
Log Differencing using State Machines for
Anomaly Detection

Log Differencing using State Machines for
Anomaly Detection

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Sofia Tsoni

Master of Engineering in Computer Engineering,
University of Patras, Greece,

born in Athens, Greece.

Supervisor:

Dr. S. Verwer

Company Supervisor:

Ir. R. Wieman

Thesis Committee:
Prof. dr. A. van Deursen, Technische Universiteit Delft
Dr. ir. S. Verwer, Technische Universiteit Delft
Dr. ir. M. Aniche, Technische Universiteit Delft
Ir. R. Wieman, Adyen

The work in the thesis was conducted together with Adyen.

Style: TU Delft House Style, with modifications by Moritz Beller
https://github.com/Inventitech/phd-thesis-template

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.

https://github.com/Inventitech/phd-thesis-template
http://repository.tudelft.nl/

v

Contents

Summary ix

Acknowledgments xi

1 Introduction 1
1.1 Motivation . 2
1.2 Problem Statement . 2
1.3 Industry Partner . 3
1.4 Proposed Solution . 4
1.5 Research Questions . 5
1.6 Contributions . 5
1.7 Report Organization . 5

2 Background 7
2.1 Sequential Data . 7

2.1.1 Alphabet . 7
2.1.2 Challenges of discrete sequence data. 7

2.2 Finite State Automata . 8
2.2.1 Passive Learning . 9
2.2.2 Active Learning . 10

2.3 Labelled Transition Systems . 10
2.4 Graphs . 11

2.4.1 DOT language . 11
2.5 Model Checking. 12

2.5.1 Model Checkers . 12
2.6 Sequence Alignment . 13

2.6.1 Dynamic Programming Approach 15
2.7 Metrics . 16

3 Related Work 17
3.1 Related Work at Adyen . 17
3.2 Log Analysis . 18
3.3 Log Differencing . 19
3.4 Model Checking. 20

3.4.1 History of Model Checking . 21
3.5 Conformance Checking . 21
3.6 Sequence Alignment . 22

3.6.1 Penalties . 23

vi Contents

3.7 State Machine Comparison. 24
3.7.1 Language Comparison . 24
3.7.2 Structural Differences . 26
3.7.3 Equivalence Checking. 27
3.7.4 The Table-Filling Algorithm 29

4 Data Exploration 31
4.1 Data Description . 31
4.2 Data Analysis . 33

4.2.1 Data from the Testing Environment 33
4.2.2 Data from the Live Environment 34

4.3 Types of Differences . 35
4.4 Manual Exploration Findings . 38

4.4.1 Structural Differences between Live and Test 38
4.5 Challenges. 39

5 Model Selection 43
5.1 Red Blue Merging Algorithm . 43

5.1.1 Final Red Parameter . 44
5.1.2 Lower Merging Bound . 45

5.2 Sinks. 45
5.3 Heuristic . 45

5.3.1 Adjustment of Heuristic . 46
5.3.2 Heuristic of Log Comparison 47

5.4 Statistical Checks . 47

6 Conformance Checking 49
6.1 Preliminaries . 50

6.1.1 Pre-processing . 50
6.2 Differences Identifications . 52

6.2.1 Main Pipeline Analysis . 52
6.2.2 Greedy Search Algorithm . 54
6.2.3 Impact of Depth of Search for Greedy Algorithm. 55
6.2.4 Best-First Search Algorithm 55
6.2.5 Dynamic Programming . 56

6.3 Handling the Differences . 60
6.4 Efficiency Analysis . 62

7 Experiments 65
7.1 Experimental Configuration . 65

7.1.1 Experimental Approach . 65
7.2 Evaluation with dummy Dataset. 66
7.3 Parameter Tuning for Dynamic Programming 68
7.4 Difference Detection in Real Dataset 69

7.4.1 One Change per Log Line . 69
7.4.2 Two Sequences Changes per Log Line 70
7.4.3 Multiple sequenced and unsequenced Modifications 71

Contents vii

7.4.4 Impact of the Mutation’s Position 71
7.4.5 Impact of Model Size in the Accuracy 73

7.5 Scalability . 73
7.6 Identified Differences . 74

7.6.1 Live and Test Differences. 74
7.6.2 Configurations Differences . 74

7.7 Discussion . 75

8 User Study 77
8.1 Interview Design . 77
8.2 Interview Questions. 78
8.3 Results . 79

9 Conclusion & Final Remarks 81
9.1 Reflection on Research Questions . 81
9.2 Threats to Validity . 83
9.3 Future Work . 83

10 Model Checkers 87
10.1 Preprocessing . 87
10.2 Comparison Pipeline . 89
10.3 Discussion . 90

Bibliography 91

ix

Summary

H uge amounts of log data are generated every day by software. These data contain
valuable information about the behavior and the health of the system, which is

rarely exploited, because of their volume and unstructured nature. Manually going
through log files is a time-consuming and labor-intensive procedure for developers.
Nonetheless logging information can expose the problematic execution of the software,
even though the final outcome seem to be normal. Nowadays the automatic analysis
of the log files is crucial for detecting problems, but mainly for understanding how
the software behaves, which would be beneficial for the prevention of failures and
improvement of the software itself. Towards that direction, this project aims the
identifications of unexpected executions of the software and the determination of the
root cause behind them. In more details, the expected behavior of the software can
be approximated using model inference techniques and the newly incoming observed
data can be analyzed to verify if they are conformed by the expected behavior.

The conformance checking method that will be used is called replay. The incoming
traces will be replayed in the graph, at the point they are not validated, the alignment
algorithm will take over. The sequence alignment is performed in three different ways.
Two of the methods are looking for the best alignment at a specific radius around the
problematic node. Additionally a global alignment technique is implemented, which
is based on the famous algorithm by Needleman and Wunsch for DNA sequences.
Our goal required the modification of the aforementioned algorithm to not only align
two sequences, but a sequence with a tree structured model.

Finally the implemented tool provides the visualization of the differences in a
way that makes it intuitive for the developers to understand what went wrong. Some
additional information are also provided to make the investigation of the "anomaly"
easier .

xi

Acknowledgments
Many people contributed to this thesis in the one way or the other.

First of all, my supervisor Sicco Verwer, who was always reachable and willing to
help. With his enthusiasm and his fascinating ideas he showed me how overcome the
million problems that felt unsolvable at that time.

I want to thank everyone from the group for the weekly meeting. It was a great
opportunity to meet people who are going through the same struggles and share our
concerns and ideas.

Of course I want to thank everyone from Adyen. Being a member of this awesome
team was a great experience both in personal and professional level. Especially I
want to thank Rick Wieman, Daan Schipper and Jesse Fekkes for making time to
discuss about my project and for providing valuable input.

Last but not least, I am grateful to my family and friends who have been standing
by my side all these years and I hope they will continue being there for many more!

Sofia
Delft, August 2019

1

1

1
Introduction

N owadays every system creates huge amounts of logs, which probably will never
be investigated by a human eye. However, they contain information that may be

extremely useful to understand the outcome of the executing processes and the overall
behavior of the system. Using the log data, various conclusions about the running
software, that produced them, can be drawn. For example, log data can be useful
for the detection of potential anomalies, which may be caused by an unexpected
system failure or a malicious action.

Log files contain unstructured, textual information, which makes their processing,
a quite expensive procedure. Nonetheless it is worth the effort, since there are
multiple uses of the included information.

This study seeks to address the issue of automatic differencing between log files.
In more detail, it is the comparison between log files, in order to identify flows that
were not supposed to happen either in the one or the other file. This tool can have
multiple uses, like anomaly detection in recently introduced software, or improvement
of test coverage, by identifying untested cases in the live environment. However,
since multiple log files are generated each day, the naive approach of comparing files
can not be applied in our scenarios.

The aforementioned problem will be approached by modeling the behavior of the
software using its log data and compare this model (which will be called specification
graph) with other log entries, on-the-fly, which may be produced by a different
software or a different software version. The modeling of the software’s behavior
is a problem that has been researched multiple times by previous works, thus one
specific way from the literature will be chosen and applied.

The main challenge that this thesis trying to address, is the development of a
method that will be able to perform this comparison, with the ultimate goal to
detect the flows that deviate from the expected behavior. Furthermore, it will be
crucial to find also the root cause of that deviation.

1

2 1 Introduction

1.1 Motivation
Every day, trillions of lines of log data are created. A single system may produce
more than 10 lines for one operation, like one card transaction. This operation
may consists of multiple steps that are logged, in order for the transaction to be
authorized and processed. These logs contain crucial information regarding the
necessary underlying operations of the corresponding software. Developers look into
these files only when something critical happens, that hinders the overall execution
of the software. Nonetheless, many things could have been wrongly executed, which
do not impact the final state of the process [1–3]. For example, such a case is in
a credit card transaction, where for some reason no PIN was asked (skipped the
authentication part). The transaction will be performed without a problem, but if
someone looks into its logging, an anomaly will be found. Manual investigation of the
logs takes a huge amount of time and may also be too complicated for human brains.
For that purpose we investigate ways in which this information can be extracted for
the identification of differences between software behavior.

In the era of big data, it is critical to find ways to extract information from
such a huge pool of data. Related work though [4, 5], has proven the importance of
tools that make use of the log files to give insights about the software’s execution
processes from another point of view. It is also very important in order to verify,
that the implemented software works according to its specifications. This can be
accomplished by comparing the expected behavior, based on the specifications, with
the actual behavior of the software, based on the execution.

1.2 Problem Statement
The goal of this thesis is to develop an automatic anomaly detection tool for software’s
behavior. The software used will be for processing payments, more specifically the
one running at Adyen’s POS terminals. The work by Wieman [6] will be used as our
preprocessing step, before applying the comparison methods. In his project, Wieman
tested different passive learning tools to infer graph models from Adyen’s log files,
which represent transactions carried out using the POS terminals. These models
make it possible for the developer to see with a quick look all the paths that are
taken in a system and makes the monitoring of the log files much easier. Wieman
compared the tools in terms of runtime performance and output complexity. He also
touched the topic of inferred model’s comparison for anomaly detection purposes.
His approach was annotating whole traces as new or not, which is not very helpful
if one wants to understand exactly what was the issue that led to that deviating
behavior.

A main part of this thesis is researching the different ways this comparison can
be performed. Nowadays, checking if the execution of a system is the expected has
become difficult because of the many different paths the execution may take. In
this thesis, first the algorithm will be designed and implemented and then it will be
applied for two different scenarios in our industry partner, Adyen.

First we want to compare if the testing environment covers well enough the real
cases. Thus we have to compare the model learned by the testing log data, which are

1.3 Industry Partner

1

3

transactions performed by robots, with real log files, produced by actual transactions
with users. This will prove if the test coverage of Adyen is good enough, or if there
are transaction cases that are not covered.

Secondly, we will compare different software releases, with the goal to get some
insights about what changed in the new release and if everything went as planned.
If the results of this comparison are successful, a log differencing tool could be used
to monitor the release procedure and automatically make sure the software is ready
to be released on the field.

However each of these cases presents different challenges, which will be extensively
analyzed later in this thesis.

Both the aforementioned scenarios require a tool that will be able to accept as
input the files under comparison and output their differences. The question is what
kind of algorithms can be used to perform such an action and how efficient they
can be for big data, like the log files from a big company. Finally we will touch
upon the issue of visualizing these differences. Just finding the differences is not
enough when we have data that can be represented by a graph, because then their
textual representation does not make much sense. Thus a method for the intuitive
visualization of the differences will be developed, according to the needs of the user.

1.3 Industry Partner
Adyen is a payment service provider (PSP). A PSP is a party, which offers payment
services to merchants. A payment is the action or process of paying someone or
something or of being paid. More precisely in Adyen’s case the payment is the action
of transferring money from a shoppers bank account to a merchants bank account.
There are various ways to perform the transfer like using a credit or a debit card or
direct credit etc. A sale can be either physical or electronic, with the corresponding
channels being point of sale (POS) and eCommerce (eCom) respectively.

This project will focus on the POS channel, whose setup can be found in Figure
1.1. It consists of a cash register, operated by a cashier and a payment terminal used
by shoppers. The cash register is commonly referred to as POS and the payment
terminal as PIN Entry Device (PED).

The cash register initiates a transaction by communicating with the payment
terminal through Adyen’s library. The terminal, which runs Adyen’s software,
interacts with the shopper and requests authorization based on the different methods
from the platform. The platform then communicates with the corresponding bank.

