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1
Introduction

In nuclear engineering, understanding the behaviour of multiphase flows is crucial. Two-phase flow
occurs in different processes, from how coolants move in nuclear reactors to analyzing safety scenarios
with different fluid phases. Numerical simulations are often used to study these phenomena since they
provide a tool to analyze scenarios that, for cost or safety reasons, can not be done experimentally, such
as nuclear accidents. The equations that describe these flows can be directly solved in what is called
direct numerical simulations (DNS). However, for turbulent flows, this approach is too computation-
ally expensive, making it unfeasible for anything but very simple scenarios. Consequently, turbulence
modelling is used as a more cost-effective tool to represent turbulent flows in two-phase systems.

The development of turbulence models for multiphase flows is an active area of research. While
some models for particular cases are available, single-phase models are often used. However, single-
phase models are inadequate due to the presence of the interface between phases, which causes accuracy
issues. While some authors have tried to mitigate this issue with conventional modelling, their success
has been limited.

In recent years, machine learning has seen a considerable increase in popularity within scientific
domains, including the field of fluid mechanics. Moreover, the increased available computational power
has also led to a rise in high-fidelity data from turbulent flow numerical simulations. This data can
be used to gain a deeper understanding of turbulence, but it can also be used to develop data-driven
turbulence models with the help of machine learning techniques. Nevertheless, data-driven turbulence
modelling research has mostly focused on single-phase flows.

Given the shortcomings of conventional turbulent models for two-phase flows and the remarkable
progress that has been made in single-phase turbulence with scientific machine learning, one possi-
ble avenue in the research of two-phase turbulence modelling is to extend the data-driven modelling
techniques developed for single-phase flows. Throughout this project, the capabilities and limitations
of data-driven turbulence modelling for two-phase flows will be researched with the ultimate aim of
finding an algebraic expression that can be used to improve the predictive accuracy of these models
without decreasing their robustness. The main question and sub-questions for this research project are
as follows:

• Q1: Can machine learning be used to regress a symbolic expression to capture the influence of
the interface of turbulence models in two-phase flows?

– S1: What are the relevant input features for the regression?
– S2: How does the proposed methodology compare to other damping approaches in terms of

robustness, accuracy and generalizability?
– S3: How does using a neural network model for turbulence damping compare to using a

symbolic expression?

The thesis is structured as follows. In chapter 2, the fundamentals of fluid mechanics and turbulence
modelling are introduced. Chapter 3 gives an overview of the machine-learning techniques that will
be used and summarizes recent research in the field of machine learning for data-driven turbulence
modelling. In chapter 4, the machine learning framework used in this project is explained. Chapter
5 presents the numerical solvers employed for the simulations of the different models of the machine
learning framework and the test cases used in this project. The results of the thesis are discussed in
chapter 6. Finally, the conclusions of this work are outlined in chapter 7.

1



2
Two-phase flow and turbulence

This chapter provides an overview of fluid mechanics, focusing on single-phase flow, two-phase flow,
and turbulence modeling. The sources used as guides include [1] for single-phase flow, [2], [3], and [4]
for turbulence modeling, and [5] for multiphase flow.

2.1. Turbulence
This section introduces single-phase turbulence. First, a brief overview of the equations that govern

fluids is given. Then, the Reynolds-averaged Navier-Stokes (RANS) turbulence models are introduced,
and essential aspects of the Reynolds stress tensor are discussed.

2.1.1. Introduction
Fluids are substances that deform continuously under the action of a shear stress. These substances

are formed by particles, but their equations of motion can be formulated using the continuum hypothesis.
This hypothesis assumes that at any point in a fluid, properties such as density, velocity, and temperature
vary smoothly and continuously, even though the fluid is composed of discrete molecules [1]. The
continuum approach simplifies the mathematical description of fluid behaviour, allowing the use of
partial differential equations to model fluid flow.

The partial differential equations that model fluid flow are derived from the conservation laws of
mass, momentum and energy. In a fluid where no mass is being produced, the conservation of mass
equation is given by

∂ρ

∂t
+

∂

∂xi
(ρui) = 0, (2.1)

where ρ is the fluid density and ui are the components of the velocity field. In the previous equation,
we used Einstein index notation, which means that repeated indices implied summation like

∂ρ

∂t
+

∂

∂x1
(ρu1) +

∂

∂x2
(ρu2) +

∂

∂x3
(ρu3) = 0.

For the remainder of this work, the same index notation will be used unless the indices are expressed
using Greek letters such as α, β, etc.

If the fluid is incompressible then the material derivative, which quantifies the variation of a fluid
property along the trajectory of a fluid particle, of the density is zero

Dρ

Dt
=

∂ρ

∂t
+ ui

∂ρ

∂xi
= 0. (2.2)

Therefore, combining equations (2.1) and (2.2) the mass conservation law reduces to

∂ui

∂xi
= 0. (2.3)

Equation (2.3) is known as the continuity equation and states that the divergence of the velocity
field of an incompressible fluid is zero.

In a similar way, the linear momentum of the fluid must be conserved unless a force is applied to it,
which can be expressed as

2



2.1. Turbulence 3

D

Dt
(ρui) =

∂σij

∂xj
+ ρfi, (2.4)

where the first term on the right-hand side refers to the superficial forces and the second one to the
given volumetric forces fi. However, in order to obtain a closed system of equations, the Cauchy stress
tensor, σij , needs to be expressed in terms of the flow variables. This is done by constitutive equations
[1]. For a Newtonian fluid, the constitutive equation is

σij = −pI + 2µSij , (2.5)
where p is the pressure, µ is the viscosity of the fluid and Sij is the strain rate tensor of the velocity

Sij =
1

2

(
∂ui

∂xj
+

∂uj

∂xi

)
.

Introducing equation (2.5) into (2.4) for fluids with constant density and viscosity yields

ρ

(
∂ui

∂t
+ uj

∂ui

∂xj

)
= − ∂p

∂xi
I + µ

∂2ui

∂x2
j

+ ρfi. (2.6)

Equation (2.6) is referred to as the momentum equation and, together with the continuity equation,
forms a complete set of equations known as the Navier-Stokes equations [1].

Two terms of the momentum equation are particularly important when it comes to understanding
turbulence. The first one is the convective term, ρuj

∂ui

∂xj
. It is a non-linear term that represents the

inertial forces on the fluid. The other one is the diffusive term, µ∂2ui

∂x2
j

, which represents the viscous
forces on the fluid. The ratio between the inertial forces and the viscous forces is quantified by the
Reynolds number

Re =
ULρ
µ

,

where U is the characteristic velocity of the flow and L is the characteristic length scale. These char-
acteristic quantities are representative of the case of interest; for example, for a 2-dimensional channel,
L could be the height of the channel and U the maximum velocity of the fluid. When the Reynolds
number is large, the inertial forces are larger than the viscous forces, and the fluid behaves chaotically,
which is known as turbulence.

Turbulent flow can be simulated using the Navier-Stokes equations in what is known as direct
numerical simulations (DNS). However, due to the different ranges of spatial and temporal scales which
would need to be solved this is computationally not feasible in most applications. Turbulent flow has a
macrostructure formed by large eddies, which is where energy gets generated. The large eddies transfer
their energy to smaller eddies and so on until the microstructure is formed by the smallest eddies. It
is in this microstructure where the energy gets dissipated due to diffusion. The Kolmogorov hypothesis
states that the scales of the microstructure can be related to the kinematic viscosity, ν = µ/ρ, and the
energy dissipation rate ϵ. These are the characteristic length η =

(
ν3/ϵ

)1/4, time τ = (ν/ϵ)
1/2 and

velocity v = (νϵ)
1/4 of the Kolmogorov scales.

In order to perform an accurate DNS, all the microstructure phenomena must be captured by the
simulation. Therefore, the mesh size and timestep must be of the same order as η and τ , respectively.
The number of cells needed for a 3-dimensional domain of size L3 is roughly

N ∼
(
L
η

)3

∼ O
(

Re 9
4

)
,

and the number of timesteps for a simulation of T time units I

M∼ T
τ
∼ O

(
Re 1

2

)
.

The total computational power needed will scale with the product of the number of cells by the
number of timesteps which almost scales with the cube of the Reynolds number. For turbulent flows
with large Reynolds numbers, performing DNS is unfeasible.
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N ×M ∼ O
(

Re 11
4

)
.

Therefore, turbulence models have been developed to allow for simulations of turbulent flows with
a much smaller computational cost. One of the most used types of turbulent models are RANS models,
which are introduced in the next section.

2.1.2. RANS
Reynolds-averaged Navier-Stokes models are a class of modelling techniques used to simulate tur-

bulent flows. These models are based on the Reynolds-averaging process applied to the Navier-Stokes
equations. Each of the flow variables is decomposed in a mean value φ̄ and an instantaneous fluctuation
φ′:

φ = φ̄+ φ′.

To be able to apply the averaging operator to the Navier Stokes equations the averaging operator
has to satisfy a set of conditions known as the Reynolds conditions [3]. This means that averaging
operators such as the temporal average ·̄ T (t), for a time T , or the spatial average ·̄ L(t), for a length
L, are not suitable for this purpose.

φ̄T (t) =
1

T

∫ T
2

−T
2

φ(t+ τ)dτ, φ̄L(x) =
1

L

∫ L
2

−L
2

φ(x+ ξ)dξ.

Instead, the ensemble average is used:

φ̄ = lim
N→∞

1

N

N∑
α=1

φ(α)

This averaging process can be interpreted as follows. Imagine running the same experiment with
small perturbations N times. The result for each of the experiments is φ(α), then all the obtained
results get averaged. The ensemble average operator can be applied to the momentum equation (2.6).
After some simplification, equation (2.7) is reached. Note that while the average of a fluctuation, u′

i, is
zero by definition, the average of the product of fluctuations, u′

iu
′
j , is not and will therefore appear in

the averaged equations.

∂ūi

∂t
+ ūj

∂ūi

∂xj
= −1

ρ

∂p̄

∂xi
+

∂

∂xj

(
ν
∂ūi

∂xj
− u′

iu
′
j

)
+ f̄i. (2.7)

The obtained equation resembles the original Navier-Stokes equation but with an additional term
called the Reynolds stress, Rij = u′

iu
′
j . In order to obtain a closed system of equations, this term needs

to be modelled in what is known as the closure problem. Different turbulence models focus on different
ways of doing so.

The Reynolds stress can be decomposed into an isotropic (equal in all directions) and an anisotropic
part

Rij =
2

3
kδij + aij ,

where the first term is the isotropic part, aij is the anisotropic and k := 1
2 trace(Rij) is the turbulent

kinetic energy. The anisotropic part can be non-dimensionalized, yielding the non-dimensional Reynolds
stress anisotropy tensor, bij , which will be further studied later in this section

bij =
Rij

2k
− 1

3
δij .

From the Navier-Stokes equation, a transport equation can be derived for k

∂k

∂t
+ Uj

∂k

∂xj
= τij

∂Ui

∂xj
− ϵ+

∂

∂xj

(
ν
∂k

∂xj
− 1

2
u′
iu

′
iu

′
j −

1

ρ
p′u′

j

)
,
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where Ui = ūi. The left-hand side of this equation is simply the material derivative of the turbulent
kinetic energy. The different terms in the right-hand side of this equation are referred to as turbulent
kinetic energy budgets [4]. These budgets are an integral tool for understanding turbulent flows.

The first term of the right-hand side, which can be rewritten as τijSij , is known as the production.
It represents the energy that is being transferred from the mean flow to the turbulence and can be
interpreted as the rate at which work is done by the mean strain rate against the turbulent stresses.

The second term is the dissipation. It represents the rate at which turbulent energy is dissipated
into thermal energy and it is given by

ϵ = ν
∂u′

i

∂xk

∂u′
i

∂xk
.

The last three terms are transport terms which can only redistribute the turbulent kinetic energy
but cannot produce it or destroy it. The first one of those terms is molecular diffusion and represents
the diffusion of k caused by molecular transport processes. The second one is turbulence transport, and
it is the turbulent energy that gets transported due to turbulent fluctuations in the velocity. The last
one is the pressure diffusion and it is caused by pressure fluctuations.

2.1.3. Linear eddy viscosity models
The most widespread class of turbulence models are the linear eddy viscosity models (LEDM), in

which the Boussinesq hypothesis is employed [3]. This hypothesis assumes a linear relationship between
the anisotropy tensor and the mean strain rate tensor

aij = −νt
(
∂Ui

∂xj
+

∂Uj

∂xi

)
= −2νtSij .

For these models to be closed the turbulent viscosity, νt, needs to be specified. Linear eddy viscosity
models can be classified depending on the amount of additional equations introduced to close the model.
Zero equation models use an algebraic relationship between the turbulent viscosity and the length scales
of the mean flow and therefore they cannot account for the history effects of turbulence. One example
of such models is given by the following equation

νt = l2mix

∣∣∣∣dUdy
∣∣∣∣ ,

where the second term is the derivative of the mean streamwise flow velocity with respect to the
perpendicular direction of the flow, and lmix is the mixing length, which needs to be specified for
different flows.

One equation models solve the transport equation for one turbulent quantity, typically for the
turbulent kinetic energy or the turbulent viscosity. However, as we saw before with the k equation,
these transport equations contain unclosed terms that need to be modelled to obtain a closed system.
Models based on the Prandtl mixing length theory solve the transport equation for k and then use

νt = c
√
klmix,

to obtain the turbulent viscosity. Therefore a length scale of the flow needs to be specified and thus
the model is incomplete. One popular one-equation model is the Spalart-Allmaras turbulence model
[4], where a transport equation for a modified turbulent viscosity is solved. This model does not need
the mixing length to be specified and, thus, is complete.

Two equation models solve the transport equations of two turbulence quantities. Two of the most
popular turbulence models are the k − ϵ and k − ω models [4], where the turbulence kinetic energy
equation is solved in conjunction with the dissipation or the dissipation rate, respectively.

In the k − ϵ model, the turbulent viscosity is obtained by

νt = Cµ
k2

ϵ
.

The turbulent quantities transport equations are
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∂k

∂t
+ Uj

∂k

∂xj
= τij

∂Ui

∂xj
− ϵ+

∂

∂xj

((
ν +

νt
σk

)
∂k

∂xj

)
,

∂ϵ

∂t
+ Uj

∂ϵ

∂xj
= Cϵ1

ϵ

k
τij

∂Ui

∂xj
− Cϵ2

ϵ2

k
+

∂

∂xj

((
ν +

νt
σϵ

)
∂ϵ

∂xj

)
.

The model is closed by setting the additional parameters

Cϵ1 = 1.44, Cϵ2 = 1.92, Cµ = 0.09, σk = 1, σϵ = 1.3.

Similarly in the k − ω model, the turbulent viscosity is

νt =
k

ω̃
, ω̃ = max

{
ω,Clim

√
2SijSji

β∗

}
, Clim =

7

8
,

and the transport equations are

∂k

∂t
+ Uj

∂k

∂xj
= τij

∂Ui

∂xj
− β∗κω +

∂

∂xj

((
ν + σ∗ κ

ω

) ∂k

∂xj

)
,

∂ω

∂t
+ Uj

∂ω

∂xj
= α

ω

κ
τij

∂Ui

∂xj
− βω2 +

σd

ω

∂κ

∂xj

∂ω

∂xj
+

∂

∂xj

((
ν + σ

κ

ω

) ∂ω

∂xj

)
.

The model is closed, again, by specifying the additional parameters

α =
13

25
, β = βofβ , β∗ = 0.09, σ = 0.5, σ∗ = 0.6, σdo = 0.125,

σd =

{
0, ∂k

∂xj

∂ω
∂xj
≤ 0,

σdo,
∂k
∂xj

∂ω
∂xj

> 0.

2.1.4. Reynolds stress, anisotropy, invariance, and realizability
The Reynolds stress tensor will be one of the modelling targets in this project, so we will present

important properties about it. In this section, the invariance properties and realizability constraints of
this tensor are discussed.

From the definition of the Reynolds stress tensor and the ensemble average, it follows that Rij is a
semi-definite positive matrix, that is,

xiRijxj = xiu′
iu

′
jxj = lim

N→∞

1

N

N∑
α=1

xiu
′
i
(α)u′

j
(α)xj = lim

N→∞

1

N

N∑
α=1

(
xiu

′
i
(α)
)2
≥ 0.

Therefore, the eigenvalues of the Reynolds stress will be real and non-negative. The determinant,
trace, and diagonal entries of a matrix will also be non-negative. Furthermore, it can be shown that
the Cauchy inequality must hold. In summary, we have that

Rαα ≥ 0, det(Rij) ≥ 0, R2
αβ ≤ RααRββ .

According to the spectral theorem, the Reynolds stress can be diagonalized since it is a semi-definite
positive matrix. From this, it follows that

Rij = 2k

(
1

3
δij + VikΛklVjl

)
,

where Vij is a matrix containing the eigenvectors of the anisotropy tensor and Λij is a diagonal matrix
with the eigenvalues of the anisotropy tensor, λi. Moreover, the eigenvalues of the anisotropy tensor
can be related to those of the Reynolds stress

λi =
ϕi

2k
− 1

3
,
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where ϕi are the eigenvalues of the Reynolds stress. Using the previously mentioned properties, it follows
that these eigenvalues must lie between 0 and 2k and that the eigenvalues of the anisotropy tensor are
between −1/3 and 2/3. Additionally, the components of bij must satisfy the following restrictions

−1

3
≤ bαα ≤

2

3
, −1

2
≤ bαβ ≤

1

2
, ∀α ̸= β.

