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Chapter 6
Health Monitoring, Machine Learning, 
and Digital Twin for LED Degradation 
Analysis

Mesfin Seid Ibrahim, Zhou Jing, and Jiajie Fan

1  �Introduction

Nowadays, light-emitting diode (LEDs) are widely used in different applications 
including general indoor and outdoor lighting lamps, automotive lighting [1], back-
lighting, robotics skin [2], medical and communication equipment, and so on. This 
is due to the many advantages, including longer lifetime (50,000–100,000 h), higher 
reliability, environmental friendliness, compactness in size, and quicker switching 
time when compared with traditional counter parts (incandescent and fluorescent) 
lighting sources [3–5].

Regardless of the many benefits and promising future applications that LED 
lighting sources provide, there are challenges facing LED manufacturers on the lack 
of a unified standard method to monitor in situ LED degradation and to gather reli-
ability assessment information, thermal management, potential glare due to small 
size lamp, and color stability. In addition to this, there is also lack of accurate 
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remaining useful lifetime estimation and evaluation methods. This is due to the long 
lifetime and high reliability at normal operating conditions, various failure mecha-
nisms, rapid technology advancement, and multicomponent features of LEDs com-
pared to the traditional light sources [3, 6, 7]. However, this has brought another 
challenge for manufacturers in terms of obtaining sufficient failure data, determin-
ing reliability and estimating remaining useful lifetimes (RUL) in relatively short 
lifetime testing before the products are released to the market and with better pre-
diction accuracy.

To address the challenges and shortcomings related to reliability assessment and 
lifetime prediction of LEDs, a number of research studies have been undertaken on 
the prognostics and lifetime estimation in academia and industry [6, 8–12]. In early 
2001, a discussion was initiated by Narendran et al. [13] among the lighting indus-
try experts concerning the standardization of definitions, procedures, and approaches 
in the process of useful lifetime estimation for LED products. Currently, LED man-
ufacturers use IES-TM-28 [14], released by IESNA, to project lumen maintenance 
lifetime for LED lamps and luminaires where the required data is gathered accord-
ing to industrial standard test report IES-LM-84 [15]. Previously, the IES-TM-21 
standard [16] has been used to predict the lifetime of LED light sources based on the 
light output degradation data from the standard IES-LM-80 test report [17]. The 
approved IES-TM-21 procedure uses the nonlinear least-squares regression (LSR) 
approach to project lumen maintenance data to predict the lifetime (L50 or L70) of 
LED lighting sources. This lifetime testing method can be a good approach for 
comparing lifetime information of LEDs, but it does not provide detailed informa-
tion regarding failure modes, mechanisms, and failure locations [3].

Recently, machine learning (ML) has emerged and is breaking new frontiers in 
reliability assessment and lifetime prediction studies due to systematic generation 
of large amount of data, newly introduced state-of-the-art algorithms, and an expo-
nential increase in computing power. ML algorithms are a set of methods and pro-
cedures that can be used to capture, detect, and learn relevant information patterns 
from large amounts of data and then use the unhidden patterns for further decision-
making in prognostics or predicting lifetime [18]. Thus, the ability of ML to learn 
from training data, generalize from historical data, and perform tasks without being 
explicitly programmed makes it tantalizing panacea for challenges in reliability 
analysis, anomaly detection, diagnostics, and prognostics.

There have been some reviews that studied the degradation mechanisms influ-
encing the reliability of GaN-based white LEDs for different lighting purposes [3, 
19–23]. An extensive review that mainly focused on failure causes, failure modes, 
and failure mechanisms of LEDs was presented by Chang et al. [3], while recently 
Sun et al. [23] have presented a literature review on recent trends in the prognostics 
of high-power white LEDs (HPWLEDs), including the failure modes, mechanisms, 
and some lifetime estimation approaches. Most of these reviews mainly focused on 
statistical-based data-driven approaches, failure modes, and mechanisms as well as 
physical degradation mechanisms of LEDs. While these topics are very important 
for the prognostics and health management (PHM) study of LEDs, it is not the focus 
of this study, which mainly focuses on the machine learning-based PHM approaches 
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applicable for LEDs anomaly detection, diagnostics, and lifetime prediction. Thus, 
the main aim of this study is to review machine learning algorithms, methods and 
approaches and their pros and cons in the reliability assessment, failure or anomaly 
detection, and the remaining useful life prediction in general and focusing on LED 
light source products in particular.

2  �PHM of LEDs

Nowadays, there is an increasing competition in the global market and the need to 
enhance customer satisfaction. In addition, huge advancements in technology, 
materials, and manufacturing processes are observed which facilitate the design and 
manufacturing of many consumer products that are highly reliable and have a lon-
ger lifetime before they fail. All of these factors lead to a shorter product develop-
ment time, and that becomes challenging for manufacturers to evaluate the lifetime 
of high reliability items in a shorter period before being released to the market [24, 
25]. This phenomenon is no different in the case of lighting products, especially for 
the high-power white light-emitting diodes (LEDs) that belong to highly reliable 
and long lifetime products that require a longer time to collect adequate degradation 
and/or failure data. That is why long-term lifetime estimation and reliability assess-
ment of LEDs in a moderately shorter period of time before products are released to 
market have become challenging for LED manufacturers [26]. For this reason, PHM 
has evolved as an important method to solve the challenges in terms of increasing 
system reliability, availability, and maintainability, enhancing safety and decreasing 
life-cycle and operational costs of marketable products and systems in general and 
customer electronic systems in particular [27]. Thus, the reliability assessment and 
prediction of remaining useful life (RUL) studies have become an important aspect 
of PHM of many consumer electronic products, including high-power white LEDs.

Basically, PHM is an engineering discipline that helps to prevent the failure of 
products, components, and subsystems which can lead to inadequate performance 
and safety concerns. It helps to anticipate problems in products and systems through 
signal and sensor data under actual application conditions [28]. PHM uses inputs 
such as information known about products/system, data collected from sensor mea-
surements, and applies an algorithm or a set of algorithms to analyze and provide 
relevant outputs at various levels of prognostics, such as fault detection, diagnostics, 
and lifetime estimation, as depicted in Fig. 6.1.

Diagnostics PrognosticsFault Detection

Present
FuturePast

Fig. 6.1  PHM problem architectures (fault detection, diagnostics, and prognostics)
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A well-organized prognostic health management framework should include data 
collection using sensors, data processing, security and integration, feature extrac-
tion, fault detection and recognition, damage models, physics of failure, reliability 
testing, physical models, prognostics, and so on [29], as illustrated in the PHM 
metro map shown in Fig. 6.2.

The main purpose of anomaly detection is to detect unusual or strange anoma-
lous responses of systems and products through identification of deviations from 
normal healthy behavior, so that precautionary measures can be taken in advance to 
avoid potential failures. It is worth noting that anomalies may not necessarily indi-
cate failure as changes in working or environmental conditions enable sensors to 
detect anomalous behavior. Diagnostics enable us to extract and gather failure mag-
nitudes, failure modes, failure mechanisms, and other related data from anomalous 
behavior of a product/system through sensors. The term prognostics deals with the 
process of estimating the lifetime or predicting the future reliability of a product 
based on historic and current degradation data and assessing the degree of deviation 
from its normal operating conditions [27]. Prognostics can provide help in all prod-
uct and/or system life cycles including design and development, production and 
ramp-up, product testing, operations and maintenance, as well as end-of-life phase 
(i.e., phase out and disposal) [30]. In this regard, the PHM of mechanical systems 
has been well studied, and as a result there is a considerable body of knowledge in 
the area. However, prognostics have only been applied to consumer electronic prod-
ucts/systems quite recently, and this is due to the fact that degradation is difficult to 
detect in electronic systems when compared with mechanical systems [31].

Fig. 6.2  A generic PHM metro map for products/system such as LED lighting, automotive 
parts, etc.
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Even though the expected lifetime for typical high-power LEDs can be rated up 
to 50,000 h, practical statistics indicate that about half the LED products failed to 
reach the rated lifetime [32, 33]. This has raised demands from experts in the LED 
sector, end-product manufacturers, and potential customers for dependable reliabil-
ity information and remaining useful lifetime estimation approaches. Thus, through 
the application of PHM, the inadequate lifetime and reliability information pro-
vided by LED manufacturers should be addressed, and reliable approaches to moni-
tor the status of LEDs and predict potential failures, especially for safety critical and 
emergency systems and products including the medical, aviation, automotive, and 
nuclear sectors, are needed. So far, many diagnostic and prognostic activities have 
been implemented and executed based on a variety of approaches and techniques. In 
general, the most commonly used approaches can be categorized as (i) model-based, 
also known as physics of failure (PoF) methods, (ii) data-driven methods, and (iii) 
hybrid (fusion) prognostic methods [34]. A more refined and detailed taxonomy of 
PHM approaches is presented in Fig. 6.3.

The data-driven (DD) methods are mainly dependent on large amounts of 
training data and/or degradation data collected through sensors in order to derive 
degeneration models for products and systems. The data collected in real time can 
be used to adjust and modify the model parameters. On the other hand, the model-
based method requires prior mathematical models to describe the product’s 

Fig. 6.3  Taxonomy of prognostics and health management approaches

6  Health Monitoring, Machine Learning, and Digital Twin for LED Degradation…



156

degeneration process based on physical laws. The DD methods are helpful for 
complex systems where component interaction is indeterminate and when large 
amounts of training data are available, while the model-based method demands 
knowledge of the physical laws governing the product degeneration expressed in 
mathematical models. Statistical-based and ML models and algorithms are used 
in DD approaches while physical models and classical AI methods implemented 
in model-based approach [35, 36]. Fusion/hybrid approaches that combine the 
benefits and eliminate the drawbacks of both DD and physics-based methods have 
also been implemented in prognostics studies [37]. The preferred choice of each 
algorithm depends on the different properties manifested for use in the intended 
analysis.

3  �Model-Based Approaches

3.1  �An Overview to Model-Based Approach

Model-based prognostics, also known as physics of failure (PoF) methods, makes 
use of information about a product’s material characteristics, loading and stress set-
tings, shape/geometry, and operational and working environmental conditions to 
assess reliability, identify failure modes and mechanisms, and so as to estimate the 
RUL. By using product life-cycle loading conditions (such as electrical, thermal, 
mechanical, chemical, electromechanical, etc.), the product geometry, and material 
properties, PoF is also used to design for reliability at the early stage of product 
design [38, 39]. The PoF-based approach has the benefit of identifying the root 
causes of system failure [23, 30]. However, sufficient knowledge about the product 
geometry, materials, properties, and operating conditions are required, and it may 
be difficult to obtain such information, especially for complex systems. For a certain 
product/system at a particular life-cycle loading condition, PoF focuses mainly on 
identification of potential failure locations, failure modes, as well as failure mecha-
nisms. The stress at every failure location is obtained as a function of the life-cycle 
loading conditions, material properties, and product architecture/shape. Then fault 
generation and propagation are determined by damage models [28, 40]. Model-
based approaches are also used to develop mathematical models in order to process 
and evaluate collected degradation data based on the prior knowledge of the prod-
uct/system.