In this project we consider logs generated by the aforementioned setup, that
detail each step of the transaction, like the actions of the user, the communication
between the POS and the PED using Adyen’s library as well as the requests and the
responses of Adyen’s platform.

1

4 1 Introduction

Figure 1.1: Overview of POS solution, by Wieman [6]

1.4 Proposed Solution
To solve the comparison problem, at the beginning, Model Checkers were considered.
The idea was to provide the Model Checker with the two model that had to be com-
pared and use their equivalence checking feature. The equivalence checking returns a
counterexample if the two models are not equivalent and that counterexamples could
be used to relearn a model and then compare the updated versions again to find
another difference. However this is extremely time consuming as it will be discussed
in Chapters 10 and 9.

Since the scalability of the proposed tool is an important factor, because of
the large amounts of data we are dealing with, the chosen approach was based
mainly on that motivation. Namely, a method that would output the differences of
the corresponding logs without needing too much time is needed. For that reason,
structural comparison of the models did not seem as a good approach, since because
of their size, comparing every structural element of their graphical representation is
a very heavy task. Thus it was decided to use a validation method, conformance
checking, to approach the log differencing problem from a completely different angle.

Towards that direction, the input data of the algorithm should be one model that
would represent the expected behavior of the software and the observed sequences
of the events we want to validate. The result of that comparison should be the
differences between the two behaviors and the root cause that led to that difference.
Identifying the cause of the deviation is not always an easy case, because of the
complexity of the data. Some challenges of this problem are mentioned in Chapter 6.

The proposed solution suggests conformance checking with sequence alignment
between the model traces and the (incoming) observed log data. Multiple algorithms
were used for the identification of the best alignment, which are compared in Chapter
7.

1.5 Research Questions

1

5

1.5 Research Questions
Some of the research questions that will approached in this thesis are:

• How can software’s behavior comparison be performed for large amounts of
data?

• What kind of differences can be identified?

• How can the differences of the software’s behavior be visualized effectively?

• What kind of data are more suitable for the specification graph (to build the
model)?

• How does the model size affect the results?

1.6 Contributions
The most important contributions of our work are presented in this section.

• We propose a pipeline for on-the-fly log differencing, that has not been used
before, to the best of our knowledge.

• We implemented the tool that receives as input the model and the log data
and outputs the differences ready for visualization.

• More than one algorithm, for the identification of the differences, are imple-
mented, all with different advantages and disadvantages.

• One of the most famous sequence alignment algorithms was modified to align
sequence with a tree, instead of sequence with sequence.

• We propose and implement an efficient way of visualizing the differences
between log files, using prefix trees and the d3.js library.

• We developed the necessary code to modify a widely used graph description
language to the language of one of the most popular model checkers.

1.7 Report Organization
In Chapter 2 the required background knowledge, for the reader to understand the
topics of this thesis, is presented. In Chapter 3 previous studies on log analysis and
log differencing are mentioned, as well as related work on conformance checking and
sequence alignment, two terms we will use in the proposed methodology. Chapter 3.7
contains related work for the problem of state machine comparison. In this chapter,
we focus on the different methods the comparison can be performed and which are
the advantages and disadvantages of each one of them. This chapter is preliminary,
in order to understand what led us in the decision to chose the proposed solution.

In Chapter 4 the format of the log files used for our research will be shown,
and the dataset will be described. In addition to that, we do some data analysis

1

6 1 Introduction

to understand the nature of the data better. Finally, the findings of our manual
exploration will be presented, and the types of differences we are trying to identify
based on this exploration.

Chapter 5 touches upon the ways we decided to model the software’s behavior, and
why these decisions were made using some theory about how the learning algorithm
works and some experiments too. Chapter 10 is about model checkers and how
they can be used for the model comparison purpose. Chapter 6 presents the main
contribution of this thesis, how the pipeline of the proposed log differencing tool works
based on conformance checking. We present three different algorithms that tackle
the same problem, some with better accuracy some with better runtime performance.
We build upon the simple algorithm and we present the final methodology in that
chapter. The next chapter, Chapter 7 shows the performance of the aforementioned
algorithms in terms of runtime and accuracy/recall. In Chapter 9 the conclusions of
our work, the threats to validity and the future work will be presented.

For the evaluation purposes some interviews were conducted. The questions of
the interview together with the results are presented in Chapter 8.

2

7

2
Background

I n this chapter the necessary terms and concepts, which are used in this thesis
will be explained. The chapter starts with the most preliminary concepts and

continues with more complicated notions, which were necessary for the development
of the final methodology.

2.1 Sequential Data
A discrete/symbolic sequence is defined as a finite sequence of events, such that each
event can be represented as a symbol belonging to a finite alphabet [7]. In other
words, a sequence is an ordered list of items of the same type. Sequences contain
subsequent values of a specific variable, therefore are ideal for capturing the behavior
of a variable. Sequential data can be ordered according to time, like time series
or just according to their position like text or genes. In both cases the structural
dependencies are extremely important, because that is what describes the behavior
of the variable and should be at any cost preserved.

In this project we will deal with discrete sequences, where the order of the terms
represents the order the actions happened.

2.1.1 Alphabet
The items of a sequence may belong to a simple alphabet, like the events of the DNA
sequences belong to a four-letter alphabet A,C,G,T or a more complex alphabet
like the transaction steps, in order to process a payment.

2.1.2 Challenges of discrete sequence data
The first challenge faced, when working with discrete sequence data is the size of
the alphabet. For long sequences the alphabet size can be very large, which makes
some computations difficult. Thus the computational complexity is a significant
issue, usually faced when dealing with sequence data. In our case we do not know in
advance the size of the alphabet, since we are dealing with various software releases
the size is not constant and may change from run to run.

2

8 2 Background

It is also important to know the types of anomalies that can be detected in a
sequence. Suppose it is known that a normal sequence is S = a1,a2, ..,an getting the
events of the sequence in the wrong order might be an anomaly like S′ = an,a2, ...,a1,
for example setting a transaction as approved before authenticating the payment.
Another anomaly could be a sequence S′ = b1, b2, ..., bn, never faced before. Finally
there could be a part of a sequence that is anomalous, like S′ = a1,a2, ..., bm, where
it might be a transaction that its final state was supposed to be an but the state
bm was encountered, like instead of getting a DECLINED final state when there is not
insufficient balance, getting an APPROVED.

In this project, the most frequently encountered type will be the anomalous
subsequences (the latter example). It is not expected that the whole sequence will
be anomalous in a transaction flow, neither just a single events. On the other hand,
it is the subsequence of some particular (normal) events that may lead to abnormal
behaviour.

The problem when dealing with subsequences is that it is not known how long
that sequence may be. Finding the length of the anomalous subsequences may be a
great challenge by itself.

2.2 Finite State Automata
The models that will be used in the current project are called Finite State Automata
(FSA), or State Machines, or Finite State Machines (FSM). The formal definition
for a Finite State Automaton is as a 5-tuple (Q,Σ, δ,q0,F), where each term:

1. Q is a finite set of states.

2. Σ is a finite alphabet (the set of symbols used as input).

3. δ is a transition function which maps a state and an input symbol to the next
state δ :Q×Σ→Q.

4. q0 is the start state, where q0 ∈Q

5. F is the set of accepting or final states, where F ⊆Q

The FSA reads the input string one character at a time, and moves to the next
appropriate state according to the transition function (or guesses the next state, if
there are multiple options).

For a given input σ = σ1σ2...σn of length n, if there is a sequence of transition
q0δ(q0,σ1)q1...qn, where q0 is the start state and there is another state qn ∈ F . If qn
is an accepting state, the computation is accepting and the automato A does accept
the sequence w. Otherwise w is rejected by A.

An Automaton is called deterministic (Deterministic Finite Automaton or DFA)
when there exists exactly one accepting or rejecting path for every possible input.
The set of a words accepted by A is called the language of the automaton. In this
work, we will mainly deal with DFAs, if there is another type of Automaton it will
be clearly stated.

2.2 Finite State Automata

2

9

Language of a DFA: The language L of an automaton A is the set of words from
the alphabet it accepts.

DFAs can be represented by a graph with nodes representing states and edges
representing transitions. Transitions are labeled with the corresponding transition
symbol. Typically, final states are denoted by a double circle as can be seen in
Figure 2.1, where q4 is the final state. The start states are indicated by an incoming
arrow without source, or with no incoming arrows at all, state q1 in the following
example 2.1. This thesis only considers deterministic automata, if a different type is
mentioned it will be clearly stated.

Figure 2.1: An automaton with states q1, q2, q3, q4 ans transitions 0,1, which only accepts 00

The learning procedure, in order to obtain the corresponding DFA, can be
performed either using the passive or the active learning approach.

2.2.1 Passive Learning
Passive Learning is the most common way of learning in machine learning (like
classical classification and clustering algorithms). As shown in Figure 2.2 the data
are used to feed the learning algorithm and that outputs the model. Thus the learner
has access to a fixed set of samples. The goal of passive learning is to recover the
simplest model that is consistent with the data, without over-fitting to the given
dataset.

Specifically for State Machine learning, using the passive approach, a fixed set of
samples is provided to the algorithm and the goal is to learn the minimal consistent
model. Consistent here mean that for every positive sample the automaton should
accept and for every negative sample it should reject.

Figure 2.2: Passive Learning Framework

2

10 2 Background

2.2.2 Active Learning
In Active Learning framework there is one more component added to the learning
procedure. In Figure 2.3 there is the Annotation action which is usually performed
by an oracle or an expert. The oracle can answer questions about the learner’s
current hypothesis and guide the learning procedure accordingly.

In the context of automata learning the most well know algorithm is the Angluin’s
L-star algorithm [8]. In Angluin’s algorithm the oracle is called minimal adequate
teacher, because it can learn an automaton in polynomial number of queries with
respect to the number of states. In this framework setup the learner can ask the
teacher two types of queries. Membership queries and equivalence queries. In the
membership queries the learner asks if an input w belongs to the language of the
corresponding automaton, and the teacher responds accordingly yes (if w ∈ L) or no
(if w < L).

In an equivalence query the learner selects a hypothesis automaton H, and the
teacher answers whether or not L is the language of H. If yes, then the algorithm
terminates. Otherwise, the teacher gives a counterexample, i.e., a input in whichL
differs from the language of H.

Figure 2.3: Active Learning Framework

2.3 Labelled Transition Systems
There are many different ways to describe systems, like different types of automata,
process algebra, Petri nets. However there is one common concept underlying all
these formalisms and is called labelled transition systems (LTS).

A labelled transition system is a triple (S,Act,→) where:

• S is the set of states,

• Act is the finite set of actions,

• →⊆ S×Act×S is a transition relation from state to state.

S is the set of all possible states of the system, Act is the set of names of externally
observable actions which can be performed by the system and the transition relation
represents the behaviour of the system. The following representation is used to
interpret that the system in state s can perform action a and goes to state s′: s α→ s′.

2.4 Graphs

2

11

The automaton in Figure 2.1 would be written as an LTS in the following way:
S = {q1, q2, q3, q4}, Act = {0,1} and the transition relation contains the following
transitions:

q1
0→ q2, q1

1→ q4, q2
0→ q3, q2

1→ q4, q3
0,1→ q4, q4

0,1→ q4

2.4 Graphs
Finite State Machines can be represented in terms of graphs and have a corresponding
graphical representation. The fact that FSMs provide dense information about the,
under learning, system’s execution, make their graphical representation very useful.

A graph consists of nodes and edges that connect nodes between them. A directed
graph is a graph whose edges have directions. In this thesis, we consider graphs
whose edges have both directions and labels. These graphs are called labeled directed
graphs. We formalize labeled directed graphs as follows.

Definition A labeled directed graph is a tuple D = (N,E,L) where N is a set of
nodes, L is a set of labels, and E ⊆N ×L×L is a set of labeled edges.

The connection between two nodes in graph theory is called a path and the formal
definition follows:

Definition Suppose D = (N, E, L) is a labeled directed graph. For all nodes
n,n′ ∈ N , a path from n to n′ is a sequence of edges σ ∈ E, where σ = ∅ when
n== n′ and σ , ∅.

2.4.1 DOT language
DOT is a graph description language. DOT graphs are typically files with the
filename extension dot 1.

// The graph name and the semicolons are optional
graph graphname {
a – b – c;
b – d;
}

Figure 2.4: Graph description language for Figure 2.5.

