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Chapter 6
Health Monitoring, Machine Learning,
and Digital Twin for LED Degradation
Analysis

Mesfin Seid Ibrahim, Zhou Jing, and Jiajie Fan

1 Introduction

Nowadays, light-emitting diode (LEDs) are widely used in different applications
including general indoor and outdoor lighting lamps, automotive lighting [1], back-
lighting, robotics skin [2], medical and communication equipment, and so on. This
is due to the many advantages, including longer lifetime (50,000—100,000 h), higher
reliability, environmental friendliness, compactness in size, and quicker switching
time when compared with traditional counter parts (incandescent and fluorescent)
lighting sources [3-5].

Regardless of the many benefits and promising future applications that LED
lighting sources provide, there are challenges facing LED manufacturers on the lack
of a unified standard method to monitor in situ LED degradation and to gather reli-
ability assessment information, thermal management, potential glare due to small
size lamp, and color stability. In addition to this, there is also lack of accurate
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remaining useful lifetime estimation and evaluation methods. This is due to the long
lifetime and high reliability at normal operating conditions, various failure mecha-
nisms, rapid technology advancement, and multicomponent features of LEDs com-
pared to the traditional light sources [3, 6, 7]. However, this has brought another
challenge for manufacturers in terms of obtaining sufficient failure data, determin-
ing reliability and estimating remaining useful lifetimes (RUL) in relatively short
lifetime testing before the products are released to the market and with better pre-
diction accuracy.

To address the challenges and shortcomings related to reliability assessment and
lifetime prediction of LEDs, a number of research studies have been undertaken on
the prognostics and lifetime estimation in academia and industry [6, 8—12]. In early
2001, a discussion was initiated by Narendran et al. [13] among the lighting indus-
try experts concerning the standardization of definitions, procedures, and approaches
in the process of useful lifetime estimation for LED products. Currently, LED man-
ufacturers use IES-TM-28 [14], released by IESNA, to project lumen maintenance
lifetime for LED lamps and luminaires where the required data is gathered accord-
ing to industrial standard test report IES-LM-84 [15]. Previously, the IES-TM-21
standard [16] has been used to predict the lifetime of LED light sources based on the
light output degradation data from the standard IES-LM-80 test report [17]. The
approved IES-TM-21 procedure uses the nonlinear least-squares regression (LSR)
approach to project lumen maintenance data to predict the lifetime (L50 or L70) of
LED lighting sources. This lifetime testing method can be a good approach for
comparing lifetime information of LEDs, but it does not provide detailed informa-
tion regarding failure modes, mechanisms, and failure locations [3].

Recently, machine learning (ML) has emerged and is breaking new frontiers in
reliability assessment and lifetime prediction studies due to systematic generation
of large amount of data, newly introduced state-of-the-art algorithms, and an expo-
nential increase in computing power. ML algorithms are a set of methods and pro-
cedures that can be used to capture, detect, and learn relevant information patterns
from large amounts of data and then use the unhidden patterns for further decision-
making in prognostics or predicting lifetime [18]. Thus, the ability of ML to learn
from training data, generalize from historical data, and perform tasks without being
explicitly programmed makes it tantalizing panacea for challenges in reliability
analysis, anomaly detection, diagnostics, and prognostics.

There have been some reviews that studied the degradation mechanisms influ-
encing the reliability of GaN-based white LEDs for different lighting purposes [3,
19-23]. An extensive review that mainly focused on failure causes, failure modes,
and failure mechanisms of LEDs was presented by Chang et al. [3], while recently
Sun et al. [23] have presented a literature review on recent trends in the prognostics
of high-power white LEDs (HPWLEDs), including the failure modes, mechanisms,
and some lifetime estimation approaches. Most of these reviews mainly focused on
statistical-based data-driven approaches, failure modes, and mechanisms as well as
physical degradation mechanisms of LEDs. While these topics are very important
for the prognostics and health management (PHM) study of LEDs, it is not the focus
of this study, which mainly focuses on the machine learning-based PHM approaches
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applicable for LEDs anomaly detection, diagnostics, and lifetime prediction. Thus,
the main aim of this study is to review machine learning algorithms, methods and
approaches and their pros and cons in the reliability assessment, failure or anomaly
detection, and the remaining useful life prediction in general and focusing on LED
light source products in particular.

2 PHM of LEDs

Nowadays, there is an increasing competition in the global market and the need to
enhance customer satisfaction. In addition, huge advancements in technology,
materials, and manufacturing processes are observed which facilitate the design and
manufacturing of many consumer products that are highly reliable and have a lon-
ger lifetime before they fail. All of these factors lead to a shorter product develop-
ment time, and that becomes challenging for manufacturers to evaluate the lifetime
of high reliability items in a shorter period before being released to the market [24,
25]. This phenomenon is no different in the case of lighting products, especially for
the high-power white light-emitting diodes (LEDs) that belong to highly reliable
and long lifetime products that require a longer time to collect adequate degradation
and/or failure data. That is why long-term lifetime estimation and reliability assess-
ment of LEDs in a moderately shorter period of time before products are released to
market have become challenging for LED manufacturers [26]. For this reason, PHM
has evolved as an important method to solve the challenges in terms of increasing
system reliability, availability, and maintainability, enhancing safety and decreasing
life-cycle and operational costs of marketable products and systems in general and
customer electronic systems in particular [27]. Thus, the reliability assessment and
prediction of remaining useful life (RUL) studies have become an important aspect
of PHM of many consumer electronic products, including high-power white LEDs.

Basically, PHM is an engineering discipline that helps to prevent the failure of
products, components, and subsystems which can lead to inadequate performance
and safety concerns. It helps to anticipate problems in products and systems through
signal and sensor data under actual application conditions [28]. PHM uses inputs
such as information known about products/system, data collected from sensor mea-
surements, and applies an algorithm or a set of algorithms to analyze and provide
relevant outputs at various levels of prognostics, such as fault detection, diagnostics,
and lifetime estimation, as depicted in Fig. 6.1.

Fault Detection Diagnostics Prognostics

Past Future
Present

Fig. 6.1 PHM problem architectures (fault detection, diagnostics, and prognostics)
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A well-organized prognostic health management framework should include data
collection using sensors, data processing, security and integration, feature extrac-
tion, fault detection and recognition, damage models, physics of failure, reliability
testing, physical models, prognostics, and so on [29], as illustrated in the PHM
metro map shown in Fig. 6.2.

The main purpose of anomaly detection is to detect unusual or strange anoma-
lous responses of systems and products through identification of deviations from
normal healthy behavior, so that precautionary measures can be taken in advance to
avoid potential failures. It is worth noting that anomalies may not necessarily indi-
cate failure as changes in working or environmental conditions enable sensors to
detect anomalous behavior. Diagnostics enable us to extract and gather failure mag-
nitudes, failure modes, failure mechanisms, and other related data from anomalous
behavior of a product/system through sensors. The term prognostics deals with the
process of estimating the lifetime or predicting the future reliability of a product
based on historic and current degradation data and assessing the degree of deviation
from its normal operating conditions [27]. Prognostics can provide help in all prod-
uct and/or system life cycles including design and development, production and
ramp-up, product testing, operations and maintenance, as well as end-of-life phase
(i.e., phase out and disposal) [30]. In this regard, the PHM of mechanical systems
has been well studied, and as a result there is a considerable body of knowledge in
the area. However, prognostics have only been applied to consumer electronic prod-
ucts/systems quite recently, and this is due to the fact that degradation is difficult to
detect in electronic systems when compared with mechanical systems [31].

FMMEA
Physics of Failure
Infrastructure Data driven approach Virtual Modeling

Sensors Model order reduction
Hardware : Metamodels

Data management
Detecting
anomalies
[ Diagnostics ]

Fig. 6.2 A generic PHM metro map for products/system such as LED lighting, automotive
parts, etc.
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Fig. 6.3 Taxonomy of prognostics and health management approaches

Even though the expected lifetime for typical high-power LEDs can be rated up
to 50,000 h, practical statistics indicate that about half the LED products failed to
reach the rated lifetime [32, 33]. This has raised demands from experts in the LED
sector, end-product manufacturers, and potential customers for dependable reliabil-
ity information and remaining useful lifetime estimation approaches. Thus, through
the application of PHM, the inadequate lifetime and reliability information pro-
vided by LED manufacturers should be addressed, and reliable approaches to moni-
tor the status of LEDs and predict potential failures, especially for safety critical and
emergency systems and products including the medical, aviation, automotive, and
nuclear sectors, are needed. So far, many diagnostic and prognostic activities have
been implemented and executed based on a variety of approaches and techniques. In
general, the most commonly used approaches can be categorized as (i) model-based,
also known as physics of failure (PoF) methods, (ii) data-driven methods, and (iii)
hybrid (fusion) prognostic methods [34]. A more refined and detailed taxonomy of
PHM approaches is presented in Fig. 6.3.

The data-driven (DD) methods are mainly dependent on large amounts of
training data and/or degradation data collected through sensors in order to derive
degeneration models for products and systems. The data collected in real time can
be used to adjust and modify the model parameters. On the other hand, the model-
based method requires prior mathematical models to describe the product’s
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degeneration process based on physical laws. The DD methods are helpful for
complex systems where component interaction is indeterminate and when large
amounts of training data are available, while the model-based method demands
knowledge of the physical laws governing the product degeneration expressed in
mathematical models. Statistical-based and ML models and algorithms are used
in DD approaches while physical models and classical AI methods implemented
in model-based approach [35, 36]. Fusion/hybrid approaches that combine the
benefits and eliminate the drawbacks of both DD and physics-based methods have
also been implemented in prognostics studies [37]. The preferred choice of each
algorithm depends on the different properties manifested for use in the intended
analysis.

3 Model-Based Approaches

3.1 An Overview to Model-Based Approach

Model-based prognostics, also known as physics of failure (PoF) methods, makes
use of information about a product’s material characteristics, loading and stress set-
tings, shape/geometry, and operational and working environmental conditions to
assess reliability, identify failure modes and mechanisms, and so as to estimate the
RUL. By using product life-cycle loading conditions (such as electrical, thermal,
mechanical, chemical, electromechanical, etc.), the product geometry, and material
properties, PoF is also used to design for reliability at the early stage of product
design [38, 39]. The PoF-based approach has the benefit of identifying the root
causes of system failure [23, 30]. However, sufficient knowledge about the product
geometry, materials, properties, and operating conditions are required, and it may
be difficult to obtain such information, especially for complex systems. For a certain
product/system at a particular life-cycle loading condition, PoF focuses mainly on
identification of potential failure locations, failure modes, as well as failure mecha-
nisms. The stress at every failure location is obtained as a function of the life-cycle
loading conditions, material properties, and product architecture/shape. Then fault
generation and propagation are determined by damage models [28, 40]. Model-
based approaches are also used to develop mathematical models in order to process
and evaluate collected degradation data based on the prior knowledge of the prod-
uct/system.

