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Abstract
This paper investigates a method for accelerating
hyperbolic t-SNE — a popular high-dimensional
data visualization technique. In particular, it fo-
cuses on building a hyperbolic t-SNE variant that
uses a different model of hyperbolic space (called
the Lorentz Hyperboloid model) for representing
the low-dimensional embeddings. An acceleration
algorithm based on a tree data-structure is then used
to achieve a better asymptotic runtime complex-
ity compared to the original version. The paper
then compares this implementation with other al-
ternatives — including accelerated variants — and
shows that it computes embeddings of better qual-
ity at a similar rate.

Keywords: visualization, dimensionality reduc-
tion, acceleration structure, hyperbolic embedding,
hyperboloid model, Lorentz model

1 Introduction
In order for humans to be able to interpret and analyse data
that has more than two or three dimensions, it has to be em-
bedded on a lower-dimensional plane. This would allow de-
velopments of hypotheses about the underlying structure of
the process that generated this data. Because of this, visu-
alization and analysis techniques for high-dimensional data
play a crucial role in a wide range of applications.

Dimensionality reduction is the process through which
high-dimensional data is embedded into a low-dimensional
plane. In order to illustrate the relationships between the
embedded points, the process usually tries to preserve dif-
ferent metrics that hold significance both in the high and
low-dimensional spaces. Because of the nature of high-
dimensional data, the proximity relationships between points
within one embedding are most reliable. This means that
close data points (in the high-dimensional plane) will be em-
bedded close to each other. Examples of proximity preserving
metrics include the pairwise scalar product [14], pairwise dis-
tances [9] or rank information [26]; a review of these methods
can be found in [5].

One widespread technique to embed high-dimensional
data into a low-dimensional space is t-distributed Stochas-
tic Neighbour Embedding (t-SNE) [35]. This method works
by minimizing the Kullback-Leibler divergence between two
distributions, thus preserving proximity of the embeddings.
However, there is data that exhibits intrinsic hyperbolic-like
features (e.g., exponential growth), such as graphs, trees, or
other hierarchical data. Hyperbolic space is the complete,
simply connected Riemannian manifold with constant nega-
tive sectional curvature (described in Subsection 2.4). Ap-
plications where data can be modelled in this form, e.g.,
social networks [36], the Internet [4], or gene expression
[40], would benefit from extending visualizing techniques
to the hyperbolic spaces. Given the usefulness of analysing
the structures of these datasets, various methods have been
proposed for extending t-SNE for hyperbolic spaces [12;
15].

When it comes to representing these hyperbolic spaces in 2
dimensions, there are four popular models: Poincaré disk and
half-plane models, Klein model and, lastly, the Lorentz Hy-
perboloid model. In this paper, we focus on the latter. The
main advantage of this model is that its distance function
avoids numerical instabilities that arise from the fraction in
the Poincaré distance, which improves the efficiency in learn-
ing embeddings. For this reason, it is frequently used when
searching for hierarchical relationships in data [25]. Similar
studies suggested this model for use in conjunction with hy-
perbolic t-SNE (Ht-SNE) [15; 31].

The computation of t-SNE gradients involves considering
positive and negative forces between all pairs of points. Thus,
the computational complexity of this process scales quadrati-
cally in the number of data points. In order to visualize larger
data sets, a data-structure has been proposed for t-SNE that
makes use of an acceleration algorithm, called Barnes-Hut
(that we will discuss in Subsection 2.3) [34], in order to re-
duce its run-time complexity. For hyperbolic spaces, due to
their negative curvature, accelerating using this data-structure
does not work without modifications [17]. This is due to
the absence of linear interpolation or averages in non-linear
and hyperbolic spaces. To solve this, a method that uses a
Poincaré disk and modifies the Barnes-Hut scheme to work
in hyperbolic spaces has been proposed and bench-marked
[31]. It makes use of a polar quad-tree [37] as the accelera-
tion data-structure.

This paper aims to provide an answer to the question re-
garding whether the Lorentz Hyperboloid model can be used
as the embedding space, in conjunction with an octree accel-
eration data-structure, to improve the quality of the embed-
dings of Ht-SNE, while maintaining a similar run-time effi-
ciency. By leveraging the advantages of the Lorentz model
in this way, we can obtain a better representation of high-
dimensional data, that would improve the preservation of the
relationships between the points and make the development
of hypotheses easier. Moreover, improving computational ef-
ficiency would make Ht-SNE more viable for use in large
data-sets and for various other data visualization tasks.

To this end, this paper introduces this aforementioned Ht-
SNE variant that uses the Lorentz Hyperboloid model as the
embedding space. Then, it describes an acceleration data-
structure based on the Barnes-Hut algorithm that can be used
to speed up the computation. Because the Lorentz model has
one extra dimension, an octree is used (described in Subsec-
tion 2.2). This data-structure then needs to be adjusted in or-
der to reflect hyperbolic properties (Subsection 4.1). Lastly,
in Section 5 we compare this approach with other exist-
ing methods, such as non-accelerated (exact) Ht-SNE, or the
quadtree-accelerated Poincaré Ht-SNE [31] and show that it
computes embeddings of better quality, at a similar rate.

