature, with varying degrees of effectiveness depending on the application. We
will review each method for its applicability in IX in the upcoming subsections. Before
doing so, however, we discuss two aspects of computing the deflation vectors that apply
in general.

Master of Science Thesis Joost van der Linden

44 Deflation

Firstly, since our linear system is non-symmetric, approximate eigenvalues and eigenvec-
tors are either real or come in complex-conjugate pairs [5, Theorem 1.3]. To retain real
arithmetic, a complex-conjugate pair of eigenvectors should be replaced by one eigen-
vector containing the real part of the complex pair, and one eigenvector containing the
imaginary part [20]. For a complex conjugate pair (uk, uk+1), this is done by using the
transformation [

u′k
u′k+1

]
= 1

2

[
1 1
i −i

] [
uk

uk+1.

]

The vectors (u′k, u′k+1) are Schur vectors of A.

Secondly, some cases will allow for the reuse of information from previous deflation
vector computations. If a system is propagated over time, it is possible that approximate
eigenvectors from previous non-linear iterations can be used again. This approach is only
feasible if the system matrix A at a certain non-linear iteration is similar to the system
matrix at the previous non-linear iteration [20].

3-4-1 Exact eigenvectors

As each eigenpair (θ, y) of A satisfies

Ay = θy, (3-4.1)

the subspace Z containing d exact eigenvectors of A is by definition an A-invariant
subspace. Having met the conditions of Theorem 3-3.1, we can expect equal or faster
convergence of GMRES. The obvious drawback of this approach is the cost of computing
exact eigenvectors, especially when A is large. In addition, the computational burden
grows when the number of extreme eigenvalues increases. Given the grid sizes in reservoir
simulation, computing exact eigenvectors is not feasible. As we will discuss next, though,
eigenvectors can also be approximated during the course of the inner GMRES iterations.
Hence, we are still interested in the effect of exact eigenvector deflation for analytic
purposes, as it will provide us with a "best-case" scenario.

3-4-2 Ritz vectors

For an approximate eigenvector z with corresponding eigenvalue θ, the Galerkin orthog-
onal projection problem [9, 16] states

Az − θz ⊥ Km.

For a basis Vm for Km, and with z = Vmy, this becomes

V T
m (A− θI)Vmy = 0. (3-4.2)

Joost van der Linden Master of Science Thesis

3-4 Computing the deflation vectors 45

Using Lemma 2-3.1(b) and the fact that V T
mVm = I, (3-4.2) reduces to

Hmy = θy, z = Vmy.

Ritz vectors approximate the eigenvectors of A. Moreover, the Ritz values tend to ap-
proximate the eigenvalues of A. Therefore, we can take the d approximated eigenvectors
z corresponding to the d smallest Ritz values as the columns of Z. In terms of eigen-
vector approximations for extreme eigenvalues, Chapman, Saad [16] and Morgan [17]
report that Ritz vectors are outperformed by harmonic Ritz vectors. The latter concept
will be introduced next.

3-4-3 Harmonic Ritz vectors

Whereas Ritz vectors are formed by imposing a Galerkin projection, harmonic Ritz
vectors are obtained by using the Petrov-Galerkin orthogonality conditions. The ap-
proximation error in the eigenvalue problem (3-4.1) for the approximate eigenpair (θ, z)
is set orthogonal to the subspace AKm, i.e.

Az − θz ⊥ AKm ⇔ (AVm)T (Az − θz) = 0, z = Vmy. (3-4.3)

In the following lemma, we show that there are two ways to solve (3-4.3).

Lemma 3-4.1. Denote bBc as the matrix B without its last row. Equation (3-4.3) is
equivalent to solving:

(a) the eigenvalue problem (Hm + h2
m+1,mH

−T
m eme

T
m)y = θy;

(b) the generalized eigenvalue problem Rmy = θbQmV
T

m+1Vmcy.

Proof. First, note that

(AVm)TAVm = (Vm+1H̄m)TVm+1H̄m = H̄T
mV

T
m+1Vm+1H̄m = H̄T

mH̄m,

by Lemma 2-3.1(b).In addition,

(AVm)TVm = (Vm+1H̄m)TVm = H̄T
mV

T
m+1Vm.

Combining the latter two identities, we can rewrite (3-4.3) as

(AVm)T (Az − θz) = 0 ⇔ (AVm)TAVmy = θ(AVm)TVmy

⇔ H̄T
mH̄my = θH̄T

mV
T

m+1Vmy. (3-4.4)

It is easily checked that H̄T
mV

T
m+1Vm = HT

m. Consequently, (3-4.4) is equivalent to

H−T
m H̄T

mH̄my = θy (3-4.5)

Master of Science Thesis Joost van der Linden

46 Deflation

Furthermore, we have

H̄T
mH̄m = HT

mHm + h2
m+1,meme

T
m.

Hence,

H−T
m H̄T

mH̄m = H−T
m (HT

mHm + h2
m+1,meme

T
m) = Hm + h2

m+1,mH
−T
m eme

T
m,

which, combined with (3-4.5), completes the proof of part (a).

To prove part (b), recall the QR decomposition for H̄m:

QmH̄m = R̄m, with R̄m =
[
Rm

0

]
.

Substituting the result in (3-4.4), we get

H̄T
mH̄m = (QT

mR̄m)T (QT
mR̄m) = R̄T

mQmQ
T
mR̄m = R̄T

mR̄m = RT
mRm,

and

H̄T
mV

T
m+1Vm = R̄T

mQmV
T

m+1Vm = RT
mbQmV

T
m+1Vmc.

Hence, (3-4.4) is equivalent to

RT
mRmy = θRT

mbQmV
T

m+1Vmcy,

which has the same eigenpairs as

Rmy = θbQmV
T

m+1Vmcy.

Although both formulas result in a valid spectrum, approach (b) is preferable for com-
putational reasons. Approach (a) would require keeping an original copy of the matrix
Hm in memory, without the Givens rotations. Approach (b), on the other hand, does
not have this requirement, and allows the same Givens rotations Qm that are saved and
applied to Hm, to be used on V T

m+1Vm.

Note that as the Ritz values converge to the eigenvalues (e.g. Figure 3-1.2), the harmonic
Ritz eigenvector approximations approach the true eigenvectors. Therefore, the cycle size
m needs to be chosen sufficiently large in order to obtain reasonable approximations.
In the results, we vary the value of m in deflated GMRES using harmonic Ritz vectors,
and demonstrate the impact on the convergence. Although Z is not sparse in this case,
the harmonic Ritz vectors can be computed at a relatively small cost. Since the user
only has to specify how many vectors should be included in the deflation operator, the
method has a black-box nature.

Joost van der Linden Master of Science Thesis

3-4 Computing the deflation vectors 47

3-4-4 Domain-based vectors

Subdomain deflation has been introduced by Nicolaides [24] and Mansfield [59, 60]. Let
Ω be the computational domain, which is divided into d nonoverlapping subdomains Ωj ,
j = 1, . . . , d. After discretization, denoted by subscript h, let xi be a grid point in the
discretized domain Ωhj

. We define the deflation vector zj corresponding to Ωhj
as

(zj)i =
{

1, xi ∈ Ωhj

0, xi ∈ Ωh \ Ω̄hj
.

(3-4.6)

The deflation subspace is defined as Z = [z1, . . . , zd]. The vectors in Z are piecewise-
constant, disjoint and orthogonal. For this choice of the deflation subspace, the deflation
projectors P1 and P2 essentially agglomerate each subdomain in a single cell. Hence,
subdomain deflation is closely related to domain-decomposition methods and multigrid
[8]. For problems in bubbly flow, which have many similarities with the problems in this
thesis, the span of the deflation vectors (3-4.6) approximates the span of the eigenvectors
corresponding to the smallest eigenvalues [28].

In [61], a time-dependent diffusion equation is investigated for a layered medium rep-
resenting the earth’s crust. Three approaches are used to construct the domain-based
deflation vectors. First, the authors require (zj) to satisfy the finite element discretiza-
tion of the governing equation on all subdomains with low permeability. The deflation
vectors satisfy (3-4.6) for the remaining highly permeable subdomains. This approach
is robust for all test problems, yet costly due to the extra solves required. Second, the
authors use the vectors (3-4.6) only on the high-permeability layers, and last, (3-4.6) is
used for both the high- and low-permeability layers. The latter method turns out to be
the most efficient and robust.

Vermolen, Vuik and Segal, use subdomain deflation in [62] to solve a Poisson problem
with discontinuous coefficients. In particular, the amount of overlap between subdomains
is investigated. For large contrasts in the coefficients, the authors conclude that no over-
lap is the best choice. For no contrasts, on the other hand, average overlap is superior.
This observation gives rise to the so called ‘weighted overlap’ method, which mimics
average and no overlap in the case of no contrasts and large contrasts, respectively. It
is shown that the overlap is crucial in approximating the eigenvectors corresponding to
the extreme eigenvalues.

If the discontinuities in the computational domain exhibit a complex geometry, subdomain-
levelset deflation can be used to guarantee a good approximation of the eigenvectors
corresponding to extreme eigenvalues [28]. Whereas subdomain deflation does not take
jumps into account, subdomain-levelset deflation identifies different regions in the do-
main with similar properties. A simple example is given in Figure 3-4.1.

Master of Science Thesis Joost van der Linden

48 Deflation

(a) (b) (c)

Figure 3-4.1: Subdomain (a), levelset (b) and subdomain-levelset deflation (c).

The grid is 4 × 4 and nodes are shown as squares. In each case, the values shown on
the nodes correspond to the values in the first deflation vectors. In the middle and
right figure, the border between the red nodes (high permeability) and black nodes (low
permeability) exemplifies a sharp contrast in the PDE coefficient. The figures shows the
following:

• In the left figure, subdomain deflation is used. The dashed line divides the domain
into the four subdomains Ω1,Ω2,Ω3 and Ω4. Each subdomain corresponds to a
unique deflation vector.

• In the middle figure, levelset deflation is used. This time, the dashed line coincides
with the contrast in the PDE coefficient. As a result, we get the two domains Ω1
and Ω2.

• In the right figure, subdomain-levelset deflation is used. The subdomain division
is determined using certain criteria, which in this example leads to the division
(dashed line) between Ω1 and Ω2. Within each subdomain, levelset deflation (dot-
ted line) uses the jump between the high permeability and low permeability nodes
to obtain the subdomains Ω11 ,Ω12 ,Ω21 and Ω22

In Figure 3-4.1, the first deflation vector is shown for each method. If we assume an
ordering from left to right and from the bottom to the top, the respective deflation
matrices shown next.

Joost van der Linden Master of Science Thesis

3-4 Computing the deflation vectors 49

Z =



Ω1 Ω2 Ω3 Ω4

1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 1
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 1



, Z =



Ω1 Ω2

1 0
1 0
0 1
0 1
1 0
1 0
0 1
0 1
0 1
1 0
0 1
0 1
0 1
0 1
0 1
0 1



, Z =



Ω11 Ω12 Ω21 Ω22

1 0 0 0
1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1
0 0 1 0
0 0 1 0
0 0 1 0
0 0 0 1



.

In IX, the subdomain devision is determined by the parallel partitioning. Each parallel
subdomain corresponds to a processor. In the implementation of our subdomain-levelset
deflation algorith, we will always assume that the parallel partitioning is given.

In conclusion, (3-4.6) will be used for both the high- and low-permeability layers. The
use of overlap in our deflation vectors is part of ongoing research. Subdomain-levelset
deflation is our algorithm of choice, in addition to harmonic Ritz deflation. To apply
the levelset method, that is, to identify jumps in the coefficients, a partitioner algorithm
has been developed. The pseudocode is discussed in Section 4-2-1.

3-4-5 Solution deflation

In a history-based deflation method, Clemens et al. [19] propose to reuse an optimal
linear combination of solutions of the linear system at previous time steps as the defla-
tion operator. As a result, eigenvector components of the exact solution are optimally
resolved and the authors achieve significantly improved converge of the CG method for
electromagnetic discrete field formulations. On the downside, the method is only ef-
fective when the current solution is approximated by the span of solutions at previous
timesteps. Due to complex geometries and flow patterns, this is often not the case in
reservoir simulation. Z will also be very dense, rendering this approach infeasible for an
effective sparse parallel implementation. Hence, solution deflation will not be used.

Master of Science Thesis Joost van der Linden

50 Deflation

Joost van der Linden Master of Science Thesis

Chapter 4

Implementation

In the previous section, we identify a number of methods to construct and apply the de-
flation operator. We conclude that deflation using a projection preconditioner is the most
feasible approach, combined with either harmonic Ritz or domain-based deflation vec-
tors. In most of our numerical experiments, deflation is applied to the pressure system,
although we have also tried using deflation in the full (reservoir) system matrix.

In this section, the implementation of these two methods will be discussed. The last
section of the chapter is devoted to the parallel implementation.

4-1 Harmonic Ritz deflation

The pseudocode for deflated GMRES using harmonic Ritz deflation vectors is given in
Algorithm 5.

Master of Science Thesis Joost van der Linden

52 Implementation

Algorithm 5 right-preconditioned GMRES - harmonic Ritz deflation
1: Setup P1 = P2 = I, x∗ = 0 and flag = false
2: Compute r0 = P1(b−Ax0), β = ‖r0‖2, and v1 = r0/β.
3: for j = 1, 2, . . . ,m do
4: wj = P1AM

−1vj

5: for i = 1, . . . , j do
6: hi,j = (wj , vi)
7: wj = wj − hijvi

8: end for
9: hj+1,j = ‖wj‖2

10: if hj+1,j = 0 or converged then
11: set m = j and go to 24
12: end if
13: vj+1 = wj/hj+1,j

14: end for
15: if flag = false then
16: solve (AVm)T (Ayk − θkyk) = 0 for yk

17: zk = Vmyk, for k = 1, . . . , zd

18: Fill Z = [z1 . . . zd]
19: Ap = AM−1, E = ZTApZ
20: P1 = I −ApZE

−1ZT , P2 = I − ZE−1ZTAp

21: x∗ = ZE−1ZT b
22: Set flag = true
23: end if
24: Fill H̄m = {hij} for 1 ≤ i ≤ m+ 1, 1 ≤ j ≤ m.
25: Compute the minimizer um of ‖βe1 − H̄mu‖2 and set xm = x0 +M−1Vmum.
26: if converged then xm = P2xm + x∗ and return else set x0 = xm and go to 2

Algorithm 5 assumes that the deflation vectors are not available at the start of the iter-
ation. Instead, the information generated by GMRES is used to compute the harmonic
Ritz vectors. Z is constructed by taking the first d eigenvector approximations yk in
line 16. The generalized eigenvalue problem is solved using Lemma 3-4.1. In the imple-
mentation we include a flag that freezes the deflation operator after the first restart. In
theory, the harmonic Ritz vectors could be recomputed after every cycle, and appended
to Z. This will further improve convergence, as more eigenvalues are deflated from the
spectrum, but comes at a significant cost if m (cycle size) is relatively small.

Remark 4-1.1. A maximum of m harmonic Ritz eigenpairs can be computed from the
generalized eigenvalue problem. Hence, we have the constraint 0 ≤ d ≤ m.

Because a full cycle of GMRES is necessary to compute the harmonic Ritz vectors, a
restart is needed before we can deflate the spectrum of A. It will become clear in the

Joost van der Linden Master of Science Thesis

4-2 Subdomain-levelset deflation 53

results section, that this renders the use of harmonic Ritz vectors infeasible for our
purposes.

4-2 Subdomain-levelset deflation

The pseudocode of the main program for deflated GMRES using the subdomain-levelset
method is given in Algorithm 6.

Algorithm 6 right-preconditioned GMRES - Static deflation
1: Call Algorithm 7 to compute Z
2: Setup Ap = AM−1, E = ZTApZ, and x∗ = ZE−1ZT b.
3: Setup P1 = I −ApZE

−1ZT and P2 = I − ZE−1ZTAp.
4: Compute r0 = P1(b−Ax0), β = ‖r0‖2, and v1 = r0/β.
5: for j = 1, 2, . . . ,m do
6: wj = P1AM

−1vj

7: for i = 1, . . . , j do
8: hi,j = (wj , vi)
9: wj = wj − hijvi

10: end for
11: hj+1,j = ‖wj‖2
12: if hj+1,j = 0 or converged then
13: set m = j and go to 17
14: end if
15: vj+1 = wj/hj+1,j

16: end for
17: Fill H̄m = {hij} for 1 ≤ i ≤ m+ 1, 1 ≤ j ≤ m.
18: Compute the minimizer um of ‖βe1 − H̄mu‖2 and set xm = x0 +M−1Vmum.
19: if converged then xm = P2xm + x∗ and return else set x0 = xm and go to 4

The first line in Algorithm 6 calls a function to compute Z. As discussed in 3-4-4, Z
can be reused from previous iterations, constructed manually, or computed using our
partitioner algorithm. The latter will be discussed in the next section.

The computations in line 2 and 3 involve setting up the deflation operators, and can be
executed offline since Z is available a priori. The algorithm clearly illustrates the action
of P1 and P2. The search space is narrowed to the deflated subspace by solving the
deflated system (3-3.10) using right preconditioned GMRES (Algorithm 4). To return
to the original space, xm is multiplied with P2, and the result is added to x∗ (cf. Equation
(3-3.12)).

Both in Algorithm 5 and Algorithm 6, the expression Ap = AM−1 is used in constructing
P1 and P2. The multiplication of the system matrix and the inverse of the precondi-

Master of Science Thesis Joost van der Linden

54 Implementation

tioner is an expensive matrix-matrix product that is expensive, or even impossible if the
preconditioner is not explicitly formed (AMG). Therefore, we investigate taking Ap = A
instead. In the results, we show that this is indeed possible. The convergence con-
vergence slightly deteriorates, but deflated GMRES remains faster than non-deflated
GMRES.

4-2-1 Partitioner

The goal of the the partitioner is to identify distinct regions of similar permeability
values in the computational domain. The implementation was inspired by the work of
Lingen et. al [34]. We will use several examples to illustrate the partitioning, and discuss
the pseudocode.

Remark 4-2.1. In the upcoming discussion, we will refer to ‘regions’ as subdomains
in the computational domain. A region consists of one or more cells in a certain range
of permeability values. Two regions are ‘merged’ when the cells from both regions are
taken together in a new, combined region. Each region can be used to construct one
deflation vector, by assigning ones to the cells inside the region and zeros elsewhere
(similar to Figure 3-4.1). Therefore, the terms region and deflation vector are often
used interchangeably.

A deflation vector is assigned to each region. Several criteria are used to develop the
code:

• The input data for the partitioner is an adjacency graph of the cells in the com-
putational domain and a vector of permeability vectors.

• The output of the partitioner is a set of deflation vectors.

• Regions with similar permeability values should be merged together.

• After the partitioner algorithm has been applied, the number of remaining regions
should be equal to or less than the prespecified number of deflation vectors.

• The borders of the final set of regions should coincide (as much as possible) with
the largest coefficient jumps that cause extreme eigenvalues to appear.

The adjacency graph is store as a sparse matrix, and shows which cells are connected.
We observe in our experiments that the set of deflation vectors resulting from a success-
ful subdomain-levelset partitioning using the criteria above approximates the extreme
eigenvectors well.

We have seen an elementary example of a heterogeneous domain in Figure 3-4.1(c).
Figure 4-2.1 shows another example of a domain with distinct regions of permeabil-
ity. For simplicity, we assume that permeability differences equal to or larger than 20

Joost van der Linden Master of Science Thesis

4-2 Subdomain-levelset deflation 55

cause extreme eigenvalues to appear1. Smaller differences do not influence the spectrum.
Furthermore, we assume that the permeability in x-, y- and z-direction is equal.

Figure 4-2.1: Example of isolated regions in a heterogeneous domain.

In this 4×4 domain, three regions of connected cells can be identified, with permeability
values 10, 40 and 60. Because the regions are separated and their borders coincide with
the large permeability jumps, we can easily assign three deflation vectors.

In practice, though, more complex geometries arise. Figures 4-2.2(a) and 4-2.2(b) show
two examples.

(a) (b)

Figure 4-2.2: Examples of heterogeneous domains.

In this case, the regions are not distinct. In the left figure, a large jump exists between the
cells with coordinates (x, y) = (3, 4) and (4, 4) because the permeability difference is 30.
Moving south from (3, 4) towards (3, 1), however, the difference between each cell is only
10 and the permeability value in (2, 1) is again equal to the value in (4, 4). As a result,
cell (3, 4) and (4, 4) are ‘connected’ by a path of moderately increasing permeability.
A similar situation can be observed in Figure 4-2.2(b) in the jumps between (1, 4) and
(2, 4), as well as between (3, 4) and (4, 4).

Paths of continuous, moderately increasing permeability appear often in practice and
pose a serious difficulty for a partitioner algorithm. Initial attempts to develop a parti-

1We will see in Chapter 5 that for real cases this threshold lies around 104

Master of Science Thesis Joost van der Linden

56 Implementation

tioner relied on a search function that checks, for each cell, if the permeability jump to
an adjacent cell is smaller than a certain threshold. If this is the case, then the regions
that these cells belong to are merged. As a result, regions that are separated by a jump
on one side, but connected by a path of moderately increasing permeability on another
side are eventually merged together. Because the heterogeneity is ignored, the result-
ing deflation vector will not approximate the eigenvector corresponding to the extreme
eigenvalue that was caused by the jump.

To mitigate the detrimental effect of moderately increasing permeability paths, we
switched from a cell-based check to a region-based check. Instead of comparing per-
meability values between individual cells, our new algorithm sums the permeability
differences of all bordering cells between two regions. The total is then compared to
a threshold in deciding whether or not to merge. The algorithm works as follows:

1. Compute the maximum permeability over all cells in the domain

2. Use the maximum to divide the permeability field into a prespecified number of
initial regions with a similar range of permeability values

3. Assign a region number to each separated region

4. Sum permeability differences between each pair of adjacent regions

5. Loop over all adjacent region-pairs and merge if the summed jump is smaller than
a certain threshold

6. Go to step 4, unless no regions were merged in step 5

7. Increase the threshold stepwise and go to step 4, unless the number of remaining
regions is smaller than or equal to the number of desired deflation vectors

In the loop in step 5, it is crucial that we eliminate any regions that have been merged
from the iteration. For example, after region i has been compared with region j and the
regions are merged, then region j will not be merged again with other regions until we
reach step 6. After all adjacent regions of region i have been checked, this region will
be removed from the loop as well. This procedure further minimizes the risk of merging
distinct regions along a path of moderately increasing permeability.