In the study of prognostics, PoF models implement the use and monitoring of
performance parameters, physical characteristics, and operating and environmental
conditions. These parameters are used to monitor the product during experiments
and can be categorized according to their domains. For the prognostic analysis of
LED products, the different impact (stress) factors such as electrical, thermal,
humidity, mechanical, thermomechanical, and creep stress applied on the test sam-
ple can be monitored by sensors, and the PoF models with mathematical equations
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can be used for further analysis depending on the experimental plan. A brief sum-
mary of PoF models employed for LED products and systems is shown in
Table 6.1. Pecht and Jie [38] studied the PoF-based prognostics for electronic and
information-rich components. In their study, they criticized the use of old reliability
handbooks due to prediction errors and uncertainties (in design, material, and oper-
ating conditions) caused and showed the growing trend of using PoF-based prog-
nostics for electronic products so as to identify critical component failure modes
and mechanisms.

The implementation approach framework for PoF-based PHM has been dem-
onstrated in such a way that the first step is to undertake virtual life assessment.
Virtual life assessment can be conducted using inputs from design data; failure
mode, mechanisms, and effects analysis (FMMEA); expected lifetime conditions;
and PoF models. During the product life cycle, high-priority failure mechanisms
might be triggered by different severe and frequently occurring operational, envi-
ronmental and loading conditions. The virtual life assessment which is the first
phase in the physics of failure-based prognostics has been further investigated by
Fan et al. [10]. Their study was focused on the investigation of failure sites, failure
modes, and associated degradation mechanisms for high-power white LEDs
(HPWLEDs). The sample selected for demonstration was a typical commercial
HPWLED lamp according to “bottom-up” strategy at the chip, package, and sys-
tem levels as shown in Fig. 6.4. Pictures in this figure are presented for the pur-
pose of illustration.

Lu et al. [41] used the physics of failure-based approach to study down light
color shift failure at the luminaire level conducted on the diffuser (PMMA), reflec-
tor and package parts of an LED lamp of 10 W, and CCT of 4000 k. The selected
parts had undergone aging testing at room temp, 55 °C and 85 °C, irradiation testing
at 85 °C, and humidity reliability test at 85 °C and 85% RH. The experimental
results showed that LED packages have a greater contribution to color shift.
Humidity and temperature also accelerate the color shift, where humidity has the
stronger impact (Table 6.1).

LED
H Module
H Reflector
» Lamp
Housin
LED
b) Driver c)

a)

Fig. 6.4 LED lamp and components: (a) LED package and module, (b) LED lamps exploded, (c)
LED lamp and lighting lamps
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Table 6.1 PoF models for LED products and systems

M. S. Ibrahim et al.

Stress (impact) factors

PoF models

Performance indicators

Electrical (current) [42, 43]

Lumen degradation gradient [42]

Inverse power law-Weibull [43]

Lumen flux depreciation
[42],

Thermal stress/shock [44, 45,

46, 43, 47]

Coffin-Mansion Eq. [44]

Lumen depreciation

System reliability analysis [45]

Color shift over lifetime

Hierarchical model (based on
junction temperature) [45]

Arrhenius Eq. [46]

Arrhenius-Weibull [43]

Finite element simulation using
ANSYS and numerical analysis
simulation

Junction temperature
gradient

Humidity/moisture [48, 49]

Luminous-efficiency gradient [48]

Finite element simulation using
ANSYS [49]

Lumen flux depreciation
[48]

Multi-

physics | [41, 50, 51, 52, 49]

Thermal and humidity

Chromaticity shift eq. [38]

Arrhenius Eq. [52]

Hallberg-Peck’s model [5052]

Subsystem isolation method [51]

Finite element simulation using
ANSYS [49]

Chromaticity shift, [38,
50]

Lumen flux degradation
[50, 51]

Thermal and electrical
(current) [53, 54, 55,

Junction temperature distribution

LED catastrophic failure
for high thermo-electrical

[58] and hygro-

[58, 59]

mechanical stresses

modeling (transient heat
conduction equation)

Moisture diffusion and hygro-
mechanical modeling (Fick’s law
of diffusion)

Finite element analysis (simulation)

56, 43] Spectral power distribution (SPD) | stress [54]
analysis [53] Spectral power
Electrothermal simulation distri.butior} (SPD_) and
(junction temperature with Lum1n9u§ infensity
Arrhenius equation) depreciation [53, 54, 56]
Electrothermal simulation [56]
Generalized Eyring-Weibull [43]
Thermomechanical Thermal and mechanical stress on | Solder joint fatigue
(571, solder alloy
Garafalo’s hyperbolic creep model | Lumen depreciation
Norris-Landzberg equation
Engelmaier equation for strain
range
Thermomechanical Thermal and thermomechanical | Lumen flux depreciation

Hygro-thermal-

modeling [58]

mechanical coupling

Heat conduction systems, Fick’s
law of diffusion and FEA
simulation

Lumen flux depreciation
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3.2 Failure Modes, Mechanisms, and Effects Analysis
Jfor LEDs

The failure modes, mechanisms, and effects analysis (FMMEA) could be consid-
ered as input to the PoF-based prognostic approach, as depicted in Fig. 6.5. The
exposure of LED lighting products/systems to different loading and operational
stresses such as electrical, thermal, mechanical, or chemical causes performance
degradation and/or failure [60].

In LED systems, a failure mode is a recognizable way in which a failure of a
package/lamp is noticed, and it can be classified as (i) loss of light output or open
circuit, (ii) chromaticity shift (i.e., color shift), and (iii) degradation of luminous
flux (decreasing in light output). Each failure mode could also be due to one or a
combination of failure mechanisms which could be caused by thermal, mechanical,
humidity, chemical, etc. Failure mechanisms can be described as thermal, mechani-
cal, physical, chemical, or other processes that cause a failure. Failure mechanisms
can be broadly classified as wear-out (gradual) and overstress (catastrophic) fail-
ures. The wear-out failures are caused by cumulative stresses (loads) for a pro-
longed period of time. On the other hand, overstress (catastrophic) failures occur as
a result of a one type of stress /load condition that surpasses the optimal threshold
of the product characteristic [38].

A comprehensive study was reported by Chang et al. [3] on the FMMEA at semi-
conductor, interconnect, and package levels for LED products. Subsequently, Fan
et al. [11] conducted a study on the FMMEA of LED-based backlighting systems
used for commercial displays and TVs. Since LED-based display systems are

| Failure Modes, Mechanisms and Effect Analysis (FMMEA)

Design Failure =~ Failure PoF LifeCycle | | Maiotenance
data Mode Mechanis Modes Profile Records Mode

POF based lfe
| st
 In-situ life cycle loads and :
performance monitoring . System Health s_‘:tatus - giﬁ'utf:ﬁdmg for
« Historical Sensor data and prognostics
o Built in test (BIT), IETM “ ¥ .
s d#gﬂ)’ | Fusion Approach

Y Y
-

RemainingLife [ ife Cycle Cost Analysis
Assessment %,CB A, ROI)

Fig. 6.5 PoF-based PHM Methodology [28, 61], with permission
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formed by LED strips and electric driver systems, the study aimed to identify failure
sites, failure modes and mechanisms at the chip (die/semiconductor), driver, pack-
age, and strip levels of LED backlight system. As an LED-based device, the failure
modes for backlight units are lumen flux degradation, color change, and loss of light
failure modes. In our review study, the FMMEA of LED products/systems are
described by considering a more general architecture including chip (die/semicon-
ductor) level, package (module along with interconnects), and system levels as pre-
sented in Table 6.2.

In general, the FMMEA of LEDs has been investigated at three levels: die/chip,
interconnects, and LED package levels [3, 10]. At the chip level, an increased non-
radiative recombination can cause a degradation of the active layer of LEDs which
impacts in decreasing the luminous flux and power efficiency. Subsequently, the

Table 6.2 FMMEA of LEDs at different levels

LED failure site Failure modes Failure mechanisms
LED chip level (semiconductor/die) Lumen flux depreciation | Propagation of defect
[11, 21, 22,48, 49, 53, 62, 63] [48, 49] and dislocation
Light output off, short Diffusion of
circuit [48] impurities (dopants)
in the quantum well
Color shift Cracking of chip/die

Yellowing and
cracking of the
encapsulating lens

[53]
LED module (package level including Lumen degradation and Propagation of defect
interconnects) — wire bond, bumps, color shift [22, 50, 64, 65] | and dislocation
attachments, encapsulate, lead frame, lens | Delamination between Diffusion of
[22, 48, 50, 53, 58, 64, 65] chip and die, as well as impurities (dopants)
lamp cup and outer shell
[58]
Diffusion of moisture into | Cracking of chip/die
the boundaries of Yellowing and

packaging material [48] | cracking of the
encapsulating lens
[53]

Package epoxy
browning [65]

System level (diffuser, reflector, electrical | Lumen flux depreciation Encapsulant
driver) [41, 54, 58, 64, 45, 51, 46, 66, 56, [58, 64, 46, 47] yellowing

47] Light output off, short Solder joint fatigue
circuit

Plastic housing crack, glass
bulb crack

Optical coating
discoloration

Color shift [41, 54, 66]
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diffusion of dopants (impurities) in to the quantum well, defect propagation (due to
defect/dark spot, propagation, and dislocation), and electromigration due to crystal-
line defects are the factors that play major roles to the non-radiative
recombination.

At the package level, the commonly known failure mechanisms are delamination
of the interface, encapsulant carbonization, encapsulant yellowing, thermal quench-
ing of phosphor, solder joint fatigue, and lens cracking. These failures will eventu-
ally cause lumen flux depreciation and change the chromatic properties of the LEDs.
The failure mechanisms at the interconnections can be fracture of the bond wire as
well as fatigue on the wire ball bond due to thermal and electrical overstress, electri-
cal contact degradation due metallurgical interdiffusion, and electrostatic discharge
(resulting in rapid failure due to the open circuit). The failure mechanisms at differ-
ent levels of LED devices will cause at least one of these failure modes to occur
[48] [58].