There exist different ways to visualize the anisotropy tensor state The two most popular are using
the invariant map and the barycentric map. The invariant map uses the second and third invariant of
the anisotropy tensor, II = bijbji and III = bijbikbjk, to plot all possible states in the II-III plane. Using
the restrictions the possible states fall within a triangle in this plane.

The barycentric map was introduced by [6] and uses the three limiting states of turbulence to
represent the anisotropy tensor. These three limiting states are:

bij1c =

 2
3 0 0
0 − 1

3 0
0 0 − 1

3

 , bij2c =

 1
6 0 0
0 1

6 0
0 0 − 1

3

 , bij2c =

 0 0 0
0 0 0
0 0 0

 .

• 1 component turbulence bij1c; only on eigenvalue of the Reynolds stress is non zero and turbulence
occurs in the direction of the eigenvector associated to this eigenvalue.

• 2 component turbulence bij2c; two eigenvalues of the Reynolds stress are non zero, and turbulence
occurs in the plane spanned by the eigenvectors associated with these eigenvalues.

• 3 component turbulence (isotropic turbulence) bij3c; the anisotropy tensor is zero.

Any realizable state of the anisotropy tensor can be obtained as a linear combination of the anisotropy
tensor associated with the three limiting states,

bij = C1cbij1c + C2cbij2c + C3cbij3c,

where the coefficients are obtained directly from the eigenvalues of bij

C1c = λ1 − λ2, C2c = 2(λ2 − λ3), C3c = 3λ3 + 1.

Then each limiting state is placed in a vertex of a triangle with coordinates (xic, yic). The coordinates
of the anisotropy tensor are simply obtained by

(x, y) = Cic(xic, yic).

Thanks to the linearity of this representation, it is a simple tool to enforce relizeability of the
anisotropy tensor by forcing the representation of this tensor to lie inside this triangle. Figure 2.1
shows the barycentric triangle representation of the anisotropy stress, where each corner of the triangle
represents one of the limiting states. While all states inside this triangle are physically possible only
the ones represented by the plane strain line are possible under the Boussinesq hypothesis.

Figure 2.1: Barycentric triangle representation of the anisotropy stress, obtained from [6, p. 10]

While linear eddy viscosity models are the most commonly used, non-linear eddy viscosity models
(NLEVM) can also be used. In [2] Pope presented a more general representation of the anisotropy
tensor in which it depends on the normalized strain rate and rotation rate tensors
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Ŝij = τ
1

2

(
∂Ui

∂xj
+

∂Uj

∂xi

)
, Ω̂ij = τ

1

2

(
∂Ui

∂xj
− ∂Uj

∂xi

)
,

where τ = 1/ω is a turbulent timescale. Then, with the use of the Cayley-Hamilton theorem, the
anisotropy can be represented as

bij =

10∑
n=1

T
(m)
ij

(
Ŝij , Ω̂ij

)
g(m) (λ1, . . . , λ5) ,

where T
(m)
ij is a set of ten linearly independent symmetric tensors with zero trace, λi is a set of five

invariants and g(m) some unknown functions. The basis tensors are

T
(1)
ij = Ŝij,

T
(2)
ij = ŜikΩ̂kj − Ω̂ikŜkj ,

T
(3)
ij = ŜikŜkj −

1

3
ŜlkŜklδij ,

T
(4)
ij = Ω̂ikΩ̂kj −

1

3
Ω̂lkΩ̂klδij ,

T
(5)
ij = Ω̂ikŜklŜlj − ŜikSklΩ̂lj ,

T
(6)
ij = Ω̂ikΩ̂klŜlj + ŜikΩ̂klΩ̂lj −

2

3
ŜpkΩ̂klΩ̂lpδij ,

T
(7)
ij = Ω̂ikŜklΩ̂lpΩ̂pj − Ω̂ikΩ̂klŜlpΩ̂pj ,

T
(8)
ij = ŜikΩ̂klŜlpŜpj − ŜikŜklΩ̂lpŜpj ,

T
(9)
ij = Ω̂ikΩ̂klŜlpŜpj + ŜikŜklΩ̂lpΩ̂pj −

2

3
ŜqkŜklΩ̂lpΩ̂pq,

T
(10)
ij = Ω̂ikŜklŜlpΩ̂pqΩ̂qj − Ω̂ikΩ̂klŜlpŜpqΩ̂qj ,

and the invariants are

λ1 = ŜijŜji,

λ2 = Ω̂ijΩ̂ji,

λ3 = ŜijŜjkŜki,

λ4 = Ω̂ijΩ̂jkŜki,

λ5 = Ω̂ijΩ̂jkŜklŜli.

This formulation has the advantage of meeting the invariance properties of the Navier Stokes equa-
tions regardless of the form the functions g(m) have.

2.2. Multiphase flow
Multiphase flows refer to fluid systems in which two or more phases exist and interact with each

other. These combinations of phases can take various forms, e.g., gas-liquid, liquid-solid, liquid-liquid,
or other combinations. In this work, we are particularly interested in stratified gas-liquid two-phase
flows that often occur in nuclear reactors. The equations governing these systems are similar to those
of single-phase fluids, with some additional complexities.

The conservation of mass equations for immiscible incompressible two-phase flows is the same as for
incompressible single-phase flows:

∂uj

∂xj
= 0.

The conservation of momentum equation is also similar but with some additional terms

∂ui

∂t
+ uj

∂ui

∂xj
=

1

ρ

(
− ∂p

∂xi
I +

∂

∂xj

(
µ

(
∂ui

∂xj
+

∂uj

∂xi

))
+ fσ

i

)
+ fi.

The term

fσ
i = σκδ(xj − x′

j)ni,

models the surface tension, where σ is the surface tension coefficient which is a material property, κ
is the curvature of the interface between the two fluids, ni is the normal direction of the interface and
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δ(xj − x′
j) is the Dirac function, used because the surface tension is a force that only appears in the

interface [7].
It is also important to note that, since the viscosity is no longer constant (due to the two phases

having different properties), a new term arises from the viscous term.

∂

∂xj

(
µ

(
∂ui

∂xj
+

∂uj

∂xi

))
=

∂

∂xj

(
µ
∂ui

∂xj

)
+

∂µ

∂xj

∂uj

∂xi
. (2.8)

Additionally, it is necessary to keep track of where the interface between the two phases is located.
While different options exist for this purpose, such as level set methods [8], a volume of fluid solver is
used in this project. Volume of fluid methods will be explained in chapter 5.

2.3. Turbulence modelling in two-phase flows
Similarly to single-phase flows, the computational cost of DNS makes these simulations unfeasible

for two-phase turbulence. Therefore, it is necessary to employ turbulence models. The idea behind
multiphase turbulence modelling is the same as for single-phase flows; however, the presence of multiple
species and an interface between them pose additional complexities.

Two widely employed approaches in multiphase flow turbulence modelling are the mixture model
and the two-fluid Euler-Euler model [5]. The mixture model treats the multiphase system as a single
homogenized mixture with averaged properties. A single continuity and momentum equation is used
for the whole system. Furthermore, only one turbulent model is used. On the other hand, the two-fluid
Euler-Euler model considers each phase on its own, with separate sets of governing equations for both
phases and separate turbulence models. While this model is more adequate for two-phase flows with
large density ratios, the density ratios of the cases in this project are not too large (of order 10), and
therefore, the mixture model has been selected for its simplicity.

The details and derivation of the mixture model and the two-fluid Euler-Euler model can be found
in [5]; for conciseness, a small overview will be presented here.

Two-fluid Euler-Euler model
The k-phase function, φk, of a general function φ is obtained by

φk = αkφ,

where αk takes the value of one if the point is occupied by the k-phase at a given time and zero otherwise.
The phase average is defined as

φ̃k =
φ̄k

ᾱk
,

and the weighted sum of all the k-phase averages is equal to the total average

φ̄ =
∑

ᾱkφ̃k.

The k-phase mass-weighted mean value is given by

φ̂k =
ρkφk

ρ̄k
,

and the general mean value, φ̂, can be obtained as the mass-weighted sum of the k-phase mass-weighted
mean values

φ̂ =

∑
ᾱkρ̃kφ̂k

ρ
.

The mass conservation equation per phase is

∂

∂t

(
ᾱkρ̃k

)
+

∂

∂xj

(
ᾱkρ̃kûk

j

)
= Γk,
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where Γk is the interfacial source of mass and must satisfy that
∑

k Γ
k = 0. The term Γk represents the

amount of mass that it is being transferred through the interface, for example, due to the evaporation
of one of the phases. Since we are interested in flows with no phase mass transfer, this term would be
zero for this work. The momentum conservation equation is

∂

∂t

(
ᾱkρ̃kûk

i

)
+

∂

∂xj

(
ᾱkρ̃kûk

i û
k
j

)
= − ∂

∂xi

(
ᾱkp̃k

)
+

∂

∂xj

[
ᾱk
(
τ̃kij +Rk

ij

)]
+ ᾱkρ̃kf̂k

i +Mk
i ,

where Rk
ij is the k-phase Reynolds stress tensor and Mk

i is the k-phase interfacial momentum source
and it is usually given.

As was the case in single-phase flows, the Reynolds stress tensor is an unclosed term which needs
additional modelling. The development of turbulence models for multiphase flows is an active area
of research, and while some models for particular cases are available, single-phase models are often
used. However, single-phase models are inadequate due to the presence of the interface between phases,
causing an overestimation of the turbulent kinetic energy [9]. Some authors have mitigated this issue
with source terms in the turbulent quantities equations [10], [11], [9].

Mixture model
As mentioned before, the mixture model treated both phases as a mixture and uses the same equation

for the whole mixture. These equations are formulated in terms of the total averages instead of the
phase averages. The continuity equation of this model for an incompressible fluid is simply given by

∂ûj

∂xj
= 0.

The momentum equation has the form

∂

∂t
(ρ̃ûi) +

∂

∂xj
(ρ̃ûiûj) = −

∂

∂xi
(p̃) +

∂

∂xj
[(τ̃ij +Rij)] + ρ̃f̂i,

where Rij is the Reynolds stress tensor.



3
Machine learning for turbulence

modeling
This chapter provides an overview of the machine learning algorithms that will be used in this

project, as well as the current state of the art in machine learning for turbulence modeling.

3.1. Introduction to machine learning
Machine learning is a field within artificial intelligence that focuses on the development of algorithms

and statistical models, allowing computer systems to improve their performance on a specific task by
learning from and analyzing data. Unlike traditional programming, where explicit instructions are
provided, machine learning enables systems to learn and make predictions or decisions without being
explicitly programmed for each scenario.

In [12], three general categories for machine learning techniques are given: supervised learning,
unsupervised learning and semi-supervised learning.

• Supervised learning: In supervised learning, the algorithm is trained on a labelled dataset,
where each input is associated with a corresponding output or target. The model learns to map
the inputs to the correct outputs by generalizing from the labelled examples provided during
training. The goal is to make accurate predictions on new, unseen data.

• Unsupervised learning: Unsupervised learning involves training models on unlabeled data
where the algorithm tries to find hidden patterns or structures within the data. The machine
learning algorithm aims to explore the data and identify relationships or groupings without explicit
guidance on the output.

• Semisupervised learning: In semi-supervised learning, the algorithm undergoes training with
partial supervision, utilizing either a restricted set of labelled training data or incorporating cor-
rective information from the environment. This class of machine learning includes reinforcement
learning, which is a type of machine learning where an intelligent agent learns to make decisions
by receiving rewards or penalties for actions taken.

This project will concentrate on the use of supervised learning algorithms, with a specific emphasis on
regression algorithms, which aim to predict the value of some quantity based on input data by modelling
the relationship between the input variables and the output variable. While numerous supervised
learning algorithms are available in the next section, a short description of the two chosen for this
project is given: artificial neural networks and symbolic regression.

3.1.1. Neural networks
Neural networks (NN) are machine learning computational models inspired by the structure and

functioning of the human brain. In the context of this work, they will be employed for supervised
machine learning, though they can also be utilized in other applications. NNs consist of interconnected
nodes, often referred to as neurons. The output of a single neuron is computed by

p(x) = α(wixi + bi),

where xi ∈ Rninputs are the inputs, wi ∈ Rninputs are the weights of those inputs, b ∈ R is referred as the
bias and α(·) is a non-linear function called the activation function. Different examples of activation
functions include the rectified linear unit (ReLU)

11
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α(y) = max(0, y),

or the sigmoid function

α(y) =
1

1 + exp−y
.

In classical feed-forward neural networks, neurons are organized in layers, which then are connected.
Other types of neural networks include, for example, recurrent neural networks (RNN), in which the
output of a node can be used as input for the same or previous layers. For feed-forward NN, the first
layer, or input layer, receives the input data, then the activation of this layer is used as input for the
next layer, and so on, until the output layer is reached, which output is the target of the regression.
The intermediate layers are known as hidden layers. Employing multiple hidden layers is known as deep
learning.

The weights and biases of neural networks are unknowns that are learned during training. In
a supervised machine-learning framework, these parameters are optimized by minimizing the error
between the data labels and the predicted output of the network. This process is usually done by
gradient descent algorithms such as Adam or stochastic gradient descent (SDG) [13]. For fully connected
NNs, the gradient of the error with respect to the network parameters can be computed using the
backpropagation algorithm.

3.1.2. Symbolic regression
Symbolic regression is a type of regression analysis where the goal is to find a mathematical ex-

pression or formula that accurately represents the relationship between input variables and the target
output. In this work, we will make use of sparse symbolic regression. However, there are other available
techniques, such as gene expression programming [14].

Sparse symbolic regression, as used in [15], is a supervised regression technique in which a symbolic
expression with only a few nonlinear relevant terms is discovered to fit a given dataset. The expression
is obtained by creating a library of candidate functions and then solving a linear optimization problem
with sparsity promotion techniques.

Let y ∈ Rny be the target of the regression and x ∈ Rnx be the input features. Let Θ(x) : Rnx →
RnΘ be the candidate functions library

Θ(x) = (Θ1(x),Θ2(x), . . . ,ΘnΘ
(x))

where in general each function Θi(x) is a nonlinear function of the input features. Note that these
functions are given to the algorithm and are not discovered through this process. The aim is to find
the linear coefficients, Ξ ∈ RnΘ×ny Ξ =

(
ξ1, ξ2, . . . , ξny

)
, for each of the candidate functions such that

y = Θ(x)Ξ,

and Ξ is sparse. The coefficient vectors are found solving an optimization problem in which the error
is minimized

Ξ = argmin
Ξ̃
∥Θ(X)Ξ̃− Y ∥, (3.1)

where Y ∈ Rn×ny and X ∈ Rn×nx are the outputs and inputs of all the observations, n is the number
of different observations and Θ(X) : Rn×nx → Rn×nΘ is the candidate library for all observations. In
general, the least square error is used and additional regularization terms are included in equation (3.1)
to promote sparsity of vectors ξi, more details can be found in chapter 4. For clarity

Ξ = argmin
Ξ̃

∥∥∥∥∥∥∥∥∥


Θ(x1)
Θ(x2)

...
Θ(xn)

(ξ̃1, ξ̃2, . . . , ξ̃ny

)
−


y1

y2
...
yn


∥∥∥∥∥∥∥∥∥
2

2

.
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3.2. Machine learning for fluid dynamics
In recent years, the use of machine learning techniques in scientific domains, including fluid dynamics,

has gained considerable attention. This progress is aided by the large increase in the computational
resources and data that we have available. While these techniques have applications in many areas
of fluid mechanics, such as optimization, reduced-order modelling, and control, in this project, we are
interested in data-driven turbulence modelling.

Duraisamy et al. [16] identify four levels of modelling in which uncertainties are introduced in
turbulence modelling:

• L1: Uncertainties are introduced when the ensemble average procedure is applied to the Navier
Stokes equations. There exists an infinite number of flow fields that are compatible with the
average flow field, and it is impossible to recover the microscopic flow field from the average one.
Therefore, information is lost, which is unrecoverable.

• L2: In order to close the averaged equations, the unclosed terms are modelled as a function of
the mean flow variables. Assumptions in the dependencies of this functional form are level 2
uncertainties.

• L3: With the variable dependencies already set, the third level of uncertainties involves the
particular form the functional takes.

• L4: Lastly, once a functional form is set, the model parameters need to be chosen or calibrated.
Level 4 uncertainties refer to this process.

The inherent assumptions in the RANS approach and the process of formulating closure models
introduce potential accuracy limitations and reduced predictive ability. For example, the Boussinesq
assumption is an example of (L2) uncertainty, the form of the turbulent transport equations in the κ−ϵ
model is a (L3) uncertainty, and the choice of the parameters for the same model is a (L4) uncertainty.

3.2.1. Previous work
While linear eddy viscosity models are widely used, it is well known that the Boussinesq hypothesis

is not valid for many flows [2], such as those involving strong streamline curvature, separation, or
significant anisotropy. Moreover, it is believed that the inadequacy of this assumption is to blame for
the inaccuracies of LEVM in some applications [16]. Hence, in recent years, research has focused on
circumventing this hypothesis through the use of data-driven turbulence modelling.