We will illustrate the partitioning process with the example from Figure 4-2.2(a). Step
1 gives us the maximum permeability of 40. Assuming that we set the initial number of
regions to 4, we assign a region number Ok to each permeability value pi, i = 1, . . . , nc,
using the criteria

k
40
4 < pi ≤ (k + 1)40

4 , k = 1, 2, . . . , 4

The result is shown in shown in Figure 4-2.3

Joost van der Linden Master of Science Thesis

4-2 Subdomain-levelset deflation 57

Figure 4-2.3: Step 2 of the partitioner applied to Figure 4-2(a).

Observe that separated regions may be assigned the same number, even though they
are not connected. This is undesirable so in step 3 we check if regions in the same
permeability range are connected. If not, a new number is assigned. The result is shown
in Figure 4-2.4.

Figure 4-2.4: Step 3 of the partitioner applied to Figure 4-2.3.

In step 4, we iterate over each region and sum the permeability jumps with adjacent
regions. Region O1 in Figure 4-2.4, for example, has a total difference of 30 with region
O2, 10 with region O3 and 20 with region O4, 20 with region O6 and 30 with region O7.
The result of step 4 is saved in an n× n symmetric matrix W , which we refer to as the
‘jump matrix’. In this example, W is the 7× 7 matrix

W =



0 30 10 20 0 20 30
30 0 0 0 0 10 0
10 0 0 0 20 10 0
20 0 0 0 10 0 0
0 0 20 10 0 0 10
20 10 10 0 0 0 10
30 0 0 0 10 10 0


The first row inW contains the jumps between region O1 and all other regions. Assuming
the initial threshold is chosen as 10, step 5 will merge all region-pairs with a summed
permeability smaller than or equal to 10. As a result,

Master of Science Thesis Joost van der Linden

58 Implementation

• Region O1 will merge with region O3

• Region O2 will merge with region O6

• Region O4 will merge with region O5

Note that even though region O7 has a permeability jump of 10 with region O5 and O6,
the latter regions have already been merged with other regions and may not be used
again until the threshold is raised. After renumbering the regions, we obtain the four
regions in Figure 4-2.5.

Figure 4-2.5: Step 5 of the partitioner applied to Figure 4-2.4.

The new jump matrix is

W =


0 50 40 30
50 0 0 10
40 0 0 10
30 10 10 0

 .
Repeating step 5 will cause regions O2 and O4 to merge. If the desired number of
deflation vectors would be two, then another round of merging regions would add O3 to
the combined region of O2 and O4 (in Figure 4-2.5). The final result is shown in Figure
4-2.6.

Figure 4-2.6: Result of the partitioning.

It is crucial that the largest differences between permeability values are captured by the
deflation vectors. In this case, the large permeability differences between the cells at

Joost van der Linden Master of Science Thesis

4-2 Subdomain-levelset deflation 59

(x, y) = (3, 4) and (4, 4), as well as between (x, y) = (3, 3) and (4, 3) are reflected by the
two deflation vectors. Consequently, as has been observed in practice, the two deflation
vectors in 4-2.6 are good approximations to the eigenvectors corresponding to the jumps.
Possible improvements on this algorithm are discussed in section 6-3.

Pseudocode
In [34], Lingen et. al develop a parallel physics-based iterative solver for applications in
geomechanical problems. The authors state three objectives:

1. Minimize the overlap between different domains

2. Minimize the variation in the sizes of the subdomains

3. Separate nodes with different material properties

The main difference with our work is the purpose of the algorithm: in [34] the goal is
to partition the computational domain in a number of parallel subdomains, whereas in
our case the parallel subdomains are given (by IX) and we apply the partitioner as a
levelset algorithm (Section 3-4-4). The first two objectives improve parallel performance,
as communication, synchronization and workload-distribution are optimized. The third
objective is similar to our goal, and "is based on the observation that the preconditioner
becomes more effective when the large jumps in material properties coincide with the
sub-domain boundaries" [34, p. 9].

The pseudocode is given in Appendix A. Algorithm 8 is nearly identical to [34, Algorithm
1]. As we do not use objective one and two above, and because we are dealing with
continuous permeability distributions instead of discrete material property distributions,
the other programs in our implementation are different.

The partitioner consists of five functions:

• Main receives the adjacency and permeability input, and computes the maximum.

• Initialize assigns a region number to each cell, based on the permeability range
categories.

• Partition merges all adjacent cells with the same number into regions.

• Merge merges adjacent regions until the desired number of regions remains.

• Jumps computes the summed permeability jumps.

Main consecutively calls initialize, partition and merge. Jumps is called by merge to
compute the jump matrix W . Figure 4-2.7 contains a schematic overview of the parti-
tioner.

Master of Science Thesis Joost van der Linden

60 Implementation

INITIALIZE

PARTITION

MERGE JUMPS

Compute maximum
permeability

Assign a range to each cell

Merge adjacent cells in
the same range

Merge adjacent regions with
permeability jump < threshold

Compute jump matrix

Regions were merged?
Continue

No regions merged? Increase
threshold and continue

Exit if desired number
of regions is obtained

Figure 4-2.7: Overview of the partitioner.

4-3 Parallel implementation

As noted before, the subdomain-levelset deflation method from Figure 3-4.1 is particu-
larly suitable for a parallel implementation. The procedure is as follows:

Joost van der Linden Master of Science Thesis

4-3 Parallel implementation 61

1. Let the IX engine construct np parallel subdomains

2. Compute the maximum permeability over all parallel subdomains

3. Let each processor run the partitioner on the assigned parallel subdomain to obtain
np sets of deflation vectors z1, . . . , zn̂, n̂ ≤ nd.

4. Assign the i’th set of deflation vectors to the i’th processor (i = 1, . . . , np).

5. Construct and apply P1 and P2 in parallel

The parallel subdomains in IX are constructed using the PARmetis software [81]. In
particular, the transmissibilities2 determine the weights between gridcells. For more
information, we refer to [2]. The local deflation vectors (i.e. on a particular parallel
subdomain) are appended with zeros on the nodes outside the subdomain to obtain a
global set of deflation vectors. Each deflation vector has non-zero values only on the
corresponding parallel subdomain, which allows for (cheap) local computations.

We will highlight the parallel computations for the operation P1Av, for some v ∈ Rnc×1.
The computations required for P1v and P2v can be derived from this procedure. The
parallel implementation of the preconditioning is beyond the scope of this thesis.

To align the non-zero blocks in the deflation vectors with the appropriate submatrices
in A, we reorder the linear system as

Ax =


A[1,1] . . . A[1,np]
...

A[np,1] . . . A[np,np]



x[1]
...

x[np]

 =


b[1]
...

b[np]

 = b.

Row i of A is stored on processor i. Each block A[i,j], 1 ≤ i, j ≤ np with i 6= j,
represents the connections between local cells in parallel subdomain i with the ‘virtual’
cells of subdomain j. The non-zero elements of A[i,j], i 6= j, are referred to as ‘halo’
cells.

The parallel implementation of the deflation operators is inspired by the work of Frank,
Vuik and Tang [8, 79]. The authors developed a parallel framework for the deflation
vectors defined in (3-4.6). As we do not assume that each node in a parallel subdomain
is assigned the value one, our approach is slightly different. Cells in a parallel subdomain
can be either one or zero, but, similar to [8, 79], cells outside the subdomain are always
zero.

For P1Av, we have to compute

P1Av = (I −AZ(ZTAZ)−1ZT)Av.

The following steps are required:
2The transmissibility (or transmissivity) is the ability of a water-bearing unit of a given thickness to

transmit a fluid

Master of Science Thesis Joost van der Linden

62 Implementation

1. Communicate the non-zero elements of all deflation vectors to each processor.

2. Perform the matrix vector multiplication y1 = Av. On each processor, v is multi-
plied with the local cells and the halo cells. The result is stored locally.

3. Perform the inner products y2 = ZT y1. Because the deflation vectors are zero
outside the corresponding parallel subdomain, this inner product can be done
locally.

4. Compute E = ZTAZ. An example is shown in Figure 4-3.1 for two processors with
two deflation vectors each. As shown in the upper right and bottom left corner of
the result, the first processor requires the deflation vectors assigned to the second
processor and the second processor requires the deflation vectors assigned to the
first processor. This is why we introduced the ‘halo deflation vectors’ in step one.
In practice, only the non-zero elements of the deflation vectors are stored.

A11 A12

A21 A22
Z1

Z2

0

0

0

0

Z3

Z4

Z1 0

Z2 0

0 Z3

0 Z4

A11 Z1 Z1

T

A11 Z2 Z1

T

A12 Z3 Z1

T

A12 Z4 Z1

T

A11 Z1 Z2

T

A11 Z2 Z2

T

A12 Z3 Z2

T

A12 Z4 Z2

T

A21 Z1 Z3

T

A21 Z2 Z3

T

A22 Z3 Z3

T

A22 Z4 Z3

T

A21 Z1 Z4

T

A21 Z2 Z4

T

A22 Z3 Z4

T

A22 Z4 Z4

T

=

Figure 4-3.1: Parallel computation of the Galerkin matrix.

5. Gather Ey3 = y2 on one processor and solve using a LU-factorization. The result
is distributed.

6. Perform the matrix vector multiplication y4 = Zy3

7. Perform the matrix vector multiplication y5 = Ay4. The result is stored locally.

8. Perform the vector update P1Av = y1 − y5.

Joost van der Linden Master of Science Thesis

4-3 Parallel implementation 63

Compared to [8], step six and seven are slightly modified. Frank and Vuik first compute
wi = Azi for i = 1, . . . , np and distribute the result across all processors. The multipli-
cation with y3 can then be done locally. This approach is slightly more efficient, but we
found the separate multiplication with Z and A more feasible in IX.

For a fixed computational domain, the parallel subdomains will become smaller as we
increase the number of processors. Hence, the partitioner will be faster. Moreover, for
a fixed number of deflation vectors per parallel subdomain, the partitioner might be
more efficient in capturing the details of the permeability jumps. Whereas the precondi-
tioning generally performs worse for a larger number of processors, we could expect the
partitioner to perform better. Two questions arise from this discussion:

• What happens if np → nc, i.e. the number of processors becomes equal to the
number of cells in the domain?

• What is the effect of parallel subdomain boundaries crossing through jumps of
permeability?

The first question is relatively straightforward to answer. When np = nc, we get Z = I,
and

P1 = I −AZ(ZTAZ)−1ZT = 0,
P2 = I − Z(ZTAZ)−1ZTA = 0,
x∗ = Z(ZTAZ)−1ZT b = A−1b.

Substituting these results into Algorithm 6 gives xm = x∗ = A−1b. Hence, we converge
in one iteration at the cost of computing the inverse of A (on one processor).

The second question is more difficult to answer. For np = 1, no jumps are separated
but it can be difficult to capture the dominant heterogeneity in a complex and detailed
permeability field. For np = nc, each individual cell is a deflation vector and the full
matrix inverse needs to be computed in the deflated GMRES method. To assess the
impact of intermediate choices of np, for which we often observe parallel subdomain
boundaries crossing through permeability jumps, we will conduct several small Matlab
experiments in the results section.

Master of Science Thesis Joost van der Linden

64 Implementation

Joost van der Linden Master of Science Thesis

Chapter 5

Results

Harmonic Ritz and subdomain-levelset deflation are implemented both in Matlab and
IX. The experiments are run on five cases, varying in size and complexity. Coding in
IX is done using C++, and results are visualized using the Schlumberger Eclipse Office
viewer.

This chapter is set up as follows. In Section 5-1, we discuss the five cases in terms of the
dimensions, initial conditions, wells and performance in the Newton-Raphson method.
We continue with an analysis of spectrum in Section 5-2, highlighting the occurrence
of isolated and extreme eigenvalues. In Sections 5-3 and 5-4, we discuss the numerical
experiments with harmonic Ritz deflation and physics-based deflation, respectively. In
the last section, we briefly mention two other deflation strategies.

5-1 Case descriptions

In the upcoming subsections, each case will be discussed in terms of dimensions, wells
and, as an indicator for the complexity, the performance of the non-linear solve. The
initial conditions for the saturation, pressure and permeability are also highlighted. An
overview of the units for the physical variables can be found in Table 1-3.2. For a full
overview of all variables and units available in IX, we refer to [2, Appendix A.2]. In
addition, we introduce the reporting time T . Note that T often does not coincide with
the time steps in the simulation (simulation time), i.e. only a few simulation times are
picked as reporting times.

Master of Science Thesis Joost van der Linden

66 Results

5-1-1 BO

The Black Oil (BO) model is the first case under consideration. A single permeability
jump of moderate size exists between the top and bottom layers. Although the BO case
is not complex, a moderate amount of time is needed for the solve due to the size of the
model.

Dimensions
The size of the BO case is 15× 15× 10. All 2, 250 cells hold four unknowns each. Of the
four unknowns, one is the pressure variable. Hence, there are 4× 2, 250 = 9, 000 rows in
the full system matrix, and 2, 250 rows in the pressure matrix.

Initial conditions
The initial oil saturation, pressure distribution and permeability (equal in x, y, z direc-
tions) are shown in Figure 5-1.1(a), 5-1.1(b) and 5-1.1(c), respectively.

(a) (b) (c)

Figure 5-1.1: Oil saturation, pressure distribution and permeability field of the BO case.

The oil saturation is approximately 0.8. As illustrated in Figure (b), gravity causes an
increase in pressure of about 60 Pa towards the bottom layers. In Figure (c), we see that
a relatively small permeability jump is present between the fifth (red) and sixth (blue)
horizontal layer.

Wells
The model contains nine wells: seven producers and two injectors. The injectors inject
water at a fixed rate throughout the simulation. Details on the location of the wells are
not relevant, as we analyze this case in Matlab only.

Non-linear iterations
The total time of the simulation is set at 92 days. In figure 5-1.2, the number of
cumulative non-linear (Newton) iterations is plotted on the vertical axis.

Joost van der Linden Master of Science Thesis

5-1 Case descriptions 67

Figure 5-1.2: Cumulative non-linear iterations for the BO case.

For the first five days, the time steps are kept relatively small. Between ten and ninety
days, the increase in Newton iterations is roughly linear, which indicates that the problem
is weakly non-linear. In general, the Newton-Raphson method can take larger time steps
for such problems.

5-1-2 SPE5

The fifth comparative solution project of the Society of Petroleum Engineers (SPE5)
is part of a series of comparative solution problems designed to compare reservoir sim-
ulators from different companies, research institutes and consultants in the petroleum
industry [21]. SPE5 focuses on the simulation of the (miscible) flooding of a reservoir.
Details of the particular SPE5 case under consideration are shown below.

Dimensions
The dimensions of the SPE5 case are 7 × 7 × 3. Each cell contains four unknowns, of
which one is the pressure. Excluding the well variables, the full matrix has 4×147 = 588
rows and the pressure matrix has 147 rows.

Initial conditions
The initial permeability in the x, y and z direction is shown in Figure 5-1.3.

Figure 5-1.3: Permeability in x, y and z-direction.

Master of Science Thesis Joost van der Linden

68 Results

In vertical direction, the permeability jump between the second and third layer is small.
The horizontal layers have moderate heterogeneity, although the permeability is constant
in both the x and y direction.

Wells
One injector and one producer are placed in opposite corners of the reservoir. Starting
at T = 0 days, the injector pumps water in the reservoir, which pushes the oil towards
the producer. The oil saturation at time T = 1, 5 and 10 is shown in Figure 5-1.4.

Figure 5-1.4: Oil saturation at T = 1, T = 5 and T = 10.

We can observe the effect of the initial permeability in x- and y- directions: the middle
layer at T = 5 has the most oil remaining (lowest permeability in Figure 5-1.3), followed
by the bottom layer, in turn followed by the top layer (highest permeability). Some oil
remains stuck in the corners of the reservoir at the end of the simulation.

The water saturation is shown in Figure 5-1.5 for T = 1, T = 5 and T = 10.

Figure 5-1.5: Water saturation at T = 1, T = 5 and T = 10.

Comparing the middle images of Figure 5-1.5 and Figure 5-1.4, we see that the injected
water has reached most of the reservoir at T = 5, even though much of the oil in the
right corner has not been extracted yet. At T = 10, the reservoir contains roughly 70%
water.

Non-linear iterations
The total time of the simulation for the SPE5 case is about ten years. Because the

Joost van der Linden Master of Science Thesis

5-1 Case descriptions 69

heterogeneity is relatively weak, and the wells do not introduce any strong non-linearity,
the simulation still runs fast. The cumulative Newton iterations plot in Figure 5-1.6
shows that after the slow start-up time (first 30-40 days), the simulation progresses
without any problems.

Figure 5-1.6: Cumulative non-linear iterations for the SPE5 case.

5-1-3 SAGD-SMALL

A technique called Steam Assisted Gravity Drainage (SAGD) uses steam injection to
create a steam chamber around the producers [22]. The reservoir is heated to make the
oil less viscous, after which water is injected into the reservoir. The water evaporates
to become steam, creating the steam chamber. After expanding the steam chamber
upwards, gravity causes the heavy oil to flow down to the production wells. Due to
the steam injection and temperature effects, large pressure gradients occur around the
injector and the producer. The gradients, in turn, produce strong non-linearities in the
solution of the SAGD case. Hence, the problem is relatively hard to solve.

Dimensions
The SAGD-SMALL case has dimensions 41×1×85. Similar to the SPE5 case, each cell
contains four unknowns. The pressure variable gives rise to a 3, 485 × 3, 485 pressure
system matrix. Excluding the well variables, the system matrix has 4× 3, 485 = 13, 940
rows.

Initial conditions
The initial permeability for the SAGD case is the same in x and y direction. For the
z direction, the pattern is the same but the permeability values are halved. Figure
5-1.7 shows the horizontal layer structure that is commonly found in petroleum reser-
voirs.

Master of Science Thesis Joost van der Linden

70 Results

Figure 5-1.7: Permeability in x, y and z directions.

The top and bottom half of the reservoir have zero permeability. Near the center, we
see several large permeability jumps of order 103.

Wells
Two wells, both capable of acting as a producer and an injector, are placed above each
other near the bottom of the reservoir. The wells are visible in the left illustration below.
In this figure, we zoomed in to visualize the viscosity of the oil. As time progresses,
heating of the reservoir causes the viscosity of the oil around the producers to drop (i.e.
oil flows more easily).

Figure 5-1.8: Oil viscosity at T = 1, T = 25 and T = 70.

When the producers are switched on, at around T = 10 days, the oil saturation starts
to decrease. This is illustrated in Figure 5-1.9.

Figure 5-1.9: Oil saturation at T = 1, T = 25 and T = 70.

Joost van der Linden Master of Science Thesis

5-1 Case descriptions 71

Note that the SAGD case is slightly simplified; in real scenarios the oil saturation would
not be as constant as shown in Figure 5-1.9. When the oil is produced between T = 10
and T = 70, the oil saturation around the producer drops from approximately 0.8 to
0.2.

The pressure field at T = 1, 10, 25, 43, 55, 70 is shown in the next figure.

Figure 5-1.10: Pressure at T = 1, 10, 25, 43, 55, 70.

The gravity pressure is not visible in this figure, because the pressure changes caused
by the steam injection are dominant. After T = 1, there is a sudden rise in pressure
as the heating is switched on. The pressure from the heating expands as the heating
continues, until about T = 43, when the bottom well starts producing and the pressure
briefly drops. As the steam is injected, the pressure field expands upwards.

Non-linear iterations
The total total time of the simulation is six months. Approximately halfway in, the
steam is injected, causing issues for the non-linear solver. As shown by the increased
slope in Figure 5-1.11, the amount of Newton iterations increases relatively fast.

Master of Science Thesis Joost van der Linden

72 Results

Figure 5-1.11: Cumulative non-linear iterations for the SAGD-SMALL case.

Up to 92 days, the point at which steam is injected, the Newton-Raphson uses time steps
of about 5 days. When the steam is injected, the sudden increase in complexity (more
high pressure gradients) of the case requires smaller time steps. The sharp increase in
Newton iterations shown in Figure 5-1.11 is caused by several failed non-linear solves
in which the linear solver did not convergence to a sufficient accuracy. To decrease the
complexity and guarantee convergence of the linear solve, the time step is reduced. A
similar situation occurs after roughly 125 days.

5-1-4 SAGD-MEDIUM

The SAGD-MEDIUM case is an upscaled version of SAGD-SMALL. The reservoir is
expanded in the y direction, to increase the number of layers from 1 to 4. In addition,
the wells are drilled horizontally.

Dimensions The SAGD-MEDIUM case has dimensions 41× 4× 85. Each cell contains
again four variables. The size of the pressure matrix is 13, 940× 13, 940. Excluding the
well variables, the system matrix has 4 × 13, 940 = 55, 760 rows. In this 3-dimensional
case, a 7-point stencil is used, which implies that each (block) row of A contains 6
non-zero elements.

Initial conditions
For y = 0, the permeability field is identical to the SAGD-SMALL case. As before, the
permeability is equal in x and y direction.

Figure 5-1.12: Permeability in x, y and z directions (SAGD-MEDIUM).

Joost van der Linden Master of Science Thesis

5-1 Case descriptions 73

Wells
To illustrate the effect of the horizontal wells, the oil viscosity (left) and oil saturation
(right) at the end of the simulation are shown in Figure 5-1.13.

Figure 5-1.13: Oil viscosity (left) and oil saturation (right) at the end of the simulation
(SAGD-MEDIUM).

The heating, steam injection and oil production is dominant in the middle two vertical
layers.

Non-linear iterations
As shown in Figure 5-1.14, the steam injection causes Newton-Raphson to stall at 92
days. After the time steps are sufficiently reduced, the simulation continues as before.
Comparing Figure 5-1.14 to 5-1.11, we see that the sudden cumulative increase of Newton
iterations around 92 days is larger in the SAGD-MEDIUM case. This indicates that
the increase in size of the domain increases the complexity of the steam injection. In
particular, the complexity can be attributed to the fact that the horizontal wells reach
a larger part of the reservoir.

Figure 5-1.14: Cumulative non-linear iterations for the SAGD-MEDIUM case.

Master of Science Thesis Joost van der Linden

74 Results

5-1-5 SAGD-LARGE

The SAGD-LARGE case is the biggest case used in this thesis. The reservoir is an
upscaled version of the SAGD-MEDIUM case.

Dimensions
The SAGD-LARGE case dimensions 125 × 18 × 85. Each cell contains four unknown.
The pressure matrix is 191, 250 × 191, 250. Excluding the well variables, the system
matrix has 4× 191, 250 = 765, 000 rows. Similar to the SAGD-MEDIUM case, there are
6 non-zero elements per block-row of A.