4 Data-Driven Approaches

Data-driven (DD) approaches rely on the use of historical and observation data to
learn intelligently without prior knowledge of the system, to obtain statistical and
probabilistic lifetime estimates, and to provide help in making valuable decisions on
system/product health and reliability. The DD approaches help to detect anomalies
and predict RUL for a system based on the investigation of historical monitoring
data collected from sensors [67]. It is assumed that the system statistical character-
istics remain unchanged until an anomaly occurs in the LED product/system [34].
The DD approaches are usually considered as the black box approaches to PHM as
they do not require prior knowledge on the system models. There are many ways to
classify DD approaches; however, for simplicity, DD approaches can be categorized
into two, statistical-based and machine learning-based DD, methods depending on
the data analysis methods.

In the first case, statistical-based approaches rely on the use of empirical or ana-
lytical equations to build statistical models that helps to predict the degradation
trend of LED performance parameters. These approaches are convenient to imple-
ment as they make use of primarily historical data and do not need to rely on expert
knowledge. In fact, statistical-based data-driven methods depend not only on the
availability of data but also on the nature of the data collected [35]. This approach
has the capability of describing the uncertainties in performance degradation of
LEDs by incorporating random and dynamic variances. On the other hand, machine
learning (ML) algorithms refer to a set of methods and procedures that can be used
to capture, detect, and learn relevant information patterns from large amount of data
and use the unhidden patterns for further decision-making in prognostics or predict-
ing the future lifetime [18].

The main advantage of the DD approach is that the methods and algorithms pro-
vide quick results and are computationally efficient. In addition, DD methods can
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also handle complex systems having multicomponent interaction, such as in the
case of LED lighting systems, which are difficult to deal with using the physics-
based method. On the other hand, one of the drawbacks of the DD approach is its
dependency and demand for training (or historical) data to create correlations,
understand patterns, and evaluate data trends and deliver accurate results [31]. In
fact, statistical-based data-driven methods depend not only on the availability of
data but also on the nature of the data collected [35]. In some cases where the prod-
ucts have a long lifetime, nonoperating, and standby systems, there will be insuffi-
cient training or operational data. In such conditions, data-driven approaches have
to incorporate model-based approaches to bring a better prognostic solution.
Commonly, data-driven methods are used in fault detection, diagnostics, and life-
time prediction. Even though the first two parts are mostly handled by using DD
methods, the prediction part can also be handled with PoF approaches [29].

Assessing the reliability information of products (such as remaining useful life-
time, mean time to failure) plays a central role in the process of continuous quality
and reliability improvement. This is especially true for highly reliable products such
as LEDs, where it is time-consuming and expensive to assess their lifetime using
traditional lifetime tests [68]. In such conditions, the quality characteristics of prod-
ucts whose degradation path (degradation data over time) is related to the reliability
of the product can be collected and analyzed to infer important reliability informa-
tion about the lifetime of the product. Lumen depreciation is the most common
failure mode in LEDs [10]; thus the luminous flux maintenance lifetime, defined as
the amount of time left until the initial light output falls below a failure threshold of
70%, is widely recognized as one of the critical characteristics for representing the
LED’s life and assessing its reliability (Fig 6.6).

LEDs belong to highly reliable electronic devices with long lifetimes (more than
50,000 h), provided that proper thermal management techniques are applied [32,
33]. Therefore, traditional reliability assessment methods based on failure data are
not suitable for LEDs which have few failures even under accelerated conditions.
Previously, the accelerated life test (ALT) was used to qualify the LED’s reliability
and was designed to cause the failure of LED packages/lamps at a faster pace com-
pared to the usage under normal conditions [69]. However, there are two consider-
ations when using ALT in the LED case; firstly, relating the real operation life and
rated life under accelerated conditions is not easy for the LED case. Secondly, keep-
ing the same failure modes and mechanisms under both normal operations and
accelerated conditions is also difficult. In such situations, the use of degradation
data to handle reliability assessment has been found to be a superior alternative
compared with traditional censored failure data. It provides the benefits of identify-
ing the degradation path as well as more reliability information (such as mean time
to failure (MTTF), confidence intervals) that helps in maintenance decision-making
before failures happen [70-75]. First introduced by Lu and Meeker [72], the general
degradation path method was used to model degradation data in relation to time.
Fan et al. [7] implemented the degradation data-driven-based PHM with statistical
models into the high-power white LED to get additional reliability information
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Fig. 6.6 Prognostic modeling techniques for remaining useful life

(such as reliability function, confidence interval, and MTTF) in addition to the lumi-
nous flux lifetime, the only information obtained from IES-TM-21-11.

Besides the deterministic statistical methods, stochastic modeling was also used
to predict the lifetime of LEDs based on degradation data, where the degradation
path was modeled as a stochastic diffusion process [25, 76]. Such stochastic degra-
dation of products (e.g., lumen depreciation) is often modeled based on a failure
rate function or a stochastic process such as random deterioration rate, Markov
process, Brownian motion with drift (wiener process), or the gamma process [77].
Recently, Si et al. [78] and Wang et al. [79] proposed an improved remaining useful
life estimation method in the diffusion degradation process, which can also be used
to describe the LED’s degradation path. Meanwhile, the Bayesian approach was
also found to be an effective method to predict the residual life distributions from
degradation data [73, 80]. In addition to dealing with degradation data, another
data-driven-based PHM used in LED lighting is anomaly detection that uses
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distance measures to monitor the operating characteristics in LED (such as junction
temperature, driving current). In this case, the health of an LED product/system can
be described as the degree of depreciation or deviation from its anticipated typical
performance. In order to evaluate the reliability of the product and predict the life-
time, the degree of deviation from the normal performance has to be evaluated pre-
cisely [81]. Therefore, distance measures were used to detect fault occurrence in a
product’s normal operation [82—85]. Based on this approach, Sutharssan et al. [86—
88] applied distance measures (such as Euclidean and Mahalanobis distance) to do
real-time health monitoring and determine remaining useful lifetime estimation for
high-power LED.

In general, DD methods are based on statistical techniques, pattern recognition,
deep learning and machine learning algorithms, and artificial intelligence
approaches. These methods can be employed at the component, subsystem, or sys-
tem levels [89]. Sikorska et al. [90] presented a comprehensive review on available
prognostic modeling methods, strengths, and weaknesses that help to estimate
remaining useful life and reliability of engineering assets. Some of these methods or
approaches have been widely applied by researchers in the past few years. The
appropriate application of these methods requires not only mathematical knowledge
but also appropriate system understanding. The summary in Fig. 6.6, enhanced from
Sikorska et al. [90] shows a general classification of most of the RUL prediction
data-driven approaches that can be used for LED lighting system reliability assess-
ment, failure analysis, and remaining useful life prediction. In the study of LED’s
reliability and lifetime prediction, many data-driven approaches can be found in the
literature. The DD approaches can be categorized into different types depending on
the nature of the degradation data (deterministic or stochastic), data training require-
ment (supervised, unsupervised, or semi-supervised), and so on. The data-driven
approaches are widely used and the application spectrum is broader. A comprehen-
sive summary of the machine learning algorithms is presented in Table 6.3, in the
Appendix section. Many of the data-driven techniques that are found effective from
other fields of study could be adapted and customized for the LED’s lifetime estima-
tion and reliability analysis with proper understanding as discussed in this section.

4.1 An Overview of Selected Statistical Data-Driven Methods
4.1.1 Wiener Process-Based Approach

A Wiener process is generally described as a drift component plus a diffusion com-
ponent based on Brownian motion. A simple Wiener process with constant drift can
be represented by Eq. (6.1):

X(t)=x(0)+At+0B(t) ©.1)

where X(7) is degradation of performance characteristics (such as lumen mainte-
nance, color shift, etc.), x(0) is initial deterioration, A > 0 is a drift parameter, o > 0
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is a diffusion coefficient, and {f(7), t > 0} is a standard Brownian motion that repre-
sents the stochastic dynamics of the degradation process [91].

Degradation modeling with the Wiener process is mathematically important
because the distribution of the first hitting time (FHT) at which the degradation
process exceeds a threshold, i.e., lifetime (T) can be formulated analytically based
on the inverse Gaussian distribution. That is why the Wiener process has been
widely studied for lifetime prediction and reliability assessment [92-94], and the
pdf of T can be given as:

w—At)

where w is a failure threshold and the mean and variance of T are 6 = [A, ¢°] and
given as w/A and wa*/A%, respectively [95].

A Wiener process is typically used to analyze degradation processes that vary
bidirectionally over time with Gaussian noise, in other words, non-monotonic deg-
radation processes, and it is one of the widely used degradation modeling approaches.
The Wiener process was applied to predict the RUL of variable stress-accelerated
degradation tests by pioneers Doksum and Hbyland [96]. Whitmore [97, 98] pro-
posed a Wiener diffusion process to address measurement errors and a timescale
transformation method to address the time-varying degradation drift. This method
has been extensively applied in [99-104] to describe the degradation modeling of
light-emitting diodes (LEDs), self-regulating heating cables [98], bridge beams
[105], bearings [106], and so on. Peng and Tseng [99] employed the Wiener process
to analyze the degradation path of LEDs and to estimate the equations for median
life as well as MTTF. Liao and Elsayed [104] applied the Wiener process to model
the degradation of electronic devices such as LEDs sources exposed to variable
stresses under field conditions. Ibrahim et al. [107] investigated the lifetime estima-
tion of high-power white LEDs based on lumen maintenance data using the Wiener
process method. Jing et al. [108] used the constant drift Wiener process to model the
radiation power degradation for ultraviolet LEDs. Recently, a modified Wiener pro-
cess was proposed by Huang et al. [50] to handle dynamic and random variations of
lumen degradation and color shift for mid-power white LEDs and predict their life-
time. The analysis of lumen maintenance and chromaticity shift of mid-power white
LEDs with the modified Wiener process along with the cumulative distribution
function (CDF) is shown in Fig. 6.7a—d.

Apparently, the Wiener process has been observed to entertain some variations as
limiting cases. A common variation is a Wiener process with a linear drift which has
been studied by Tseng et al. [100], Peng and Tseng [99], Tsai et al. [68], and Guo
et al. [109]. On the other hand, a timescale-transformed Wiener process has been
explored by Whitmore [97], Whitmore and Schenkelberg [98], and Wang [105].
Real-time reliability has been investigated by Xiaolin et al. [110] based on a
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generalized Wiener process-based degradation model and validated based on a laser
device and capacitor data. A comprehensive review on the Wiener process based
methods and its implementation for degradation data analysis and lifetime estima-
tion is given in Zhang et al. [111].