Ling et al. [17] proposed tensor basis neural networks to fully model the Reynolds stress; see figure
3.1. They used the invariants of the deformation and rotation of the velocity as regressors for the
coefficients of the tensorial decomposition, this way the model was Galilean invariant. They show the
improvement in the prediction of the Reynolds stresses compared to conventional NNs and propagated
the predicted Reynolds stress into the RANS model equations to improve the flow field. However, they
showed that even if the DNS Reynolds stress data was used in a RANS simulation, the DNS flow field
was not exactly recovered, and they don’t provide details about how the Reynolds stress is propagated.
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Figure 3.1: Tensor basis neural network diagram. Obtained from [17, p. 6]

In [18], the authors describe the Reynolds stress by its intensity, k, its orientation (three angles) and
its coordinates in the barycentric triangle. Then, these six scalars are regressed with random forests
using a set of physically motivated chosen invariants as inputs. While the results in predictability and
generalizability of the Reynolds stress of this approach are encouraging, they do not propagate this
prediction into the RANS equations. In [19], the same set of invariants is used to create a tensor basis
random forest to predict the Reynolds stress. However, the author notes the challenges involved with
propagating the predictions in a RANS solver due to the lack of robustness.

One avenue to address this robustness issue is to involve the RANS solver in the training process.
In [20], the Reynolds stress is modelled with a tensor basis NN, but instead of training the model with
Reynolds stress data from DNS, they use the velocity and pressure of the converged flow field to train
the model coupled with the RANS solver. To compute the derivative of the RANS equations with
respect to the Reynolds stress, they solve an additional set of adjoining equations. They show the
capabilities of the model to learn NLEVM from synthetic data and perform better than conventional
LEVM when using DNS data. Figure 3.2 shows a summary diagram for this approach. The tensor basis
NN is used to predict the Reynolds stress, which is propagated into the RANS equations. Then, The
derivative of the cost function with respect to the Reynolds stress is obtained by the adjoint equation
and the derivative of the cost function with respect to the NN parameters is obtained using the chain
rule.

In [21] [22], the Reynolds stress is again modelled with a tensor basis NN, and in this case, it is
trained coupled with the RANS solver through an ensemble filter. The authors observe that this training
method results in less computational time of the training as well as better accuracy and robustness
compared to the adjoint method presented by [20]. This method is also more flexible because obtaining
the analytical expression of the adjoint equations (which change depending on the RANS model and
the cost function) is not necessary. Zhang et al. [23] extended the ensemble Kalman training method
by including the error of the Reynolds stress model compared to the DNS into the loss function.
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Figure 3.2: Diagram of the adjoin learning method. Obtained from [24, p. 2]

Another way to use model-consistent data for the machine learning process is field inversion. In [25],
a multiplicative correction is introduced in the turbulent kinetic energy equation to quantify model
uncertainties. The multiplicative field is then obtained by solving a discrete optimization problem.
This approach was later extended to compute corrections for RANS models, which can be regressed
using machine learning.

In [26], the authors present SpaRTA (Sparse Regression of Turbulent Stress Anisotropy). Sparse
symbolic regression is used to model the coefficients of corrections to the Reynolds stress and the
turbulent kinetic energy equation. The value of these corrections is obtained through a field inversion
of the DNS data, which they named k-corrective frozen-RANS. Their field inversion consists of solving
the additional turbulent transport equations of the RANS model for ω and the correction of the k
equation using the DNS data of the flow field, Reynolds stress and k. This way, model inconsistencies
for the turbulent quantities are avoided. They show that propagating these corrections in the RANS
model results in the accurate recovery of the DNS flow field.

Mandler et al. [27] investigated the effect of using corrections in the k-equation to obtain model-
consistent turbulent scales. They concluded that while it did not have a noticeable impact in a priory
prediction of Reynolds stresses, models with k-corrections outperformed those that did not have it when
the Reynolds stress was propagated in the RANS solvers. They also developed a series of realizability
restrictions and limiters to the machine learning models, which resulted in improved robustness [28].

Another (L2) assumption that is usually employed is that closure models only depend on local data.
This is derived from the local turbulence equilibrium hypothesis. However, as was the case with the
Boussinesq hypothesis, this assumption is not valid for many flows [2]. Although to a lesser extent than
with the Boussinesq hypothesis, recent research has also tried to address this issue through non-local
data-driven turbulence model.

Figure 3.3: Vector cloud neural network diagram. Obtained from [29, p. 3]

In [30], the authors introduce vector cloud neural networks (VCNN), a new NN architecture which
can use non-local data, such as the flow variables of a different point in the domain, while preserving the
frame invariance. This model consists of two neural networks and an embedding transformation. The
data is sampled in different points, and for each point, the data goes through the first network to extract
a given number of features. These features are then used to construct the embedding matrix, a linear
transformation that is applied to the original sampled data. With this procedure, frame invariance
and order of sampling invariance is achieved. Lastly, the fitting network is used to regress the target
using the transformed data as input. They then show the potential of this new approach by solving
a convection equation using this machine learning model. A scheme of this network architecture can
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be seen in figure 3.3. Later, Vector Clouds NN were used in [29] to completely remove the additional
transport equations used in RANS models by predicting the turbulent quantities directly using VCNNs.



4
Methodology

This chapter explains the framework for data-driven turbulence modelling. It begins by describing
how the RANS equations can be simplified for one-dimensional cases, setting the stage for subsequent
developments. We then present two methods for inverting the turbulent viscosity field. Finally, we
outline the framework for discovering machine learning models, discuss how corrections are introduced
into the model to improve its accuracy and explain the regression techniques.

4.1. Simplified model
This section explains how the 3D RANS equation of the k−ω model can be simplified for statistically

1D cases. The k − ω model equations are

∂Ui

∂xi
= 0,

∂ (ρUi)

∂t
+

∂ (ρUiUj)

∂xj
= − ∂p

∂xi
+

∂

∂xj

(
(ν + νt)

∂Ui

∂xj

)
+ ρgi,

D (ρk)

Dt
=

∂

∂xi

[
ρ (ν + αkνt)

∂k

∂xi

]
+ ρνt

∂Ui

∂xj

∂Ui

∂xj
− β∗ρωk, (4.1)

D (ρω)

Dt
=

∂

∂xi

[
ρ (ν + αωνt)

∂ω

∂xi

]
+ ργ

∂Ui

∂xj

∂Ui

∂xj
− βρω2, (4.2)

νt =
k

ω
.

However, we are interested in the stationary state of a homogeneous solution in the x and z direc-
tions. This means that the time derivatives and derivatives by x and z will be zero. Moreover, only
the streamwise velocity U1 is non-zero. Therefore, the model can be simplified to one-dimensional,
stationary partial differential equations.

d

dy

[
ρ (ν + νt)

dU

dy

]
=

dp

dx
, (4.3)

d

dy

[
ρ (ν + αkνt)

dk

dy

]
= β∗ρωk − ρνt

(
dU

dy

)2

,

d

dy

[
ρ (ν + αωνt)

dω

dy

]
= βρω2 − ργ

(
dU

dy

)2

,

νt =
k

ω
.

In these reduced equations, the pressure is no longer unknown, and only the known pressure drop
dp/dx appears in the momentum equation. Moreover, the continuity equation is automatically satisfied,
so it is no longer considered.

4.2. Turbulent viscosity field inversion
From equation (4.3), it is clear that for a given case, the turbulent viscosity νt fully determines the

velocity profile in the streamwise direction. We would like to know the turbulent viscosity field that

17
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the turbulence model should predict such that the velocity profile is accurate. This problem is known
as the field inversion of the turbulent viscosity. For this purpose, two approaches are proposed:

• Using the DNS Reynolds stress tensor. Comparing the momentum equation of our model
4.3 with the averaged Navier-Stokes equation (2.7), it can be seen that for both equations to be
equal, the following condition must be met.

∂

∂xj
(−ρR1j) =

∂

∂xj

[
ρ

(
−2k

3
δ1j + νt

∂U1

∂xj

)]
−∂(ρR11)

∂x
− ∂(ρR12)

∂y
− ∂(ρR13)

∂z
=

∂

∂y

(
ρνt

∂U1

∂y

)
−∂(ρR12)

∂y
=

∂

∂y

(
ρνt

∂U1

∂y

)
,

This can be achieved by simply setting the turbulent viscosity to

νt = −
R12

∂U1

∂y

. (4.4)

This is the same definition of νt given in [31]. However, this definition of the turbulent viscosity
suffers from some issues. The derivative of the streamwise velocity appears in the denominator of
the equation (4.4), which means that when there is a critical point in the velocity νt will tend to
infinity. Moreover, if R12 and ∂U1

∂y have the same sign, the turbulent viscosity is negative. These
two issues lead to unphysical values of νt. To avoid this, instead of using the definition (4.4)
directly, an optimization process is set to obtain a turbulent viscosity without unphysical values.
The loss function for this problem is

L(νt) =

∥∥∥∥∂UDNS
1

∂y

(
νt

∂UDNS
1

∂y
+RDNS

12

)∥∥∥∥2
2

+ λ1

n−1∑
i=0

∥∥∥∥νt,i+1 − νt,i
h

∥∥∥∥2
2

.

The first term minimizes the difference between νt and the definition given by (4.4), while the
second one is a regularization term that minimizes the discretized first derivative of νt. The
first term is multiplied by the velocity gradient so that the regularization term gains importance
near the critical points of the velocity. This prevents very large values for the turbulent viscosity.
Additionally, the values of νt are constrained to be positive. The full optimization problem is

argmin
νt

L(νt), s.t. νt,i ≥ 0, ∀i.

• Using the DNS velocity profile. Another approach is to solve an optimization problem to
minimize the residual of the discretization of the momentum equation (4.3). The discretized
momentum equation has the form

A(νt)u = b.

Details about the discretization of this equation can be found in chapter 5. The loss function of
the optimization problem is

L(νt) =
∥∥uDNS −A(νt)

−1b
∥∥2
2
+ λ1

n−1∑
i=0

∥∥∥∥νt,i+1 − νt,i
h

∥∥∥∥2
2

,

where uDNS is the velocity profile from the DNS simulations, and a regularization term for the
first derivative is added again.
The gradient of the first term of the loss function with respect to each component of νt is



4.3. Machine learning framework 19

∂
∥∥uDNS −A(νt)

−1b
∥∥2
2

∂νt,i
= 2

(
uDNS −A−1b

)T (
A−1 ∂A

∂νt,i
A−1b

)
.

The final optimization problem is

argmin
νt

L(νt), s.t. νt,i ≥ 0, ∀i.

Both optimization problems are solved using the coordinate descent algorithm 1. This algorithm
randomly cycles through all the degrees of freedom of the turbulent viscosity, in this case, the value in
each mesh node, and performs a gradient descent step using Armijo’s rule for backtracking.

Algorithm 1 coordinate_descent
1: for i ∈ {1, . . . , max_iter} do
2: Initialize indices← {1, . . . , mesh.n− 1}
3: Suffle indices
4: while lenght(indices) > 0 do
5: j ← pop(indices)
6: grad← ∂f

∂νt,i

7: d← − grad
∥grad∥

8: step← s
9: for j ∈ {1, . . . , max_iter_ls} do

10: ν∗t,j ← max(νt,j + step ∗ d, νmin)
11: if f(ν∗

t ) < f(νt) + α ∗ step ∗ d ∗ grad then
12: νt ← ν∗t
13: break
14: else
15: step← β ∗ step
16: if Stopping criterium then
17: break

4.3. Machine learning framework
This section details the machine learning framework used in our project. In this framework, we use

the velocity and Reynolds stress tensor obtained from the DNS and the turbulent viscosity field from
the field inversion to find machine learning models that improve the accuracy of the k − ω turbulent
model. Figure 4.1 shows an overview of this process. The high-fidelity data obtained from the DNS
simulations in Briscola is used for the turbulent viscosity field inversion, then the same data and the
obtained viscosity are introduced in the model equations to obtain the targets of the machine learning
as well as the input features that will be used for the regressions. Finally, the regression techniques are
used to discover models of which the best performing are selected and propagated in OpenFOAM. The
numerical solvers involved in this framework are introduced in chapter 5.



4.3. Machine learning framework 20

Briscola Python OpenFOAM

DNS 
simulation

Turbulent 
viscosity field 

inversion

Input / Output 
features

Model 
discovery

Model 
propagation

Figure 4.1: Model discovery framework.

The first step is understanding the model’s shortcomings and what needs improvement. After some
investigations, the most promising approach is introducing two different corrections in the k and ω
turbulent transport equations. The corrected model equations are

d

dy

[
ρ (ν + νt)

dU

dy

]
=

dp

dx
,

d

dy

[
ρ (ν + αkνt)

dk

dy

]
= β∗ρωk − ρ

(
νt

(
dU

dy

)2
)

+ ρ∆k, (4.5)

d

dy

[
ρ (ν + αωνt)

dω

dy

]
= βρω2 − ρ

(
γ

(
dU

dy

)2
)

+ ρ∆ω, (4.6)

νt =
k

ω
.

Where the terms ∆k and ∆k are the machine learning modeled corrections. Different forms for these
terms are explored, shown in equations (4.7) and (4.8).

∆k = f(q)∆̄kgk(q), ∆ω = f(q)∆̄ωgω(q). (4.7)

∆k = f(q)∆̄ke
gk(q), ∆ω = f(q)∆̄ωe

gω(q). (4.8)
Here q are the input features, gk and gω are the machine learning functions (whose output is

nondimensional), ∆̄k and ∆̄ω are dimensional factors and f(q) is a filter function used to only propagate
the corrections in certain areas of the domain.

4.3.1. Targets
Once the turbulent viscosity field νopt

t has been obtained by a field inversion, the next step is to
modify the k and ω equations such that they predict νopt

t .
We would like the model to predict UDNS, kDNS, νopt

t , ωopt := kDNS

ν
opt
t

.

The machine learning targets ∆k and ∆ω are then obtained by introducing UDNS, kDNS, νopt
t and

ωopt in equations (4.5) and (4.6)

∆k =

d
dy

[
ρ
(
ν + αkν

opt
t

)
dkDNS

dy

]
− β∗ρωoptkDNS + ρ

[
νopt
t

(
dUDNS

dy

)2]
ρ

. (4.9)

∆ω =

d
dy

[
ρ
(
ν + αων

opt
t

)
dωopt
dy

]
− βρ(ωopt)2 + ρ

[
γ
(

dUDNS
dy

)2]
ρ

. (4.10)
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4.3.2. Input features
The input features for the model regression are chosen based on previous work in the literature.

These input features must be non-dimensional and Galilean invariant. Three different feature sets are
used:

• The first feature set is taken from the work of Ling et al. [17]. These features are obtained from
the invariants of Ŝij and Ω̂ij , which were originally proposed in the tensor basis decomposition of
the Reynolds Stress Tensor by [2]. Only the features that are non-zero for 1D flows are included.

• The second set is an extension of the previous set using also the normalized gradient of the
turbulent kinetic energy [18].

• The last set is composed of features obtained by physical intuition and which are aimed to have
an easy physical interpretation [32]. An additional feature is included in this set to include for
the effect of the interface.

The features are then normalized using the function

qβ =
q̃β

|q̃β |+|q∗β |
,

ensuring that all features lie between -1 and 1, qβ ∈ (1,−1). Normalization is also necessary for the
features of the third set to obtain non-dimensional inputs. Table 4.1 summarises the input features and
their normalization factor q∗β .

Table 4.1 shows a summary

Feature Set Index Feature Normalization Factor
FS1 q1

1
2ω2

(
dU
dy

)2
1

q2
−1
8ω4

(
dU
dy

)4
1

FS2 q3
−2k
ϵ2

(
dk
dy

)2
1

q4
−k

4ϵ2ω2

(
dU
dy

)2 (
dk
dy

)2
1

FS3 q5 min
(√

kdwall
50ν , 2

)
-

q6 min
(√

kdint
50ν , 2

)
-

q7 k 1
2U

2

q8 U dp
dx

√
U2
(

dp
dxi

dp
dxi

)
q9

k
ϵ

1√
2

∣∣∣dUdy ∣∣∣
Table 4.1: Features used for the machine learning algorithms

4.3.3. Sparse symbolic regression
The initial technique employed to model the corrections is sparse symbolic regression. Originally

introduced by Brunton et al. [15] for uncovering the governing laws of dynamical systems, a similar
framework is utilized here to derive symbolic expressions for the model’s corrections using supervised
machine learning. The goal is to ensure that these expressions are not only accurate but also simple and
comprehensible, thereby minimizing the risk of overfitting and enhancing the model’s interpretability.

We consider that the corrections can be expressed as a linear combination of functions of the input
features

∆k = Θkξk, ∆ω = Θωξω,

Where Θk ∈ R1×nfk and Θω ∈ R1×nfω are the function libraries, nfk and nfω are the number of
functions in the library and ξk ∈ Rnf k and ξω ∈ Rnfω are the coefficients associated to each of the
functions in the function library. The symbolic regression aims to find the coefficient vectors so that
they are sparse.
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Another model we consider is

log (∆k) = Θkξk, log (∆ω) = Θωξω,

in which instead of predicting the correction, the logarithm of the correction is predicted instead.
Two crucial components are required to find a model: a library of candidate functions and the re-

gression method to obtain the coefficient vectors. The candidate functions library serves as a repository
of potential mathematical expressions from which the model can select to represent the underlying rela-
tionships in the data. Meanwhile, the regression method guides the optimization process by minimizing
the error between the predicted and actual values.

In general, the optimization problem consists of a least squares problem where additional terms may
be added to the loss function to promote parsimony and simplicity. For example, if there are available
np point samples of data for the corrections, the loss function would be

∥∆i −Θijξj∥22,

plus the regularization terms, where ∆i ∈ Rnp , Θij ∈ Rnp×nf and ξj ∈ Rnf . Four different regression
methods will be used: LASSO [33], elastic net [34], STLSQ [15] and SR3 [35].