Initial conditions
Similar to the SAGD-SMALL and SAGD-MEDIUM cases, the permeability is halved in
the z direction. The permeability field is shown in Figure 5-1.15.

Figure 5-1.15: Permeability in x, y and z directions (SAGD-LARGE).

Wells
The wells are extended in the y direction to cover most of the reservoir. The oil viscosity
and oil saturation at the end of the simulation are shown in Figure 5-1.16.

Figure 5-1.16: Oil viscosity (left) and oil saturation (right) at the end of the simulation
(SAGD-LARGE).

Non-linear iterations
Figure 5-1.17 shows the cumulative Newton iterations plot for the SAGD-LARGE case.

Joost van der Linden Master of Science Thesis

5-2 Eigenvalues and eigenvectors 75

Figure 5-1.17: Cumulative non-linear iterations for the SAGD-LARGE case.

Between 90 and 100 days, the cumulative amount of Newton iterations rises by ap-
proximately 240 iterations. The increase is significantly larger than the increase in the
SAGD-MEDIUM and SAGD-SMALL cases, where the increase is about 100 and 60 it-
erations, respectively. Not only is the SAGD-LARGE simulation computationally more
demanding due to the size of the reservoir, the convergence issue caused by the steam
injection is also magnified due to the relatively large number of cells reached by the
wells.

5-2 Eigenvalues and eigenvectors

In the mathematical framework of this thesis, we link the convergence speed of GMRES
to the occurrence of extreme eigenvalues. Natural deflation is illustrated with the con-
vergence of the Ritz values in the introduction of Chapter 3, giving rise to the search
for artificial deflation algorithms. In this section, we analyze the spectrum of our cases.
We compare the spectrum of the BO case to the example at the start of Chapter 3,
analyze the eigenvalues and eigenvectors of the SPE5 case and modify the SPE5 perme-
ability field to illustrate the effect of permeability jumps. Furthermore, we investigate
the impact of heating and steam injection on the spectrum of the SAGD-SMALL case,
and, finally, show the impact of the (parallel) preconditioning on the spectrum of the
full matrix.

Most of the eigenvalue and eigenvector plots in this section are generated in Matlab,
after exporting the system matrices (at a particular simulation time) from IX. Unless
noted otherwise, the spectral information of the diagonally scaled pressure matrix is
used. Diagonal scaling clusters the spectrum around one, and allows for straightforward
identification of the harmful eigenvalues. The full (reservoir) matrix generally produces
complex eigenvalues, due to the lack of symmetry and the mixed characteristics of the
different unknowns.

Master of Science Thesis Joost van der Linden

76 Results

Remark 5-2.1. We refer to ‘isolated’ eigenvalues as eigenvalues which are separated
from the main cluster. In particular, ‘extreme’ eigenvalues are separated by at least a
factor O(102).

5-2-1 BO spectrum

The spectrum of the BO pressure matrix at the end of the simulation is shown in Figure
5-2.1.

0 500 1000 1500 2000

10
−2

10
0

Eigenvalue

V
a
lu

e

Figure 5-2.1: Eigenvalues of the diagonally scaled BO pressure matrix.

Most of the spectrum is continuous, stretching from O(10−2) to O(101). Two eigenvalues
are isolated. Most likely, in line with the findings in [11], the smallest isolated eigenvalue
is caused by the single permeability jump shown in Figure 5-1.1(c). Compared to the
example at the start of Chapter 3, the gap between the smallest eigenvalue and the
rest of the spectrum is smaller than the gap in the spectrum of Figure 3-1.2(c). The
effect on the convergence of GMRES, however, is still detrimental, as shown in Figure
5-2.2.

0 20 40 60 80 100

10
−4

10
−3

10
−2

10
−1

10
0

Iteration

R
e

la
ti
v
e

 r
e

s
id

u
a

l
n

o
rm

GMRES(20)

GMRES(200)

Figure 5-2.2: Convergence of restarted and non-restarted GMRES for the BO pressure
matrix.

Unlike the stalling convergence in Figure 3-1.1, the residual of GMRES(20) in this case

Joost van der Linden Master of Science Thesis

5-2 Eigenvalues and eigenvectors 77

is decreasing. Again, when we prevent a restart by setting the cycle size (m) sufficiently
high, the convergence improves. The convergence of the Ritz values for GMRES(20) and
GMRES(200) is plotted in Figure 5-2.3.

0 20 40 60 80 100
10

−4

10
−2

10
0

10
2

Iteration

V
a

lu
e

(a)

0 20 40 60 80 100
10

−3

10
−2

10
−1

10
0

10
1

Iteration

V
a

lu
e

(b)

Figure 5-2.3: Five smallest Ritz values for (a) GMRES(20) and (b) GMRES(200).

Observe that the smallest Ritz value of GMRES(20) nearly converges to the smallest
eigenvalue before the restart. As a result, GMRES(20) in Figure 5-2.2 is not stalling.
The Ritz values of the example in Figure 3-1.2 do not approach the smallest eigenvalues
within 20 iterations, which causes the stalling convergence of GMRES(20) in Figure
3-1.1.

From the comparison we hypothesize that if eigenvalues are more extreme and isolated,
it becomes harder for the Ritz values to converge. Because the convergence of the
Ritz values affects the convergence of GMRES [7], linear systems with isolated and
extreme eigenvalues are more difficult to solve with restarted GMRES. If the eigenvectors
corresponding to the extreme eigenvalues can be approximated at a low cost, artificial
deflation is a promising method to improve the performance of the linear solver.

5-2-2 SPE5 spectrum

Before we analyze the eigenvalues of the SPE5 pressure matrix, we first discuss the
eigenvectors. For each reporting time (T = 1, . . . , 10), the eigenvector corresponding to
the smallest eigenvalue is plotted. The result is shown in Figure 5-2.4.

Master of Science Thesis Joost van der Linden

78 Results

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Figure 5-2.4: Eigenvectors of the diagonally scaled SPE5 pressure matrix at T = 1, . . . , 10.

Firstly, observe that the eigenvectors in Figures (a) - (f) contain a flow pattern. Compar-
ing the eigenvectors to the injected water flow in Figure 5-1.5 (rotated 90◦), we see that
the patterns match. This observation gives rise to a physics-based deflation algorithm
that uses the saturation, instead of the permeability, to approximate the eigenvectors
corresponding to the extreme eigenvalues. The results are described in Section 5-5-
1.

Joost van der Linden Master of Science Thesis

5-2 Eigenvalues and eigenvectors 79

Secondly, observe that the eigenvectors in Figures (g) - (j) reach an equilibrium. After
most of the reservoir is saturated with water, three layers become visible in the eigenvec-
tors. In particular, we see a similarity with the x and y permeability in Figure 5-1.3. The
top horizontal layer of the eigenvector holds the highest values, the middle layer holds the
lowest values and the bottom layer holds the middle values. In each layer, the eigenvector
is approximately constant. We conclude that for reporting times T = 7, . . . , 10, three de-
flation vectors, corresponding to the three horizontal layers, would constitute a suitable
approximation of the eigenvector corresponding to the smallest eigenvalue.

As shown in Figure 5-2.5, the (sorted) spectrum of the diagonally scaled SPE5 pressure
matrix consists of three eigenvalue clusters.

0 50 100 150
10

−3

10
−2

10
−1

10
0

10
1

Eigenvalue

V
a
lu

e

(a)

0 50 100 150
10

−3

10
−2

10
−1

10
0

10
1

Eigenvalue

V
a

lu
e

(b)

0 50 100 150
10

−3

10
−2

10
−1

10
0

10
1

Eigenvalue

V
a
lu

e

(c)

Figure 5-2.5: Eigenvalues of the diagonally scaled SPE5 pressure matrix at T = 1, T = 5
and T = 10.

At all three reporting times, the first fifty eigenvalues are separated from the rest of
the spectrum. The gap between the other two clusters of fifty eigenvalues is relatively
small. As time progresses, eigenvalues in the left tail of the spectrum decrease in value.
Comparing these results to the permeability field, we could claim that the large eigen-
value gap corresponds to the large permeability jump (≈ 450) between the top and
middle layer, while the small eigenvalue gap corresponds to the small permeability jump
(≈ 200) between the middle and bottom layer. This implication, however, contradicts
the general consensus in literature (e.g. [11]) that one large coefficient jump causes one
extreme eigenvalue to appear in the spectrum (rather than an isolated cluster).

In an attempt to explain this discrepancy, we modify the spectrum of the SPE5 case.
A layer of low permeability is sandwiched between two layers of high permeability. The
result is shown in Figure 5-2.6.

Figure 5-2.6: Modified SPE5 permeability field.

Master of Science Thesis Joost van der Linden

80 Results

Cells in the middle layer are assigned permeability value 100, while we vary the high
permeability in the bottom and top layer. The spectra for the permeability jumps 101,
102, 103 and 104 are plotted in Figure 5-2.7.

0 50 100 150
10

−4

10
−2

10
0

Eigenvalue

V
a

lu
e

(a)

0 50 100 150
10

−4

10
−2

10
0

Eigenvalue

V
a
lu

e

(b)

0 50 100 150
10

−4

10
−2

10
0

Eigenvalue

V
a
lu

e

(c)

0 50 100 150
10

−4

10
−2

10
0

Eigenvalue

V
a
lu

e

(d)

Figure 5-2.7: Spectra at T = 4 for the modified permeability field with high permeability
(a) 101, (b) 102, (c) 103 and (d) 104.

In Figure (a), we see the same clustered pattern as in Figure 5-2.5. As we increase the
permeability in the bottom and top layer, while keeping the middle layer constant at
100, extreme eigenvalues start to appear. In Figure (d), one eigenvalue is approximately
101 smaller than the second smallest eigenvalue. For a very large permeability difference,
as illustrated in Figure 5-2.8, two extreme eigenvalues, corresponding to two jumps, are
isolated from the main cluster.

0 50 100 150
10

−10

10
−5

10
0

Eigenvalue

V
a

lu
e

Figure 5-2.8: Spectrum at T = 4 for the modified permeability field with high permeability
108.

Although it remains unclear what the cause of the clustered eigenvalue pattern in Figure

Joost van der Linden Master of Science Thesis

5-2 Eigenvalues and eigenvectors 81

5-2.5 is, we can conclude that high permeability differences between the horizontal layers
results in isolated extreme eigenvalues. As predicted in [11], we find that the number of
extreme eigenvalues (two in this case) corresponds to the number of jumps. Furthermore,
as shown next, the size of the extreme eigenvalues can be related to the size of the
jumps.

Table 5-2.1 shows the size of the smallest eigenvalue for different choices of the high
permeability in Figure 5-2.6.

low high smallest 2nd smallest 3rd smallest
permeability permeability eigenvalue eigenvalue eigenvalue

100 101 8.1 · 10−3 9.9 · 10−3 1.2 · 10−2

100 102 8.2 · 10−3 1.7 · 10−2 2.6 · 10−2

100 103 8.0 · 10−3 4.7 · 10−2 4.7 · 10−2

100 104 8.7 · 10−4 1.7 · 10−2 5.2 · 10−2

100 105 9.9 · 10−5 1.7 · 10−3 5.6 · 10−2

100 106 7.2 · 10−6 1.6 · 10−4 5.6 · 10−2

100 107 9.4 · 10−7 1.6 · 10−5 5.5 · 10−2

100 108 9.6 · 10−8 1.7 · 10−6 5.4 · 10−2

Table 5-2.1: Smallest eigenvalue for different permeability jumps.

We denote the high permeability value as σ. As we have already seen in Figure 5-2.7,
the smallest two eigenvalues are more or less constant and of the same order as the third
smallest eigenvalue for σ ≤ 103. For σ > 103, the smallest eigenvalue is proportional to
the size of the jump. The second smallest eigenvalue is also proportional, but only for
σ > 104. The third smallest eigenvalue remains constant for all jumps. As illustrated
in Figure 5-2.8 for σ = 108, all but two eigenvalues are clustered around one. As the
gap between the extreme eigenvalues and the main cluster increases, we expect from
the discussion in Section 2-4-3 and Chapter 3 that, in general, GMRES will have more
difficulties to solve the linear system. This is indeed the case, as demonstrated in the
convergence plots of Figure 5-2.9. Note that the example at the start of Chapter 3 is in
fact the SPE5 case with modified permeability and σ = 106.

Master of Science Thesis Joost van der Linden

82 Results

0 20 40 60 80
10

−8

10
−6

10
−4

10
−2

10
0

Iteration

R
e

la
ti
v
e

 r
e

s
id

u
a

l
n

o
rm

σ = 10
8

σ = 10
7

σ = 10
6

σ = 10
5

σ = 10
4

σ = 10
3

(a)

0 20 40 60 80
10

−8

10
−6

10
−4

10
−2

10
0

Iteration

R
e
la

ti
v
e
 r

e
s
id

u
a
l
n
o
rm

σ = 10
1

σ = 10
2

(b)

Figure 5-2.9: Convergence of (Jacobi) preconditioned GMRES(100), with σ = high per-
meability.

The cycle size is set to 100 to prevent a restart, and to allow the Ritz values to find
the small eigenvalues. For σ ≥ 103 in Figure (a), the duration of the stall in the GM-
RES residual convergence is approximately proportional to the size of the permeability
jumps. For σ = 108, for example, GMRES starts to converge after 55 iterations, whereas
GMRES for σ = 104 needs only 20 iterations. This theory does not hold for σ < 103,
as shown in Figure 5-2.9(b). Given the number of iterations required to converge, the
separated clusters of eigenvalues that we saw in Figure 5-2.7(a) and (b) are causing more
difficulties for GMRES than the single isolated eigenvalue shown in Figure 5-2.7(c) and
(d).

From the SPE5 spectral analysis, we conclude the following:

• The eigenvectors, in this case, resemble the flow pattern of water saturation. When
the reservoir is saturated, the eigenvectors resemble the permeability field.

• The number of isolated eigenvalues is proportional to the number of permeability
jumps between different layers.

• The size of the isolated eigenvalues is proportional to the size of the permeability
jumps between different layers.

• Isolated extreme eigenvalues occur, in this case, only for permeability differences
of order O(104) or larger.

5-2-3 SAGD-SMALL spectrum

So far, we have only considered the permeability jumps as a cause for isolated/extreme
eigenvalues. The SAGD-SMALL case illustrates that it is also possible that strong non-
linearities caused by heating or sudden pressure changes can affect the spectrum. In
Figure 5-2.10, the spectrum of the (diagonally scaled) SAGD-SMALL pressure matrix

Joost van der Linden Master of Science Thesis

5-2 Eigenvalues and eigenvectors 83

is plotted. Figure (a) shows the ordered eigenvalues before the heating is started, figure
(b) shows the eigenvalues right after the heating is started.

0 500 1000 1500 2000 2500 3000 3500
10

−3

10
−2

10
−1

10
0

10
1

Eigenvalue

S
iz

e

(a)

0 500 1000 1500 2000 2500 3000 3500
10

−3

10
−2

10
−1

10
0

10
1

Eigenvalue

S
iz

e

(b)

Figure 5-2.10: Spectrum of SAGD-SMALL pressure matrix before and after the heating is
started.

Before the heating, all eigenvalues are clustered around one. After the heating is started,
two extreme eigenvalues appear between 10−2 and 10−3. For other time steps, the
clustering of the spectrum and the number of isolated eigenvalues will vary, as shown in
Figure 5-2.11.

0 500 1000 1500 2000 2500 3000 3500
10

−3

10
−2

10
−1

10
0

10
1

Eigenvalue

V
a
lu

e

(a)

0 500 1000 1500 2000 2500 3000 3500
10

−3

10
−2

10
−1

10
0

10
1

Eigenvalue

V
a
lu

e

(b)

0 500 1000 1500 2000 2500 3000 3500
10

−3

10
−2

10
−1

10
0

10
1

Eigenvalue

V
a
lu

e

(c)

Figure 5-2.11: Spectrum of SAGD-SMALL pressure matrix at T = 30, 40 and 70.

The small eigenvalues are often isolated, but rarely as extreme as we have seen in the
SPE5 case with modified permeability. This could be explained by the fact that the
non-linearities (e.g. heating, steam injection) are not severe enough to spawn extreme
eigenvalues in the pressure system. Furthermore, although there are clear jumps visible
between the horizontal layers of the SAGD-SMALL permeability field (Figure 5-1.7),
the jumps are often not larger than 103. Given the previous discussion on the SPE5
case, we believe that these permeability differences are not sufficient to produce extreme
eigenvalues smaller than O(10−3). This hypothesis was confirmed by analyzing the
spectrum of the SAGD-SMALL case for a large number of simulation times, a few of
which are shown in Figure 5-2.10 and Figure 5-2.11. In none of the cases, eigenvalues

Master of Science Thesis Joost van der Linden

84 Results

smaller than order O(10−3) were found. We will see in the upcoming sections, however,
that it is still beneficial to apply deflation to the isolated eigenvalues, even though they
are not as extreme as is often the case in deflation literature.

Figure 5-2.12 shows the eigenvectors of the SAGD-SMALL case at reporting times T = 1,
T = 10, T = 20, T = 50, T = 60 and T = 70.

(a) (b) (c)

(d) (e) (f)

Figure 5-2.12: Absolute values of the eigenvectors for (a) T = 1, (b) T = 10, (c) T = 20,
(d) T = 50, (e) T = 60 and (f) T = 70.

Joost van der Linden Master of Science Thesis

5-2 Eigenvalues and eigenvectors 85

As in the SPE5 case, the eigenvector patterns of the SAGD-SMALL pressure matrix
are similar to the saturation patterns around the injector and producer. In addition,
observe in Figures (d), (e) and (f) that the top half of the shape around the injector
and producer is somewhat flattened. A layer of low permeability in this region is most
likely affecting the saturation, which in turn influences the eigenvector. Apart from a
small region around the injector and producer, the eigenvector values are close to zero.
Therefore, we conclude that for deflation to be effective it is important to have accurate
eigenvector approximations mainly in the regions where flow occurs.

5-2-4 Effect of the (parallel) preconditioner

Remark 5-2.2. In the upcoming spectral plots, negative eigenvalues were ignored, and
for imaginary eigenvalues only the real part is shown. In addition, the eigenvalues around
10−15 are interpreted as zero [12, p. 65] and omitted from the figures.

To assess the potential of deflation, we are interested in the action of the AMG pre-
conditioner on the pressure matrix. To avoid having to implement AMG in Matlab, we
approximate the eigenvalues directly in IX using the harmonic Ritz approximations from
Section 3-4-3. The cycle size is chosen sufficiently large (e.g. m = 100) to ensure that the
approximations are accurate, while the number of harmonic Ritz values is set relatively
high (50) to ensure full coverage of the spectrum. The result is shown in Figure 5-2.13
for the linear system resulting from non-linear iteration three and five.

0 10 20 30 40 50
10

−3

10
−2

10
−1

10
0

10
1

Eigenvalue

V
a

lu
e

(a)

0 10 20 30 40 50
10

−2

10
−1

10
0

10
1

Eigenvalue

V
a
lu

e

(b)

Figure 5-2.13: Spectrum of the CPR-preconditioned (AMG & ILU) SAGD-SMALL pressure
matrix at non-linear iteration three and five.

For both linear systems, the preconditioning is effective. In non-linear iteration three,
all but one eigenvalues are clustered around one. The single isolated eigenvalue is not
extreme. In non-linear iteration five, all eigenvalues are clustered around one. To provide
a reference for the AMG preconditioner, Figure 5-2.14 shows the spectra for the case
where AMG is replace by diagonal scaling as the pressure system preconditioner (similar
to the spectra in Section 5-2-3).

Master of Science Thesis Joost van der Linden

86 Results

0 10 20 30 40 50
10

−3

10
−2

10
−1

10
0

10
1

Eigenvalue

V
a
lu

e

(a)

0 10 20 30 40 50
10

−2

10
−1

10
0

10
1

Eigenvalue

V
a
lu

e

(b)

Figure 5-2.14: Spectrum of the CPR-preconditioned (Jacobi & ILU) SAGD-SMALL pres-
sure matrix at non-linear iteration three and five.

In this case, the preconditioning is less effective. Several eigenvalues are isolated from
the main cluster for non-linear iteration three, and for non-linear iteration five one
eigenvalue is nearly extreme. Furthermore, although it is not directly visible in the
figure, the cluster of eigenvalues is more skewed away from one for Jacobi compared to
AMG. Because AMG is clipping most of the spectrum to one, whereas Jacobi leaves
behind several isolated eigenvalues, we can expect deflation to be more effective when
combined with Jacobi. We will see in the upcoming section on harmonic Ritz deflation
that this is indeed the case.

So far, only the pressure matrix has been analyzed. To investigate the effect of the paral-
lel implementation, we use the harmonic Ritz eigenvector approximations to approximate
the 50 smallest eigenvalues and corresponding eigenvectors of the CPR-preconditioned
reservoir matrix. We verify the hypothesis that the ILU preconditioner, which is applied
to the reservoir matrix, increasingly behaves like a Jacobi preconditioner as the number
of parallel subdomains is increased. The change in behavior can be attributed to the
fact that connections between parallel subdomains are ignored, in order to reduce the
fill-in. The spectrum of the reservoir matrix with a CPR stage one Jacobi and stage two
ILU preconditioner is given in Figure 5-2.15.

0 10 20 30 40 50
10

−2

10
−1

10
0

Eigenvalue

V
a
lu

e

Figure 5-2.15: Spectrum of the CPR-preconditioned (Jacobi & ILU) SAGD-SMALL reser-
voir matrix.

Joost van der Linden Master of Science Thesis

5-2 Eigenvalues and eigenvectors 87

In Figure 5-2.16, we plot the spectra for the CPR-preconditioned reservoir matrix (with
AMG), using either one or eight processors.

0 10 20 30 40 50
10

−1

10
0

Eigenvalue

V
a
lu

e

(a)

0 10 20 30 40 50
10

−1

10
0

Eigenvalue

V
a
lu

e

(b)

Figure 5-2.16: Spectrum of the CPR-preconditioned (AMG & ILU) SAGD-SMALL reservoir
matrix with (a) np = 1 and (b) np = 8.

In Figure 5-2.16(a), most of the spectrum is clustered around one, similar to the pre-
conditioned pressure matrix in Figure 5-2.13. In Figure (b), however, the spectrum is
slanted away from zero, much like the spectrum in Figure 5-2.15. Intermediate choices of
np will result in less slanting, while the spectra for np > 8 will converge further towards
the eigenvalues in Figure 5-2.15. This confirms the idea that the parallel implementation
of ILU negatively affects the spectrum.