In the study of prognostics, PoF models implement the use and monitoring of 
performance parameters, physical characteristics, and operating and environmental 
conditions. These parameters are used to monitor the product during experiments 
and can be categorized according to their domains. For the prognostic analysis of 
LED products, the different impact (stress) factors such as electrical, thermal, 
humidity, mechanical, thermomechanical, and creep stress applied on the test sam-
ple can be monitored by sensors, and the PoF models with mathematical equations 
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can be used for further analysis depending on the experimental plan. A brief sum-
mary of PoF models employed for LED products and systems is shown in 
Table 6.1. Pecht and Jie [38] studied the PoF-based prognostics for electronic and 
information-rich components. In their study, they criticized the use of old reliability 
handbooks due to prediction errors and uncertainties (in design, material, and oper-
ating conditions) caused and showed the growing trend of using PoF-based prog-
nostics for electronic products so as to identify critical component failure modes 
and mechanisms.

The implementation approach framework for PoF-based PHM has been dem-
onstrated in such a way that the first step is to undertake virtual life assessment. 
Virtual life assessment can be conducted using inputs from design data; failure 
mode, mechanisms, and effects analysis (FMMEA); expected lifetime conditions; 
and PoF models. During the product life cycle, high-priority failure mechanisms 
might be triggered by different severe and frequently occurring operational, envi-
ronmental and loading conditions. The virtual life assessment which is the first 
phase in the physics of failure-based prognostics has been further investigated by 
Fan et al. [10]. Their study was focused on the investigation of failure sites, failure 
modes, and associated degradation mechanisms for high-power white LEDs 
(HPWLEDs). The sample selected for demonstration was a typical commercial 
HPWLED lamp according to “bottom-up” strategy at the chip, package, and sys-
tem levels as shown in Fig. 6.4. Pictures in this figure are presented for the pur-
pose of illustration. 

Lu et  al. [41] used the physics of failure-based approach to study down light 
color shift failure at the luminaire level conducted on the diffuser (PMMA), reflec-
tor and package parts of an LED lamp of 10 W, and CCT of 4000 k. The selected 
parts had undergone aging testing at room temp, 55 °C and 85 °C, irradiation testing 
at 85  °C, and humidity reliability test at 85  °C and 85% RH.  The experimental 
results showed that LED packages have a greater contribution to color shift. 
Humidity and temperature also accelerate the color shift, where humidity has the 
stronger impact (Table 6.1).

Fig. 6.4  LED lamp and components: (a) LED package and module, (b) LED lamps exploded, (c) 
LED lamp and lighting lamps
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Table 6.1  PoF models for LED products and systems

Stress (impact) factors PoF models Performance indicators

Electrical (current) [42, 43] Lumen degradation gradient [42] Lumen flux depreciation 
[42],Inverse power law-Weibull [43]

Thermal stress/shock [44, 45, 
46, 43, 47]

Coffin-Mansion Eq. [44] Lumen depreciation
System reliability analysis [45] Color shift over lifetime
Hierarchical model (based on 
junction temperature) [45]

Junction temperature 
gradient

Arrhenius Eq. [46]
Arrhenius-Weibull [43]
Finite element simulation using 
ANSYS and numerical analysis 
simulation

Humidity/moisture [48, 49] Luminous-efficiency gradient [48] Lumen flux depreciation 
[48]Finite element simulation using 

ANSYS [49]
Multi-
physics

Thermal and humidity 
[41, 50, 51, 52, 49]

Chromaticity shift eq. [38] Chromaticity shift, [38, 
50]
Lumen flux degradation 
[50, 51]

Arrhenius Eq. [52]
Hallberg-Peck’s model [5052]
Subsystem isolation method [51]

Finite element simulation using 
ANSYS [49]

Thermal and electrical 
(current) [53, 54, 55, 
56, 43]

Junction temperature distribution LED catastrophic failure 
for high thermo-electrical 
stress [54]
Spectral power 
distribution (SPD) and 
Luminous intensity 
depreciation [53, 54, 56]

Spectral power distribution (SPD) 
analysis [53]
Electrothermal simulation 
(junction temperature with 
Arrhenius equation)
Electrothermal simulation [56]
Generalized Eyring-Weibull [43]

Thermomechanical 
[57],

Thermal and mechanical stress on 
solder alloy

Solder joint fatigue

Garafalo’s hyperbolic creep model Lumen depreciation
Norris-Landzberg equation
Engelmaier equation for strain 
range

Thermomechanical 
[58] and hygro-
mechanical stresses 
[58, 59]

Thermal and thermomechanical 
modeling (transient heat 
conduction equation)

Lumen flux depreciation

Moisture diffusion and hygro-
mechanical modeling (Fick’s law 
of diffusion)
Finite element analysis (simulation)

Hygro-thermal- 
mechanical coupling 
modeling [58]

Heat conduction systems, Fick’s 
law of diffusion and FEA 
simulation

Lumen flux depreciation
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3.2  �Failure Modes, Mechanisms, and Effects Analysis 
for LEDs

The failure modes, mechanisms, and effects analysis (FMMEA) could be consid-
ered as input to the PoF-based prognostic approach, as depicted in Fig. 6.5. The 
exposure of LED lighting products/systems to different loading and operational 
stresses such as electrical, thermal, mechanical, or chemical causes performance 
degradation and/or failure [60].

In LED systems, a failure mode is a recognizable way in which a failure of a 
package/lamp is noticed, and it can be classified as (i) loss of light output or open 
circuit, (ii) chromaticity shift (i.e., color shift), and (iii) degradation of luminous 
flux (decreasing in light output). Each failure mode could also be due to one or a 
combination of failure mechanisms which could be caused by thermal, mechanical, 
humidity, chemical, etc. Failure mechanisms can be described as thermal, mechani-
cal, physical, chemical, or other processes that cause a failure. Failure mechanisms 
can be broadly classified as wear-out (gradual) and overstress (catastrophic) fail-
ures. The wear-out failures are caused by cumulative stresses (loads) for a pro-
longed period of time. On the other hand, overstress (catastrophic) failures occur as 
a result of a one type of stress /load condition that surpasses the optimal threshold 
of the product characteristic [38].

A comprehensive study was reported by Chang et al. [3] on the FMMEA at semi-
conductor, interconnect, and package levels for LED products. Subsequently, Fan 
et al. [11] conducted a study on the FMMEA of LED-based backlighting systems 
used for commercial displays and TVs. Since LED-based display systems are 

Fig. 6.5  PoF-based PHM Methodology [28, 61], with permission
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formed by LED strips and electric driver systems, the study aimed to identify failure 
sites, failure modes and mechanisms at the chip (die/semiconductor), driver, pack-
age, and strip levels of LED backlight system. As an LED-based device, the failure 
modes for backlight units are lumen flux degradation, color change, and loss of light 
failure modes. In our review study, the FMMEA of LED products/systems are 
described by considering a more general architecture including chip (die/semicon-
ductor) level, package (module along with interconnects), and system levels as pre-
sented in Table 6.2.

In general, the FMMEA of LEDs has been investigated at three levels: die/chip, 
interconnects, and LED package levels [3, 10]. At the chip level, an increased non-
radiative recombination can cause a degradation of the active layer of LEDs which 
impacts in decreasing the luminous flux and power efficiency. Subsequently, the 

Table 6.2  FMMEA of LEDs at different levels

LED failure site Failure modes Failure mechanisms

LED chip level (semiconductor/die)
[11, 21, 22, 48, 49, 53, 62, 63]

Lumen flux depreciation 
[48, 49]

Propagation of defect 
and dislocation

Light output off, short 
circuit [48]

Diffusion of 
impurities (dopants) 
in the quantum well

Color shift Cracking of chip/die
Yellowing and 
cracking of the 
encapsulating lens 
[53]

LED module (package level including 
interconnects) – wire bond, bumps, 
attachments, encapsulate, lead frame, lens 
[22, 48, 50, 53, 58, 64, 65]

Lumen degradation and 
color shift [22, 50, 64, 65]

Propagation of defect 
and dislocation

Delamination between 
chip and die, as well as 
lamp cup and outer shell 
[58]

Diffusion of 
impurities (dopants)

Diffusion of moisture into 
the boundaries of 
packaging material [48]

Cracking of chip/die
Yellowing and 
cracking of the 
encapsulating lens 
[53]
Package epoxy 
browning [65]

System level (diffuser, reflector, electrical 
driver) [41, 54, 58, 64, 45, 51, 46, 66, 56, 
47]

Lumen flux depreciation 
[58, 64, 46, 47]

Encapsulant 
yellowing

Light output off, short 
circuit

Solder joint fatigue

Plastic housing crack, glass 
bulb crack
Optical coating 
discoloration
Color shift [41, 54, 66]

M. S. Ibrahim et al.



161

diffusion of dopants (impurities) in to the quantum well, defect propagation (due to 
defect/dark spot, propagation, and dislocation), and electromigration due to crystal-
line defects are the factors that play major roles to the non-radiative 
recombination.

At the package level, the commonly known failure mechanisms are delamination 
of the interface, encapsulant carbonization, encapsulant yellowing, thermal quench-
ing of phosphor, solder joint fatigue, and lens cracking. These failures will eventu-
ally cause lumen flux depreciation and change the chromatic properties of the LEDs. 
The failure mechanisms at the interconnections can be fracture of the bond wire as 
well as fatigue on the wire ball bond due to thermal and electrical overstress, electri-
cal contact degradation due metallurgical interdiffusion, and electrostatic discharge 
(resulting in rapid failure due to the open circuit). The failure mechanisms at differ-
ent levels of LED devices will cause at least one of these failure modes to occur 
[48] [58].

4  �Data-Driven Approaches

Data-driven (DD) approaches rely on the use of historical and observation data to 
learn intelligently without prior knowledge of the system, to obtain statistical and 
probabilistic lifetime estimates, and to provide help in making valuable decisions on 
system/product health and reliability. The DD approaches help to detect anomalies 
and predict RUL for a system based on the investigation of historical monitoring 
data collected from sensors [67]. It is assumed that the system statistical character-
istics remain unchanged until an anomaly occurs in the LED product/system [34]. 
The DD approaches are usually considered as the black box approaches to PHM as 
they do not require prior knowledge on the system models. There are many ways to 
classify DD approaches; however, for simplicity, DD approaches can be categorized 
into two, statistical-based and machine learning-based DD, methods depending on 
the data analysis methods.