4.1.2 Gamma Process-Based Approach

The gamma process is one of the popular stochastic process models used for model-
ing nonnegative degradation increments taking place in a sequence of small step
time increments. The gamma process is thus a suitable model for unidirectional
degradation processes including crack growth, erosion, creep, fatigue, wear process,
corrosion, swell, and related degrading health index or performance degradations
[112]. The effectiveness of the gamma process for useful lifetime estimation and
reliability assessment is due to relevant advantages. One of the main interesting
features of gamma process in terms of lifetime prediction is that the mathematical
calculations needed are fairly understandable and the underlying physical meaning
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is easy to comprehend [77]. The PDF for a degradation process X(f), which can be
described in terms of the gamma process, is given according to the definition as:

B
f(xa,B)=1T(a)

x*exp(Bx),x=0

0,x<0 (6.3)
where X(t) is a performance degradation parameter (such as luminous flux, color
shift, etc.), a is a shape parameter, f is a scale parameter, and I'(ar) is the gamma
distribution function.

The system/product’s MTTF under this model Mg and failure threshold w has
been approximated by Park and Padgett [113] as:

mrTE. = L

©ap 2a (6.4)

Nevertheless, it is worth noting that the gamma process appears suitable for the
monotonic degradation process, and this may restrict the application of the gamma
process to some other dynamic degradation patterns. For this reason, incorporating
the modified gamma process that uses the method of moments to estimate the model
parameters can enhance degradation modeling and lifetime estimation process.
Recently, the gamma process has been employed to model the lifetime of high-
power white LEDs based on CCT shift [115]. Ibrahim et al. [114] also used gamma
process to model reliability of phosphor-converted white LEDs by estimating the
long-term lumen maintenance lifetime and validate by comparing with the NLS
regression method. The results showed that the prediction accuracy of the gamma
process was superior compared with the NLS regression-based approach. The plots
demonstrating the luminous flux degradation, probability distribution with gamma,
PDF at different time points, CDF, and reliability estimation are shown in Fig. 6.8.

4.1.3 Particle Filtering (PF) Approach

Particle filtering (PF) is a Monte Carlo simulation-based method which provides a
convenient framework to handle Bayesian-framed prognostics. PF is a commonly
used method to model and manipulate non-Gaussian processes and/or nonlinear
performance degradations and measurement noise. PF uses a number of particles
and set of weights associated with them to compute the prior distributions (probabil-
ity densities) of the model parameters [116—118]. On the contrary, the IES TM-21
standard for projecting lumen maintenance lifetime uses the LSR to compute model
parameters which depends on the minimization of the sum of errors or offsets
between the estimated values by using proposed analytical equation and experimen-
tal or real measurements.
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Due to its features, PF is found to be effective to model the lifetime of LED
sources that are known to manifest dynamic and nonlinear performance deteriora-
tion, such as luminous flux and chromaticity shift. A typical procedure to apply PF
method can be described according to Fan et al. [119], as follows: the first task is to
choose a degradation model as suggested in the IES TM-21 standard (i.e.,
exponential-based decay model) to represent the performance degradation in the
LED light source. Then the second step is to replace the LSR method used to esti-
mate model parameters in TM-21 with Bayesian inference in PF approach. The
Bayesian inference makes use of observations or experimental values to estimate
the value of unknown model parameters and update their values in the form of dis-
tribution function. Within a proposed PF method, the procedure of the recursive
state estimation and optimization with updated measurements can be performed in
four steps: (i) initialize the model parameters, (ii) sample the model parameters and
prediction, (iii) use the Bayesian inference algorithm to update values, and (iv)
weight the particles and resample, as shown in Fig. 6.9a. At the end, the experimen-
tal measurements will be terminated at time f,, and then the remaining useful life
(RUL), with confidence interval limits, will be estimated by manipulating the
updated model with measurement noise. Fan et al. [119] employed this PF method
to project the lumen maintenance lifetime for high-power white LEDs. The feasibil-
ity of the PF method was validated, and its prediction accuracy was evaluated and
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Fig. 6.9 lllustration of particle filter process to predict the lifetime of high-power white LEDs
based on luminous flux degradation data (a) model parameter estimation process. [120] Copyright
2017 Springer International Publishing. Implementation of particle filtering algorithm (b) fitting
all lumen degradation data to decay model as training samples, (¢) prediction of lumen mainte-
nance life, (d) PF method and IES-TM-21 LSR approach estimating RUL based on lumen mainte-
nance data. [119] Copyright 2015, the authors

showed superiority over the current NLS regression-based TM-21 method.
Mlustration of the implementation of the PF approach to investigate the lumen main-
tenance lifetime for high-power LEDs is shown in Fig. 6.9.

As the main focus of this review is on the machine learning-based data-driven
approaches, the review on statistical approaches is limited to the updated and well-
revised Wiener process, gamma process, and PF approaches. For other statistical-
based data-driven approaches such as Mahalanobis distance, Euclidean distance,
Kalman filter (KF), and unscented Kalman filtering (UKF), a brief review is given
in Sun et al. [23]. The different types of ML algorithms employed to handle lifetime
estimations of LED sources are presented in the next section.
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4.2 An Overview of Selected Machine Learning
Methods for PHM

Recently, an exponential increase in computing power, introduction of new state-of-
the-art algorithms, and systematic generation of large data have been observed. Due
to this, ML has emerged by breaking new frontiers in reliability assessment and
lifetime prediction field of studies. ML algorithms are a set of procedures and meth-
ods that can be used to capture, detect, and learn relevant information patterns from
large amounts of data and use the unhidden patterns for the process of decision-
making in anomaly detection, diagnostics, and prognostics or predicting remaining
useful lifetime [18]. ML can be defined as “the branch of artificial intelligence that
deals with the development of algorithms and models that can automatically learn
patterns from data and perform tasks without explicit instructions,” according to
Chen et al. [121]. A more engineering-oriented definition of machine learning was
presented by Mitchell [122] as “a computer program is said to learn from experi-
ence E with respect to some class of tasks T and performance measure P if its per-
formance at tasks in T, as measured by P, improves with experience E.” In short,
machine learning enables computers to learn through experience and improve per-
formance without requiring explicit programming. For instance, if the task T is to
identify the failure of LED systems, the training data such as lumen degradation and
chromaticity shift can be considered as the experience E, and the failure prediction
or estimation accuracy is the performance measure P. Depending on the amount and
the type of human supervision required, it can be broadly categorized into super-
vised learning (predictive modeling), semi-supervised learning, and unsupervised
learning (descriptive modeling).

4.2.1 Supervised Learning Approaches

In supervised learning, an output value or desired pattern can be estimated/predicted
based on a classified or labeled set of input data. Depending on the output or
response variable, the problem can be described as either classification (such as
normal or abnormal) or regression (such as lumen degradation level, chromaticity
shift, CCT degradation). As a result, the choice of the learning method is an impor-
tant factor in achieving desired outputs or in discovering the group of input data. A
typical supervised ML task is classification, and a diagnostic problem is a typical
classification task. Due to this, the majority of supervised ML methods are used to
address diagnostic problems (i.e., failure mode identification, normal, anomaly,
etc.). However, supervised ML methods are also applicable in the estimation of
remaining useful lifetime (RUL) which is a regression task [123]. Some authors
recognize linear regression [124] [125] and logistic regression [126] as supervised
machine learning methods. However, the well-known supervised machine learning
approaches applied for the prognostics of systems include k-nearest neighbors
(KNN), support vector machine (SVMs) [127], relevance vector machine (RVM)
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[128], decision trees [129], artificial neural network (ANN), [18] [90] [130], and
random forest. Some of the widely used machine learning methods are discussed as
follows.

Artificial Neural Network

Artificial neural networks (ANN) form a set of mathematical algorithms conceived
and modeled after the human brain’s neurons structure and designed to recognize
patterns [131]. A typical neural network and back-propagation learning [132, 133]
is shown in Fig. 6.10. The working principle of the ANN algorithm mimics the
human brain which connects many nodes in a complex structure. The nodes repre-
sent input, output, and hidden variables, while the links represent the weight param-
eters. The bias parameters are denoted by links coming from additional inputs and
hidden variables x, and z,, and more details about ANN are given in [132]. In an
ANN, a network is modeled, and it learns an effective way to produce a desirable
output by reacting to give inputs [35], as depicted in Fig. 6.10. In a back-propagation
ANN, the learning process consists of forward propagation of the signals and back-
ward propagation of the errors.

ANN is a popular ML approach used to perform many tasks such as prognostics
(prediction/regression problems) and diagnostics (classification problems). ANN
helps to compute a predicted output for the lifetime of a product explicitly or implic-
itly, from a mathematical representation of the product derived from measurement/
experimental data rather than a physical understanding of the failure processes [90].
ANNs are known methods for modeling complex nonlinear systems effectively and
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efficiently and can generalize and adapt solutions from a limited dataset [130].
Based on the mathematical operations and set of parameters required, ANN archi-
tecture can be of different types including feedforward neural network, back-
propagation neural network, radial basis function neural network, recurrent neutral
network (RNN), and self-organizing map. Although ANN has been widely applied
in prognostics, it has two main limitations. The first is a lack of transparency or lack
of documentation on how decisions are made in a trained network. The second one
is related to optimization of results as there are no established methods to determine
the optimal network structure.

As one of the popular approach in prognostics, ANN has been implemented to
study transformers [135], aircraft actuator components [136], bearings [137],
nuclear turbogenerators [138], electronic packages [139], etc. However, applica-
tion of ANN methods for high-power white LEDs lifetime estimation was not
very common until Sutharssan [140] demonstrated a basic neural network for
lifetime prediction of LEDs. The model used consists of one hidden layer and two
neuron nodes in the hidden layer. Recently Lu et al. [134] proposed and tested a
model for lifetime prediction of high power as well as mid-power LED light
sources. In their investigation, both the radial basis function network and back-
propagation neural network were demonstrated. The AdaBoost algorithm is
adopted to enhance backward propagation NN in training the weight points con-
necting input neurons with hidden layer neurons and predict the lifetime with a
multidimensional input parameter such as lumen depreciation, color coordinates,
driving current, and aging temperature. The BPNN data training, iterations, train-
ing errors, as well as predictions are shown in Fig. 6.11. In general, the perfor-
mance of ANNs has good performance for lifetime estimation of systems due to
the capability of learning complex relationships by training multilayer networks.
However, it has few undeniable limitations, such as low transparency and the
demand for high-quality data, which could be difficult for new products in indus-
trial applications.

