
End Report

Project COAT

Henk Kant - 4024400
Daniël Mast - 4092457

June 30, 2013

1

Contents

1 Introduction 4

2 Problem Analysis 5
2.1 The CHAINels platform . 5
2.2 Current situation . 5
2.3 Problem description . 5
2.4 Planning . 6

3 Requirements 7
3.1 Functional requirements . 7
3.2 Nonfunctional requirements . 9

4 Design 10
4.1 Data Design . 10
4.2 Functionality separation . 11
4.3 Mockup . 14

5 Implementation 16
5.1 Architectural view . 16
5.2 Data Analysis and Aggregation . 16
5.3 Back-end . 18
5.4 Front-end . 22

6 Testing 26
6.1 Performance test . 26
6.2 Acceptance test . 27

7 Requirements evaluation 28

8 Recommendations 30
8.1 For the OAT . 30
8.2 For CHAINels . 30

9 Conclusion 31

Appendices 32

2

Abstract

CHAINels is a platform which enables companies to maintain their professional relationships. On
the platform, companies can perform all kinds of actions, such as creating connections with other
companies, post messages of different kinds, and define their supply. All of these actions create
data which are stored in the CHAINels database.

With the continuing growth of the platform it becomes increasingly difficult to get insights
about the activities performed by the platform’s users. As less personal contact exists between the
companies and the CHAINels team, it also becomes increasingly difficult to assess the effectiveness
of the marketing efforts of the team. For these purposes CHAINels requested a tool to gather
analytical information about the usage of the platform.

We created the Online Administration Tool (OAT). This tool extracts information from the
data produces by the platform, and analyses it to provide useful knowledge to the marketing
and development team of CHAINels. This information is shown to the users of the tool by charts
created with the JavaScript library d3.js, in a way which is clear and easy to comprehend. As not all
users should have access to all parts of the system, access rights management is a core functionality
of the OAT. A plugin-system ensures the system is easily extendable with new information from
new features on the CHAINels platform.

Testing the system has shown it is able to handle the information from the current CHAINels
platform, with enough room to let the number of signed up companies grow at least 10 times.

3

1 Introduction

In 2011 then-students Erwin Buckers and Vincent Koeman performed their bachelor’s project.
During this project, under the supervision of dr. Shahid Suddle, they went from an idea to a
working platform called CHAINels. After the launch in November 2011 it appeared the product
was insufficient interesting to their target audience. The decision was made to do a grand makeover
and relaunch the platform in 2012. During this second coming, businesses showed a greater interest
and the first clients to sign up to the platform were a fact.

CHAINels is a business-to-business social media platform. Where other platforms such as
LinkedIn focus on individuals and their relationships, CHAINels focuses on companies (particu-
larly small and medium enterprises (SMEs)) as a whole.

Over the last two years the CHAINels team grew from two to nearly a dozen. Through efforts
from the team throughout the same period, the number of signed up companies has grown to a few
hundred, and is expected to grow even further and faster in the near future. Most of the actions
companies can do on the site generate data, and along with information about page-views, this
data is stored in a database.

Some basic information was already extracted from this data, and some actions could be per-
formed. However, to ensure the continuing growth of the platform, more information was required.
Information regarding the use of the platform by the companies, and information regarding the
effectiveness of the marketing efforts of the team. For this purpose, CHAINels required a more
extensive management tool.

For our project, we responded to this need by designing and creating the Online Administration
Tool (OAT). This tool includes information extracted from the available data, the inclusion of the
readily available management tools, rights management for the users, and a framework to enable
easy expansion by the CHAINels team when needed.

The structure of this document is as follows: in Section 2 we describe the problem at hand
and the planning for this project. In Section 3 we outline the requirements, and in Section 4 the
design of the new system. In Section 5 we discuss the actual implementation and testing. In
Section 6 we discuss how we tested our implementation. In Section 7 we look back on the given
requirements. In Section 8 we give recommendations and possible future improvements, before
drawing a conclusion in Section 9.

4

2 Problem Analysis

2.1 The CHAINels platform

The CHAINels platform is based on connections between companies. A user is first required to sign
up. His account is created at this point. At the same time, the user has to fill in the details of his
company. Details include the company name, its mission, industry, address, from which they know
CHAINels and more. When that is done, the company is added to the system. Automatically, an
info page is created, where the information of this company is presented (Figure 1). This page
is publicly available to other users, not logged in visitors and search engines.

The next interesting step is forming a connection with another company, called a chain. When
a user hits the button to suggest a connection with another company, a chain request is created.
The user has to define what kind of chain it is: employer/employee, relation or other. When
the other company accepts the request, the companies form a chain with each other. On the
dynamically generated chain page, the existing chains of this company are presented (Figure 19
in Appendix A). If a user is happy with CHAINels , he can send an invite email to someone
else that does not already have a registered company on the platform. Invitations and chains are
rewarded by providing credits to the company. Currently, these credits cannot be used yet, but
will be in the future.

Companies can also post different types of messages. A desk message is used to spread
news and tell chains what the company is up to. A supply message can be used to promote a
product or workshop. An event message is used to announce an event. It is possible to write
a testimonial on the info page of a chained company. Companies can recommend interesting
messages to their chains, by hitting a button below the message. Also, chained companies can
send private messages to each other, which can only be seen by these two companies.

A company can also add employees. Currently, these are only textually presented on the info
page.

All above-mentioned entities are also classes in the back-end. Objects of these classes are stored
in the database, which enables us to collect data of these entities. A screenshot of a company page
is shown in Figure 1.

2.2 Current situation

Currently a basic tool exists in CHAINels’ system. This tool lets the team view some basic
information, such as pageviews and invites to non-signed up companies, and perform some basic
actions, such as deleting accounts. However, there is a lot more information available in the
database. This information can be useful to get a greater insight in what the companies actually
do on the platform, and can give a better foundation for future decisions on new functionality for
the platform.

Amongst other things, CHAINels is actively participating in conventions to spread the word
about their platform. However, they can not easily assess whether those efforts translate to extra
activity on the platform. Also, for companies which they do not have direct contact with, it is
hard to determine the effectiveness of the marketing efforts.

2.3 Problem description

Our task was to create a system that fits CHAINels’ needs. This Online Administration Tool
(OAT) needs to show any information of interest to the CHAINels team. It needs to show this
data in a way which is appropriate and easy to comprehend. It also needs to incorporate the data
and functionality from the existing tool.

Multiple users will have access to the new tool. These users will not all have the same back-
ground, and so they need to use different aspects of the OAT. Some mechanics should be in place
to determine which users can access which aspect.

5

Figure 1: About-page of company TofSoft

The new system should be easily expandable in the future, to allow information gathering on
new features of the platform. It should also be built in a way that enables the CHAINels team to
quickly understand and work with it.

For the problem description as provided by CHAINels, see Appendix C: Plan of approach.

2.4 Planning

We divided this project into four phases. In the orientation phase, we established a plan of
approach and did research into relevant topics. We researched two areas: Web Usage Mining, and
efficiently displaying data. For our plan of approach, see Appendix C, and for the full Orientation
Report, see Appendix D. In the second phase we assessed the requirements and created a design
for our system. These will be detailed in Chapter 3, but for the full requirements document, see
Appendix D. In the implementation phase we did the actual implementation on the new tool.
In the final phase, we worked on finishing our product, this report, and the final presentation.
Figure 2 shows a Gantt-chart displaying these phases. For a more extensive planning per phase,
see Appendix B: Planning

Figure 2: Planning of four phases

6

3 Requirements

This section discusses the requirements that were set up for the design of the system, before the
implementation phase started. The requirements were set up in collaboration with the company.

3.1 Functional requirements

3.1.1 Analytics

The OAT should present analytical data, both in a visual and a textual format. The data should
give insight in the current system of the CHAINels website, and more specifically, into the activity
of its users. Data about visitors, companies, messages and other elements should be provided. For
the visual part, charts of different types should be created to present the data. Charts should
provide options that filter the data to a certain time period, and to other categories, for example
data about companies from a specified industry. The shown data should be up-to-date, without
having the user to refresh the page manually. Below is a list of functionalities that the OAT should
have:

• The total number of unique visitors, chains, new companies, credits, messages and invites
in the system over a time period1 to be specified by the user, or via predetermined time
periods2.

• The number of gained credits (total or per time period) should be dividable per action with
which they were gained, for both real time and total numbers throughout the OAT.

• The registered companies should be dividable in industry, number of employees, and region,
for both real time and total numbers throughout the OAT.

• The number of chains and invites should be dividable in sent requests and accepted requests
throughout the OAT.

• For both chains and invites, the average time between requests and accepts should be avail-
able.

• For both chain requests and invites, a percentage of accepted requests should be calculated.

• The number of messages should be dividable per type of user3 throughout the system.

• In real-time the number of online users (logged in and total) with logged in users dividable in
region or industry. A real-time list of chain requests and accepts, invites sent and accepted,
credits gained or spent, companies who joined, and messages sent, during a period that is
customisable by the user.

• A list of companies, based on activity, to show most and least ”active” users.

• The average amount of recommends and comments on posts. The amounts should be di-
vidable in type of message4 and in company number of employees, region, and industry
throughout the OAT.

• How companies which signed up got to know CHAINels.

• Charts showing the percentages of different options in user/visitor statistics5.

1No minimum or maximum time limits exist.
21 day, 1 week, 1 month.
3Currently only ”Editor”, ”Manager” and ”Spectator”.
4Current types are ”desk”, ”event”, ”supply”.
5As of writing consisting of browser, location, operation system, account and company id (if any), and referrer

page.

7

Per company:

• The amount of time it took the company to complete the sign-up process.

• The sign-up phase the company is in, and the percentage of fields (name, address, what
services the company can offer, etc.) the company has filled out. The time they took to
come get to that phase since sign-up, and the total time.

• The time they spent in the introduction manual of the website (if any).

• The total amount of chains, chain requests, credits, sent invites, and posts of the company.

• The amount of chains, credits, sent invites, received invites, and messages of the company
over a time period specified by the user1, or via predetermined time periods2.

• A rating to show how active the company is.

• The pages a company views and the messages a company posts should be dividable in types
of user accounts

• The average amount of recommends and comments on a post.

Per page:

• A visitors flow, showing where the user came from and what the next page the visitor goes
to is (if any).

Per user:

• A list of statistics about the user5.

• The amount of pages the user visits per session and on average.

Visualisation requirements:

• The modules that show real-time data should by default be refreshed every minute. Users
should be able to refresh this data manually, or set a specified interval, as long as this is in
accordance with the resource requirements.

• Visualisations of the data should be zoomable where possible, to increase detail of visuali-
sations on the fly.

3.1.2 Management

The OAT should contain a department that provides management functions for the current system.
This involves a data presentation of a company from the database, and functions to make changes.

• Users should be able to delete accounts of companies.

• The amount of credits which are rewarded for certain actions should be changeable.

• A notification to all users can be sent out to notify all companies at once.

• Companies’ requests to be featured on the homepage should be handled through the OAT.

• Feedback from the companies should be viewable.

• Database access should be available.

• Error reports from the site should be viewable.

8

• Right management should be in place, to determine which user can view which parts of the
OAT. New users should be easily added or removed. Rights of users should be editable.

• Notifications should always be visible to inform users about important events, like an error
report.

3.1.3 Personalisation and rights management

Only members of the CHAINels team should be able to access the tool. The team consists of people
that each fulfil a different task. Currently, there are a CEO, two IT specialists, two marketing
specialists, a designer, three interns and even more people with other functions active. For most
of them, the OAT will be a valuable addition to their productivity. However, these individuals
require different functionality from the OAT. Also, not all users should be able to access the same
modules. Therefore, the OAT needs to be able to distinguish users and their roles in the company,
and determine which modules it shows.

3.2 Nonfunctional requirements

3.2.1 Fit in existing framework

The current system of CHAINels is a result of over two years development. Therefore, it was
very convenient for the company if the OAT would use the same implementation style. The IT
specialists would not have to learn a new system, and recognise the classes and methods that
are utilised. Also, a lot of work would be saved, as the current system already contains lots of
functions, for example the functions for communication with the database.

3.2.2 Modularity

One of the main desires of the company was being able to easily add modules by themselves at any
time. A module is a small block containing a small portion of information, that is easily added to
the system and made visible in the OAT, without having to change the code of the system itself.
The website of CHAINels is a continually evolving system. Therefore, it is very likely that our
OAT has to be expanded as well, in order to enable analysis and management of the new features.
Without modularity, the OAT would be outdated as soon as CHAINels adds new functionality to
their system.