Lastly, we are interested in the effect of the parallel ILU implementation on the eigen-
vectors. In particular, we investigate if the negative impact on the spectrum can be
remedied using deflation. The eigenvectors corresponding to the smallest eigenvalues
of the CPR-preconditioned reservoir matrix are shown in Figure 5-2.17. Two parallel
subdomains are used, of which the boundaries are shown in the figure. Note that the
first processor is assigned two regions (at the top and at the bottom).

(a) (b) (c) (d)

Figure 5-2.17: Several eigenvectors corresponding to the smallest eigenvalues of the CPR-
preconditioned SAGD-SMALL reservoir matrix with np = 2.

Master of Science Thesis Joost van der Linden

88 Results

Similar to the eigenvectors in Figure 5-2.12, non-zero values occur around the injector
and the producer in Figure 5-2.17(a). When the preconditioner is used in parallel instead
of serial, however, non-zero values also occur precisely on the edges of the the parallel
domains, as shown in Figures (b), (c) and (d). In fact, although (due to the scale) it is
not visible in this figure, non-zero values were found along almost all of the boundaries.
This observation gave rise to the implementation of deflation vectors with ones on the
edges of the parallel subdomains, in hope of approximating the eigenvectors. Results
are briefly discussed in Section 5-5-2.

5-2-5 Summary of findings

Using the BO, SPE5 and SAGD-SMALL cases, we draw a number of conclusions re-
garding the occurrence of isolated/extreme eigenvalues:

• Isolated, and especially extreme, eigenvalues harm the convergence of GMRES. If
the corresponding eigenvectors can be approximated (using either harmonic Ritz
approximations or a physics-based approach), then deflation is a promising method
to speed up convergence.

• The number of isolated (extreme) eigenvalues is proportional to the number of per-
meability jumps, and the size of the isolated (extreme) eigenvalues is proportional
to the size of the permeability jumps.

• In both the SAGD-SMALl and SPE5 case, no extreme eigenvalues occur for per-
meability jumps of order O(103) or smaller.

• In the SAGD-SMALL case, temperature effects negatively affect the spectrum.

• AMG is more effective than diagonal scaling as the first stage preconditioner in
CPR, as demonstrated by the quality (i.e. number of isolated/extreme eigenvalues)
of the spectrum.

• For increasing np, the ILU preconditioner will behave more like diagonal scaling.

In the analysis, we find several ideas for alternative deflation algorithms:

• In the SPE5 and SAGD-SMALL cases, the eigenvector non-zero pattern shows sim-
ilarities with the saturation. Results of a deflation algorithm using the saturation
instead of the permeability are discussed in Section 5-5-1.

• When the ILU preconditioner is used in parallel, eigenvector values appear on the
boundaries of the parallel subdomains. Results of a deflation algorithm attempting
to approximate these eigenvectors are discussed in Section 5-5-2.

Joost van der Linden Master of Science Thesis

5-3 Harmonic Ritz deflation 89

5-3 Harmonic Ritz deflation

In this section, we discuss the results obtained from applying harmonic Ritz deflation
to the BO, SPE5 and SAGD-SMALL cases. The implementation in Algorithm 5 is used
both in Matlab an IX. In the Matlab experiments, we compare the harmonic Ritz results
to deflation using exact eigenvectors and GMRES without deflation. In IX, harmonic
Ritz deflation is only compared to GMRES without deflation, as it is not possible to
compute the exact eigenvectors. We start our experiments using Ap = AM−1, but also
show that it is possible to take Ap = A.

Remark 5-3.1. Deflated GMRES is denoted as DGMRES(m,d), where m is the cycle
size and d is the number of deflation vectors used. Unless noted otherwise, we assume
that the deflation vectors correspond to the smallest d (approximated) eigenvalues.

5-3-1 Matlab experiments

In most of the experiments in this section, a simple Jacobi preconditioner is used, applied
from the right. As discussed in the motivation at the start of Chapter 3, our goal is
to apply deflation artificially in order to achieve fast convergence from the start of the
simulation. To illustrate the potential of removing harmful eigenvalues, we first apply
deflation using exact eigenvectors. The eigenvectors of the pressure matrix are computed
using the Matlab function eig, applied to AM−1.

In Figure 5-3.1, the convergence history of the SPE5 case with modified permeability
and σ = 106 (i.e. Figure 3-1.1) is appended with:

• DGMRES(20,1) exact. Deflated GMRES with cycle size 20 and one exact
eigenvector, i.e. Z ∈ Rnc×1.

• DGMRES(20,2) exact. Deflated GMRES with cycle size 20 and two exact
eigenvectors, i.e. Z ∈ Rnc×2.

10 20 30 40 50 60 70 80 90 100

10
−6

10
−4

10
−2

10
0

Iteration

R
e

la
ti
v
e

 r
e

s
id

u
a

l
n

o
rm

GMRES(100)

GMRES(20)

DGMRES(20,1) exact

DGMRES(20,2) exact

Figure 5-3.1: (D)GMRES(20) residual convergence for the SPE5 case with modified per-
meability and σ = 106.

Master of Science Thesis Joost van der Linden

90 Results

Recall from Table 5-2.1 that there are two extreme eigenvalues in the spectrum of the
pressure system. We make two observations from the figure above. Firstly, deflating only
the smallest eigenvalue marginally improves the convergence of GMRES(20). The second
extreme eigenvalue still cannot be found by the Ritz values in twenty iterations. Secondly,
if we deflate the two smallest eigenvalues, the convergence of GMRES(20) significantly
improves. Having deflated these eigenvalues, only the cluster of eigenvalues clost to one
remains. As shown by the convergence history in Figure 3-1.2, these eigenvalues can be
found by the Ritz values within twenty iterations.

In Figure 5-3.2, the SPE5 convergence history is repeated, this time with m = 100 for
DGMRES.

10 20 30 40 50 60 70 80 90 100

10
−6

10
−4

10
−2

10
0

Iteration

R
e

la
ti
v
e

 r
e

s
id

u
a

l
n

o
rm

GMRES(100)

GMRES(20)

DGMRES(100,1) exact

DGMRES(100,2) exact

Figure 5-3.2: (D)GMRES(100) residual convergence for the SPE5 case with modified
permeability and σ = 106.

Because we allow the Ritz values to converge to the second smallest eigenvalue, the
residual reduction for DGMRES(100,1) is better than the residual reduction for DGM-
RES(20,1). Comparing the two previous figures, we also observe that the DGMRES(100,2)
and DGMRES(20,2) are nearly equal. Furthermore, the convergence speed of GM-
RES(100) (after the stall) and DGMRES(100,2) (from the start) is comparable. As
said, twenty iterations is sufficient for the Ritz values to converge towards all other
small eigenvalues. In terms of the convergence speed, the potential of deflation is clearly
illustrated. For GMRES(100), fast convergence occurs only after the Ritz values have
converged to the extreme eigenvalues (natural deflation). We obtain the same fast con-
vergence from the start by deflating the two extreme eigenvalues artificially.

Recall from Figure 5-2.1 that the spectrum of the BO case has two isolated eigenvalues.
The rest of the spectrum is clustered between 10−2 and 101. In Figure 5-3.3, GMRES(20)
and GMRES(100) are compared with DGMRES(20) for a varying number of deflation
vectors.

Joost van der Linden Master of Science Thesis

5-3 Harmonic Ritz deflation 91

0 50 100 150 200

10
−6

10
−4

10
−2

10
0

Iteration

R
e

la
ti
v
e

 r
e

s
id

u
a

l
n

o
rm

GMRES(20)

GMRES(200)

DGMRES(20,1) exact

DGMRES(20,2) exact

DGMRES(20,3) exact

Figure 5-3.3: (D)GMRES residual convergence for the BO case.

Using DGMRES(20,1), only the smallest eigenvalue is deflated from the linear system.
Even though this results in faster convergence in the beginning, after about 100 iterations
GMRES(100) and DGMRES(20,1) reach the same residual norm. Surprisingly, deflating
the second smallest eigenvalue does not improve convergence. Only when the third
smallest eigenvalue is also deflated, do we achieve a noticeable improvement. Since
the left tail of the eigenvalue cluster contains many eigenvalues away from zero (i.e.
O(10−2)), and the second smallest eigenvalue is only somewhat isolated, other error
characteristics (such as the location in the domain) may explain this behavior. In our
experience, the convergence after deflating additional eigenvalues (on top of the extreme
eigenvalues) may not always improve, but at least it will never deteriorate.

Having demonstrated the potential of deflation using exact eigenvectors, we now discuss
the results of deflated GMRES using harmonic Ritz eigenvector approximations. In
Figure 5-3.4, we plot the linear solve of the BO case using GMRES(20), DGMRES(20)
using one exact eigenvector or DGMRES(m) using harmonic Ritz (HR) vectors with
varying m.

0 50 100 150 200
10

−8

10
−6

10
−4

10
−2

10
0

10
2

Iteration

R
e

la
ti
v
e

 r
e

s
id

u
a

l
n

o
rm

GMRES(20)

DGMRES(20,1) exact

DGMRES(5,1) HR

DGMRES(10,1) HR

DGMRES(15,1) HR

DGMRES(20,1) HR

DGMRES(30,1) HR

Figure 5-3.4: (D)GMRES residual convergence for varying m.

The fastest convergence is achieved by DGMRES(20,1) with one exact eigenvector.
DGMRES(30,1) using one harmonic Ritz vector has higher residual norms in the first
100 iterations, but reaches the tolerance of 10−6 at nearly the same iteration count.

Master of Science Thesis Joost van der Linden

92 Results

For lower values of m, the convergence is slower, although still significantly faster than
GMRES without deflation. For m = 10 and m = 5, however, the harmonic Ritz vector
is no longer a sufficiently accurate approximation of the true eigenvector. As a result,
DGMRES is slower than GMRES. To illustrate this phenomenon, the exact eigenvector
and harmonic Ritz eigenvector approximation after five and thirty iterations are plotted
in Figure 5-3.5.

0 500 1000 1500 2000
0

0.02

0.04

0.06

0.08

0.1

Exact eigenvector

Harmonic Ritz vector

(a)
0 500 1000 1500 2000

0

0.02

0.04

0.06

0.08

0.1

Exact eigenvector

Harmonic Ritz vector

(b)

Figure 5-3.5: The harmonic Ritz vector and the exact eigenvector after (a) five and (b)
thirty iterations.

After five iterations, the harmonic Ritz vector is not a good approximation of the true
eigenvector. As shown in Figure 5-3.4, deflation is not effective in this case. After thirty
iterations, on the other hand, the harmonic Ritz vector and the eigenvector nearly overlap
and deflation significantly improves the convergence of GMRES. For intermediate choices
of m, the approximation will be more/less accurate, as demonstrated in the convergence
history in Figure 5-3.4.

After repeating the above experiment for the SPE5 case with modified permeability, we
find that the size of the permeability jump imposes a requirement on the cycle size. If we
run the simulation with σ = 108, for example, it turns out that m = 20 is not sufficient
to obtain sufficiently accurate harmonic Ritz eigenvector approximations. As a result,
DGMRES will not converge. For this particular case, m ≥ 40 is required for deflation to
be effective. We believe that this correlation is caused by the extreme eigenvalues in the
SPE5 case, which become more isolated and extreme as we increase σ (Table 5-2.1). The
more extreme the eigenvalues become, the longer it takes for the smallest Ritz values to
converge to the extreme eigenvalues. Therefore, more iterations are required in a cycle
to find decent approximation of the eigenvectors.

So far, we have been using deflation in combination with a Jacobi preconditioner, applied
from the right. Furthermore, Ap = AM−1 (in Algorithm 5 and 6) was used in all
previous plots. The (AMG) preconditioner in IX is one of the bottlenecks in the linear
solve. Therefore, deflation is relatively expensive if the preconditioner has to be applied
multiple times in the application of P1 and P2. To limit the deflation overhead, we

Joost van der Linden Master of Science Thesis

5-3 Harmonic Ritz deflation 93

would prefer to take Ap = A instead. Theoretically, it is possible that the harmful
eigenvalues that deflation acts on are precisely the eigenvalues that the preconditioner
cannot resolve. Therefore, deflation applied to Ap = A might be just as effective as
applying deflation to Ap = AM−1.

The convergence for DGMRES(20,1) using one harmonic Ritz vector, a right Jacobi pre-
conditioner andAp = A, is shown in Figure 5-3.6(a). Although only right-preconditioning
is relevant for our purposes, from a theoretical point of view it is also worth investigating
the choice Ap = A for left-preconditioning. The result is shown in Figure 5-3.6(b).

100 200 300 400 500 600
10

−6

10
−4

10
−2

10
0

Iteration

R
e
la

ti
v
e
 r

e
s
id

u
a
l
n

o
rm

Right GMRES(20)

Right DGMRES(20,1), A
p
 = AM

−1

Right DGMRES(20,1), A
p
 = A

(a)

100 200 300 400 500 600
10

−6

10
−4

10
−2

10
0

Iteration

R
e

la
ti
v
e

 r
e

s
id

u
a

l
n

o
rm

Left GMRES(20)

Left DGMRES(20,1), A
p
 = M

−1
A

Left DGMRES(20,1), A
p
 = A

(b)

Figure 5-3.6: Convergence of (a) left- and (b) right-preconditioned (D)GMRES for the
BO case.

For right-preconditioning, using Ap = A instead of Ap = AM−1 causes slower conver-
gence, although DGMRES(20,1) is still faster than GMRES(20). For left-preconditioning,
using Ap = AM−1 results in approximately the same convergence as in the right-
preconditioned case. For Ap = A, however, the residual increases in the first fifty
iterations, after which GMRES stalls. No satisfying explanation for this phenomenon
was obtained, but we suspect that the answer might be found in the different linear
systems: left-preconditioned GMRES solves M−1Ax = M−1b and right-preconditioned
GMRES solves AM−1 = b. We remark that, to our knowledge, the formulation of the
deflation operators P1 and P2 for preconditioned linear systems, as well as the choice
of Ap = A has barely received any attention in relevant literature. The authors in [12]
and [80] discuss the use of deflation combined with preconditioning, but do not treat the
previous two topics. As argued before, these choices are crucial for the performance in
practical applications.

In the previous plot, we find that Ap = A can be used with right-preconditioning in
DGMRES while still converging faster than GMRES without deflation. Note that there
is a slight residual increase of DGMRES(20,1) (Ap = A) in Figure 5-3.6(a). The jump
appears in iteration 21, which is the first iteration after the restart. At this point,
deflation using Ap = A introduces solution components that temporarily increase the
residual. We risk ending our simulation for a larger residual than the initial residual.

Master of Science Thesis Joost van der Linden

94 Results

After a number of numerical experiments, we find that the following measures can be
used to reduce the temporary increase of the residual:

• Increase the value of m. The residual increase after the restart becomes smaller, if
the harmonic Ritz vectors are allowed more time to converge towards to the exact
eigenvectors. If exact eigenvectors are used (with Ap = A), the residual will never
increase.

• Use a stronger preconditioner. If an ILU preconditioner is used instead of Jacobi,
the residual increase will be smaller.

Despite the results in Matlab above, we have not encountered any issues with the residual
increase in our IX experiments.

Lastly, before we continue with the IX results, we compare the following two deflation
methods:

1. Apply the harmonic Ritz deflation method once after a full cycle of GMRES, and
freeze the deflation vectors for consecutive cycles. This is the approach that we
have used so far.

2. After each cycle, apply the harmonic Ritz deflation method and append the defla-
tion vectors to the previous deflation vectors.

As shown in Figure 5-3.7, the second approach is slightly more efficient.

0 50 100 150 200

10
−6

10
−4

10
−2

10
0

Iteration

R
e
la

ti
v
e
 r

e
s
id

u
a
l
n
o
rm

GMRES(20)

DGMRES(20,2), freeze

DGMRES(20,2), append

Figure 5-3.7: Comparison of freezing the deflation vectors versus appending the deflation
vectors in the BO case.

Up to 40 iterations, both choices are approximately equal. As the simulation continues,
appending deflation vectors further improves convergence. When the tolerance of 10−6 is
reached, the freezing method is roughly 30 iterations faster. In experiments with other
cases, we observe similar or better convergence improvements if deflation vectors are

Joost van der Linden Master of Science Thesis

5-3 Harmonic Ritz deflation 95

appended instead of frozen. Repeatedly computing and appending the harmonic Ritz
vectors, however, has two disadvantages. Firstly, the memory requirements increase as
the size of Z increases. Secondly, the computational costs of the matrix-vector products,
inner products and Galerkin solve (in applying P1 and P2) increase as well. These costs
do not outweigh the time gain from the reduced number of iterations. In conclusion,
even though appending deflation vectors can improve convergence, we will mainly use
the freezing method.

5-3-2 IX experiments

Having demonstrated the potential of the harmonic Ritz deflation method in Matlab, we
will continue with the results from IX. Each simulation in this section uses Ap = A and
preconditioning applied from the right. All simulations are run in serial. We will use the
SPE5 case with modified permeability and σ = 108, as well as the SAGD-SMALL case.
In the previous section, we showed that harmonic Ritz deflation can effectively eliminate
the harmful eigenvalues and thereby improve convergence. As will become clear in this
section, however, the performance in IX is not as good and the overhead of deflation is
too high to compete with the existing CPR preconditioning scheme.

The following variables are used to compare the results:

• Non-linears. The amount of non-linear iterations in the simulation.

• Fails. The amount of failed non-linear iterations.

• Outer linears. The amount of iterations used to solve the linear systems gener-
ated by the non-linear iterations.

• Inner linears. The amount of iterations used to solve the pressure systems gen-
erated by the second stage of the CPR preconditioning in the outer GMRES loop.

• CPU time. The overall CPU time (in seconds) of the linear solve.

We refer to the linear solve of the full linear system and the pressure solve as the outer
linear solve and the inner linear solve, respectively. For each outer linear iteration, there
is at least one inner linear iteration. Note that the number of non-linears is equal to
the number of linear systems that need to be solved in the outer linear solve. Similarly,
the number of outer linears is equal to the number or pressure systems that need to be
solved in the inner linear solve. We compare the overall CPU time of the linear solve to
analyze the overhead of deflation.

The default settings of the IX pressure solve are summarized below.

Master of Science Thesis Joost van der Linden

96 Results

Setting Default value

Pressure solve tolerance 10−6

Cycle size 20
Minimum number of iterations 1
Maximum number of iterations 1
Preconditioner AMG

Table 5-3.1: Default settings in IX.

Since we only apply deflation to the pressure solve in this section, the tolerance of the
outer linear solve and the non-linear solve are omitted. In the first numerical experiment,
we use the following settings:

Setting Default value

Pressure solve tolerance 10−6

Cycle size 30
Minimum number of iterations 30
Maximum number of iterations 60
Preconditioner Jacobi

Table 5-3.2: Settings for the results in 5-3.3.

By default, IX only uses a single iteration of AMG-preconditioned GMRES. In order
to use harmonic Ritz deflation, a restart is required. Therefore, we set the minimum
number of iterations equal to the cycle size. By using a weaker preconditioner (Jacobi),
we highlight the advantage of deflation. The cycle size is chosen sufficiently large to
guarantee accurate eigenvector approximations. In general, our experience is that m
should be at least 20. Similar to the Matlab experiments, we find that appending the
deflation vectors in IX does not improve the convergence enough to justify the increased
memory requirements and CPU time. Therefore, the deflation vectors are frozen after
the first cycle.

Table 5-3.3 shows a comparison of GMRES(30) and DGMRES(30,3) in IX, using the
settings from Table 5-3.2 and the SPE5 case with modified permeability (σ = 108).

Joost van der Linden Master of Science Thesis

5-3 Harmonic Ritz deflation 97

GMRES(30) DGMRES(30,3)

Non-linears 527 430
Fails 0 0
Outer linears 2, 057 1, 606
Inner linears 123, 420 96, 360
CPU time 6.58 5.68

Table 5-3.3: Comparison of GMRES and DGMRES(30,3) in IX.

Firstly, note that 2, 057 × 60 = 123, 420 and 1, 606 × 60 = 96, 360, which implies that
neither GMRES(30) nor DGMRES(30,3) reaches the tolerance of 10−6 in any of the
pressure solves. The number of outer linears is reduced by approximately 22% because
the residual in each pressure solve is (slightly) better for DGMRES compared to GMRES.
As a result, the outer linear solve will converge faster. On average, GMRES(30) uses
2, 057/527 = 3.90 outer linears per non-linear, and DGMRES(30,3) uses 1, 677/456 =
3.73 outer linears per non-linear. This is an improvement of about 5%.

The CPU time of the linear DGMRES solve is 0.9 seconds smaller than the linear solver
time for GMRES. On average, GMRES and DGMRES require respectively 6.58/2, 057 =
3.2 ·10−3 and 5.68/1, 606 = 3.5 ·10−3 seconds per pressure solve. Hence, the overhead of
deflation, for this particular case, is equal to 3.5 · 10−3 − 3.2 · 10−3 = 3.0 · 10−4 seconds
per pressure solve. We conclude that the overhead of deflation is small enough to render
the method efficient.

Figure 5-3.8 contains a combined plot of all linear solves (of the full system) and a plot
of the cumulative Newton iterations.

1 2 3 4 5 6 7 8
10

−8

10
−6

10
−4

10
−2

10
0

Linear iteration

R
e

la
ti
v
e

 r
e

s
id

u
a

l
n

o
rm

(a)

0 50 100 150 200
0

100

200

300

400

500

600

Time step

C
u
m

u
la

ti
v
e
 N

e
w

to
n
 i
te

ra
ti
o
n
s

GMRES(30)
FDGMRES(30,3)

(b)

Figure 5-3.8: Linear solves and cumulative Newton iterations of the SPE5 case..

In Figure (a), we see that the outer linear solves in DGMRES (red lines) use (on aver-
age) less iterations to converge, while the residual norm is often smaller. The number of

Master of Science Thesis Joost van der Linden

98 Results

non-linear iterations to solve a particular timestep is smaller for DGMRES, as illustrated
in Figure (b). From Table 5-3.3, we know that GMRES(30) requires 527 non-linear it-
erations to complete the simulation, while DGMRES(30,3) needs only 430. In general,
our experience is that a lower outer linears count does not necessarily translate into
less non-linear iterations. The tolerance of the outer linear solve is equal for both GM-
RES(30) and DGMRES(30,3). Therefore, as long as no fails occur and the maximum
number of iterations (of the outer linear solve) is high enough we reason that, in theory,
the non-linear iteration count should be equal for GMRES and deflated GMRES. The
fluctuation might be caused by the implementation of the non-linear solver in IX, which
is beyond the scope of this thesis.