2 Background
This section explains some of the concepts that the acceler-
ation algorithm is built upon. It introduces t-SNE and the
octree acceleration data-structure. Then, it explains the Eu-
clidean way to accelerate it, using a quad-tree as part of the
Barnes-Hut algorithm. Finally, it presents some concepts



Figure 1: Representation of an octree in 3D and projected onto each
plane. Only the cells which contain at least one point are displayed.

about hyperbolic spaces, and, in particular, about the hyper-
boloid model, that are being employed in the algorithm.

2.1 t-distributed Stochastic Neighbour Embedding
t-SNE is a visualization technique for high-dimensional data.
It aims to minimize the divergence between two distributions:
a distribution that measures pairwise similarities of the in-
put objects and a distribution that measures pairwise simi-
larities of the corresponding low-dimensional points in the
embedding space [35]. For the d-dimensional input object
{x1, . . . , xN} ⊆ Rd, t-SNE defines joint probabilities

pj|i =
exp(−∥xi − xj∥2/2σi)∑

k ̸=i exp(−∥xi − xk∥2/2σ2
i )
, pij =

pj|i + pi|j

2
.

(1)
Here, pi|i = 0 and the bandwidth of the Gaussian kernels, σi,
is set such that the perplexity value of the conditional proba-
bility Pi equals a predefined perplexity u. The perplexity is
defined as

Perp(Pi) = 2H(Pi), (2)
where H(Pi) is the Shannon entropy of Pi, measured in
bits. The corresponding probability distribution for the low-
dimensional embedding {y1, . . . , yN} ⊆ Rs is

qij =
(1 + ∥yi − yj∥2)−1∑
k ̸=l (1 + ∥yk − yl∥2)−1

. (3)

To compute the positions yi of the low-dimensional embed-
ding, t-SNE starts with an initial embedding obtained by prin-
cipal component analysis (PCA), as suggested in previous pa-
pers [16]. Then, the locations of the embedding points yi are
determined by minimizing the Kullback-Leibler divergence
between the joint distributions P and Q:

C = KL(P∥Q) =
∑
i

∑
j

pij log
pij
qij

(4)

which has the gradient

δC

δyi
= 4

(∑
j ̸=i

pijqijZ(yi − yj)−
∑
j ̸=i

q2ijZ(yi − yj)
)
, (5)

Figure 2: Barnes-Hut scheme applied on octree in Figure 1. When
calculating the distance from y1 to any of y3, y4 or y5, the midpoint
ycell is used, assuming that Equation 6 holds.

where Z =
∑

k ̸=l

(
1 + ∥yk − yl∥2

)−1
. If the probability dis-

tribution P is sparse, we can efficiently compute the first term
of the equation. However, for the second term, because we
need to compute all pairwise positive and negative forces be-
tween the points, the runtime complexity of a naive imple-
mentation of this algorithm would be O(n2).

2.2 Octree
An octree [24] is a tree in which each node represents a cube
shaped cell with a particular centre, width, height, and depth.
Non-leaf nodes have eight children that split up the cell into
eight smaller, equally sized cells (octants), as shown in Fig-
ure 1. Leaf nodes represent cells that contain at most one
point of the embedding; the root node represents the cell
that contains the complete embedding. Each node stores the
centre-of-mass of the embedding points that are located in-
side the corresponding cell, ycell, and the total number of
points that lie inside the cell, Ncell.

An octree has O(n log n) nodes and can be constructed
generally in O(n log n) time by inserting the points one-by-
one, splitting a leaf node whenever a second point is inserted
in its cell, and updating ycell and Ncell of all visited nodes.
However, in the unlikely worst case scenario, the octree can
be built in O(n2) time.

2.3 Barnes-Hut Acceleration Structure for t-SNE
Previous studies have shown that Euclidean t-SNE can be ac-
celerated to run in O(n log n) time (when choosing proper
hyperparameters) by using a data-structure used by the
Barnes-Hut algorithm [34]. This algorithm aims to approx-
imate the n-body computation by making use of a quadtree
for two dimensions, or an octree for three dimensions [2].

When applied to t-SNE, the embedding space is divided
up into square cells via a quadtree, so that only points from
nearby cells need to be treated individually, and points in dis-
tant cells can be treated as a single large point centred at the
cell’s centre of mass. This allows for approximating the sec-
ond term in Equation 5: when evaluating the gradient for an
embedding point yi, the quadtree structure is traversed. For
each cell, starting at the root, we check if

rcell

∥yi − ycell∥
< θ (6)

holds, where rcell is the length of the diagonal of the cell,
ycell is the arithmetic midpoint of all points stored in the cell,



Figure 3: Relationship between the Poincaré and Lorentz models;
changing between the models involves projecting the points through
a point situated at

(
0, 0,−1

)
and θ is a hyperparameter that influences the trade-off be-
tween efficiency and quality of the embedding [34]. The cell
and its children are summarized to this arithmetic mean ycell,
weighted by the number of embedding points inside the cell,
if Equation 6 holds.

Figure 2 contains an illustration of this procedure on a
3-dimensional octree. This procedure is analogous for a 2-
dimensional quadtree.