3.2.3 Speed and ease of use

Users of the OAT should not have to wait a long time before the system has processed their
request. This seems trivial, but can be a challenge, as an analytics tool has to store, retrieve and
process great amounts of data. Moreover, usage of the tool should not be more complicated than
necessary. It should be intuitive to use, and not require reading an extensive manual first. Charts
should be presented in a quickly readable way. It should also not matter which operating system
a user uses, and the tool should work on the latest version of all browsers.

9

4 Design

This section describes the design we made in the design phase. It encompasses the visual front-end
design and the structural back-end design. As it was an initial design, features may be lacking.
For those features, we describe the design as we made it at the point we needed to implement
them. For the actual implementation, see Section 5.

As the OAT introduces new entities in the CHAINels environment, we would like to give a short
description:

Module A small section visible on all pages in the OAT. A module contains information as a
chart or as plain text. All information in the OAT is placed in a module. All modules have
unique ids, which are used to identify all modules in the system, and as the identifier in the
database.

Chart A Chart represents a graphical line chart or bar chart.

Page A Page represents a regular web page. This contains the list of modules that are on that
page.

My Page All pages in the OAT contain a predefined set of modules. However, when a user would
like to combine modules from different pages, he can place them on their own personal My
Page. My Page is a page customisable per user, and its contents and layout are stored in
the database for each user.

AdminAccount Each user of the OAT has an AdminAccount. This account defines the user,
and may contain certain attributes such as the rights the user has and the contents of his
My Page.

Also, for this section another definition is needed:

component A black box which provides some functionality, without explicitly determining its
implementation.

4.1 Data Design

The database CHAINels uses is a Redis database. Redis is a so-called NoSQL database, which
does not contain its data in schemas, but stores it in a key→value manner. When searching for
a certain key in the database, the value of that key would be returned. For more information on
Redis, see Appendix D: Orientation Report. As said, almost all actions which can be performed
on the CHAINels site create an object in the database. These objects all have a unique id. The
objects are stored per type (company, chain, message etc.) in sets of key→value pairs, where
the key is the id of the object, and the object itself is the value. If the object happens to have
attributes, the value represents a key→value list of these attributes.

Initially, as it was a requirement to have the data as up to date as possible as long as the system
was responsive, the required information was collected when needed. This way no calculated
data was required in the database, and the only data design required was the already existent
CHAINels database. Although sufficiently fast when processing most type of objects, which run
in the hundreds, it was not fast enough when collecting the objects for pageviews, which run in
tens of thousands.

It was clear calculation had to be done beforehand. As mentioned in the requirements, the
user should be able to see the data of a certain type of object on a daily, weekly, or monthly
basis. For all types of objects which would be represented in a chart in the OAT, the necessary
information would therefore be calculated per day and stored in the database. This calculated
data would exist as an array with a certain date as a key and the corresponding information as
the value belonging to that key. When storing this data, the array would be converted to a string
and be assigned a string identifying the data as the key. All these keys were to be stored in a

10

single set, so that all data regarding the OAT would be grouped together in the database. See
Figure 3 for a visual representation of this construction.

As each id in the CHAINels database represents a unique object on their platform, when
grouping per week or per month, the data per day could just be summed on a back-end level.
An exception was the information about unique visitors. While grouping unique visitors per day
sufficed for data per day, they also had to be calculated per week and per month, as some visitor
one day may revisit the website on the next, and they would be counted double when just grouping
days.

A module in the OAT is a new object in the CHAINels system, and would stored as such in the
database. The modules would have their own set next to the existing sets of objects. The unique
identifying name of the module would be the key in the set, and as a module has attributes, a
list of these attributes would be the value. As an AdminAccount and a Page would also be new
objects in the system, they would also be stored in a set in the database, again with the id of the
object as the key and the list with the attributes as the value. Again, see Figure 3 for a visual
representation of this construction.

Figure 3: The model of the database.
The blue vertical line represents the
database. The horizontal red lines rep-
resent sets in the database, with their
name above the line. Alongside the
green vertical line is the content of the
set. For Modules and AdminAccount
these are are key→value pairs, with an
id as the key, and a list of attributes as
the value. For Statistics, the pair is a
string identifying the data and a string-
representation of an array.

4.2 Functionality separation

As our project was to manipulate sets of data, and then represent it to the user, we took this
separation of different aspects and designed them accordingly. However, we did not look specifically
at design patterns such as Model View Controller. Instead, we adhered to CHAINels’ way of
separation of classes and packages. Specifically, we identified three parts in the new system which
needed to be designed: the access to the data, the back-end logic where the system logic would
be, and the front-end which would be visible to the user. This gives a structure of the system as
shown in Figure 4. The Database Access part would retrieve and store any data that is needed
by the OAT. The back-end logic would manipulate the data, create all elements, and perform
all calculations needed. Actions from the user which required extra elements to be created, or
required data from the database, are also part of this back-end. Elements which are required to
create the visual interface would be passed to the front-end to display. The front-end part would
then consist of displaying everything on screen, and handling all actions from a user that does not
concern the back-end.

11

Figure 4: Separate elements in the system

4.2.1 Database access

For all types of objects in the database, a mapper exists in the CHAINels system. These mappers
can convert objects from the system to keys and values in the database, and can search for an
id in the sets in the database and create the right object. For some objects, the corresponding
mapper has some additional methods. To retrieve any information of the objects in the database,
a mapper must be used. So, to create Page, AdminAccount, and Module objects, a mapper for
these objects was needed.

With the need to calculate statistics, a new component was required with access to the
database. This component would get all data, calculate whatever was needed, and store this
in the ’Statistics’ set in the database. This component therefore needed access to the mappers,
and the ability to read from, and write to the database. Also, it was decided the number of
components with direct access to the database should be minimised. All access to stored data
would go through the component just described.

Now we can update the Database Access component with these required components, as shown
in Figure 5.

Figure 5: The designed Database Access part

4.2.2 Back-end

As it was a requirement the OAT should fit in the existing framework, the OAT system inherited
the package structure of the CHAINels system. This helped to increase familiarity of the CHAINels

12

team with the OAT system. It was clear all files for the OAT system would be in a separate section,
so it would be easily maintainable and intervention between the OAT and the CHAINels system
would be minimal. Some classes were already available, such as controller classes and the basis
for the HTML pages.

Modules would be used to display all data on the screen. These would be divided into three
types: ChartModules, TextModules, and ManagementModules. The first two types were to display
data in a chart and in plain text, respectively, and the third would be used to display management
features. Attributes of a Module would be the width of a module (single or double width), the
rights that are required to see the module, and for ChartModules the type of chart (line chart or
bar chart). Each module would be placed on at least one web page.

A web page in the system would be represented by the Page component. A Page would have
attributes such as a list of the module ids that are on that specific page, and perhaps the right that
is required to view that page. When viewing the web page, the Page object would be retrieved
from the database and the Module objects would be created from the list of module ids from the
Page.

An AdminAccount would be used to identify a user of the OAT. It would be required to access
the tool, and have attributes such as the rights the user has in the system, and his My Page.

To handle all user input from the interface, actioncontrollers were required. They would be
called on input that required data from the server, and they would return the response from the
server. For example, when a user navigates from one page in the OAT to another, actioncontrollers
would be responsible for restricting the refreshing of the page to only those parts that would
actually be different. Also, when a user visits the CHAINels site, the CHAINels system uses a
controller to determine which page the user should see. A similar controller was required for the
OAT system.

For the back-end logic part as designed, see Figure 6.

Figure 6: The designed Back-end logic part

13

4.2.3 Front-end

The front-end should contain three elements: a banner with a live feed, some method of naviga-
tion, and the body of the page. The live feed would show any changes in the system, such as
newly signed-up companies or posted messages from that day. The body would contain all the
information, that is, all the modules, of the page. The live feed was designed to update regularly,
so it would always show fresh data.

The JavaScript library d3.js was to be used to create the charts in the ChartModules. When
placing a module on a page, the necessary data would be retrieved from the database using an
actioncontroller in the back-end, and passed on to the JavaScript function. Here certain aspects
of the chart were calculated and the chart would be outputted. For up-to-date charts, on a set
interval the script which displayed the chart would make an AJAX call to the server and retrieve
the new data to update the chart.

One of the features of the modules would be that they would be draggable across the screen. By
grabbing a predefined piece of the module, the user could rearrange the positions of the modules.
On the user’s My Page the layout could be stored at the account of the user.

For the front-end logic part as designed, see Figure 7.

Figure 7: The designed Front-end part

4.3 Mockup

The interface was split up in three parts. At the top was a banner with live stats on the right.
These live stats would display what was happening on the CHAINels platform at that time. These
statistics would update more frequently than any other statistics. The middle section contained
navigation. The buttons for navigation would be grouped together to make a clear distinction
between the type of page it leads to. Any page that would not be accessible to the user would
be clearly marked so (like the ’Management’ button in Figure 8). The lower part would contain
all the modules. These modules would be single or double width. Different chart types would
be possible, depending on the data to be displayed. Where possible the colour scheme of the
CHAINels website would be used, but the results of the orientation report were also taken into
consideration.

14

Figure 8: Mockup of the interface

The mock-up in Figure 8 shows a page in the OAT. On this page some linecharts and piecharts
are displayed, as well as two charts with just text (lists in this example). Next to the linecharts are
buttons to zoom those charts. In the navigation the ’Management’ button is greyed out, indicating
this user does not have the rights required to view this page. The banner shows a logo and the
logged in user on the left, on the right is the live feed visible. This shows data such as currently
logged in users on the CHAINels platform and the number of companies which registered today.

15

5 Implementation

This section discusses the methods we used for creating the system, and the way in which we
implemented it. In the end, it is explained how the tool was tested.

5.1 Architectural view

The class diagram of the OAT is presented in Figure 9. The different packages and classes are
shown, with the relevant properties, methods and relations. The classes from the statistics and
module packages have not been filled in detail in this diagram. They will be discussed separately
in this chapter, as they form a major element in the system.

Figure 9: The class diagram after implementation

As can be seen in Figure 9, most components exist as designed. Also, a subdivision as in
Model, View and Controller (MVC) becomes visible. In our system, this is named as system,
controller and html. This is in conformity with the existing CHAINels system.

5.2 Data Analysis and Aggregation

5.2.1 Storage and processing

An important decision we had to make was to what extent the statistics data should already be
processed before storing. The advantage to do a lot of processing beforehand is that it takes less
time to present the data to the user. Also, it requires less storage data, because only the data
required for direct presentation is stored. This is also a disadvantage, as no processing can be
done anymore when the raw data is not available anymore.

To satisfy the requirements, we had to hand in some speed in order to create more functionality.
For all objects in the database the data is still grouped per day, but a list of company ids is stored
for each day. Where there were multiple types for an object, such as different kinds of chains, the
company ids are stored per day per type. By storing the company ids, a lot of information on the
objects remains available. For instance, when viewing a chart with the newly created chains per
day, the option is now available to only see chains created by certain companies.

The information is stored this way per day, as this is the minimal time period which a user
can request. Each module stores its own data. This way the module id can be linked to the key

16

Figure 10: The statistics package, with classes StatRefresher and Statistics

in the database where the data is stored. If multiple modules need the same data, the storing of
this data can be done in one module, and the other module can access it when necessary.

5.2.2 The statistics package

The part of the code in which modules differ is stored in the setStatsToSave() method of
the module itself. However, there is also some functionality that is useful for more than one
module. These functions are stored in the statistics package, in the classes StatRefresher and
Statistics. See Figure 10. Here, the save() and load() functions make the actual database
calls. For saving and loading statistics data, only these two functions are used, which makes it
easy to change or add things in the future, and maintain uniformity.

The functions getDurationWithinPeriod(), fillHoles(), getCounts(), applyFilters(),
filter() and getObjectsCountPerDayJSformat() are used by most modules that show charts.
All functions require an array as input, and return an array. In this way, an array of data can be
passed through, and is adjusted a bit in every function, passed to another function, and eventually
is suitable for passing it to a JavaScript chart. Remember that the array that is passed through
always contains a date as key, and an array of company ids as value.

• getDurationWithinPeriod(). Returns only the data that falls between a given begin and
end date. Also, the data is bundled in a duration (day, week or month). This means that
for a week or month, the data of days have to be summed up together.

• fillHoles(). Loops through the array from begin to end date and sets an empty array at
dates that are not set at all. This is necessary to let the chart line go to 0 on that day.

• applyFilters() and filter(). Goes through all company ids in the array and removes all
companies that do not satisfy the given categories.