1https://en.wikipedia.org/wiki/DOT_(graph_description_language)

https://en.wikipedia.org/wiki/DOT_(graph_description_language)

2

12 2 Background

Figure 2.5: Graph representation of description in Figure 2.4

2.5 Model Checking
Model checking is a method for formally verifying finite-state concurrent systems,
which is based on the exhaustive exploration of a given state space trying to determine
whether a given property is satisfied by the system. Model Checkers will be used
for the comparison of the DFAs, thus they are explained in the following section
together with their most interesting (for our study) features.

2.5.1 Model Checkers
Another way to verify the equivalence or inequality of two state machines is using a
model checker. Even thought there exist a lot of model checkers, just 4 or 5 have
a feature that performs equality checking between to graphs. Some of the most
famous and well developed have been included in this section. However using a
model checker is not as easy as it sounds. The state machine has to be translated in
the corresponding language of each model checker. None of the model checkers do
seem to accept some well known format for graphs, like json or dot files.
TAPAs
TAPAs2 [9], is one of the tools, which will be considered, using for the equivalence
checking of the DFAs. TAPAs uses process algebras terms to describe the systems,
which are then mapped to Labeled Transition Systems (LTSs). TAPAs consists of
five components: an editor, a runtime environment, a model checker, an equivalence
checkers and a minimiser. The editor allows the users to specify the concurrent
systems either in a textual representation or in a graphical notation. The runtime
environment generates the LBSs using the given specifications. Model and equiva-
lence checkers are used to analyse the system behaviour. Finally minimiser can be
used to reduce the LTSs size, while preserving the intended behaviour.
mCRL2
Another tool that includes equivalence checking is the mCRL2 3 [10, 11], which is
mainly used to specify and analyse the behaviour of distributed systems and proto-
cols. The main parts seem to be the same as in the TAPAs model checker, where
the processes are translated into Labelled Transition Systems (LTS), which contain
all states that the process can reach, along with the possible transitions between
2TAPAs: a Tool for the Analysis of Process Algebras. http://rap.dsi.unifi.it/tapas
3mCRL2, a formal specification language with an associated toolset: https://www.mcrl2.org

2.6 Sequence Alignment

2

13

those states. A powerful tool contained in mCRL2 that is our main interest is the
ltscompare, which can check whether two LTSs are behaviourally equivalent or similar
using various notions of equivalence/similarity (using 15 different algorithms like
week/strong bisimilarity or equivalence). Furthermore it provides counterexamples
for cases that led to the inequality of the two LTSs.
LTSmin
LTSmin 4 is also a tool for verification and equivalence checking. It stated out as
a generic toolset for manipulating Labelled Transition Systems (LTS). Meanwhile
the toolset was extended to a a full (LTL/CTL/µ-calculus) model checker, while
maintaining its language-independent characteristics. LTSmin connects a sizeable
number of existing (verification) tools: muCRL, mCRL2, DiVinE, SPIN (SpinS),
UPPAAL and CADP. Moreover it supports the exporting of LTSs into various
formats, making it easier to use existing tool.

2.6 Sequence Alignment
Sequence alignment is is widely used for DNA/RNA comparison to observe patterns
of conservation or variability or to find common motifs in the two sequences [12].
Sequence alignment involves:

• Construction of the best alignment

• Assessment of the similarity between the two sequences based on the found
alignment.

Thus when an alignment is found it has to be assessed based on some measure
how good this alignment is. There are different ways to identify the alignment,
namely:

• Global alignment

• Local alignment

• Multiple sequence alignment

Global alignment is when two sequences have to be aligned from the beginning
till the end. Local is when it is not necessary to align the whole sequence, but small
subparts of it. Last but not least, there is the multiple sequence alignment, where
more than two sequences need to be aligned. This is the most difficult case of the
problem.

In this thesis the global alignment will be used, specifically for two sequences,
because is the case that is the closest to what we need to do. Instead of comparing
two sequences though, we compare a sequence with a whole tree, but from this tree
at the end only one sequence, the most similar, is chosen.

In order to perform the global alignment three actions may be taken. There is
the case when the two letter at the current index are the same, which is Case 1 in
4https://ltsmin.utwente.nl

2

14 2 Background

Table 2.1. There might be necessary to add a gap either in the one sequence or
the other, these are cases 2 and 3 respectively in Table 2.1. The options for the
characters comparison are the following:

Case Description
1 xi aligns to yi Alignx[1...i] with y[1...j]
2 xi aligns to a gap x[1...(i−1)]aligned with y[1...j], so x[i]aligns with gap in y
3 yj aligns to a gap x[1...i] aligned with y[1...(j−1)], so align a gap to x in y[j]

Table 2.1: Three choices of global sequence alignment problem

For the aforementioned choices some scores have to be determined to asses the
alignment. Therefore there is a score for gap, one when the symbols are matched
and an extra, when we have a mismatch. The penalty concept will be extensively
explained in Chapter 3.

• Match: The two letters at the current index are the same.

• Mismatch: The two letters at the current index are different.

• Gap: The best alignment involves one letter aligning to a gap in the other
string.

Example
Suppose given two possible related strings S1 and S2, S1= ACGTCATCA and S2
= TAGTGTCA, in Table 2.2 their alignments is presented, where the symbol _
represents a gap at the corresponding sequence.

S1 _ A C G T C _ A T C A
S2 T A _ G T _ G _ T C A

Table 2.2: Aligned sequences using Edit Distance

At each step either there is a match or a gap at one of the sequences. In this
example the number of changes needed for S1 to become S2 were computed, in order
to identify the optimal alignment. Suppose that there are two possible alignments,
were the first one requires 5 edits and the second one 3, the latter will be chosen
as the optimal alignment, because the number of necessary modifications is smaller.
This measure is called edit distance. Edit distance is a way of quantifying how
dissimilar two strings (e.g., words) are to one another by counting the minimum
number of operations required to transform one string into the other [13].

The problem of global sequence alignment is very difficult. Just consider that
for two sequences of length n,m the different ways to align them are given by the
formula:(

n+m
m

)
(m+n)!
(m!)2 ≈= 2m+n

√
π−m

In the following table 2.3 the number of possible ways to align two sequences of
length n are computed.

2.6 Sequence Alignment

2

15

n # of ways
10 184,756
20 1.40E+11
100 9.0E+58

Table 2.3: Ways of Alignment for sequences of length n

In Table 2.3 can be seen that the problem cannot be approached greedily like
computing every possible alignment for two sequences. Even for small sequences
(size 10) there are multiple ways of aligning (almost 185 thousand ways). Thus a
different algorithm has to be used to optimize the procedure, one widely used idea is
Dynamic Programming, which is explained in the next Subsection.

2.6.1 Dynamic Programming Approach
Dynamic Programming[14], is a method for solving a complex problem by breaking
it down into a collection of simpler sub-problems and storing the solution of each
sub-problem, in order to solve each of those sub-problems just once. Usually, a
dynamic programming approach is used on solving problems where a naive approach
takes exponential time, like sequence alignment. With its general method, which is
like the ”divide and conquer” one, it can solve a problem in time O(n2) or O(n3). The
difference between the dynamic programming method and the ’divide and conquer
is that the sub-problems that are solved will typically overlap, while in the other
approach the sub-problems are independent and can be solved totally separately.
Another difference is that dynamic programming is a bottom-up approach instead of
a top-down one. To give a better understanding of dynamic programming and ”divide
and conquer’ difference, we present an execution graph of these two approaches,
where in the Dynamic programming is presented on the left part.

Figure 2.6: On the left the dynamic programming approach, on the right the divide and conquer

As it can be seen from Figure 2.6, the dynamic programming approach starts
from the bottom nodes and goes up to every possible direction. Generally there are
some main steps that you have to follow in every problem that you want to apply
dynamic programming.

1. Characterize structure of optimal solution

2. Define value of optimal solution recursively

3. Compute optimal solution values with bottom-up in a table

2

16 2 Background

4. Construct an optimal solution from computed values

Using dynamic programming we can reduce the problem of best alignment of two
sequences to best alignment of all prefixes of the sequences.

Given an n-character sequence x, and an m-character sequence y first a initial
table F with dimensions (n+ 1)× (m+ 1) has to be constructed. Each cell F (i, j)
of the matrix F , contains the score of similarity till that point, thus the alignment
score between x[1...i] with y[1...j]. Using this matrix the scores do not have to be
recomputed at each step, but the parts of the already filled matrix are used. Since
we know the best score for the alignment x[1...i−1] with y[1...j−1], we compute for
the new incoming terms of the sequence x[i],y[j] and the new cost is filled in the
corresponding cell F (i, j).

Finally using the complete matrix, traversing each column from the last one
to the first (bottom up), the optimal alignment can be computed based on the
maximum values of each column. This method will be modified and implemented in
Chapter 6. More details and examples on how it works can be found in that Chapter.

2.7 Metrics
The problem we are dealing with, is not the classical machine learning problem,
however we have to define the corresponding positive and negative classes. Here the
most frequently used metrics for machine learning problems are presented, although
in Chapter 7 we show how they will be adjusted for our needs. Suppose there are
two classes one positive and one negative, the instances that are correctly classified
as positive are called True Positives, the ones that are wrongly classified as positive
(their real label shows they are negative) are called False Positives. The instances,
which are correctly classified as negative are called True Negatives and the wrongly
classified as negative False Negatives. With respect to the defined terms above, we
have the following formulas:

Accuracy = TP +TN

TP +TN +FP +FN
(2.1)

Recall = TP

TP +FN
(2.2)

Precision = TP

TP +FP
(2.3)

F1 score = 2× Recall×Precision
Recall+Precision

(2.4)

3

17

3
Related Work

S oftware development relies on the use of models that can specify how the system
is supposed to behave or how it really does. Software can be complex, thus it is

usually difficult for developers to identify issues or differences between software. The
log files contain information, which could be elaborated for the identification of the
differences or issues, however it is not an easy task. In this Chapter the concepts of
log analysis and log differencing are presented to solve the aforementioned problems.

Likewise, some of the literature regarding model checkers and conformance
checking is presented, since many researchers have applied these techniques in the
same domain as the one we are investigating.

Additionally, simple sequence alignment is explained. This might look irrelevant
for the problem we are trying to tackle, but later in this thesis it will become clear
how this method can be adjusted for log comparison purposes.

Finally, in the last Section 3.7, we tried to gather all the state machine comparison
methods, to have a broad understanding of (almost) all the methods that can be
applied for the particular question, before developing our own approach.

3.1 Related Work at Adyen
Adyen already conducts a lot of research that focuses on log analysis. Peter Evers [15]
has developed a tool called Logness during his master thesis, with a web interface,
which utilises Longest Common Subsequence algorithm to cluster logs with a severity
level of WARN and ERROR together. Logness sends a notification to developers
if a new log cluster is created, which can be used to monitor release as well. On
the same tool worked Quincy Bakker [16], who tried to improve it by employing
various techniques like requirements analysis, interviews, data visualisation and user
analysis.

Rick Wieman [6] evaluates different passive learning methods and uses them to
provide intuition to developers about the behavior of the software running on the
POS terminals. Joop Aue [17] researches WEB API usage in Adyen and recommends
ways of avoiding API faults. Daan Schipper [18] has worked on the evaluation of
tracking back algorithms of log data to its origin using static analysis.

3

18 3 Related Work

3.2 Log Analysis
In [4], Fu et al. have developed a technique for automatic anomaly detection in
log files generated by distributed systems (the type of anomaly they focus on is
low performances). Their technique consists of two processes: the learning process
and the detection process. The learning process concerns the learning of a model
using normal data. In order to achieve that they first convert the log messages
from the training log files to log keys. Using these keys a FSA is used to model
the execution path of the system. Also the execution time for each state transition
has to be computed. In the detection process the new incoming logs can be checked
for anomalies using the aforementioned learned model. The type of anomaly they
focus is low performance. In more detail they split the low performance in two types,
the one is modelling the execution time of the state transitions and the second the
modelling of the circulation number of loops.

Similar research, but differently approached has also been performed by Mariani
and Pastore [5]. They also present a technique for automatic analysis of log files and
retrieval of required information to identify failure. This research focuses on another
kind of anomaly, which is the failure. Their approach consists of three phases. Phase
1 is monitoring, phase 2 is model generation and phase 3 is failure analysis.

In the monitoring phase, the collecting of the log files takes place, these log
files can either be generated during testing or from actual usage of the system.
Nonetheless they should be successful executions, because they will be used for
the learning process. The model generation phase, consists of three major tasks:
event detection, data transformation and model inference. The event detection
task, is responsible for rewriting the events of the initial log file in order to make
it structured. The data trasformation task, removed the concrete attribute values
contained in the log with more meaningful data flow information. The final task
for this phase is the model inference which creates the model using the kBehavior
inference engine. During the last phase, the failure analysis, the anomalous patterns
are identified using the model learned from previous phase. The disadvantage of this
methods is that a developer is needed to annotate the potential anomalous patterns
as anomalous or normal.