Although the speedup is not as significant as was shown in the Matlab experiments (e.g.
Figure 5-3.1), deflation in the diagonally scaled IX pressure system is still efficient. In the
next experiment, we compare deflation to the AMG preconditioner. Table 5-3.4 compares
the results from Table 5-3.3 to GMRES(30) with an AMG preconditioner.

DGMRES(30,3) (Jacobi) GMRES(30) (AMG)

Non-linears 430 395
Fails 0 0
Outer linears 1, 606 1, 099
Inner linears 96, 360 66, 59
CPU time 5.68 1.22

Table 5-3.4: Comparison of DGMRES(30,3) (with Jacobi) and GMRES(30) (with AMG)
in IX.

The main difference between the two methods is the amount of inner linears. By in-
specting the convergence history, we find that AMG reaches the tolerance in the pressure
solve after (on average) 6, 659/1, 099 ≈ 6 inner linear iterations. Jacobi-preconditioned
GMRES combined with deflation never reaches the tolerance, since 96, 360/1, 606 = 60
(the maximum number of iterations). Consequently, DGMRES with Jacobi requires over
14 times as many inner iterations, and is 4.7 times slower in terms of CPU time than
GMRES with AMG. Moreover, in the default IX settings the pressure solve uses only
one AMG-preconditioned GMRES iteration. Our experiments show that the residual in
this pressure solve setup is often sufficient to guarantee good convergence of the outer
linear solve. When only one iteration of GMRES is used, the CPU time of the linear
solve will be a fraction of the 1.22 seconds above.

For this experiment, it is not possible to use DGMRES with an AMG preconditioner. As
noted before, at least 20 iterations are required to obtain sufficiently accurate approxi-
mations of the eigenvectors. AMG-preconditioned GMRES, however, reaches machine-
precision residual norms within 10 to 15 iterations. The physics-based deflation method
in the next section is more suitable to be combined with AMG, because the physics-based

Joost van der Linden Master of Science Thesis

5-3 Harmonic Ritz deflation 99

deflation vectors are applied from the start of the simulation. Our experiments for this
deflation method show that adding deflation to AMG-preconditioned GMRES does not
improve convergence. We believe that AMG is already very efficient in tackling the
harmful eigenvalues, as demonstrated in the comparison of Figure 5-2.13 and 5-2.14. In
section 2-5-1, we linked the occurrence of extreme eigenvalues to ‘algebraically smooth’
error nodes. AMG is very efficient in reducing these error characteristics, which explains
why adding deflation does not improve convergence.

We present the results of two more experiments, both using the SAGD-SMALL case
and a Jacobi preconditioner applied from the right. In an attempt to reduce the over-
head of deflation, we reduce the cycle size to 20. The minimum number of iterations is
also set at 20, while the maximum number of iterations is kept at 60. We know from
our simulations that the water injection in the SAGD-SMALL case causes issues in the
IX simulation. Shortly after the water injection starts, the non-linear time step size is
reduced several times before the simulation can continue. Because isolated eigenvalues
may be responsible (as seen Figure 5-2.10), we switch on deflation when the water injec-
tions starts. To reduce the computational costs, we do not use deflation for all previous
time steps. The result is shown in Table 5-3.5 as ‘switched’ DGMRES (sDGMRES). A
comparison is made with GMRES(20) using a Jacobi preconditioner, DGMRES(20,3)
using a Jacobi preconditioner but without the switching and GMRES(20) with an AMG
preconditioner.

GMRES(20) DGMRES(20,3) sDGMRES(20,3) GMRES(20)
(Jacobi) (Jacobi) (Jacobi) (AMG)

Non-linears 291 291 291 291
Fails 0 0 0 0
Outer linears 929 937 935 933
Inner linears 44, 322 36, 676 38, 701 55, 54
CPU time 13.70 14.82 14.82 7.97

Table 5-3.5: Comparison of (switched) DGMRES with GMRES and AMG in IX.

Compared to GMRES(20) with a Jacobi preconditioner, DGMRES(20,3) reduces the
number of pressure iterations (per non-linear iteration) by 17%. This is a significant
improvement over the 5% reducation in the SPE5 case. The overhead of deflation,
however, is larger, most likely due to the increased size of the SAGD-SMALL case
(12, 145, 225 matrix elements versus 21, 609 elements for SPE5). Consequently, the CPU
time of the linear solve is now higher for deflated GMRES. If we leave deflation off up to
the point that the water injection starts, then the amount of inner linears increases by
38, 701− 36, 676 = 2, 025 iterations. By coincidence, the CPU time gained by switching
off deflation before the water injection is precisely compensated for by the increased
number of inner linears. Lastly, GMRES with AMG is again significantly faster and
more efficient than deflated GMRES with a Jacobi preconditioner.

Master of Science Thesis Joost van der Linden

100 Results

In the last experiment, we vary the number of deflation vectors. The same case and
settings are used as in the previous experiment. The results are shown in Tables 5-3.6
and 5-3.7.

GMRES(20) sDGMRES(20,1) sDGMRES(20,3) sDGMRES(20,5)

Non-linears 291 291 291 291
Fails 0 0 0 0
Outer linears 929 934 935 934
Inner linears 44, 322 42, 793 38, 701 42, 793
CPU time 13.70 15.29 14.82 15.12

Table 5-3.6: Switched DGMRES for a varying number of deflation vectors in IX.

sDGMRES(20,10) sDGMRES(20,15) sDGMRES(20,20)

Non-linears 277 277 278
Fails 0 0 0
Outer linears 907 911 951
Inner linears 33, 363 32, 244 31, 671
CPU time 15.00 16.40 17.85

Table 5-3.7: Switched DGMRES for a varying number of deflation vectors in IX.

The amount of inner linears decreases as we increase the number of deflation vectors,
with one exception (sDGMRES(20,5)). The amount of non-linears and outer linears
fluctuates. Most importantly, the CPU time of the linear solve increases for a larger
number of deflation vectors. We conclude that the time gain from the decreased number
of inner linears does not outweigh the overhead of deflation.

Lastly, we note that we have also applied harmonic Ritz deflation to the full reservoir
system. We find that, unless the second stage ILU preconditioner is replaced by Jacobi,
the outer linear solve rarely reaches 20 iterations. Even if we use Jacobi as both the first
and second stage preconditioner, harmonic Ritz deflation does not improve convergence
enough to compensate for the increased computational costs.

5-3-3 Summary of findings

In our Matlab experiments, we observe the following:

• Artificial deflation using harmonic Ritz vectors can significantly improve the per-
formance of GMRES. The convergence speed will be approximately equal to the
convergence speed attained after natural deflation of the extreme eigenvalues.

Joost van der Linden Master of Science Thesis

5-3 Harmonic Ritz deflation 101

• The best performance gain is achieved by deflating all extreme eigenvalues. De-
flating other eigenvalues does not necessarily improve convergence, although the
convergence will never deteriorate.

• For most cases, the harmonic Ritz eigenvector approximation requires about 20
iterations to reach sufficient accuracy to be effective as a deflation vector. For very
large permeability jumps, such as in the SPE5 case with modified permeability
and σ ≥ 104, we often need m > 20.

• In right-preconditioning, Ap = A can be used in DGMRES instead of Ap = AM−1

while still improving performance compared to GMRES without deflation.

• The residual jump after a restart (caused by taking Ap = A) can be remedied by
increasing m or by using a stronger preconditioner such as AMG.

• Even though appending deflation vectors can reduce the iteration count, the method
is too expensive. Instead, we freeze the deflation vectors after the first cycle.

In the IX experiments, we present one example (SPE5 case with modified permeability)
where harmonic Ritz deflation reduces the number of pressure iterations enough to com-
pensate for the overhead in terms of CPU time. The percental improvement in terms
of outer linears per non-linear is rather small. For the second case (SAGD-SMALL),
the percental decrease in outer linears is much larger. The results for this case also
show, however, that the overhead of deflation is higher for a bigger pressure matrix. In
particular, the overhead of deflation in the SAGD-SMALL is larger than the time gain
from the reduced number of inner linears, rendering DGMRES inefficient.

Furthermore, DGMRES, which is combined with a Jacobi preconditioner in our exper-
iments, is considerably slower than GMRES with an AMG preconditioner. We reason
that AMG is efficient in tackling the error corresponding to the extreme eigenvalues.
Consequently, adding deflation to AMG does not improve the performance of the pres-
sure solve. Lastly, we attempt to reduce the overhead of deflation by switching deflation
on/off during different stages of the simulation, and by varying the number of deflation
vectors. Neither approaches leads to significant improvements. Therefore, we formulate
the following two (related) objectives for an improved deflation method in IX:

• The overhead of harmonic Ritz deflation offsets the time gain from the improved
convergence. Therefore, we require a cheaper deflation method.

• The harmonic Ritz deflation vectors do not speed up convergence enough to offset
the overhead. Therefore, we require more effective deflation vectors.

This conclusion led to the development of a physics-based deflation method. The advan-
tages of this method have been briefly highlighted in Section 4-3, but will be repeated
in the next section along with the results.

Master of Science Thesis Joost van der Linden

102 Results

5-4 Physics-based deflation

In physics-based deflation, we approximate the eigenvectors using the underlying physics.
As discussed in Section 3-4-4, the span of the eigenvectors corresponding to the extreme
eigenvalues in linear systems with strong heterogeneity can be approximated by the
span of a set of physics-based deflation vectors. In our applications, the permeability is
generally responsible for the largest jumps in the coefficients of the reservoir equations.
The deflation vectors can be constructed manually, or computed automatically using the
subdomain-levelset method described in Section 4-2. The main advantages of physics-
based deflation are:

• The deflation vectors are defined a priori. Therefore, harmful eigenvalues can be
eliminated from the spectrum from the start of the linear solve.

• The deflation vectors are computed only once and can be reused throughout the
simulation.

• If regions of constant permeability are contained and separated by large, well-
defined jumps, then constructing a set of efficient deflation vectors automatically
is relatively easy.

The default cases in this thesis do not have extreme discontinuities, but, as we will
demonstrate, the permeability differences between (horizontal) layers are still large
enough to benefit from physics-based deflation. Similar to the modification of the SPE5
case in the previous sections, we will also modify the SAGD permeability to demonstrate
the potential of deflation.

5-4-1 Manual physics-based deflation

In the first set of numerical experiments with physics-based deflation, we manually assign
deflation vectors. In particular,

• The BO case has two horizontal layers of constant permeability, as shown in Figure
5-1(c). To capture the jump, we manually construct two deflation vectors. In the
first deflation vector, we assign value 1 to each cell in the top layer, and value 0
to each cell in the bottom layer. In the second deflation vectors, we assign value
0 to each cell in the top layer, and value 1 to each cell in the bottom layer. The
boundary between the ones and zeros, in this case, coincides with the jump in
permeability.

• The SPE5 case has three horizontal layers of permeability, as shown in Figure 5-
1.3. The jump is captured using three deflation vectors, whose values are assigned
in the same manner as above.

• The SAGD-SMALL case has a more complex permeability field. As discussed
in Section 5-2-3, the eigenvectors corresponding to the isolated eigenvalues mainly

Joost van der Linden Master of Science Thesis

5-4 Physics-based deflation 103

have non-zero values around the injector and the producer. Moreover, a closer look
at Figure 5-1.7 reveals a number of horizontal layers of constant permeability in this
region. Between these layers, rather large permeability jumps occur. Therefore, we
assign ten deflation vectors to this region, where each vector represents a horizontal
layer.

The deflation vectors for the BO, SPE5 and SAGD-SMALL case are illustrated in Figure
5-4.1(a), (b) and (c), respectively. In each figure, a front view is shown of the reservoir.
Each color represents a deflation vector.

2 4 6 8 10 12 14

2

4

6

8

10
1

2

(a)

1 2 3 4 5 6 7

1

2

3

1

2

3

(b)

10 20 30 40

10

20

30

40

50

60

70

80

0

1

2

3

4

5

6

7

8

9

10

(c)

Figure 5-4.1: Manually constructed deflation vectors for (a) BO, (b) SPE5 and (c) SAGD-
SMALL.

We now apply the manually constructed deflation vectors to the pressure solve. In
each simulation, the pressure matrix is preconditioned with a Jacobi preconditioner, ap-
plied from the right. The residual tolerance is 10−6, and, unless note otherwise, we use
m = 20 with a maximum of 200 iterations. The convergence of physics-based deflation
(PDGMRES) is compared to harmonic Ritz deflation (RDGMRES) and GMRES with-
out deflation. In harmonic Ritz deflation, we use 2 deflation vectors for the BO case,
3 deflation vectors for the SPE5 case and 10 deflation vectors for the SAGD-SMALL
case.

The convergence history of the BO case and the SAGD-SMALL case is shown in Figure
5-4.2.

Master of Science Thesis Joost van der Linden

104 Results

0 50 100 150 200

10
−5

10
0

Iteration

R
e
la

ti
v
e
 r

e
s
id

u
a
l
n
o
rm

GMRES(20)

RDGMRES(20,2)

PDGMRES(20,2)

(a)

10 20 30 40 50

10
−5

10
0

Iteration

R
e

la
ti
v
e

 r
e

s
id

u
a

l
n

o
rm

GMRES(20)

RDGMRES(20,10)

PDGMRES(20,10)

(b)

Figure 5-4.2: Comparison of no deflation, harmonic Ritz deflation (RDGMRES) and (man-
ual) physics-based deflation (PDGMRES) for (a) BO and (b) SAGD-SMALL.

In Figure 5-4.2(a), GMRES(20) does not reach the tolerance within 200 iterations. The
convergence of RDGMRES(20,2) is better, but, as observed before, a residual increase
occurs after the restart. The best residual convergence is attained by physics-based
deflation. After 20 iterations, the convergence speed of PDGMRES is approximately
equal to the convergence speed of RDGMRES, however physics-based deflation can be
applied from the start of the simulation which results in the best convergence. Similarly,
PDGMRES in Figure 5-4.2(b) achieves the best performance. At the tolerance, the
number of iterations compared to native GMRES is approximately halved. Again, the
convergence speed of physics-based deflation after the restart is equal to the convergence
speed of harmonic Ritz deflation, but the former method has the advantage of deflating
the isolated eigenvalues from the start.

In figure, 5-4.3, we plot the convergence of default SPE5 solve and the solve of the SPE5
case with modified permeability (σ = 106).

0 50 100 150 200

10
−5

10
0

Iteration

R
e
la

ti
v
e
 r

e
s
id

u
a
l
n
o
rm

GMRES(20)

RDGMRES(20,3)

PDGMRES(20,3)

(a)

0 50 100 150 200

10
−5

10
0

Iteration

R
e

la
ti
v
e

 r
e

s
id

u
a

l
n

o
rm

GMRES(40)

RDGMRES(40,3)

PDGMRES(20,3)

(b)

Figure 5-4.3: Comparison of no deflation, harmonic Ritz deflation (RDGMRES) and (man-
ual) physics-based deflation (PDGMRES) for (a) SPE5 and (b) SPE5 with modified per-
meability (σ = 106).

Joost van der Linden Master of Science Thesis

5-4 Physics-based deflation 105

The results in Figure 5-4.3(a) resemble the previously described phenomena. Physics-
based deflation with 3 deflation vectors reduces the iteration count by about 100 itera-
tions compared to GMRES and 40 iterations compared to harmonic Ritz deflation.

In the SPE5 case with modified permeability and σ = 106, the jump between the hori-
zontal layers is relatively large. In line with the discussion of Figure 5-3.5, m is increased
to 40 in Figure 5-4.3(b) to allow the harmonic Ritz vectors to converge to the eigenvec-
tors corresponding to the extreme eigenvalues. RDGMRES reaches the tolerance after
approximately 200 iterations. The convergence of PDGMRES is remarkably fast. This
example illustrates that the span of the three manually constructed deflation vectors
is a good approximation of the span of the eigenvectors corresponding to the extreme
eigenvalues. Moreover, observe that we use m = 20 instead of m = 40. For m = 20, the
convergence would be even better. We conclude that PDGMRES, compared to RDGM-
RES, not only achieves faster convergence but also does not impose any requirements
on m, which, if m can be lowered, decreases the computational cost of GMRES.

In the last experiment of this section, we investigate the optimal maximum number of
inner linear iterations, denoted M , in IX. By default, IX uses a single iteration to accel-
erate AMG in the pressure solve. To compete with this setup in terms of computational
costs, the maximum number of iterations will have to be relatively low. The fact that
physics-based deflation improves convergence from the start is especially advantageous
(compared to harmonic Ritz deflation) for lower values ofM . Table 5-4.1 compares GM-
RES without deflation to deflated GMRES with the 10 physics-based deflation vectors
from Figure 5-4.1(c) in the SAGD-SMALL case. The default pressure solve tolerance of
10−2 is used.

Non-linears Fails Outer linears Inner linears

M PDGMRES GMRES PDGMRES GMRES PDGMRES GMRES PDGMRES GMRES

1 278 272 1 1 1, 347 1, 568 1, 347 1, 568
2 268 279 0 1 1, 135 1, 1451 2, 263 2, 893
3 285 279 0 0 1, 169 1, 383 3, 484 4, 119
5 291 287 0 0 1, 082 1, 297 5, 321 6, 394
10 278 277 1 1 967 1, 221 8, 390 11, 623
20 956 974 0 0 956 974 9, 828 15, 721

Table 5-4.1: PDGMRES and GMRES in the SAGD-SMALL case for varying M .

As the maximum number of inner iterations is increased, the amount of outer linear
iterations decreases and the amount of inner linear iterations increases. Furthermore, if
the pressure solve is allowed more iterations, then in general the residual will be smaller.
As a result, the number of outer linears decreases. The number of non-linears stays
approximately the same. Observe that the relative improvement of deflated GMRES over
GMRES without deflation becomes more significant for higher values of M . For M = 1,
the number of innear linears is decreased by 15%, compared to 37% forM = 20. This can
be explained by the fact that for M = 10, and especially for M = 20, PDGMRES often
converges to the tolerance before reaching the maximum number of iterations, whereas

Master of Science Thesis Joost van der Linden

106 Results

GMRES does not. The tolerance is not reached for lower values of M , although the lack
of failed non-linear iterations (or a large increase in non-linear iterations) indicates that
the pressure residual is accurate enough after M iterations.

We aim to choose M such that PDGMRES has a significant advantage over GMRES,
while limiting the computational costs of the pressure solve. Although the advantage of
deflation is more significant for M = 10 or M = 20, the additional pressure iterations
increase the cost. In our experience, 1 ≤M ≤ 5 is sufficient to prevent failed non-linear
iterations, while the number of inner linear iterations is kept relatively low. In most of
the experiments in the upcoming sections, we use M = 2. For this choice, as shown
in the table above, deflation reduces both the inner linears and the outer linears by
22%.

5-4-2 Automatic physics-based deflation

As demonstrated by the Matlab experiments in the previous section, physics-based de-
flation has a number of advantages over harmonic Ritz deflation. The deflation vectors
only have to be constructed once, and can be applied from the start of the simulation. As
long as the span of the deflation vectors approximates the span of the eigenvectors corre-
sponding to the extreme eigenvalues, physics-based deflation is both faster and cheaper.
The example in Figure 5-4.3(b) shows that finding a suitable set of deflation vectors is
relatively straightforward if the permeability field exhibits a number of distinct layers
(or regions) of permeability, separated by large jumps.

The problem with manually assigning deflation vectors is that this process can become
rather time-consuming and complex for large, realistic reservoirs. It is primarily for
this reason that we have developed the partitioner algorithm from Section 4-2-1. The
algorithm can handle any 2D or 3D permeability distribution. The main goal of the
partitioner is to identify regions of constant permeability, and assign deflation vectors
such that the jumps between the different regions correspond to the boundaries of the
deflation vectors. We merge region-pairs with the smallest permeability differences until
the desired number of deflation vectors is reached (or surpassed). The partitioner is
implemented both in Matlab and IX.

In the first experiment, we export the SAGD-SMALL permeability from IX in order to
run the partitioner in Matlab. We apply the partitioner to the same focus region around
the injector and the producer as we use for the 10 manual deflation vectors in Figure 5-
4.1(c). We aim to find a similar set of 10 deflation vectors using the partitioner, since we
have visually confirmed that the 10 manual deflation vectors capture the jumps relatively
well. The result is shown in Figure 5-4.4(a), next to the SAGD-SMALL permeability
field.

Joost van der Linden Master of Science Thesis

5-4 Physics-based deflation 107

0

2

4

6

8

10

(a)

0

2500

(b)

Figure 5-4.4: (a) Deflation vectors in the focus region and (b) SAGD-SMALL permeability.

The top five horizontal layers of the focus region are each assigned a deflation vector,
similar to our manual construction in Figure 5-4.1(c). As confirmed by Figure 5-4.4(b),
the boundaries of the deflation vectors coincide with several large permeability jumps.
In the bottom five layers, the result from the partitioner and our manual construction
is slightly different. Comparing the permeability in this region with the deflation vec-
tors from the partitioner, we see that the permeability differences are more accurately
captured than in our manual construction.

The 10 deflation vectors from the partitioner are compared to the 10 manual deflation
vectors in Figure 5-4.5.

10 20 30 40 50

10
−6

10
−4

10
−2

10
0

Iteration

R
e

la
ti
v
e

 r
e

s
id

u
a

l
n

o
rm

GMRES(20)

PDGMRES(20,10) manual

PDGMRES(20,10) auto

Figure 5-4.5: Comparison of physics-based deflation (PDGMRES) using manual or auto-
matic construction of the deflation vectors.

The convergence of deflated GMRES using the manual set of deflation vectors (PDGM-
RES manual) is slightly better than the convergence of deflated GMRES using the 10

Master of Science Thesis Joost van der Linden

108 Results

deflation vectors from the partitioner (PDGMRES auto). Apparently, capturing smaller
details (i.e. jumps) does not necessarily improve convergence. Regardless, the differ-
ence in iterations is negligible and both methods are about twice as fast as normal
GMRES.

As discussed in Section 4-3, the partitioner is particularly suitable for a parallel imple-
mentation. Each processor runs the partitioner on the corresponding parallel subdomain,
which renders the parallel partitioner ‘embarrassingly parallel’. Each resulting deflation
vector has non-zero values only on the parallel subdomain on which it was constructed.
Therefore, the deflation operators P1 and P2 can (mostly) be applied in parallel as well,
as outlined in the second half of Section 4-3.