2.4 Hyperbolic Spaces and the Hyperboloid Model
Hyperbolic space of dimension 2 is the unique, complete,
simply connected, 2-dimensional Riemannian manifold with
constant negative sectional curvature, equal to −1. There ex-
ist multiple equivalent models for hyperbolic space, such as
the Poincaré ball and half-plane model, the Klein model and
the Lorentz Hyperboloid model [1]. Equivalence in this case
means that all of these models are compatible with each other
and conversion between them is not computationally expen-
sive. Figure 3 contains an illustration that shows the transfor-
mation from a set of Poincaré points to Lorentz coordinates.

Other studies based their approach for learning and visu-
alizing embeddings on the Poincaré disk model, due to its
conformality and convenient parameterization [25; 31]. In
this paper, we use the Lorentz model for representing the 2-
dimensional embedding space, before applying the t-SNE al-
gorithm. The main advantage of this model is that its distance
function (see Equation 9) avoids numerical instabilities that
arise from the fraction in the Poincaré distance.

In the following, let any vector u ∈ Rn+1 be written as

u = (ut, u
′), where u′ ∈ Rn, ut ∈ R.

The Lorentz model of 2-dimensional hyperbolic space is de-
fined as the Riemannian manifold L2 = (H2, gLy ), where gLy
is the Riemannian metric tensor diag(−1, 1, 1) and

H2 = {y = (yt, y′) ∈ R3 : ⟨y, y⟩L = −1, yt > 0}, (7)

is the upper sheet of a two-sheeted 2-dimensional hyperboloid
(see top surface in Figure 3). Above,

⟨u, v⟩L = −utvt + ⟨u′, v′⟩ (8)

denotes the Lorentzian scalar product, where ⟨·, ·⟩ is the stan-
dard inner product between two vectors in Rn. The distance
for the Lorentz model between two points yi and yj is

dLij = arcosh(−⟨yi, yj⟩L). (9)

3 Related Work
There is an already existing body of work that focused on
decreasing the asymptotic runtime complexity of algorithms
that ran in quadratic time, such as t-SNE. This paper builds on
top and expands it by studying the effects using the Lorentz
Hyperboloid model as the embedding space for t-SNE. This
model has seen usage in various fields of science, and we will
give a brief overview of them in Subsection 3.1. We will also
explore another technique that can be employed to speed up
t-SNE in Subsection 3.2.

3.1 Other Applications for the Lorentz model
Recently, hyperbolic geometry has been the subject of many
studies in the field of data visualization, due to its ability
to represent data with a non-Euclidean nature. Data that
exhibits hyperbolic properties especially benefit from us-
ing hyperbolic space for embedding, having a better repre-
sentation capacity and generalization ability [4; 17; 15; 8;
36].

Particularly, the Lorentz Hyperboloid model (discussed in
Subsection 2.4) was used to define the basic operations of hy-
perbolic neural networks [25]. Additionally, there have been
developments of various neural network architectures using
the Lorentz model. Take, for example, hyperbolic graph neu-
ral networks [39], that use the same model for a similar rea-
son as us, namely better numerical stability. Another example
are the fully hyperbolic neural networks that ”are based on
the Lorentz model by adapting the Lorentz transformations
to formalize essential operations of neural networks” [6].

The hyperboloid model has seen great use in the field
of physics, in particular for special and general relativity.
Minkowski showed that this model can be used to perform ge-
ometry on his proposed theory about spacetime in the absence
of gravitation, which has inherent hyperbolic properties [7;
38]. More recent advancements in this field include the study
of the geometry of the asymptotic infinities of Minkowski
space-time [10]. A comprehensive study of Minkowski’s pro-
posal, its applications can be found in [23; 22].

3.2 t-SNE Acceleration Techniques
In [34], two tree-based acceleration algorithms were com-
pared for the Euclidean case of t-SNE; these are Barnes-Hut
and the Dual-Tree algorithm. The Barnes-Hut scheme is al-
ready explained in Subsection 2.3. The dual-tree approxima-
tion [11] works by trying to decide, for every pair of nodes,
whether the interaction between the cells of two identical
quad-trees (A and B, built on the data points) can be used



as ”summary” for the interactions between all points inside
these two cells. If the condition

max(rcell-A, rcell-B)

∥ycell-A − ycell-B∥2
< θ

holds, the corresponding force between the two cell mid-
points is computed. Then, the computed force gets added
to all points from each cell, together with the number of
points in the other cell. Similarly with Barnes-Hut, this ap-
proximation is also used to compute the repulsive forces of
Equation 19. However, as found by [34], using this accel-
eration scheme is slightly slower than using the Barnes-Hut
algorithm. This is because, even though the Dual-Tree ap-
proximation minimizes the number of distances having to be
computed between points, we would still need to know on
what points this approximation applies on. Therefore, the
time complexity stays the same as Barnes-Hut. This moti-
vates our focus on the latter.

4 Octree Accelerated Hyperbolic t-SNE
Accelerating Ht-SNE on the Lorentz Hyperboloid implies the
need for a suitable acceleration structure, that takes into ac-
count the specific properties of the space it operates on. We
describe our proposed solution in Subsection 4.1. Then, we
describe the steps involved in computing the hyperbolic gra-
dient on the hyperboloid, and show how the data structure can
be used to approximate it in Subsection 4.2.

