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Symmetrical Component Decomposition of
DC Distribution Systems

Nils H. van der Blij, Student Member, IEEE, Laura M. Ramirez-Elizondo, Member, IEEE,
Matthijs T. J. Spaan, Member, IEEE, and Pavol Bauer, Senior Member, IEEE

Abstract—Employing bipolar dc distribution systems intro-
duces the possibility of imbalance in the system. To analyze these
systems it is important to create novel modelling techniques.
Therefore, this paper presents a method to decompose dc dis-
tribution systems into symmetrical components. The presented
method simplifies the analysis of balanced, unbalanced, and
fault conditions of bipolar dc distribution systems. Furthermore,
equivalent circuits for several network components in the sym-
metrical domain are derived and are shown to be independent
under symmetrical conditions. Additionally, a dynamic analysis is
performed in the symmetrical domain showing that the method
simplifies the analysis of dc distribution systems. Finally, the
symmetrical domain equivalent circuits of several fault conditions
are derived.

Index Terms—bipolar grid, dc distribution grid, dynamic
analysis, fault analysis, modelling, symmetrical components.

I. INTRODUCTION

The increasing presence of distributed energy sources poses
a serious challenge to present-day distribution grids [1]. Be-
cause ac voltages were easily transformed to higher voltage
levels, ac distribution systems have been the norm since the
late 19th century [2], [3]. However, technological advances
and societal concerns indicate that a reevaluation of the
current distribution system is timely. Technological advances
include more efficient electronic converters, renewable energy
generation and energy storage systems. Societal concerns
include global warming, aging of the current power system
infrastructure and depleting energy resources [4].

Nowadays dc distribution systems are foreseen to have
advantages over ac in terms of efficiency, distribution lines,
control and converters [5], [6]. These advantages can mostly
be attributed to the absence of frequency and reactive power
in dc systems. However, the broad adoption of dc distribution
systems still faces several challenges. For example, further
efforts are required to overcome the market inertia of ac
systems and standardize dc distribution systems. Furthermore,
additional research on protection and control is vital for the
adoption of dc systems. The goal of this paper is to present a
method to simplify the analysis of (control and protection in)
balanced and unbalanced dc distribution systems.

Bipolar grids are becoming the norm for dc grids. The main
advantages of bipolar grids are the relatively low voltage rating
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of the lines, flexibility and redundancy [7], [8]. However,
since bipolar systems have multiple phase conductors there
is a possibility of imbalance. If the current flowing in the
positive pole is not exactly opposite to the current flowing in
the negative pole, a current will flow in the neutral conductor.
Consequently, a neutral conductor will be required as it is
generally not allowed for the neutral current to flow through
ground because this causes corrosion [9].

Previous work presented several approaches for modelling
dc distribution grids. Firstly, the dc distribution grids can be
modelled by their transfer functions [10], [11]. Secondly, a
state-space approach can be used to model dc distribution
grids [12], [13]. Lastly, transient modelling approaches can
be used [14], [15]. In ac distribution systems the symmetrical
component decomposition method has become a typical tool
to simplify the analysis of complex power networks [16]. The
symmetrical component decomposition method simplifies the
analysis of (un)balanced systems, and short circuit or ground
faults. Therefore, it is compelling to see if a similar technique
can be applied to dc distribution grids.

Y. Gu et al. decomposed the dc distribution grid into a
common mode and a differential mode [17], [18]. However, the
transformation inherently only takes the positive and negative
pole quantities into account. Therefore, the neutral is neglected
unless additional assumptions are made. Furthermore, the
voltages taken for the transformation are the voltages of the
poles with respect to the neutral. As a result, the information
of the neutral voltage, and therefore the voltages of the
poles with respect to ground, is lost in the transformation.
Consequently, no capacitance or conductance to ground can be
taken into account and the analysis of ground faults becomes
problematic.

The contribution of this paper is an improved method to
decompose bipolar dc distribution systems into symmetrical
components. The improved method inherently includes the
neutral quantities, capacitance and conductance to ground, and
allows for ground fault analysis. Furthermore, a generalized
method is presented to transform network components to the
symmetrical domain. The decomposition method is determined
to significantly simplify the dynamic analysis of dc distribution
systems by using simulations in both the symmetrical and
original pole domain. Additionally, several equivalent circuits
in the symmetrical domain of various (a)symmetrical faults
are derived and presented.