Candidate Function Library
The selection of the candidate function library is a critical step in using sparse symbolic regression.

This library is composed of a set of potential mathematical expressions that the model can use to
represent the corrections accurately. However, the functions themselves need to be set manually, and
therefore, expertise about potential relationships between the target and the inputs is needed.

For this work, the candidate function libraries are composed of polynomial combinations of the input
features up to order N .

B =
[
1, q1, q

2
1 , q1q2, . . .

]
.

An additional dimensional factor, ∆̄k is multiplied with the library so the regressed expression
dimensions match those of the equation that is going to be added to

Θk = ∆̄kB, Θω = ∆̄ωB,

or in the case, the logarithm of the correction is being regressed

Θk = log
(
∆̄k

)
+ B, Θω = log

(
∆̄ω

)
+ B,

where

∆̄k ∈

{
kω,

(
dU

dy

)2
}
, and ∆̄ω ∈

{
ω2,

(
dU

dy

)2
}
.

LASSO
LASSO, which stands for least absolute shrinkage and selection operator, is a regression method in

which the objective is to solve the minimization problem

ξ = argmin
ξ̃
∥Θξ̃ −∆∥22+λ∥ξ̃∥1,

where the term λ∥ξ̃∥1 is used for regularization with a weight λ. This l1-norm penalty term promotes
the shrinkage of some coefficients to exactly zero, resulting in sparse expressions in which only some of
the functions of the candidate function library are present. Thus improving the interpretability of the
model and reducing the risk of overfitting.

The LASSO problem is solved using the Python package Scikit-learn [36], and the parameter space
of λ is set to

λ =
[
10−4, 10−3, 10−2, 10−1, 100, 101

]
.



4.3. Machine learning framework 23

Elastic net
Elastic net is a regression method that combines the l1-norm regularization term of LASSO with an

additional l2-norm regularization term.

ξ = argmin
ξ̃
∥Θξ̃ −∆∥22+λρ∥ξ̃∥1+0.5λ(1− ρ)∥ξ̃∥2.

On one hand, the l1 has a similar effect as in the LASSO problem. On the other hand, the l2 term
(which, when used alone, is known as Ridge regression) distributes the shrinkage across all coefficients,
improving the predictive accuracy when the predictors are highly correlated. The parameter ρ represents
the degree of mixture between the two of the penalty terms, with ρ = 0 being equal to the Ridge
regression and ρ = 1 to LASSO.

The optimization problem is solved again using the Python package Scikit-learn. The search space
for λ and ρ are

λ =
[
10−4, 10−3, 10−2, 10−1, 100, 101

]
,

ρ = [0.01, 0.1, 0.2, 0.5, 0.7, 0.9, 0.95, 0.99, 1.0] .

Sequential thresholding least squares
Sequential thresholding least squares (STLSQ) is an iterative regression method which uses a dif-

ferent strategy to enforce sparsity compared to the two previous methods [15]. In each iteration, the
Ridge regression is solved first

ξ = argmin
ξ̃
∥Θξ̃ −∆∥22+λ∥ξ̃∥22.

Then, all the coefficients below a certain threshold are set to zero, excluding the associated terms
for the rest of the regression. After that, the process is repeated until convergence.

The STLSQ problem is solved using the Python package PySINDy [37]. The search spaces for λ
and the threshold value are

λ = [0.01, 0.05, 0.1, 0.5] ,

threshold =
[
10−3, 10−2, 10−1, 100, 101

]
.

Sparse relaxed regularised regression
Sparse relaxed regularised regression (SR3) is yet another regression method. In this case, the loss

function is given by

ξ = argmin
ξ̃,u

∥Θξ̃ −∆∥22+λR(u) +
1

2ν
∥ξ̃ − u∥22,

where u is an auxiliary variable and R(u) its is associated regularization term. Following the work
in [38], we will not use a regulariser for u but instead perform thresholding as in STLSQ. The SR3
problem is solved using the Python package PySINDy, and the search space for the hyperparameters is

ν = [0.01, 0.1, 1.0, 10.0] ,

and

threshold =
[
10−3, 10−2, 10−1, 100, 101

]
.



4.3. Machine learning framework 24

4.3.4. Neural network
Another powerful and popular supervised machine learning technique is neural networks (NN). These

networks have been proven to be highly effective for regression due to their ability to learn complex,
non-linear relationships from data. However, these systems constitute black boxes, which hinders the
interpretability of the model.

Figure 4.2: Diagram of the neural network architecture.

Many neural network architectures exist, each designed to address specific types of problems and
data structures, such as convolutional neural networks (CNNs) for image data and recurrent neural
networks (RNNs) for sequential data. However, for this work, we utilize simple, fully connected neural
networks with an additional final layer to merge the output with a dimensional factor.

Figure 4.2 shows a diagram of the NN architecture used for this work. The network is composed
of an input layer for the input features, two hidden layers, an output layer and an additional input
layer for a dimensional factor, which gets combined with the outputs such that the dimensions of the
correction match those of the equation introduced into. The number of neurons in each of the hidden
layers, as well as the type of activation functions used in those layers, are hyperparameters which are
modified to find different models. The two hidden layers can be shared for both corrections, having a
single network for both of them or separate, having a different network for each of the corrections.

More rigorously, the mathematical description of the network is:

• Joint network
Let q ∈ Rni , ∆̄ := [∆̄k, ∆̄ω] ∈ R2 be the inputs of the network and ∆ := [∆k,∆ω] ∈ R2 the output.
Then, the network is given by

h1 = α1 (W1q + b1) ,

h2 = α2 (W2h1 + b2) ,

h3 = W3h3 + b3,

where hi ∈ Rnhi , Wi ∈ Rnhi
×nhi−1 and bi ∈ Rnhi . The dimensions of the layers nh1

and nh2
are

hyperparameters, as also are the type of activation functions for these layers α1(·) and α2(·) and
the dimension of the third layer is nh3 = 2. Note that nh0 = ni. The last layer combines the
output of the third layer with a dimensional factor depending on whether the correction or its
logarithm is being regressed.

∆ = ∆̄⊙ h3, log (∆) = log
(
∆̄
)
+ h3,

where ⊙ is the Hadamard product that denotes element-wise multiplication. The weights, Wi,
and the biases, bi, of the network are learnt during training.
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• Separated networks
The architecture of the separated networks remains the same as in the previous case, except that
the first two hidden layers are no longer shared. This means the two networks only share the
initial input layer and can thus be described separately.
Let ϕ ∈ {k, ω}, each network is described as

h1,ϕ = α1,ϕ (W1,ϕq + b1,ϕ) ,

h2,ϕ = α2,ϕ (W2,ϕh1,ϕ + b2,ϕ) ,

h3,ϕ = W3,ϕh3,ϕ + b3,ϕ,

where hi,ϕ ∈ Rnhi,ϕ , Wi,ϕ ∈ Rnhi,ϕ
×nhi−1,ϕ and bi,ϕ ∈ Rnhi,ϕ . As in the previous case, the

dimension of the third layer is fixed nh3,ϕ
= 1 and the dimension of the hidden layers and their

activation functions are hyperparameters. The output of the third layer is again combined with
a dimensional factor depending on whether the correction or its logarithm is being regressed.

∆ϕ = ∆̄ϕh3,ϕ, log (∆ϕ) = log
(
∆̄ϕ

)
+ h3,ϕ.

As mentioned before, the weights and biases (we will refer to both as weights) of the neural networks
are unknowns that are learned during training. Initially, the weights are initialized randomly and then,
using a gradient descent method and data, the weights are iteratively updated.

More specifically during training, the data is fed through the network in batches, and the output
predictions are compared to the actual target values using a loss function, which quantifies the prediction
error, for this work the mean squared error is used as the loss function. The backpropagation algorithm
is then employed to calculate gradients of the loss function with respect to the network’s weights. These
gradients are used to update the weights through an optimization algorithm, in the case of this work
Adam is used as an optimizer. The hyperparameters of the training are the batch size, the number of
epochs and the learning rate of the Adam optimizer, which for this work are set to 32, 100 and 10−3

respectively.
For the implementation of the NNs, the TensorFlow Pyhton package is used. TensorFlow also has

a C API available, which we use to infer the learnt models in OpenFOAM.

4.3.5. Model discovery
In the previous, different regression techniques were introduced to learn models for the corrections.

However, each of these techniques had their own set of hyperparameters, which leads to the question,
how do we choose these hyperparameters, or how do we select a model?

Hyperparameter optimization involves systematically searching for the best set of hyperparameters,
which are parameters that define the model structure and training process, but are not learned from the
data. As a hyperparameter optimization technique, we will use grid search. Grid search is a method
where a predefined set of hyperparameters is searched over a specified range. Each combination of
hyperparameters is evaluated using cross-fold validation.

Training samples
Earlier, we discussed how a filtering function could be used to propagate the correction only in the

desired areas of the domain. Should the correction model then be trained with data samples of those
areas only? We use two options to select which data samples need to be used:

• All data samples are used.
• Data samples are only used if for that particular sample

f(q) > zone_tol,

where we set zone_tol = 10−2.
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Cross-fold validation
Cross-fold validation is a robust technique for assessing a model’s generalizability. It involves dividing

the dataset into several folds and training the model multiple times, each time using a different fold as
the validation set and the remaining folds as the training set. This approach ensures that every data
point is used for both training and validation, evaluating the model’s performance and reducing the
risk of overfitting.

If there are nt training cases and we perform k-fold cross-validation with k folds, the data is split
into k parts, keeping all the data corresponding to the same training case together. For the remaining
of this work we will use k = 5.

Discarding and selecting models
Once the k-fold cross-validation has been performed for all models, the next step is to select which

models to propagate into the RANS simulations. This step is necessary as good data fits in the training
stage, but it does not always mean good results when the corrections are introduced in the RANS model.
However, propagating all discovered models is computationally expensive; therefore, some selection must
be done. These steps vary slightly depending on the regression technique used:

• Sparse symbolic regression
For a given regression technique with np total hyperparameter combinations, we have np models
for ∆k and np models for ∆ω. Out of those models we discard the ones that have more that
n_max_terms terms (or equivalently, non zero coefficients). From the remaining models, we select
the nk ∆k models and nω ∆ω models with the best validation score. Finally, we combine all
selected models for k and ω together yielding a total of nk × nω models

• Joint neural network
For this case, we simply select the nk × nω models with the highest validation score.

• Separate neural networks
The procedure is equal to the symbolic regression case, but no models are discarded in this case.

Model propagation
Lastly, the selected models are propagated into the RANS model, first in the cases used for the

training and then in the cases whose data has not been used in the training process. The full framework
for the model discovery is summarised in figure 4.3.

Select the regression 
technique and the 
turbulent viscosity 
inversion method

Perform k-fold cross 
validation

For all 
combinations of 

hyperparameters

Discard non adecuate 
models

Select models with the 
highest validation score

For all selected 
models

Propagate the models 
in the RANS simulation 

of the train cases

Propagate the models 
in the RANS simulation 

of the test cases

Figure 4.3: Flow chart of the model discovery algorithm.
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Numerical solvers

This chapter will discuss the numerical solvers used in this project. These solvers are essential for
the different stages of the data-driven modelling framework. First, we will look at the solver used for
Direct Numerical Simulations (DNS) of two-phase flows, which is used to generate high-fidelity data.
Next, we will examine the OpenFOAM solver used for Reynolds-averaged Navier-Stokes simulations.
We will present a Python solver for the simplified model, which allows for a simple integration of the
solver in the training process of the model discovery. Finally, the test case used throughout the project
is introduced. This chapter will provide a clear overview of the numerical methods used in the project.

5.1. Direct numerical simulations of two-phase flows
This section gives an overview of the numerical methods used to perform the two-phase DNS. These

simulations were done using Briscola, an NRG in-house finite volume solver, the two-phase part of which
was developed throughout this project. The Navier Stokes equations are solved by a pressure correction
scheme, and the location of the two fluids is tracked using a VoF solver.

5.1.1. The finite volume method
The finite volume method (FVM) is a numerical technique used to solve partial differential equations.

The core idea behind FVM is to divide the domain of the problem into a finite number of small control
volumes (or cells) and apply the integral form of the governing equations over these control volumes
[39]. Some of the advantageous properties this method has is that it is inherently conservative and that
it is well-suited for problems involving discontinuities.

As a very brief example. To solve the following PDE

∂ui

∂t
+

∂Fij(u)

∂xj
= 0, (5.1)

the domain would be discretized in a finite number of cells Ci with volume Vi and equation (5.1) is
integrated in each of the cells ∫

Ck

∂ui

∂t
dV +

∫
Ck

∂Fij(u)

∂xj
dV = 0.

Using the divergence theorem, the second term can be turned into a surface integral.∫
Ck

∂ui

∂t
dV +

∮
∂Ck

∂Fij(u)njdS = 0. (5.2)

The average value of a cell is defined as

Ui,k(t) =
1

Vk

∫
Ck

ui(x, t)dV.

Therefore, equation (5.2) can be rewritten as

∂Ui,k

∂t
+ Vk

∮
∂Ck

∂Fij(u)njdS = 0.

Finally, to solve this equation, the temporal derivative gets discretized with a time-marching scheme,
and the fluxes between cells (the surface integral term) get reconstructed using the average cell values.
Different methods will depend on the way these fluxes get reconstructed.

27
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5.1.2. Volume of fluid methods
Volume of Fluid (VOF) methods are numerical techniques used in computational fluid dynamics

to simulate and analyze multiphase flows. The fundamental idea behind VOF methods is to track the
volume fractions of each fluid phase within each computational cell or grid element. In other words, for
two-phase flows, VOF methods provide a way to determine how much of a cell is occupied by one fluid
phase and how much is occupied by another. This information allows for the accurate calculation of
fluid properties, flow velocities, and pressure gradients at the interfaces between different fluids.

From now on, we will denote the volume fraction α, which ranges from 0 (the cell is filled with
one of the phases) to 1 (the cell is filled with the other phase): and the fluid which corresponds to a
volume fraction equal to one will be called the liquid. The equation that describes how α evolves is the
advection equation

∂α

∂t
+

∂ujα

∂xj
= 0.

This equation can be solved algebraically or geometrically. Algebraic methods use numerical schemes
that discretize the equation into algebraic expressions. Geometric methods, however, focus on explicitly
reconstructing the interface geometry to compute the fluid that gets advected. In this work, it will be
solved geometrically as these methods result in advantageous properties such as the monotonicity of
the solution and less artificial diffusion [40]. For every time step two main steps are performed:

• Interface reconstruction: This step consists of constructing an interface that separates the two
phases.
One class of interface reconstruction algorithms are PLIC (piecewise linear interface calculation)
schemes. In these schemes, the interface is represented as a plane in each interface cell (those with
0 < α < 1) of the mesh, which follows the equation

nixi + C = 0, (5.3)

where xi is the position vector. Thus the problem is reduced to finding ni and C for each cell.
This problem is usually solved in two steps. First we obtain ni for every cell, called the normal
reconstruction. Then, we find a value of C for every cell so that the volume of the truncated cell
equals the fraction of volume given by α. This problem is called the local volume enforcement
(LVE) problem.

• Convection: The equation (5.3) is updated via finite volume method. Through geometric tech-
niques, the amount of liquid that enters and leaves every cell is computed and used to update
α.

5.1.3. Briscola's numerical scheme
In each time step, the first step is to solve the advection equation of the VoF solver

αn+1/2 − αn−1/2

∆tn
+

∂

∂xi
(αnun

i ) = 0. (5.4)

Equation 5.4 is solved by split advection to impose monotonicity of the solution [40]. The interface
normal is reconstructed with the mixed Young central scheme [41], and the LVE problem is solved by
an efficient analytical formula [42] valid for parallelepiped cells.

The fraction of the volume field is used to update the fluid properties

φn+1/2 = αn+1/2φ
n+1/2
1 + (1− αn+1/2)φ

n+1/2
2 , φ ∈ {ρ, µ} ,

Then, a pressure correction scheme is used

u∗
i − un

i

∆tn
= Cn+1

i (u) +
1

ρn+1/2
Mn+1

i (µ, u)− 1

ρn+1/2

∂pn−1/2

∂xi
+ σn+1/2κ

n+1/2

⟨ρ⟩
∂αn+1/2

∂xi
,

un+1
i = u∗

i −
∆t

ρn+1/2

(
∂pn+1/2

∂xi
− ∂pn−1/2

∂xi

)
, (5.5)
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∂un+1
i

∂xi
= 0,

where Cn+1
i (u) ≈ uj(x, t

n)∂ui(x,tn)
∂xj

is the time discretization of the convective term, Mn+1
i (µ, u) ≈

∂
∂xj

(
µ(x, tn)

(
∂ui(x,tn)

∂xj
+

∂uj(x,tn)
∂xi

))
the one of the viscous term and the last term in the right-hand

side is the surface tension. For the convective term, a second-order extrapolation formula is used

Cn+1
i (u) =

(
1 +

∆tn

2∆tn−1

)
un
j

∂un
i

∂xj
− ∆tn

2∆tn−1
un−1
j

∂un−1
i

∂xj
.

For the viscous term, the first term on the hand side of equation (2.8) is discretized using the
Crank-Nicolson scheme and the second one using second-order extrapolation formula again

Mn+1
i (µ, u) =

∂

∂xj

[
µn+1/2

2

(
∂un+1

i

∂xj
+

∂un
i

∂xj

)](
1 +

∆tn

2∆tn−1

)
∂µn+1/2

∂xj

∂un
j

∂xi
− ∆tn

2∆tn−1

∂µn+1/2

∂xj

∂un−1
j

∂xi
.