• getCounts(). Eventually counts the number of company ids for a date, and returns that
number, which will eventually be readable from the chart.

• getObjectsCountPerDayJSformat(). The last function, that transforms the way the array
is built to a type that is required for passing it through to d3.js.

5.2.3 Updating the data

In the implementation phase, we quickly discovered that we had to uncouple the data refreshment
from the moment that a user accesses the OAT. Otherwise, this user would have to wait unac-
ceptably long before any data could be shown. Two separate scripts are written that refresh the

17

Figure 11: The module package

statistics data when run. One can be run to refresh the data for all modules. The second one only
refreshes the live feed data. The second one takes less time to run, and has priority to be more
up to date, and can therefore be run more often. These script are implemented in Cron, so that
the the first script is run every hour, and the second one every minute.

5.2.4 Account details

Each user that is authorised to access the OAT, has his own AdminAccount. With this AdminAc-
count, information is stored about the user My Page. For each user, the ids of the modules that
he has added to its My Page are storede. Also, information about the rights of the user is stored,
and as these AdminAccount are linked to the CHAINels account from the platform itself, a link
has been made to that account.

5.3 Back-end

5.3.1 Modules

A Module is a small box containing some information about the CHAINels system. These boxes
have a size restriction, but this restriction ensures never too much is thrown at the user at once.
Modules can have a normal width or the double width. Two types of Modules exist, ChartModules
and TextModules. ChartModules always contain a chart. A chart is a graphic to display the data
in a user friendly way, usually about the objects in the CHAINels system. TextModules show their
data in plain text. This can again be about the objects in the system, but also be management
features. Each Module has a handle by which the user can move the Module across the page.

The class diagram of the module package is shown in Figure 11. When creating a new Module
in the OAT, four steps have to be taken. These steps are shown in Figure 12.

First, its class should be created. The new class should either extend DefinedModule or its
subclass StatDefinedModule, for a module with only text or with a chart, respectively. The
created module class is put in the folder definedmodules. Figure 13 shows a simplified example

18

Figure 12: 4 Steps for adding a module

of a new StatDefinedModule. It shows which properties and methods should be set and what
they should contain.

The final step is adding the created module to a page. For this, an XML file is used that lists
the pages. For each page, the name of that page and the list of modules of that page are listed.
Adding a module to a page is not more difficult than necessary, as can be seen in Figure 14. The
id inside the <module> tag has to be the same as the classname of the new module. When these
four are performed successfully, all the saving and loading of statistics data and the presentation
of a module on a page is done automatically, and nowhere in the system extra details have to
be set. A visual representation of adding a module, including the folder structure and XML file
extension is shown in Figure 15.

Saving statistics
When refreshing all statistics, the folder definedmodules is read. A module is created from all
classes in this folder. For modules that extend StatDefinedModule and should be refreshed (the
variable refresh is not set to false) the method setStatsToSave() is run in the saveAll()

method of DefinedModules. As shown in Figure 13, this method sets the statistics in a variable,
and for all selected modules it is then stored in the database. The class names of the modules are
obviously unique, and are therefore used as the id of the module. This id is then used as the key
in the database where the statistics of the module are set. To store and process the statistics, the
functions from the statistics package are used.

Loading the module
In Figure 16, a sequence diagram is shown from the moment when a user accesses a page. The
AdminController decides from the URL which AdminPage should be loaded. The AdminPage

creates a new instance of ModulesHTML, which accesses the XML file, and gets the module ids
that belong to that page. It passes the module ids through to DefinedModules, which eventually
returns an actual Module object (either a ChartModule or TextModule, depending on the given
type). For this, DefinedModules creates a new DefinedModule, which contains the information
to create and return a new Module. When ModulesHTML has obtained all modules, it checks for
each module whether the user has the sufficient amount of rights to view it, it calls the toHTML

method for these modules, and combines the returned strings in one big string (with HTML code).
This is passed through to the AdminPage, to the AdminController and finally, the entire page is
presented in the browser of the user.

Charts
When placing a module on a page, if a chartType was set in the module, a call to the script
chart.js is made. This call contains the the id of the module, and the script obtains the data
from the server belonging to this module. The script then plots the chart as required inside
the module. The type of chart depends on the chartType of the module, and the dimensions
correspond to those of the module. Finally, a interval can be set after which the charts are
updated with newer data.

19

<?php

/** Classname (and filename) is automatically the module ’s id.

* Class should extend DefinedModule or StatDefinedModule */

class newmodule extends StatDefinedModule

{

/* Visible title in the handle of the module on the page */

public $title = ’New module ’;

/* Whether the module is wide (double size on the page) or not */

public $wide = true;

/* Optional. If the module contains a chart , it should be set which type.

* If not set: The module does not contain a chart. */

public $chartType = DefinedModules :: LINECHART;

/* Defines which groups have access to this module */

public $right = array(Right :: SOMERIGHTS);

/* Optional. Whether the stats of this module in the database should be

* refreshed when running the refresh -script. Not set = true */

public $refresh = false;

/** Create interesting content for the module , set it, and return

* $this ->module in the end. The HTML tags should also be created here */

public function getModule ()

{

$content = createSomeContent ();

$this ->module ->setContent($content);

return $this ->module;

}

/** Apply a DB mapper or more to obtain useful statistics

* and store the results in $this ->statsToSave. This method

* is run when the stats for this module are saved in the DB */

public function setStatsToSave ()

{

$objects = getObjects($objectMapper);

$this ->statsToSave = calculateUsefulStatistics($objects);

}

/** The DB stats of this module will be stored in $this ->loadedStats

* before this method will be run. Do some useful processing with the

* data , depending on the given parameters , and return the result.

* This method is used for creating charts in JavaScript (via the

* controller), or in getModule () for textually presenting the data */

public function getProcessedStats($parameters)

{

$result = performSomeActionOn($this ->loadedStats , $parameters);

return $result;

}

}

?>

Figure 13: Code example of a DefinedModule subclass

20

<pages >

<page>

<name>some_page </name>

<modules >

<module >existingmodule </module >

<module >newmodule </module >

</modules >

</page>

</pages >

Figure 14: Example of the XML file’s content, with a page and two modules

Figure 15: Visual representation of adding a module

21

Figure 16: Sequence diagram of a page load with modules

5.3.2 User Management

As said, each user of the OAT has its own account. These accounts contain the data regarding
the My Page and the rights of that account. When trying to see a module and when entering
the OAT the right of the logged in user are checked. Having a right is defined as belonging to
a certain group, these groups provide access to certain elements in the OAT. If the user and the
module he wants to see both belong to a same group, the module is shown. If not, the module is
withheld entirely from the user. Some tabs in the navigation also require a certain right too see
them, if the user does not have this right, the tab is also hidden.

When a new CHAINels employee uses his CHAINels account to log in to the OAT, a new
AdminAccount is created. This AdminAccount is granted access, but with minimal rights. This
means no modules are visible yet, and the Management page and access to the database are
not available. When a System Admin, the person with full management rights, gives the new
AdminAccount more rights, more modules become visible.

5.3.3 My Page

The My Page is different from all other pages, as the XML file with all defined pages is ignored,
and the list of module ids is obtained from the user’s AdminAccount. The modules are then
processed as normal.

5.4 Front-end

Figure 17 shows a screenshot of a My Page in the OAT. This design has been created by CHAINels
designer Willem Buijs.

In this screenshot, you see:

1. The live feed. This is always visible in the top right corner of the screen. It displays data
about today.

2. The navigation bar. Here menu buttons are grouped together by: special pages, normal
pages, and management pages. The My Page is currently selected, as the background colour
of the tab is white.

3. A normal module. Is has a (white) handle bar, which contains the title and a button. The
content of this ChartModule is a chart and the filtering options for the data. The bottom
module on this page shows a double width module. The width of the chart is automatically
changed to make use of the extra space.

22

Figure 17: Screenshot of My Page in the OAT

23

4. As the rightmost small module is dragged to change the layout, a placeholder is shown to
indicate where the module would be placed. Dragging a module is only possible by its handle
to prevent clicking events from becoming dragging events.

5. When viewing any other page than My Page, this buttons allows the user to add the module
to My Page. When on My Page, this button deletes the module from My Page.

Interface
The designer opted for a design with minimal use of colour. Colours are still used in the button in
a module’s handle, and to easily distinguish links, which are also underlined. This provides a high
contrast design while eliminating all problems which may occur with the use of lots of colours.
This also makes for a design which is easy on the eyes. By using modules on all pages, with the
same design, consistency is maintained.

Modules
All information in the OAT is shown in modules. This brings a size restriction, but this restric-
tion forces the information to be compact and therefore easy to comprehend. No large complex
contructions exist in a module. All management options are also placed in a module, not only to
enable modularity, but also to increase consistency throughout the OAT.

The layout of the modules can be changed on any page, by dragging the modules around. This
is done with the following lines of code:

window.onload = function (){

$("#modules"). sortable({ handle: ’.handle ’, cursor: ’move’,

placeholder: ’module -placeholder ’});

The function sortable() from the JavaScript library jQuery makes any the inner of the object
on which it is called sortable. This means the children of an element can be sorted by a given
function, thus when called on the body of the page, #modules, the modules become sortable. With
the added mark-up style:

.module{

float: left;

}

the modules are forced to the top-left of the page. The modules line up next to each other if there is
room left on the top row, and create a new row if there is not. Many website, including CHAINels’
site, have a fixed-width viewport to maintain compatibility with lower screen resolutions, while
having a lot of unused space on higher resolution screens. While a minimum of two small modules
next to each other (or one double-width module) is the minimum width of any page, enlarging the
browser screen to full-screen on a full-HD monitor enables 4 small modules to align next to each
other. While this minimises the waste on larger screens, it also enables a user to drag modules
on the same page next to each other to compare interesting data. Although this layout is default
when visiting a normal page, on the user’s My Page he can choose his own layout and save it to
his account.

Charts
A chart displays the data from the CHAINels system. This information is usually from a set time
period, which the user can change. As for most objects the companies id is set in the database,
the user can filter the objects on a company level. There are two types of charts available: line
charts and bar charts. The charts in the OAT were drawn using the library d3.js. After a module
containing a chart has been placed on a page, a call is made to the chart.js script to create the
chart. This call contains the module id, whether the module is single or double width, and the
type of chart. With the module id the script obtains the chart’s dataset via a call to the server.
Any parameters, such as the period to search in, are passed along with this call. From the dataset

24

the axes are determined, and the lines or bars are plotted. Finally, the charts is placed in the
module so that it is visible to the user.

The charts update at a set interval to display fresh data if the user did not change the page.
Alternatively, if the user wants to filter the data, he can update the shown chart manually. Al-
though the defined module has a preset chart type, the user can switch back and forth between a
line chart and a bar chart.

25

6 Testing

6.1 Performance test

To test whether the OAT was future-proof, large test sets were created to assess its loading times.
The loading time is defined as loading a page in the OAT with the module which required heavy
calculations. For this test no other modules would be on the page. These test sets would consist
of a large number of companies.

As for almost all charts the company ids from the objects are stored, retrieving the company
objects when viewing a module would be the most intensive task in the OAT. Therefore we decided
to test this aspect of the OAT. When two objects belong to the same company, the company id
will be stored twice in the database. However, as CHAINels uses a caching technique to prevent
the retrieval of the same object from the database multiple times, it is the maximal loading time
of all companies which determines the speed.

Creating the test sets
Two test sets were created. The first would consist of 10.000 companies, the second of 20.000.
Each company would be complete, i.e. all the information would be set. For all companies, all the
information was the same, except for their industry and status. The industry of a company was
randomly chosen from all available industries. This gives an almost uniform distribution across
all industries, which is not realistic, but sufficient for our need. The status of a company indicates
how much information they have stored in the database, and although this was the same for all
companies, all statuses were overwritten by either a 3 or a 4, randomly chosen. Again, this is not
realistic, but sufficient for our testing purposes.

There are two situations where companies are retrieved from the database. The first is when
the data in a chart is filtered on a company level, the second is when a management module need
the list of all companies. In the first situation, it is highly unlikely all companies are retrieved.
For example, when viewing a chart about messages or chains, only the companies which actually
posted a message or made a chain in the given time period are retrieved. In the latter situation,
all companies are always retrieved. For both datasets, loading any chart for the first time is
almost instantly, as no objects are required from the database. This ensures responsiveness when
navigating through the OAT.

All tests were performed on a modern desktop computer. The relevant specifications of this
computer are: Intel i5-2500 processor, 8GB RAM memory, 128GB SSD. On the computer Windows
8 was installed, the tests were performed with the Mozilla Firefox browser, and the server was
installed on the SSD. All times were measured via the console in the browser.