The recurrent neural network (RNN) is a type of ANN designed to recog-
nized sequential data such as speech recognition, precise timing, and so on, due
to its added feature of time dimension to NN model. However, RNN still suffers
from gradient exploding or vanishing during the learning process [141]. With
the capability of learning long-term dependencies, a special type of RNN called
the long short-term memory (LSTM) architecture was found to be suitable to
overcome the shortcomings of the traditional RNN architecture. Guo et al. [141]
used LSTM architecture to predict the RUL of bearings, and, compared to SOM,
the prediction performance of LSTM was found to be superior, as shown in
Fig. 6.12. Similarly, Wu et al. [142] deployed the LSTM approach in prognos-
tics and demonstrated a good prediction accuracy using aircraft turbofan
engine’s health performance data. While LSTM architecture RNN appears to be
suitable for LED RUL estimation, application of this method has not been
reported in the literature.
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K-Nearest Neighbors

K-nearest neighbors (KNN) is a supervised learning algorithm with a non-
probabilistic property that belongs to similarity-based prognostics, and it has been
employed in PHM for crack propagation [143], electromagnetic relay contact resis-
tance [144], and printed circuit boards ball grid array solder joints [145]. As an
emerging trend in the prognostics approach, KNN has been used as a lifetime esti-
mation tool for reciprocating compressor valves based on regression [146]. The
prognostic performance, precision, and accuracy of KNN regression (KNNR) was
compared with self-organizing map (SOM) and multiple regressions using actual
operating data of a valve from an industrial compressor. The result for all the
approaches showed that the performance was relatively good and comparable to
each other. A typical application for LED anomaly detection has been conducted
based on the KNN-kernel density-based clustering algorithm [147]. In this study,
peak analysis was used to extract features from spectral power distribution (SPD),
the principal component analysis (PCA) was used for the reduction of dimensional-
ity of feature, the KNN-kernel density-based clustering technique was used to parti-
tion the principal components datasets into clusters, and finally distance-based
algorithm were used to detect anomalies. In this case study, the KNN algorithm was
used to list kzh nearest neighbor distances to each of the N single clusters formed by
PCA. This typical application of KNN algorithm and related techniques to investi-
gate the qualification of LEDs along with some results is illustrated in Fig. 6.13.

Support Vector Machine and Relevance Vector Machine

The support vector machine (SVM) is a modern and advanced technique used for
classification problems (anomaly detection, diagnostics such as normal/anomaly)
and regression (prediction) types of problems. It is a very successful approach in
supervised learning using the flexible (i.e., multiparameter) linear kernel approach.
Predictions are made in SVM based on a function of the form given as:

y(xs0) =D o,K(xx,)+,
n=1 (6.5)

where w, are the model weights and K(x, x,) is a kernel function. The target function
of SVM has a key feature that attempts to reduce the number of errors on the train-
ing set while maximizing the margin between two classes in a classification study.
Due to this, it has the advantage of preventing over fitting that leads to good
generalization and results in a sparse model dependent only on a subset of kernel
functions [148]. The SVM classifier algorithm has been demonstrated in the prob-
lem of health evaluation and novelty detection. In [81], the Bayesian SVM was
trained to model the posterior class probability in the absence of failure data (i.e.,
anomaly or negative class data), as in the case for a safety and mission critical
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system in Lockheed Martin equipment. In addition to this, a least-squares SVM
combined with Bayesian inference was developed and used to investigate lifetime
prediction of a microwave component [149]. In [149], the radial basis function NN
(RBFNN) algorithm was also employed for RUL estimation and validation pur-
poses, and the point and interval estimate of RUL based on least-squares SVM has
been found to be more robust and stable compared with the RBFNN algorithm.
Despite its success, SVM suffers from a disadvantage in terms of lack of probabilis-
tic prediction outputs (for regression and classification problems) which is an
important aspect in prognostics applications [148, 150].

The relevance vector machine (RVM) is an identical functional form to the SVM
which has a probabilistic sparse kernel model as an additional feature. The RVM
achieves this through the Bayesian approach and introduces a prior over the weights
that are governed by a set of hyper-parameters. In addition to its generalization
performance capability that is similar to SVM, the other feature of RVM is that it
makes use of considerably fewer kernel functions compared to the SVM approach.
In the PHM area, the RVM has been successfully explored to estimate the RUL of
rotating equipment in an aerospace setting [128]. The RVM regression (i.e., a
Bayesian machine learning technique) has also been implemented effectively to
predict the RUL of LEDs, and the qualification result showed that the testing time
for LEDs can be reduced from the IES standard (i.e., 6000 h) to hundreds of hours
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Fig. 6.14 (a) LED luminous flux degradation, (b) parameter measurement for RUL, (¢) lumen
degradation the RVM regression model, (d) PF-based lifetime prediction results [151]. Reproduced
with permission from publisher / IEEE. Copyright 2017, the authors

(210 h). This approach was also reported to handle unit-to-unit variation and also
has the capability of handling transient degradation dynamics. Due to this feature,
the RUL prediction accuracy of the RVM approach has been reported to surpass the
particle filtering approach [151]. The detailed results for the LED lifetime estima-
tion based on RVM regression compared with the PF approach are depicted in
Fig. 6.14.

In general, the SVM and RVM demonstrated superior performance compared to
the ANN approaches for experiments with small sample sizes. Due to this, SVM
and RVM may be suitable for lifetime prediction where limited measurements are
available. On the other hand, challenges such as parameter estimation may slow
down its wider application.

4.2.2 Unsupervised Learning Approaches

Unsupervised learning is a machine learning procedure where the input dataset is
unlabeled, and also there is no classified or labeled target response value Y; or
response variable. In other words, there is no labeled output value to supervise the
learning process of a learner, or there is no need of data to train algorithm. In
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unsupervised learning methods, an unlabeled or unclassified set of data is used to
find interesting patterns or outputs in the data. Due to this, the main tasks of unsu-
pervised learning are clustering and dimensionality reduction, and the nature of
these ML approaches enables the addressing of anomaly detection [152]. Some of
the unsupervised algorithms are k-means clustering, principal component analysis
(PCA), and hierarchical clustering. The unlabeled instances are used to train a
model for representing normal behavior [123] as shown in Fig. 6.15. A few of these
unsupervised learning approaches that have been investigated to conduct reliability
assessment of LED products are described in this section.

Principal Component Analysis

Principal component analysis (PCA) is an exploratory data analysis technique used
in dimensionality reduction to simplify the complexity of data while retaining pat-
terns and trends. It performs this by transforming the original data into fewer com-
prehensive dimensions (indexes), which act as summaries of features [153]. Similar
to clustering, PCA is an unsupervised learning method, and it finds patterns without
reference to prior knowledge of the data. This approach was first introduced in 1933
by Hotelling [154] to transform the statistical dependency of groups of correlated
variables in multivariate data to uncorrelated variables and to achieve optimal
conditions.

The PCA method has been widely implemented in condition monitoring for
mechanical systems. Wang and Zhang [155] used PCA to transform a set of vari-
ables for aircraft engine experimental observations to a new set of uncorrelated
variables. The new set of data are known as principal components and then used in
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the aircraft engine lifetime recursive filtering-based prediction model. On the other
hand, Ahmed et al. [156, 157] demonstrated PCA approaches for fault detection in
reciprocating compressors by identifying 5 and 7 most important performance char-
acteristics (PCs), respectively, from 9 and 14 original features.

The life of high-power LED is influenced by numerous parameters including
series resistance, optical output saturation, junction temperature, and so on. Qiyan
[133] adopted PCA to process the various parameters and select the principal com-
ponents (parameters) for further processing using neural networks. Chang et al.
[147] used PCA for dimensional reduction among 24 extracted features from LEDs
die SPD (12 features) and phosphor SPD (12 features) to study anomaly detection
of LEDs. The six principal components from 24 extracted features were further
analyzed using a KNN-kernel density-based clustering technique. This study ana-
lyzed 480 and 640 training datasets and portioned into 7 and 8 clusters, respectively,
and the results of feature extraction and principal component analysis are shown in
Fig. 6.13 along with SVM/RVM plots.

K-Means Clustering

K-means clustering is an unsupervised learning fault detection approach which is
widely used in industry because it can be applied without the need to be trained on
data obtained from a faulty machine or system. In k-means a number of centroids
are selected that define the number of clusters, and each data point is assigned to its
closest centroid based on Euclidean distance. The k-means clustering helps to parti-
tion n number of objects into k clusters where each object will have the nearest
mean distance from the cluster. The main objective of this method is to minimize the
total distance between clusters or the square error function. This objective function
can be formulated as follows:

i 6.6)

W(h;il‘e J is the objective function, n is number of objects, k is number of clusters, and
j

X —c jz is the chosen distance function among the data point xl.(j ) and the cluster
centroid c;.

This method has been successfully applied for anomaly detection of mechanical
components, such as rolling elements bearings [158], as well as for wind turbines
[159]. In [159], data was collected from a normally operating turbine supervisory
control and data acquisition system (SCADA) and fitted using the k-means cluster-
ing algorithm. This approach shows the suitability for employment in anomaly
detection in LED systems as it does not require failure data or faulty system infor-
mation. However, application of this approach for diagnostics and prognostics of

LEDs was not found in the literature. Figure 6.16 shows a typical implementation
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procedure for this approach (left) and how trained data can find their clusters based
on the distance from the centroid (right).

Self-Organizing Map (SOM)

First introduced by Kohonen [160], the self-organizing map (SOM) is one variety of
ANN method mainly applied for unsupervised learning. The SOM has been
employed to project high-dimensional data obtained from supervisory control and
data acquisition system of a wind turbine into a two-dimensional space to capture
the pattern of input training data. A Euclidean distance method was used to repre-
sent difference between new input data and target value as the indicator for system-
level anomaly detection [161]. Tian et al. [162] demonstrated a SOM-based method
for the purpose of anomaly detection with the k-nearest neighbor algorithm for the
purpose of reducing sensitivity to noise in mechanical and electronic systems (cool-
ing fan with ball bearing) data.

Recently, this approach has been applied as a lifetime estimation approach for
compressor valve failure data, and the result was found to be relatively competitive
with other approaches applied for purpose of comparison, such as KNNR and mul-
tiple regression [146]. The study claimed that the SOM was used for the first time
as a standalone program for remaining useful lifetime estimation. Even though an
implementation of this method was not found in the PHM of LEDs, the similarity of
the nature of degradation data in the mechanical component observed in the study
[146] suggests that this method appears to be promising for the RUL estimation of
LED products [146]. The RUL prediction performance of SOP along with KNNR,
multiple linear regression, and ensemble methods based on a historical failure data
is depicted in Fig. 6.17.