In the first case, statistical-based approaches rely on the use of empirical or ana-
lytical equations to build statistical models that helps to predict the degradation 
trend of LED performance parameters. These approaches are convenient to imple-
ment as they make use of primarily historical data and do not need to rely on expert 
knowledge. In fact, statistical-based data-driven methods depend not only on the 
availability of data but also on the nature of the data collected [35]. This approach 
has the capability of describing the uncertainties in performance degradation of 
LEDs by incorporating random and dynamic variances. On the other hand, machine 
learning (ML) algorithms refer to a set of methods and procedures that can be used 
to capture, detect, and learn relevant information patterns from large amount of data 
and use the unhidden patterns for further decision-making in prognostics or predict-
ing the future lifetime [18].

The main advantage of the DD approach is that the methods and algorithms pro-
vide quick results and are computationally efficient. In addition, DD methods can 
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also handle complex systems having multicomponent interaction, such as in the 
case of LED lighting systems, which are difficult to deal with using the physics-
based method. On the other hand, one of the drawbacks of the DD approach is its 
dependency and demand for training (or historical) data to create correlations, 
understand patterns, and evaluate data trends and deliver accurate results [31]. In 
fact, statistical-based data-driven methods depend not only on the availability of 
data but also on the nature of the data collected [35]. In some cases where the prod-
ucts have a long lifetime, nonoperating, and standby systems, there will be insuffi-
cient training or operational data. In such conditions, data-driven approaches have 
to incorporate model-based approaches to bring a better prognostic solution. 
Commonly, data-driven methods are used in fault detection, diagnostics, and life-
time prediction. Even though the first two parts are mostly handled by using DD 
methods, the prediction part can also be handled with PoF approaches [29].

Assessing the reliability information of products (such as remaining useful life-
time, mean time to failure) plays a central role in the process of continuous quality 
and reliability improvement. This is especially true for highly reliable products such 
as LEDs, where it is time-consuming and expensive to assess their lifetime using 
traditional lifetime tests [68]. In such conditions, the quality characteristics of prod-
ucts whose degradation path (degradation data over time) is related to the reliability 
of the product can be collected and analyzed to infer important reliability informa-
tion about the lifetime of the product. Lumen depreciation is the most common 
failure mode in LEDs [10]; thus the luminous flux maintenance lifetime, defined as 
the amount of time left until the initial light output falls below a failure threshold of 
70%, is widely recognized as one of the critical characteristics for representing the 
LED’s life and assessing its reliability (Fig 6.6).

LEDs belong to highly reliable electronic devices with long lifetimes (more than 
50,000 h), provided that proper thermal management techniques are applied [32, 
33]. Therefore, traditional reliability assessment methods based on failure data are 
not suitable for LEDs which have few failures even under accelerated conditions. 
Previously, the accelerated life test (ALT) was used to qualify the LED’s reliability 
and was designed to cause the failure of LED packages/lamps at a faster pace com-
pared to the usage under normal conditions [69]. However, there are two consider-
ations when using ALT in the LED case; firstly, relating the real operation life and 
rated life under accelerated conditions is not easy for the LED case. Secondly, keep-
ing the same failure modes and mechanisms under both normal operations and 
accelerated conditions is also difficult. In such situations, the use of degradation 
data to handle reliability assessment has been found to be a superior alternative 
compared with traditional censored failure data. It provides the benefits of identify-
ing the degradation path as well as more reliability information (such as mean time 
to failure (MTTF), confidence intervals) that helps in maintenance decision-making 
before failures happen [70–75]. First introduced by Lu and Meeker [72], the general 
degradation path method was used to model degradation data in relation to time. 
Fan et al. [7] implemented the degradation data-driven-based PHM with statistical 
models into the high-power white LED to get additional reliability information 
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(such as reliability function, confidence interval, and MTTF) in addition to the lumi-
nous flux lifetime, the only information obtained from IES-TM-21-11.

Besides the deterministic statistical methods, stochastic modeling was also used 
to predict the lifetime of LEDs based on degradation data, where the degradation 
path was modeled as a stochastic diffusion process [25, 76]. Such stochastic degra-
dation of products (e.g., lumen depreciation) is often modeled based on a failure 
rate function or a stochastic process such as random deterioration rate, Markov 
process, Brownian motion with drift (wiener process), or the gamma process [77]. 
Recently, Si et al. [78] and Wang et al. [79] proposed an improved remaining useful 
life estimation method in the diffusion degradation process, which can also be used 
to describe the LED’s degradation path. Meanwhile, the Bayesian approach was 
also found to be an effective method to predict the residual life distributions from 
degradation data [73, 80]. In addition to dealing with degradation data, another 
data-driven-based PHM used in LED lighting is anomaly detection that uses 

Fig. 6.6  Prognostic modeling techniques for remaining useful life
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distance measures to monitor the operating characteristics in LED (such as junction 
temperature, driving current). In this case, the health of an LED product/system can 
be described as the degree of depreciation or deviation from its anticipated typical 
performance. In order to evaluate the reliability of the product and predict the life-
time, the degree of deviation from the normal performance has to be evaluated pre-
cisely [81]. Therefore, distance measures were used to detect fault occurrence in a 
product’s normal operation [82–85]. Based on this approach, Sutharssan et al. [86–
88] applied distance measures (such as Euclidean and Mahalanobis distance) to do 
real-time health monitoring and determine remaining useful lifetime estimation for 
high-power LED.

In general, DD methods are based on statistical techniques, pattern recognition, 
deep learning and machine learning algorithms, and artificial intelligence 
approaches. These methods can be employed at the component, subsystem, or sys-
tem levels [89]. Sikorska et al. [90] presented a comprehensive review on available 
prognostic modeling methods, strengths, and weaknesses that help to estimate 
remaining useful life and reliability of engineering assets. Some of these methods or 
approaches have been widely applied by researchers in the past few years. The 
appropriate application of these methods requires not only mathematical knowledge 
but also appropriate system understanding. The summary in Fig. 6.6, enhanced from 
Sikorska et al. [90] shows a general classification of most of the RUL prediction 
data-driven approaches that can be used for LED lighting system reliability assess-
ment, failure analysis, and remaining useful life prediction. In the study of LED’s 
reliability and lifetime prediction, many data-driven approaches can be found in the 
literature. The DD approaches can be categorized into different types depending on 
the nature of the degradation data (deterministic or stochastic), data training require-
ment (supervised, unsupervised, or semi-supervised), and so on. The data-driven 
approaches are widely used and the application spectrum is broader. A comprehen-
sive summary of the machine learning algorithms is presented in Table 6.3, in the 
Appendix section. Many of the data-driven techniques that are found effective from 
other fields of study could be adapted and customized for the LED’s lifetime estima-
tion and reliability analysis with proper understanding as discussed in this section.

4.1  �An Overview of Selected Statistical Data-Driven Methods

4.1.1  �Wiener Process-Based Approach

A Wiener process is generally described as a drift component plus a diffusion com-
ponent based on Brownian motion. A simple Wiener process with constant drift can 
be represented by Eq. (6.1):

	
X t x t� � � � � � � � �0 � ��t

	 (6.1)

where X(t) is degradation of performance characteristics (such as lumen mainte-
nance, color shift, etc.), x(0) is initial deterioration, λ > 0 is a drift parameter, σ > 0 
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is a diffusion coefficient, and {β(t), t > 0} is a standard Brownian motion that repre-
sents the stochastic dynamics of the degradation process [91].

Degradation modeling with the Wiener process is mathematically important 
because the distribution of the first hitting time (FHT) at which the degradation 
process exceeds a threshold, i.e., lifetime (T) can be formulated analytically based 
on the inverse Gaussian distribution. That is why the Wiener process has been 
widely studied for lifetime prediction and reliability assessment [92–94], and the 
pdf of T can be given as:
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where ω is a failure threshold and the mean and variance of T are θ = [λ, σ2] and 
given as w/λ and wσ2/λ3, respectively [95].

A Wiener process is typically used to analyze degradation processes that vary 
bidirectionally over time with Gaussian noise, in other words, non-monotonic deg-
radation processes, and it is one of the widely used degradation modeling approaches. 
The Wiener process was applied to predict the RUL of variable stress-accelerated 
degradation tests by pioneers Doksum and Hbyland [96]. Whitmore [97, 98] pro-
posed a Wiener diffusion process to address measurement errors and a timescale 
transformation method to address the time-varying degradation drift. This method 
has been extensively applied in [99–104] to describe the degradation modeling of 
light-emitting diodes (LEDs), self-regulating heating cables [98], bridge beams 
[105], bearings [106], and so on. Peng and Tseng [99] employed the Wiener process 
to analyze the degradation path of LEDs and to estimate the equations for median 
life as well as MTTF. Liao and Elsayed [104] applied the Wiener process to model 
the degradation of electronic devices such as LEDs sources exposed to variable 
stresses under field conditions. Ibrahim et al. [107] investigated the lifetime estima-
tion of high-power white LEDs based on lumen maintenance data using the Wiener 
process method. Jing et al. [108] used the constant drift Wiener process to model the 
radiation power degradation for ultraviolet LEDs. Recently, a modified Wiener pro-
cess was proposed by Huang et al. [50] to handle dynamic and random variations of 
lumen degradation and color shift for mid-power white LEDs and predict their life-
time. The analysis of lumen maintenance and chromaticity shift of mid-power white 
LEDs with the modified Wiener process along with the cumulative distribution 
function (CDF) is shown in Fig. 6.7a–d.

Apparently, the Wiener process has been observed to entertain some variations as 
limiting cases. A common variation is a Wiener process with a linear drift which has 
been studied by Tseng et al. [100], Peng and Tseng [99], Tsai et al. [68], and Guo 
et al. [109]. On the other hand, a timescale-transformed Wiener process has been 
explored by Whitmore [97], Whitmore and Schenkelberg [98], and Wang [105]. 
Real-time reliability has been investigated by Xiaolin et  al. [110] based on a 
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generalized Wiener process-based degradation model and validated based on a laser 
device and capacitor data. A comprehensive review on the Wiener process based 
methods and its implementation for degradation data analysis and lifetime estima-
tion is given in Zhang et al. [111].