This paper is organized as follows: in Section II a back-
ground of the symmetrical decomposition method for ac
and dc distribution systems is provided. In Section III the
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Fig. 1. Symmetrical component decomposition of ac systems

improved symmetrical component decomposition method for
bipolar dc systems is presented. Subsequently, in Section IV
an illustrative dynamic analysis is done in the symmetrical
domain. The equivalent circuits in the symmetrical domain of
several faults are discussed in Section V. Lastly, in Section VI
conclusions are drawn.

II. BACKGROUND OF THE SYMMETRICAL COMPONENT
DECOMPOSITION METHOD

The symmetrical component decomposition method is often
used to simplify the analysis of (un)balanced systems, short
circuits and ground faults. In this section the background of
this method for ac and dc distribution systems is discussed.

A. Symmetrical Component Decomposition of AC Systems

Any asymmetrical set of N co-planar vectors can be repre-
sented by a symmetrical set of N vectors [19]. As a result, three
phase ac systems are commonly decomposed into their zero
sequence, negative sequence and positive sequence according
to X0

X1

X2

 =
1

3

1 1 1
1 α α2

1 α2 α

Xa

Xb

Xc

 , (1)

α = ej2π/3, (2)

where X is any quantity (e.g., current or voltage).
Firstly, the positive sequence (X2) represents a system of 3

phases of equal magnitude that are displaced 120 degrees with
respect to each other. Secondly, the negative sequence (X1)
represents a system of 3 phases that are perfectly displaced
120 degrees in the opposite (phase) direction. Lastly, the 3
phases of the zero sequence (X0) are equal in magnitude and
are in phase. This is shown schematically in Fig. 1.

B. Solidly Grounded Bipolar DC Systems

Solidly grounded bipolar dc systems, although very different
from the ac systems, can be seen as 2 phase systems, where
the positive and negative poles are the phases. This poten-
tially asymmetrical system can therefore be decomposed in a
symmetrical set of 2 vectors.

The symmetrical set of vectors contains one vector that
represents the balanced component of the system, the differ-
ential mode, and one vector that represents the unbalanced
component of the system, the common mode [17], [18]. By

L+ M+-

U+

C+-

C+

R+

G+

Un

L- M+-

U-

C-

R-

G-

G+-

Fig. 2. Lumped element model of a solidly grounded bipolar distribution line

choosing α = ejπ , this system can be decomposed into
symmetrical components utilizing[

X1

X2

]
= A

[
X+

X−

]
, (3)

A =
1

2

[
1 1
1 −1

]
, (4)

where X1 and X2 are the unbalanced and balanced sym-
metrical components respectively, while X+ and X− are the
positive and negative pole quantities respectively [17], [18].

The inverse symmetrical components transformation is
given by [

X+

X−

]
= A−1

[
X1

X2

]
, (5)

A−1 =

[
1 1
1 −1

]
. (6)

III. SYMMETRICAL COMPONENT DECOMPOSITION
METHOD FOR ANY BIPOLAR DC SYSTEM

In this paper a generalized transformation is derived for
the method described in the previous section. Furthermore,
the transformation matrix is modified so that the neutral
conductor quantities are inherently included and capacitance
and conductance to ground can be taken into account.

A. Generalized Transformation Method

A distribution line model of a solidly grounded bipolar
system is given in Fig. 2 as an example. The series resistance
(R±) and inductance (L±), and shunt capacitance (C±) and
conductance (G±) matrices of this model are

R± =

[
R+ 0
0 R−

]
,

L± =

[
L+ M+−
M+− L−

]
,

C± =

[
C+ + C+− −C+−
−C+− C− + C+−

]
,

G± =

[
G+ +G+− −G+−
−G+− G− +G+−

]
, (7)

where the diagonal elements in the series matrices arise from
voltage drops caused by the current in that phase conductor
and the diagonal elements originate from voltage drops caused
by currents in other phase conductors (e.g., via mutual induc-
tance). The diagonal elements of the shunt matrices stem from
the sum of the connected components through which current
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Fig. 3. Equivalent circuit of the solidly grounded bipolar distribution line
model in the symmetrical domain

is leaked and the diagonal elements indicate to where these
components are connected.