There is one possible issue with running the partitioner in parallel. If a permeability
jump stretches across the boundary of two parallel subdomains, then the partitioner
will assign two deflation vectors (one in each subdomain) instead of one deflation vec-
tor that captures the jump as a whole. As a result, an ‘artificial’ jump is introduced
on the boundary of the parallel subdomain. In the application of deflation to structural
mechanics by Jönsthövel in [13], this problem decreases the performance of deflated GM-
RES. We have conducted a number of experiments to investigate the impact of artificial
jumps, and conclude that the problem does not affect convergence in our applications.
In Figure 5-4.6, each deflation vector from Figure 5-4.1(c) is split vertically in half, which
results in 20 deflation vectors.

1

5

10

15

20

Figure 5-4.6: 10 manual deflation vectors split in 2.

The resulting convergence is shown in Figure 5-4.7 as PDGMRES(20,20). PDGM-
RES(20,40) uses 40 deflation vectors obtained by (vertically) splitting the 10 deflation
vectors from Figure 5-4.1(c) in 4.

Joost van der Linden Master of Science Thesis

5-4 Physics-based deflation 109

10 20 30 40 50

10
−5

10
0

Iteration

R
e
la

ti
v
e
 r

e
s
id

u
a
l
n
o
rm

GMRES(20)

PDGMRES(20,10)

PDGMRES(20,20)

PDGMRES(20,40)

Figure 5-4.7: Comparison of deflation with 10 manual deflation vectors (PDGM-
RES(20,10)), 10 manual deflation vectors split in 2 (PDGMRES(20,20)) and 10 manual
deflation vectors split in 4 (PDGMRES(20,40)).

Observe that deflation using the splitted deflation vectors is slightly faster than PDGM-
RES(20,10). Splitting the 10 deflation vectors in 2 or in 4 does not make a difference.
Overall, we did not encounter results in Matlab that showed that splitting the deflation
vectors is detrimental to the convergence. Table 5-4.2 shows the results from the same
experiment in IX. The number of maximum inner iterations is 2.

GMRES(20) PDGMRES(20,10) PDGMRES(20,20)
(original) (10 vectors split in 2)

Non-linears 279 268 266
Fails 0 0 1
Outer linears 1, 451 1, 085 1, 071
Inner linears 2, 893 2, 164 2, 135
CPU time 5.16 6.58 10.12

Table 5-4.2: Comparison of PDGMRES(20,10) (10 manual deflation vectors) and PDGM-
RES(20,20) (10 manual deflation vectors split in 2) in IX.

We do not use the parallel implementation of P1 and P2 in this experiment, which is
why the CPU time of the PDGMRES(20,20) linear solve is larger than the CPU time
of the PDGMRES(20,10) solve. The number of outer iterations using the 10 manually
constructed deflation vectors is approximately 25% lower than the outer linears in GM-
RES without deflation. Splitting the 10 deflation vectors in 2 does not result in slower
convergence.

To prototype the partitioner in Matlab, we export the parallel partitioning from IX
and independently apply the partitioner to each parallel subdomain. In a parallel run
of the partitioner, the pre-specified desired number of deflation vectors is a maximum:
subdomains with little fluctuation in the permeability can be assigned less deflation
vectors, and sometimes the merging process surpasses the desired number of deflation

Master of Science Thesis Joost van der Linden

110 Results

vectors. The latter is subject of future research. We compute at most 10 deflation vectors
per subdomain. The parallel partitioning for np = 8, along with the permeability in x
direction, is shown in Figure 5-4.8.

Figure 5-4.8: Parallel subdomains for np = 8 and the permeability in x direction.

The resulting deflation vectors for parallel domain 1, 5 and 6 are shown in Figure 5-
4.9(a), (b) and (c), respectively.

1

2

(a)

0

2

4

6

8

10

(b)

0

2

4

6

8

10

(c)

Figure 5-4.9: Deflation vectors in the (a) first, (b) fifth and (c) sixth parallel subdomain.

We make several observations. Firstly, we see that the separated regions in the first
parallel subdomain are assigned one deflation vector each. Indeed, no permeability
jumps occur in this region. Note that this result illustrates why it is crucial to compute
the maximum permeability (step two in the procedure outlined in 4-3) over all parallel
subdomains. If we would have computed the local maximum, then the partitioner would

Joost van der Linden Master of Science Thesis

5-4 Physics-based deflation 111

have assigned more deflation vectors to the different regions of permeability (not visible
due to very small size). As these small differences do not give rise to extreme eigenvalues,
the deflation vectors would be redundant. In future improvements of the partitioner,
we suggest taking no deflation vectors in constant parallel subdomains, rather than
assigning one deflation vector (as is currently the case).

Secondly, we observe that the horizontal layers in the focus region around the injector
and the producer are captured. A close analysis of the deflation vectors in the fifth
and sixth parallel subdomain does reveal that the algorithm is not flawless. On the left
side of the fifth subdomain, some regions with a large permeability jump are merged
together. Overall, however, the deflation vectors capture the permeability differences
relatively well.

In figure 5-4.10, we vary the (maximum) number of deflation vectors per parallel sub-
domain in the SAGD-SMALL case with np = 8.

10 20 30 40 50

10
−5

10
0

Iteration

R
e
la

ti
v
e
 r

e
s
id

u
a
l
n
o
rm

GMRES(20)

PPDGMRES(20,2)

PPDGMRES(20,5)

PPDGMRES(20,10)

PPDGMRES(20,20)

Figure 5-4.10: Comparison of parallel physics-based deflation (PPDGMRES) using eight
processors and a varying maximum number of deflation vectors per parallel subdomain.

Notice that the decrease in iterations from PPDGMRES(20,2) to PPDGMRES(20,5) is
much larger than the decrease from PPDGMRES(20,5) to PPDGMRES(20,10). Using
only 2 deflation vectors, many permeability jumps are merged together and ignored. 5
deflation vectors, on the other hand, more accurately capture the large permeability
differences. The convergence of PPDGMRES(20,10) and PPDGMRES(20,20) is similar,
which implies that most of the jumps responsible for the harmful eigenvalues can be
captured with 10 deflation vectors.

In the upcoming experiments, we test the parallel partitioner and the parallel imple-
mentation of deflation in IX. We vary the number of processors between 1 and 32, and
use the SAGD-SMALL, SAGD-MEDIUM and SAGD-LARGE cases to experiment with
different problem sizes. To compare serial deflation, parallel deflation and GMRES with-
out deflation, we focus on the amount of inner linear iterations, and the CPU time of
the linear solve. The maximum number of iterations is chosen as 2.

Note that we refer to parallel deflation and serial deflation as applying P1 and P2 in
parallel (as outlined in 4-3) and in serial, respectively. This should not be confused with

Master of Science Thesis Joost van der Linden

112 Results

the number of processors that is used. For example, with np = 8 and 10 deflation vec-
tors per parallel subdomain (from the subdomain-levelset method), using serial deflation
requires computations with 8 × 10 = 80 deflation vectors. If parallel deflation is used
instead, the fact that each deflation vector is zero outside the corresponding subdomain
theoretically reduces the computations to running deflation with only 10 deflation vec-
tors. Some communication and global computations are required, so in practice parallel
deflation is slightly slower.

Figure A-1.1 in Appendix A-1 shows the result of the parallel partitioner with a maxi-
mum of 10 deflation vectors per parallel subdomain. We verify that the deflation vectors
are equal to the partitioner result in Matlab (Figure 5-4.9). Figure 5-4.11 illustrates the
advantage of parallel physics-based deflation (PPDGMRES) over serial physics-based
deflation (PDGMRES).

0

500

1000

1500

2000

2500

np = 1 np = 2 np = 4 np = 8 np = 16

It
e
ra

ti
o
n
s

Linear iterations

GMRES(20) PDGMRES(20,10) PPDGMRES(20,10)

(a)

0

10

20

30

40

np = 1 np = 2 np = 4 np = 8 np = 16

S
e
co

n
d
s

CPU time

GMRES(20) PDGMRES(20,10) PPDGMRES(20,10)

(b)

Figure 5-4.11: Comparison of serial physics-based deflation (PDGMRES) and parallel
physics-based deflation (PPDGMRES) in terms of (a) outer linear iterations and (b) CPU
time of the linear solve in the SAGD-SMALL case (max. iterations = 2).

In Figure (a), we observe that the serial and parallel implementation of physics-based
deflation results in the same amount of (outer) linear iterations. The relatively reduction
in iterations increases from 11% for np = 1 to 35% for np = 16. This suggests that
the quality of the deflation vectors becomes better, as the parallel subdomains become
smaller. For serial deflation, the amount of deflation vectors in Z doubles as we double
the number of processors. Twice as many deflation vectors results in four times as many
elements in the Galerkin matrix E. The computational costs of the computations with
Z and E increase quadratically, which explains the CPU time of PDGMRES in Figure
(b). For parallel deflation, we observe that the overhead is minimal.

For a small maximum number of inner iterations, deflation is given little time to distin-
guish itself from GMRES without deflation. To highlight the potential of PPDGMRES,
we temporarily set the maximum number of inner iterations to 40. The result is shown
in Figure 5-4.12.

Joost van der Linden Master of Science Thesis

5-4 Physics-based deflation 113

0

5

10

15

20

25

30

35

np=1 np=2 np=4 np=8 np=16 np=32

It
e
ra

ti
o
n
s

(x
1
0
0
0
)

Linear iterations

GMRES(20) (AMG) GMRES(20) (Jac) PPDGMRES(20,10)

(a)

0

2

4

6

8

10

np=1 np=2 np=4 np=8 np=16 np=32

S
e
co

n
d
s

CPU time

GMRES(20) (AMG) GMRES(20) (Jac) PPDGMRES(20,10)

(b)

Figure 5-4.12: Comparison of serial physics-based deflation (PDGMRES) and parallel
physics-based deflation (PPDGMRES) in terms of (a) outer linear iterations and (b) CPU
time of the linear solve in the SAGD-SMALL case (max. iterations = 40).

In Figure (a), we see that AMG requires the least amount of inner iterations. In most
solves, AMG-preconditioned GMRES will reach the default tolerance within a few iter-
ations. Jacobi-preconditioned GMRES is slower. By adding deflation, we observe that
the number of iterations is approximately halved. For higher values of np, the advantage
becomes even more apparent. The CPU times in Figure (b) show that PPDGMRES
is the fastest method for np = 2, np = 4, np = 8 and np = 16. Note that the CPU
times for Jacobi-preconditioned GMRES and AMG-preconditioned GMRES are similar
for np = 4, np = 8 and np = 16. This can be explained by the fact that we are us-
ing a relatively small case, with a structured grid, for which a large number of (cheap)
Jacobi iterations lead to the same CPU time as a small number of (expensive) AMG
iterations.

In the next experiment, we use the SAGD-MEDIUM case. This case has 4 times as many
rows in the pressure matrix as the SAGD-SMALL case. In addition, whereas SAGD-
SMALL is a 2-dimensional case, SAGD-MEDIUM is 3-dimensional. In Figure 5-4.13, the
permeability and deflation vectors (from the partitioner) on the sixth parallel subdomain
are shown (np = 8). The rightmost figure shows the permeability in z direction restricted
to one particular deflation vector.

Master of Science Thesis Joost van der Linden

114 Results

Figure 5-4.13: The permeability, deflation vectors and permeability projected on the 53rd
deflation vector.

In the middle figure, we see that some jumps are accurately captured. The top hori-
zontal layer of permeability shown on the left is captured in a single deflation vector,
as shown by the green cells in the middle figure. Other layers, however, such as the
(red) permeability layer in the center of the reservoir, are not appropriately captured
in a deflation vector. The permeability is projected on the 53rd deflation vector, as
shown on the right, which reveals the fact that both high and low permeability values
are contained in this deflation vector. We expect this deflation vector to be ineffective.
In addition, we expect that increasing np might remedy this problem, since the parallel
subdomains for np = 8 are apparently too large to capture all permeability differences
with 10 deflation vectors.

The convergence results of the SAGD-MEDIUM case for varying values of np is shown
in the next figure.

0

1

2

3

4

5

np=1 np=2 np=4 np=8 np=16 np=32

It
e
ra

ti
o
n
s

(x
1
0
0
0
)

Linear iterations

GMRES(20) (Jac) GMRES(20) (AMG) PPDGMRES(20,10)

(a)

0

10

20

30

40

50

np=1 np=2 np=4 np=8 np=16 np=32

S
e
co

n
d
s

CPU time

GMRES(20) (Jac) GMRES(20) (AMG) PPDGMRES(20,10)

(b)

Figure 5-4.14: Comparison of serial physics-based deflation (PDGMRES) and parallel
physics-based deflation (PPDGMRES) in terms of (a) outer linear iterations and (b) CPU
time of the linear solve in the SAGD-MEDIUM case (max. iterations = 2).

As shown in Figure 5-4.14(a), up to np = 8 the reduction in iterations of PPDGMRES
compared to GMRES (Jacobi) is minimal. Evidently, the SAGD-MEDIUM permeability
field is more complex, and smaller parallel subdomains are required to capture the most

Joost van der Linden Master of Science Thesis

5-4 Physics-based deflation 115

significant permeability jumps and obtain good approximations of the eigenvectors. In-
deed, for np = 16, the set of deflation vectors is more effective, as the number of linear
iterations is reduced by 30%. For np = 32, however, the reduction is only 20%. As
shown in Figure (b), the CPU time of the linear solve of PPDGMRES is comparable or
slightly higher than GMRES.

In the next example, we apply the partitioner and parallel physics-based deflation to the
largest case in this study: SAGD-LARGE.

CPU time

0

2

4

6

8

10

12

np=1 np=2 np=4 np=8 np=16 np=32 np=64

It
e
ra

ti
o
n
s

(x
1
0
0
0
)

Linear iterations

GMRES(20) (Jac) GMRES(20) (AMG) PPDGMRES(20,10)

(a)

0

500

1000

1500

2000

2500

3000

np=1 np=2 np=4 np=8 np=16 np=32 np=64

S
e
co

n
d
s

CPU time

GMRES(20) (Jac) GMRES(20) (AMG) PPDGMRES(20,10)

(b)

Figure 5-4.15: Comparison of serial physics-based deflation (PDGMRES) and parallel
physics-based deflation (PPDGMRES) in terms of (a) outer linear iterations and (b) CPU
time of the linear solve in the SAGD-LARGE case (max. iterations = 2).

We observe that deflation is not robust anymore. For np = 16, PPDGMRES reduces the
inner linear iterations, but for all other values of np the iterations are similar or higher.
Consequently, deflation does not improve the CPU time of the linear solve, as shown
in Figure 5-4.15. We conclude that the partitioner produces effective deflation vectors
for the SAGD-SMALL case, but for the larger permeability fields in SAGD-MEDIUM
and SAGD-LARGE the automatically constructed physics-based deflation vectors do
not improve convergence.

In the last numerical experiments of this section, we modify the permeability of the
SAGD-MEDIUM case. We suspect that the permeability in the SAGD-MEDIUM and
SAGD-LARGE cases does no produce (enough) isolated and/or extreme eigenvalues for
deflation to be efficient. In order to investigate if the partitioner and parallel physics-
based deflation can also be effective for larger cases, we modify the SAGD-MEDIUM
permeability field such that more jumps are introduced. A front view of the ‘inflated’
permeability distribution in x direction is shown in Figure 5-4.16.

Master of Science Thesis Joost van der Linden

116 Results

Figure 5-4.16: Inflated permeability field of the SAGD-MEDIUM case.

The permeability values in the x and y direction above 4000, for example, are inflated
to 105. Other ranges of permeability are similarly inflated (or in some cases, deflated)
to create large permeability differences. Due to the size of the SAGD-MEDIUM case,
we cannot plot the spectrum in Matlab. We can, however, inflate the SAGD-SMALL
case (using the same procedure) and plot the spectrum, to get an indication of the
occurrence of small eigenvalues. Note that the front vertical permeability layer of the
SAGD-MEDIUM case is equal to the permeability in the SAGD-SMALL case. Therefore,
the inflation will lead to the same field as shown in Figure 5-4.16. The spectrum of the
inflated SAGD-SMALL case is shown in the next figure.

500 1000 1500 2000 2500 3000 3500

10
−4

10
−2

10
0

Eigenvalue

V
a

lu
e

Figure 5-4.17: Spectrum of the first inflated SAGD-SMALL case.

Whereas in Figure 5-2.10 and Figure 5-2.11 we do not encounter any isolated eigenvalues
smaller than 10−3, we now find an extreme eigenvalue of size 10−4. Given the fact that
there are many large permeability jumps in 5-4.16, the correspondence between the
number of isolated eigenvalues (only 2 in this case) to the number of permeability jumps
(observed in Section 5-2-2) clearly does not hold.

Regardless, as shown in the results in Figure 5-4.18, the performance of deflation im-
proves compared to the default SAGD-MEDIUM results in Figure 5-4.14.

Joost van der Linden Master of Science Thesis

5-4 Physics-based deflation 117

0

2

4

6

8

np=1 np=2 np=4 np=8

It
e
ra

ti
o
n
s

(x
1
0
0
0
) Linear iterations

GMRES(20) (Jac) GMRES(20) (AMG) PPDGMRES(20,10)

(a)

0

20

40

60

80

np=1 np=2 np=4 np=8

S
e
co

n
d
s

CPU time

GMRES(20) (Jac) GMRES(20) (AMG) PPDGMRES(20,10)

(b)

Figure 5-4.18: Comparison of serial physics-based deflation (PDGMRES) and parallel
physics-based deflation (PPDGMRES) in terms of (a) outer linear iterations and (b) CPU
time of the linear solve in the first inflated SAGD-MEDIUM case (max. iterations = 2).

For np = 4, the number of linear iterations compared to Jacobi-preconditioned GMRES
is reduced by almost 50%. The CPU time for PPDGMRES is lower than both Jacobi-
and AMG-preconditioned GMRES. This result does not extend to np = 8. Here, the
reduction is only 23%, and the CPU times of all methods are approximately equal. We
believe that the reason for this discrepancy is that the deflation vectors constructed by
the partitioner for 4 parallel subdomains happen to be more effective in capturing the
jumps than the deflation vectors for 8 parallel subdomains, even though the parallel
subdomains are smaller. In Figure 5-4.13 we have seen that the opposite can also be
true: the deflation vectors were more efficient for np = 16 than for np = 8.

In Figure 5-4.19, another modification of the SAGD-MEDIUM permeability field is
shown.

Figure 5-4.19: Spectrum of the second inflated SAGD-SMALL case.

This time, we aim to imitate fractures. We expect that this permeability field will result
in more extreme eigenvalues than the modified field in 5-4.16. Indeed, the convergence

Master of Science Thesis Joost van der Linden

118 Results

shown in Figure 5-4.20 is decent for all values of np.

0

20

40

60

80

100

120

np=1 np=2 np=4 np=8

S
e
co

n
d
s

CPU time

GMRES(20) (Jac) GMRES(20) (AMG) PPDGMRES(20,10)

(a)

0

2

4

6

8

10

np=1 np=2 np=4 np=8

It
e
ra

ti
o
n
s

(x
1
0
0
0
)

Linear iterations

GMRES(20) (Jac) GMRES(20) (AMG) PPDGMRES(20,10)

120

(b)

Figure 5-4.20: Comparison of serial physics-based deflation (PDGMRES) and parallel
physics-based deflation (PPDGMRES) in terms of (a) outer linear iterations and (b) CPU
time of the linear solve in the second inflated SAGD-MEDIUM case (max. iterations = 2).

We conclude that the partitioner is not robust in the large 3-dimensional cases. Es-
pecially in the mix of homogeneous and heterogeneous regions of permeability in the
default SAGD-MEDIUM and SAGD-LARGE cases, the partitioner does not succeed in
constructing a good set of deflation vectors. Increasing the number of processors, as we
reasoned could lead to better results, does not work in this case. We do see, however,
that for the first, and especially the second modified SAGD-MEDIUM field (resembling
fractures), the convergence is better. This indicates that although there is room for
improvement in the partitioner, we also find that the default cases we have been using
are not the most suitable for deflation due to a lack of large permeability jumps and
extreme eigenvalues.

5-4-3 Summary of findings

In this section, we demonstrate the potential of using parallel physics-based deflation.
The subdomain-levelset method gives rise to a set of deflation vectors that are partic-
ularly suitable for fast parallel computations. Initially, we manually assign deflation
vectors based on a visual analysis of the permeability field. In our Matlab experiments,
we find that deflation can significantly improve convergence, mainly because physics-
based deflation works from the start of the simulation. For very large permeability
jumps, such as in the SPE5 case with modified permeability and σ = 106, the advantage
of physics-based deflation over harmonic Ritz deflation is remarkable. We investigate
the optimal maximum number of inner linear iterations, and, based on a consideration of
the effectiveness of deflation and the computational costs, we conclude that 2 iterations
is a good choice.

Joost van der Linden Master of Science Thesis

5-5 Other strategies 119

In the experiments with the partitioner, we demonstrate that the resulting deflation
vectors capture the permeability jumps in the SAGD-SMALL case. As a result, we
achieve good speedups both in Matlab and IX. We also show that there is no negative
impact of introducing artificial jumps, i.e. separated deflation vectors that span the same
(often horizontal) jump in permeability. Lastly, in our experiments with the SAGD-
MEDIUM and SAGD-LARGE case, we find that parallel physics-based deflation is not
robust anymore. We believe that this is due to the fact that the partitioner is not able to
capture the permeability jumps in the default, complex 3-dimensional permeability field.
Experiments with a modified permeability field in the SAGD-MEDIUM case highlight
the fact that the partitioner works better for cases with stronger heterogeneity.

5-5 Other strategies

In addition to harmonic Ritz deflation and physics-based deflation, several other meth-
ods are tested. In this section, we highlight two initiatives: using the saturation or
mobility instead of the permeability to construct the deflation vectors, and applying
deflation to the reservoir system to remedy the loss of information in the parallel ILU
decomposition.

5-5-1 Deflation using saturation or mobility

As shown for the SPE5 case in Figure 5-2.4 and for the SAGD-SMALL case in Figure
5-2.12, the eigenvectors corresponding to the smallest eigenvalues contain patterns that
match the flow in the reservoir. This observation gives rise to the idea of using the
saturation, instead of the permeability, to construct the deflation vectors. Recall from
Equation (2-1.1) that the PDE coefficient in the governing equations of a two-phase
flow is the mobility. From Equation (2-1.3), we know that the mobility is computed
by multiplying the viscosity, the absolute permeability (which we have used in deflation
so far) and the relative permeability. The relative permeability is directly determined
by the saturation. We always assume that the absolute (or initial) permeability is the
dominant coefficient in the mobility, but the observations in Figure 5-2.4 and Figure
5-2.12 suggest that the saturation may also play a role.