4.1.2  �Gamma Process-Based Approach

The gamma process is one of the popular stochastic process models used for model-
ing nonnegative degradation increments taking place in a sequence of small step 
time increments. The gamma process is thus a suitable model for unidirectional 
degradation processes including crack growth, erosion, creep, fatigue, wear process, 
corrosion, swell, and related degrading health index or performance degradations 
[112]. The effectiveness of the gamma process for useful lifetime estimation and 
reliability assessment is due to relevant advantages. One of the main interesting 
features of gamma process in terms of lifetime prediction is that the mathematical 
calculations needed are fairly understandable and the underlying physical meaning 
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is easy to comprehend [77]. The PDF for a degradation process X(t), which can be 
described in terms of the gamma process, is given according to the definition as:
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where X(t) is a performance degradation parameter (such as luminous flux, color 
shift, etc.), α is a shape parameter, β is a scale parameter, and Γ(α) is the gamma 
distribution function.

The system/product’s MTTF under this model MG and failure threshold w has 
been approximated by Park and Padgett [113] as:

	
MTTF

w
G � �

�� �
1

2 	 (6.4)

Nevertheless, it is worth noting that the gamma process appears suitable for the 
monotonic degradation process, and this may restrict the application of the gamma 
process to some other dynamic degradation patterns. For this reason, incorporating 
the modified gamma process that uses the method of moments to estimate the model 
parameters can enhance degradation modeling and lifetime estimation process. 
Recently, the gamma process has been employed to model the lifetime of high-
power white LEDs based on CCT shift [115]. Ibrahim et al. [114] also used gamma 
process to model reliability of phosphor-converted white LEDs by estimating the 
long-term lumen maintenance lifetime and validate by comparing with the NLS 
regression method. The results showed that the prediction accuracy of the gamma 
process was superior compared with the NLS regression-based approach. The plots 
demonstrating the luminous flux degradation, probability distribution with gamma, 
PDF at different time points, CDF, and reliability estimation are shown in Fig. 6.8.

4.1.3  �Particle Filtering (PF) Approach

Particle filtering (PF) is a Monte Carlo simulation-based method which provides a 
convenient framework to handle Bayesian-framed prognostics. PF is a commonly 
used method to model and manipulate non-Gaussian processes and/or nonlinear 
performance degradations and measurement noise. PF uses a number of particles 
and set of weights associated with them to compute the prior distributions (probabil-
ity densities) of the model parameters [116–118]. On the contrary, the IES TM-21 
standard for projecting lumen maintenance lifetime uses the LSR to compute model 
parameters which depends on the minimization of the sum of errors or offsets 
between the estimated values by using proposed analytical equation and experimen-
tal or real measurements.
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Due to its features, PF is found to be effective to model the lifetime of LED 
sources that are known to manifest dynamic and nonlinear performance deteriora-
tion, such as luminous flux and chromaticity shift. A typical procedure to apply PF 
method can be described according to Fan et al. [119], as follows: the first task is to 
choose a degradation model as suggested in the IES TM-21 standard (i.e., 
exponential-based decay model) to represent the performance degradation in the 
LED light source. Then the second step is to replace the LSR method used to esti-
mate model parameters in TM-21 with Bayesian inference in PF approach. The 
Bayesian inference makes use of observations or experimental values to estimate 
the value of unknown model parameters and update their values in the form of dis-
tribution function. Within a proposed PF method, the procedure of the recursive 
state estimation and optimization with updated measurements can be performed in 
four steps: (i) initialize the model parameters, (ii) sample the model parameters and 
prediction, (iii) use the Bayesian inference algorithm to update values, and (iv) 
weight the particles and resample, as shown in Fig. 6.9a. At the end, the experimen-
tal measurements will be terminated at time tp, and then the remaining useful life 
(RUL), with confidence interval limits, will be estimated by manipulating the 
updated model with measurement noise. Fan et al. [119] employed this PF method 
to project the lumen maintenance lifetime for high-power white LEDs. The feasibil-
ity of the PF method was validated, and its prediction accuracy was evaluated and 
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showed superiority over the current NLS regression-based TM-21 method. 
Illustration of the implementation of the PF approach to investigate the lumen main-
tenance lifetime for high-power LEDs is shown in Fig. 6.9.

As the main focus of this review is on the machine learning-based data-driven 
approaches, the review on statistical approaches is limited to the updated and well-
revised Wiener process, gamma process, and PF approaches. For other statistical-
based data-driven approaches such as Mahalanobis distance, Euclidean distance, 
Kalman filter (KF), and unscented Kalman filtering (UKF), a brief review is given 
in Sun et al. [23]. The different types of ML algorithms employed to handle lifetime 
estimations of LED sources are presented in the next section.

Fig. 6.9  Illustration of particle filter process to predict the lifetime of high-power white LEDs 
based on luminous flux degradation data (a) model parameter estimation process. [120] Copyright 
2017 Springer International Publishing. Implementation of particle filtering algorithm (b) fitting 
all lumen degradation data to decay model as training samples, (c) prediction of lumen mainte-
nance life, (d) PF method and IES-TM-21 LSR approach estimating RUL based on lumen mainte-
nance data. [119] Copyright 2015, the authors
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4.2  �An Overview of Selected Machine Learning 
Methods for PHM

Recently, an exponential increase in computing power, introduction of new state-of-
the-art algorithms, and systematic generation of large data have been observed. Due 
to this, ML has emerged by breaking new frontiers in reliability assessment and 
lifetime prediction field of studies. ML algorithms are a set of procedures and meth-
ods that can be used to capture, detect, and learn relevant information patterns from 
large amounts of data and use the unhidden patterns for the process of decision-
making in anomaly detection, diagnostics, and prognostics or predicting remaining 
useful lifetime [18]. ML can be defined as “the branch of artificial intelligence that 
deals with the development of algorithms and models that can automatically learn 
patterns from data and perform tasks without explicit instructions,” according to 
Chen et al. [121]. A more engineering-oriented definition of machine learning was 
presented by Mitchell [122] as “a computer program is said to learn from experi-
ence E with respect to some class of tasks T and performance measure P if its per-
formance at tasks in T, as measured by P, improves with experience E.” In short, 
machine learning enables computers to learn through experience and improve per-
formance without requiring explicit programming. For instance, if the task T is to 
identify the failure of LED systems, the training data such as lumen degradation and 
chromaticity shift can be considered as the experience E, and the failure prediction 
or estimation accuracy is the performance measure P. Depending on the amount and 
the type of human supervision required, it can be broadly categorized into super-
vised learning (predictive modeling), semi-supervised learning, and unsupervised 
learning (descriptive modeling).

4.2.1  �Supervised Learning Approaches

In supervised learning, an output value or desired pattern can be estimated/predicted 
based on a classified or labeled set of input data. Depending on the output or 
response variable, the problem can be described as either classification (such as 
normal or abnormal) or regression (such as lumen degradation level, chromaticity 
shift, CCT degradation). As a result, the choice of the learning method is an impor-
tant factor in achieving desired outputs or in discovering the group of input data. A 
typical supervised ML task is classification, and a diagnostic problem is a typical 
classification task. Due to this, the majority of supervised ML methods are used to 
address diagnostic problems (i.e., failure mode identification, normal, anomaly, 
etc.). However, supervised ML methods are also applicable in the estimation of 
remaining useful lifetime (RUL) which is a regression task [123]. Some authors 
recognize linear regression [124] [125] and logistic regression [126] as supervised 
machine learning methods. However, the well-known supervised machine learning 
approaches applied for the prognostics of systems include k-nearest neighbors 
(KNN), support vector machine (SVMs) [127], relevance vector machine (RVM) 
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[128], decision trees [129], artificial neural network (ANN), [18] [90] [130], and 
random forest. Some of the widely used machine learning methods are discussed as 
follows.

Artificial Neural Network

Artificial neural networks (ANN) form a set of mathematical algorithms conceived 
and modeled after the human brain’s neurons structure and designed to recognize 
patterns [131]. A typical neural network and back-propagation learning [132, 133] 
is shown in Fig.  6.10. The working principle of the ANN algorithm mimics the 
human brain which connects many nodes in a complex structure. The nodes repre-
sent input, output, and hidden variables, while the links represent the weight param-
eters. The bias parameters are denoted by links coming from additional inputs and 
hidden variables x0 and z0, and more details about ANN are given in [132]. In an 
ANN, a network is modeled, and it learns an effective way to produce a desirable 
output by reacting to give inputs [35], as depicted in Fig. 6.10. In a back-propagation 
ANN, the learning process consists of forward propagation of the signals and back-
ward propagation of the errors.

ANN is a popular ML approach used to perform many tasks such as prognostics 
(prediction/regression problems) and diagnostics (classification problems). ANN 
helps to compute a predicted output for the lifetime of a product explicitly or implic-
itly, from a mathematical representation of the product derived from measurement/
experimental data rather than a physical understanding of the failure processes [90]. 
ANNs are known methods for modeling complex nonlinear systems effectively and 
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efficiently and can generalize and adapt solutions from a limited dataset [130]. 
Based on the mathematical operations and set of parameters required, ANN archi-
tecture can be of different types including feedforward neural network, back-
propagation neural network, radial basis function neural network, recurrent neutral 
network (RNN), and self-organizing map. Although ANN has been widely applied 
in prognostics, it has two main limitations. The first is a lack of transparency or lack 
of documentation on how decisions are made in a trained network. The second one 
is related to optimization of results as there are no established methods to determine 
the optimal network structure.

As one of the popular approach in prognostics, ANN has been implemented to 
study transformers [135], aircraft actuator components [136], bearings [137], 
nuclear turbogenerators [138], electronic packages [139], etc. However, applica-
tion of ANN methods for high-power white LEDs lifetime estimation was not 
very common until Sutharssan [140] demonstrated a basic neural network for 
lifetime prediction of LEDs. The model used consists of one hidden layer and two 
neuron nodes in the hidden layer. Recently Lu et al. [134] proposed and tested a 
model for lifetime prediction of high power as well as mid-power LED light 
sources. In their investigation, both the radial basis function network and back-
propagation neural network were demonstrated. The AdaBoost algorithm is 
adopted to enhance backward propagation NN in training the weight points con-
necting input neurons with hidden layer neurons and predict the lifetime with a 
multidimensional input parameter such as lumen depreciation, color coordinates, 
driving current, and aging temperature. The BPNN data training, iterations, train-
ing errors, as well as predictions are shown in Fig. 6.11. In general, the perfor-
mance of ANNs has good performance for lifetime estimation of systems due to 
the capability of learning complex relationships by training multilayer networks. 
However, it has few undeniable limitations, such as low transparency and the 
demand for high-quality data, which could be difficult for new products in indus-
trial applications.