4.1 Octree Over the Lorentz Model
We aim to use the Lorentz Hyperboloid model for embed-
ding high-dimensional data using t-SNE and gain the advan-
tages that this model provides. In order to speed up this al-
gorithm, this paper sets to find an acceleration data-structure
that matches the properties of this space. Recall that the am-
bient space of a 2-dimensional hyperboloid is R3. To this
end, the algorithm presented in this paper makes use of the
3-dimensional extension of the quadtree: the octree.

Splitting Criterion
For the regular Barnes-Hut approach using a quadtree in Eu-
clidean space, the splitting point is chosen as the Euclidean
centre of the parent. For 3-dimensional space, the procedure
is the same. This rule splits each cell into eight cubes of equal
Euclidean volume. Although this criterion works best with
Euclidean data, we have decided to use it for speeding up
Ht-SNE because of its simplicity and ease of computation.
However, because the hyperboloid is a thin surface, this has
the consequence that most of the volume of each cube is not
occupied by any data points. This, in turn, leads to redundant
splitting and increases the maximum depth of the tree, which
poses overhead when summarizing the tree.

Midpoint Computation
In order to be able to perform the Barnes-Hut approximation
from Equation 6, each inner cell of the octree has to include a
midpoint of all the points included in its children. If every leaf
contains one point yi, call the midpoint of each cell ycell. In
Euclidean space, this is simply the weighted arithmetic mean

Figure 4: Cell intersection with hyperboloid. Points marked with
an X are intersection points of the lines defined by the edges of the
cube. The ones in black reside outside the edge boundaries, while
the ones with red are inside. The dotted lines represent pairwise
distances between intersection points. The blue dotted line is the
longest of them.

of the stored embedding points, which is not available in hy-
perbolic space. For the Lorentz Hyperboloid model, there
exists an analogous method, called the Lorentz centroid [19],
with formula

c(yj) =
1
N

∑N
j yj∥∥ 1

N

∑N
j yj

∥∥
L

(10)

where ∥y∥L =
√
|⟨y, y⟩L|. An important property of this

centroid is that it can be written as a rolling average, taking
O(1) time to compute.

In a similar study, the midpoint is given by the pseudo-
Fréchet mean, that uses Klein coordinates [31]. The study
claims an error rate of less than 7% with regard to the Fréchet
variance problem, according to [41]. In our research, we
found that using the Lorentz centroid was slightly faster and
more precise, due to not having to compute the Klein coordi-
nates for each point, thus avoiding the floating point division
(see Figure 14 in the appendix).

Maximum Cell Width Computation
All cells in the tree should include rcell, the maximum dis-
tance in hyperbolic space that is covered by the cell. In Eu-
clidean space, this is the long diagonal of the cube that con-
tains all the points of the leaves. However, when using the
octree on the hyperboloid, this metric is no longer applica-
ble. Because of the nature of hyperbolic spaces, given a set
of points on the manifold, inside a bounding cube, we can
only find out the maximal distance by computing all pair-
wise hyperbolic distances and choosing the maximum. Un-
fortunately, this is quadratic time. Alternatively, one could
project the vertices of the bounding cube on the hyperboloid
and compute these pairwise distances. However, projecting
from Euclidean space onto the hyperboloid is not trivial and
computationally expensive. Therefore, we can opt for an ap-
proximation [30].

Given a bounding box B for a set of points on the hyper-
boloid, we compute the maximum distance as follows:

1. Given the endpoints Ai, Bi of each edge ei of B, with
coordinates (Aix, Aiy, Aiz), (Bix, Biy, Biz), compute



the parametric line equation that passes through those
points, namely

l(ω ∈ R) = Ai + ω(Bi −Ai). (11)

2. Compute the intersection point between l and the hy-
perboloid H, by plugging each component from Equa-
tion 11 into the hyperboloid formula from Equation 7:

lz(ω
′)2 = lx(ω

′)2 + ly(ω
′)2 + 1, (12)

where ω′ is the parameter of the intersection point l(ω′).
This is a simple quadratic equation that can be solved in
constant time. However, we are only interested in the
points that reside on the boxes’ edges, so we restrict 0 ≤
ω′ ≤ 1.

3. Compute the pairwise hyperbolic distances dH between
these points and select the maximum one.

A representation of this process can be seen in Figure 4. It is
worth pointing out that this procedure can be implemented to
have a constant runtime complexity, due to the fact that there
can be at most 2 intersection points per edge, so 24 intersec-
tion points in total. However, in practice, there are always
less than 24 intersection points.

Because this is just an approximation, there might be two
points in the cube that are further away than the maximum
distance computed as described above. This is because the
contour formed by connecting all the intersection points be-
tween the edges and the hyperboloid might not be the same
as the contour formed by intersecting it with the faces of the
cube. Therefore, a point on one face of the cube (and not
on the edge) might be further away from another point than
the closest intersection points. This inaccuracy might lead
to points being summarized when they shouldn’t, according
to the condition in Equation 6, which would propagate as a
slight precision drop in the outcome of the embedding. How-
ever, calculating the exact performance difference falls out-
side the scope of this paper.