For the distribution lines the resistance is characterized
according to the voltage drop over the distribution line:

U ′ = RI, (8)

where U ′ is the voltage drop over the transmission line.
The step by step derivation of the resistance matrix in the

symmetrical domain is

A−1U ′12 = R±A
−1I12, (9)

U ′12 = AR±A
−1I12, (10)

R12 = AR±A
−1, (11)

where the ± subscript indicates the original pole domain and
the 12 subscript indicates the symmetrical domain. In a similar
fashion the inductance, capacitance and conductance matrices
in the symmetrical domain are derived to be

L12 = AL±A
−1, (12)

C12 = AC±A
−1, (13)

G12 = AG±A
−1. (14)

Equations (11) to (14) are used to compute the system’s
matrices in the symmetrical domain. The matrices in the
symmetrical domain of the line shown in Fig. 2, given that the
distribution lines are symmetrical (e.g., R+ = R−, L+ = L−,
C+ = C− and G+ = G−), are

R12 =

[
R+ 0
0 R+

]
,

L12 =

[
L+ +M+− 0

0 L+ −M+−

]
,

C12 =

[
C+ 0
0 C+ + 2C+−

]
,

G12 =

[
G+ 0
0 G+ + 2G+−

]
. (15)

From (15) it is seen that the currents and voltages in the
symmetrical domain are independent. Independent means that
no (mutual) coupling occurs between the two components.
The independence of the symmetrical domain circuit is further
illustrated by the equivalent circuit in Fig. 3.
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G+

Ln M+n

Un
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G+n G+-

M+-

M-n

M+-

Fig. 4. Lumped element model of a bipolar distribution line with a metallic
return

B. Transformation for Systems with a Metallic Return

In the previous section it is assumed that the neutral current
passes through ground. However, this is usually not allowed
as this causes corrosion. Therefore, generally a metallic return
(neutral conductor) is used. Under the assumption that the
neutral conductor carries both the current of the positive and
negative pole, the currents can be represented byI+In

I−

 =

 1 0
−1 −1
0 1

[I+
I−

]
. (16)

The assumption in (16) and its inverse can be used to incor-
porate the neutral conductor quantities into the symmetrical
domain. However, in this paper it is suggested to modify
the transform to directly include the neutral conductor. The
transform matrices then become

A′ = A · 1

3

[
2 −1 −1
−1 −1 2

]
=

1

6

[
1 −2 1
3 0 −3

]
, (17)

A′
−1

=

 1 0
−1 −1
0 1

A−1 =

 1 1
−2 0
1 −1

 . (18)

Although this modified transformation does directly take
neutral conductor into account, and allows for the inclusion
of capacitance and conductance to ground, it is based on two
major assumptions: it is assumed that the neutral voltage is
exactly opposite to twice the unbalanced component voltage,
and that the neutral current is exactly opposite to twice
the unbalanced component current. This assumption is only
valid if the neutral conductor is symmetrical with both pole
conductors. However, this is not the case if there are any
asymmetries (including ground faults) in the system.

Therefore, it is proposed to view the bipolar dc distribution
system as a 3 vector system and accordingly decompose it
into 3 symmetrical components instead of 2. The proposed
transformation isX0

X1

X2

 = T

X+

Xn

X−

 , (19)

T =
1√
6

√2
√

2
√

2
1 −2 1√
3 0 −

√
3

 , (20)

where X0, X1 and X2 are the bias, unbalanced and balanced
symmetrical components of the system respectively.
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Fig. 5. Equivalent circuit of the symmetric bipolar distribution line model
with metallic return in the symmetrical domain

The bias component represents an equal dc offset of the
pole and neutral quantities, while the unbalanced and balanced
components are the same as previously described. The inverse
of this transformation isX+

Xn

X−

 = T−1

X0

X1

X2

 , (21)

T−1 =
1√
6

√2 1
√

3√
2 −2 0√
2 1 −

√
3

 . (22)

Please note the similarities between (17), (18), (20),
and (22). The added bias component transformation and the
modification of the balanced component transformation are
chosen in such a way that if there is asymmetry in the system
the symmetrical domain matrices are still symmetrical. More-
over, the transformation is orthogonal and power invariant.