Results
The test results are shown in table 1. It shows the time it took for the page to load in seconds.
We made sure only one module would decide the loading time by placing this module on the My
Page.

Looking at the results, a database with 10.000 companies may very well be workable, although
it may be a viable option to start storing more information in the database. At 20.000 companies,
loading a page becomes slow. This is a point where the current way of calculating data is no
longer sufficient.

Action 10.000 companies 20.000 companies

Filtering on industry 6.1 12.9
Retrieving companies list 7.1 14.2

Table 1: Times in seconds for tested scenarios

26

6.2 Acceptance test

For the last ten days of the project, the OAT was deployed in the CHAINels system. This gave
the CHAINels team some time to get to know the system, to check for possible errors, and to see
if the OAT satisfied their needs. In this period, all errors were reported automatically by email to
our supervisor, so we could fix them. Some errors came up during this period, which we quickly
fixed. It also became clear the OAT lacked some functionality. This was added in the last phase
of the project, while creating this report.

27

7 Requirements evaluation

Most of the set up requirements in Section 3 have been fulfilled in the OAT. Certain requirements
have not been fulfilled. Some of those with the lowest priority are not in the OAT due to a lack
of time, but some are not implemented due to a change of design. These decisions and design
changes are discussed in this section. An evaluation is given of the difference between the initial
design and the actual implementation. Therefore, the requirements that are exactly implemented
as designed, and do not contain nontrivial implementation, are not mentioned.

• The number of gained credits (total or per time period) should be dividable per action with
which they were gained, for both real time and total numbers throughout the OAT. and
in Management: The amount of credits which are rewarded for certain actions should be
changeable. It is possible to see the gained credits in a chart. However, as the credits are
not fully used yet in the system, a credit transaction does not yet contain information about
the reason why it was created. Therefore, we could not implement this, but it was not a
high priority.

• For both chains and invites, the average time between requests and accepts should be available.
and For both chain requests and invites, a percentage of accepted requests should be calculated.
We did not measure this time. A problem was that chain requests disappear as soon as they
are accepted as chains. Therefore, the time that the chain was requested cannot be found
anymore in the system.

• The number of messages should be dividable per type of user throughout the system. and
The pages a company views and the messages a company posts should be dividable in types of
user accounts. Currently, every company in the system has only one user. Therefore, imple-
menting this was not relevant yet. item The average amount of recommends and comments
on posts. The amounts should be dividable in type of message and in company number of
employees, region, and industry throughout the OAT. As the amount of comments on posts
is currently not very high, these numbers would be near zero. Therefore, it was not really
relevant to implement this.

Per company:

• The amount of time it took the company to complete the sign-up process. and The time they
spent in the introduction manual of the website. These times are not saved in the system,
but was eventually not seen as relevant data.

• A rating to show how active the company is. In our tool, this is only measured by the number
of chain requests a company does. This could be extended in the future.

Per page:

• A visitors flow, showing where the user came from and what the next page the visitor goes to
is. This would have costed a lot of time to implement, which we eventually, unfortunately
did not have.

Per user:

• The amount of pages the user visits per session and on average. We only provide information
about all page visits together. Unfortunately, a separation of distinct pages is not provided,
due to a lack of time.

Visualisation requirements:

• Visualisations of the data should be zoomable where possible, to increase detail of visualisa-
tions on the fly. Our charts are not zoomable, due to a lack of time.

Management requirements:

28

• Companies’ requests to be featured on the homepage should be handled through the OAT.
This is not registered in the system. Instead, an email is sent to CHAINels when someone
does a request. This does not enable us to implement this.

• Feedback from the companies should be viewable. Not implemented, not in the system yet
and lack of time.

• Error reports from the site should be viewable. and Notifications should always be visible to
inform users about important events, like an error report. Not implemented, lack of time.

The nonfunctional requirements are harder to evaluate. We think that we did a good job in
succeeding these requirements:

• Fit in existing framework. We used the same package structure as CHAINels , and used
their database mappers and other objects. We think it is easy for the CHAINels team to
understand our code, when they know their own code.

• Modularity. As can be read in the implementation, it is very easy to add a new module.
This was a requirement with high priority, and we think we succeeded well.

• Speed and ease of use. We managed to find a suitable balance between processing data before
and after storage, which provided us enough data analysis opportunities, and was still fast
enough to use. Also, the modules and charts are clear and do not require a manual.

29

8 Recommendations

In the end of the project, it is quite clear how the system is built, and which things are not present
in the system yet. From this, we can give recommendations for the future. In this section, future
recommendations for extending and adjusting the OAT are discussed, as well as recommendations
for the company.

8.1 For the OAT

• For almost all charts, an array of company ids per date are stored. This is how we wanted
it, but has it limits. It would be useful to store account ids instead for some charts. When
a company can have more than 1 account in the future, it will become interesting to obtain
information from a specified user account.

• When the statistics in the database is refreshed, everything is refreshed. However, data from
the days before is unlikely to change often. It would be much more efficient to add the data
from the current day to the old data, and update the older data less often.

• The OAT contains two different types of charts, a line chart and a bar chart. More chart
types would be useful, for example a pie chart, for the different browsers that visitors use.

• A more sophisticated method to measure the activity of a company would give interesting
insights. Instead of only counting the chain requests, also the frequency in logging in and
viewing pages could be taken into account.

• The processing of statistics is mainly based on separate functions, but a sophisticated class
structure that deals with all statistics together would be much more powerful and extendable,
as it can deal with different types of statistics when built correctly.

8.2 For CHAINels

• It would be useful to create a way in which companies can be obtained from the database,
but in a smaller format, containing only the most important information. This leads to a
major decrease in time when a large number of companies is requested. The same could be
applied to pageviews.

• A request from a company to feature at the homepage could be stored in the database,
instead of only emailed to CHAINels . This way, the OAT could process these requests. The
same applies for error reports and feedback from companies.

• For a new chain, it would be useful to also store the time when the chain was requested.
In this way, the length of time could be measured between request and acceptance. A total
average and other interesting statistics could be obtained from this.

30

9 Conclusion

We can look back at a successful project. We have created a tool that enables CHAINels to get
insights about the usage of their business social platform. Also, we created new management
functionality for the company. We combined this in a safe and easy-to-use web-based tool.

The project allowed us to gather useful experience in requirement analysis and specification,
planning, implementation, and relationships with customers (in our case, CHAINels). Among
the learnt lessons, we understood the importance of a detailed and agreed upon requirement
specifications phase. It also allowed us to improve our abilities in recognising priorities in a
specific project.

For a next project, we would spend more time in designing the system beforehand, including
its classes and relations between them. This could have saved us time, as we rewrote our code on
a number of occasions. Also, we would have created a more intelligent statistics class, being able
to process different kinds of statistics data, which would save us efforts in using functions for each
different type of data.

We experienced a very satisfying collaboration with the company. They provided us with all
the help that we needed for creating the product and the project documents. We have learnt a
lot from their skills. We think that we became more experienced in engineering software, and will
use this experience to perform even more successful projects in the future.

31

Appendices

Appendix A: Problem Description

32

18/09/2012 BachelorprojectTI-EWI@tudelft.nl TU Delft

Project Proposal
BSc Technische Informatica

offered by

CHAINels

Burgwal 47
2611GG Delft

www.chainels.com
0153642667
post@chainels.com

Company description

CHAINels – your business discovered

CHAINels is een digitale platform dat hulp biedt, specifiek aan het MKB, op het

gebied van online business op lokaal niveau. Dit houdt in dat CHAINels haar site als

middel inzet om lokaal zakendoen te stimuleren.

Op het platform kunnen bedrijven kosteloos een profiel aanmaken waarna ze

onderling kunnen ‘chainen’. Dit ‘chainen’ betekent dat bedrijven onderling een

connectie aan maken om zo een netwerk te vormen met hun zakelijke relaties. Ook

biedt CHAINels bedrijven business intelligence en ondersteuning bij het centraal

managen van hun social media. Dit gebeurt door middel van overzichtelijke en

eenvoudige automatisering (visualisering van statistieken). Bij dit onderdeel kan men

waardevolle informatie over hun huidige en potentiële CHAINs bekijken. Het centraal

managen van de social media kan gedaan worden vanaf de zogenoemde ‘Desk’ op het

platform. Hier kan men berichten op een eenvoudige manier vormgeven en plaatsen

op hun social media-account.

CHAINels heeft in 2011 als open-bèta zijn oorsprong. Vanuit de TU Delft is het

concept als studieproject ontwikkeld tot echt product. Hierbij waren het studenten

Erwin Buckers en Vincent Koeman en docent dr. Shahid Suddle die de potentie van

CHAINels inzagen. Zij hebben het product geperfectioneerd en uiteindelijk vond er

op 11-11-11 de lancering plaats.

Na enige tijd bleek de open-bèta versie toch niet te voldoen aan de wensen uit het

bedrijfsleven en van het team zelf. Besloten werd om in 2012 een doorstart te maken,

maar het product geheel te vernieuwen. Hierbij is het team terug naar de basis van het

product gegaan en is alles opnieuw opgebouwd. In deze periode is er ook flink wat

versterking bijgekomen. Zo kwam werd er een Product Developer toegevoegd, een

Business Developer en een extra ICT’er. Met dit team kwam CHAINels, de bèta-

versie, van de grond en begonnen bedrijven zich in te schrijven.

CHAINels ging het zelfs zo goed doen dat er anno 2013 sprake is van een ‘Angel

investment’. Waardoor CHAINels haar team heeft kunnen uitbreiden en momenteel

gevestigd zit in het centrum van Delft.

Technische Informatica

Bachelor Project

Faculty of Electrical Engineering, Mathematics
and Computer Science, Mekelweg 4, 2628 CD
Delft, The Netherlands

BachelorprojectTI-EWI@tudelft.nl
TI3800 (15 ECTS)

Contact and Coordination

Martha A. Larson
M.A.Larson@tudelft.nl
http://homepage.tudelft.nl/q22t4/

Hans-Gerhard Gross
H.G.Gross@tudelft.nl
http://swerl.tudelft.nl/bin/view/GerdGross/WebHome

18/09/2012 BachelorprojectTI-EWI@tudelft.nl TU Delft

Project description

De opdracht die wij aanbieden is het ontwerpen en implementeren van een online
administratietool voor de werknemers van CHAINels. Via deze tool moeten accounts van
bedrijven worden beheerd, gebruikersstatistieken kunnen worden bekeken en
geanalyseerd, verschillende soorten berichten worden verstuurd, en meer.
Sommige van deze losse functionaliteiten zitten al in ons systeem ingebouwd; de nadruk
zal daarom liggen op het ontwikkelen van een platform dat deze functies integreert,
vormgeeft en dat uit te breiden is in de toekomst. Ook zal er rekening moeten worden
gehouden met de verschillende rollen van werknemers en bijbehorende bevoegdheden.

Auxiliary Information

CHAINels is geprogrammeerd in PHP (object georiënteerd), Javascript (jQuery/AJAX) en
HTML, dus ervaring met deze talen is vereist. CHAINels draait op een Redis database
(NoSQL), dus ervaring daar mee is een voordeel, maar is niet vereist.

Verder zal er veel begeleiding en hulp zijn vanuit het bedrijf, tevens worden er
werkplekken aangeboden en is er al een gangbare structuur ontwikkeld om op
professionele wijze het project te voltooien.

Vorig jaar zijn al twee teams voorgegaan die het project met succes hebben afgerond.

Project team

Supervision

Name Company Supervisor Email Phone

Vincent Koeman Koeman@chainels.c
om

Name TUDelft Supervisor Email Phone

Alessandro Bozzon a.bozzon@tudelft.nl

Student team

Name Study ID Email Phone Prerequisites* fulfilled signature

Henk Kant 4024400 henkkant@hotmail.com 0640282668

Daniël Mast 4092457 danielmast92@gmail.com 0628658613

*Prerequisites: by signing this box, as a student, I declare that I fulfill the prerequisites of the TI3800 bachelor project as stated in the digital study guide.

Appendix B: Planning

Our project is split up into four phases: an orientation phase, a design phase, an implementation
phase, and a reporting phase. These phases last 2, 2, 4, and 2 weeks, respectively. For most of the
phases there is an overall planning. However, as we were just a group of two people, we do not
plan the finer details. Working closely together, we are able to discuss the details when necessary.
Because of this, there was not always a clear division of tasks. Some larger tasks will be picked
up by one of us, others are done together.