4.2.3 Semi-supervised Learning Approaches

Semi-supervised learning paradigm is a ML approach that falls within super-
vised and unsupervised learning methods by introducing both labeled and unla-
beled data for training. This approach has evolved recently and has been
increasingly applied to automatically manipulate and exploit large amounts of
unlabeled data and small amounts of labeled data for training without requiring
human experts. The aim of semi-supervised learning is to classify a set of unla-
beled data using the information set from the labeled data, and it is mainly
applied for anomaly detection problems. For a typical semi-supervised learning,
suppose a dataset X = (x;); <, can be divided into two components: data points
X; : (x1, X, ..., x;) for which labels Y; : (y,, y», ..., ;) are given and data points
Xt (Xj415 Xj42, ..., Xj44), for which the labels are unknown [163]. The Semi-
supervised learning methods are widely applied for speech analysis, web
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Fig. 6.17 RUL estimation based on SOP, KNNR, multiple linear regression, and ensemble meth-
ods [146]. Reproduced with permission from publisher/Elsevier

content classification, protein sequence classification, and recently in prognos-
tics. Some of the examples that can be considered as semi-supervised learning
algorithms include Hidden Markov Model, expectation maximization (EM)
with generative mixture models, graph-based methods, and transductive SVM
[164], and two of these methods that have been successfully applied in prognos-
tics are discussed here.
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Expectation Maximization

Expectation maximization (EM) is an iterative and general procedure employed to
estimate model parameters in a parametric distribution. ML is often considered as a
special case of maximum likelihood estimation where missing or incomplete data is
examined and computed by alternating between (i) estimation of expectation
(E-steps) and (ii) maximization during model re-estimation (M-steps) until it con-
verges [165]. Although the EM algorithm is not widely seen in the PHM field, it is
a very important algorithm, and a typical application of EM for use in a RUL predic-
tion is presented by Si et al. [166]. In this study, linear and exponential-based
closed-form degradation models were considered to demonstrate a degradation path
approach for RUL prediction. The expectation maximization algorithm along with
Bayesian updating was used to update the RUL distribution and model parameters
when new degradation data was obtained [166]. In solid-state lighting, a recent
work showed that expectation maximization (EM) has been applied to estimate the
model parameters of the exponential decay model and to calculate the remaining
useful lifetime of HPWLEDs [167] as shown in Fig. 6.18. In this study, the EM was
applied to estimate the degradation model parameters for the state space model from
unlabeled luminous flux degradation data. The RUL estimation results were claimed
to be superior to TM-21 standard which is based on NLS regression method, and it
showed a comparable accuracy to PF method (Fig. 6.18).

Hidden Markov Models

Hidden Markov Models (HMMs) are standard approaches for encoding, analyzing,
and predicting patterns in multivariate and univariate observation data. Even though
the HMM technique was developed in the late 1960s, it is still going through devel-
opment and gaining popularity [168]. The HMMs are based on a stochastic model
and Markovian hypothesis, where the current hidden (not observable) state of the
model is influenced by its previous state. In HMM, each of the current model states
(hidden) displays an outcome which is observable state. For instance, in case of
LEDs, when estimating the lumen degradation or color shift state at time point #, the
HMM considers not only the feature values X() at time ¢ but also the preceding
value X, _ .

The HMM is a semi-supervised approach, typically used for anomaly detection.
However, HMMs can also address detection problems, decoding problems, as well
as learning problems. This method was successfully applied for the first time in
PHM study by Baruah and Chinnam [169], where the sensor signals from a machine
were modeled using the HMM method to identify the health status as well as facili-
tate the remaining useful life estimation of cutting tools. The HMM has also been
applied in PHM for mechanical parts, including hydraulic pumps [170, 171], heli-
copter gearboxes [172], as well for anomaly detection in an electronic component,
insulated gate bipolar transistor (IGBT) [173]. A mixture of Gaussian Hidden
Markov Models has also been employed to assess the current health status and
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estimate remaining useful lifetime of bearings [174]. Even though it has been
applied for diagnostics and prognostics for mechanical parts and electronic compo-
nents, its application has not been found in PHM for LED products and systems so
far. A comprehensive theoretical explanation and step-by-step tutorials on the gen-
eral HMM are given in Rabiner [175], while a review on the potential applications
of HMM is demonstrated in [176].

The observation sequence O = O; O,...0O; can be generated by HMM when
appropriate values for N, M, A, B, and = are given. The compact notation for the
discrete HMM model 4, when model parameters (N and M) and probability mea-
sures (A, B and r) specified are as:

A= {A,B,n’} ©7)
where N, M, A, and B are, respectively, number of hidden states in the model, num-
ber of distinct observations per state, state transition probability matrix, and the
observation probability distribution of each state. The observed states are repre-
sented as O and Q which is hidden state at time . The HMM can be represented
graphically in different ways [176] as shown in Fig. 6.19. The first plot portrays a
direct state transition graph, while the second illustrates the allowable transitions.

1 2 3 4

q q 4 q

1 2 ) 4
(b)

Fig. 6.19 HMM graphical description (a) stochastic finite-state automation view of a HMM, (b)
a directed graphical model (DGM) [169]. Reproduced with permission from publisher/Taylor
& Francis
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In recent years, an increasing number of research studies can be found on prog-
nostics using HMM. However, HMM still suffers from heavy computational work-
load problems, and consequently future research should focus on addressing the
limitations and improve its applicability for complex and practical industrial sys-
tems and products including LEDs.

5 Fusion Prognostics Approach for Light-Emitting Diodes

Both the PoF- and DD-based PHM methods have been employed successfully in the
prediction of failures in many devices and systems (e.g., machinery systems, LED
lighting devices and systems, hybrid systems) [37, 177]. However, the PoF meth-
ods [178-183] require comprehensive knowledge of products in advance (e.g.,
materials and geometries, thermal, electrical, mechanical, life-cycle conditions, and
other processes that lead to failures) that always increases the time and cost in actual
applications. On the other hand, the data-driven approaches [119, 126, 184—194]
need sufficient measurement or experimental data to estimate the health conditions
and to predict trend thresholds from failure prognostics, but it is not easy to obtain
these data in advance, especially for newly introduced LED lighting products. Thus,
the fusion-based PHM is believed to solve these concerns by combining the
advanced qualities and features of both the PoF and DD approaches. Fusion prog-
nostics could apply PoF modeling, in situ monitoring procedures, and deployment
of both statistics-based and ML-based DD methods to detect the performance devi-
ation or degradation, predict the RUL, and assess the reliability for LED lighting
products and systems. Because it uses in situ monitoring with the use of sensor
technologies, fusion-based PHM can realize real-time failure diagnostics and RUL
prediction in field applications.

The fusion (hybrid) prognostics approach combines the strengths of both PoF-
based and data-driven methods, while eliminating their disadvantage to assess reli-
ability, detect anomalies, and predict the lifetime of LED products and systems. The
Fusion prognostics approach enables effective use of information from both meth-
ods for dynamic PHM and RUL prediction as well as to evaluate return on invest-
ment (ROI) [195-197] of LED product/systems [37]. Pecht and Jaai [34] assessed
the state of applications in the PHM of electronic and information-rich products and
presented a framework on the implementation of PHM for these products and sys-
tems by further illustrating a printed circuit board (PCB) case study. Cheng and
Pecht [37] presented a fusion prognostic method to elaborate the useful lifetime of
multilayer ceramic capacitors (MLCCs). They demonstrated this method with a
special case study on the multivariate state estimation technique (MSET). Yao et al.
[9] presented an implementation roadmap of PHM approaches for LED lighting
systems. In their study, the LED lighting system was categorized into LED strings
(including die, interconnect, and package) and the LED driving system (MOSFET,
capacitor, etc.). However, for ease of understanding and the convenience of imple-
menting prognostics approaches, the LED lighting product/system can be
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Fig. 6.20 Fusion prognostics for LED lighting system (adapted from Yao et al. [9], with
permission)

categorized into three sub-parts as LED module/package (die, inter connect, encap-
sulates), LED driver (electrical part), and optical diffusion (diffuser and reflector
parts). In general, the fusion prognostic approach based on PHM is an increasingly
demanding method as it has not been well designed and developed for LED light-
ing. The detailed procedure for fusion prognostic approach implementation is
shown in Fig. 6.20.

6 System-Level Reliability of Light-Emitting Diodes

As described in the previous sections, the diagnostics and prognostics of high-power
white LEDs have been widely studied based on machine learning and statistical-based
data-driven methods and algorithms, such as the Wiener process [50, 107], gamma
process [114, 198], Kalman filter [186, 199], particle filtering [26], neural networks
[134], expectation maximization [167], RVM regression [151], and so on. The reli-
ability assessment and lifetime prediction of most of these studies are at the compo-
nent level (such as package/module, LED driver, diffusers, and reflectors) using direct
performance characteristics (i.e., lumen maintenance, color shift) and indirect charac-
teristics (i.e., junction temperature and driving current) to examine the luminaire/
system-level (such as LED luminaire, LED street lighting, LCD backlights, etc.) reli-
ability. However, high-power white LEDs are complex products/systems composed of
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several subsystems/components, and it appears to be difficult to deduce the reliability
of LED systems based on single component analysis as the product lifetime is affected
by the health status of its components and their interaction. Due to this, LED manu-
facturers are facing challenges regarding system-level reliability assessment and
remaining useful lifetime prediction of LED products/systems.

An LED system consists of several subsystems, including LED chip, electrical
driver for power supply and control, thermal management module, optical part, and
so on. One of the major challenges for a generic system-level approach for LED
systems reliability is the large variety of products and applications [6]. In a high-
power LED lamp system, the LED driver serves as the constant current source and
optimizes the power to drive high-power LEDs [200]. Usually, the LED drivers are
considered as the weakest part among all components in LED lighting products.
Based on a family of outdoor luminaires failures, the US Department of Energy
(DOE-US) [201] reported that the LED driver (power supply) is the weakest link in
the LED lighting system, constituting 52% failure, LED package (10%), housing
(31%), and control circuit driver (7%). On the other hand, Van Driel et al. [202] used
the Monte Carlo approach to predict LED system-level reliability by taking both the
failure mode of the sub-components and the operation conditions into account. The
result showed that the LED emitters, solder interconnect, and driver accounted for
30%, 44%, and 26% failure rates, respectively, after 20,000 h of operation, showing
that the solder interconnects are weakest parts in LED systems. Recently Ke et al.
[64] introduced a subsystem isolation method to estimate the lumen degradation
LED lamps, and the result showed lumen degradation of 70.5% due to the LED
emitter, 21.5% the optical part, and 6.5% the driver, which contradicts the two stud-
ies (US DOE [201] and Van Driel et al. [202]) previously mentioned. Song et al.
[45] also proposed a hierarchical life prediction model, which consists of component-
level sub-physics-of-failure models, for the actively cooled LED luminaire system.
In general, the results among studies based on subsystems and components for
system-level lifetime analysis showed inconsistency.