The recurrent neural network (RNN) is a type of ANN designed to recog-
nized sequential data such as speech recognition, precise timing, and so on, due 
to its added feature of time dimension to NN model. However, RNN still suffers 
from gradient exploding or vanishing during the learning process [141]. With 
the capability of learning long-term dependencies, a special type of RNN called 
the long short-term memory (LSTM) architecture was found to be suitable to 
overcome the shortcomings of the traditional RNN architecture. Guo et al. [141] 
used LSTM architecture to predict the RUL of bearings, and, compared to SOM, 
the prediction performance of LSTM was found to be superior, as shown in 
Fig. 6.12. Similarly, Wu et al. [142] deployed the LSTM approach in prognos-
tics and demonstrated a good prediction accuracy using aircraft turbofan 
engine’s health performance data. While LSTM architecture RNN appears to be 
suitable for LED RUL estimation, application of this method has not been 
reported in the literature.
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Fig. 6.11  A typical neural network (a) BP neural network training convergence curve, (b) effect 
of network training regression, (c) AdaBoost-improved BPNN curves of iterations and training 
error, (d) state of prediction regression [134]. Copyright 2018, the authors

Fig. 6.12  RUL prediction result for a bearing [141]. Reproduced with permission from publisher/
Elsevier
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K-Nearest Neighbors

K-nearest neighbors (KNN) is a supervised learning algorithm with a non-
probabilistic property that belongs to similarity-based prognostics, and it has been 
employed in PHM for crack propagation [143], electromagnetic relay contact resis-
tance [144], and printed circuit boards ball grid array solder joints [145]. As an 
emerging trend in the prognostics approach, KNN has been used as a lifetime esti-
mation tool for reciprocating compressor valves based on regression [146]. The 
prognostic performance, precision, and accuracy of KNN regression (KNNR) was 
compared with self-organizing map (SOM) and multiple regressions using actual 
operating data of a valve from an industrial compressor. The result for all the 
approaches showed that the performance was relatively good and comparable to 
each other. A typical application for LED anomaly detection has been conducted 
based on the KNN-kernel density-based clustering algorithm [147]. In this study, 
peak analysis was used to extract features from spectral power distribution (SPD), 
the principal component analysis (PCA) was used for the reduction of dimensional-
ity of feature, the KNN-kernel density-based clustering technique was used to parti-
tion the principal components datasets into clusters, and finally distance-based 
algorithm were used to detect anomalies. In this case study, the KNN algorithm was 
used to list kth nearest neighbor distances to each of the N single clusters formed by 
PCA. This typical application of KNN algorithm and related techniques to investi-
gate the qualification of LEDs along with some results is illustrated in Fig. 6.13.

Support Vector Machine and Relevance Vector Machine

The support vector machine (SVM) is a modern and advanced technique used for 
classification problems (anomaly detection, diagnostics such as normal/anomaly) 
and regression (prediction) types of problems. It is a very successful approach in 
supervised learning using the flexible (i.e., multiparameter) linear kernel approach. 
Predictions are made in SVM based on a function of the form given as:
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where wn are the model weights and K(x, xn) is a kernel function. The target function 
of SVM has a key feature that attempts to reduce the number of errors on the train-
ing set while maximizing the margin between two classes in a classification study.

Due to this, it has the advantage of preventing over fitting that leads to good 
generalization and results in a sparse model dependent only on a subset of kernel 
functions [148]. The SVM classifier algorithm has been demonstrated in the prob-
lem of health evaluation and novelty detection. In [81], the Bayesian SVM was 
trained to model the posterior class probability in the absence of failure data (i.e., 
anomaly or negative class data), as in the case for a safety and mission critical 
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system in Lockheed Martin equipment. In addition to this, a least-squares SVM 
combined with Bayesian inference was developed and used to investigate lifetime 
prediction of a microwave component [149]. In [149], the radial basis function NN 
(RBFNN) algorithm was also employed for RUL estimation and validation pur-
poses, and the point and interval estimate of RUL based on least-squares SVM has 
been found to be more robust and stable compared with the RBFNN algorithm. 
Despite its success, SVM suffers from a disadvantage in terms of lack of probabilis-
tic prediction outputs (for regression and classification problems) which is an 
important aspect in prognostics applications [148, 150].

The relevance vector machine (RVM) is an identical functional form to the SVM 
which has a probabilistic sparse kernel model as an additional feature. The RVM 
achieves this through the Bayesian approach and introduces a prior over the weights 
that are governed by a set of hyper-parameters. In addition to its generalization 
performance capability that is similar to SVM, the other feature of RVM is that it 
makes use of considerably fewer kernel functions compared to the SVM approach. 
In the PHM area, the RVM has been successfully explored to estimate the RUL of 
rotating equipment in an aerospace setting [128]. The RVM regression (i.e., a 
Bayesian machine learning technique) has also been implemented effectively to 
predict the RUL of LEDs, and the qualification result showed that the testing time 
for LEDs can be reduced from the IES standard (i.e., 6000 h) to hundreds of hours 

Fig. 6.13  (a) SPD feature extraction, (b) principal components from extracted features, (c) SPD 
training using KNN-kernel density-based clustering, (d) distance measure from cluster centroid to 
detect anomaly, (e) anomaly detection using die SPD [147]. Reproduced with permission from 
publisher/IEEE. Copyright 2014, the authors

6  Health Monitoring, Machine Learning, and Digital Twin for LED Degradation…



176

(210 h). This approach was also reported to handle unit-to-unit variation and also 
has the capability of handling transient degradation dynamics. Due to this feature, 
the RUL prediction accuracy of the RVM approach has been reported to surpass the 
particle filtering approach [151]. The detailed results for the LED lifetime estima-
tion based on RVM regression compared with the PF approach are depicted in 
Fig. 6.14.

In general, the SVM and RVM demonstrated superior performance compared to 
the ANN approaches for experiments with small sample sizes. Due to this, SVM 
and RVM may be suitable for lifetime prediction where limited measurements are 
available. On the other hand, challenges such as parameter estimation may slow 
down its wider application.

4.2.2  �Unsupervised Learning Approaches

Unsupervised learning is a machine learning procedure where the input dataset is 
unlabeled, and also there is no classified or labeled target response value Yi or 
response variable. In other words, there is no labeled output value to supervise the 
learning process of a learner, or there is no need of data to train algorithm. In 
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unsupervised learning methods, an unlabeled or unclassified set of data is used to 
find interesting patterns or outputs in the data. Due to this, the main tasks of unsu-
pervised learning are clustering and dimensionality reduction, and the nature of 
these ML approaches enables the addressing of anomaly detection [152]. Some of 
the unsupervised algorithms are k-means clustering, principal component analysis 
(PCA), and hierarchical clustering. The unlabeled instances are used to train a 
model for representing normal behavior [123] as shown in Fig. 6.15. A few of these 
unsupervised learning approaches that have been investigated to conduct reliability 
assessment of LED products are described in this section.

Principal Component Analysis

Principal component analysis (PCA) is an exploratory data analysis technique used 
in dimensionality reduction to simplify the complexity of data while retaining pat-
terns and trends. It performs this by transforming the original data into fewer com-
prehensive dimensions (indexes), which act as summaries of features [153]. Similar 
to clustering, PCA is an unsupervised learning method, and it finds patterns without 
reference to prior knowledge of the data. This approach was first introduced in 1933 
by Hotelling [154] to transform the statistical dependency of groups of correlated 
variables in multivariate data to uncorrelated variables and to achieve optimal 
conditions.

The PCA method has been widely implemented in condition monitoring for 
mechanical systems. Wang and Zhang [155] used PCA to transform a set of vari-
ables for aircraft engine experimental observations to a new set of uncorrelated 
variables. The new set of data are known as principal components and then used in 

Fig. 6.15  An unlabeled training dataset for unsupervised learning
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the aircraft engine lifetime recursive filtering-based prediction model. On the other 
hand, Ahmed et al. [156, 157] demonstrated PCA approaches for fault detection in 
reciprocating compressors by identifying 5 and 7 most important performance char-
acteristics (PCs), respectively, from 9 and 14 original features.

The life of high-power LED is influenced by numerous parameters including 
series resistance, optical output saturation, junction temperature, and so on. Qiyan 
[133] adopted PCA to process the various parameters and select the principal com-
ponents (parameters) for further processing using neural networks. Chang et  al. 
[147] used PCA for dimensional reduction among 24 extracted features from LEDs 
die SPD (12 features) and phosphor SPD (12 features) to study anomaly detection 
of LEDs. The six principal components from 24 extracted features were further 
analyzed using a KNN-kernel density-based clustering technique. This study ana-
lyzed 480 and 640 training datasets and portioned into 7 and 8 clusters, respectively, 
and the results of feature extraction and principal component analysis are shown in 
Fig. 6.13 along with SVM/RVM plots.

K-Means Clustering

K-means clustering is an unsupervised learning fault detection approach which is 
widely used in industry because it can be applied without the need to be trained on 
data obtained from a faulty machine or system. In k-means a number of centroids 
are selected that define the number of clusters, and each data point is assigned to its 
closest centroid based on Euclidean distance. The k-means clustering helps to parti-
tion n number of objects into k clusters where each object will have the nearest 
mean distance from the cluster. The main objective of this method is to minimize the 
total distance between clusters or the square error function. This objective function 
can be formulated as follows:
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where J is the objective function, n is number of objects, k is number of clusters, and 
x ci

j
j

� � � 2  is the chosen distance function among the data point xi
j� �  and the cluster 

centroid cj.
This method has been successfully applied for anomaly detection of mechanical 

components, such as rolling elements bearings [158], as well as for wind turbines 
[159]. In [159], data was collected from a normally operating turbine supervisory 
control and data acquisition system (SCADA) and fitted using the k-means cluster-
ing algorithm. This approach shows the suitability for employment in anomaly 
detection in LED systems as it does not require failure data or faulty system infor-
mation. However, application of this approach for diagnostics and prognostics of 
LEDs was not found in the literature. Figure 6.16 shows a typical implementation 
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Fig. 6.16  K-means clustering procedure (top), clustering illustrated (bottom). [152]. Reproduced 
with permission from publisher/Wiley
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procedure for this approach (left) and how trained data can find their clusters based 
on the distance from the centroid (right).

Self-Organizing Map (SOM)

First introduced by Kohonen [160], the self-organizing map (SOM) is one variety of 
ANN method mainly applied for unsupervised learning. The SOM has been 
employed to project high-dimensional data obtained from supervisory control and 
data acquisition system of a wind turbine into a two-dimensional space to capture 
the pattern of input training data. A Euclidean distance method was used to repre-
sent difference between new input data and target value as the indicator for system-
level anomaly detection [161]. Tian et al. [162] demonstrated a SOM-based method 
for the purpose of anomaly detection with the k-nearest neighbor algorithm for the 
purpose of reducing sensitivity to noise in mechanical and electronic systems (cool-
ing fan with ball bearing) data.