4.2 Gradient Descent on the Hyperboloid
When it comes to computing the gradient descent needed for
minimizing the Kullback-Leibler divergence on the hyper-
boloid, the standard t-SNE algorithm has to be modified to
reflect the properties of hyperbolic space. This paper pro-
poses an algorithm that best resembles the Euclidean case.
We keep the probabilities in the high-dimensional plane the
same as in Equation 1, but we modify the embeddings prob-
abilities to include the distance metric dLij from Equation 9,
specific to the Lorentz Hyperboloid model. The new proba-
bilities would then be described by the following equation:

qLij =

(
1 + (dLij)

2
)−1∑

k ̸=l

(
1 + (dLij)

2
)−1 . (13)

This method is analogous to the one used in [31], where, in-
stead of the Lorentz Hyperboloid model, the Poincaré model
was used. The process of gradient descent on the manifold is
also discussed in [25; 6].

In the following, we will abuse the notation and represent
the variance of a function f with respect to some vector v in a

Figure 5: Vector v that resides in the tangent space TyiL being pro-
jected back on the hyperboloid. The gray, dotted line is a cross-
section of the hyperboloid H.

space S as∇S
v f(v). The gradient of the cost function C from

Equation 4, accounting for hyperbolic distance and taken in
the ambient space R3, is then

∇R3

yi
CL = 4

∑
j ̸=i

(
pij − qLij

)(
1 + (dLij)

2
)−1∇R3

yi
dLij . (14)

Here, the variation of the hyperbolic distance ∇R3

yi
dLij (taken

in the ambient space) is

∇R3

yi
dLij =

1√
⟨yi, yj⟩2L − 1

yj . (15)

Because the gradient from Equation 14 resides in the am-
bient space R3, it has to be projected first to the tangent space
TyiL of the hyperboloid L at point yi. We obtain this by using
the following formula:

∇L
yi
CL = ∇R3

yi
CL +

〈
yi,∇R3

yi
CL
〉
L
· yi. (16)

In order for each gradient descent step taken from yi in the
hyperbolic tangent space TyiL to be projected to the correct
point on the hyperboloid, a standard procedure is to utilize
an exponential map (see Figure 5). That is, for a vector v ∈
TyiL, we project the corresponding point taken from a point
yi back on the manifold to

expyi
(v) = cosh(∥v∥L)yi + sinh(∥v∥L)

v
∥v∥L

, (17)

[25]. It is important to remark that this exponentiation step
takes into account the starting point yi, so it moves the gradi-
ent to that point. Therefore, we can express the update equa-
tion of each point after a gradient descent step as

ynew
i = expyi

(−α · ∇L
yi
CL), (18)

where α is the learning rate hyperparameter.
An important remark is that the gradient in Equation 14 can

be rewritten in a split form of two sums, similar to Equation 5:

∇R3

yi
CL = 4

(∑
j ̸=i

pijq
L
ijZ

L∇R3

yi
dLij−

∑
j ̸=i

(
qLij
)2
ZL∇R3

yi
dLij

)
,

(19)

where ZL =
∑

k ̸=l

(
1 + (dLij)

2
)−1

. Given this, we can use
the modified octree as the main acceleration tool to speed up
the evaluation of the hyperbolic gradient. The first term of
Equation 19, just as in the Euclidean space, given a sparse



high-dimensional probability distribution P with truncated
Gaussians, can be computed without negatively affecting the
algorithm’s performance. The second term of the equation
can be sped up by using an analogous method to Barnes-Hut
[31]. That is, assuming that a cell of the octree is sufficiently
small and sufficiently far away from a query point yi, the con-
tributions −(qLij)2 ZL ∇yi

dLij will be similar for all points yj
in this cell. Therefore, we can replace these summands by

−Ncell (q
L
ij)

2 ZL ∇yid
L(yi, ycell), (20)

where Ncell is the number of points in the cell, ycell is the
midpoint of the cell, and

qLij Z
L =

(
1 +

(
dL(yi, ycell)

)2)−1

.

The process of computing the hyperbolic gradient in an ac-
celerated manner is showcased in Algorithm 1.

5 Experimental Setup and Results
Several experiments on various data-sets of different sizes
were performed, in order to evaluate the performance of the
proposed accelerated Lorentz Ht-SNE algorithm. This sec-
tion firstly describes the used data-sets and the experimental
setup, then it presents the two categories of experiments per-
formed: the quality of the embeddings is assessed in Subsec-
tion 5.1 and the runtime efficiency of the algorithm is anal-
ysed in Figure 5.2.

Data Sets
The experiments were performed on 4 data-sets: the Pla-
naria data-set [29], C. Elegans [13], MyeloidProgenitors data-
set [18] and the MNIST data-set [20]. The first three con-
tain data from single-cell RNA sequencing. The MNIST
data-set is a popular choice for testing dimensionality re-
duction algorithms. These data-sets were chosen for their
varying characteristics, such as number of points, number
of dimensions and data origin, as well as for being used
by related hyperbolic t-SNE implementations [12; 15; 40;
31]. A summary of these data-sets and their properties can
be found in Table 1.