Orientation Phase
In the orientation phase, the task was to first create a plan of approach. This is a relatively small
report and no clear task division is made. The first two days of the orientation phase are spent
on the plan of approach, the remainder is spent on the Orientation Report.

For the Orientation Report (OR) we spend time looking at what we needed to know before we
could start with the tool itself. We research two subjects: Web usage mining (WUM) and how to
efficiently create a user interface. The report is split into six subtasks:

1. survey of existing analysis technology

2. survey of existing libraries

3. web usage mining research

4. visual representation research

5. survey of the CHAINels system

6. survey of the collected data

Item 1 and 3 are on the subject of web usage mining, and assigned to Daniel. Item 2 and 4
are related to creating the user interface and are assigned to Henk. For items 5 and 6 we need to
study the existing CHAINels system and get to know the database. As it is important for both
of us to be comfortable working in this environment, we both spend time on those two tasks. The
research consists of finding relevant material and creating a report out of it, which we spend 8
days on. This leaves two days to get to know the CHAINels system and database.

Design Phase
In the design phase we need to create a requirements document and the general design of the new
system. This phase will take two weeks.

The first week we created the requirements document. This involvs working together with the
CHAINels team, after which we can write up the document. There is no clear division of tasks
on this report. This report requires a couple of versions, which are spread over the week.

In the second week we create a design for the system. The interface is mostly set up by Henk,
with ideas from Daniel. The draggable features and the charts are mostly designed by Henk.
For the back-end, Daniel creates a design for the storage in the database and the modules. The
remaining smaller components, such as user management and the required web pages, are created
by Henk.

Implementation Phase
For the implementation phase we require a better planning. From the tasks we identified we
created a Gantt chart. Figure 20 shows this Gantt chart.

In the implementation phase, Daniel is most responsible for the retrieval and storage of the
information. He also creates the live feed and the first setup for the modules. Creating the in-
terface is Henk’s task. This included creating the pages, the necessary controller, and the charts.
Logging in to the OAT is created by Daniel, and Henk will refine this by storing AdminAccounts
in the database, as he has knowledge of this process because of the storing of pages. Interaction

35

Figure 18: About-page of company TofSoft

36

Figure 19: Chains-page of company TofSoft

37

Figure 20: Gantt chart with the planning of the implementation and reporting phase

in the front-end is handled by Henk.

Changes in the planning
Although the basis for the objects were laid out as described, from a certain point on we both
worked on the system as a whole. In the end, while Daniel laid out most of the database access,
some improvements were implemented by Henk. In the last days of this phase, any missing func-
tionality was filled in by Henk, while Daniel took it upon him to improve the way module were
created in the system, and changed it to the loading from the files which is the final implementation.

We laid out an initial planning, but it became clear details lacked, and the order of the tasks
and the time we spent on them changed.

• In the first week of the implementation phase storing the information and creating a first
interface were done. In the second week the charts were created from the gathered informa-
tion. At this time the way the information was stored was improved and the live feed was
created. That week the AdminAccounts were also created.

• Although quite early a basis for the modules was defined, working modules on the pages
were introduced in the latter half of week two. In week three, charts were redefined. Some
time was spent on using object oriented JavaScript and the updating of the charts.

• In week three we made great improvements in the infromation storage causing improvements
in processing times. This week we also started defining more modules and the information
they needed.

38

• Week four was used to add functionality to the charts. This also caused renewing the way
the data was stored, going from just number to objects. At the end of this week it became
clear the way modules were defined and placed on the pages needed to be redone. This
caused running into the first week of the next phase.

Reporting Phase
With the implementation phase taking longer than planned, there was less time for the reporting
phase. As the report consisted of a number of distinct topics, tasks were devided. In the first
revision the Problem analysis was done by Henk, and in a later revision reworked by Daniel.
The requirements and requirements evalutaion was done by Daniel. The description of the design
and the latter half of the implementation was described by Henk, while Daniel described the
implementation of the stored data. The testing of the OAT was performed and documented by
Henk.

39

Appendix C: Plan of approach

40

Project COAT - Plan of Approach

Daniël Mast (4092457)
Henk Kant (4024400)

April 23, 2013

1

Contents

1 Introduction 4
1.1 The company . 4
1.2 Structure of the document . 4

2 Project Description 4
2.1 Project environment . 4
2.2 The goal . 5
2.3 Problem description . 5
2.4 Deliverables . 5
2.5 Requirements . 5
2.6 Conditions . 6

3 Approach and Planning 6

4 Project Design 7
4.1 Organisation . 7
4.2 Personnel . 7
4.3 Administrative procedures . 8
4.4 Reporting . 8
4.5 Resources . 8
4.6 Additional tools . 8

5 Quality Assurance 8

2

Foreword

This document contains the plan of approach of our bachelor’s project at the
company of CHAINels. We will discuss what role we are planning to fulfil for
the company and which boundaries we have to take into account. Moreover,
we will describe what is expected from us as project members, as well as from
our company’s supervisor, and our coach from TU Delft. Also, we will discuss
how we will split the project into phases, and how we will manage deadlines and
appointments.

Summary

In this project an online administration tool will be created for the website of
the company CHAINels. CHAINels’ website supports companies in their online
presence. This project will be active for the next 10 weeks. This document is
the plan of approach for this period. The project team will orientate extensively
to make the product as good as possible. The team will work closely together
with the employees of CHAINels to have a clear view on the goals of the project
and the requirements of the product.

3

1 Introduction

In the end phase of the bachelor Computer Science, students execute a project
at a company. We have chosen for the company CHAINels, and already had
contact with employees of this company. This company also has an agreement
with TU Delft, by providing students a possibility to do a bachelor’s project.
We chose this company, because we have great interest in what this company
does, and would want to add features in their system.

We are Daniël Mast and Henk Kant, two Computer Science students in the
end of their bachelor phase. This plan of approach is a first step in clarifying
what we are going to do in the given period, and how we are going to do it.

1.1 The company

CHAINels is a company located in Delft, currently aiming at small and medium
enterprises (SME). CHAINels supports companies in their online presence. It
enables companies to create a profile on www.chainels.com, where they can
establish new contacts with other companies. CHAINels can also provide tools
to these companies, for example the possibility to search for companies of a
certain field in their area.

1.2 Structure of the document

In Chapter 2, the properties of the project will be described. The environment of
the project, its goal, deliverables and requirements will be discussed. In Chapter
3, a planning of the project period is given, together with the collaboration
method that is used. In Chapter 4 will be discussed how the project is designed.
This includes the people that work on it, what they do, which tools they use
and how they report their progress. In Chapter 5, the measures that are taken
in order to assure the quality of the project are given.

2 Project Description

This chapter describes what is expected of the project. It will mention the
stakeholders, the problem, the goals and deliverable, and finally the conditions
to which the project must comply.

2.1 Project environment

The CHAINels network has an ever increasing number of companies using the
network. To get an idea of how these companies use the network, data on almost
every click on the website is recorded. This information consist of many aspects
which can provide useful information if it is presented in a useful manner to
CHAINels marketing team. Unfortunately, this information is just stored as
raw data and there is no use for it as is.

4

2.2 The goal

The goal of this project is to create an online administration tool (OAT), where
the people of the CHAINels team can monitor the accounts of their users and
the network as a whole. This monitoring consists of the growth over time and
how new users learn of the network, the activity of the users divided into overall
activity and specific aspects of the network, and the connections made amongst
users. The information the team can extract from this information gives pointers
to which functions of the network are rarely used, how much time the users spent
and what they do, and through which channels most companies get to know the
network. This gives opportunities to improve functions or increase marketing
efforts where needed.

2.3 Problem description

The project team is expected to design and implement an OAT which the
CHAINels team can use to extract knowledge from the stored information. The
information should be displayed in an efficient manner, such that employees of
CHAINels can effectively act upon this information. This information has to
be highlevel to be hypothetically displayed on a monitor in CHAINels’ office, as
well as extremely detailed to make proper analysis possible. It is not expected
of the project team to extract data from user activity. If additional data is
required the CHAINels team provides this information.

2.4 Deliverables

In the end, the team delivers the OAT along with the program code. Addition-
ally, sufficient documentation should be provided to give the CHAINels team
the possibility to expand the tool in the future. Documents regarding the plan
of approach and the first phase of orientation will be created in the first two
weeks of the project. To make implementation possible a list of requirements
will be created after consultation with the CHAINels team.

2.5 Requirements

The CHAINels team already defined some requirements for the tool:

• Security: Only the CHAINels team should be able to use the OAT, security
should be provided through authentication.

• Scalability: Currently the CHAINels team consists of 10 people, but the
OAT should be able to handle larger groups of people people using the
tool at the same time. This ensures the tool will be usable if the company
grows.

• Modularity: After the tool is deployed additional features may be added in
the future. The tool has to implemented in a way to make these extensions
and additions possible.

5

• Stability: The OAT will be used every day and has to be tested extensively
to ensure stability.

• Cross-browser compatibility: It is important the OAT will work in the
latest version of any modern browser (i.e. Chrome, Internet Explorer,
Safari, Firefox).

• Usability: The tool is possibly used by anyone in the CHAINels team; the
tool should require no technical skill to be used efficiently.

Additionally, the project team identified other requirements:

• Efficiency: The OAT should be fast and using resources efficiently.

• Robustness: When temporarily operating outside of normal operating pa-
rameters, the tool should degrade gracefully and not fail instantly.

2.6 Conditions

To make the OAT successful some conditions need to be met.

• The project team members need adequate skills with the programming
language used to create the tool. This ensures the tool will be efficiently
implemented.

• The project team members should use knowledge obtained during other
bachelor courses in order to write clean code and thoroughly test the tool
before deployment.

• The requirements should be carefully defined to ensure dependability and
usability.

3 Approach and Planning

This project spans the minimum of ten weeks, for which the following planning
is made:

• In the first half of the first week a plan of approach is created.

• In the first and second week research will be conducted and an orientation
report will be created. During this phase appropriate techniques will be
researched, along with alternatives for used tools.

• In weeks three and four specifications will be gathered and the design of
the OAT will be thought out. In this phase the specifications should be
completed and ready to continue with implementation.

6

• Starting in week four up to week 9 the implementation will be done.
This means writing actual code to create functionality in the OAT. The
CHAINels team expressed a desire to use an early version of the OAT as
soon as it is available. Testing is done throughout this phase by use of
unit tests.

• In week nine and ten extensive testing is done. Besides unit testing
throughout the implementation phase integration and system tests will
be conducted. User tests will be done with the CHAINels team. Any
improvements to be made to increase usability and stability will be con-
ducted in this phase. All remaining documents to conclude this project
will be completed in this phase.

• The project ends with a presentation by the project team for the project
coordinator, the project coach, and the company supervisor.

For this project an agile approach will be used. This means work will be con-
ducted in sprints, with every sprint adding another piece of functionality. Func-
tionality will be prioritised, with functionality which adds most value imple-
mented first. A backlog will be created which contains all items to be imple-
mented. Additionally, on a more frequent basis very short meeting will be held
to keep everyone in the team up to pace.
Every week a meeting with the company supervisor will be conducted to ensure
the progress of the project team and the quality of the OAT. Meetings with
the project coach will be conducted on a less frequent basis. Before June 14th
the program code will be sent to the Software improvement group (SIG) for
inspection and recommendations for improvements.

4 Project Design

4.1 Organisation

The stakeholders in this project are:

• Project team: Henk Kant and Daniël Mast.

• Company supervisor at CHAINels: Chief Technology Officer (CTO) Vin-
cent Koeman.

• Project coach: Assistant Professor Alessandro Bozzon, currently active in
the Web Information Systems department at TU Delft.

• Project coordinators: Martha Larson and Gerd Gross.

4.2 Personnel

In 10 weeks, the project team will work on the project, working closely together
with Vincent and the other employees of CHAINels, and the project coach. By

7

discussing with each other, this group will be able to state the requirements of
the OAT, and produce it.

4.3 Administrative procedures

CHAINels already uses an extensive packet of software and web tools to guide
their work. The project team will adopt most of these.

• JIRA: A web tool for project management, which also supports Scrum.
This will be the main tool for managing all tasks.

• SmartSVN: A client for SVN. CHAINels stores a great amount of the
website and other documents on an SVN repository.

• Google Drive: The project team mainly stores important documents here
that are only relevant for them and not for CHAINels. Therefore, these
documents are not stored on CHAINels’ SVN.

• Jenkins: A continuous integration tool. This tool is used for continuously
and automatically testing the code that is being worked on in this project.

4.4 Reporting

The project team will spend most of the time during the week at CHAINels’
office. This enables continuous consultation. Every Tuesday, the project team
and the company supervisor arrange a meeting to discuss the progress.