Therefore, the prediction step is implicit in the velocity. The resulting system is solved using a
multigrid solver. Using the Brackbill formulation [7], the surface tension term has the form

Fn+1/2
i (α) = σn+1/2κ

n+1/2

⟨ρ⟩
∂αn+1/2

∂xi
,

where σn+1/2 is the surface tension coefficient, ⟨ρ⟩ is the mean density and κn+1/2 is the interface
curvature. The curvature κ is computed using the standard height function technique with the improve-
ments proposed by Lopez et al. [43]. For stability and accuracy reasons, the pressure gradients and the
surface tension must be discretized in the same location [7]. Therefore, the gradients of the α field are
computed in the same location as the gradients of the pressure and the rest of the terms necessary for
the surface tension are interpolated to these locations if needed.

Solving the projection step (5.5) for the pressure yields a non-constant coefficient Poisson problem,
which is well known to be the bottleneck for this type of scheme. Following the work in [7], the pressure
term is split into a constant and non-constant coefficient term

1

ρn+1/2

∂pn+1/2

∂xi
→ 1

ρ0

∂pn+1/2

∂xi
+

(
1

ρn+1/2
− 1

ρ0

)
∂p̂

∂xi
,

where the constant coefficient term is treated implicitly and the non-constant term explicitly by using
a linear extrapolation of the pressure

p̂ = − ∆tn

∆tn−1
pn−1 +

(
1 +

∆tn

∆tn−1

)
pn.

This allows us to solve the resulting system using a Fast Fourier solver, which can result in speed-ups
of one order of magnitude compared to using multigrid [7]. The resulting Poisson equation is

∂2pn+1/2

(∂xi)
2 =

1

∆tn
∂ui

∂xi
+

ρ0
∂pn+1/2

∂2pn−1/2

(∂xi)
2 +

(
1− ρ0

∂pn+1/2

)
∂2p̂

(∂xi)
2 ,

and the correction of the velocity is

un+1
i = u∗

i −∆tn
[
1

ρ0

(
∂pn+1/2

∂xi
− ∂p̂

∂xi

)
+

1

ρn+1/2

(
∂p̂

∂xi
− ∂pn−1/2

∂xi

)]
.

5.1.4. Validation of Briscola
The newly implemented two-phase solvers have been validated with two 2-D rising bubble simulation

cases [44]. In these cases, a fluid bubble is immersed in a denser fluid column, which causes the bubble
to rise due to the action of gravity. Figure 5.1 shows a description of the simulation setup, and Table
5.2 shows the different parameters for each simulation
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Figure 5.1: Description of the simulation set up, obtained from [44, p. 1262].

Test case ρ1 ρ2 µ1 µ2 g σ Re Eo ρ1/ρ2 µ1/µ2

1 1000 100 10 1 0.98 24.5 35 10 10 10
2 1000 1 10 0.1 0.98 1.96 35 125 1000 100

Figure 5.2: Simulation parameters for each case.

The characteristic non-dimensional numbers of the problem are the Reynolds number, which de-
scribes the ratio of inertial to viscous effects, and the Eotvos number, which gives the ratio of gravita-
tional forces to surface tension effects

Re =
ρ1UgL

µ1
, Eo =

ρ1UgL

σ
,

where Ug =
√
2gR and R is the radius of the bubble. Four Briscola solver configurations have been

tested, using a colocated or a staggered mesh with and without using the split in the pressure equation
explained in the previous section. The simulations with the Briscola solvers have been performed on a
mesh with cell size h = 1/128 and with a fixed timestep ∆t = 0.0004. The reference data is obtained
with the solver TP2D [44], which is a FEM-level set solver (Briscola is a finite volume VoF solver) in a
mesh with h = 1/320 and with a fixed timestep ∆t = h/16 ≈ 0.0002. The end time of the simulation
is t = 3.

The results are compared using the centre of mass height

Yc =

∫
Ω2

y dx dy∫
Ω2

dx dy
,

the average rising velocity

V =

∫
Ω2

uy dx dy∫
Ω2

dx dy
,

and the shape of the bubble at the end time.
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Figure 5.3 shows the bubble’s shape at the end of the simulation for case 1. It can be seen that the
shape is extremely similar for the different solvers; the only noticeable difference is that for the TP2D
solver, the bubble is slightly higher.
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Figure 5.3: Shape of the bubble for case 1 at t = 3. Legend: C-NS: Colocated solver, no split for pressure equation.
C-S: Colocated solver, split for pressure equation. S-NS: Staggered solver, no split for pressure equation. S-S: Staggered

solver, split for pressure equation. TP2D: Benchmark results from [44]

In figure 5.4, the vertical position of the centre of mass and the rising velocity of the bubble for case
1 is shown. Again, the results are very similar except for the bubble of TP2D, which rises a little bit
faster after t = 1. After this time, Briscola solvers marginally under-predict the rising velocity, which
leads to a lower final height.
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Figure 5.4: Height of the centre of mass (a) and mean rising velocity (b) of the bubble for case 1. Legend: C-NS:
Colocated solver, no split for pressure equation. C-S: Colocated solver, split for pressure equation. S-NS: Staggered

solver, no split for pressure equation. S-S: Staggered solver, split for pressure equation. TP2D: Benchmark results from
[44]

Case 2 is a more challenging case for multi-phase solvers. Among the causes for this is the much
larger density ratio than in case 1 and the appearance of very thin fluid structures that need fine grids
to be captured. This case could not be simulated with the colocated solver using the split for the
pressure equation. However, this is not particularly alarming since the split was introduced by [7] for
staggered solvers. The end shape of the bubbles is shown in figure 5.5. While the main bulk of the
shape is similar, there are differences, mainly in the lower perimeter. The colocated solver predicts a
smaller breakage than the reference code, and the staggered solvers don’t predict breakage at all. In
[44], the performance of different solvers for this case is compared, showing a lot of variation between
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each other. Some predict thin filaments, while others break into smaller bubbles. This phenomenon
is dominated by surface tension; thus, the main differences can probably be traced to how this force
is handled. In the case of Briscola, the curvature of the interface is computed with a height function
technique, which is known not to handle very coarse resolutions well. This could explain the difference
in the bottom edges.
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Figure 5.5: Shape of the bubble for case 2 at t = 3. Legend: C-NS: Colocated solver, no split for pressure equation.
C-S: Colocated solver, split for pressure equation. S-NS: Staggered solver, no split for pressure equation. S-S: Staggered

solver, split for pressure equation. TP2D: Benchmark results from [44]

In figure 5.6, the vertical position of the centre of mass and the rising velocity of the bubble for case
1 is shown. While the results between solvers are not equal, the variances align with the differences
shown between solvers in [44].
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Figure 5.6: Height of the centre of mass (a) and mean rising velocity (b) of the bubble for case 2. Legend: C-NS:
Colocated solver, no split for pressure equation. C-S: Colocated solver, split for pressure equation. S-NS: Staggered

solver, no split for pressure equation. S-S: Staggered solver, split for pressure equation. TP2D: Benchmark results from
[44]

5.2. RANS solver
The correction models discovered for the k−ω turbulence model are implemented in the open-source

CFD software OpenFOAM. For the simulations, the incompressibleVof module of OpenFOAMv11 is
used. The turbulence model kOmega is selected, and the forcing pressure gradient is implemented as
an explicit source term in the momentum equation using the momentumSource functionality.
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5.2.1. PIMPLE algorithm
OpenFOAM uses the PIMPLE algorithm to solve the incompressible RANS equations [45]. The

PIMPLE method combines the SIMPLE (Semi-Implicit-Method for Pressure Linked Equations) and the
PISO (Pressure-Implicit with Splitting of Operators) algorithms. This family of numerical algorithms
uses splittings such that the momentum and continuity equations can be uncoupled, reducing the total
computational cost of solving the system [46].

∂ (ρUi)

∂t
+

∂ (ρUiUj)

∂xj︸ ︷︷ ︸
=:Ci(U)

= − ∂p

∂xi︸︷︷︸
=:Gi(p)

+
∂

∂xj

[
(ν + νt)

∂Ui

∂xj

]
︸ ︷︷ ︸

=:Li(U)

+ ρgi︸︷︷︸
=:Fi

, (5.6)

∂ρUi

∂xi︸ ︷︷ ︸
=:D(ρU)

= 0, (5.7)

The algorithm works as follows. Let Ci(U), Gi(p), Li(U), Fi and D(ρU) be the convective, gradient,
viscous, forcing and divergence operators as shown in equations (5.6) and (5.7). In this case, the
momentum equation is discretized implicitly in time using the backward Euler scheme, as shown in
(5.8).

(ρUi)
n+1 − (ρUi)

n

∆t
+ Ci(Un+1) = −Gi(pn+1) + Li(U

n+1) + Fn+1
i . (5.8)

Then equation (5.8) is linearized and discretized in space, yielding a system of equations for each
velocity component. These equations are solved in an iterative process for each timestep; these iterations
are called outer iterations, and we denote by m the index of these iterations. For each time step, the
velocity and pressure from the previous time step are used as the starting point for the first outer
iteration. The linear system for each velocity component reads as follows.

Am−1Um
i = Qm−1

i −Gi(p
m),

where Am−1 is a matrix, Qm−1
i includes explicit terms or other terms that may arise from the lineariza-

tion, and Gi is the ith component of the gradient operator. Note that A and Q depend on the previous
solution, but for conciseness, the superindex will be omitted. Matrix A can be split into a diagonal part
AD and an off-diagonal part AOD. For each outer iteration, a predicted velocity is obtained by solving
the momentum equation (5.9) using the pressure from the previous iteration.

(AD +AOD)U∗
i = Qi −Gi(p

m−1), (5.9)

This velocity may not satisfy the continuity equation, so the preliminary velocity and the pressure
are corrected.

U∗∗
i = U∗

i + U ′
i , p∗ = pm−1 + p′.

The first condition we impose on the corrected fields is to satisfy the following equation

ADU∗∗
i +AODU∗

i = Qi −Gi(p
∗). (5.10)

Subtracting equation (5.9) from (5.10), a relationship between the velocity and the pressure correc-
tion can be obtained. Note that because AD is diagonal, it is trivial to obtain its inverse.

U ′
i = −(AD)−1Gi(p

′)

The second condition imposed is that the corrected velocity satisfies the continuity equation, which
yields a Poisson equation for the pressure correction.

D(ρ(AD)−1Gi(p
′)) = D(ρU∗)

This process can be repeated by correcting the pressure and velocity again. Each additional correc-
tion will be denoted by an extra symbol in the super index.
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ADU∗∗∗
i +AODU∗∗

i = Qi −Gi(p
∗∗), (5.11)

Subtracting equation (5.10) from (5.11) a relationship can be obtained between corrections

U ′′
i = −(AD)−1(AODU ′

i +Gi(p
′′)). (5.12)

Forcing the corrected velocity to satisfy the continuity equation, a Poisson equation is obtained for
the pressure correction.

D(ρ(AD)−1Gi(p
′′)) = D(ρ(AD)−1AODU ′

i) (5.13)
The process can be repeated, and all that needs to be changed is to add a super index in the

corrections of equations (5.12) and (5.13). At the end of each outer iteration, the transport equations
of the turbulence model are solved.

(ρω)n+1 − (ρω)n

∆t
=

∂

∂xi

[
ρ (ν + αωνt)

∂ωn+1

∂xi

]
+ ργ

∂Un+1
i

∂xj

∂Un+1
i

∂xj
− βρωnωn+1,

(ρk)n+1 − (ρk)n

∆t
=

∂

∂xi

[
ρ (ν + αkνt)

∂kn+1

∂xi

]
+ ρνt

∂Un+1
i

∂xj

∂Un+1
i

∂xj
− β∗ρωn+1kn+1,

Figure 5.7 shows the flow chart of the PIMPLE algorithm. There are three main controls per
time step: how many outer iterations are done, whether the momentum equation is solved to obtain a
prediction of the velocity (or the previous velocity is used instead) and how many corrections are done.
For this work, 2 outer iterations are used, the momentum equation is not solved, and 3 corrections are
used.
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Figure 5.7: Flow chart of the PIMPLE algorithm.

5.2.2. Variable density turbulence model
OpenFOAM’s incompressibleVof solver uses a single turbulence model for the whole mixture with

a constant density. However, the mixture density is not constant. This issue was addressed in [10] for
the multiphaseEuler solver, which uses a turbulent model for each phase but also fails to account for
the effect of the variable density. The authors of the paper conclude that including the variable density
effect improves the solver’s accuracy. Therefore, we also address this issue in our model by introducing
a source term in the turbulence transport equations as in [10].

D (ρk)

Dt
=

∂

∂xi

[
ρ

(
ν +

νt
σk

)
∂k

∂xi

]
+ ρνt

∂Ui

∂xj

∂Ui

∂xj
− ρβ∗ωk + ρ∆k, (5.14)
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D (ρω)

Dt
=

∂

∂xi

[
ρ

(
ν +

νt
σω

)
∂ω

∂xi

]
+ ργ

∂Ui

∂xj

∂Ui

∂xj
− ρβω2 + ρ∆ω, (5.15)

Dk

Dt
=

∂

∂xi

[(
ν +

νt
σk

)
∂k

∂xi

]
+ νt

∂Ui

∂xj

∂Ui

∂xj
− β∗ωk +∆k + Sk, (5.16)

Dω

Dt
=

∂

∂xi

[(
ν +

νt
σω

)
∂ω

∂xi

]
+ γ

∂Ui

∂xj

∂Ui

∂xj
− βω2 +∆ω + Sω, (5.17)

The equations we want the solver to use are (5.14) and (5.15). However, the equations implemented
in OpenFOAM are (5.16) and (5.17), where Sk and Sω are the source terms to be included.

Dk

Dt
+

k

ρ

Dρ

Dt
=

∂

∂xi

[(
ν +

νt
σk

)
∂k

∂xi

]
+

1

ρ

∂ρ

∂xi

[(
ν +

νt
σk

)
∂k

∂xi

]
+ νt

∂Ui

∂xj

∂Ui

∂xj
− β∗ωk + ρ∆k, (5.18)

Dω

Dt
+

ω

ρ

Dρ

Dt
=

∂

∂xi

[(
ν +

νt
σω

)
∂ω

∂xi

]
+

1

ρ

∂ρ

∂xi

[(
ν +

νt
σω

)
∂ω

∂xi

]
+ γ

∂Ui

∂xj

∂Ui

∂xj
− βω2 + ρ∆ω, (5.19)

Expanding equations (5.14) and (5.15) we obtain (5.18) and (5.19) and comparing them with (5.16)
and (5.17) yields the following source terms

Sk =
1

ρ

∂ρ

∂xi

[(
ν +

νt
σk

)
∂k

∂xi

]
− k

ρ

Dρ

Dt
.

Sω =
1

ρ

∂ρ

∂xi

[(
ν +

νt
σω

)
∂ω

∂xi

]
− ω

ρ

Dρ

Dt
.

Note that the material derivative of the density is zero, Dρ
Dt = 0; thus, that term can be omitted.

5.3. Simplified model solver
This section introduces the Python solver for the simplified model. We first discuss the details of the

spatial discretizations and the implementation of the boundary conditions. Then, we follow with the
iterative methods to solve the non-linear system of equations. Finally, a comparison is made between
the simplified solver and OpenFOAM.

The simplified model equations are

d

dy

[
ρ (ν + νt)

dU

dy

]
=

dp

dx
, (5.20)

d

dy

[
ρ (ν + αkνt)

dk

dy

]
= β∗ρωk − ρνt

(
dU

dy

)2

− ρ∆k, (5.21)

d

dy

[
ρ (ν + αωνt)

dω

dy

]
= βρω2 − ργ

(
dU

dy

)2

− ρ∆ω, (5.22)

νt =
k

ω
.

These equations are spatially discretized using finite differences. The one-dimensional domain Ω =
[−H,H] is divided into N cells. The cell centres are given by

xi = −H + (0.5 + i)h, i = 0, 1, . . . , N − 1,

and the face centres of the cells are given by

xi− 1
2
= −H + ih, i = 0, 1, . . . , N,

where h = 2H/N is the cell size. The equations are discretized in the cell centres. For the Laplacian,
the following second-order central difference formula is used
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d

dy

[
κ
dϕ

dy

]
x=xi

=
1

h2

(
κi− 1

2
ϕi−1 −

(
κi− 1

2
+ κi+ 1

2

)
ϕi + κi+ 1

2
ϕi+1

)
.

For the first derivative terms, second-order central differences are also used

dϕ

dy

∣∣∣∣
x=xi

=
1

2h
(ϕi+1 − ϕi−1) .

Fields are interpolated between the cell centres and the cell faces using linear interpolation.

5.3.1. Boundary conditions and wall functions
The same boundary conditions must be used for the simplified model to be consistent with Open-

FOAM. These boundary conditions are used in discretising the non-linear equations and for the in-
terpolation of fields to the faces of the cells. In OpenFOAM, wall functions are used for turbulent
quantities; these functions are algebraic relationships that provide the value of a field either in the wall
boundary or the first cell centre. The implementation needs to be different depending on where the
boundary conditions are provided. For U and k, the boundary condition is given in the wall; then, a
linear extrapolation is used to obtain the value in the first cell centre outside the domain

ϕ−1 = 2ϕ− 1
2
− ϕ0, ϕN = 2ϕN− 1

2
− ϕN−1.