Algorithm 1 Summary of a Gradient Descent Step at yi
Require: Y ⊆ H, yi ∈ Y

fpos ←
∑

j ̸=i pij q
L
ij Z

L ∇yi
dLij

fneg ← 0
octree← build octree on Y
for all yj ∈ Y do

▷ Perform depth-first traversal of the octree ◁
cell← root of octree ▷ Start with root cell
while rcell/d

L(yi,midcell) ≥ θ do ▷ Equation 6
cell← child of tree that contains yj

▷ From Equation 20, ◁
fneg ← fneg −Ncell (q

L
ij)

2 ZL ∇yid
L(yi,midcell)

∇R3

yi
CL ← fpos + fneg ▷ Equation 19

∇L
yi
CL ← ∇R3

yi
CL +

〈
yi,∇R3

yi
CL〉

L · yi ▷ Equation 16
yi ← expyi

(−α · ∇L
yi
CL) ▷ Equation 18

Name Data Type # Points # Dim. # Cl.
PLANARIA single-cell 21,612 50 51
C ELEGANS single-cell 89,701 20,222 37
MYELOID single-cell 8,000 11 5
MNIST images 70,000 784 10

Table 1: Data sets used for experiments in Section 5. For each data
set, the size, dimension of data points and the number of classes are
given.

Experimental Setup
For the following experiments, this paper follows the experi-
mental setup from [31] as closely as possible. We firstly use
principal component analysis (PCA) to reduce the data to 50
dimensions to speed up computations. Afterwards, a stage
of early exaggeration (EE) is applied, as part of the standard
t-SNE strategy. EE is a series of gradient descent steps for
which the attractive forces pij are amplified by multiplying
them with a factor, in this case 12 [3]. After this stage, sev-
eral non-exaggerated gradient descent steps are employed.

We use different learning rates for all the different in-
stances of the algorithm that we compare against. For the Eu-
clidean version, we use a learning rate α = n/12 [3], where
n is the number of points in the dataset. For the Poincaré Ht-
SNE, we use the proposed α = n/12000 as discussed in [31].
For our proposed method, we opted for an intermediate value
for α (see discussion in last experiment of Subsection 5.1).
However, by using the same learning rate for both the EE
phase and for the normal phase, there is no suitable value
for α that keeps the EE from spreading too far, while mak-
ing the normal phase distribute the points evenly. Thus, we
have different values αEE , αN for the EE and normal phases,
respectively. Thus, for the Lorentz Ht-SNE, we chose

αN =
n

12 · 5
, αEE =

αN

12
=

n

12 · 60
.

Together with this learning rate, we follow the study in
[31] by using momentum and gains for performing the gra-
dient descent on the hyperboloid [35]. By using this method,
we ensure a small learning rate in the beginning, that builds
up over time. If we visualize data on the Poincaré disk, this
varying learning rate helps the data uniformly distribute over
the area of the unit circle. We keep the recommended val-
ues for these parameters for the Poincaré implementation,
namely 0.5 during EE and 0.8 for the normal phase [31]. For
our implementation, these values are unsuitable, as the points
would be quickly pushed towards infinity. That’s why, for the
Lorentz Ht-SNE, we use a value of 0.35 for the momentum
during EE, and 0.6 in the normal phase.

Moreover, we keep the θ value, as recommended in previ-
ous studies, with a value of 0.5 [35] and we run all experi-
ments with a uniform perplexity value of 30 [16].

Lastly, unless explicitly mentioned, when we mention a
’run’ of the algorithm, we refer to running the algorithm with
250 iterations of EE, followed by 750 iterations of normal
gradient descent. For the last 750 iterations, we use an early
stopping criterion.



Figure 6: Precision vs. recall graphs for C ELEGANS (far left), PLANARIA (centre left), MyeloidProgenitors (centre right) and MNIST
(far-right) data-sets

5.1 Embedding Quality Assessment
In this first set of experiments, we aim to evaluate the quality
of the resulting embeddings, by comparing our implementa-
tion with the Poincaré [31] and the exact implementations.
We first investigate the effect of changing the model, by com-
paring the exact versions and the accelerated versions against
each other. Then, we check what effect does changing the
hyperparameter θ have on the quality of the embeddings. The
last experiment investigates the result of varying the learning
rate for our proposed implementation.

Effect of Acceleration on Embedding Quality
In order to assess the quality of the accelerated version of Ht-
SNE, we use the precision / recall metric [28]. According
to previous studies, we set a maximum neighbourhood size
kmax = 30. Then, ”for each k ∈ {1, . . . , kmax}, we compute
the number of true positives as TPk = Nkmax(X)∩NK(Y ),
that is, the points that are in the high-dimensional neigh-
bourhood and also in the low-dimensional embedded neigh-
bourhood, given the respective metrics. From this value, we
obtain the precision as PRk = |TPk|/k and the recall as
RCk = |TPk|/kmax. Therefore, ideally, the precision is al-
ways 1, while the recall grows as k/kmax, yet, a data set
might not exhibit such a solution, nor does t-SNE necessar-
ily find this solution” [31]. Instead, we aim to show that our
proposed implementation increases this quality, while main-
taining the speed-up offered by the acceleration.

As can be seen in the precision/recall curves in Figure 6,
for all the data sets that were tested, our proposed solution
outperforms not only the accelerated Poincaré version, but the
exact one as well. This might happen due to the numerical
stability of the Lorentz model, especially since the regular,
exact computation, still struggles with precision issues, when
representing points very close to the disk boundary.