Recently, this approach has been applied as a lifetime estimation approach for 
compressor valve failure data, and the result was found to be relatively competitive 
with other approaches applied for purpose of comparison, such as KNNR and mul-
tiple regression [146]. The study claimed that the SOM was used for the first time 
as a standalone program for remaining useful lifetime estimation. Even though an 
implementation of this method was not found in the PHM of LEDs, the similarity of 
the nature of degradation data in the mechanical component observed in the study 
[146] suggests that this method appears to be promising for the RUL estimation of 
LED products [146]. The RUL prediction performance of SOP along with KNNR, 
multiple linear regression, and ensemble methods based on a historical failure data 
is depicted in Fig. 6.17.

4.2.3  �Semi-supervised Learning Approaches

Semi-supervised learning paradigm is a ML approach that falls within super-
vised and unsupervised learning methods by introducing both labeled and unla-
beled data for training. This approach has evolved recently and has been 
increasingly applied to automatically manipulate and exploit large amounts of 
unlabeled data and small amounts of labeled data for training without requiring 
human experts. The aim of semi-supervised learning is to classify a set of unla-
beled data using the information set from the labeled data, and it is mainly 
applied for anomaly detection problems. For a typical semi-supervised learning, 
suppose a dataset X = (xi)i ∈ [n] can be divided into two components: data points 
Xj : (x1, x2, …, xj) for which labels Yj : (y1, y2, …, yj) are given and data points 
Xk  :  (xj + 1, xj + 2, …, xj + k), for which the labels are unknown [163]. The Semi-
supervised learning methods are widely applied for speech analysis, web 
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Fig. 6.17  RUL estimation based on SOP, KNNR, multiple linear regression, and ensemble meth-
ods [146]. Reproduced with permission from publisher/Elsevier

content classification, protein sequence classification, and recently in prognos-
tics. Some of the examples that can be considered as semi-supervised learning 
algorithms include Hidden Markov Model, expectation maximization (EM) 
with generative mixture models, graph-based methods, and transductive SVM 
[164], and two of these methods that have been successfully applied in prognos-
tics are discussed here.
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Expectation Maximization

Expectation maximization (EM) is an iterative and general procedure employed to 
estimate model parameters in a parametric distribution. ML is often considered as a 
special case of maximum likelihood estimation where missing or incomplete data is 
examined and computed by alternating between (i) estimation of expectation 
(E-steps) and (ii) maximization during model re-estimation (M-steps) until it con-
verges [165]. Although the EM algorithm is not widely seen in the PHM field, it is 
a very important algorithm, and a typical application of EM for use in a RUL predic-
tion is presented by Si et  al. [166]. In this study, linear and exponential-based 
closed-form degradation models were considered to demonstrate a degradation path 
approach for RUL prediction. The expectation maximization algorithm along with 
Bayesian updating was used to update the RUL distribution and model parameters 
when new degradation data was obtained [166]. In solid-state lighting, a recent 
work showed that expectation maximization (EM) has been applied to estimate the 
model parameters of the exponential decay model and to calculate the remaining 
useful lifetime of HPWLEDs [167] as shown in Fig. 6.18. In this study, the EM was 
applied to estimate the degradation model parameters for the state space model from 
unlabeled luminous flux degradation data. The RUL estimation results were claimed 
to be superior to TM-21 standard which is based on NLS regression method, and it 
showed a comparable accuracy to PF method (Fig. 6.18).

Hidden Markov Models

Hidden Markov Models (HMMs) are standard approaches for encoding, analyzing, 
and predicting patterns in multivariate and univariate observation data. Even though 
the HMM technique was developed in the late 1960s, it is still going through devel-
opment and gaining popularity [168]. The HMMs are based on a stochastic model 
and Markovian hypothesis, where the current hidden (not observable) state of the 
model is influenced by its previous state. In HMM, each of the current model states 
(hidden) displays an outcome which is observable state. For instance, in case of 
LEDs, when estimating the lumen degradation or color shift state at time point t, the 
HMM considers not only the feature values X(t) at time t but also the preceding 
value Xt − 1.

The HMM is a semi-supervised approach, typically used for anomaly detection. 
However, HMMs can also address detection problems, decoding problems, as well 
as learning problems. This method was successfully applied for the first time in 
PHM study by Baruah and Chinnam [169], where the sensor signals from a machine 
were modeled using the HMM method to identify the health status as well as facili-
tate the remaining useful life estimation of cutting tools. The HMM has also been 
applied in PHM for mechanical parts, including hydraulic pumps [170, 171], heli-
copter gearboxes [172], as well for anomaly detection in an electronic component, 
insulated gate bipolar transistor (IGBT) [173]. A mixture of Gaussian Hidden 
Markov Models has also been employed to assess the current health status and 
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Fig. 6.18  (a) Parameter estimation using EM algorithm, (b) RUL prediction based on 
EM-estimated parameters and iteration trends values for parameters [167]. Reproduced with per-
mission from publisher/Elsevier
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estimate remaining useful lifetime of bearings [174]. Even though it has been 
applied for diagnostics and prognostics for mechanical parts and electronic compo-
nents, its application has not been found in PHM for LED products and systems so 
far. A comprehensive theoretical explanation and step-by-step tutorials on the gen-
eral HMM are given in Rabiner [175], while a review on the potential applications 
of HMM is demonstrated in [176].

The observation sequence O  =  O1  O2…OT can be generated by HMM when 
appropriate values for N, M, A, B, and π are given. The compact notation for the 
discrete HMM model λ, when model parameters (N and M) and probability mea-
sures (A, B and π) specified are as:

	
� �� � �A B, ,

	 (6.7)

where N, M, A, and B are, respectively, number of hidden states in the model, num-
ber of distinct observations per state, state transition probability matrix, and the 
observation probability distribution of each state. The observed states are repre-
sented as O and Q which is hidden state at time t. The HMM can be represented 
graphically in different ways [176] as shown in Fig. 6.19. The first plot portrays a 
direct state transition graph, while the second illustrates the allowable transitions.

Fig. 6.19  HMM graphical description (a) stochastic finite-state automation view of a HMM, (b) 
a directed graphical model (DGM) [169]. Reproduced with permission from publisher/Taylor 
& Francis

M. S. Ibrahim et al.



185

In recent years, an increasing number of research studies can be found on prog-
nostics using HMM. However, HMM still suffers from heavy computational work-
load problems, and consequently future research should focus on addressing the 
limitations and improve its applicability for complex and practical industrial sys-
tems and products including LEDs.

5  �Fusion Prognostics Approach for Light-Emitting Diodes

Both the PoF- and DD-based PHM methods have been employed successfully in the 
prediction of failures in many devices and systems (e.g., machinery systems, LED 
lighting devices and systems, hybrid systems) [37, 177]. However, the PoF meth-
ods  [178–183] require comprehensive knowledge of products in advance (e.g., 
materials and geometries, thermal, electrical, mechanical, life-cycle conditions, and 
other processes that lead to failures) that always increases the time and cost in actual 
applications. On the other hand, the data-driven approaches [119, 126, 184–194] 
need sufficient measurement or experimental data to estimate the health conditions 
and to predict trend thresholds from failure prognostics, but it is not easy to obtain 
these data in advance, especially for newly introduced LED lighting products. Thus, 
the fusion-based PHM is believed to solve these concerns by combining the 
advanced qualities and features of both the PoF and DD approaches. Fusion prog-
nostics could apply PoF modeling, in situ monitoring procedures, and deployment 
of both statistics-based and ML-based DD methods to detect the performance devi-
ation or degradation, predict the RUL, and assess the reliability for LED lighting 
products and systems. Because it uses in situ monitoring with the use of sensor 
technologies, fusion-based PHM can realize real-time failure diagnostics and RUL 
prediction in field applications.

The fusion (hybrid) prognostics approach combines the strengths of both PoF-
based and data-driven methods, while eliminating their disadvantage to assess reli-
ability, detect anomalies, and predict the lifetime of LED products and systems. The 
Fusion prognostics approach enables effective use of information from both meth-
ods for dynamic PHM and RUL prediction as well as to evaluate return on invest-
ment (ROI) [195–197] of LED product/systems [37]. Pecht and Jaai [34] assessed 
the state of applications in the PHM of electronic and information-rich products and 
presented a framework on the implementation of PHM for these products and sys-
tems by further illustrating a printed circuit board (PCB) case study. Cheng and 
Pecht [37] presented a fusion prognostic method to elaborate the useful lifetime of 
multilayer ceramic capacitors (MLCCs). They demonstrated this method with a 
special case study on the multivariate state estimation technique (MSET). Yao et al. 
[9] presented an implementation roadmap of PHM approaches for LED lighting 
systems. In their study, the LED lighting system was categorized into LED strings 
(including die, interconnect, and package) and the LED driving system (MOSFET, 
capacitor, etc.). However, for ease of understanding and the convenience of imple-
menting prognostics approaches, the LED lighting product/system can be 
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categorized into three sub-parts as LED module/package (die, inter connect, encap-
sulates), LED driver (electrical part), and optical diffusion (diffuser and reflector 
parts). In general, the fusion prognostic approach based on PHM is an increasingly 
demanding method as it has not been well designed and developed for LED light-
ing. The detailed procedure for fusion prognostic approach implementation is 
shown in Fig. 6.20.

6  �System-Level Reliability of Light-Emitting Diodes

As described in the previous sections, the diagnostics and prognostics of high-power 
white LEDs have been widely studied based on machine learning and statistical-based 
data-driven methods and algorithms, such as the Wiener process [50, 107], gamma 
process [114, 198], Kalman filter [186, 199], particle filtering [26], neural networks 
[134], expectation maximization [167], RVM regression [151], and so on. The reli-
ability assessment and lifetime prediction of most of these studies are at the compo-
nent level (such as package/module, LED driver, diffusers, and reflectors) using direct 
performance characteristics (i.e., lumen maintenance, color shift) and indirect charac-
teristics (i.e., junction temperature and driving current) to examine the luminaire/
system-level (such as LED luminaire, LED street lighting, LCD backlights, etc.) reli-
ability. However, high-power white LEDs are complex products/systems composed of 
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several subsystems/components, and it appears to be difficult to deduce the reliability 
of LED systems based on single component analysis as the product lifetime is affected 
by the health status of its components and their interaction. Due to this, LED manu-
facturers are facing challenges regarding system-level reliability assessment and 
remaining useful lifetime prediction of LED products/systems.