In the SPE5 case, two deflation vectors are used. The first deflation vectors contains
ones in cells with a saturation higher than a certain threshold and zeros elsewhere. The
second deflation vector is the complement. As a result, the jump between the flooded
and unflooded regions is captured. We test this idea in Matlab, and find that the con-
vergence of deflated GMRES does not improve. Even though the eigenvectors of the
SPE5 case in Figure 5-2.4 do not show the permeability layers until the reservoir has
reached an equilibrium, we find that the deflation vectors based on the three layers of
initial permeability are the most efficient for all time steps. We suspect that the satu-
ration jump between the flooded and unflooded regions is too small to produce isolated

Master of Science Thesis Joost van der Linden

120 Results

or extreme eigenvalues. Regardless, using the saturation in physics-based deflation re-
quires recomputing the deflation vectors at every timestep. This render the method too
expensive in practice.

We also test the mobility in the partitioner. We find that the results are comparable
to using the permeability to construct the deflation vectors. This suggests that the
absolute permeability is the dominant coefficient in the mobility, while the influence of
the saturation is limited. Since the mobility changes at every time step (due to the
change in relative permeability), we prefer the absolute permeability (which is constant
throughout the simulation) in our physics-based deflation experiments.

5-5-2 ILU damage

In Figure 5-2.17, we see that non-zero values appear on the parallel subdomain bound-
aries in the eigenvectors of the reservoir matrix. These values occur because connections
between subdomains are ignored in the blockwise ILU decomposition. We test two
approaches:

1. np deflation vectors, where each deflation vector holds ones in the cells on a parallel
subdomain and zero elsewhere.

2. Deflation vectors with ones on the boundaries of the parallel subdomains

The first approach is essentially subdomain deflation. By assigning 1 deflation vector
per parallel subdomain, we hope to recover information that is lost in the incomplete LU
decomposition. In the second approach, we aim to approximate the eigenvectors from
Figure 5-2.17. We also test the second approach combined with smoothed aggregation
(see e.g. [13]) to ‘push’ the deflation vector towards the real eigenvector.

None of the methods lead to improved convergence. Our focus is on harmonic Ritz
deflation and physics-based deflation, hence we do not further investigate this deflation
approach.

Joost van der Linden Master of Science Thesis

Chapter 6

Conclusions

The focus of this thesis is on deflation methods in reservoir simulation. We conduct
numerical experiments with harmonic Ritz deflation and physics-based deflation, using
a range of test cases with varying dimensions and degrees of complexity.

6-1 Summary of theory

In the theoretical sections of this thesis, we introduce a mathematical framework for
the IX engine and deflation. We start with a discussion of the reservoir equations for
two-phase flow. The IX formulation requires a number of additional assumptions and
components, giving rise to a coupled linear system of reservoir and well equations. The
non-linear equations are solved using the Newton-Raphson method. We discuss the time
step size selection that is important for the Adaptive Implicit Method (AIM), although
in our experiments, only a fully implicit model is used.

The linear solver in IX, GMRES, is introduced in a discussion of Krylov subspace meth-
ods. We prove that the Arnoldi method can be used to generate an orthonormal basis
of the Krylov subspace, and discuss the Ritz values and Ritz vectors produced in this
process. Using the Givens rotations and a QR-factorization, the least-squares problem
in GMRES can be effectively solved. We also show that the Givens rotations can be
exploited to find the residual norm. We provide an overview of the convergence theory
for GMRES, and conclude that the residual bounds for non-symmetric matrices provide,
at most, an indication of the residual reduction.

Preconditioning a Krylov subspace method can significantly improve convergence and
robustness. We state the pseudocode for left- and right-preconditioning, and attribute

Master of Science Thesis Joost van der Linden

122 Conclusions

our preference for right-preconditioning to the ease with which the residual norm can
be computed. The Constrained Pressure Residual (CPR) preconditioner used in IX
is discussed in detail. We highlight the advantages of the method, namely the ability
to individually tackle the elliptic nature of the pressure equations and the hyperbolic
nature of the remaining equations. The former are resolved with an Algebraic Multigrid
(AMG) preconditioner, and for the latter, an incomplete LU factorization is used. The
advantage of both AMG and ILU is that these methods are robust for a broad range of
problems, while the shared disadvantage is the lack of scalability.

We motivate the use of deflation using the Ritz values. We show that ‘natural’ deflation
occurs after the Ritz values have converged to the smallest eigenvalues in the spectrum,
which gives rise to ‘artificial’ deflation. We aim to deflate isolated and extreme eigen-
values, which harm the convergence of GMRES, by approximating the corresponding
eigenvectors. Different deflation methods are discussed, from which we conclude that
static deflation methods using a projection preconditioner are the most suitable for our
applications. In the corresponding mathematical framework, we present relevant defla-
tion theory on the formulation of the preconditioners and the convergence. Furthermore,
we compare a number of methods to compute the deflation vectors, including exact eigen-
vectors, (harmonic) Ritz vectors and domain-based vectors. We find that the latter two
are the most promising, because of the black-box nature of harmonic Ritz deflation and
the ability of domain-based deflation to capture permeability jumps. The permeability
jumps are responsible for the occurence of extreme eigenvalues, which, in turn, harm the
convergence of GMRES.

The implementation of harmonic Ritz deflation and subdomain-levelset deflation, a par-
ticular domain-based approach, is introduced in terms of the pseudocode. The levelset
method, in which deflation vectors are assigned to constant regions of permeability sepa-
rated by large jumps, initiates the development of the partitioner algorithm. Ideally, the
boundaries of the deflation vectors overlap with the permeability jumps. We introduce
the partitioner through a step-by-step treatment of a small example, and refer to the
appendix for the full pseudocode. The partitioner is particularly suitable for a parallel
implementation. We describe the ‘embarrassingly parallel’ nature of the algorithm, and
also show that, because of the sparsity, the resulting deflation vectors can be used in an
efficient parallel implementation of the deflation preconditioners. We highlight the fact
that subdomain-levelset deflation could be more effective as we increase the number of
processors, for reasons described in the next section.

6-2 Conclusions in the results

We describe the five cases used in this thesis in terms of the dimensions, the initial
conditions, wells and performance in the Newton-Raphson method. We highlight the
horizontal layer structure in the the permeability distribution of all our cases, as well
as the complexity of the steam injection method. The spectra of all cases are analyzed.

Joost van der Linden Master of Science Thesis

6-2 Conclusions in the results 123

In our cases, we find that the default permeability produces isolated, but not extreme,
eigenvalues. Therefore, we modify the permeability in the SPE5 case to demonstrate
the correspondence between the number and size of the extreme eigenvalues, and the
number and size of the permeability jumps. As expected, it is shown that the size of
the extreme eigenvalues negatively influences the convergence of GMRES. Analyzing the
eigenvectors of the steam injection case reveals that non-zero values occur mainly around
the injector and producer. Lastly, we use the spectrum to verify that AMG is a more
effective preconditioner than diagonal scaling for the pressure solve in IX.

Numerical experiments with exact eigenvectors as deflation vectors demonstrate the
potential of deflation. The performance improvement is particularly evident for the
modified SPE5 case (with very large jumps in the permeability). Harmonic Ritz deflation
is subsequently shown to be effective, as long as the cycle size is sufficiently high to allow
the harmonic Ritz vectors to converge to the exact eigenvectors. Furthermore, we show
that the preconditioner can be left out in the formulation of the deflation operators,
which is crucial for the implementation in IX. We compare appending deflation vectors
and freezing deflation vectors, and conclude that the increased computational costs of
appending do not outweigh the benefit in convergence.

In the IX experiments with harmonic Ritz deflation, we compare the results mainly
based on the number of pressure iterations and the CPU time of the full linear solve.
Using deflation in the SPE5 case, the number of pressure iterations is decreased enough
to outweigh the overhead of deflation. For other cases, however, these results do not hold
and deflation is too expensive to improve the performance of the pressure solve. Further-
more, AMG-preconditioned GMRES without deflation is significantly faster than Jacobi-
preconditioned GMRES combined with harmonic Ritz deflation. Combining AMG with
deflation does not improve the convergence, most likely due to the fact that AMG is al-
ready very effective in tackling the error corresponding to the extreme eigenvalues. Our
experiences with harmonic Ritz deflation motivate the use of physics-based deflation,
which is theoretically both cheaper and more effective.

In physics-based deflation, we either use manually constructed deflation vectors or the
subdomain-levelset method to obtain deflation vectors that capture the heterogeneity
in the underlying physics. Using a visual analysis of the permeability distributions, we
first manually assign deflation vectors to the distinct layers of permeability. Used in
a deflation method, the deflation vectors are shown to be effective in improving the
performance. The convergence speed is approximately equal to harmonic Ritz defla-
tion. Physics-based deflation, however, can be used from the start of the linear solve,
rather than after the first cycle, which results in a larger reduction in iterations. The
manual deflation vectors are particularly effective for cases with very large permeability
jumps.

Manually constructing deflation vectors in large, realistic reservoirs can be a time-
consuming and complex process. To this end, we employ the partitioner to automatically
identify regions of constant permeability, and assign deflation vectors such that the jumps

Master of Science Thesis Joost van der Linden

124 Conclusions

between the different regions correspond to the boundaries of the deflation vectors. We
confirm for the steam injection case that the deflation vectors produced by the parti-
tioner approximately coincide with the manual set of deflation vectors. Convergence for
both approaches is shown to be the same. In the parallel implementation of the parti-
tioner, we identify a possible issue with introducing ‘artificial’ jumps. Although in some
applications the artificial jumps are detrimental to the convergence, we find that sepa-
rating permeability jumps in different deflation vectors of the steam injection case does
not decrease the performance of the linear solve, both in IX and Matlab. Consequently,
we reason that, theoretically, the effectiveness of the deflation vectors should improve as
we increase the number of processors. For a fixed number of deflation vector per parallel
subdomain, decreasing the size of the subdomains allows the deflation vectors to capture
the permeability jumps in more detail.

Lastly, we test the partitioner and parallel deflation in IX. We find that the parallel
implementation requires significantly less CPU time in the linear solve, compared to
deflation applied in serial. For the 2-dimensional steam injection case, the physics-
based deflation method is also effective in reducing the pressure iterations. For some
runs, deflated Jacobi-preconditioned GMRES is faster than AMG-preconditioned GM-
RES without deflation, although the difference is minimal. As we test larger, realistic
3-dimensional cases, we find that the performance of the deflation vectors from the par-
titioner deteriorates. The cost of deflation increases, while the reduction in iterations is
small or absent. Modifying the permeability to exhibit more heterogeneity shows that
the dimensions are not per se the problem, since better convergence is achieved when
more heterogeneity is introduced.

The final conclusion of this thesis is that the subdomain-levelset method and parallel
deflation have potential to yield excellent improvements of the performance, but im-
provements are needed in the partitioner to construct robust deflation vectors for larger,
more complex permeability fields. In addition, the method should be tested for cases
with stronger heterogeneity.

6-3 Future research

We mainly recommend further research into the subdomain-levelset partitioner algo-
rithm. In retrospect, we conclude that the algorithm is set up to work well for per-
meability distributions that do not necessarily produce extreme eigenvalues. The par-
titioning and merging process is effective for a mix of heterogeneous and homogeneous
permeability regions (such as in the SAGD case), but an analysis of the code reveals
that the partitioner is less effective if we have a few isolated areas that differ significantly
from the rest of the permeability field. The latter could be the case, for example, in an
underground river or a fracture. The SPE5 case with modified permeability illustrates
that, potentially, deflation can significantly reduce the number of iterations for these
cases.

Joost van der Linden Master of Science Thesis

6-3 Future research 125

We show in the results that the best convergence improvement is achieved when all ex-
treme eigenvalues are deflated. Leaving even a single extreme eigenvalue in the spectrum,
especially if the eigenvalue is very small, results in a significant increase in iterations.
The first improvement, therefore, is to allow the partitioner to compute the number of
deflation vectors per parallel subdomain. By doing so, we ensure that all permeability
jumps are captured. This is particularly important for the cases with fractures or un-
derground rivers described before. If a large number of significant permeability jumps
exist in a relatively small region, then the partitioner might construct (too) many de-
flation vectors. In this case, we suggest increasing the number of processors, as this will
decrease the size of the subdomains. Ideally, although we are unsure how this will affect
other components of IX, we would include the number of large permeability jumps as a
criterion in the parallel partitioning (by PARmetis), similar to the work in [34].

Our other suggestions for future research on the implementation are as follows:

• More research is needed on the splitting of deflation vectors, i.e. in the case that the
boundary of a parallel subdomain crosses through a connected permeability jump.
Our experiments with the SAGD-SMALL case indicate that the performance re-
mains the same, but the results in [13] argue for the opposite. It is possible that
introducing the artificial jumps in the SAGD-MEDIUM and SAGD-LARGE case
is the cause of the lack of robustness. As a possible remedy, similar to [13], we
propose to investigate the overlap of deflation vectors. The ‘weighted overlap’
approach in [62] might be particularly suitable for our applications.

• In the partitioner itself, several improvements can be made to increase the speed
of the algorithm:

– We suggest limiting the deflation vectors to regions where flow occurs. In
the SAGD case, we find that non-zero values in the eigenvector appear only
around the injector and producer. In addition, the 10 manually constructed
deflation vectors from Figure 5-4.1(c) perform well. Therefore, computational
costs could be reduced by forcing the partitioner to construct the deflation
vectors in a focus region. The consequences of this approach for the load
balancing should be examined.

– As discussed in the results, currently one deflation vector is assigned to a
parallel subdomain without jumps. We suggest assigning no deflation vectors
to such regions, to decrease the computational costs.

• We suggest investigating the use of a second criterion, in addition to the summed
permeability jump, in the merging process: the number of adjacent cells. For
example, imagine the situation where we have two regions, both adjacent to a
third region. The first region has a few cells with a large permeability jump to
adjacent cells in the third region, and the second region has many cells with a
small permeability jump to adjacent cells in the third region. If the summed
permeability difference between the first region and the third region is smaller

Master of Science Thesis Joost van der Linden

126 Conclusions

than the summed permeability difference between the second region and the third
region, then the first region will be merged before the second. Our results show
that the first region is more likely to cause extreme eigenvalues, which is why
this situation is undesirable. We suggest implementing a second region-adjacency
matrix (in addition to the jump matrix) for the number of adjacent cells. The
initial thresholds and threshold increments for both the permeability difference
and number of adjacent cells will have to be tuned to yield the most desirable set
of deflation vectors.

Lastly, we suggest further modifying the SPE5 permeability field (or a comparable case)
to imitate small permeability patterns that we might encounter in reservoirs. In this
report, only a ‘sandwich’ was tested, but we can also experiment with other structures.
Plotting the eigenvalues and eigenvectors will provide insight in the desirable shape of our
deflation vectors. We emphasize the fact that the convergence of deflated GMRES should
be tested in cases for which deflation is potentially the most effective, e.g. underground
rivers and fractures, instead of the relatively homogeneous permeability field of the
SAGD cases.

Joost van der Linden Master of Science Thesis

Appendix A

Partitioner pseudocode

In this section, we discuss the pseudocode for the five functions of the partitioner (Figure
4-2.7). The notation for the partitioner pseudocode is summarized in Table A-0.1.

Master of Science Thesis Joost van der Linden

128 Partitioner pseudocode

Notation Meaning

A nc × nc adjacency matrix
Ai Set of (the indexes of) the nodes adjacent to node i
β Boolean operator to indicate if change occured
i, j, k Either cell (partition) or region (merge) numbers
κx

i The x coordinate of node i in the (Intersect) computational domain
κy

i The y coordinate of node i in the (Intersect) computational domain
κz

i The z coordinate of node i in the (Intersect) computational domain
L1, L2 Temporary lists of indices
Np Set of all cell numbers, i.e. Np = {1, 2, . . . , nc}
Nr Set of all curent region numbers, i.e. Nr = {1, 2, . . . , nc}
nd Presecified (maximum) number of regions after the merging
nc Number of cells (or points) in the domain
nr Intermediate number of regions in s
nra Prespecified number permeability range categories
p nc × 3 vector consisting of px, py and pz

px nc × 1 vector of permeability values in x-direction
py nc × 1 vector of permeability values in y-direction
pz nc × 1 vector of permeability values in z-direction
pmax Maximum of P
prange pmax divided by nra

s nc × 1 vector of region numbers
W nr × nr jump matrix
Wi Set of (the indexes of) the regions adjacent to region i
ω Prespecified threshold for the permeability jump
ω+ Prespecified value of the increment for the threshold

Table A-0.1: Partitioner pseudocode notation.

Remark A-0.1.
• In practice, Ai and Wi are derived from row i of A and W , respectively.

• Vector elements are denoted with square brackets, e.g. s[i], and matrix elements
are written as A[i][j].

• Indexing of vectors and matrices starts with 1.

The parameters nd, nra, ω and ω+ have to be prespecified. In most of our experiments,
we use nra = 100, ω0 = 100 and ω+ = 100. The variable nd is varied in our numerical
experiments to analyze the convergence of deflated GMRES using a varying number of
deflation vectors.

The pseudocode for main, initialize, partition, merge and jumps is given in Algorithm 7,
8, 9, 10 and 11, respectively.

Joost van der Linden Master of Science Thesis

129

Algorithm 7 Subdomain-levelset partitioner: main
1: Input: A ∈ Rnc×nc and p ∈ Rnc×3

2: Output: Z ∈ Rnc×n̂, for some n̂ ≤ nd

3: pmax = max(pz) and prange = pmax/nra

4: Call s = initialize(A, pz, prange)
5: Call s = partition(A, s)
6: Call s = merge(A, s, p, nd)
7: nr = max(s) + 1
8: Initialize Z ∈ Rnc×nr

9: for j = 1, 2, . . . , nr do
10: for i = 1, 2, . . . , nc − 1 do
11: if s[i] = j then
12: Z[i][j] = 1
13: end if
14: end for
15: end for

The main program receives the adjacency graph and the permeability values in x−, y−
and z− direction, and constructs the deflation vectors using the levelset method. Note
that pmax and prange could be evaluated in initialize instead of main. We choose to do
the computations in main for reasons related to the parallel implementation. Details on
this topic will be given in Section 4-3.

Master of Science Thesis Joost van der Linden

130 Partitioner pseudocode

Since the porous media can exhibit different permeability properties in different direc-
tions, we have in general px 6= py 6= pz. The variable pz is most important in our cases,
as the permeability layers are stretched horizontally and jumps occur most often in the
vertical direction. Hence, we have chosen to use pz for the initial partitioning in initial-
ize. In merge, all three directions are used to determine which regions should be taken
together.

Algorithm 8 Subdomain-levelset partitioner: initialize
1: Input: A ∈ Rnc×nc , pz ∈ Rnc×1 and prange ∈ R
2: Output: s ∈ Rnc×1

3: Initialize s ∈ Rnc×1

4: for i = 1, 2, . . . , nc − 1 do
5: k = 0
6: β = false
7: while β = false do
8: if pz[i] = 0 then
9: s[i] = 0

10: β = true
11: else if k · prange < pz[i] ≤ (k + 1) · prange then
12: s[i] = k
13: β = true
14: end if
15: k = k + 1
16: end while
17: end for

The permeability in z−direction of each node is placed in one of the nra categories of
permeability range. The scalar k is incremented until the correct category has been
found.

Joost van der Linden Master of Science Thesis

131

Algorithm 9 Subdomain-levelset partitioner: partition
1: Input: A ∈ Rnc×nc and s ∈ Rnc×1

2: Output: s ∈ Rnc×1

3: Np = {1, 2, . . . , nc} and c = 0
4: stemp = s
5: while Np 6= ∅ do
6: Pick any i ∈ Np

7: Np = Np\{i}
8: L1 = {i}
9: s[i] = c

10: while L1 6= ∅ do
11: L2 = ∅
12: for all j ∈ L1 do
13: for all k ∈ Aj do
14: if k ∈ Np and stemp[i] = stemp[k] then
15: L2 = L2 ∪ k
16: Np = Np\{k}
17: s[k] = c
18: end if
19: end for
20: end for
21: L1 = L2
22: end while
23: c = c+ 1
24: end while

The list Np keeps track of nodes that have not yet been assigned a region number.
The algorithm is finished when Np 6= ∅. To connect all adjacent nodes with the same
permeability range, the lists L1 and L1 are used in a so called level-set traversal method
[34]. Each iteration of the while loop in lines 10 - 22 connects the nodes in the current
list to the adjacent nodes that have not been visited yet and are in the same permeability
range. When L1 is empty at the end of the while loop, no more nodes could be merged to
the current region. A new region is then initialized by picking a new node i ∈ Np.

Master of Science Thesis Joost van der Linden

132 Partitioner pseudocode

In Algorithm 10 use Matlab code to describe a replace function. The statement s(s =
j) = i replaces all values j in s by i. In C++, the same can be achieved with
std::replace.

Algorithm 10 Subdomain-levelset partitioner: merge
1: Input: A ∈ Rnc×nc , s ∈ Rnc×1, p ∈ Rnc×3 and nd ∈ R
2: Output: s ∈ Rnc×1

3: Choose ω and ω+
4: nr = max(s) + 1
5: while nr > nd do
6: β = true
7: while β = true do
8: β = false
9: Nr = {1, 2, . . . , nr}

10: Call W = jumps(A, s, p, nr)
11: while Nr 6= ∅ do
12: Pick any i ∈ Nr

13: Nr = Nr\{i}
14: for all j ∈ Wi do
15: if j ∈ Nr and W [i, j] < ω then
16: Nr = Nr\{j}
17: s(s = j) = i
18: β = true
19: end if
20: end for
21: end while
22: Call s =renumber(s)
23: nr = max(s) + 1
24: if nr ≤ nd do break end if
25: end while
26: ω = ω + ω+
27: end while

After fixing the threshold ω, all region pairs with a summed permeability difference
smaller than ω are merged. Because numbers are replaced in line 17, gaps will appear
in the numbering. We require an ascending numbering, so renumber is used to restore
the ordering in s. The implementation of the renumbering algorithm strongly depends
on the programming language. Our C++ implementation is given below.

1 // Compute number of unique elements in s
2 st = s ;
3 std : : sort (st . begin () , st . end ()) ;
4 st . erase (std : : unique (st . begin () , st . end ()) , st . end ()) ;
5 nr = st . size () ;

Joost van der Linden Master of Science Thesis

133

6
7 // Reorder s
8 m = 0 ;
9 while (m < nr)

10 {
11 smin = ∗std : : max_element (s . begin () ,s . end ()) ;
12 for (int i = 0 ; i < s . size () ; i++)
13 {
14 if (s [i] >= m && s [i] < Pmin)
15 smin = s [i] ;
16 }
17 std : : replace (s . begin () ,s . end () , smin , m) ;
18 m++;
19 }
20 nr = ∗std : : max_element (s . begin () ,s . end ()) + 1 ;

The renumbering process ensures that the regions are numbered in ascending order,
without gaps.