Effect of Theta on Embedding Quality
The parameter θ, used in Equation 6, dictates whether a sub-
tree of the hierarchy is explored or approximated. This is the
main hyperparameter of our algorithm. By setting θ = 0, the
algorithm never approximates, and it is equivalent to the ex-
act version. This test was performed by choosing a range of
θ ∈ {0.0, 0.1, . . . , 1.0}, and running the algorithm with this
value for all data-sets in Table 1. For each of these runs, we
compute the precision / recall curves, similar to the previous
experiment.

These curves can be seen in Figure 7 for the MNIST data-
set. From this figure, we can see that most curves are clus-

Figure 7: Precision / recall curves for different values of θ

Figure 8: Precision vs. recall graph for the PLANARIA data-set
with various values of ν.

tered together, meaning that varying the value of θ does not
significantly influence the embedding quality. This suggests
that the performance benefit from increasing θ (discussed in
Figure 5.2) greatly outweighs the drawbacks from decreased
quality.

Effect of Learning Rate on Embedding Quality
In order to find the optimal learning rate, we perform a grid
search. For all ν ∈ {100, 100.5, 101, · · · , 103}, we investi-
gate α = ν · n

12 . We choose the base learning rate n
12 , accord-

ing to the original t-SNE study [34], and the maximum bound
the one proposed in the Poincaré implementation paper [31].
The reason behind this choice is simple: in the Lorentz model
of hyperbolic space, we work with numbers outside the range
(−1, 1) (as opposed to the Poincaré model), but the points
still grow quickly to infinity the further from the origin we go
(unlike Euclidean space). Therefore, the search for our value
has to lie somewhere between these two extremes.

We analysed the precision vs. recall curves, as described
earlier, after running the algorithm for all learning rates. The



curves can be seen in Figure 8 for the PLANARIA data-set.
The graphs for the rest of the datasets can be found in the
appendix. We can see that choosing a higher learning rate de-
creases the number of iterations needed for convergence. For
lower learning rates, this criterion is not met, so the gradient
descent reaches the maximum of 750 iterations, and it has a
lower value for precision / recall. However, choosing too big
of a learning rate makes the algorithm spread the points over
the maximum floating point value before the size threshold is
checked. This behaviour can be observed in Figure 9. Thus,
we opted for a learning rate in between n

12·3.16 and n
12·10 .

5.2 Runtime Efficiency Comparison
Next, we analyse the runtime efficiency improvement, again
compared to existing Ht-SNE implementations, namely the
Poincaré and the exact versions. In the following, we com-
pare not only the absolute run time, but also the effect of hy-
perparameter θ on the run time.

Absolute Run Time Comparison
In this experiment, 3 versions of Ht-SNE were timed against
each other: the exact and accelerated Poincaré versions [31]
and our version. Each data-set from Table 1 was sampled 5
times for 10 different sizes 1

10n,
2
10n, . . . , n, where n is the

data-set size. All Ht-SNE variants were run on each of these
samples, timing the negative forces’ computation, as this is
the limiting factor for t-SNE when it comes to absolute run-
time [34]. These tests were performed on all cores of an Intel
Xeon 6448Y ”Sapphire Rapids”, equipped with 64 cores and
a memory bandwidth of 400 GB/s.

Table 2 shows the results after performing this experiment.
The table clearly indicates a significant speed-up of our pro-
posed method compared to the exact version. Moreover, the
statistics of the Poincaré algorithm are very similar to our own
implementation, further supporting the claim that the Lorentz
model can be used to increase quality of embeddings, at a
similar rate. A plot of these results can be found in the ap-
pendix, in Figure 11.

Effect of Theta on the Run Time
As discussed in Section 5.1, θ is the main hyperparameter
for our algorithm. Because it dictates the degree of approxi-
mation in the octree, it directly influences the runtime of the
algorithm. Hence, in this test, we ran the algorithm with a

Figure 9: Final embeddings for different values of ν. For the ν = 1
case, the algorithm executed 29 iterations before it exploded past the
float maximum value.

Figure 10: Run-time change when varying θ on the data-sets in Ta-
ble 1

range of θ ∈ {0.0, 0.1, . . . , 1.0} and timed the negative force
computation time. These tests were performed on all 4 cores
of an Intel i5-4690.

The results can be seen in Figure 10. As expected, by in-
creasing the value of θ, we get better time performance.

6 Responsible Research
With the advancements of big-data processing and artifi-
cial intelligence in recent times, the need for research per-
formed respecting ethical and reproducibility guidelines has
increased. In this section, we present steps that have been
taken to ensure reproducibility, as well as some ethical con-
siderations regarding the use of visualization algorithms.

6.1 Reproducibility
Reproducibility is an important aspect in the world of re-
search. Even more so in the domain of Computational Sci-
ences, where codebase can be easily shared, and the results
are most of the time deterministic. This aspect is relevant
because it enables other people to follow and verify the work
one has done, to be able to build on top of it with their own re-
search, or to just better grasp the topic being discussed. This
has been the goal of the scientific method from its creation:
generating verifiable knowledge.