An LED system consists of several subsystems, including LED chip, electrical 
driver for power supply and control, thermal management module, optical part, and 
so on. One of the major challenges for a generic system-level approach for LED 
systems reliability is the large variety of products and applications [6]. In a high-
power LED lamp system, the LED driver serves as the constant current source and 
optimizes the power to drive high-power LEDs [200]. Usually, the LED drivers are 
considered as the weakest part among all components in LED lighting products. 
Based on a family of outdoor luminaires failures, the US Department of Energy 
(DOE-US) [201] reported that the LED driver (power supply) is the weakest link in 
the LED lighting system, constituting 52% failure, LED package (10%), housing 
(31%), and control circuit driver (7%). On the other hand, Van Driel et al. [202] used 
the Monte Carlo approach to predict LED system-level reliability by taking both the 
failure mode of the sub-components and the operation conditions into account. The 
result showed that the LED emitters, solder interconnect, and driver accounted for 
30%, 44%, and 26% failure rates, respectively, after 20,000 h of operation, showing 
that the solder interconnects are weakest parts in LED systems. Recently Ke et al. 
[64] introduced a subsystem isolation method to estimate the lumen degradation 
LED lamps, and the result showed lumen degradation of 70.5% due to the LED 
emitter, 21.5% the optical part, and 6.5% the driver, which contradicts the two stud-
ies (US DOE [201] and Van Driel et al. [202]) previously mentioned. Song et al. 
[45] also proposed a hierarchical life prediction model, which consists of component-
level sub-physics-of-failure models, for the actively cooled LED luminaire system. 
In general, the results among studies based on subsystems and components for 
system-level lifetime analysis showed inconsistency.

In order to address the long-term reliability assessment concerns of complex and 
highly reliable products such as high-power LEDs and fulfill the guarantee of high 
prediction accuracy in less time and in a cost-effective manner, developing a system-
level reliability assessment and lifetime prediction methods is necessary. 
Traditionally, graph model-based reliability block diagrams (RBD) and failure tree 
analysis (FTA) have been used to assess the system-level reliability of products and 
systems. However, these methods are based on deterministic relationships between 
components/subsystems. To address these concerns, the Bayesian network (BN) 
method, a probabilistic graphical machine learning method, appears to be a promis-
ing approach. The BN uses a directed acyclic graph (DAG) to represent the condi-
tional and probabilistic relationship between component/subsystem relationships in 
a system [203]. As one of the popular modeling and reasoning tools, the BN model 
has been employed in the fields of machine learning, artificial intelligence, and 
uncertainty management [204]. The BN model has also been applied in the field of 
reliability engineering including software reliability [205], modeling maintenance 
[206], and fault diagnosis in systems [207, 208]. Recently, the BN model was found 
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to be effective in estimating the system/product reliability of complex systems, such 
as high-speed trains [208], solar-powered unmanned aerial vehicles [209], and pit-
ting degradation structural steel in marine systems [210].

In this section, a BN method that considers the intricacies of the high-power 
light-emitting diode (LED) lamp system and the functional interaction among com-
ponents for reliability assessment and lifetime prediction is briefly introduced. This 
approach considers the parametric (degradation based) and catastrophic failure 
modes of each component in order to assess the system-level reliability, and it also 
requires the design of experiments to gather the required data. The functional and 
structural relationship analysis between components and the failure mode and 
effects analysis (FMEA) are considered [3] in order to construct a DAG for a BN 
model. In the BN model constructed in Fig. 6.21 (left), the variables which have no 
parents, such as LED_CAT, LED_DEP, Driver_CAT, Driver_DEP, Solder_CAT, 

Fig. 6.21  DAG for product level LED light sources (top), 3D model exploded and assembly view 
(bottom)
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DifRef_DEP, and DifRef_CAT, are referred as root nodes. On the other hand, the 
variables with no children are the leaf nodes (LED_Lamp), while the remaining 
variables are the intermediate nodes (LED_Module, LED_Diffuser, and LED_
DifRef). The root nodes have unconditional probabilities, represented here as reli-
ability state functions of the node Xi at time t RXi(t), i = 1,…,p; the intermediate 
nodes as RMj(t), j = 1,…,k; and the leaf node as RL(t). The BN model DAG analysis 
is based on the construction of a test sample, shown as a 3D model, with an exploded 
and assembled view Fig. 6.21 (right).

The reliability status of each root node or component is assessed based on the 
corresponding prediction model at a future time tn, and the reliability state predic-
tion matrix can be represented as follows:
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The reliability state of the intermediate nodes can also be predicted based on the 
prediction models of the root nodes U = {R1, R2, …, Rp} and the assumption of con-
ditional independence:

	
P R t P R t R tMj

U
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	 (6.9)

Similarly, the reliability state of the leaf node can be predicted based on the proba-
bility of the intermediate and root nodes as follows, and the junction tree algorithm 
synchronizes the DAG of the BN model for product level lifetime prediction:
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Here Pa(L), Pa(Mj), and Pa(Mk) are the parent nodes for leaf node L and intermedi-
ate nodes Mj and Mk respectively.

7  �Challenges and Opportunities of Diagnostics 
and Prognostics Approaches

Recalling that PHM is a multifaceted engineering discipline that facilitates the 
safety, reliability, and maintenance aspect of components and systems, it helps to 
avoid unexpected product problems that can lead to products’ performance 
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deficiencies. Even though this approach has been widely accepted for product and 
system reliability assessment, lifetime prediction, and maintenance decision-mak-
ing, it is still facing some challenges, especially for electronic systems, including 
LED lighting systems. The data-driven methods are based on the extraction of his-
torical data collected from sensors, to exploit and learn the degradation behavior of 
the system through relevant feature identification using machine learning, AI, and 
statistical tools. On the other hand, model-based approaches implement a set of 
mathematical and analytical equations obtained from classical physics laws to rep-
resent the degradation behavior and predict the future behavior of physical compo-
nents and systems.

The different approaches for the PHM in general need further improvement to 
be able to reduce the computational time, effort, and availability of historical data 
to accommodate the increasing demand in the reliability assessment and remain-
ing useful life prediction in the LED light industry. There are always trade-offs in 
terms of accuracy, applicability, cost, and complexity while implementing DD 
approaches. While some approaches can handle complexity, it may be deficient in 
regard to computational time and accuracy and vice versa [211, 212]. Some algo-
rithms, such as Hidden Markov Model and Gaussian process regression, consume 
longer computational time, while others such as artificial neural network, particle 
filtering, neuro-fuzzy systems, and Hidden Markov Model demand large amounts 
of historical data to perform prognostics. Accordingly, the advantages and disad-
vantages of the two main prognostics approaches are briefly summarized as 
follows:

Data-driven (statistical and machine 
learning methods) Model-based (POF-based) approach

Assumptions or empirical estimations of 
physical parameters are not required

For a well-controlled system, predicting the future 
propagation of the degradation without prior 
knowledge about the mathematical model is 
possible

Less complex and more applicable than 
model-driven methods

Has higher accuracy if the systems’/products’ 
physics of models remains consistent

Lower precision results compared with 
model-based approaches

Requires fewer data compared to data-driven 
approaches

Well-established theoretical basis and 
convenient to implement fast and accurate 
online pattern recognition

Usually complex and more stochastic to model 
system degradations

High-dimensional noisy data can be 
transformed in to lower dimensions 
convenient for prognostics

Might have difficulty to handle unit-unit variability 
in population and often provides overall estimate 
for entire sample

Relatively easy to calculate and predict 
future states

Might be difficult to get mathematical models for a 
particular kind of component or material

The more available information used, the 
better the accuracy

Computationally expensive
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Data-driven (statistical and machine 
learning methods) Model-based (POF-based) approach

Requires large amount of data to be more 
accurate in general

Requires simplifying assumptions

May lead to inaccurate time of change of 
predictions as it relies mainly on historical 
degradation
Poor performance with high-dimensional 
data and longer learning time

8  �Digital Twin as Emerging LED Lifetime Analysis

In the past few years, dramatic advancement in information technology such as 
Internet of things, artificial intelligence, and big data has evolved which has led to 
an increasing interaction trend between virtual spaces and physical entities. This has 
led to the introduction of digital twins  – a pragmatic method of cyber-physical 
fusion [213]. A digital twin is a dynamic and comprehensive virtual prototype of a 
physical product/system. The concept of digital twin was initially conceived and 
introduced by Vickers (NASA) and Grieves (University of Michigan) in 2003 [214].

In the past few years, many companies started using digital twin to increase their 
system operation efficiency, testing new products before deployment, and identify-
ing problems [213]. According to prediction by Gartner, half of the large industrial 
corporations will be leveraging digital twin technology by 2021 to facilitate the 
assessment of system performance while gaining an improvement of 10% in system 
effectiveness [215]. The implementation and adoption of digital twin depend on the 
type of industry and products as there are no common standards, methods, or norms 
[216]. The National Aeronautics and Space Administration (NASA) built two iden-
tical spacecrafts for Apollo 13 mission with the idea of early “digital twin” where 
one was launched to space, while the other was kept on Earth to simulate and moni-
tor the launched spacecraft. Later, with few technical improvements, NASA and the 
US Air Force introduced digital twins to the aerospace industry. Companies such as 
Chevron and General Electric also use digital twins to track operation of wind tur-
bines [216]. Singapore is also creating a virtual copy of the entire city in partnership 
with Dassault Systemes, to assess, improve, and monitor utilities [217].

It can be recalled that PHM is very useful in the diagnostics and prognostic 
analysis of a product/system of a physical object. On the other hand, digital twins 
appear to have the capability to fill the gap in PHM by creating a link between the 
physical system and the virtual model. Recently, Tao et  al. [218] introduced the 
application of digital twins in the PHM sector and demonstrated a case study on 
wind turbines. The implementation of PHM for products and systems in terms of 
fault detection, diagnostics, and prognostics is mainly based on the performance 
degradation and failure in the physical space which has a limited connection to the 
virtual model [218]. This gap could be filled with convergence of data from physical 

6  Health Monitoring, Machine Learning, and Digital Twin for LED Degradation…



192

and virtual space through digital twins to improve the PHM of systems/products 
seamlessly. Due to its comprehensive virtual representation of a physical object, 
digital twins can simulate the behavior and conditions of products and systems 
through mathematical models and data. Oftentimes, machine learning algorithms 
and artificial intelligence are employed to analyze system operation models and 
identify correlations among data generated in in situ and in-field (deployment) oper-
ation [216]. The machine learning algorithms used in digital twins include super-
vised learning (such as artificial neural network), unsupervised learning (such as 
clustering methods for virtual and real-world environment), and reinforcement 
learning approaches (during uncertain or partially observable operating environ-
ments) [219].