4.5 Resources

The project members use their own laptop for development and to fulfil other
project tasks, like writing the reports. The IDE in which the project team
will develop the OAT is NetBeans. A useful browser plugin that will be used is
Bonfire. This tool enables appointing bugs on the website by making a snapshot
and writing a comment, and adding this to the tasks in JIRA.

4.6 Additional tools

CHAINels uses object oriented PHP to build the entire website, alongside pro-
gramming languages like HTML, JavaScript, and CSS. To maximise campati-
bility the project will also be carried out using these programming languages.
The allready-in-place Redis database will be used to access the stored data. To
create the neccesary visualisations an undefined existing library will be used.

5 Quality Assurance

To ensure the quality of the OAT and the procedure of the project, different
measures are taken. First, it is very important that the product is tested fre-
quently. Jenkins will do automated (unit) tests, but in addition it will be critical

8

to do user tests. Therefore, it is convenient to produce beta versions of the prod-
uct, so that it can be tested before it is finished, and modifications can be done
before the end to produce a better result. In addition, after eight weeks, the
Software Improvement Group (SIG) will test the code and measure its quality,
amount of comments et cetera. This brings us to the second measure: documen-
tation and commenting of the code. In order to keep the code understandable
and editable, it has to be documented well and commented thorougly. Not only
the code should be documented, but also the progress of the project, in order
to keep clear what we are doing and where we want to go. The orientation
document that will be written in the first two weeks is an example of this. Last,
the product data is protected from loss, because it is stored on the repository,
which enables version control.

9

Appendix D: Orientation Report

50

Orientation Report

Henk Kant - 4024400
Daniël Mast - 4092457

May 7, 2013

1

Contents

1 CHAINels 4

2 Tools to use 4
2.1 Languages . 4

2.1.1 HTML and CSS . 4
2.1.2 PHP . 5
2.1.3 JavaScript and Ajax . 5

2.2 Databases . 5
2.2.1 Relational databases . 5
2.2.2 NoSQL databases and Redis . 5

2.3 Administrative tools . 5
2.3.1 JIRA with Bonfire . 5
2.3.2 SmartSVN . 6
2.3.3 Jenkins . 6
2.3.4 Selenium . 6

2.4 Additional Tools . 6

3 The existing framework 6
3.1 Examination of the website . 6
3.2 A survey of the collected data . 6

4 Web Usage Mining 7
4.1 Data collection and pre-processing . 7
4.2 Pattern discovery . 7
4.3 Pattern analysis . 7
4.4 Pros and cons of web usage mining . 8
4.5 Existing tools for web usage mining and statistics . 8

4.5.1 Google Analytics . 8
4.5.2 Chartbeat . 8

5 Efficient Design 9
5.1 Efficient User Interfaces . 9
5.2 Efficiently displaying data . 11
5.3 Survey of existing libraries for visualisation . 12

5.3.1 Highcharts . 12
5.3.2 D3 . 13
5.3.3 Dygraphs . 13

2

Introduction

In this report we perform an orientation for our project, in which we will develop an Online Adminis-
tration Tool (OAT) for the company CHAINels. This is to get clear view of what our possibilities are
during this project. We look at the company CHAINels itself, and the tools that they use. We also try
to define some core aspects of our project and research them.

In the first section we start by giving a short description of the company CHAINels and how it
started. In the second section we look at the tools the company uses to create and manage their system.
This section gives a short description with just some basics which may be useful to our cause. In the
third section we look at the existing CHAINels website. We try to determine how it is set up, we look at
the data that is already collected, and how it is stored. The fourth and fifth section are used to take a
look at techniques and research conducted. First we look at web usage mining and the techniques that
already exist. In the last section, we look at efficient ways to create user interfaces and existing solutions
to visualise data.

3

1 CHAINels

The company CHAINels started out as a bachelor end project by Erwin Buckers (currently CEO) and
Vincent Koeman (currently CTO), supervised by Shahid Suddle. The idea in short was to create a
social network for companies. On this network, accounts would represent companies as a whole instead
of individuals, like on LinkedIn. Companies with smaller budgets and less knowledge of how to present
themselves online, like small and medium enterprises (SME), may have difficulty with the Internet, and
CHAINels seeks to provide an easy platform for online promotion. Businesses can make connections,
called chains, with other companies, representing a business connection they have. The network also has
a strong integration with the social networks Facebook, LinkedIn, and Twitter to increase the ease of use
for companies by sharing messages not only on CHAINels itself, but also on those other networks. After
releasing the network in New York late 2011, it has been in continuous development. New functionality
is continuously added to increase the effectiveness for the users.

The team grew from three to eight members, excluding interns and ourselves. The team spans areas
including business, economics, design, and marketing. CHAINels also gives students from a number of
schools opportunities to be a part of the team, to create new functionality as part of a project, or to
gain experience in the field.

CHAINels currently saves some information about the actions of the users of the website. This
information is required by the marketing team go get some insight into the effectiveness of their marketing
efforts, and by the development team to see which functions are used less frequently and may need
improvements. Our assignment is to create an Online Administration Tool (OAT) that takes the raw
data that is collected and represents it in an useful manner.

2 Tools to use

The CHAINels team has worked for over two years on the network, and already has some tools set up.
To maximise compatibility, and to use their expertise on the tools, we have decided to use their tools as
well. We will give a short description of these tools. Other suggested tools that may be relevant to the
OAT will be described in the section ’Additional Tools’.

2.1 Languages

As the OAT will be a fully browser-based tool, web-based languages will be used. This involves markup
languages, server- and client-side programming languages. The language used for accessing the database
is often separate from the server-side programming languages, but at CHAINels, this is a plugin for PHP.

2.1.1 HTML and CSS

Hyper Text Markup Language (HTML) is the core language for the World Wide Web. From the late
2000s on, development for version five of HTML has been active. In this new version, a lot of changes
have been made already since the previous version. These changes include new tags to structure a
website, new elements, better support for dynamic web pages, as well as removing some deprecated
elements. One of the elements, <canvas>, may be of particular interest. With <canvas>, one can create
a container to draw graphics in. These graphics usually are created by scripting on the fly, i.e. using
JavaScript. Because HTML5 is new, it is mostly only compatible with the latest versions of modern
browsers. Because a requirement from CHAINels only stated compatibility with the last version of each
browser (as their website is HTML5-based), this should not pose a problem.

Cascading Stlye Sheets (CSS) is a style sheet language, used for the look and formatting of documents
written in markup language. With CSS, the content and the presentation of the document can be
separated, providing more accessibility, increasing flexibility, and allowing multiple documents to share
the same style. This property is required, as the HTML of the pages is generated in PHP pages.

4

2.1.2 PHP

PHP: Hypertext Processor (PHP), is widely used to create web applications. PHP is interpreted by
the web server to create a resulting HTML page to be rendered by the browser. PHP can be used for
object oriented programming. This allows for larger and more complex systems to be created, utilising
advantages object oriented programming languages have in combination with a large database. CHAINels
strictly applies object oriented programming in PHP.

2.1.3 JavaScript and Ajax

JavaScript has gained a lot of territory as a scripting language. It is executed client-side in the web
browser and provides interaction with the user. Amongst other programming styles, it supports object
oriented programming. Ajax is an expansion of JavaScript, that enables executing a new server request
without reloading the entire page. This is very useful for creating dynamic web pages.

2.2 Databases

In this section we distinguish two types of database: relational databases and NoSQL databases. CHAINels
makes use of Redis, a NoSQL database. These two types of databases differ in a number of ways. The
Dutch website Tweakers [8] made a comparison between the two types.

2.2.1 Relational databases

Relational databases consist of schema’s, a two-dimensional table with attributes on the columns and
entities on the rows. These tables can be linked together by making complex queries on the database.
While relational databases are flexible, they can create a high load on the server. Horizontal scaling,
the adding of additional servers, is very difficult with relational databases [1]. Only vertical scaling, the
improving of the hardware, is possible. Another possibility is to use the computer’s memory for caching
to increase performance.

Relational databases work with the ’ACID principle’, assuring atomicity, consistency, isolation, and
durability. These properties make the relational database reliable, but may lead to problems. To edit an
entity, it needs to be locked, disallowing other processes to access the same entity.

2.2.2 NoSQL databases and Redis

NoSQL databases do not have the relational setup. A NoSQL database can have more than two di-
mensions. Depending on which database is used, joins between schemas are not or hardly supported.
Implementing this functionality is required by the developer. Without the relations between schemas
horizontal scaling works very well.

NoSQL databases are capable of working with large sets of data. Google’s BigTable database, for
example, is capable of handling petabytes of data. The Redis database is an in-memory database, and
only uses a hard disk for backing up. This ensures a very high speed for both reading and writing
operations, which is helpful when working with large datasets. These properties should ensure the high
speed of the OAT.

2.3 Administrative tools

2.3.1 JIRA with Bonfire

JIRA is a project managing tool. It can be used to track bugs, issues, and the progress of the project.
It can also integrate with the program code, and be used for reporting and analysis.

The Bonfire extension can be used with JIRA to easily track bugs and other errors in web pages. On
any website, one can activate the tool and select an area of the site which contains the bug or error. The
tool then saves a screenshot of this error, along with information like the used browser, operating system,
and other information that might be needed to solve the bug. The bugs are automatically inserted into
JIRA as an issue, where it can be integrated into the work process.

5

2.3.2 SmartSVN

SmartSVN is a subversion (SVN) client, used to track version of the code. With SVN tools multiple
people can work together on the same files. Additionally, users can work on the files locally to change
or add code, without the risk of introducing bugs to every other user. Modifications from distinct users
can be combined in the end. This is called branching. Also, SVN enables going back to an older, correct
version of the so-called branch.

2.3.3 Jenkins

Jenkins is an online continuous integration tool. When program code is committed to the SVN, Jenkins
automatically runs all the tests written. These runs can be automated to run every night, for instance.
After the run, a report is created with the results and, if anything went wrong, a detailed output to
debug the program. Jenkins not only tests for errors, but also for code quality, and the comment ratio.
Jenkins also extracts the documentation from the code and transforms this into a group of pages that
link to each other, that is useful for understanding the structure of the code.

2.3.4 Selenium

Selenium is a tool that enables automated browser usage. CHAINels uses this to automatically test their
website as it behaves in a browser. In this way, bugs can be found that are not found by automated tests
of the code.

2.4 Additional Tools

The tools MapReduce and Bootstrap were also mentioned. We have looked at these tools, but after
consulting the CHAINels team we decided not to use these tools. MapReduce is used to execute actions
in parallel, but the Redis database is expected to be sufficiently fast to handle the big data. However, if
it turns out that this is not the case, measures will be taken. Bootstrap can be used to quickly create
mock-up user interfaces, but in our agile approach we opted for other, less technical solutions.

3 The existing framework

In this section, we first explain how the code is structured, and what techniques are used. Second, we
explain how the data from the website is stored.

3.1 Examination of the website

The CHAINels website is built using mostly object oriented PHP and JavaScript. A PHP library is used
for the structure of the page, which replaces actual writing of HTML code. JavaScript calls are used
to create the dynamic content on the website. The website is created using pagelets, small parts of the
website. These pagelets are sent to the user based on priority. This way the loading performance of the
website in increased. This technique is called BigPipe, and is developed by Facebook [3] .

In the back-end of the website, the company class is one of the most important classes, representing
any company that is registered on the website. Every page has an action controller defining what actions
can be done on that page. Within each controller is a function to send the statistics to the database. Calls
to the database can be collected into a single batch, which can then be sent to the database together, to
increase efficiency.

3.2 A survey of the collected data

As mentioned before, the database system that CHAINels uses for storing data is Redis. This database
can be managed by using a web interface called phpRedisAdmin. In this interface, the stored data can
easily be examined.

6

We discovered that the amount of data that CHAINels stores is not that huge yet, and therefore still
easy to understand. However, in Redis, data is stored much different compared to a relational database
system like MySQL. Redis relies on key-value relationships. CHAINels saves a user’s email address
(which also functions as the username on the website) as a key, that refers to the details of this user as
the value. The user details are stored in a hash table, where the keys are pass, name, cid (company id)
and more, together with their corresponding values.

Currently, every company on the website is managed by exactly one user. The current database
already supports more users for one company (possibly with different rights), but this is not implemented
yet in the front-end. For each company, one hash table is stored, containing the company’s details
(name, country, description etc). In separate hash tables and sets for each company its chains (with
other companies), admin IDs, messages, (a reference to) statistics and other details are stored.