For ω, the value is given in the first cell centre, which can be directly used as the boundary condition.
For νt the boundary value is given in the wall but it is only used to set the value in the boundary when
the field is interpolated to the cell faces. The wall functions used are:

• kLowReWallFunction

C Cϵ Cµ tol
11 1.9 0.09 10−6

Table 5.1: kLowReWallFunction parameters.

This wall function provides the value of the turbulent kinetic energy k in the wall boundaries.
The formulas used are as follows.

k = max
(
kvisu

2
τ , tol

)
,

kvis =
2400Cf

C2
ϵ

,

uτ = C0.25
µ

√
k,

Cf =
1

(y+ + C)2
+

2y+

C3
− 1

C2
,

y+ =
uτy

ν
.

The parameters used are given in table 5.1, and y is the distance to the wall of the centre of the
first cell.

• omegaWallFunction
This wall function provides the value of ω in the centre of the first cell. The formula used is

ω =
6ν

β1y2
,

where β1 = 0.09.
• nutLowReWallFunction

This wall function simply sets the value of νt to zero in the wall boundaries.
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These wall functions are valid as long as the first cell centre is in the viscous sublayer of the boundary
layer, which can be formulated as

y+ < y+lam,

where y+lam ≈ 3.886 and

y+ = y

√
(ν + νt)

dU
dy

ν
.

5.3.2. Fixed-point iteration and time-dependent solver.
The model equations are solved in two ways: the first is to perform a fixed-point iteration, and the

second is to solve the time-dependent version of the equations until the stationary state is reached. For
each method, we will first discuss the discretization of the equations and then present a pseudocode of
the algorithm.

Fixed-point iteration solver
We start by dicretizing the ω equation (5.21) into the form

Aωω = bω,

where

An
ω =

d

dy

[
ρ (ν + αων

n
t )

d

dy

]
− βρωn,

and

bnω = −ργ
(
dUn

dy

)2

− ρ∆n
ω.

For a given iteration, the residual can be computed as

rnω = bnω −An
ωω

n.

The same is done for the k equation (5.20) with

An
k =

d

dy

[
ρ (ν + αkν

n
t )

d

dy

]
− β∗ρωn+1,

and

bnk = −ρνnt
(
dUn

dy

)2

− ρ∆n
k .

Again, the residual is computed as

rnk = bnk −An
kk

n.

Lastly, the momentum equation (5.22) is also dicretized, with

An
U =

d

dy

[
ρ
(
ν + νn+1

t

) d

dy

]
,

and

bnU =
dp

dx
.

The residual is

rnU = bnU −An
UU

n.
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Algorithm 2 stationary_solver
1: for i ∈ {1, . . . , max_iter} do
2: ▷ Solve the ω equation
3: rnω ← bnω −An

ωω
n

4: δωn+1 ← (An
ω)

−1
αωr

n
ω

5: ωn+1 ← max(ωn + δωn+1, ωmin)
6: ▷ Solve the k equation
7: rnk ← bnk −An

kk
n

8: δkn+1 ← (An
k )

−1
αkr

n
k

9: kn+1 ← max(kn + δkn+1, kmin)
10: ▷ Update νt
11: νn+1

t ← kn+1/ωn+1

12: ▷ Solve the U equation
13: rnU ← bnU −An

UU
n

14: δUn+1 ← (An
U )

−1
αUr

n
U

15: Un+1 ← Un + δUn+1

16: ▷ Check the stopping criterion
17: if ∥rn∥/∥bn∥< tol then
18: break

Algorithm 2 presents the solving procedure where the stopping criterium is computed using the
norm of the residual normalized by the norm of the right-hand side of the equations.

rn =

 rnω
rnk
rnU

 , bn =

 bnω
bnk
bnU

 .

The solver parameters include relaxation parameters αω, αk, αU set to 0.5, the lower bounds for ω
and k, ωmin and kmin set to 10−16, and the tolerance of the stopping criterion set to tol = 10−10.

Time-dependent solver
The discretization of the equations for the time-dependent solver is the same as for the fixed point

iteration, but adding the corresponding time derivative term. For the ω equation (5.21) we have

ρ
ωn+1 − ωn

∆t
=

d

dy

[
ρ (ν + αων

n
t )

dωn+1

dy

]
+ ργ

(
dUn

dy

)2

− βρωnωn+1 + ρ∆n
ω,

which can be rewritten as ( ρ

∆t
I +An

ω

)
ωn+1 = bnω +

ρ

∆t
ωn.

Similarly for the k equation (5.20)

ρ
kn+1 − kn

∆t
=

d

dy

[
ρ (ν + αkν

n
t )

dkn+1

dy

]
+ ρνnt

(
dUn

dy

)2

− β∗ρωn+1kn+1 + ρ∆n
k ,

which can be rewritten as ( ρ

∆t
I +An

k

)
kn+1 = bnk +

ρ

∆t
kn.

And for the momentum equation (5.22)

ρ
un+1 − un

∆t
=

d

dy

[
ρ
(
ν + νn+1

t

) dUn+1

dy

]
− dp

dx
,

rewritten as ( ρ

∆t
I +An

U

)
Un+1 = bnU +

ρ

∆t
Un.
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Instead of the residual, the difference in the solution compared to the last step is used as a stopping
the criterium.

δn+1 =

 δn+1
ω

δn+1
k

δn+1
U

 =

 δn+1
ω − δnω
δn+1
k − δnk
δn+1
U − δnU

 .

Algorithm 3 summarizes the solving procedure of the time-dependent solver.

Algorithm 3 time_dependent_solver
1: for t ∈ {t0, . . . , tmax} do
2: ▷ Update ω
3: ωn+1 ← (ρ/∆t+An

ω)
−1

(bnω + ωnρ/∆t)
4: δωn+1 ← ωn+1 − ωn

5: ωn+1 ← max(ωn+1, ωmin)
6: ▷ Update k
7: kn+1 ← (ρ/∆t+An

k )
−1

(bnk + knρ/∆t)
8: δkn+1 ← kn+1 − kn

9: kn+1 ← max(kn+1, kmin)
10: ▷ Update νt
11: νn+1

t ← kn+1/ωn+1

12: ▷ Update U
13: Un+1 ← (ρ/∆t+An

U )
−1

(bnU + Unρ/∆t)
14: δUn+1 ← Un+1 − Un

15: ▷ Check the stopping criterion
16: if ∥δn+1∥/∥bn∥< tol then
17: break

5.3.3. Validation of the simplified model solver.
Figure 5.8 shows the converged solution for a particular simulation of both solvers, where we can

see that both solutions are equivalent.
Finally, figure 5.9 shows the solution of the simplified model and OpenFOAM’s solver using constant

and variable density for the turbulent transport equations. As we can see, both models are equivalent
when the density is treated the same way, but there are clear differences between using constant density
and variable density.

5.4. Test case: stratified flow with non-deforming interface
We will use a stratified flow channel with a non-deforming interface as a test case to model the

interface’s effect. This setup allows us to isolate and examine the interface’s interactions without
deformation-related complications. By focusing on a simplified yet representative scenario, we can gain
valuable insights into the fundamental dynamics at the interface and how they influence the overall flow
behaviour.

The channel consists of two parallel walls that extent infinitely in the x and z directions. However,
such a domain can not be used for simulations, so the channel is reduced to a rectangular prism in which
the boundaries in the x and z directions are cyclic. To be able to perform the necessary simulations to
generate the data, the density ratio has been kept in the order of 101 using the scenario developed in
[47] as a starting point.

νL νG Height Length Width
1.886 · 10−5 1.886 · 10−5 0.1 0.4 0.2

Table 5.2: Fixed parameters.
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Figure 5.8: Solution of the simplified model (U (a), k (b), ω (c), νt (d). Simulation parameters: ρl = 10, ρg = 1,
νl = 1.886 · 10−5, νg = 1.886 · 10−5, dp/dx = 0.5.

Table 5.2 shows the common parameters for all the stratified flow with non-deforming interface
simulations. These are the dimensions of the channel and the kinematic viscosity of both fluids. On
the other hand, table 5.3 shows the parameters that define each of the specific simulations. These are
obtained by varying the density ratio and the forcing of the channel.
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Figure 5.9: Solution of the simplified and RANS model (U (a), k (b), ω (c), νt (d). Simulation parameters: ρl = 10,
ρg = 1, νl = 1.886 · 10−5, νg = 1.886 · 10−5, dp/dx = 0.5.

Case ρL ρ dp
dx

1 10 1 0.3
2 10 1 0.5
3 10 5 0.3
4 10 5 0.5
5 11 1 0.3
6 11 1 0.5
7 10 0.9 0.3
8 10 0.9 0.5
9 10 2 0.3
10 10 2 0.5
11 10 3 0.3
12 10 3 0.5
13 9 1 0.3
14 9 1 0.5
15 7 1 0.3
16 7 1 0.5

Table 5.3: Case parameters.

Figure 5.10 shows a schematic of the different domains that are used in the DNS, RANS and
simplified model simulations. While the DNS setup uses a 3D domain, the RANS simulations are done



5.4. Test case: stratified flow with non-deforming interface 42

in a 2D domain, and the simplified model uses a 1D domain.

H

2H

4H

DNS MODEL

RANS MODEL SIMPLIFIED
   MODEL

U

U UGas

Liquid

Interface

Figure 5.10: Diagram of the different mathematical models of the channel.

DNS
The DNS simulations are performed using Briscola. Figure 5.11 shows the mesh used for the sim-

ulations. It is a uniform structured mesh composed of hexahedral cells. There are 128 cells in the x
direction, 512 in the y direction and 64 cells in the z direction. The mesh is decomposed in 64 patches
for parallelization as shown in figure 5.12.

(a)

(b)

Figure 5.11: Briscola mesh for the stratified flow channel with fixed interface case (a) and streamline velocity (b) of
case 1 at time t = 5s.
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(a) (b)

Figure 5.12: Briscola mesh decomposition.

The boundary conditions of the velocity, ui, pressure, p, and volume of fluid field, α, are given in
table 5.4.

Inlet Outlet Walls Sides
ui Periodic Periodic No Slip Periodic
p Periodic Periodic Zero Gradient Periodic
α Periodic Periodic Zero Gradient Periodic

Table 5.4: Boundary conditions used in the DNS simulations of the stratified flow FI case.

The boundary condition ”No Slip” refers to the homogeneous Dirichlet boundary condition, where
the fluid velocity at the boundary is set to zero, indicating that the fluid has no relative motion with
respect to the boundary. The ”Zero Gradient” boundary condition corresponds to the homogeneous
Neumann boundary condition, where the gradient of the field variable is set to zero, implying no flux
across the boundary. Periodic boundary conditions mean that the field variables at one boundary are
equal to the field variables at the opposite boundary, creating a repeating or cyclic pattern in the
simulation domain.

RANS
The 2D RANS simulations are performed using OpenFOAM. Figure 5.13 shows the mesh used for

the simulations. It is a uniform structured mesh composed of hexahedral cells. There are 10 cells in
the x direction and 256 in the y direction.

(a)

(b)

Figure 5.13: OpenFOAM mesh for the stratified flow channel with fixed interface case (a) and streamline velocity (b)
of case 1 at time t = 30s.
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The boundary conditions for the average velocity, Ui, the pressure, p, the volume of fluid field, α,
the turbulent kinetic energy, k, the turbulent dissipation rate, ω, and the turbulent viscosity, νt are
given in table 5.5.

Inlet Outlet Walls Sides
Ui Periodic Periodic No Slip Empty
p Periodic Periodic Zero Gradient Empty
α Periodic Periodic Zero Gradient Empty
k Periodic Periodic kLowReWallFunction Empty
ω Periodic Periodic omegaWallFunction Empty
νt Periodic Periodic nutLowReWallFunction Empty

Table 5.5: Boundary conditions used in the RANS simulations of the stratified flow FI case.

Simplified model
The simplified model simulations are performed in Python. Figure 5.14 shows the result of a simu-

lation. A uniform one-dimensional mesh composed of 256 cells is used.
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(a)

Figure 5.14: Streamline velocity of the stratified flow channel with fixed interface simplified model case 1 at time
t = 30s.

The boundary conditions for the average velocity, U , the turbulent kinetic energy, k, the turbulent
dissipation rate, ω, and the turbulent viscosity, νt are given in table 5.6.

Walls
U No Slip
k kLowReWallFunction
ω omegaWallFunction
νt nutLowReWallFunction

Table 5.6: Boundary conditions used in the simplified model simulations of the stratified flow FI case.



6
Results

In this section, we will discuss the results of the framework presented in chapter 4. First, we
will examine the outcomes of the turbulent viscosity inversion and the resulting velocity fields. Next,
we will explore the propagation of the corrections into the simplified model. Finally, we will present
the regression of the corrections and the integration of these regressed models into the RANS solver,
assessing the overall accuracy, robustness, and generalizability of the models found.

6.1. Turbulent viscosity field inversion
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Figure 6.1: Turbulent viscosity obtained from the field inversion (b), resulting velocity field (a) and xy component of
the Reynolds stress tensor (c) for case 1. Legend: DNS: Velocity profile obtained from the DNS and turbulent viscosity
obtained from formula (4.4). k − ω: fields obtained performing a simulation of the baseline k − ω model. Opt 1: Fields

obtained from the momentum equation field inversion. Opt 2: fields obtained from the Reynolds stress optimization
process.

45
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Figure 6.1 shows the results of the turbulent viscosity inversion for case 1. The top right plot
shows the turbulent viscosity obtained with both inversion methods as well as the turbulent viscosity
obtained from the DNS data using formula (4.4) and the turbulent viscosity from the baseline k − ω
model. It can be seen that both procedures result in similar viscosity fields where the value goes
to zero near the interface. Furthermore, the profile obtained using the Reynolds stress optimization
process closely matches the viscosity from the DNS, successfully smoothing the field in regions where the
results from the DNS lead to unphysical values for νt. The plot on the top left shows the velocity profile
obtained propagating the turbulent viscosity into the simplified momentum equation. The velocity
profile obtained from the momentum equation field inversion better matches the results of the DNS,
with the velocity profile obtained from the Reynolds stress optimization showing larger differences with
the DNS profile. Lastly, the bottom plot shows the xy component of the Reynolds stress tensor, R12.
We can see that while both methods yield an improvement in the Reynolds stress tensor compared to
the baseline model, the second approach results in a better approximation. Moreover, the smoothing
of the unphysical peak in the turbulent viscosity does not result in a worse prediction of R12.
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Figure 6.2: MSE error of the mean velocity (a), turbulent viscosity field (b) and xy component of the Reynolds stress
tensor (c) of every case compared to the velocity profile obtained from the DNS and turbulent viscosity obtained from

formula (4.4), normalized by the error of the baseline k − ω model. Legend: Opt 1: Fields obtained from the momentum
equation field inversion. Opt 2: fields obtained from the Reynolds stress optimization process.

Figure 6.2 summarizes the MSE error of the mean velocity, the turbulent viscosity and the Reynolds
stress tensor for all cases. The plot on the top left shows the MSE of the velocity profile normalized
by the MSE error of the baseline model. While both methods provide improvements compared to the
baseline k−ω model, the momentum equation approach consistently yields lower errors. In the plot on
the right, the MSE errors of the turbulent viscosity are shown. Here no significant differences can be
drawn between both methods. On the bottom plot, we can see that the second viscosity optimization
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approach yields lower errors in the Reynolds stress tensor.
From these results, it appears that the large velocity errors of the baseline model can be avoided

under the Boussinesq approximation if the turbulence model predicts the adequate turbulent viscosity
field. Moreover, using the momentum equation field inversion to obtain the viscosity yields lower errors
in the velocity than obtaining the turbulent viscosity field from the Reynolds stress optimation problem
and vice-versa for the error in the Reynolds stress.

6.2. Target correction propagation
It is also interesting to understand what happens when the corrections are propagated into the

RANS model and what is sufficient to address the shortcomings of the model.
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Figure 6.3: Solution of the velocity (a), turbulent kinetic energy (b) and turbulent viscosity (c) fields of the simplified
model. f(q values (d). Legend: DNS: velocity profile obtained from the DNS, turbulent kinetic energy of the DNS and
turbulent viscosity obtained from formula (4.4). Prop 1: the full correction field is applied. Prop 2: the correction field

is multiplied by f(q). k − ω: baseline model.

The full correction fields obtained by equations (4.9) and (4.10) are added as source terms in the
turbulent transport equations. Figure 6.3 shows the solution obtained for case 1. Two different prop-
agation methods are used, denoted in the legend as Prop 1 and Prop 2. The full correction is used in
the first one, and in the second one, the correction is multiplied by a function f(q). Multiplying by this
function, we aim to propagate the correction only in a certain domain region, such as the interface. For
the remainder of this work, we will use this filter function

f(q) =
exp(β ∗ q5)

exp(β ∗ q5) + exp(β ∗ q6)
,
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where β = 500. Nevertheless, in future work, f(q) could be the output of another model that identifies
regions with different behaviours, so different models are applied in each region. Function f(q) is
shown in figure 6.3 (d). It simply is a softmax function applied to the wall and interface distance. So
when the interface distance gets smaller than the wall distance, it tends to 1. Plots (a), (b) and (c)
show the velocity, turbulent kinetic energy and turbulent viscosity respectively. It can be seen that
when propagating the full correction, the obtained profiles closely match the DNS targets. When the
correction is applied only in the region near the interface, the velocity and the turbulent viscosity are
still similar to those obtained using the full correction. However, the obtained turbulent kinetic energy
is clearly off in the region where the correction is not applied.