To this end, this paper implements several steps that en-
sure its reproducibility, as proposed in [33]. Firstly, the
codebase for this paper, alongside a digital copy of this pa-
per, is publicly available at respository.tudelft.nl, and https:
//github.com/XDead27/hyperbolic-tsne-lorentz. The current
commit hash that this paper is based on is d7d3414. Next, the
source code has an MIT licence, supporting further improve-
ments and developments, as recommended in [32]. More-
over, all formats used are non-proprietary and belong to
long-established technologies (e.g., python, portable network
graphics) and ensure their usability in the future. Lastly, the
README file in the repository includes all the necessary infor-
mation about the versions of the used tools and the hardware
specifications that the experiments were run on. It also in-
cludes a step-by-step guide for replicating these results.

respository.tudelft.nl
https://github.com/XDead27/hyperbolic-tsne-lorentz
https://github.com/XDead27/hyperbolic-tsne-lorentz
https://github.com/XDead27/hyperbolic-tsne-lorentz


Exact [s] Poincaré [s] Lorentz [s]
Data Set min avg std max min avg std max min avg std max
MYELOID8000 2.15 2.83 0.67 5.96 0.085 0.388 0.635 3.357 0.125 0.349 0.717 3.581
PLANARIA 15.37 21.23 5.20 28.82 1.07 1.59 0.39 4.34 0.85 1.76 0.91 4.35
MNIST 147.39 219.32 54.02 278.17 3.18 5.36 1.14 8.95 2.93 5.96 1.29 9.42
C ELEGANS 239.06 328.46 79.92 450.51 5.11 6.26 0.82 9.08 3.81 6.13 1.09 9.27

Table 2: Absolute run-time statistics for the exact and accelerated Lorentz and Poincaré versions of Ht-SNE

6.2 Misrepresenting Data
Data visualization algorithms aid people in representing com-
plex data (that has little to no significance for a human) in a
way that it retains as much of its original properties as pos-
sible, while making it understandable. Because this paper
deals with one such algorithm, an important topic to discuss
is the cases in which this visualization technique could pos-
sibly steer scientists (or other people) to making erroneous
hypotheses about the data.

Firstly, because our algorithm for Ht-SNE using the
Lorentz Hyperboloid model represents Euclidean high-
dimensional data to 2-dimensional hyperbolic space, it runs
the risk of failing to capture relevant properties of said data.
This is why all representations created by this algorithm are
just approximations of the actual data. If we consider the triv-
ial case of 4 points in 3-dimensional space, placed at equal
distances from each other (e.g., in the shape of a triangle-
based pyramid), trying to embed them in 2-dimensional
space, we quickly realize that we cannot maintain the prop-
erty of equal pairwise distances any more. Situations like
these might lead scientists and users to making erroneous hy-
pothesis about the underlying structure of the data that is be-
ing represented.

Secondly, visualization techniques can be used to purpose-
fully mislead or persuade an audience. This is a studied as-
pect in the domain of data visualization, and various solutions
have been proposed to detect and counteract attempts at ma-
licious misrepresentation of the data by using visualization
algorithms [21; 27]. Because of this, it is important to note
that our proposed solution for hyperbolic t-SNE does not fall
outside this sphere of concern. Being a dimensionality re-
duction algorithm for high-dimensional data visualization, it
serves as the starting point of a demonstration, not as its main
argument. Therefore, any representation using this algorithm
should be accompanied by a well-structured and sane argu-
ment for the point being made. Otherwise, due to the na-
ture of high-dimensional data and hyperbolic space, certain
properties of the data might be under-represented (or over-
represented) in the visualization, leading to a skewed percep-
tion of the actual data.

7 Conclusions & Future Work
In summary, we investigated the effect of using the Lorentz
Hyperboloid model as the embedding space for hyperbolic t-
SNE. After performing qualitative experiments, we showed
that using this model improves the embedding quality of
the embeddings, by making use of its properties, such as
its high numerical stability. By using an octree as an ac-
celeration data-structure (as part of the Barnes-Hut scheme),

we improved the runtime of the algorithm from O(n2) to
O(n log n) compared to the non-accelerated version. After
performing experiments on the run time of the algorithm, we
proved that our implementation has a similar run-time, but a
higher quality performance compared to the Poincaré variant.
Moreover, we showed that, by modifying the hyperparame-
ters, the user can choose the trade-off between better quality
or lower run-times, making our variant a robust alternative to
existing Ht-SNE implementations.

A drawback of using this variant is that the computation
of the maximum width of the cells in the octree relies on an
approximation (as discussed in Subsection 4.1). This might
lead to the computed width being smaller than the actual max-
imum width, leading to incorrect summarizations. Because
showing the exact implications of this fact are purely mathe-
matical, it falls outside the scope of this paper.

Another limitation of using the octree as an acceleration
structure for the hyperboloid is that the hyperboloid is a flat
surface, while the cube is a volume. Therefore, most of the
volume of the cube would be empty. A new splitting criterion
that takes into account the shape of the hyperboloid could be
introduced, thus minimizing the amount of empty space in
each cell.
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A Additional Experimental Results
In the following, we include several images and tables that
were the outcome of experiments.
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