Leveraging the digital twin technology has the potential to enable real-time sys-
tem performance assessment and improve PHMs of light-emitting diodes as well as 
other safety critical complex products and systems. Due to its potential to generate 
accurate data from physical and virtual space for lifetime assessment and real-time 
data and condition monitoring, digital twins represent the future technology for 
lifetime assessment of LED products/systems. Initially, Grieves proposed three 
dimensions of digital twins: physical entity (PE), virtual entity (VE), and the con-
nection between physical and virtual systems (CN) [214]. Based on this, Tao et al. 
[218] extended the digital twins to a five-dimensional model of digital twins with 
the addition of services for the physical and virtual entity (SR) and digital twin data 
(DD). The extended five-dimensional (PE, VE, DD, CN, SR) digital twin concept 
along with a framework of implementation in PHM for light-emitting diode prod-
ucts and systems is highlighted in Fig. 6.22.
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9  �UV LED Degradation Modeling and Analysis

Ultraviolet (UV) light, with a wavelength between 250 and 350 nm, has numerous 
useful and attractive applications, such as virucide, air and water purification, pho-
tolithography, optical stimulus in drug activation, polymer curing, and laser surgery 
[220]. Due to its benefits of having a long life, compact size, and unimodal spectrum 
as well as being environmentally friendly, the III-nitride-based UV light-emitting 
diode (LED) is becoming a promising photoelectronic device to replace traditional 
UV light sources, such as mercury lamps [221, 222]. UV LEDs are important varia-
tions in the LED field. Especially after the global pandemic of coronavirus disease 
2019 (COVID-19), ultraviolet rays from UV LEDs are being used for noncontact 
disinfection in an environment that is not high-temperature and cannot be wiped 
with alcohol [223]. Therefore, UV LEDs will continue to play a greater role in the 
future in phototherapy, sterilization, and related applications.

Radiation power is a critical physical index that reflects the optical radiation 
intensity of a photoelectronic device. The radiation power degradation of UV LEDs 
can cause by the UV LED chip degradation, the yellowing of packaging materials, 
and the cracking or delamination of interface [4]. The lifetime of UV LEDs is still 
challenged by the uncertainty of internal quantum efficiency, light extraction effi-
ciency, and thermal management [224]. And due to the unclear failure physics and 
mechanisms of UV LEDs, the reliability and lifetime estimation methods are incon-
sistent [225]. This section focuses on modeling the dynamic nonlinear radiation 
power degradation process of UV LED packages in an accelerated degradation test. 
Firstly, we selected the exponential degradation model recommended in the TM-21 
standard to describe the lumen radiation power degradation process of UV LEDs. 
Next, a LSTM neural network algorithm and two stochastic processing models, i.e., 
gamma process and Wiener process, are compared with the nonlinear least-squares 
(NLS) regression method recommended by the IESNA TM-21 standard. Finally, the 
prediction accuracy and robustness characteristics of the proposed methods are 
analyzed.

The TM-21 standard proposed by IESNA is a commonly used method in the 
industry to deal with the lumen maintenance of LED light sources and project long-
term lifetimes [7, 16]. In this section, the radiation power of UV LEDs was adopted 
to evaluate the light output and predict long-term lifetime [108] (Fig. 6.23). And LP 
is the lifetime when the UV LEDs mean radiation power maintenance decays to P% 
of the initial value (P = 80 is considered as an example).

The cumulative radiation power degradation of UV LEDs can be regarded as a 
time-dependent stochastic gamma process which can be used to model this degrada-
tion process. Assuming the L80 lifetimes of samples satisfied the two-parameter 
Weibull distribution, the mean of the distribution (MTTF-G1) can be predicted. 
Meanwhile, with the gamma process parameters of the whole group, the estimated 
L80 lifetimes (MTTF-G2) can be estimated by eq. (6.4).

In addition to the gamma process, the Wiener process is also a stochastic model 
method that is widely used to describe degradation processes. With the 
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Fig. 6.23  (a) Lifetime calculation of 13 UV LEDs based on Weibull distribution; (b) NLS regres-
sion fitting based on IES-TM-21 standard
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two-parameter Weibull distribution curve fitting of the predicted lifetimes of each 
sample, the estimated lifetimes, which were recorded as MTTF-W, can be estimated.

Also, ML approaches can be used to perform prediction. Neural network predic-
tion does not need to determine the specific functional relationship between input 
and output. RNN can effectively and flexibly model the nonlinear relationship of 
dependent long time series data, that is, the current input is related to the previous 
input [226]. Hochreiter and Schmidhuber [227] proposed LSTM for solving the 
vanishing gradient problem in RNN.

ht is a short-term state, which is equal to the output Yt at time t. ct stands for long-
term memory, running horizontally above the cells in the hidden layer, with less 
interaction and better information maintenance. ct determines what information is 
read, kept, and discarded in the long-term state of network learning. The output 
process can be expressed by the following eqs. [228]:
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	 (6.11)

	 ct = ft ⨂ ct − 1 + it ⨂ gt 	 (6.12)

	  ht = ot ⨂  tanh (ct)	 (6.13)

where σ and tanh are the sigmod and tanh nonlinear activation functions in the 
neural network, respectively; W is the weight coefficient matrix.

Figure 6.24, shows a flowchart of the lifetime prediction of UV LEDs with the  
LSTM neural network. In this chapter, we have 9 input layers and 3 output layers, 
and the number of hidden layers is set to 18 after repeated trial calculations, as 
described in the Fig. 6.25, after multiple adjustments, the optimal weight matrix 
was obtained, and the lifetimes were predicted.

The comparison of prediction errors of each method is shown in Fig. 6.26. It can 
be seen that both the stochastic process method and the LSTM RNN method signifi-
cantly improve the prediction accuracy compared to the TM-21 method. In general, 
the stochastic process method can achieve good prediction results as the prediction 
time increases. The LSTM neural network algorithm requires a small amount of test 
data to achieve better prediction accuracy compared with the other methods. It 
effectively reduces the collection and test time of UV LEDs and also has good 
robustness characteristics. It is found to be a very reliable and robust lifetime pre-
diction algorithm for UV LEDs.

In a brief summary, by designing the experimental aging scheme and obtaining 
the actual lifetimes according to the two-parameter Weibull distribution, the NLS 
regression method, the stochastic process method, and the LSTM neural network 
algorithm were adopted to project the radiation power maintenance data to predict 
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Fig. 6.24  (a) The basic structure of LSTM cell Ct in hidden layer; (b) the flowchart of the lifetime 
prediction of UV LEDs with the LSTM neural network
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the lifetimes of UV LEDs. The results show that the prediction accuracy of the 
LSTM neural network is higher; the results also show that the stochastic process 
method and the LSTM neural network method have better robustness by varying the 
prediction starting points. Therefore, the LSTM neural network method can effec-
tively project the UV LEDs’ radiation power maintenance data with time series for 
lifetime prediction, which provides the feasibility for the rapid lifetime prediction of 
UV LEDs to accelerate the development of the UV LED industry and reduce the 
R&D costs.

Fig. 6.25  The NLS regression method vs. the LSTM neural network method, lifetime prediction 
at different starting points: (a) 1008 h, (b) 1344 h, (c) 1680 h, (d) 2016 h
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10  �Conclusions

In this study, the prognostic and diagnostic methods used in LED lighting have been 
reviewed, with due attention to machine learning-based data-driven approaches. 
Currently, there is an increasing number of studies on the reliability assessment and 
lifetime prediction of high-power white LEDs. However, the majority of conventional 
methods and approaches investigated have limitations in addressing the prognostics 
demand of the dynamic and unpredictable degradation behavior of LED systems. In 
addition to this, situations with sensor monitoring and data acquisition systems have 
shown an increasing trend in recent years. This has created opportunities as well as huge 
challenges to address the issues of diagnostics, RUL prediction, and extraction of useful 
information quickly from the abundantly generating operational and experimental big 
data. In the reliability study and lifetime prediction of LEDs, there are many machine 
learning algorithms that can help to provide lifetime prediction with improved accuracy. 
Some of the ML algorithms that have been employed in the study of mechanical com-
ponents and systems can also be leveraged for LED lighting sources in future potential 
applications, including long short-term memory (LSTM) networks (a variety of recur-
rent neural networks), Hidden Markov Model (HMM), self-organizing maps (SOM), 
least-squares support vector machine, and fuzzy logic. An illustrative example is dem-
onstrated on UV LED radiation degradation data based on NLS regression, Wiener, 
gamma, and LSTM neural network methods. The emerging trend in the application of 
digital twins for PHM with the focus on LEDs has also been briefly investigated.
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Table 6.3  A Brief Summary of machine learning algorithms for prognostics of LED products

Machine learning 
algorithm/method

Input data analysis and 
parameter estimations

Main study analysis results and 
findings

Artificial neural network 
[140, 134, 133]
LSTM, recurrent neural 
network (RNN)a [141, 
142]

Forward current (IF, electrical) 
and temperature [140]

Probability of health status of LEDs 
(healthy 0.99 and not healthy 0.01)

One hidden layer and two 
neuron nodes in the hidden 
layer [140]

Predict the lifetime of power LEDs 
with <5% error [133]

MATLAB neural network 
toolbox, [134, 133]
Luminous flux, chromaticity 
coordinates u’ and v’, electric 
current and temperature [134]

Model can be used when the mean 
square error of datasets between 
estimated and expected life output 
narrow to the target
R value of 0.985 and 0.974 for two 
dataset using AdaBoost BPNN.

K-nearest neighbors 
(KNN) kernel density-
based algorithm [147, 
146]a

24 features from die and 
phosphor SPD clustered [147]

Anomaly detection conducted (two 
clusters for phosphor SPD and three 
clusters for die SPD) [147]

Relevance vector 
machine [151, 128]a

LED light output (lumen 
maintenance and color shift) 
[151]

RUL lifetime prediction with error 
less than 5%, claimed to be better 
than PF
Reduces qualification testing time 
(from 6000 h to 210 h) [151]

Rotating component in 
aerospace setting (NASA)

Estimate the remaining useful life 
with acceptable accuracy [128] a

Component feature damages 
(not specified) [128]a

Not employed to anomaly detection

Support vector machinea 
[81]a, [149]a

Dataset with 22 parameters 
for mission critical system 
from Lockheed Martin [81]a

Identify system anomalies (with 
“healthy” and “unhealthy” class)
Helps to manage false alarms

Power gain degradation data 
of microwave [149]

Point and interval estimates of RUL 
obtained [149]
Much more robust and stable as 
verified in comparison with RBF NN

Principal component 
analysis (PCA) [147, 
133]

12 features from SPD (die and 
phosphor) considered for 
dimensional reduction [147]

PCA used to consider three features 
of SPD after reduction for further 
analysis (KNN) [147]

Eight parameters considered 
for selection [133]

Four features with >85% contribution 
are reduced from 8 to use as an input 
BPNN [133]

(continued)
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