The usage statistics are stored in a separate group of hash tables. One hash table contains the page
views of one page. A page view contains which company and user visited the page and when.

4 Web Usage Mining

Web Usage Mining (WUM) is the process in which the behavioural patterns of users on a website are
analysed. It consists of three stages: data collection and pre-processing, pattern discovery, and pattern
analysis [5]. Together, it provides valuable insight in user behaviour, on which the developers of the
website can respond. This is essential for the website of CHAINels, and is not possible without having
gathered the companies interests. Therefore, it is an important process for us to study.

4.1 Data collection and pre-processing

In the first stage of WUM, all data that gives insight in user behaviour is collected. The raw data is often
unusable for direct analysis, and therefore requires pre-processing. Pre-processing combines the loose
data from log data into user transactions from unique user, representing their activity on the website.
One of the most important types of data is the clickstream. This involves all clicks that users do on the
website. This shows for example how people navigate from one page to another (following hyperlinks),
which buttons they press or which images they click to enlarge. Other actions that can be tracked are
how often users post messages on the website (if that is an existing utility), how often they visit a certain
(type of) page and how long they stay on that page. Also, is it possible to record their IP address, the
browser they are using, the website that guided them to the current page and much more [5].

4.2 Pattern discovery

When the data has been transformed to a standardised user transaction, it is possible to search for
patterns. Imagine we have a vector for each user representing the visited pages as a 1, and the other
(unvisited) pages as a 0. If we transpose these vectors, and place them beneath each other, we have a
matrix that represents the page visits for each user. If we have another matrix that tells us for each page
which features (presented as keywords or other comparable units) are present on that page, we can get
insight on which features are apparently of interest for a certain user, by multiplying these two matrices
[5].

4.3 Pattern analysis

In the last stage, the user transactions of different users can be compared. This gives insight in groups of
users that perform similar behaviour. This information is especially useful in recommendation algorithms.
If for example user X has shown interest in pages A, B and C, and user Y visits pages A and B, the
website might recommend user Y to visit page C as well, because it is likely that this page will also be
of interest for him (because that also applied to user X). Pattern analysis can also give insight to paths
from random pages A to B that are used often. Also, if users often seem to visit page B when they have
visited page A too (A → B), but if the path is relatively long, it may be a good idea to place a direct
hyperlink on page A to page B.

7

4.4 Pros and cons of web usage mining

For a company like CHAINels, it is essential to analyse the behaviour of their users. It can be discovered
in which way the users use the website. If this is analysed well, the website can be improved to make it
more intuitive, or desired features can be added, and unused features can be removed.

There are also aspects that websites have to take into account when logging user activity. One might
argue that a website should not log everything, and consider this as an invasion of privacy, because a user
has the right to be anonymous. By clustering different users based on matching behaviour, a website
judges a user on the group it is in. This de-individualisation might lead to a biased view of the user.
For example, not all users that have an interest in sports also have an interest in baseball, despite many
other sports lovers do.

When a user’s behaviour is used to form recommendations, it is very important that the activities of
this particular user can not be tracked back from that recommendation. Therefore, the data should be
anonymised. The main issue here is that users should not be afraid that their activity will be visible for
everyone. That would result in a decrease of trust in the website.

4.5 Existing tools for web usage mining and statistics

There are several tools available for registering web usage. Most tools require an addition in the code
of the website, or access to the database. They often provide a combination of web usage mining and
(visual) statistics. It is not our plan to implement one of these tools, because we will process the data
that is already logged in the database of CHAINels (with JavaScript and PHP). Also, CHAINels uses
a custom framework, that makes extensive use of Ajax. This means that users can perform several
actions before the page changes, and that makes a lot of tools useless, because they track page changes.
Therefore, it is of much greater use for our project to develop our own tool, that is also integrated into
their framework. Still, it is useful to discuss a few of the available tools, in order to obtain ideas of which
kind of data can be analysed and how to process this data.

4.5.1 Google Analytics

Google Analytics (GA) is a web-based tool that shows extensive statistics of the visitors of a website. It
requires the web master to place a block of JavaScript code into each page that the web master wants to
obtain statistics from. This block does not provide a lot of intelligence. Instead, it contains a reference
to a large JavaScript file on the website of GA. This file is not designed to be easy to read, so it is not
of much use to examine. It is therefore more useful to analyse the GA dashboard and its functions, in
order to obtain ideas for data visualisation.

GA shows most of the standard visitor data, like the total amount of visitors (per time unit), the
amount of pageviews and the percentage of new visitors. Another feature that gives interesting insight
of user behaviour is the Visitors Flow (see Figure 1). This shows how users navigate through the website
and which pages they visit. This may also be useful for the website of CHAINels.

GA also has its limitations. First, its details are based on cookies places on the visitor’s computer.
If these are removed, the statistics will be distorted. Also, if users have disabled JavaScript in their
browser, their visit will not be recorded at all.

4.5.2 Chartbeat

Chartbeat is a tool that is mainly focused on what visitors are doing on the very moment. An interesting
feature of Chartbeat is that it can track real-time when and how far people scroll the page. Scrolling the
page proves that the user is actively using the page, instead of being idle. If a user is reading the page
for a long time, it may be a useful page for this person. A similar feature may be very useful for us to
implement in our product.

8

Figure 1: Google Analytics Visitors Flow

5 Efficient Design

To maximise efficiency of the OAT, a good user interface is crucial. In this section, we look at guidelines
for creating an interface. In the second part of this section, we look at existing solutions to visualise the
data that is collected by the CHAINels system.

5.1 Efficient User Interfaces

Since the beginning of computers, several ways of input have been available to users. Command line
interfaces (CLI) have been one type that have been in use for a while. A CLI is efficient if you know
how to use it, but novice users have difficulty using such an interface. With computers becoming more
powerful, graphical user interfaces (GUIs) have become available with which almost any user can operate
a computer. Research has been conducted as to what makes an interface good and useful.

In an extensive summarising article, Pascal Wiggers [12] starts with a description of the human side
of the interaction. Users get input through sight and hearing, they produce output through touch. The
senses taste and smell are not used (yet). When entering the human eye, light is eventually projected on
the back of the eye, called the retina. This retina consists of rods and cones, with rods being sensitive
to the intensity of light, and cones being used to detect colours. Additional special nerve cells exist on
the retina called X-cells and Y-cells. X-cells are used to detect patters, where Y-cells detect movement.
Human can see sharp in the centre of their focus, while the vision blurs in peripheral vision. Sound in
interfaces is less effective, as interfaces who create noises all the time may simply become annoying.

Typing on a keyboard and moving peripherals are usually the two types of input a user can create.
These physical movements take time, from experiments a result came, known as Fitt’s Law:

Tm = a + b ∗ log2(
d

S
+ 1) (1)

, where a and b are empirical constants, d is the distance to a target, and S the size of the target.
Human memory is divided in short term and long term memory. Short term memory is fast but

limited. On average people can remember 7±2 items. This capacity may be a limiting factor for speech
based interfaces, but has less impact when all options can be presented on a screen so nothing has to be
remembered. Long term memory is relatively slow but almost unlimited, while forgetting anything goes
very slow. This is where humans store everything they know. Long term memory can be subdivided

9

into episodic memory and semantic memory. Episodic memory contains experiences and events, while
semantic memory contains data and facts. When tasks are performed often, actions become systematic
as long as it succeeds every time.

Users always have a mental model of how the program works. This initial idea varies per individual.
The closer the actual behaviour of the system is to the mental model of its user, the more useful the
system becomes.

As Wiggers also explains, interaction with a system consists of a cycle in which some steps are
performed:

• Establish the goal

• Form the intention

• Execute the action

• Perceive the system state

• Interpret the system state

• Evaluate the system state with respect to the goals and intentions

This cycle describes having a goal, creating and executing an action to get to that goal, and after execu-
tion evaluating the result. Navigation in a design should be able to answer a couple of questions of the
user: Where am I?, What can I do?, What will happen? and Where have I been? . The first question
states that the state of the program should always be visible. The second can imply that every action
a user can execute should be visible, while actions that are not available are not. The third question
demands that icons and text on buttons should indicate what they are for, and the last question makes
it easy for a user to get to an earlier point.

Wiggers concludes with a list of design guidelines:

• Predictability relates to the ease with which users can determine what the result will be of their
actions.

• Honesty states the system should do as it promises.

• Familiarity is about the first impression of a system. If an user sees icons and elements he or she
recognises, proper interaction is more likely.

• Consistency states the interface should be consistent in its appearance. Fonts, colours and other
elements should remain the same throughout.

• With recoverability a user should be able to recover from errors easily.

• Substitutivity says it should be possible to switch between values for, for instance, input sizes,
allowing both inches and centimetres.

• Different people have different wishes, customisability allows them to alter the interface to fit
their needs and preferences.

Shneiderman’s [10] list of golden rules supports the values of consistency, error handling, and easy reversal
of actions but points to

• offering informative feedback

• enabling frequent users to use shortcuts

• designing dialogs to yield closure

• and reducing short term memory load

10

Giving feedback gives the user information of the state the system is in. Humans forget about actions
once they feel it is finished, yielding closure gives users the opportunity to be done with one action and
focus on the next. While reducing memory load and using a lot of shortcuts may seem inconsistent, the
use of shortcuts is an example of actions which may become systematic, as Wiggers mentioned.

Norman [7] mentions seven principles to make difficult tasks simpler. In this principles he wants
to make use of the knowledge users already possess, i.e. using the mental model. He also mentions
making things visible, and getting the mappings right, which are consistent with Wiggers’ guidelines of
predictability and honesty.

Finally, some strategies on user centered design (UCD) have been devised. Abras [2] gives some steps
to incorporate the user in designing a system, while Maguire [4] gives a more extensive framework to
involve the user. The steps generally require more time and thus more money in the development phase,
with feedback from the user on prototype interfaces, and an iterative development approach. However,
they have benefits when the interface is in use because it requires less time to train with the interface,
less errors are made by the users, and they have a higher efficiency.

We would like to mention the Windows User Experience Interaction Guidelines [1] which contains an
extensive set of rules to create useful interfaces, covering almost any topic, with examples of correct and
incorrect interface elements.

5.2 Efficiently displaying data

An effective interface is one part of the system, getting the message across in an acceptable manner is
another. Several elements can be used to maximise efficiency, for example colour [6].

As said, human eyes perceive colour through the cones on the retina. These cones are all sensitive
to one specific wavelength (and thus specific to one of the basic colours red, green, and blue), and
sensitivity varies per wavelength. This sensitivity can degrade with age. Sensitivity is not equally
distributed amongst the basic colours, with only two percent sensitive to blue, with almost one third
of the cones sensitive to green, and the remainder sensitive to red. It is important to note the cones
sensitive to blue are poor represented near the centre of the retina, resulting in a blue-blindness causing
small blue objects to disappear when they are focused upon. It should be mentioned, about nine percent
of all people are colourblind.

Murch concludes with a set of guidelines to use colour effectively:

1. Avoid the simultaneous display of highly saturated, spectrally extreme colours.

2. Pure blue should be avoided for text, thin lines, and small shapes.

3. Avoid adjacent colours that differ only in the amount of blue.

4. Older users need higher brightness levels to distinguish colours.

5. Colours change in appearance as the ambient light level changes.

6. The magnitude of a detectable change in colour varies across the spectrum.

7. It is difficult to focus upon edges created by colour alone.

8. Avoid red and green in the periphery of large-scale displays.

9. Opponent colours go well together.

10. For colour-deficient observers, avoid single-colour distinctions.

These guidelines help to make any interface more readable and prevent visual fatigue. With these
guidelines one can create interfaces, without having running into trouble, which may be caused by varying
sensitivity from individual users.

11

In a book by Shirley [9] , Munzner also defines some characteristics on the visualising of data sets. The
visualisation provides a better way for humans to understand the given data set than plain text. Data
can be distinguished into three categories: quantitative data which relates to numbers, categorical data
which can be divided in categories, and ordered data which is ordered by some measure. Any object has
some characteristics like area, length, or hue, and these characteristics have some characteristics of their
own: distinguish-ability, separability, and pop-out. Certain object characteristics can be combined, like
colour and shape, but combining characteristics like length and width can not, as they are automatically
perceived by humans as area, which can not be easily perceived categorical.

Certain styles of visualisation or algorithms may be better with smaller data sets. Large data sets
may be reduced to improve performance and efficiency. Text is still needed, in the form of labels and
legends.

One way of visualising activity on a website is with a heatmap. A heatmap logs all the clicks the
visitors of a site do on that site. This way it may easily become clear where people click to get to where
they want to be. If a site has multiple ways to get to a certain point, it can become clear one may be
obsolete. See figure 2 for a heatmap from the old Tweakers.net website.