An interesting approach for anomaly detection in DFAs using formal analysis
is proposed by [19]. The goal of their work is to verify the trustworthiness of an
implementation based on the specifications. For that purpose they propose a formal
approach to identify vulnerabilities in an DFA using symbolic algebra. Thus they
model the specification of a given DFA as a set of polynomials, such that each
polynomial is responsible for describing all of the valid states and their corresponding
transitions by which a specific state can be reached. The next step is to also model
the implementation of the DFA using polynomials. Since both the specification
and the implementation are models, the next step is to check if these two sets are
equivalent. The Gröbner basis theory was used to compare the two sets, by reducing
the implementation set and using the remainder the vulnerabilities could be found.
In more detail zero remainder means that the implementation has followed the
specifications and can be trusted. On the other hand, non-zero remainder means
that there are hidden malfunctions in the implementation and also the conditions

3.3 Log Differencing

3

19

that activate them are identified. Their research tackles the following three problems.
First the problem that the formulation of the specifications of a general circuit cannot
be modelled as one simple and comprehensive polynomial (that’s why they use sets of
polynomials, one polynomial for each state). Secondly there is the issue of cycles in
the sequential circuits, where these loops can make the reduction procedure infinite.
Last but not least, there is the problem that an anomaly may appear after a long
repitition of normal states (after a large number of cycles).

Log analysis can be used for many different purposes, like performance bottlenecks
or bugs identification. In that field state machines are widely used because of their
ability to model accurately the behaviour of the system. Interesting research has
been done by [20], where they make use of state machines to model the behaviour of
the system in order to identify performance issues. For that purpose three different
algorithms have been used, kTails [21], Synoptic [22] and Perfume [20]. The best
results were obtained when using Perfume, which is an extension of Synoptic in a
principled manner to account for performance information often available in system
logs. Perfumes goal is to produce a representative model of a system form an execution
log containing examples of system’s behaviour. In order to achieve that, the state-of-
the-art model inference techniques are improved to utilise performance information
in the log to guide the inference process and predict unobserved executions more
accurately. The process Perfume follows to infer models consists of the parsing
stage, performance property miner, initial model construction, CEGAR refinement
(counterexample guided abstraction refinement) and kTails coarsening, after this
steps the final model is constructed. The final model, is claimed by the authors,
to be easier understandable by the developers. Thus these models can be used for
performance testing.

3.3 Log Differencing
Relevant research for log anaysis specifically targeting log differencing is performed
by Goldstein et al. [23]. They model the behavior using the log files and then they
perform diff calculation and highlight the outliers. In more detail the diff calculation
part is separated in multiple steps. First they extract all the possible paths for both
finite state models. Then they convert these paths into string and using a string
matching algorithm [24] they find the common paths. Next they define nodes to
be common to both models if they have the same label and if they are a part of at
least one common path. That however means that if a state appears in a trace and
unexpectedly appears in another as well, it will not be identified as added for the
latter trace. The states that are not common are annotated as added or removed
based on which one of the initial models they were found. Finally they present the
difference model, which is actually the second model with the added and removed
nodes annotated. The basic disadvantage of this approach is the creation of every
possible path from the models. This may lead to unbearable run times. For that
reason they have introduced a parameter, which terminates the algorithm when a
predefined amount of paths is reached. As expected this mean that not all possible
paths are found using this approach. Additionally the idea of annotating a node as
common only if it appears in a common path is not helpful in most cases because

3

20 3 Related Work

the same node may appear in multiple paths, in some of them it may actually be
common but in other it might be an added or removed node.

Anothe log differencing tool is developed by Amar et. al [25]. Their goal is to
identify the different traces between two or more log files and then model them
using Synoptic. Their approach is different that what most researchers on this field
usually do, where first they model each log file separately and then compare the
models to identify differences. What they do in their 2KDiff algorithm is compute
the sets of k-sequences included in each of the logs, and compare the two sets to find
the k-sequences that are unique to each log, which will be the k-differences. The
k-differences are presented using some traces that contain that differences.

For example suppose we have two log files and their corresponding models. Any
trace highlighted by the 2KDiff algorithm over the first model is a trace of the first
log file that contains at least one k-sequence missing from the second log file.

The drawback of this method is that the whole trace is annotated if only a small
thing is different between the two log files. If a single state is added and the rest
of the trace is the same they will find k-sequences that contain events that do not
appear in both logs. Thus the whole trace will be highlighted, which means it is not
possible to identify the root cause of the difference. A big advantage of their work is
the extension of the 2KDiff algorithm, the nKDiff algorithm which can compare
n log files between them and highlight the differences in one finite state machine
learned by the traces that contain at least one of the k-sequences.

3.4 Model Checking
Model checking is a method for formally verifying finite-state concurrent systems,
which is based on the exhaustive exploration of a given state space trying to determine
whether a given property is satisfied by the system. For that purpose efficient symbolic
algorithms are used, thus extremely large state-spaces can often be traversed in
minutes. A model checker takes a model and a property as inputs and outputs either
a claim that the property is true or a counterexample falsifying the property. Model
checkers are most usually used in hardware and protocol verification so far, with
many successful results like Futurebus+ and the PCI local bus protocols [26], [27],
[28], [29]. However a bigger challenge is to verify software systems because of the
complexity the paths may have.

There are two general approaches as far as the model checking is concerned,
Temporal Logic Model Checking and Behaviour Conformance Checking, categorized
by whether the specification is a formula or an automaton.

In Temporal Logic Model Checking a property is expressed as a formula in a
certain temporal logic. The verification can be accomplished using an efficient
breadth first search procedure, which views the transition system as a model for the
logic and determines if the specifications are satisfied by that model.

On the other hand, Behaviour Conformance Checking refer to the procedure of
comparing if two models have the same behaviour. This procedure is widely applied
in the business field, where it is considered a family of process mining techniques to
compare a process model with an event log of the same process. It is used to check

3.5 Conformance Checking

3

21

if the actual execution of a business process, as recorded in the event log, conforms
to the model and vice versa.

An extension of model checking is the equivalence checking, where two models
have to be checked if they present the same behaviour. For that purpose different
logic formulas may be checked to identify if the two models return the same result.

Equivalence checking is mainly used for electronic design automation, commonly
used during the development of digital integrated circuits to formally prove that two
representations of a circuit design exhibit exactly the same behaviour.

This method has also been used in software, for translation validation [30], [31],
[32]. There is also some research done in comparison between original and rewritten
programs [33].

3.4.1 History of Model Checking
The first research about model checker started in 1981 by Clarke, Emerson et al.
[34], who developed a verification technology for abstract models, like a hardware or
software design. By algorithmic means they determined whether a model satisfies a
formal specification expressed as a temporal logic formula and if not a counterexample
was returned. Then in 1982 another paper was published again with Clarke and
Emerson as main authors [35]. In the 90’s the states of the model that could be
checked increased to more than 1020 [36] and also the SMV symbolic model verifier
was developed [37]. End of the 90’s Biere et al. approached the model checking using
satisfiability procedures [38]. Finally in 2000 Clarke et al. used the counterexamples
produced by the model checker in order to refine the produced model.

3.5 Conformance Checking
Verification and validation of computer simulation models is conducted during the
development of a simulation model with the ultimate goal of producing an accurate
and credible model [39]. Verification is thus used to establish the correctness of the
systems or the protocols.

Simulation models in our case are considered the state machines that model
the behavior of the transactions. Learned models approximate imitations of the
real-world systems, thus it has to be verified that they actually work as expected.
In this section, a different technique to compare two models is presented, using the
verification techniques.

Conformance Checking is mainly used for checking how the actual behavior of
the system, as recorded in logs, conforms the expected behavior as specified by the
model. If we expect the model to represent the real behavior of the system, the
differences that show up during the conformance checking might be bugs or new
features added to the system which are not represented by the model. In each case,
these differences are important information for the behavior of the system.

The conformance checking is a standard procedure, which however depends on
a lot on the application domain. The difficult part is to quantify the degree of
conformance of the logs for the given logs. In [40] they developed a robust replay
technique to measure the conformance of the logs for the input model. They try

3

22 3 Related Work

to provide intuitive feedback for the logs that do not conform with the model by
specifying the activities that were skipped or inserted.

Skipped activities refer to activities that should be performed according to the
model, but do not occur in the logs.

On the other hand, the inserted activities exist in the logs, but should not happen
according to the model.

The problem of measuring the conformance of the logs, is not solved by that
though, because different activities might have different severity when they are
skipped or inserted. Therefore methods that weight equally all inserted and skipped
activities do not provide correct results like [41]. The improvement that [40] suggests
is the use of a cost based measure to measure the fitness of the model. The idea
behind this metric is that fitness value should decrease with the increase of the amount
of skipped and inserted activities. In order to normalize the metric they consider
the extreme case, where every activity is inserted. However a big disadvantage of
that method is that the user should provide the cost functions for the skipped and
inserted activities as a parameter.

3.6 Sequence Alignment
As mentioned in Chapter 2, sequence alignment can be performed in three different
ways, global, local and multiple sequence alignment. In this section the global
alignments will be covered, since this is the only type that can be applied for the
problem we are facing.

The first and most widely known method for global sequence alignment is the
Needleman-Wunsch algorithm [42]. They make use of the dynamic programming to
improve the otherwise high complexity of finding the optimal alignment by computing
every possible alignment. Needleman and Wunsch create a 2-dimensional table with
dimensions the lengths of the two sequences under comparison. For a sequence x with
length n and a sequence y with length m the matrix will be (n+ 1)× (m+ 1). The
+1 at each dimension is because of the gap that can be added in the sequences. The
matrix is filled with the best alignment for x[1...i] with y[1...j] in the corresponding
cell F (i, j). However at each step all the previous values do not have to be re-
computed, since they are already saved in the matrix. The only necessary thing is
to chose the max value from F (i−1, j),F (i, j−1) and F (i−1, j−1) and add the
penalty for gap, match or mismatch. The scores they usually use are: match=1,
mismatch=-1 and gap=-1.

For comparing GCATGCU and GATTACA the filled table can be found in Figure
3.1 1.

The arrows, starting from the bottom, going up, indicate the optimal alignment
based on the highest score. The blue arrows indicate we have a match in the specific
character between the two sequences, when the arrow is red it means there is a
mismatch between the two characters of the specific column and row and the black

1https://en.wikipedia.org/wiki/Needleman\T1\textendashWunsch_algorithm

https://en.wikipedia.org/wiki/Needleman\T1\textendash Wunsch_algorithm

3.6 Sequence Alignment

3

23

Figure 3.1: Needleman-Wunsch application example by Wikipedia

Sequences Best alignments
GCATGCU GCATG-CU GCA-TGCU GCAT-GCU
GATTACA G-ATTACA G-ATTACA G-ATTACA

Figure 3.2: Results Needleman-Wunsch algorithm

arrow, indicates that a gap should be added in order to achieve the optimal alignment.
In this example there are three best alignments, as shown in Table 3.2.

The Needleman-Wunsch algorithm is used even today, however attention should
be paid in the scoring scheme. Using different values for match, mismatch and gap
penalties can highly influence the outcome of the algorithm. This topic will be
discussed in the next subsection.

3.6.1 Penalties
Sequence alignment algorithms usually are highly influenced by the setting of the
penalties. The effect that such parameters have on the resulting alignment are not
well understood yet. In this type of programs the correct setting of the parameters
does not influence the speed of the run, but the produced result. Namely, for
wrong parameter values a non-optimal alignment will probably be returned. The
simplest scoring scheme is proposed by the prototypic global alignment algorithm of
Needleman & Wunsch in [42]. They propose to reward each state match with one
point and penalize the mismatched and the gaps with one point. Also in the most
famous local alignment algoritm by Smith & Waterman [43] they also use a linear
function as the gap penalty function. In addition to the penalties, many sequence
alignment algorithms, use similarity matrices, which however will not be covered in
this section because they are not in the scope of this research (they are mainly used
in the bioinformatics field, where the similarity of the proteins is already defined).

The question about the impact of the scoring scheme has attracted many re-

3

24 3 Related Work

searchers in the field of biology. Fitch & Smith [44] tried to address this problem by
calculating the number of alignments until the optimal alignments are found. Then
they divide the parameter space into regions based on the optimal alignments of
each region.