Algorithm 11 is used to compute W .

Algorithm 11 Subdomain-levelset partitioner: jumps
1: Input: A ∈ Rnc×nc , s ∈ Rnc×1, p ∈ Rnc×3 and nr ∈ R
2: Output: W ∈ Rnr×nr

3: Initialize W ∈ Rnr×nr

4: for ĩ = 1, 2, . . . ,length(s) do
5: i = s[̃i]
6: Retrieve κx

i , κ
y
i and κz

i

7: for all j̃ ∈ Ai do
8: j = s[j̃]
9: if i 6= j then

10: Retrieve κx
j , κ

y
j and κz

k

11: if κx
i 6= κx

j then
12: W [i][j] = W [i][j] + |px[i]− px[j]|
13: else if κy

i 6= κy
j then

14: W [i][j] = W [i][j] + |py[i]− py[j]|
15: else if κz

i 6= κz
j then

16: W [i][j] = W [i][j] + |pz[i]− pz[j]|
17: end if
18: end if
19: end for
20: end for

The x, y and z coordinates of node i and j are retrieved from the IX engine, and provide
a means to identify the direction of the connection between the two nodes. For example,

Master of Science Thesis Joost van der Linden

134 Partitioner pseudocode

if the x coordinate of node i and j is different, we add |px[i] − px[j]| to the (i, j)’th
element of the jump matrix W .

A-1 IX partitioner result

We apply the partitioner in IX using 8 processors.

Figure A-1.1: Deflation vectors for each parallel subdomain P .

Joost van der Linden Master of Science Thesis

Bibliography

[1] Edwards, D. A., Gunasekera, D., Morris, J., Shaw, G., Shaw, K., Walsh, D., Fjer-
stad, P. A., Kikani, J., Franco, J., Hoang, V., & Quettier, L. (2011). Reservoir
simulation: keeping pace with oilfield complexity. Oilfield Review, 23 (4), 4-15.

[2] Schlumberger, Chevron & Total. (2013). Intersect Version 2013.1 technical descrip-
tion. Houston, TX.

[3] Cao, C., Crumpton, P. I., & Schrader, M. L. (2009, February). Efficient general
formulation approach for modeling complex physics. Paper 119165 presented at
SPE Reservoir Simulation Symposium. The Woodlands, TX: Society for Petroleum
Engineers.

[4] Saad, Y. (2003). Iterative methods for sparse linear systems (2nd ed.). Philadelphia,
PA: Society for Industrial and Applied Mathematics.

[5] G.W. Stewart. (1998). Matrix algorithms, volume II: eigensystems. Philadelphia,
PA: Society for Industrial and Applied Mathematics.

[6] Auzinger, W., & Melenk, J. M. (2011). Iterative solution of large linear systems.
Vienna University of Technology.

[7] Van der Vorst, H. A., & and Vuik, C. (1993). The superlinear convergence behaviour
of GMRES. Journal of Computational and Applied Mathematics, 48, 327-341.

[8] Frank, J., & Vuik, C. (2001). On the construction of deflation-based preconditioners.
SIAM J. Sci. Comput, 23 (2), 442-462.

[9] Burrage, K. & Erhel, J. (1998). On the performance of various adaptive precondi-
tioned GMRES strategies. Numer. Linear Alg. Appl., 5, 101-121.

Master of Science Thesis Joost van der Linden

136 Bibliography

[10] Erhel, J., Burrage, K. & Pohl, B. (1996). Restarted GMRES preconditioned by
deflation. J. of Comput. and Appl. Math., 69, 303-318.

[11] Vuik, C., Segal, A., & Meijerink, J. (1999). An efficient preconditioned CG method
for the solution of a class of layered problems with extreme contrasts of coefïňĄ-
cients. J. of Comp. Phys., 152, 385âĂŞ403.

[12] Tang, J. M. (2008). Two-level preconditioned conjugate gradient meth-
ods. (Doctoral dissertation). Delft University of Technology. Retrieved
from http://repository.tudelft.nl/view/ir/uuid%3Ae8c5f63b-ee7d-4a59-90da-
a8025f5f88b0/

[13] Jönsthövel, T. B. (2012). The deflated preconditioned conjugate gradient method,
applied to composite materials. (Doctoral dissertation). Delft University of Technol-
ogy. Retrieved from http://repository.tudelft.nl/view/ir/uuid%3A1c3b5b70-8e30-
42d5-b55b-522b7de00abf/

[14] Klie, H., Stueben, K., Clees, T., & Wheeler, M. F. (2007, February). Deflation
AMG Solvers for Highly Ill Conditioned Reservoir Simulation Problems. Paper
105820 presented at SPE Reservoir Simulation Symposium. Houston, TX: Society
for Petroleum Engineers.

[15] Yeung, M. C., Tang, J. M., & Vuik, C. (2010). On the convergence
of GMRES with invariant-subspace deflation. Delft University of Technology.
Retrieved from http://repository.tudelft.nl/view/ir/uuid%3Af21da1b4-d4ed-4e46-
a604-e1a9bdef70de/

[16] Chapman, A. & Saad, Y. (1997). Deflated and augmented Krylov subspace tech-
niques. Numer. Linear Alg. Appl., 4, 43-66.

[17] Morgan, R. B. (2002). GMRES with deflated restarting. SIAM J. Sci. Comput.,
24 (1), 20-37.

[18] Wu, K., & Simon, H. (2000). Thick-restart Lanczos method for symmetric eigen-
value problems. SIAM J. Matrix Anal. Appl., 22, 602-616.

[19] Clemens, M., Wilke, M., Schuhmann, R., & Weiland, T. (2004). Subspace pro-
jection extrapolation scheme for transient field simulations. IEEE Transactions on
magnetics, 40 (2), 934-937.

[20] Carpenter, M. H., Vuik, C., Lucas, P., van Gijzen, M. B., & Bijl, H. (2010). A
General Algorithm for Reusing Krylov Subspace Information. I. Unsteady Navier-
Stokes. NASA Langley Research Center report TM2010216190. Hampton, VA:
NASA.

[21] Killough, J. E. & Kossack., C.A. (1987). Fifth Comparative Solution Project: Eval-
uation of Miscible Flood Simulators. Paper 16000 presented at the Ninth SPE Sym-
posium on Reservoir Simulation. San Antonio, TX: Society for Petroleum Engineers.

Joost van der Linden Master of Science Thesis

137

[22] Akram, F. (2010). Reservoir simulation optimizes SAGD. The American Oil
and Gas Reporter. Retrieved from http://www.slb.com/ /media/Files/indus-
try_challenges/heavy_oil/ industry_articles/20100_sagd_simulation.pdf

[23] Dostál, Z. (1988). Conjugate gradient method with preconditioning by projector.
Int. J. Comput. Math., 23, 315 - 323.

[24] Nicolaides, R.A. (1987). Deflation of conjugate gradients with applications to
boundary value problems. SIAM J. Numer. Anal., 24, 355-365.

[25] De Gersem, H., & Hameyer, K. (2000). A deflated iterative solver for magnetostatic
finite element models with large differences in permeability. Eur. Phys. J. Appl.
Phys., 13, 45-49.

[26] Tang, J. M., & Vuik, C. (2007, September). Acceleration of preconditioned Krylov
solvers for bubbly flow problems. In R. Wyrzykowski and J. Dongarra and K. Kar-
czewski and J. Wasniewski (Eds.), Parallel Processing and Applied Mathematics 7th
International Conference Proceedings (pp. 1323-1332). Gdansk, Poland: LNCS.

[27] Nabben, R. & Vuik, C. (2008). A comparison of abstract versions of deflation, bal-
ancing and additive coarse grid correction preconditioners. Numer. Linear Algebra
Appl., 15, 355-372.

[28] Tang, J. M., & Vuik, C. (2007). New variants of deflation techniques for pressure
correction in bubbly flow problems. Journal of Numerical Analysis, Industrial and
Applied Mathematics, 2, 227-249.

[29] Tang, J. M., & Vuik, C. (2007). Efficient deflation methods applied to 3-D bubbly
flow problems. Electronic Transactions on Numerical Analysis, 26, 330-349.

[30] Tang, J. M., & Vuik, C. (2007). On deflation and singular symmetric positive semi-
definite matrices. Journal of Computational and Applied Mathematics, 206, 603-614.

[31] MacLachlan, S. P., Tang, J. M., & Vuik, C. (2008). Fast and robust solvers for
pressure correction in bubbly flow problems. Journal of Computational Physics,
227, 9742-9761.

[32] Tang, J. M., MacLachlan, S. P., Nabben, R., & Vuik, C. (2010). A comparison of
two-Level preconditioners based on multigrid and deflation. SIAM. J. Matrix Anal.
and Appl., 31, 1715-1739.

[33] Jönsthövel, T. B., van Gijzen, M. B., Vuik, C. & Scarpas, A. (2013) On the use of
rigid body modes in the deflated preconditioned conjugate gradient method. SIAM
J. Sci. Comput., 35, B207-B225.

[34] Lingen, F. J., Bonnier, P. G., Brinkgreve, R. B. J., van Gijzen, M. B. & Vuik, C.
(2012) A parallel linear solver exploiting the physical properties of the underlying
mechanical problem (Delft Institute of Applied Mathematics report 12-12). Delft
University of Technology.

Master of Science Thesis Joost van der Linden

138 Bibliography

[35] Jönsthövel, T. B., Gijzen, M. B., MacLachlan, S., Vuik, C. & Scarpas, A. (2012).
Comparison of the deflated preconditioned conjugate gradient method and algebraic
multigrid for composite materials. Computational Mechanics, 50, 321-333.

[36] Jönsthövel, T. B., van Gijzen, M. B., Vuik, C., Kasbergen, C., & Scarpas, A.
(2009). Preconditioned conjugate gradient method enhanced by deflation of rigid
body modes applied to composite materials. Computer Modeling in Engineering and
Sciences, 47, 97-118.

[37] van ’t Wout, E., van Gijzen, M. B., Ditzel, A., van der Ploeg, A. & Vuik, C. (2010)
The deflated relaxed incomplete Cholesky CG method for use in a real-time ship
simulator. Procedia Computer Science, 1, 249-257.

[38] Vuik, C., & Frank, J. (2000, August). Deflated ICCG method applied to problems
with extreme contrasts in the coefficients. In Deville, M. & Owens, R. (Eds.), Pro-
ceedings of the 16th IMACS World Congress 2000, CDROM ISBN 3-9522075-1-9.
New Brunswick: Rutgers University.

[39] Vuik, C., Segal, A., Meijerink, J.A., & Frank, J. (2000, April). Deflated ICCG
applied to problems with extreme contrasts in the coefficients. In Manteuffel, T.
A., & McCormick, S. F. (Eds.), Sixth Copper Mountain Conference on Iterative
Methods, Copper Mountain, CO.

[40] Vuik, C., Segal, A., Meijerink, J.A., & Wijma, G.T. (2000). The construction of
projection vectors for a Deflated ICCG method applied to problems with extreme
contrasts in the coefficients. Shell Report EP2000-8019. Den Haag: Shell.

[41] Vuik, C., Segal, G., & Meijerink, K. (1998, March). An efficient CG method for
layered problems with large contrasts in the coefficients. In Manteuffel, T. A., &
McCormick, S. F. (Eds.), Fifth Copper Mountain Conference on Iterative Methods,
Copper Mountain, Colorado.

[42] Lee, S. H., Zhou, H., & Tchelepi, H. A. (2009). Adaptive fully implicit multi-scale
finite-volume method for multi-phase flow and transport in heterogeneous forma-
tions. Journal of Computational Physics, 228 (24), 9036 - 9058.

[43] Cao, H., Tchelepi, H. A., Wallis, J., & Yardumian, H. (2005, October). Parallel
scalable unstructured CPR-type linear solver for reservoir simulation. Paper 96809
presented at the SPE Anuual Technical Conference and Exhibition. Dallas, TX:
Society for Petroleum Engineers.

[44] von Mises, R. & Pollaczek-Geiringer, H. (1929). Praktische Verfahren der Gle-
ichungsauflösung. Zeitschrift für Angewandte Mathematik und Mechanik, 9, 152-
164.

[45] Greenbaum, A. Pták, V. & Strakos, Z. (1996). Any Nonincreasing Convergence
Curve is Possible for GMRES. SIAM J. Matrix Anal. Appl., 17, 465-469.

Joost van der Linden Master of Science Thesis

139

[46] Saad, Y., & Schultz, M. H. (1986). GMRES: A generalized minimal residual algo-
rithm for solving nonsymmetric linear systems. SIAM J. Sci. Statist. Comput., 7,
856-869.

[47] Liesen, J., & Tichý, P. (2004). Convergence analysis of Krylov subspace methods.
GAMM Mitt. Ges. Angew. Math. Mech., 27 (2), 153 - 173.

[48] Van der Vorst, H.A., and Vuik, C. (1993). The superlinear convergence behaviour
of GMRES. Journal of Computational and Applied Mathematics, 48, 327-341.

[49] Greenbaum, A., & Trefethen, L. N. (1994). GMRES/CR and Arnoldi/Lanczos as
matrix approximation problems. SIAM J. Sci. Comput., 15, 359âĂŞ368.

[50] Trefethen, L. N. (1990). Approximation theory and numerical linear algebra, in
Algorithms for approximation, II (Shrivenham, 1988), 336-360. London: Chapman
and Hall.

[51] Nachtigal, N. M., Reddy, S. C., & Trefethen, L. N. (1992). How fast are nonsym-
metric matrix iterations? SIAM J. Matrix Anal. Appl., 13, 778âĂŞ795.

[52] Eiermann, M., & Ernst, O. G. (2001). Geometric aspects of the theory of Krylov
subspace methods. Acta Numer., 10, 251-312.

[53] Nevanlinna, O. (1993). Convergence of iterations for linear equations. Lectures in
Mathematics ETH Zurich, Birkhäuser Verlag. Basel: ETH Zurich.

[54] Morgan, R. B. (1995). A restarted GMRES method augmented with eigenvectors.
SIAM J. Matrix Anal. Appl., 16, 1154-1171.

[55] Morgan, R. B. (2000). Implicitly restarted GMRES and Arnoldi methods for non-
symmetric systems of equations. SIAM J. Matrix Anal. Appl., 21, 1112-1135.

[56] Kharchenko, S. A. & Yeramin, A. (1995). Eigenvalue translation based precondi-
tioners for the GMRES(k) method. SIAM J. Matrix Anal. Appl., 2, 51-77.

[57] Baglami, J., Calvetti, D., Golub, G.H., & Reichel, L. Adaptively preconditioned
GMRES algorithms. Technical report, Kent State University.

[58] Nabben, R. & Vuik, C. (2004). A comparison of deflation and coarse grid correction
applied to porous media flow. SIAM J. Numer. Anal., 42, 1631-1647.

[59] Mansfield, L. (1990). On the conjugate gradient solution of the Schur complement
system obtained from domain decomposition. SIAM J. Numer. Anal., 27, 1612-
1620.

[60] Mansfield, L. (1991). Damped Jacobi preconditioning and coarse grid deïňĆation for
conjugate gradient iteration on parallel computers. SIAM J. Sci. Statist. Comput.,
12, 1314-1323.

Master of Science Thesis Joost van der Linden

140 Bibliography

[61] Vuik, C., Segal, A., L. el Yaakoubim E., & Dufour, B. (2002). A comparison of
various deflation vectors applied to elliptic problems with discontinuous coefficients.
Applied Numerical Mathematics, 41, 219-233.

[62] Vermolen, F., Vuik, C., & Segal, A. (2004). Deflation in preconditioned Conjugate
Gradient methods for finite element problems. In Krizek, M., Neittaanmaki, P.,
Glowinski, R., & Korotov, S. (Eds.). (2004). Conjugate gradient and finite element
methods (pp. 103-129). Berlin: Springer.

[63] Padiy, A., Axelsson, O. Polman, B. (2000). Generealized augmented matrix pre-
conditioning approach and its application to iterative solution of ill-conditioned
algebraic systems. SIAM J. Matrix Anal. Appl, 22, 793-818.

[64] Wallis, J. R. (1983, November). Incomplete gaussian elimination as a precondi-
tioning for generalized conjugate gradient acceleration. Paper 12265 presented at
SPE Reservoir Simulation Symposium. San Fransisco, CA: Society for Petroleum
Engineers.

[65] Wallis, J. R., Kendall, R. P., Little, T. E., & Nolen, J. S. (1985, February). Con-
strained residual acceleration of conjugate residual methods. Paper 13536 presented
at SPE Reservoir Simulation Symposium. Dallas, TX: Society for Petroleum Engi-
neers.

[66] Cao, H., Tchelepi, H. A., Wallis, J. R., & Yardumian, H. (2005, October). Par-
allel scalable CPR-type linear solver for reservoir simulation. Paper 96809 pre-
sented at SPE Annual Technical Conference and Exhibition. Dallas, TX: Society
for Petroleum Engineers.

[67] Cao, H. (2002, June). Development of techniques for general purpose reser-
voir simulators. (Doctoral dissertation). Stanford University. Retrieved from
http://edces.netne.net/files/Cao_Thesis_40469a.pdf

[68] Trottenberg, U., Oosterlee, C., & Schüller, A., Guest contributions by Stüben, K.,
Oswald, Pl, Brandt, A. (2001). Multigrid. San Diego, CA: Academic Press.

[69] Ruge, J. W., & Stüben, K. (1987). Algebraic multigrid (AMG). In S.F. McCormick
(Ed.), Multigrid Methods, volume 3 of Frontiers in Applied Mathematics (73-130).
Philadelphia, PA: Society for Industrial and Applied Mathematics.

[70] Brandt, A., McCormick, S. F., & Ruge, J. W. (1982). Algebraic multigrid (AMG)
for sparse matrix equations. In D.J. Evans (Ed.), Sparsity and Its Applications
(257-284). Cambridge: Cambridge University Press.

[71] Dendy, J. E. (1982). Black box multigrid. J. Comput. Phys., 48 (3), 366-386.

[72] Clees, T. (2005). AMG strategies for PDE systems with
applications in industrial semiconductor simulation. (Doc-
toral dissertation). Universität zu Köln, Köln. Retrieved from
http://www.scai.fraunhofer.de/fileadmin/download/samg/paper/Clees_Diss.pdf

Joost van der Linden Master of Science Thesis

141

[73] Stüben, K., Clees, T., Schneider, M., Klie, H., Lou, B. & Wheeler, M. (2007,
February). Algebraic Multigrid Methods (AMG) for the Efficient Solution of Fully
Implicit Formulations in Reservoir Simulation. Paper 105832 presented at the SPE
Reservoir Simulation Symposium. Houston, TX: Society for Petroleum Engineers.

[74] Füllenbach, T., & Stüben, K.. (2002). Algebraic Multigrid for Selected PDE Sys-
tems. In Rolduc and Gaeta (Eds.), Proceedings of the 4th European Conference
(399-410). London, NJ: World ScientiïňĄc.

[75] Jiang, Y. (2007). Techniques for modeling complex reservoirs and ad-
vanced wells. (Doctoral dissertation). Stanford University. Retrieved from
https://pangea.stanford.edu/ERE/pdf/pereports/PhD/Jiang07.pdf.

[76] Brandt, A. (1986). Algebraic multigrid theory: the symmetric case. Appl. Math.
Comp., 19, 23-56.

[77] van der Vorst, H. (2003). Iterative Krylov methods for large linear systems. Cam-
bridge University Press.

[78] Georqe, A., & Liu, J. W. H. (1981). Computer Solution of Large Sparse Positive
Definite Systems. Englewood Cliffs, N.J.: Prentice Hall, Inc.

[79] Tang, J.M. (2005). Parallel deflated CG methods applied to linear systems from
moving boundary problems. Technical report, Delft University of Technology.
Retrieved from http://repository.tudelft.nl/view/ir/uuid%3Adbd4809c-784b-4da4-
82bb-3f7a980ce90c/

[80] Aksoylu, B., Klie, H., & Wheeler, M.F. (2007). Physics-based preconditioners for
porous media flow applications. ICES Technical Report. The University of Texas at
Austin.

[81] Karypis, G. & Kumar, V. (1997). A coarse-grain parallel formulation of multilevel
k-way graph-partitioning algorithm. In Proc. 8th SIAM Conference on Parallel Pro-
cessing for Scientific Computing.

[82] Klie, H., Monteagudo, J., Hoteit, H., & Rodriguez, A. (2009, February). Towards a
new generation of physics-driven solvers for black-oil and compositional flow simula-
tion. Paper 118752 presented at SPE Reservoir Simulation Symposium. The Wood-
land, TX: Society for Petroleum Engineers.

Master of Science Thesis Joost van der Linden

	Front Matter
	Cover Page
	Title Page
	Signatures
	Table of Contents
	List of Figures
	List of Tables
	Preface & acknowledgments

	Main Matter
	Introduction
	Scope
	Outline
	Notation and conventions

	Framework
	Formulation
	Newton-Raphson
	Time step size

	Krylov-subspace methods
	Arnoldi

	GMRES
	Givens rotations
	Computing the residual
	Convergence
	Preconditioning

	CPR
	CPR stage 1: AMG
	CPR stage 2: ILU

	Deflation
	Motivation
	Overview
	Framework
	Galerkin matrix
	Deflated system
	Geometric illustration
	Convergence

	Computing the deflation vectors
	Exact eigenvectors
	Ritz vectors
	Harmonic Ritz vectors
	Domain-based vectors
	Solution deflation

	Implementation
	Harmonic Ritz deflation
	Subdomain-levelset deflation
	Partitioner

	Parallel implementation

	Results
	Case descriptions
	BO
	SPE5
	SAGD-SMALL
	SAGD-MEDIUM
	SAGD-LARGE

	Eigenvalues and eigenvectors
	BO spectrum
	SPE5 spectrum
	SAGD-SMALL spectrum
	Effect of the (parallel) preconditioner
	Summary of findings

	Harmonic Ritz deflation
	Matlab experiments
	IX experiments
	Summary of findings

	Physics-based deflation
	Manual physics-based deflation
	Automatic physics-based deflation
	Summary of findings

	Other strategies
	Deflation using saturation or mobility
	ILU damage

	Conclusions
	Summary of theory
	Conclusions in the results
	Future research

	Appendices
	Partitioner pseudocode
	IX partitioner result

	Back Matter