Figure 2: Old www.Tweakers.net site heatmap [11]

5.3 Survey of existing libraries for visualisation

As other libraries exist for our purpose, we take a look at these existing solutions, so we will not develop
what already exists.

5.3.1 Highcharts

One fine example of a charting library is Highcharts (http://www.highcharts.com/). Highcharts has
some points we can summarise:
Good:

12

• colourful visualisations

• wide browser compatibility

• dynamic visualisations

Bad:

• license fees required

While Highcharts is a good example of a useful library, and therefore we wanted to mention it, the license
fees make it a highly undesirable option.

5.3.2 D3

D3 (http://d3js.org/) is a library which can be used to create a wide variation of charts and plots. The
used language is JavaScript. Some characteristics are:
Good:

• loads of examples

• different kinds of visualisation available

• good looking, colourful visualisations

• open source

Bad:

• Not compatible with older versions of Internet Explorer

The d3 library gives numerous options to create visualisations from the data, which are also easy on the
eyes. The fact that it is open source software makes it a possible option to use. Uncompatibility with
older browsers is not an issue, as the OAT was only required to be compatible with the latest versions
of popular browsers.

5.3.3 Dygraphs

Another class of libraries exist, from which Dygraphs (http://dygraphs.com/) is a good example. A lot
of libraries exist with which charts and plots can be created. They have some characteristics:
Good:

• lightweight

• easy zoomable

• compatible with older browsers

• open source

Bad:

• only basic charts and plots possible

• plain looks

While Dygraphs may be open source, this library, along with others, has only functions to create basic
charts and plots. As we may require other visualisations than basic charts, this option may not be the
right one.

13

References

[1] Windows user experience interaction guidelines, September 2010.

[2] Chadia Abras, Diane Maloney-Krichmar, and Jenny Preece. User-centered design. Bainbridge, W.
Encyclopedia of Human-Computer Interaction. Thousand Oaks: Sage Publications, 37(4):445–56,
2004.

[3] Changhao Jiang. Bigpipe: Pipelining web pages for high performance, June 2010.

[4] Martin Maguire. Methods to support human-centred design. International journal of human-
computer studies, 55(4):587–634, 2001.

[5] Bamshad Mobasher. Web usage mining. Web Data Mining: Exploring Hyperlinks, Contents and
Usage Data, pages 449–483, 2006.

[6] Gerald M Murch. Physiological principles for the effective use of color. Computer Graphics and
Applications, IEEE, 4(11):48–55, 1984.

[7] D. A. Norman. The Psychology of Everday Things. Basic Books, New York, 1988.

[8] Joost Schellevis. Nosql - maar wat is het dan wél?, November 2011.

[9] P. Shirley and S.R. Marschner. Fundamentals of computer graphics. Ak Peters Series. A K Peters,
Limited, 2009.

[10] B. Shneiderman. Designing the user interface: strategies for effective human-computer interaction.
Addison-Wesley, 1987.

[11] F. Taken. http://tweakers.net/reviews/2791/tweakers-7-wat-is-nieuw.html.

[12] Pascal Wiggers. Reader human-computer interaction 2009-2010. 2009.

14

Appendix E: Requirements Analysis Report

65

Requirements Analysis Report

Henk Kant - 4024400
Daniël Mast - 4092457

June 29, 2013

1

Contents

1 Functional requirements 3

2 Nonfunctional requirements 5

3 Environmental requirements 5

4 Architectural requirements 5

5 Performance requirements 5

6 Design requirements 5

7 Resource requirements 6

2

Introduction

This document discusses the requirements for the Online Administration Tool (OAT) that will be devel-
oped, and its environment. The requirements have been separated in different categories.

1 Functional requirements

The list of functional requirements which the OAT is expected to implement.

Overall statistics:

• The total number of unique visitors, chains, registered companies, credits, posts, and invites in the
system.

• The total number of unique visitors, chains, registered companies, credits, posts, and invites over
a time period1 to be specified by the user, or via predetermined time periods2.

• The number of gained credits (total or per time period) should be dividable per action with which
they were gained, for both real time and total numbers throughout the OAT.

• The registered companies should be dividable in industry, number of employees, and region, for
both real time and total numbers throughout the OAT.

• The number of chains should be dividable in sent requests and accepted requests throughout the
OAT.

• The number of invites should be dividable in sent requests and accepted requests throughout the
OAT.

• For both chains and invites, the average time between requests and accepts should be available.

• For both chain and invite requests, a percentage of accepted requests should be calculated.

• The number of posts should be dividable per type of user3 throughout the system.

• In real-time the number of online4 users (logged in and total) with logged in users dividable in
region or industry. A real-time list of chains requests and accepts, invites sent and accepted, credits
gained or spent, companies who joined, and posts made, during a period that is customisable by
the user.

• A list of companies, based on activity5, to show most and least ”active” users.

• The average amount of recommends and comments on posts. The amounts should be dividable in
type of message6 and in company number of employees, region, and industry throughout the OAT.

• How companies which signed up got to know CHAINels.

• Charts showing the percentages of different options in user statistics7.

Per company:

• The amount of time it took the company to complete the sign-up process.

1No minimum or maximum time limits exist.
2They may be logical, but to be determined, time periods, for example, 1 hour, 4 hours, 1 day, 1 week, etc.
3Currently only ”Editor”, ”Manager” and ”Spectator”.
4The definition of online is to be determined.
5The function and the arguments to calculate the rank of the company are to be determined.
6Current types are ”news”, ”event”, ”supply”.
7As of writing consisting of browser, location, operation system, account and company id (if any), and referrer page.

3

• The phase (object CStatus) the company is in, and the percentage of fields (name, address, what
services the company can offer, etc.) the company has filled out. The time they took to come get
to that phase since sign-up, and in total time.

• The time they spent in the introduction (if any).

• The total amount of chains, chain requests, credits, sent invites, and posts of the company.

• The amount of chains, credits, received invites, sent invites, and posts of the company over a time
period specified by the user1, or via predetermined time periods2.

• A rating to show how active4 the company is.

• The pages a company views and the messages a company posts should be dividable in types of
accounts

• The average amount of recommends and comments on a post.

Per page:

• A visitors flow, showing where the user came from and what the next page8 the visitor goes to is
(if any).

Per user:

• A list of statistics about the user7.

• the amount of pages8 the user visits per session and on average.

Management requirements:

• Users should be able to delete accounts of companies.

• The amount of credits which are rewarded for certain actions should be changeable.

• A notification to all users can be sent out to notify all companies at once.

• Companies’ requests to be featured on the homepage should be handled through the OAT.

• Feedback from the companies should be viewable.

• Database access should be available.

• Error reports from the site should be viewable.

• Right management should be in place, to determine which user can view which parts of the OAT.
New users should be easily added or removed. Rights of users should be editable.

• Notifications should always be visible to inform users about important events, like an error report.

Visualisation requirements:

• The tool should implement data currently available from the CHAINels site. Data from future
improvement (and during the project) is not required to be included in the tool.

• The modules that show real-time data should by default be refreshed every minute. Users should
be able to refresh this data manually, or set a specified interval, as long as this is in accordance
with the resource requirements.

• Visualisations of the data should be zoomable where possible, to increase detail of visualisations
on the fly.

8We define next page as a different URL.

4

2 Nonfunctional requirements

• The OAT should be intuitive. A long, extensive manual should not be necessary, even for users
that are not highly skilled in computers or statistics.

• The graphs that will be used should be suitable for the data they represent. They should show a
rich amount of data, but nothing irrelevant.

3 Environmental requirements

• The OAT should function in all modern version of the popular browsers: Firefox, Chrome, Safari
and Internet Explorer. No major cross-browser differences should be experienced.

• The OAT should be accessible ONLY by CHAINels employees, and no one else. Therefore, authen-
tication is required.

4 Architectural requirements

• Other programmers should be able to understand and edit the code in the future. This involves
sound names for variables and classes, but also proper use of commenting.

• It should be possible to add extra modules/features in the future, without having to make a whole
new system (modularity).

• It should be easy to add new natural languages in the future. This will be done via the current
existing techniques in the CHAINels system.

5 Performance requirements

All requirements listed below should still apply when the web server is dealing with a high amount of
traffic, both by visitors of the website as CHAINels employees accessing the OAT.

• The loading time of a random page (including graphical content) in the OAT should be responsive,
on a wireless Internet connection in the CHAINels office. Responsiveness is tested via user tests.

• If permissible by the resource requirements, all data should be calculated when requested. If this
is not possible, due to the growing size of the data, non-real-time data (that has to be processed
before it can be shown) should be refreshed on some interval. The size of this interval will depend
on the type of data. In order to deal with scalability, this time period may be changed when the
website obtains more users in the future.

• Zooming in charts should be fluent, without visible stutter. The acceptance of this requirement is
done through user testing.

• The represented data should be accurate, or not visible at all. No faulty data is permitted.

6 Design requirements

• The user should be able to drag the visible modules over the screen of the dashboard, to adjust
the view to his or her liking. The users should also be able to remove modules that he or she finds
irrelevant. It should always be possible to add them again later, in a separate settings page.

• The colour scheme used should allow users who are colourblind to effectively use the tool. Accep-
tance of the used colour scheme is determined by Vincent.

5

7 Resource requirements

• The back-end of the system should not make the CHAINels website remarkably slow, as they
function on the same server and access the same database. The website may on average be no
more than 10 percent slower with the OAT active than without.

6

Appendix F: SIG Feedback

[Analyse]

De code van het systeem scoort net 4 sterren op ons onderhoudbaarheidsmodel, wat betekent
dat de code bovengemiddeld onderhoudbaar is. De hoogste score is niet behaald door een lagere
score voor Component Independence en Unit Size.

Voor Component Independence wordt er gekeken naar de hoeveelheid code die alleen intern
binnen een component wordt gebruikt, oftewel de hoeveelheid code die niet aangeroepen wordt
vanuit andere componenten. Hoe hoger het percentage code welke vanuit andere componenten
wordt aangeroepen, des te groter de kans dat aanpassingen in een component propageren naar
andere componenten, wat invloed kan hebben op toekomstige productiviteit. In dit geval valt met
name op dat er cyclische afhankelijkheden bestaan tussen de componenten ’html’ en ’controller’
en tussen ’system’ en ’controller’. Dit maakt het voor toekomstige ontwikkelaars lastig om uit te
vinden waar een verandering plaats moet vinden, en om daarna de impact van de verandering in te
schatten. Het is aan te raden om de afhankelijkheden tussen de top-level componenten nogmaals
kritisch te bekijken en de cyclische afhankelijkheden op te lossen.

Voor Unit Size wordt er gekeken naar het percentage code dat bovengemiddeld lang is. Het
opsplitsen van dit soort methodes in kleinere stukken zorgt ervoor dat elk onderdeel makkelijker te
begrijpen, te testen en daardoor eenvoudiger te onderhouden wordt. Binnen de langere methodes
in dit systeem, zoals bijvoorbeeld de ’getObjectsPerDayParam’-methode binnen de ’Statistics’
class, zijn aparte stukken functionaliteit te vinden welke ge-refactored kunnen worden naar aparte
methodes. Commentaarregels zoals bijvoorbeeld ’// filter all data that fall between begin and end
date’ en ’// determine the length of the given time period in seconds’ zijn een goede indicatie dat
er een autonoom stuk functionaliteit te ontdekken is. Het is aan te raden kritisch te kijken naar
de langere methodes binnen dit systeem en deze waar mogelijk op te splitsen.

Over het algemeen scoort de code bovengemiddeld, hopelijk lukt het om dit niveau te behouden
tijdens de rest van de ontwikkelfase. Als laatste nog de opmerking dat er geen (unit)test-code is
gevonden in de code-upload. Het is sterk aan te raden om in ieder geval voor de belangrijkste
delen van de functionaliteit automatische tests gedefinieerd te hebben om ervoor te zorgen dat
eventuele aanpassingen niet voor ongewenst gedrag zorgen.

72

	Introduction
	Problem Analysis
	The CHAINels platform
	Current situation
	Problem description
	Planning

	Requirements
	Functional requirements
	Nonfunctional requirements

	Design
	Data Design
	Functionality separation
	Mockup

	Implementation
	Architectural view
	Data Analysis and Aggregation
	Back-end
	Front-end

	Testing
	Performance test
	Acceptance test

	Requirements evaluation
	Recommendations
	For the OAT
	For CHAINels

	Conclusion
	Appendices