Specifically for biological sequences a widely used method is by inverse parametric
sequence alignment [45, 46]. This approach proposes setting the parameters using
examples of biologically correct reference alignments. However the scope of this
thesis is not about biological sequences, thus this method cannot be used.

Also the dynamically changing penalties based on some attribute have been
investigated. In [47] Thompson et al. use a position-specific penalty scheme, where
positions in early alignments where gaps have been opened receive locally reduced
gap penalties to encourage the opening up of new gaps at these positions.

Unfortunately the tuning of the these parameters for sequence alignment is mainly
focused on biological sequences, which is not the type of data used for this work.
Thus all these methods are mostly for inspiration and cannot be used, without
modifications, for the purposes of the current research.

3.7 State Machine Comparison
State Machines can be compared from two perspectives [48]: (1) in terms of language
- the externally observable sequences of events that are permitted or not (2) in terms
of their structure - the actual states and transitions that define the behaviour.

In [49] Mealy machine learning methods are used to verify the correctness of
protocol implementations relative to a given reference implementation. Reference
implementation defines the specification of that protocol and can be considered as the
standard. Their approach first uses a states machine synthesis tool to actively learn a
state machine model of the reference implementation. Given another implementation
two things can be done. The first one uses a model based testing tool to generate
test sequences to test whether the reference implementation and the new one have
the same behavior. The other approach is to use the state machine learning tool to
learn a model for the new implementation and then use an equivalence checker to
check if the two models have the same behavior. The equivalence checker returns
true if the two models are the same and false if they are not. When they are not
equal also a counterexample is returned which is checked in the implementations if
it truly is a difference. If not something did not go well in the learning procedure
and one of the models has to be refined.

In their work they investigate the feasibility of the above approach for the bounded
retransmission protocol, which is a variation of the classical alternating bit protocol.
They implemented this protocol and referred to it as reference implementation and
six other faulty variations. The goal is to identify the behavioral differences between
the faulty implementations and the reference one.

3.7.1 Language Comparison
One of the most common approaches when comparing to LTS languages is to take
random sample from the language of the machine that better characterises the

3.7 State Machine Comparison

3

25

language as a whole, and count how many of these random sequences are correctly
classified using a second state machine [50]. Another similar approach is based on
random walks. A random walk is a mathematical object, known as a stochastic or
random process, that describes a path that consists of a succession of random steps
on some mathematical space. As far as the comparison of two DFAs is concerned
random walks over one DFA will be followed and the output will be compared
with the output one of the other DFA. A walk is an arbitrary input sequence that
either concludes in an accepting or an rejecting state. If for enough sequences both
DFAs return the same output, the two DFAs can be considered equivalent. An
alternative approach is to produce random strings form the alphabet alone and
then classify these as belonging to the language or not with respect to the reference
LTS. In the data, we are dealing with, we expect to see specific order in some
sequences, since we have to do with transactions and there is no chance that the
state Payment_approved will come before enter_pin for example. That mean that
only a small fraction of the random sequences will represent the behaviour of the
input machines. Consequently all their differences cannot be found by that method.
The fact that the aforementioned methods of this category rely on a sample subset
of the whole space, makes the validity of the comparison questionable. When we
are dealing with random walks, the algorithm is biased towards specific parts of the
state machine.

Walkinshaw et al. [51], show how techniques from the domain of model-based
testing, instead of random sampling, can be applied to compute a representative
sample of the language. In the model-based testing, the assumption is that we have
a model and we try to test a system which is a black box for us (implementation).
Only observations about the output with specific input can be determined. The goal
is to verify that the two models behave the same and the implemented system leads
to the correct states.

There are also other methods that try to define a test set of important sequences
in order to prove if the machines are equivalent. Peled et al. [52] was one of the
first who proposed to implement equivalence queries via conformance testing. In
more detail they suggested to use the conformance testing algorithm by Valilevskii
[53] and Chow [54]. This method is also knows as W-method. What W-method
does is given some implementation (black box system) and some specification LTS,
constructs a set of sequences that should be classified equally by both LTSs.

The problem with the aforementioned methods is that they require a big size of
test suite, exponential to their upper bound of states, which may be a bottleneck for
any real application. During the Zulu competition, where the goal was to decrease the
equivalence queries in the learning procedure using an active learning framework, the
competitors learned finite automata from a limited number of membership queries
without explicit equivalence queries. Thus they had to approximate the equivalence
queries through clever selection of membership queries [55]. Even though in this
thesis we are dealing with passive learning, the part of the equivalence of the models
can be used.

3

26 3 Related Work

3.7.2 Structural Differences
There is a limited amount of work that compares the states machines in terms of their
structures. In more detail Walkinshaw and Bogdanov have worded extensively in
the subject [48], [56], [57], but also other researchers [58], [59], where they also dealt
with the event name abstraction issue using natural language processing techniques
[60].

Walkinshaw and Bogdanov have developed the LTSdiff algorithm 2. This algo-
rithm computes the difference between two LTSs returning the missing and added
states and transitions. It is inspired by the cognitive process of humans. The first step
for the algorithm is to identify landmarks, pairs of states that seem to be equivalent.
Potential landmarks are identified by measuring a similarity score for every possible
pair of states. This score is computed by matching up the surrounding network of
states and transitions. There are two different similarity measures established, local
similarity is the overlap of the immediate surrounding transitions, on the other hand
global similarity measures the similarity of the target states of these transitions.

Local similarity Sab of two states a and b is computed by dividing the number of
overlapping adjacent transitions by the total number of adjacent transitions.
Sab = |matchingAdjacentTransitions||AllAdjacentTransitions|

State machines characterize a state both in terms of its potential past behaviour
(incoming transitions) as well as its potential future behaviour (outgoing transitions),
SLPrev and SLSucc respectively. The global similarity concerns the similarity of pairs
of states in terms of their wider context. For two matched transitions, we want to
produce a higher score if the source/target states of these transitions are almost
equivalent and a lower score if they are dissimilar.

When the scores are computed, one pair of states is chosen as landmark or
equivalent and it is used as the basis for further comparison in the remaining of the
states and transitions in the machines.

Wieman’s Comparison
Wieman [61], [6] implemented two different algorithms. The one is able to identify
structural differences in the graphs and the other frequency differences. Both his
algorithms perform two different steps. During the first step the differences between
the reference and observed graph are identified and during the second step these
differences are visualized.

Structural Differences
There are essentially two types of structural differences: introduced paths and missing
paths. Introduced are paths that do not exist in the reference graph, but that are
introduced in the observed graph. This potentially indicates newly introduced
functionality, or bugs in the system. Missing are called the paths that existed in the
reference graph, but were not present in the observed one. This potentially indicates
removed functionality, or resolved bugs.

2LTSdiff implemented in StateChum http://statechum.sourceforge.net

3.7 State Machine Comparison

3

27

3.7.3 Equivalence Checking
Equivalence checking is used to make sure two state machines are equivalent. They
may be different structurally with the first look but the languages they are accepting
are the same. The most frequent use of equivalence checking is for state machine
minimization. However in this project we want to use it in a different context. The
idea is to check if two state machines are equivalent and if they are not, perform the
necessary modifications in order to become.

Equivalence Checking in the active learning framework
The most usual use case of equivalence checking is in the active learning field, where
there is a teacher and a learner. When the learning algorithm converges to a stable
hypothesis, a counterexample is needed for further progress. These counterexamples
are the results of equivalence queries that test the equality between the hypothesised
and the actual model.

Since in the field of passive learning equivalence checking is not frequently used,
the methods used in active learning will be researched and their adaptation in our
field of interest will be questioned or performed if possible.

Using the product of two dfas
One of the simplest methods to check if two finite state machines are equivalent is
to compute their product machine. Even for the computation of the product many
algorithms have been developed [62] and many researchers have tried to improve
the existing algorithms in order to make them more efficient to be applied to real
problems [63] [64]. Despite the wide use of state machines’ product there exists no
software available for that purpose.

When applying the product algoritithm, there are two conditions that should be
satisfied for the two automata to be equivalent.

• The two automata are not equivalent if got a pair qa, qb one is an intermediate
state and the other is a final state.

• If initial state is also final state for an automaton, then in the second automaton
the same should apply for them to be equivalent.

The following example will guide us through the procedure of checking if two
automata are equivalent using their product.

Figure 3.3: Finite State Machines under comparison

It is obvious from Figure 3.3 that the second condition is satisfied, for both
automata the Initial state is also final state. In order to check if the first condition

3

28 3 Related Work

states c d
(q1, q4) (q1, q4) (q2, q5)
(q2, q5) (q3, q6) (q1, q4)
(q3, q6) (q2, q7) (q3, q6)
(q2, q7) (q3, q6) (q1, q4)

Table 3.1: Pair of states for every possible action

holds, for specific pairs of the state machines’ states both states should be intermediate
or final. The procedure follows:

In 3.1 the first pair of states consists of the initial state of each automaton (first
column, first row). Then considering all the possible actions taken from these states,
from q1 with action c we stay in state q1, form state q4 with state c we stay in action
q4. From state q1 with action d we go to state q2 and from q4 we go to q5. Now
it has to be checked if both states in each pair have the same type (either both
intermediate or both final). (q1, q4) are both final, (q2, q5) are both intermediate.
Then we check from (q2, q5) were we go with all the possible actions. In the second
row of Table 3.1 the outcome is visible, again both (q3, q6) are intermediate and
(q1, q4) final. Since till now the condition 1 is satisfied we continue with the next
pair (q3, q6). The same procedure is continued till we cover all the possible actions
from every state. In the case indicated in 3.1 all the pairs contain states of the same
type thus we can conclude that the two Finite State Machines are equivalent.

Symmetric Difference with Emptiness Testing
In [65] Sipser, presents the problem of determining whether two DFAs accept the
same language or not as decidable. EQDFA is decidable, when EQDFA = {(A,B)|A
and B are DFAs and L(A) = L(B)}. The proof of this theorem can be used as
algorithm to test the equivalence between two DFAs. The idea behind it is to find
out if there are any state sequences, which were accepted by A, but not by B and
vice versa. If the result in both cases is the empty set, then A and B should be
equivalent, otherwise they are not.

The idea of this algorithm has been used for model-based testing, interesting
approach to that was presented by Tappler et al. in [66]. Where they present their
learning-based approach to detect failures in reactive systems. Their technique uses
inferred models of multiple implementation of a common specification, which are
pair-wise cross checked for equivalence. In order to check the equivalence of the
two models they check all inputs and they expect that both state machines will
have the same output. When an input sequence is not satisfied it is considered
a counterexample, this method is based on Sipser’s Symmetric Difference with
Emptiness Testing. As mentioned above, the two state machines are equivalent if
there is no input that is not satisfied by both. If a sequence is not satisfied by one of
the state machines, is called counterexample and it is marked as suspicious and then
is checked manually by a developer.

In more detail their approach consists of three stages. In the first phase they
learn their models of several different implementations. Specifically they work with

3.7 State Machine Comparison

3

29

implementations of standardized protocols or operations. During the second phase
the models are pair-wise cross checked. Finally the counterexamples are analysed
manually. However the drawbacks of this method is that it computationally expensive
because all models have to be pair-wise checked to decrease the danger that a bug
that appears in more than one implementations will stay hidden. There is always the
possibility though, that a fault will be implemented by all examined implementations.
Also the fault-detection capabilities are limited because of the level of abstraction
they introduce during the learning procedure.

3.7.4 The Table-Filling Algorithm
Hopcroft et al. describe in their book [67] the table filling algorithm, which can
be used both for DFA minimization and equivalence checking between DFAs. This
algorithms treats the two DFAs as one and looks for states that are distinguishable
for some input. The found distinguishable states can lead to more distinguishable
states, for example if some input transitions a pair of states in a distinguishable pair
of states, then also these states are considered distinguishable. Once the algorithm
is completed, if the start states of the two DFAs are still not distinguishable, then
the two DFAs are considered equivalent, since they accept the same language.

Many versions of this algorithm have been developed which improve it’s time
complexity, but also extended in order to return example sequences of input for
which the automata do not return the same output. The table-filling procedure
takes O(n4) runtime (every state has to be checked with every other if they are
distinguishable), which makes impossible to be used in real life applications where
even 1020 states may be encountered.