An example of a bipolar distribution line model with a
metallic return is given in Fig. 4. The resistance, capacitance,
inductance and conductance matrices of this lumped element
model are

R± =

R+ 0 0
0 Rn 0
0 0 R−

 ,

C± =


∑

i=+,n,−
C+i −C+n −C+−

−C+n

∑
i=+,n,−

Cni −C−n

−C+− −C−n
∑

i=+,n,−
C−i

 ,

L± =

 L+ M+n M+−
M+n Ln M−n
M+− M−n L−

 ,

G± =


∑

i=+,n,−
G+i −G+n −G+−

−G+n

∑
i=+,n,−

Gni −G−n

−G+− −G−n
∑

i=+,n,−
G−i

 . (23)

The system’s matrices in the symmetrical domain can be
determined analogously to (11) to (14). For example the series
resistance matrix in the symmetrical domain is determined by

R012 = TR±T
−1, (24)

where the subscript 012 indicates the symmetrical domain and
the ± subscript still indicates the (original) pole domain.

RS

CC

US

U+

Un

U-

RL IL

U+

Un

U-

RS

CC

US

RL IL

RS

CC

US

RL IL

Fig. 6. Equivalent circuits of the node behavior in the original pole domain

Consequently, the system’s matrices in the symmetrical
domain, in the case the distribution lines are symmetrical, are

R012 =

R+ 0 0
0 R+ 0
0 0 R+

 ,
L012 =

L+ + 2M+n 0 0
0 L+ −M+n 0
0 0 L+ −M+n

 ,
C012 =

C+ 0 0
0 C+ + 3C+n 0
0 0 C+ + C+n + 2C+−

 ,
G012 =

G+ 0 0
0 G+ + 3G+n 0
0 0 G+ +G+n + 2G+−

 . (25)

From these matrices it can be seen that the bias, unbalanced
and balanced components are again fully independent. Addi-
tionally, it can be noted that this transform exhibits similarities
to the symmetrical decomposition of symmetrical 3 phase ac
distribution lines. The equivalent circuits in the symmetrical
domain, in case the transmission lines are symmetrical, can be
derived from (25) and are shown in Fig. 5.

C. Discussion

It can be concluded that the (dynamic) analysis of dc dis-
tribution systems can be significantly simplified by using the
symmetrical component decomposition method. If a balanced
system is analyzed only the balanced component has to be
investigated compared to the positive, neutral and negative
components in the original pole domain. For simulations
this means a reduction of the degrees of freedom by two
thirds. Similarly, for unbalanced systems only the balanced
and unbalanced component have to be investigated. Moreover,
the system matrices are sparse further simplifying computation
for unbalanced systems.

Other interesting applications of the symmetrical component
decomposition method can be found in protection and control.
For protection, a circuit breaker only needs to determine the
bias component of the network. Since the bias component
indicates current circulating through ground, a sudden change
in the bias component indicates the occurrence of a fault. Fur-
thermore, the unbalanced component can be used by balancing
converters to control the voltage unbalance in a grid [18], [20].
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Fig. 7. Original pole domain equivalent circuit of the example bipolar dc system used to demonstrate the dynamic analysis
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Fig. 8. Equivalent circuits of the node behavior in the symmetrical domain

D. Sources and Loads in the Symmetrical Domain

The behavior of most nodes (loads and sources) in dc
distribution systems can be modelled as a combination of an
output capacitance, a voltage source with a (virtual) series
resistance, and current source with a (virtual) shunt resistance.
This is illustrated in Fig. 6.

To find the equivalent circuits in the symmetrical do-
main (19) to (22) and the previously derived transformation
method illustrated in (24) are used. The equivalent circuits in
the symmetrical domain are shown in Fig. 8.

IV. DYNAMIC ANALYSIS IN THE SYMMETRICAL DOMAIN

To explore the capabilities of the presented symmetrical
component decomposition method a change in load and a
single line-to-ground fault in a simple example system are
investigated. A two terminal symmetrical bipolar dc network
transferring power between one source converter and one load
converter is considered. The source converter is assumed to be
droop controlled, while the load behaves as a (virtual) resis-
tance. Furthermore, the distribution line is modelled similarly
to Fig. 4, but in a π-configuration. The equivalent circuit of
this configuration is shown in Fig. 7.

The equivalent circuit of this system in the symmetrical
domain is shown in Fig. 9. The subscripts S and F represent
the source and load side respectively. In this example the
source converter is balanced and therefore its equivalent circuit
only appears in the balanced component circuit. Consequently,
the bias and unbalanced components of the voltages and
currents are expected to be 0 A before the 5 Ω ground fault
is induced in the positive pole of the load.