We argue that this is not an issue for modelling the interface effect but rather a result of how the
k − ω model works near the boundaries. The baseline model is not calibrated to obtain the exact k
profile in this region but to capture the velocity profile accurately. Ultimately, this error is not caused
by two-phase phenomena and will not be further investigated in this work.

Figure 6.4 summarizes the error of all cases when the full correction field is propagated and when
it is applied only in the region specified by f(q). The top left plot shows the MSE error in the velocity
field, the top right plot shows the MSE error of the turbulent kinetic energy and the bottom one the
MSE of the turbulent viscosity. For most cases, correcting only near the interface yields the same error
in velocity as correcting the whole domain; however, it leads to larger errors in the turbulent kinetic
energy. As argued before, this is just a consequence of how the k − ω model works in the boundaries
and is unrelated to the interface effect.
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Figure 6.4: MSE error of the mean velocity (a), turbulent kinetic energy (b) and turbulent viscosity field (c) of every
case compared to the velocity profile obtained from the DNS, turbulent kinetic energy of the DNS and turbulent

viscosity obtained from formula (4.4), normalized by the error of the baseline k − ω model. Legend: Prop 1: the full
correction field is applied. Prop 2: the correction field is multiplied by f(q).
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6.3. Model discovery
In this section, we present the results of the best-performing discovered models. We begin discussing

the regression setup used. Then we continue by presenting the outcomes of the training phase, where
the influence of the hyperparameters of the machine learning techniques is analysed. Following this, we
examine the results of the propagation tests, assessing how well the discovered models perform when
introduced in the system of non-linear PDEs.

Regression setup
As discussed in chapter 4, different choices can be made when setting up the regression problem.

Here, we will introduce the most successful setup for the regressions as well as the influence of different
choices made.

Linear or exponential model
Two different model forms were studied. In the exponential model, the logarithm of the corrections

is regressed, while in the linear one, the corrections are directly regressed. Linear models led to worse
data fits for ∆ω than exponential models. Moreover, because of the difference in orders of magnitude
of the corrections for different areas of the flow, linear models overfitted to the areas of the highest
magnitude. This issue was mitigated with exponential models.

∆k = f(q)∆̄ke
gk(q), ∆ω = f(q)∆̄ωe

gω(q),

Dimensional factors
Different choices for the dimensional factors ∆̄k and ∆̄ω were investigated. For ∆̄k, the available

options are kω and νt(dU/dy)
2. The latter option is multiplied by νt, which for the studied cases tends

to zero near the interface, the same location where the correction ∆k has its biggest value. Therefore,
νt(dU/dy)

2 was deemed as inadequate; instead, kω was chosen, providing good data fits in the training
phase.

The investigated factors for ∆̄ω are ω2 and (dU/dy)2. In this case, the former one provided better
results in the training phase of the model discovery. However, the discovered models with this dimen-
sional factor had poor performance when propagated in the RANS equations. Thus, (dU/dy)2 was
chosen as the dimensional factor.

Zone training
No noticeable differences in training data fit and propagation results were observed between using

zone training and not using it. However, when no training was used, sparse symbolic regression models
contained the wall distance in many of the expression terms. This hints at either some kind of overfitting
or that the models are also learning about the effect of the boundary. Given that the model is supposed
to correct near the interface, this is undesirable. Therefore, while no difference was noticeable in the
results, zone training was used to try to prevent this issue. Moreover, If the objective is to address the
effect of the interface, it appears more reasonable to exclude sample points in which the main source of
error is due to different phenomena, such as the boundary layer.

6.3.1. Training
In this subsection, the results of the k-fold cross-validation of the model discovery are presented.

For the sparse symbolic regressors, we show the validation R2 scores, and the number of terms the
expressions have, which is equivalent to the number of non-zero components of the regressed coefficient
vector. For the NN models, only the R2 scores are presented. The R2 score is defined as

R2 = 1−
∑

i(∆i,true −∆i,pred)
2∑

i(∆i,true −∆mean)2
,

where ∆mean is the mean of all ∆i,true observations. The final R2 score is the average of the score in
each k-fold. For conciseness, only the results of the LASSO regressor and the JNN models are presented
here and the results of the other regressors are shown in appendix A.1.
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LASSO
Figure 6.5 shows the R2 validation scores and the number of terms of the discovered models using

the LASSO regression. As expected, we see that for both ∆k and ∆ω, the number of non-zero terms
decreases as the value of the regularization parameter λ becomes larger. Validation scores are in general
higher for ∆k than for ∆ω, this trend will persist with all regression techniques. We also see that a larger
value of the regularization parameter leads to lower validation scores. This could be due to different
factors:

• A model that is general enough to model the effect of the interface can not be found with very
few terms. As the regularization gets larger, the expressions become more sparse, and they can
not capture all phenomena adequately.

• The training and validation cases may be too similar. Regularization aims to avoid overfitting;
however, if the validation data is very similar to the validation data, overfitting will not lead to
low validation scores.
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Figure 6.5: Number of terms (black) and R2 validation score (red) of the discovered models for ∆k (a) and ∆ω (b)
using the LASSO regressor depending on the value of the hyperparameter λ.
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Figure 6.6: Validation R2 score for [∆k,∆ω ] using JNN.

Figure 6.6 shows the R2 validation scores of the trained joint NNs models for different types of
activation functions and number of neurons per hidden layer. The same activation function and number
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of neurons have been used in both hidden layers. The best-performing activation function is Relu,
followed by the tanh function and the sigmoid activation function. The validation score increases as
the number of neurons per layer increases. We would expect that as the number of parameters of the
model increases, the probability of overfitting increases, too, but the results do not show a decrease in
validation accuracy. As discussed before, this might not be because the model is not overfitting but
instead, be a consequence of the training and validation cases being very similar.

6.3.2. Testing
This section presents the results of the propagation of the discovered models for the training and test

cases. For conciseness, only the results of the LASSO regressor and the SNN models will be discussed
in detail here and the results of the other regressors are discussed in appendix A.2.

LASSO
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Figure 6.7: Non-zero coefficients of the propagated symbolic expressions for ∆k (a) and ∆ω (b) of the discovered
models using the LASSO regressor. The x-axis is the model index (a lower index indicates a higher validation score),

and the y-axis shows the terms associated with the non-zero coefficients.
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Figure 6.8: Average MSE error of the velocity and the turbulent kinetic energy of the propagated LASSO models. The
model index is i = iω · nω + ik, where the ik and iω are the model indices for ∆k and ∆ω given in figure 6.7 and nω is

the number of propagated ∆ω models.

Figure 6.7 shows the ∆k (left panel) and ∆ω (right panel) models with the best validation scores
discovered using the LASSO regression. The figure shows the values of the coefficients associated with
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the terms on the y-axis for the different models x-axis. Here we can see that the correction only depends
on features q3 and q5. Feature q5 represents the normalized wall distance, which is a feature we might
not want to include in a model that is supposed to work near the interface. One possible cause for the
appearance in q5, is that all cases have the same geometry, so the machine learning algorithm might be
overfitting to this geometry. If we exclude q5 from the input features, we obtain similar results, albeit
with different terms in the regressed expressions.

Figure 6.8 shows the MSE error of the velocity and turbulent kinetic energy (normalized by the MSE
error of the baseline model) for the propagated models in the training cases and in the testing cases.
We can see that the velocity errors are lower than those of the turbulent kinetic energy. Moreover, the
errors in the testing cases are, in general, equal to those in the training cases. This could mean that
the learnt expression is general enough to make accurate predictions in unseen cases, but as we argued
in the previous section, it is more likely that the cause is that the training and testing cases are very
similar.
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Figure 6.9: Velocity (a), turbulent kinetic energy (b), ∆k (c) and ∆ω (d) for case 8. Legend panels (a) and (b): DNS:
DNS results. k − ω: baseline model. Model: LASSO regressed model. Legend panels (c) and (d): Target: Regression
targets. Prediction: correction prediction in the training phase. Model: prediction field in the converged state of the

simplified model. (Following figure 6.7, model 0 for ∆k and model 1 for ∆ω)

Figure 6.9 shows the results of the simplified model for the best-performing LASSO discovered
correction for one of the test cases. The figure compares the results of the DNS simulation, the baseline
model and the discovered model. The two top panels show the velocity and turbulent kinetic energy.
It can be seen that the discovered model greatly reduces the error compared to the baseline model.
However, there are still errors, especially for the turbulent kinetic energy. The bottom two panels show
the correction fields. These panels show that the data fit of the corrections is worse in the converged
state of the simplified model equations than in the training phase, thus also obtaining worse predictions
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of the velocity and turbulent kinetic energy. It is particularly noticeable in the ∆k correction, where
the overestimation of the correction in the gas phase directly leads to an overestimation of k. It is
important to note that in this figure the results are shown for one of the cases with the lowest MSE
errors, but in general the error might be larger.
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Figure 6.10: Velocity (a), turbulent kinetic energy (b), ∆k (c) and ∆ω (d) for case 8. Legend panels (a) and (b): DNS:
DNS results. k − ω: baseline model. Model: SNN regressed model. Legend panels (c) and (d): Target: Regression

targets. Prediction: correction prediction in the training phase. Model: prediction field in the converged state of the
simplified model.

Figure 6.11 shows the average MSE error of the velocity and turbulent kinetic energy for the prop-
agated SNN models in the training cases and in the testing cases. No discovered model reduces the
error of the turbulent kinetic energy compared to the baseline model and only a few models improve the
velocity error. Moreover, for some cases, the turbulent kinetic energy is hugely overpredicted leading
to very large MSE errors for k. Note that in order to not distort figure 6.11 too much the y-limit has
been set to 103, but there are some models for which the k MSE error is larger than that. Also note,
that many of the propagated models do not really alter the baseline too much and have MSE errors
close to 1.

Figure 6.10 shows the results of the propagation of the best model discovered using SNN for case 8,
which was not used for training. While the data fit is good in training, once the model is introduced in
the RANS equations it overpredicts both corrections, especially in the liquid phase. This is then very
noticeable in the turbulent kinetic energy profile, which is hugely overestimated in the liquid phase.
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Figure 6.11: Average MSE error of the velocity and the turbulent kinetic energy of the propagated SNN models in the
training and testing cases.
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Figure 6.12: Mean squared error of the propagation velocity field compared to the DNS and normalized by the MSE of
the baseline model for different sparse symbolic regressors (LASSO (a), Elastic Net (b) and SLTSQ (c)). The x-axis is
the number of the case, where the testing cases are highlighted in blue. Each grey dot corresponds to the propagation
error of one model. The errors of the best model on average for each regression technique are shown in red, and the

average error of that model is shown with a red dashed line.
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Figures 6.12 and 6.13 show a summary of the MSE of the velocity for all discovered models using
sparse symbolic regression and NNs respectively. The best performing methods are LASSO and elastic
net, obtaining models that reduce the baseline error by one order of magnitude, however, models
discovered with those methods struggle with cases 3, 4, 11 and 12 (those with the densest gas phase).
While some NN models appear to be a clear improvement compared to the baseline model, we have
seen before that the qualitative behaviour of these models is not that good.

Figure 6.12 shows the MSE errors of the velocity for each case for the models discovered with each of
the sparse symbolic regression techniques. While 6.13 shows the same information for the NN models.
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Figure 6.13: Mean squared error of the propagation velocity field compared to the DNS and normalized by the MSE of
the baseline model for different NN methods (Joint NN (a) and Separated NNs (b)). The x-axis is the number of the

case, where the testing cases are highlighted in blue. Each grey dot corresponds to the propagation error of one model.
The errors of the best model on average for each regression technique are shown in red, and the average error of that

model is shown with a red dashed line.
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Figure 6.14: Comparison of the average MSE of the velocity (a) and turbulent kinetic energy (b) fields in training and
testing cases for different discovered models.

Figure 6.14 shows the average MSE error of the velocity (left panel) and turbulent kinetic energy
(right panel) of all found models using different regression techniques. For comparison, the average
MSE error using Egorov damping [11] has also been included. Each point represents one discovered
model, with the x coordinate being the MSE of the training cases and the y coordinate being the MSE
of the testing cases. This means that the points that lie above the x = y line represent models which
generalize poorly, and points below this line represent models that perform unexpectedly well in unseen
data. However, as we have discussed before, the testing and training cases used in this project are not
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diverse enough to draw conclusions about the generalizability of the models.
The plots show that the correction models reduce the MSE of the velocity more than the MSE of

the turbulent kinetic energy. Moreover, the model with the best accuracy is the Egorov damping model,
in which a source is introduced in the omega equation. This means that Egorov simple approach is
able to outperform all discovered models. We can also see that in general symbolic expression models
perform better than NN models.



7
Conclusions and recommendations

A novel machine learning framework to discover correction models for RANS models in turbulent
stratified gas-liquid flows while still employing the Boussinesq approximation is introduced. This frame-
work includes two methods for performing the turbulent viscosity field inversion and introduces two
correction terms in the turbulence model equations to ensure accurate prediction of the turbulent vis-
cosity field. The framework is able to discover models which improve the accuracy of the baseline model,
even in flow cases that have not been used for training, although the generalization capabilities for more
varied flow regimes remain to be tested. In section 7.1, the conclusions of this research are presented,
and in section 7.2, recommendations for future work are given.

7.1. Conclusions
The framework proposed in this thesis has shown significant potential in discovering correction

models that improve the accuracy of baseline RANS models in turbulent stratified gas-liquid flows.
The sparse symbolic regression models derived from the framework performed better than the NN
models.

An important aspect of this research was developing a simplified model for inverting turbulent
viscosity field. The proposed methods demonstrated that improving the turbulent viscosity field is
sufficient to address most of the model’s shortcomings while still using the Boussinesq approximation.
Two methods were developed to perform the turbulent viscosity field inversion, one with a focus on
minimizing the error of the velocity and the other one focusing on the error of the Reynold stress tensor.
Both methods yielded turbulent viscosities, which resulted in better predictions of the velocity field
than the baseline model.

The sparse symbolic regression models consistently improved the accuracy of the baseline model.
Moreover, these models are easily interpretable and do not lead to robustness issues when propagated
in the RANS equations. Out of all sparse symbolic regression techniques, LASSO and elastic net yielded
the most successful models, reducing the baseline error by one order of magnitude. On the other hand,
the SR3 regressor could not discover any model with only a small number of non-zero coefficients.

One of the proposed framework’s key strengths is its ability to produce numerically stable models.
These robust models ensured that the simulations converged without numerical issues, which is crucial
for practical applications. This is in part achieved by staying under the Boussinesq approximation.

While the discovered models improved the baseline model, they were unable to outperform the
Egorov damping approach [11]. The Egorov model, which introduces a source term in the omega
equation, remained the superior model in terms of accuracy. This suggests that while the discovered
models are a step forward, more improvement needs to be done before they can match the performance
of the Egorov damping approach.

One of the main drawbacks of the proposed framework is that models that yield good data fits
in training do not always result in good results when introduced in the RANS equations. This is
an important limitation since the training of the models focuses on obtaining good data fits. The
consequence of this is that discovered models need to be propagated in the RANS equations, which, as
the discovered number of models increases, can become computationally costly.

While the discovered models were able to improve the results of the baseline model in cases not
used for training, the variety of simulated cases for this project was very limited. Therefore, the
generalizability of the approach for more varied flow regimes remains to be explored.

Neural network models performed worse than symbolic expression models. Not only were NNs
unable to improve the accuracy achieved by the regressed symbolic expressions, but they also lack

57
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interpretability. Moreover, the computational cost of training these models was higher. Therefore, the
use of NNs is unjustified as they did not outperform sparse symbolic regressions in any aspect, at least
within this research.

7.2. Recommendations
Based on the findings of this thesis, several recommendations can be made for future research. We

will divide this between improvements to the current framework and topics that could be investigated
outside the current framework.

Improvements to the current framework
• Generating data for more flow regimes. Performing DNS simulations requires a large amount

of computational resources. Therefore, the number and, more importantly, the variety of simulated
cases for this project was very limited. The less variety in the used data sets for the model discovery
framework, the more likely the found models will not be generalizable enough, and the machine
learning algorithms will overfit the available data. Therefore, we suggest performing more DNS
simulations to have a richer data set and, in particular, to include cases in more varied flow regimes
to increase the generalizability of the regressed models.

• Improving the input features and the candidate function library. As was explained in
chapter 4, the input features for the regressions and the functions used in the candidate func-
tions library must be manually set. Therefore, the model discovery is limited to this manual
choice. Further work could be done to analyze the impact of including more features and different
candidate functions.

Further research
• Including the RANS equations in the training process. One of the main shortcomings of

the current framework is the apparent lack of correlation between good data fits in the training
phase and good results in the propagation of the regressed models. This means that the posterior
behaviour of the models can not be deduced by the apriori fit, and therefore, many models need
to be propagated into the RANS equations to assess whether they are an improvement from the
baseline model. While one of these simulations can be performed quickly, the process scales poorly
when many models are propagated.
A possible approach to address this issue is to include the model equations in the training phase.
In [20, 21, 22, 23] the authors propose different methods to do this for single phase flows. For
this purpose. the authors use a cost function that depends on the results of the propagation of
the machine learning models for the training of the models and then use different techniques to
compute the gradient of the cost function with respect to the model parameters. These techniques
range from ensemble gradient methods to solving adjoint equations.
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A
Additional results

This appendix presents results that were omitted from chapter 6 and serves as a continuation of
sections 6.3.1 and 6.3.2.

A.1. Training
This section includes the results omitted from section 6.3.1.

Elastic net
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Figure A.1: Number of terms (∆k (a) and ∆ω (b)) and R2 validation score (∆k (c) and ∆ω (d)) of the discovered
models using the elastic net regressor depending on the value of the hyperparameters λ and ρ.