The nlogn Hopcroft Algorithm
One of the most famous algorithms is introduced by Hopcroft already in 1970 [67].
This algorithm was initially developed for DFA minimization, but it can also be used
for equivalence checking. The runtime complexity is O(nlogn), which make it much
for efficient than the previously presented algorithms. However this research has
the drawback that it is not well explained and justified. Thus after Hopcroft other
authors [68], [69] came and re-introduced the algorithm helping in making it more
theoretically correct and with better running time analysis.

Gries [68] provides a cleared explanation of the algorithms in a more understand-
able way, but also criticised its correctness proof and its runtime analysis, presented
by Hopcroft in [67].

Comparison using Model Checkers
Interesting research on how to compare two state machines using an equivalence
checker is done by [33]. In this approach the goal was to refactor software and it
was implemented for some Phillips software. For that purpose a model should be
learned for the legacy software and one for the new implementation. Then these
two models where compared to check if there are any differences. If there are, the
checker returns a counterexample. Then the models are improved using this example
and the procedure is repeated. Then the models should be improved if possible, in

3

30 3 Related Work

order to contain the aforementioned example. If it is not a problem of the learning
procedure, the implementation of the new software has to be adapted to look more
alike to the legacy one.

Many of the previous works have focused on translation validation using equiva-
lence checking. In more detail in the translation validation, given two programs a
software has to verify that they have the same semantics. It can be used to ensure
that program transformations do not introduce semantic discrepancies and it can
also be used to improve testing and debugging. A lot of real-world compilers have
been examined to verify the successful translation, like different versions of GCC
[30], [31], [32]. From the aforementioned methods the most promising seem to be
[32], with an exceptionally low rate of false alarms. However the authors admit that
their approach does not scale beyond a few hundred of instructions.

Model Checkers can also be used for various domains, like for bank supply
process. In [70] the applicability of equivalence checking to validate business process
is explored. The authors claim that due to state explosion problem, the formal
methods are not very popular in the business domain and they try to combat that
problem using an efficient procedure based on heuristic search proposed in [71]. This
approach suggests to expand first the states that offer the most promising way to
deduce that two systems are not equivalent. In their research they compare Grease
(GREedy Algorithm for System Equivalence) [71] with CADP 3, a well known model
checker. In CADP they used the bisimulation property. For the grease tool, the
used heuristic function assigned a value to each node n of the graph, which was the
degree of dissimilarity of the two processes in n. This functions suggests that each
state should contain two not bisimilar processes so that this state can be included in
the graph as soon as possible.

3https://cadp.inria.fr

4

31

4
Data Exploration

Data – a collection of facts (numbers, words, measurements, observations, etc) that
has been translated into a form that computers can process.

B efore start working with data, it is important to clearly understand what do
these data represent. In some cases, it is not enough to just go through the

data and understand their purpose. Because of the complex nature of the data,
extensive visualizations and analysis are necessary to get the most out of the data.
As mentioned above, data are formatted in a way, that computers understand. In
order to make the best out of it, first they have to be transformed into a human
understandable format.

For this thesis, POS transaction log data have been used. These data consist of
sequences that represent the flow of a transaction. As expected, some sequences will
appear very often, or specific sub-parts of the sequence (like the initialization of the
transaction) while others will appear rarely.

4.1 Data Description
For this project we worked with log files provided by Adyen. These log files contained
the flow of transactions taken place either in the testing environment or in the real
world. The log files we are dealing with, contain an ordered sequence of events that
always lead to a predefined set of final states. This set has size four and includes the
state that indicates the transactions has been successfully completed (Approved),
that the transaction was not processed for some reason (Declined) or the transaction
was canceled either by the customer or by the merchant (Canceled). Last but not
least, there is the Error final state, when something unexpected happens. The Error
final state is the most unwanted case, because it points out that a sequence of actions
not covered by the developers was followed.

The alphabet of the sequences in our dataset is frequently changing, since a new
software release may produce an additional state in the flow. A transaction flow con-
tains the actions performed by the customer, like card_swiped or pin_digit_entry

4

32 4 Data Exploration

and the necessary communications between the back-office and the device in or-
der to process and authorize the payment, like verify_card_holder_succeeded,
terminal_risk_management_succeeded.

In Figure 4.1, an example of the transaction log can be found, and in Figure 4.2
two example sequences after the pre-processing phase are shown.

20170101160001 Adyen version : ******
20170101160002 Starting TX/tender_reference =******/amt=10001/currency=978
20170101160003 Starting EMV
20170101160004 EMV started
20170101160005 Magswipe opened
20170101160006 CTLS started
20170101160007 Transaction initialized
20170101160008 Run TX as EMV transaction/tender_reference=******
20170101160009 Application selected app:****** pref :******
20170101160010 read_application_data succeeded
20170101160011 data_authentication succeeded
20170101160012 validate 0
20170101160013 DCC rejected
20170101160014 terminal_risk_management succeeded
20170101160015 verify_card_holder succeeded
20170101160016 generate_first_ac succeeded
20170101160017 Authorizing online
20170101160018 Data returned by the host succeeded
20170101160019 Transaction authorized by card
20170101160020 Approved receipt printed
20170101160021 auth_code:**** psp_ref:**** pos_result_code:

APPROVED refusal_reason:None
20170101160022 Final status : Approved

Figure 4.1: Sample Transaction log file

S1: Transaction_init/*** Running_swipe_transaction/***
CVM:_Signature/*** Authorizing_online/*** Re-
quest_over_WiFi_to_PAL_URL:*** Transaction_Authorized_online/xxx
Using_service_code:***/*** Authorization_succeeded/*** Ap-
proved_receipt_printed/*** amount_original_/*** ARC_11/***
RC_APPROVED/*** Final_status:_Approved/***

S2: Transaction_initialized/*** Contactless,_bin_number/*** Run-
ning_contactless_transaction/*** CTLS_online_processing_ARQC/***
CVM:_No_CVM_required/*** Transaction_Authorized_online/***
Approved_receipt_printed/*** amount_original_/*** ARC_00/***

4.2 Data Analysis

4

33

RC_APPROVED/*** Final_status:_Approved/***

Figure 4.2: Discrete sequences example

4.2 Data Analysis
Adyen is dealing with payments, thus the security in this sector is extremely important.
Adyen has a separate department for the testing of the POS terminal’s software.
The terminal’s software as well as the required POS libraries for the communication
are tested using robots.

Figure 4.3: Robot for testing the POS terminals

4.2.1 Data from the Testing Environment
The testing that takes place in Adyen aims to the higher coverage of the possible
scenarios that may happen using a POS terminal. Thus, as expected, the unhappy
flows are the ones that should be tested the most extensively, since these are the
flows that can harm the merchant the most. The distribution of the data is different
for the test and live data as will also be showed in this section.

A whole robot run consists of more than 700 scenarios that try to cover the
most common flows and more extreme scenarios to make sure that the software
will perform as expected in the field. Figure 4.4 shows the distribution of the types
of transactions that are performed at a robot run. As expected there are a lot
of Approved transactions, since the happy flows, which are also the most frequent
followed flows, have to be tested. However the Declined are even more. That
happens because the aim of the testing is to make sure that even if the user makes
the most unexpected actions or generally the most extreme executions take place,
the software will behave according to its specifications.

4

34 4 Data Exploration

Figure 4.4: Distribution of Transaction’s Final Status in Testing

In the payments industry the goal is to end up in the approved state flawlessly.
The most dangerous state is the Error because something unexpected that the
developers did not think about happened. The number of states a transaction goes
through varies a lot. In more detail there can be from 10 or even less to more than
100 states. In Figure 4.5 the distribution of the number of states that the transaction
go through for test data of one week can be found.

Figure 4.5: Distribution of the number of the Transaction States in Testing

For these specific data, the number of actions in each transaction can vary from
11 to 106. In Figure 4.5 we see that the most frequent number of states for the
testing environment ranges from 29-59. Transactions with more than 59 events or
less than 29, seem to be rare and probably test the most crazy scenarios of the
software.

4.2.2 Data from the Live Environment
As it can be seen in Figure 4.6, the number of Approved transactions are by far
more than all the other types, in contrast to what happens in testing (Figure 4.4),
where Declined transactions are the most frequent. It’s interesting to notice that
there are about 70 erroneous transactions out of the 41840 in the dataset, which is
0.17% of the times.

In Figure 4.7 the correlation between the number of states at each transaction
and the final state is investigated. In that plot the only interesting outcome, seem
to be the fact that for less than 30 symbols in the sequence, the final status is never

4.3 Types of Differences

4

35

Figure 4.6: Distribution of Transaction’s Final Status in Live Environment

Approved, for the specific data. For sequence size between 46 - 54 all the transactions
are Approved.

Figure 4.7: Correlation between Final Status and number of actions in live data

4.3 Types of Differences
The goal of this thesis is to identify differences between state machines, which are
learned from transaction data. However the type of data we use do not restrict our
solution and the overall method can be used with other data as well.

In this section the differences the algorithm aims to identify will be explained.

Case 1: Removed/Added State in Observed Graph
In this simple case a state that exists in the reference graph, does not exist in the
observed one, however the previous and next states are the same (Figure 4.8).

Knowing that the following states are the same for both graphs, makes us
understand that there was a feature removed or added in the observed behavior
of the software. There may also be other reasons for one state to be removed or
added. Nonetheless it is always important to know which states were removed in the
observed graph in order to understand the causes.

4

36 4 Data Exploration

Figure 4.8: Comparison case 1

Figure 4.9: Comparison case 1

Case 2: More than one sequential states missing/added
When we are dealing with more than one wrong states that follow each other, the
situation becomes much more complex. This might mean that a whole part is skipped
or a whole new part added, like in Figure 4.10. However there are cases where this
is not of great importance like when the states have just one outgoing edge. In that
case even if it is a whole new part added, it is certain that the process will end up in
the exactly same state as if the part was not existing at all.

Case 3: Renamed Edge
One type of differences that should be identifiable is the renamed edges. In that case
we have an added state followed by a skipped state and the previous and next states
are the same. An example can be found in Figure 4.11, where state C is replaced by
state D in the observed graph.

Case 4: Edge changed location in sequence
It possible to identify a relocated state using the following pattern, like visualized in
Figure 4.12. There is an added or removed state and later in the trace there is the

4.3 Types of Differences

4

37

Figure 4.10: Comparison case 2

Figure 4.11: Comparison Case 3: Replaced Edge

same state with the opposite type, namely if at the beginning it was added now it
should be removed and the other way around.

Case 5: Combination of multiple added and skipped state
In addition to the previous cases, it is frequent to have multiple changes that can
not be easily explained. In that case it is enough to represent them in terms of
added and removed states. Nonetheless this is the most difficult case, because the
algorithm might easily confuse one trace with another and return wrong output.

4

38 4 Data Exploration

Figure 4.12: Comparison Case 4: Relocated Edge

4.4 Manual Exploration Findings
The first step before trying to automatically compare the data, was to manually find
important differences. The idea was to compare various payment methods, cards
and versions and see what kind of conclusions we can derive.

Comparing state machines learned from a whole test run of MSR (magnetic swipe
reader) payments and one learned from the same version data on LIVE environment,
a path that is not tested was found. In more detail, in the LIVE environment, a user
tried to pay contactless, but the transaction was not successful and then tried to
swipe the card. This is a path that cannot be found in the test model because the
case where one payment method is tried, fails and then another one is tried is not
tested.

4.4.1 Structural Differences between Live and Test
The first analysis done, before implementing the comparison algorithm, was modeling
the behavior of live and test systems and have a look to manually check how similar
they are. However the results did not seem very promising, as visualized in Figure
4.13. The test behavior has more levels, which means that the transactions needs
more steps before being marked as completed. On the other hand, the live behavior
seem to be more spread horizontally. That means that more paths can be taken, in
comparison to test.

Another interesting conclusion drawn by this manual comparison is what we
already showed with the data analysis in Figures 4.6 and 4.4. As analyzed earlier,
live transactions are usually APPROVED, but in test environment the most frequent
final status is DECLINED. That is also visible in the following comparison, the test
behavior in (a) has a big part on the left of the graph that is orange and the rest of
the nodes seem to be colored green. On the contrary, in Figure 4.13 (b) all the nodes
seem to be green, there are some orange, but the great majority is green, which
constitutes another critical difference between live and test.

4.5 Challenges

4

39

(a) Test Behavior

(b) Live Behavior

Figure 4.13: Big structural differences between the behavior of live and test environment for specific
payment method.