L0US,0
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UL,0

L1US,1
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L2US,2
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R2
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C0G0

C1G1

C2G2

2CC
US/�2

RL/36CC

Rs/2

2CC RL

Fig. 9. Symmetrical domain equivalent circuit of the example bipolar dc
system

TABLE I
POLE DOMAIN PARAMETERS FOR THE DYNAMIC ANALYSIS

Distribution Line
R+ [Ω] L+ [mH] C+ [µF ] G+ [mS]

5 0.4 0.1 1

Converters
US [V ] RS [Ω] RL [Ω] CC [µF ]

700 5 50 50

TABLE II
SYMMETRICAL DOMAIN PARAMETERS FOR THE DYNAMIC ANALYSIS

Resistance
R0 [Ω] R1 [Ω] R2 [Ω]

5 5 5

Inductance
L0 [mH] L1 [mH] L2 [mH]

0.48 0.36 0.36

Capacitance
C0 [µF ] C1[µF ] C2 [µF ]

0.1 0.25 0.25

Conductance
G0 [mS] G1 [mS] G2 [mS]

1 2.5 2.5

The parameters in the pole domain are chosen to be typical
values for a 1 km distribution line and 4 kW converters. The
relevant pole domain parameters are given in Table I. Further-
more, it is assumed that the distribution line is symmetrical,
its mutual capacitance (e.g., C+n) is half of the capacitance
to ground (e.g., C+), and its mutual inductance (e.g., M+n) is
a tenth of the self-inductance (e.g., L+). For the simulations
it was chosen not to ground the system to be better able to
verify the behavior of the voltages during and after the fault.
Additionally, the parameters of the equivalent circuit in the
symmetrical domain are given in Table II.

Two separate simulations were executed for the verification
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Fig. 10. Voltages at the load (top) and source (bottom) obtained from the symmetrical domain model (left, middle) and from a pole domain model (right)

of the symmetrical domain models. Firstly, the system was
simulated in the pole domain using a state-space model. Sec-
ondly, the fault was simulated using the symmetrical domain
equivalent circuit shown in Fig. 9. The two simulations are
compared by using the inverse transform on the obtained
symmetrical domain quantities. The results of the simulations
are shown in Fig. 10.

This figure shows that the results from both models are
identical. Furthermore, three observations can be done to
further verify the validity of the models. Firstly, the voltage of
the positive pole drops to 0 V as is expected. Secondly, it is
seen that in this system the capacitance added by the converters
is dominant as the voltage between the poles remains almost
constant. Lastly, it is seen that the neutral voltage does not
drop to the exact positive pole voltage before the fault, which
is to be expected as the capacitance between the positive pole
and the neutral is partially discharged during the fault. It can
be concluded that the symmetrical component decomposition
method is suitable for the analysis of dc distribution systems.

V. ANALYSIS OF (A)SYMMETRICAL FAULTS

The previous section showed how the symmetrical com-
ponent decomposition method can be used for the dynamic
analysis of a bipolar dc distribution grid. Analogously to ac
systems, the symmetrical component decomposition can also

be employed to calculate the steady state fault currents of
various (a)symmetrical faults.

In the example of the previous section a ground fault was
induced in the positive pole. From Fig. 7 it can be seen that the
calculation of the fault current is complex as there are many
couplings between the positive pole and the other conductors.
This section presents an alternative method for determining
the steady state fault currents by creating Thevenin equivalent
circuits of the symmetrical components at the fault location.

To arrive at the equivalent circuits in the symmetrical
domain several assumptions have to be made. Firstly, it is
assumed that the entire system, besides the fault, is symmet-
rical. Secondly, it is assumed that the superposition principle
can be applied. Therefore, the system’s currents, other than
the fault current, can be neglected during the analysis of the
fault. Thirdly, it is assumed that capacitance and inductance
can be neglected in steady state. Lastly, Thevenin’s theorem is
applied, which allows for the replacement of the non-faulted
part of the system by an equivalent generator and a series
resistance for each symmetrical component (see Fig. 11A).