In order to address the long-term reliability assessment concerns of complex and
highly reliable products such as high-power LEDs and fulfill the guarantee of high
prediction accuracy in less time and in a cost-effective manner, developing a system-
level reliability assessment and lifetime prediction methods is necessary.
Traditionally, graph model-based reliability block diagrams (RBD) and failure tree
analysis (FTA) have been used to assess the system-level reliability of products and
systems. However, these methods are based on deterministic relationships between
components/subsystems. To address these concerns, the Bayesian network (BN)
method, a probabilistic graphical machine learning method, appears to be a promis-
ing approach. The BN uses a directed acyclic graph (DAG) to represent the condi-
tional and probabilistic relationship between component/subsystem relationships in
a system [203]. As one of the popular modeling and reasoning tools, the BN model
has been employed in the fields of machine learning, artificial intelligence, and
uncertainty management [204]. The BN model has also been applied in the field of
reliability engineering including software reliability [205], modeling maintenance
[206], and fault diagnosis in systems [207, 208]. Recently, the BN model was found
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to be effective in estimating the system/product reliability of complex systems, such
as high-speed trains [208], solar-powered unmanned aerial vehicles [209], and pit-
ting degradation structural steel in marine systems [210].

In this section, a BN method that considers the intricacies of the high-power
light-emitting diode (LED) lamp system and the functional interaction among com-
ponents for reliability assessment and lifetime prediction is briefly introduced. This
approach considers the parametric (degradation based) and catastrophic failure
modes of each component in order to assess the system-level reliability, and it also
requires the design of experiments to gather the required data. The functional and
structural relationship analysis between components and the failure mode and
effects analysis (FMEA) are considered [3] in order to construct a DAG for a BN
model. In the BN model constructed in Fig. 6.21 (left), the variables which have no
parents, such as LED_CAT, LED_DEP, Driver_CAT, Driver_DEP, Solder_CAT,

- i LED Diffuser
LED Module
_— LED Reflector

_~ LED Lamp

LED Driver

Fig. 6.21 DAG for product level LED light sources (top), 3D model exploded and assembly view
(bottom)
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DifRef_DEP, and DifRef_CAT, are referred as root nodes. On the other hand, the
variables with no children are the leaf nodes (LED_Lamp), while the remaining
variables are the intermediate nodes (LED_Module, LED_Diffuser, and LED_
DifRef). The root nodes have unconditional probabilities, represented here as reli-
ability state functions of the node X; at time 7 Ry,(f), i = 1,...,p; the intermediate
nodes as Ry (), j = 1,....k; and the leaf node as R, (). The BN model DAG analysis
is based on the construction of a test sample, shown as a 3D model, with an exploded
and assembled view Fig. 6.21 (right).

The reliability status of each root node or component is assessed based on the
corresponding prediction model at a future time ¢,, and the reliability state predic-
tion matrix can be represented as follows:

pboTer T (6.8)

The reliability state of the intermediate nodes can also be predicted based on the
prediction models of the root nodes U = {R|, R,, ..., R,} and the assumption of con-
ditional independence:

P(Ry, (1) = 2P (R, (1)-Ry, (1) (6.9)

Similarly, the reliability state of the leaf node can be predicted based on the proba-
bility of the intermediate and root nodes as follows, and the junction tree algorithm
synchronizes the DAG of the BN model for product level lifetime prediction:

P(R, (1)) =2 P(R, () Ry, (£)Rypy (1)s--Ryy ()R, (1))
= > P(R, (1)1 Pa(R,(1)). ZP(RM1 )1 Pa(R,, (1))....

Pa(L) Pa(Mj)
> P(R,, (1)1 Pa(Ry, (1))....P(Ry, (1)).P(R,, (1))
Pa(ME) (6.10)

Here Pa(L), Pa(M,), and Pa(M,) are the parent nodes for leaf node L and intermedi-
ate nodes M; and M, respectively.

7 Challenges and Opportunities of Diagnostics
and Prognostics Approaches

Recalling that PHM is a multifaceted engineering discipline that facilitates the
safety, reliability, and maintenance aspect of components and systems, it helps to
avoid unexpected product problems that can lead to products’ performance
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deficiencies. Even though this approach has been widely accepted for product and
system reliability assessment, lifetime prediction, and maintenance decision-mak-
ing, it is still facing some challenges, especially for electronic systems, including
LED lighting systems. The data-driven methods are based on the extraction of his-
torical data collected from sensors, to exploit and learn the degradation behavior of
the system through relevant feature identification using machine learning, Al, and
statistical tools. On the other hand, model-based approaches implement a set of
mathematical and analytical equations obtained from classical physics laws to rep-
resent the degradation behavior and predict the future behavior of physical compo-
nents and systems.

The different approaches for the PHM in general need further improvement to
be able to reduce the computational time, effort, and availability of historical data
to accommodate the increasing demand in the reliability assessment and remain-
ing useful life prediction in the LED light industry. There are always trade-offs in
terms of accuracy, applicability, cost, and complexity while implementing DD
approaches. While some approaches can handle complexity, it may be deficient in
regard to computational time and accuracy and vice versa [211, 212]. Some algo-
rithms, such as Hidden Markov Model and Gaussian process regression, consume
longer computational time, while others such as artificial neural network, particle
filtering, neuro-fuzzy systems, and Hidden Markov Model demand large amounts
of historical data to perform prognostics. Accordingly, the advantages and disad-
vantages of the two main prognostics approaches are briefly summarized as
follows:

Data-driven (statistical and machine

learning methods)

Model-based (POF-based) approach

Assumptions or empirical estimations of
physical parameters are not required

For a well-controlled system, predicting the future
propagation of the degradation without prior
knowledge about the mathematical model is
possible

Less complex and more applicable than
model-driven methods

Has higher accuracy if the systems’/products’
physics of models remains consistent

Lower precision results compared with
model-based approaches

Requires fewer data compared to data-driven
approaches

Well-established theoretical basis and
convenient to implement fast and accurate
online pattern recognition

Usually complex and more stochastic to model
system degradations

High-dimensional noisy data can be
transformed in to lower dimensions
convenient for prognostics

Might have difficulty to handle unit-unit variability
in population and often provides overall estimate
for entire sample

Relatively easy to calculate and predict
future states

Might be difficult to get mathematical models for a
particular kind of component or material

The more available information used, the
better the accuracy

Computationally expensive
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Data-driven (statistical and machine
learning methods) Model-based (POF-based) approach
Requires large amount of data to be more | Requires simplifying assumptions

accurate in general

May lead to inaccurate time of change of
predictions as it relies mainly on historical
degradation

Poor performance with high-dimensional
data and longer learning time

8 Digital Twin as Emerging LED Lifetime Analysis

In the past few years, dramatic advancement in information technology such as
Internet of things, artificial intelligence, and big data has evolved which has led to
an increasing interaction trend between virtual spaces and physical entities. This has
led to the introduction of digital twins — a pragmatic method of cyber-physical
fusion [213]. A digital twin is a dynamic and comprehensive virtual prototype of a
physical product/system. The concept of digital twin was initially conceived and
introduced by Vickers (NASA) and Grieves (University of Michigan) in 2003 [214].

In the past few years, many companies started using digital twin to increase their
system operation efficiency, testing new products before deployment, and identify-
ing problems [213]. According to prediction by Gartner, half of the large industrial
corporations will be leveraging digital twin technology by 2021 to facilitate the
assessment of system performance while gaining an improvement of 10% in system
effectiveness [215]. The implementation and adoption of digital twin depend on the
type of industry and products as there are no common standards, methods, or norms
[216]. The National Aeronautics and Space Administration (NASA) built two iden-
tical spacecrafts for Apollo 13 mission with the idea of early “digital twin” where
one was launched to space, while the other was kept on Earth to simulate and moni-
tor the launched spacecraft. Later, with few technical improvements, NASA and the
US Air Force introduced digital twins to the aerospace industry. Companies such as
Chevron and General Electric also use digital twins to track operation of wind tur-
bines [216]. Singapore is also creating a virtual copy of the entire city in partnership
with Dassault Systemes, to assess, improve, and monitor utilities [217].

It can be recalled that PHM is very useful in the diagnostics and prognostic
analysis of a product/system of a physical object. On the other hand, digital twins
appear to have the capability to fill the gap in PHM by creating a link between the
physical system and the virtual model. Recently, Tao et al. [218] introduced the
application of digital twins in the PHM sector and demonstrated a case study on
wind turbines. The implementation of PHM for products and systems in terms of
fault detection, diagnostics, and prognostics is mainly based on the performance
degradation and failure in the physical space which has a limited connection to the
virtual model [218]. This gap could be filled with convergence of data from physical
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Fig. 6.22 Digital twin implementation framework with the five dimensions (PE, VE, DD, CN,
SR) for LED products (adapted from Tao et al. [218]

and virtual space through digital twins to improve the PHM of systems/products
seamlessly. Due to its comprehensive virtual representation of a physical object,
digital twins can simulate the behavior and conditions of products and systems
through mathematical models and data. Oftentimes, machine learning algorithms
and artificial intelligence are employed to analyze system operation models and
identify correlations among data generated in in situ and in-field (deployment) oper-
ation [216]. The machine learning algorithms used in digital twins include super-
vised learning (such as artificial neural network), unsupervised learning (such as
clustering methods for virtual and real-world environment), and reinforcement
learning approaches (during uncertain or partially observable operating environ-
ments) [219].