4.5 Challenges
At the beginning, the idea to compare the modeled behavior of the system, according
to their logs, seemed like the only solution, even though the theory behind graph
comparison made it clear that it will be too heavy computationally. Especially, for the
problem we are dealing with, some times multiple comparisons are needed in order to
find the trace that looks more similar to the wanted one. The problem of comparing
graphs is not known to be solvable in polynomial time nor to be NP-complete, and
therefore may be in the computational complexity class NP-intermediate. In Adyen,
hundred thousands transactions are performed each minute using the POS terminals,
thus the comparison method should not take much time and it is not efficient to

4

40 4 Data Exploration

model the behavior of the new incoming transactions in each iteration. Consequently
the capability of the method to handle streaming data, played an important role in
the decision of the algorithms that will be used.

Some of the challenges of the problem we are facing in this thesis are stated here:

• Duplicate transitions. A State Machine may have multiple transitions
with the same label. A good replay approach should be able to tell to which
transition the event belongs to.

• Complex patterns. Some times in a State Machines there might be complex
states that deviate the accepting sequences a lot. The replay approach should
not mistakenly consider the sequence as deviating because there is missing just
one action from the trace.

• Loops. The behavior modeled by the State Machine may produce loops.
These loops make it possible to create traces with infinite states. Nonetheless
the loops a replay approach should still be able to map occurrences of events
in the trace of the machine.

• Sensitivity to deviations. In cases where observed behavior is not allowed
according to the State Machine, the followed approach must not be sensitive
to every deviation. For example, deviations like adding a single state at the
beginning of the trace, should not influence the mapping of events that occur
later in the process. A replay approach should not stop after the first deviation,
i.e., the alignment should map other events after the deviations.

• Scalable. With the availability of big data, it is extremely important for a
replay approach to be able to deal with large logs, as well as large models.
Consequently, the computation complexity and the memory requirements
should also be taken into consideration when evaluating different approaches.

4.5 Challenges

4

41

Figure 4.14: Challenges visualized in simple model

5

43

5
Model Selection

DFASAT, the tool used for the model learning, contains many features and
functionality that change the model learned in huge degree. Setting all the

parameters correctly is a pretty challenging task. In this Chapter, the aim is to
provide the first intuitive explanation of the many parameters in Flexfringe and
how to set them. In order to tune the parameters for our problem, many tries were
necessary, since the data used for this thesis have some characteristics that should
be taken into consideration for the choice of the right learning method.

5.1 Red Blue Merging Algorithm
When learning a state machine one of the most important components of this
procedure is the state merging. Merging is used to minimize the initial representation
of the data to the smaller possible representation in terms of maintaining the
important information. Evidence-Driven State Merging (EDSM) starts with the
construction of a augmented prefix tree acceptor (APTA) for the given data, then
try all possible merges. Compute scores for each possible merge and perform the
merge with the highest score [50], [72]. The idea behind computing the score is to
measure the likelihood that a pair of states is equivalent. Then iterate.

The goal of merging two states is to combine them into one. Thus all input
transitions of both nodes should point to the new node, which should also contain all
the output transitions of both under merging states. The merge is allowed to happen
only if the two nodes are consistent, that means that they should not be of different
type (positive node merges only with another positive node and the same applies for
negative nodes). However this can me modified and adjusted to the corresponding
needs of each problem. In our case we have more than one type of nodes, there are
the approved, declined, canceled and error nodes, according to the final state of each
transaction. When a merge takes place and there are two same output transitions
the target nodes are merged as well, this is called a determinization process.

There are many different merging algorithms, however in this section the merging
algorithm of Flexfringe will be discussed. The merging algorithm of the Flexfringe we
used, is similar to the red-blue fringe state merging algorithm from [50], which was

5

44 5 Model Selection

(a) No Final Red (b) With Fi-
nal Red

Figure 5.1: Final Red Parameter Usage

introduced to reduce the search space of the possible pairs for merging evaluation.
The red-blue framework, as explained in [73], follows the procedure of merging
mentioned above, but in addition it maintains a core of red nodes with a fringe of
blue nodes. The red nodes are the identified parts of the automaton and the blue
are the candidates for merging. The red-blue algorithm starts by coloring the root
of the APTA red and its children blue. At each iteration the algorithm can either
merge a blue node with a red node, or change the color of a blue node into red if no
such merge can be found.

5.1.1 Final Red Parameter
Heule and Verwer [74] introduced a constraint on the state merging using EDSM
to block merging from happening when it adds new transitions to a red state.
This constraint is a consistency check which labels as inconsistent all the potential
merges that add new outgoing transitions to an existing red node. According
to [74] the reason for avoiding such merges is an assumption that red states are
correctly identified parts of the model. Nonetheless it depends on the application use
determining if it something that should be used. For the usage scenario investigated
in this work the final red parameter improved the results a lot. As it can be seen
from example 5.1 the addition of new transitions in a red node can create loops,
which not only complicate the model, but also misinterpret the behavior of the
underlying data.

In Table 5.1 the final red parameter’s impact in comparison to the default
parameters can be found. In Chapter 4 we analyzed the dataset and it seems that
500 states for the 17.300 traces that on average have more than 45 actions each are
too few. Which means that the model learned with the default values is probably an
oversimplification of the actual one. By setting the final red parameter to 1, once
a red state has been learned, it is considered final and can not be modified. As
explained above, this reduces the number of merges, thus we have a bigger size in
the following table.

Another parameter that affects the red-blue state-merging framework is the
extend. The impact of that parameter in our case can be found in the following
Table 5.2. The default case contains all the parameters used by Flexfringe with
their default values, which for x= 1. Then we just change x= 0 and everything else
stays the same. The Table 5.2 indicates that the size of the unique states, when

5.2 Sinks

5

45

Params Alphabet Size Time (msec)
default 562 2437.4170
f=1 1275 1111.5940

Table 5.1: Impact of final red parameter in a model learned by 17.300 traces.

changing the extend parameter, decreases by 17.8%. The impact of this parameter
in the execution time is much more important. The idea behind this parameter in
Flexfringe is that a merge candidate (blue) is only changed into a target (red) when
no more merges are possible.

Params Alphabet Size Time (msec)
default 562 2437.4170
x=0 467 48.8862

Table 5.2: Impact of extend parameter in a model learned by 17.300 traces.

5.1.2 Lower Merging Bound
Another parameter which affects the quality of merging is the lower bound l. The
lower bound determines the limit under which merge is considered inconsistent. In
some cases, one of these, also the one we are dealing with now, it is better to colour
a state red and do not merge it with anything new, rather than doing a bad merge.
That can be succeeded by setting the lower required merging score to a positive
value and exclude all the merges with score beneath that.

5.2 Sinks
The idea of sinks is pretty different in Flexfringe that it usually is in the Finite State
Automata. Sinks are widely knows as the black holes of state machines. When some
transitions lead to non-final states and cannot leave from these states we name them
sinks.

However in Flexfringe sinks behave differently. As explained in [75] sinks contain
the states that meet some user-defined conditions, like having low frequency counts,
having only accepting traces (or none), triggering an error etc. Sinks make the model
more interpretable because they hide irrelevant behavior of the system. Notwith-
standing when comparing the behavior of various systems using state machines no
information is irrelevant. The structure of the model is important and should not
be changed by the sinks. Therefore, in this thesis the models learned will contain
nothing in the sinks, except for the final state (the final states will be the sinks).

5.3 Heuristic
In theory heuristic defines the consistency checks for the merging. In Flexfringe the
heuristics contain these consistency checks and the required corresponding calculation
but also some other problem related functions. Flexfringe contains some well known

5

46 5 Model Selection

heuristics which can be used for specific categories of problems. The included
heuristics are the following, as explained by Hammerschmidt in [76]:

• EDSM [50, 77], a heuristic for DFA identification using positive and negative
data. The consistency check is based on the positive/negative labels and the
heuristic score is the number of merged states.

• overlap [74], a heuristic based on EDSM used in the Stamina competition [78]
for DFA identification. The consistency check is based on the overlapping
outgoing transitions, the heuristic score is based on the number of overlapping
transitions.

• KL-divergence [79], a PDFA heuristic using the KL-divergence between states
as a heuristic. The consistency check is based on the distance between the
distribution of states (as given by the KL-divergence).

• likelihood [80], a heuristic for PDFA identification.The consistency check selects
a model according to its log-likelihood.

• Alergia, [76], a well known PDFA inference implementation. The consistency
check uses the Hoeffding bound to measure the distance between distributions.

• RSME [76], likelihood for regression automata. The consistency check uses a
mean-squared-error penalized likelihood selection condition.

• overlap4logs [6], a heuristic specifically for logs. It goes behind the idea of
positive and negative data adding to types. The consistency check makes sure
that the merging will be made with respect to the data type. The rare actions
are grouped into a sink.

5.3.1 Adjustment of Heuristic
Most of the problems require a heuristic implemented for its specifications. Creating
a heuristic means overriding some of the default Flexfringe functions to steer them
towards the direction of the corresponding problem. The tool itself contains multiple
heuristics for different categories of problems, nonetheless most of the problems
require to adjust the tool for optimal results.

In the heuristic a consistency check and a scoring scheme can be developed for
the specific problem as well as some better visualization can be added.

Two more functions that usually need some adjustment are the functions find_end_type
and sink_type. In find_end_type what is considered as a final state can be defined.
In sink_type is defined what we consider as a sink, in our case the sinks are the final
states of the transaction flows. Additionally in sink_type the condition for adding
thing in a sink can be defined.

In order to change the visualization of the model the functions print_labels and
print_dot can be modified. In print_labels the data that the user wants to print on
the edges are specified. By default Flexfringe prints the transition name and some
statistics about its frequency. Additional information can be computed and printed
and also some int value can be returned which can possibly determine the color of

5.4 Statistical Checks

5

47

the edge. This value can be accessed by print_dot to write the corresponding color
to the dot file. Generally in this function what will be written in the dot file are
determined, which means that the user can interfere with this function to change
the visualization.

5.3.2 Heuristic of Log Comparison
For the log comparison, initially the overlap4logs heuristic was used, which however
makes use of the sinks in a way that is not optimal for the comparison. As mentioned
above, overlap4logs groups the rare transitions that lead to the same final state
all together. When the goal is to compare models it is important to identify the
differences that may not appear that frequently. Thus it is important to use also the
information contained in the sinks. Transactions should always end with one of the
predefined states. Consequently it is expected that in the model all the traces will
lead to one of these four states. Which means that in our case these four final states
can be considered sinks.

5.4 Statistical Checks
Flexfringe provides also the option to determine the minimum number of occurrences
of states or transitions in order to be included in the statistical checks. Low frequency
states and transitions may influence the statistical tests in an undesirable way, thus
it is usually advised to set them higher than 0. However the business behind this
thesis requires all the states and transitions to be taken equally into consideration.
For that purpose the statistical tests are disabled by setting the parameters q and
y, of the tool, to a very high value, regarding the count of states and transitions
respectively.

6

49

6
Conformance Checking

T he goal of this thesis is to find an efficient way to identify and visualize the
differences between models. These models represent the behavior of some

software, which in our case will be the one that runs on Adyen’s POS terminals and
for its inference, a lot of data are necessary. The data used for the learning process
should cover most of the common flows (and preferably the uncommon as well).
Consequently, for the case of Adyen, the models are very complicated. In Figure 6.1
the behavior of the contactless transactions using state machines is visualized.

Figure 6.1: Model learned by 17300 test transactions of a software version

This image is just for the reader to get an idea of the size and the complexity of
the models the algorithm should be able to deal with. Going through a graph like
that is impossible for a human being, which makes the necessity of this project of
higher importance.

In this chapter, the main contribution of this thesis will be presented. The
proposed method is divided in three parts. The first part is the necessary pre-

6

50 6 Conformance Checking

processing of the data (Section 6.1). Secondly we have the differences’ identification,
which is implemented with three different algorithms (Section 6.2) and lastly the
differences’ handling (Section 6.3). An overview of the aforementioned steps can be
found in Figure 6.3.

6.1 Preliminaries
The aim of this thesis is to develop a method, which will be able to efficiently
identify anomalies in the behavior of the software using log data, on the fly. How
the modeling of the behavior will take place is already known from previous sections
and from previous work, in our case using state machines and more precisely a tool
named Flexfringe 1.

The initial idea was to find and implement a graph comparison algorithm, which
will receive as input two states machines, which represents the behavior of the
software, with the goal to visualize the differences in a compact and clear way.
However the difficulty we are facing is that it is not enough to find the first difference
in the trace and then annotate it as divergent path till the leaf, as most of the related
literature does [23, 25, 61]. It is really important to identify what did change that
led to that divergent path.