For several types of faults the circuit in the pole domain, the
resulting equations and the equivalent circuit in the symmet-
rical domain are shown in Fig. 11. For illustrative purposes,
the derivation of the pole-to-ground (Fig. 11B), double pole-
to-ground (Fig. 11C), and pole-to-pole (Fig. 11D) faults will
be given here.
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Fig. 11. (A)symmetrical faults, the resulting equations, and their equivalent circuits in the symmetrical domain
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First, the pole-to-ground fault is analyzed. It is important
to differentiate the voltage at the location of the Thevenin
equivalent sources (E) and at the location where the fault
occurs (U ). Accordingly, during the pole-to-ground fault

E′+ = R′+I+ + U+ = R′+I+ +RfIf , (26)

where E′+ and R′+ are the Thevenin equivalents in the pole
domain, If is the fault current and Rf is the fault resistance.

This equation can be solved without knowing the pole
domain Thevenin equivalent parameters. Applying the trans-
formations (19) and (21) to (26) results in

E0√
3

+
E1√

6
+
E2√

2
= RfIf +

R0I0√
3

+
R1I1√

6
+
R2I2√

2
, (27)

where the numbered subscripts denote that the quantities are
in the symmetrical domain.

The fault current is equal to the current in the positive pole,
while the currents in the neutral and negative pole conductor
are 0 A. Therefore, using (19) to transform these currents to
the symmetrical domain gives

If =
√

3I0 =
√

6I1 =
√

2I2. (28)

Substituting (28) into (27) yields

If =

E0√
3

+ E1√
6

+ E2√
2

Rf + R0

3 + R1

6 + R2

2

. (29)

The equivalent circuit in the symmetrical domain is shown in
Fig. 11B.

For the double pole-to-ground fault (27) still holds. How-
ever, now the fault current is the addition of both the pole
currents. Moreover, since the voltages of the positive and
negative pole at the fault location are equal (U− = U+)
the bias component voltage U2 is 0 V. The currents in the
symmetrical domain and the fault current are therefore

If =
√

3I0 =
√

6I1, (30)

I2 =
E2

R2
. (31)

Substituting (30) and (31) into (27) yields

If =

E0√
3

+ E1√
6

Rf + R0

3 + R1

6

. (32)

The equivalent circuit in the symmetrical domain is given in
Fig. 11C.

For the pole-to-pole fault the current in the positive pole
is opposite to the current in the negative pole. Moreover, the
voltage equation must be modified to

E′+ − U+ − I+R′+ = E′− + I−R
′
−. (33)

The current in the positive and negative pole are equal but
opposite in sign. Therefore, once again using the transform,
the relations between the fault current and the currents in the
symmetrical domain are

I0 = I1 = 0, (34)

I2 =
√

2If . (35)

Using the symmetrical component transformations from (19)
and (21) it can be shown that

E0√
3

+
E1√

6
+
E2√

2
−RfIf −

R2I2√
2

=

E0√
3

+
E1√

6
− E2√

2
+
R2I2√

2
. (36)

Consequently, using (34), (35) and (36) the fault current is
derived to be

If =

√
2E2

Rf + 2R2
. (37)

The equivalent circuit in the symmetrical domain is shown in
Fig. 11D.

The other faults (depicted in Fig. 11) are derived in an
analogous fashion. From the derivations and equivalent circuits
it can be seen that the transform can be used for the analysis
of faults in a similar fashion to the ac symmetrical component
decomposition method.

VI. CONCLUSIONS

This paper presented a symmetrical component decompo-
sition method to simplify the analysis of (un)balanced and
fault conditions of bipolar dc distribution systems. In contrast
with previous research the presented method does not lose the
information of the neutral voltage. Consequently, capacitance
and conductance to ground can be included in the analysis and
ground faults can be analyzed. The presented method can be
used to reduce the degrees of freedom required for the analysis
of balanced and unbalanced dc distribution systems by up to
two thirds.

As an example distribution lines, sources and loads were
decomposed into their symmetrical components. The decom-
position method resulted in three independent components un-
der symmetrical conditions. Furthermore, a dynamic analysis
of a simple network was performed to verify the obtained
models. The results showed that the symmetrical domain mod-
els give results identical to the original pole domain models
confirming the validity. Additionally, the equivalent circuits
in the symmetrical domain of several (a)symmetrical faults
in dc distribution systems were given. This demonstrated the
potential of using the symmetrical component decomposition
method to analyze faults.
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