Leveraging the digital twin technology has the potential to enable real-time sys-
tem performance assessment and improve PHMs of light-emitting diodes as well as
other safety critical complex products and systems. Due to its potential to generate
accurate data from physical and virtual space for lifetime assessment and real-time
data and condition monitoring, digital twins represent the future technology for
lifetime assessment of LED products/systems. Initially, Grieves proposed three
dimensions of digital twins: physical entity (PE), virtual entity (VE), and the con-
nection between physical and virtual systems (CN) [214]. Based on this, Tao et al.
[218] extended the digital twins to a five-dimensional model of digital twins with
the addition of services for the physical and virtual entity (SR) and digital twin data
(DD). The extended five-dimensional (PE, VE, DD, CN, SR) digital twin concept
along with a framework of implementation in PHM for light-emitting diode prod-
ucts and systems is highlighted in Fig. 6.22.
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9 UV LED Degradation Modeling and Analysis

Ultraviolet (UV) light, with a wavelength between 250 and 350 nm, has numerous
useful and attractive applications, such as virucide, air and water purification, pho-
tolithography, optical stimulus in drug activation, polymer curing, and laser surgery
[220]. Due to its benefits of having a long life, compact size, and unimodal spectrum
as well as being environmentally friendly, the III-nitride-based UV light-emitting
diode (LED) is becoming a promising photoelectronic device to replace traditional
UV light sources, such as mercury lamps [221, 222]. UV LEDs are important varia-
tions in the LED field. Especially after the global pandemic of coronavirus disease
2019 (COVID-19), ultraviolet rays from UV LEDs are being used for noncontact
disinfection in an environment that is not high-temperature and cannot be wiped
with alcohol [223]. Therefore, UV LEDs will continue to play a greater role in the
future in phototherapy, sterilization, and related applications.

Radiation power is a critical physical index that reflects the optical radiation
intensity of a photoelectronic device. The radiation power degradation of UV LEDs
can cause by the UV LED chip degradation, the yellowing of packaging materials,
and the cracking or delamination of interface [4]. The lifetime of UV LEDs is still
challenged by the uncertainty of internal quantum efficiency, light extraction effi-
ciency, and thermal management [224]. And due to the unclear failure physics and
mechanisms of UV LEDs, the reliability and lifetime estimation methods are incon-
sistent [225]. This section focuses on modeling the dynamic nonlinear radiation
power degradation process of UV LED packages in an accelerated degradation test.
Firstly, we selected the exponential degradation model recommended in the TM-21
standard to describe the lumen radiation power degradation process of UV LEDs.
Next, a LSTM neural network algorithm and two stochastic processing models, i.e.,
gamma process and Wiener process, are compared with the nonlinear least-squares
(NLS) regression method recommended by the IESNA TM-21 standard. Finally, the
prediction accuracy and robustness characteristics of the proposed methods are
analyzed.

The TM-21 standard proposed by IESNA is a commonly used method in the
industry to deal with the lumen maintenance of LED light sources and project long-
term lifetimes [7, 16]. In this section, the radiation power of UV LEDs was adopted
to evaluate the light output and predict long-term lifetime [108] (Fig. 6.23). And Lp
is the lifetime when the UV LEDs mean radiation power maintenance decays to P%
of the initial value (P = 80 is considered as an example).

The cumulative radiation power degradation of UV LEDs can be regarded as a
time-dependent stochastic gamma process which can be used to model this degrada-
tion process. Assuming the Lg, lifetimes of samples satisfied the two-parameter
Weibull distribution, the mean of the distribution (MTTF-G1) can be predicted.
Meanwhile, with the gamma process parameters of the whole group, the estimated
Ly lifetimes (MTTF-G2) can be estimated by eq. (6.4).

In addition to the gamma process, the Wiener process is also a stochastic model
method that is widely used to describe degradation processes. With the
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two-parameter Weibull distribution curve fitting of the predicted lifetimes of each
sample, the estimated lifetimes, which were recorded as MTTF-W, can be estimated.

Also, ML approaches can be used to perform prediction. Neural network predic-
tion does not need to determine the specific functional relationship between input
and output. RNN can effectively and flexibly model the nonlinear relationship of
dependent long time series data, that is, the current input is related to the previous
input [226]. Hochreiter and Schmidhuber [227] proposed LSTM for solving the
vanishing gradient problem in RNN.

h,is a short-term state, which is equal to the output Y; at time 7. ¢, stands for long-
term memory, running horizontally above the cells in the hidden layer, with less
interaction and better information maintenance. ¢, determines what information is
read, kept, and discarded in the long-term state of network learning. The output
process can be expressed by the following eqs. [228]:

i lo2

ﬁ = c oWe h’_l

0, o X,

8, tanh 6.11)

Ct=ﬁ®cr—l+ir®gt (6.12)
h,=0,@Q tanh (c,) (6.13)

where ¢ and tanh are the sigmod and tanh nonlinear activation functions in the
neural network, respectively; W is the weight coefficient matrix.

Figure 6.24, shows a flowchart of the lifetime prediction of UV LEDs with the
LSTM neural network. In this chapter, we have 9 input layers and 3 output layers,
and the number of hidden layers is set to 18 after repeated trial calculations, as
described in the Fig. 6.25, after multiple adjustments, the optimal weight matrix
was obtained, and the lifetimes were predicted.

The comparison of prediction errors of each method is shown in Fig. 6.26. It can
be seen that both the stochastic process method and the LSTM RNN method signifi-
cantly improve the prediction accuracy compared to the TM-21 method. In general,
the stochastic process method can achieve good prediction results as the prediction
time increases. The LSTM neural network algorithm requires a small amount of test
data to achieve better prediction accuracy compared with the other methods. It
effectively reduces the collection and test time of UV LEDs and also has good
robustness characteristics. It is found to be a very reliable and robust lifetime pre-
diction algorithm for UV LEDs.

In a brief summary, by designing the experimental aging scheme and obtaining
the actual lifetimes according to the two-parameter Weibull distribution, the NLS
regression method, the stochastic process method, and the LSTM neural network
algorithm were adopted to project the radiation power maintenance data to predict
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Fig. 6.25 The NLS regression method vs. the LSTM neural network method, lifetime prediction
at different starting points: (a) 1008 h, (b) 1344 h, (c¢) 1680 h, (d) 2016 h

the lifetimes of UV LEDs. The results show that the prediction accuracy of the
LSTM neural network is higher; the results also show that the stochastic process
method and the LSTM neural network method have better robustness by varying the
prediction starting points. Therefore, the LSTM neural network method can effec-
tively project the UV LEDs’ radiation power maintenance data with time series for
lifetime prediction, which provides the feasibility for the rapid lifetime prediction of
UV LEDs to accelerate the development of the UV LED industry and reduce the
R&D costs.
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10 Conclusions

In this study, the prognostic and diagnostic methods used in LED lighting have been
reviewed, with due attention to machine learning-based data-driven approaches.
Currently, there is an increasing number of studies on the reliability assessment and
lifetime prediction of high-power white LEDs. However, the majority of conventional
methods and approaches investigated have limitations in addressing the prognostics
demand of the dynamic and unpredictable degradation behavior of LED systems. In
addition to this, situations with sensor monitoring and data acquisition systems have
shown an increasing trend in recent years. This has created opportunities as well as huge
challenges to address the issues of diagnostics, RUL prediction, and extraction of useful
information quickly from the abundantly generating operational and experimental big
data. In the reliability study and lifetime prediction of LEDs, there are many machine
learning algorithms that can help to provide lifetime prediction with improved accuracy.
Some of the ML algorithms that have been employed in the study of mechanical com-
ponents and systems can also be leveraged for LED lighting sources in future potential
applications, including long short-term memory (LSTM) networks (a variety of recur-
rent neural networks), Hidden Markov Model (HMM), self-organizing maps (SOM),
least-squares support vector machine, and fuzzy logic. An illustrative example is dem-
onstrated on UV LED radiation degradation data based on NLS regression, Wiener,
gamma, and LSTM neural network methods. The emerging trend in the application of
digital twins for PHM with the focus on LEDs has also been briefly investigated.
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Appendix

Table 6.3 A Brief Summary of machine learning algorithms for prognostics of LED products

Machine learning
algorithm/method

Input data analysis and
parameter estimations

Main study analysis results and
findings

Artificial neural network
[140, 134, 133]

LSTM, recurrent neural
network (RNN)* [141,
142]

Forward current (I, electrical)
and temperature [140]

Probability of health status of LEDs
(healthy 0.99 and not healthy 0.01)

One hidden layer and two
neuron nodes in the hidden
layer [140]

MATLAB neural network
toolbox, [134, 133]

Predict the lifetime of power LEDs
with <5% error [133]

Luminous flux, chromaticity
coordinates u’ and v’, electric
current and temperature [134]

Model can be used when the mean
square error of datasets between
estimated and expected life output
narrow to the target

R value of 0.985 and 0.974 for two
dataset using AdaBoost BPNN.

K-nearest neighbors
(KNN) kernel density-
based algorithm [147,
146]*

24 features from die and
phosphor SPD clustered [147]

Anomaly detection conducted (two
clusters for phosphor SPD and three
clusters for die SPD) [147]

Relevance vector
machine [151, 128]*

LED light output (lumen
maintenance and color shift)
[151]

RUL lifetime prediction with error
less than 5%, claimed to be better
than PF

Reduces qualification testing time
(from 6000 h to 210 h) [151]

Rotating component in
aerospace setting (NASA)

Estimate the remaining useful life
with acceptable accuracy [128] ®

Component feature damages
(not specified) [128]*

Not employed to anomaly detection

Support vector machine®
[81]% [149]*

Dataset with 22 parameters
for mission critical system
from Lockheed Martin [81]*

Identify system anomalies (with
“healthy” and “unhealthy” class)

Helps to manage false alarms

Power gain degradation data
of microwave [149]

Point and interval estimates of RUL
obtained [149]

Much more robust and stable as
verified in comparison with RBF NN

Principal component
analysis (PCA) [147,
133]

12 features from SPD (die and
phosphor) considered for
dimensional reduction [147]

PCA used to consider three features
of SPD after reduction for further
analysis (KNN) [147]

Eight parameters considered
for selection [133]

Four features with >85% contribution
are reduced from 8 to use as an input
BPNN [133]

(continued)



200

Table 6.3 (continued)
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Machine learning
algorithm/method

Input data analysis and
parameter estimations

Main study analysis results and
findings

Self-organizing map
(SOM)* [161]*, [146]*

Temp of gearbox, oil, nacelle,
and rotor speed of wind of
wind turbine [161]

Failure data for an industrial
reciprocating compressor
[146]

System-level anomaly detection for
WT [161],

RUL estimation is obtained with
good accuracy [146]

Hidden Markov Model
(HMM)? [172]%, [173]*

Bayesian networks
(BN)* [209]

Experimental data for
helicopter gearbox vibration
from 68 operating conditions
[172]

Experimental data from IGBT
from three operating
conditions

Degradation data from
unmanned aerial vehicles
[209]

Enabled defect level, defect type, and
torque level classification for CBM
[172]

Anomalous behavior detection for
IGBT based on Bayesian HMM
classification [173]

* Shows that the machine learning algorithm has not been adopted yet for LEDs products
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