Figure A.1 shows the R2 validation scores and the number of terms of the discovered models, in this
case, using the Elastic net as a regression method. For this regressor, a larger value of λ implies stronger
regularization, while a larger value of ρ means more l1 norm regularization compared to l2 regularization.
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We can see that for a given value of λ as ρ gets larger, the number of non-zero coefficients reduces. We
can also see that in general, for a given value of ρ a larger value of λ leads to less term. However, this is
not always the case. For low values of ρ (more l2 norm regularization), increasing the value of λ leads
to more terms. This might be due to the l1 regularization not having a significant impact for low values
of ρ.

The R2 validation score results are similar to the Lasso results. The more regularization, the lower
the score. Moreover, the value of ρ also seems to have a large impact on the validation score. The
more relative importance the l1 norm has, the lower the score. The causes of these results were already
discussed with the LASSO regressor, but the results of this regressor show that there is some correlation
between very sparse expressions and low validation scores. This may suggest that it may not be possible
to obtain expressions that are general enough with only a few terms, at least with the chosen candidate
library.
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Figure A.2: Number of terms (∆k (a) and ∆ω (b)) and R2 validation score (∆k (c) and ∆ω (d)) of the discovered
models using the STLSQ regressor depending on the value of the hyperparameters λ and ρ.
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Figure A.3: Number of terms (∆k (a) and ∆ω (b)) and R2 validation score (∆k (c) and ∆ω (d)) of the discovered
models using the SR3 regressor depending on the value of the hyperparameters λ and ρ.
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Figure A.2 shows the R2 validation scores and the number of terms of the discovered models using
the STLSQ regressor. The results are similar to the previous cases. In general, the larger the threshold
value, the sparser the model is. Although this is not always the case, interestingly, the explanation of
why a larger threshold leads to more non-zero terms is not clear. For this regressor, the value of the
threshold has a larger impact on sparsity than the value of the regularization parameter λ. Again a
similar effect can be seen for the validation scores.

SR3
Figure A.2 shows the R2 validation scores and the number of terms of the discovered models using the

SR3 regressor. The results are very similar to those of the STLSQ regressor, with one main difference:
the effect of the regularization is not significant enough to obtain very sparse expressions. The models
with the least terms still have more than 100 terms, which means no adequate models are found with
this regularization.

SNN
Figure A.4 shows the R2 validation scores of the trained separated NNs models for different types

of activation functions and number of neurons per hidden layer. As happened with the sparse symbolic
regressions the validation scores are higher for the ∆k corrections than for the ∆ω corrections. As for
the effect of the hyperparameters, the results are analogous to those of the joint NNs, and the same
conclusions can be drawn.
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Figure A.4: Validation R2 score for ∆k (a) and ∆ω (b) using SNNs.

A.2. Testing
This section includes the results omitted from section 6.3.2.

Elastic net
Figure A.5 shows the ∆k (left panel) and ∆ω (right panel) models with the best validation scores

discovered using the elastic net regression. Compared to the models discovered with LASSO, elastic
net models have more terms and in the case of ∆ω the terms depend on more features.

Figure A.7 shows the average MSE error of the velocity and turbulent kinetic energy for the prop-
agated models in the training cases and in the testing cases. The results are very similar to those of
the LASSO models. However, with the elastic net regressor we were able to find more models which
improved the accuracy of the baseline model on average.

Lastly, figure A.6 shows the results of the propagation of the best model discovered using elastic
net for case 8, which was not used for training. The results are analogous to those of the best LASSO
model.
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Figure A.5: Non-zero coefficients of the propagated symbolic expressions for ∆k (a) and ∆ω (b) of the discovered
models using the elastic net regressor. The x-axis is the model index (a lower index indicates a higher validation score),

and the y-axis shows the terms associated with the non-zero coefficients.
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Figure A.6: Velocity (a), turbulent kinetic energy (b), ∆k (c) and ∆ω (d) for case 8. Legend panels (a) and (b): DNS:
DNS results. k − ω: baseline model. Model: elastic net regressed model. Legend panels (c) and (d): Target: Regression

targets. Prediction: correction prediction in the training phase. Model: prediction field in the converged state of the
simplified model. (Following figure A.5, model 2 for ∆k and model 0 for ∆ω)
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Figure A.7: Average MSE error of the velocity and the turbulent kinetic energy of the propagated elastic net models.
The model index is i = iω · nω + ik, where the ik and iω are the model indices for ∆k and ∆ω given in figure A.5 and

nω is the number of propagated ∆ω models.

STLSQ
Figure A.8 shows the ∆k (left panel) and ∆ω (right panel) models with the best validation scores

discovered using the STLSQ regression. Compared to the previous cases the expression obtained with
this regressor depends on a larger variety of input features. They also have coefficients that are larger
by one order of magnitude.
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Figure A.8: Non-zero coefficients of the propagated symbolic expressions for ∆k (a) and ∆ω (b) of the discovered
models using the STLSQ regressor. The x-axis is the model index (a lower index indicates a higher validation score),

and the y-axis shows the terms associated with the non-zero coefficients.

Looking at the average MSE for the velocity and turbulent kinetic energy shown in figure A.10,
we see that this models have a larger error in general than the models discovered with the previous
methods. However, there is one model for which the average test MSE error of the velocity is the lowest
of all models seen so far.



A.2. Testing 68

0 2 4 6 8 10
Model index

10 2

10 1

100

101

102

103

(U)/ (U o) train
(U)/ (U o) test
(k)/ (k o) train
(U)/ (U o) test

(a)

Figure A.9: Average MSE error of the velocity and the turbulent kinetic energy of the propagated STLSQ models.
The model index is i = iω · nω + ik, where the ik and iω are the model indices for ∆k and ∆ω given in figure A.8 and

nω is the number of propagated ∆ω models.
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Figure A.10: Velocity (a), turbulent kinetic energy (b), ∆k (c) and ∆ω (d) for case 8. Legend panels (a) and (b):
DNS: DNS results. k − ω: baseline model. Model: STLSQ regressed model. Legend panels (c) and (d): Target:

Regression targets. Prediction: correction prediction in the training phase. Model: prediction field in the converged
state of the simplified model. (Following figure A.8, model 0 for ∆k and model 2 for ∆ω)

Figure A.10 shows the results of the propagation of the best model discovered using STLSQ for
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case 8, which was not used for training. Compared to the results of the previous methods, the velocity
profile is slightly overestimated, while the turbulent kinetic energy in the gas phase is better predicted.

0 2 4 6 8 10
Model index

10 2

10 1

100

101

102

103

(U)/ (U o) train
(U)/ (U o) test
(k)/ (k o) train
(U)/ (U o) test

(a)

Figure A.11: Average MSE error of the velocity and the turbulent kinetic energy of the propagated JNN models in the
training and testing cases.
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Figure A.12: Velocity (a), turbulent kinetic energy (b), ∆k (c) and ∆ω (d) for case 8. Legend panels (a) and (b):
DNS: DNS results. k − ω: baseline model. Model: JNN regressed model. Legend panels (c) and (d): Target: Regression

targets. Prediction: correction prediction in the training phase. Model: prediction field in the converged state of the
simplified model.
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SR3
All models found with SR3 had more than 100 non-zero terms. Therefore, no adequate model was

discovered with this regressor.

JNN
The MSE errors of the JNN models, shown in figure A.11, are very similar to the SNN ones. Most

models do not do anything, and the models that are doing something are increasing the MSE of k
compared to the baseline model. Only one trained model improves the baseline model errors in the
velocity.

The results of propagating the best JNN trained model, shown in figure A.12, is again similar to
that of the best SNN model, albeit the corrections are not overpredicted as much as in the SNN case,
yielding better velocity and turbulent kinetic energy predictions.



B
DNS results

The results of the DNS simulations of the different cases are shown in this chapter.
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Figure B.1: DNS average streamwise velocity (a) and turbulent kinetic energy (b) field of case 1.
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Figure B.2: DNS average streamwise velocity (a) and turbulent kinetic energy (b) field of case 2.
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Figure B.3: DNS average streamwise velocity (a) and turbulent kinetic energy (b) field of case 3.
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Figure B.4: DNS average streamwise velocity (a) and turbulent kinetic energy (b) field of case 4.
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Figure B.5: DNS average streamwise velocity (a) and turbulent kinetic energy (b) field of case 5.
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Figure B.6: DNS average streamwise velocity (a) and turbulent kinetic energy (b) field of case 6.
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Figure B.7: DNS average streamwise velocity (a) and turbulent kinetic energy (b) field of case 7.
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Figure B.8: DNS average streamwise velocity (a) and turbulent kinetic energy (b) field of case 8.
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Figure B.9: DNS average streamwise velocity (a) and turbulent kinetic energy (b) field of case 9.
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Figure B.10: DNS average streamwise velocity (a) and turbulent kinetic energy (b) field of case 10.
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Figure B.11: DNS average streamwise velocity (a) and turbulent kinetic energy (b) field of case 11.
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Figure B.12: DNS average streamwise velocity (a) and turbulent kinetic energy (b) field of case 12.
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Figure B.13: DNS average streamwise velocity (a) and turbulent kinetic energy (b) field of case 13.

0.0 0.5 1.0 1.5 2.0 2.5
U

0.04

0.02

0.00

0.02

0.04

y

DNS

(a)

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
k

0.04

0.02

0.00

0.02

0.04

y

DNS

(b)

Figure B.14: DNS average streamwise velocity (a) and turbulent kinetic energy (b) field of case 14.
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Figure B.15: DNS average streamwise velocity (a) and turbulent kinetic energy (b) field of case 15.
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Figure B.16: DNS average streamwise velocity (a) and turbulent kinetic energy (b) field of case 16.



C
Turbulent viscosity field inversion

results
This chapter includes the results from the turbulent viscosity field inversion using both methods

proposed in the thesis.
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Figure C.1: Turbulent viscosity obtained from the field inversion (b), resulting velocity field (a) and xy component of
the Reynolds stress tensor (c) for case 1. Legend: DNS: Velocity profile obtained from the DNS and turbulent viscosity
obtained from formula (4.4). k − ω: fields obtained performing a simulation of the baseline k − ω model. Opt 1: Fields

obtained from the momentum equation field inversion. Opt 2: fields obtained from the Reynolds stress optimization
process.
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Figure C.2: Turbulent viscosity obtained from the field inversion (b), resulting velocity field (a) and xy component of
the Reynolds stress tensor (c) for case 2. Legend: DNS: Velocity profile obtained from the DNS and turbulent viscosity
obtained from formula (4.4). k − ω: fields obtained performing a simulation of the baseline k − ω model. Opt 1: Fields

obtained from the momentum equation field inversion. Opt 2: fields obtained from the Reynolds stress optimization
process.
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Figure C.3: Turbulent viscosity obtained from the field inversion (b), resulting velocity field (a) and xy component of
the Reynolds stress tensor (c) for case 3. Legend: DNS: Velocity profile obtained from the DNS and turbulent viscosity
obtained from formula (4.4). k − ω: fields obtained performing a simulation of the baseline k − ω model. Opt 1: Fields

obtained from the momentum equation field inversion. Opt 2: fields obtained from the Reynolds stress optimization
process.
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Figure C.4: Turbulent viscosity obtained from the field inversion (b), resulting velocity field (a) and xy component of
the Reynolds stress tensor (c) for case 4. Legend: DNS: Velocity profile obtained from the DNS and turbulent viscosity
obtained from formula (4.4). k − ω: fields obtained performing a simulation of the baseline k − ω model. Opt 1: Fields

obtained from the momentum equation field inversion. Opt 2: fields obtained from the Reynolds stress optimization
process.
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Figure C.5: Turbulent viscosity obtained from the field inversion (b), resulting velocity field (a) and xy component of
the Reynolds stress tensor (c) for case 4. Legend: DNS: Velocity profile obtained from the DNS and turbulent viscosity
obtained from formula (4.4). k − ω: fields obtained performing a simulation of the baseline k − ω model. Opt 1: Fields

obtained from the momentum equation field inversion. Opt 2: fields obtained from the Reynolds stress optimization
process.
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Figure C.6: Turbulent viscosity obtained from the field inversion (b), resulting velocity field (a) and xy component of
the Reynolds stress tensor (c) for case 5. Legend: DNS: Velocity profile obtained from the DNS and turbulent viscosity
obtained from formula (4.4). k − ω: fields obtained performing a simulation of the baseline k − ω model. Opt 1: Fields

obtained from the momentum equation field inversion. Opt 2: fields obtained from the Reynolds stress optimization
process.
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Figure C.7: Turbulent viscosity obtained from the field inversion (b), resulting velocity field (a) and xy component of
the Reynolds stress tensor (c) for case 6. Legend: DNS: Velocity profile obtained from the DNS and turbulent viscosity
obtained from formula (4.4). k − ω: fields obtained performing a simulation of the baseline k − ω model. Opt 1: Fields

obtained from the momentum equation field inversion. Opt 2: fields obtained from the Reynolds stress optimization
process.
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Figure C.8: Turbulent viscosity obtained from the field inversion (b), resulting velocity field (a) and xy component of
the Reynolds stress tensor (c) for case 7. Legend: DNS: Velocity profile obtained from the DNS and turbulent viscosity
obtained from formula (4.4). k − ω: fields obtained performing a simulation of the baseline k − ω model. Opt 1: Fields

obtained from the momentum equation field inversion. Opt 2: fields obtained from the Reynolds stress optimization
process.
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Figure C.9: Turbulent viscosity obtained from the field inversion (b), resulting velocity field (a) and xy component of
the Reynolds stress tensor (c) for case 8. Legend: DNS: Velocity profile obtained from the DNS and turbulent viscosity
obtained from formula (4.4). k − ω: fields obtained performing a simulation of the baseline k − ω model. Opt 1: Fields

obtained from the momentum equation field inversion. Opt 2: fields obtained from the Reynolds stress optimization
process.
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Figure C.10: Turbulent viscosity obtained from the field inversion (b), resulting velocity field (a) and xy component of
the Reynolds stress tensor (c) for case 9. Legend: DNS: Velocity profile obtained from the DNS and turbulent viscosity
obtained from formula (4.4). k − ω: fields obtained performing a simulation of the baseline k − ω model. Opt 1: Fields

obtained from the momentum equation field inversion. Opt 2: fields obtained from the Reynolds stress optimization
process.
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Figure C.11: Turbulent viscosity obtained from the field inversion (b), resulting velocity field (a) and xy component of
the Reynolds stress tensor (c) for case 10. Legend: DNS: Velocity profile obtained from the DNS and turbulent viscosity
obtained from formula (4.4). k − ω: fields obtained performing a simulation of the baseline k − ω model. Opt 1: Fields

obtained from the momentum equation field inversion. Opt 2: fields obtained from the Reynolds stress optimization
process.
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Figure C.12: Turbulent viscosity obtained from the field inversion (b), resulting velocity field (a) and xy component of
the Reynolds stress tensor (c) for case 11. Legend: DNS: Velocity profile obtained from the DNS and turbulent viscosity
obtained from formula (4.4). k − ω: fields obtained performing a simulation of the baseline k − ω model. Opt 1: Fields

obtained from the momentum equation field inversion. Opt 2: fields obtained from the Reynolds stress optimization
process.
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Figure C.13: Turbulent viscosity obtained from the field inversion (b), resulting velocity field (a) and xy component of
the Reynolds stress tensor (c) for case 12. Legend: DNS: Velocity profile obtained from the DNS and turbulent viscosity
obtained from formula (4.4). k − ω: fields obtained performing a simulation of the baseline k − ω model. Opt 1: Fields

obtained from the momentum equation field inversion. Opt 2: fields obtained from the Reynolds stress optimization
process.
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Figure C.14: Turbulent viscosity obtained from the field inversion (b), resulting velocity field (a) and xy component of
the Reynolds stress tensor (c) for case 13. Legend: DNS: Velocity profile obtained from the DNS and turbulent viscosity
obtained from formula (4.4). k − ω: fields obtained performing a simulation of the baseline k − ω model. Opt 1: Fields

obtained from the momentum equation field inversion. Opt 2: fields obtained from the Reynolds stress optimization
process.
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Figure C.15: Turbulent viscosity obtained from the field inversion (b), resulting velocity field (a) and xy component of
the Reynolds stress tensor (c) for case 14. Legend: DNS: Velocity profile obtained from the DNS and turbulent viscosity
obtained from formula (4.4). k − ω: fields obtained performing a simulation of the baseline k − ω model. Opt 1: Fields

obtained from the momentum equation field inversion. Opt 2: fields obtained from the Reynolds stress optimization
process.
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Figure C.16: Turbulent viscosity obtained from the field inversion (b), resulting velocity field (a) and xy component of
the Reynolds stress tensor (c) for case 15. Legend: DNS: Velocity profile obtained from the DNS and turbulent viscosity
obtained from formula (4.4). k − ω: fields obtained performing a simulation of the baseline k − ω model. Opt 1: Fields

obtained from the momentum equation field inversion. Opt 2: fields obtained from the Reynolds stress optimization
process.
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Figure C.17: Turbulent viscosity obtained from the field inversion (b), resulting velocity field (a) and xy component of
the Reynolds stress tensor (c) for case 16. Legend: DNS: Velocity profile obtained from the DNS and turbulent viscosity
obtained from formula (4.4). k − ω: fields obtained performing a simulation of the baseline k − ω model. Opt 1: Fields

obtained from the momentum equation field inversion. Opt 2: fields obtained from the Reynolds stress optimization
process.
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