Started implementing different graph comparison algorithms it was soon pretty
clear that the complexity of comparing all the possible edges between them was
unbearable for large amounts of data, especially if they change frequently, as presented
in Chapter 10. The needs of this project, impose the development of a tool that will
be able to handle the speed the transaction log data arrive, some times, hundreds
of thousands entries per minute. The need for an algorithm without exponential
complexity in terms of the exists paths was a main factor to the decision procedure.

Trying to compare discrete sequences, in our case transaction flows (which are
actually sequences of states), is based on the same idea with the comparison between
DNA sequences. The goal in both problems is to identify what makes them diverge
at each point and modify them, so that they will become as similar as possible (align).
Thus, this idea was used for the development of the comparison tool together with
the replay concept of conformance checking, where traces are replayed in the model
to check if they are validated or not. In addition to that, more than one algorithms
were used for finding the optimal route to the requested node.

6.1.1 Pre-processing
In order to apply our proposed method, data that represent the behavior of the
system are needed, and another set of dataset that should be checked if it is conformed
with the model of the system. The first step of the pipeline is the pre-processing
of the log files; this is fullfilled using the tool Rick Wieman [6] created. Then these
pre-processed data are fed to a state machine learning algorithm, which in our
case is the Flexfringe. The reason for choosing this specific tool is argued by the
aforementioned work by Wieman (the tool there is named DFASAT, but we will

1https://automatonlearning.net/flexfringe/

https://automatonlearning.net/flexfringe/

6.1 Preliminaries

6

51

Figure 6.2: High level the structure of the method

refer to it with its new name Flexfringe). The Flexfringe outputs the model (finite
state machine) that will be considered our specification graph.

6

52 6 Conformance Checking

6.2 Differences Identifications
The aforementioned problems and ideas led us to the pipeline presented in this
section and visualized in Figure 6.3. An assumption taken for this pipeline is that
we have some specification data and some incoming data that need to be checked.
We assume that the specification data are able to represent the expected or wanted
behavior of the software and are considered the basis using which, anomalies will be
identified in the incoming traces. From now on, we will refer to the data used for the
learning of the models as specification data and to the traces checked for anomalies,
observed data.

Driven by the motivation to create a fast and effective system for large amounts
of data, the decision to follow an approach completely different to what is till now
used for log comparison was taken.

It is known that the modeling of the behavior takes much time (the learning
procedure is time consuming), thus remodeling every time new data arrive is not
a realistic option. For that purpose, the proposed method uses the model of the
expected or wanted behavior of the software and the observed data that need to be
checked from the logs, only pre-processed in text format.

The way we decided to find anomalies in the data is by examining if they are
validated by the specification model. In this case, as we describe in Section 3 we
perform conformance checking by testing if the observed traces are satisfied by the
specification graph. The specification graph should model the expected behavior of
the system. The more complete this model is the better results we will get.

The followed approach is split in two main parts. First is the pipeline for the
detection of the differences and secondly the reduction/grouping of these results.

6.2.1 Main Pipeline Analysis
The proposed pipeline can be found in Figure 6.3. After parsing each trace from
the log file, which contains the observed data (right part of the Figure), the first
step is to go through the conformance checking algorithm. Conformance checking is
responsible for identifying the traces that are and the ones that are not validated
by replaying them in the graph. By validated is meant that the trace from the first
state till the last one should appear in the model and should end up at the same
final state. Each edge and state of the trace has to exist in the exactly same order in
the graph. In order to achieve that, we traverse the whole tree, looking for the next
transition of the incoming trace at each step. If at some point the next transition
of the sequence can not be found in the expected order in the tree, the sequence
alignment should start to check what went wrong.

To sum up the conformance checking part, if the trace is validated, it is annotated
as existing and the algorithm continues with the next one, while if it is not validated,
the differences have to be identified, which will be conducted by the sequence
alignment algorithm.

The goal of the sequence alignment is to identify the parts of the trace that are
same and the ones that are not. The trace is modified by adding and removing the
necessary actions in order to make it aligned with the most similar one from the
state machine. There are multiple differences that can be identified by the algorithm,

6.2 Differences Identifications

6

53

Figure 6.3: Main Pipeline of the System

extensively described in Section 4.3, but everything will be expressed in terms of
skipped edges and added edges. The case where many consecutive skipped or added
states appear should be investigated further, because over a number of successive
skipped states, the paths are completely different and it does not make sense to find
the parts that are the same.

The basic idea of the sequence alignment algorithm is explained in the Background
chapter, section 2.6. There is an example presenting how two sequences can be
aligned in 2.2. There, two strings are aligned, by adding gaps in the one sequence
or the other. However, the algorithm presented here should only return all the
modification in one of the sequences, since the other sequence, in our case is a whole
tree. The result of the implemented algorithm for the Example 2.2 would be:

T/+, A, C/-, G, T, C/-, G/+, A/-, T, C, A

The + (plus) sign means that this action is added, thus it exists in the sequence
but not in the tree. The - (minus) sign means that this action is removed, so the
action does not exist in the sequence, although it was expected according to the tree.

The first two presented algorithms (Greedy and Best-First) are just looking for
the misaligned state at each step and how they can fix it. These two algorithms are
named after the searching algorithm that was used for locating the skipped or added

6

54 6 Conformance Checking

states.
In order to use some basic steps for all the algorithms, we modified the three

choices of sequence alignment presented in Table 2.1, to suit the needs of the current
problem, we end up with the following cases:

1. If the two actions are the same, a step is taken in both sequences.

2. One step can be taken in the first sequence, and if then the sequences
align it is the case of an added state.

3. One step is taken in the second alignment (in our case the tree), if then
the sequences align it is the case of skipped state.

4. In addition to the aforementioned cases, there is one more which is necessary
because of the nature of the data. If none of the above cases is satisfied,
probably the case of a replaced state is faced. That means if the algorithm
moves one step in both the tree and the sequence, the next states are
aligned.

Figure 6.4: Four cases for sequence alignment problem

How one of the aforementioned cases is chosen depends on the used algorithm. For
that purpose we present three different algorithms, each one of them with different
advantages and disadvantages. These algorithms will be presented and analyzed in
the next subsection.

The alignment between the sequence and the tree was performed in three different
ways. First the naive method, where at each step we are looking for the missing
states. However the first solution is returned regardless of scores. Then an improved
version where all four options mentioned in Figure 6.4 are examined at each step and
the one with the best results with respect to the next states is chosen. Finally the
dynamic programming approach is implemented, the only global sequence alignment
algorithm which means that all states have to be taken into consideration and not
just the neighboring ones as done by the previous two methods.

For each algorithm some advantages and disadvantages will be mentioned, which
will be backed up in the Chapter 7.

6.2.2 Greedy Search Algorithm
The Greedy Search Algorithm is a modification of the breadth first algorithm which
looks for a specific action in a limited area of the graph. The breadth first algorithm
does not search in the whole graph, only the part of the graph under the node, which
was lastly aligned with the wanted sequence.

The graphs are usually quite deep. For that reason the greedy algorithm is also
limited in terms of the depth it will examine, as we can see in the next subsection.

6.2 Differences Identifications

6

55

(a)
Tran-
si-
tion
Flow

(b)
Re-
sult
With
Depth

(c)
Re-
sults
With-
out
Depth

Figure 6.5: Usefulness of limiting depth case 2

6.2.3 Impact of Depth of Search for Greedy Algorithm
The proposed algorithm searches for skipped actions up to a specific depth. That is
needed in order to force the algorithm stop after searching up to some depth and
haven’t found that action. The benefits of the depth are twofold: First is the runtime
performance. If the algorithm continued running for every possible action until the
leaves, the exponential complexity would make it unbearable for a medium amount
of data. Second we prevent from identifying a wrong action as skipped because we
searched too deep. For example using the model in Figure 7.1 and we want to align
the sequence A,C,D,E,B,F as shown in 6.5(a), the results are the following: without
limiting the depth, the action A is aligned, on the second step, when searching for
B in the transition graph the B before F will be found, thus states C,D,E will be
marked as skipped which is wrong. In reality, action B is added in the given sequence
and does not exist in the transition graph after A and before C. Defining a depth of
3 will make the breadth first algorithm search for only 3 subsequent children and
since it does not find B it should stop and mark B as added.
Advantages: It is relatively fast. The accuracy of this method is good.
Disadvantages: First found option is returned, which means that in some cases
we do not return the optimal solution. Using this algorithm the search depth should
be limited in order to return the most relevant result.

6.2.4 Best-First Search Algorithm
The Best-First Algorithm is an improvement of the Greedy one, where optimizations
are used to make the implementation more efficient, but also the tree is more

6

56 6 Conformance Checking

extensively searched to find the best alignment. In more detail, at each step, where a
transition is not in the expected order (thus the part of the sequence is not conformed
by the specification graph) all four cases explained in Figure 6.4 are explored and
the one with the smallest distance is chosen. In more detail, at each step, a queue is
created with all the states that need to be explored, starting from the ones closer
to the node under investigation. Each element of the queue is checked if it has
as an outgoing edge the transition we are looking for and if yes the added and
skipped intermediate states are computed (using back-propagation in the tree). We
continue this procedure till a specific depth of the tree is fully explored and when
the iteration stops, the results are returned together with a number that shows how
far the aligned part is from the current node. From the possible alignments, the one
with the smallest distance is chosen, which should be the one with the minimum
modifications.
Advantages: Very fast method. Very good performance.
Disadvantages: Not the whole sequence is taken into consideration. Only the
neighboring nodes to the one under investigation are checked, which means that the
returned output may not be optimal.

6.2.5 Dynamic Programming
In Chapter 3 an example of how global sequence alignment using dynamic program-
ming works for two sequences is presented. For the sake of this project, we need
to align one sequence with the whole tree, thus with every sequence that can be
generated using the tree (specification graph). In order to achieve that, we modified
the well known sequence alignment algorithm by Needleman and Wunsch [42] to
align all the sequences that can be generated by a tree with one trace (the sequence
under investigation).

Algorithm Description
For each node of a tree we can define its level.
The level of a node is defined by 1 + the number of connections between the node

and the root. It starts from 1 and the level of the root is 1.
However since in this project we are mainly working with transitions, each transition
of the tree will get a level assigned based on its distance to the root. The matrix for
the tree/sequence alignment will have dimensions #of transitions in the tree × #of
transitions in trace. The main steps of the algorithm are the following:

1. Initialize matrix

2. Compute values for matrix (Pseudocode 6.1)

3. Bottom-Up align sequences

During the initialization phase, the matrix with the correct dimensions and keys
(for column and row identification) is created. The rows of the matrix represent
the transitions of the tree and the rows the transitions in the observed sequence,
that needs to be checked. The first row and the first column of the matrix always
represent the GAP character and the scores are initialized based on the GAP penalty.

6.2 Differences Identifications

6

57

Figure 6.6: The bold cell is the one, whose
value we are trying to compute. The rest
are the ones that have to be returned.

The second step of the algorithm is pre-
sented using the pseudocode. For each tran-
sition of the incoming trace, the scores at
each row of the matrix should be computed.
Thus for each cell, the three neighboring val-
ues should be returned, the left one, the one
above and the one diagonally left up, as visu-
alized in Figure 6.6. From these three values
the maximum is chosen and based on their
position encoding (0 for left, 1 for diagonal and 2 for above) the penalty that should
be added is determined. A necessary modification of the original algorithm is that
these previous values in our case are not always in the previous row and previous
column. The table has to be searched to find the previous values such that their
level is the current level -1 and the destination of the key should be the source of
the current transition. Thus in the function getThreeNeighboringCells the matrix
is search for keys in the rows that satisfy: previous_level = current_level -1 and
previous_destination == current_source, where current is the row whose value we
are computing. If the maximum value is in the cell above or left to the current one,
a GAP penalty is added. If the maximum values comes from the diagonal cell, it
has to be checked if there is a MATCH or MISMATCH (pseudocode 6.1 line 8).

Pseudocode 6.1: Dynamic Programming step 2: Compute matrix values
1 f u n c t i o n computeMatrix (matrix , incoming_trace)
2 f o r each t r a n s i t i o n in incoming_trace :
3 f o r each table_row_key in matrix :
4 value , p o s i t i o n = max(getThreeNe ighbor ingCe l l s ())
5 i f p o s i t i o n == 0 | | p o s i t i o n == 2 :
6 e l s e i f p o s i t i o n ==1:
7 i f t r a n s i t i o n == trable_key_row . g e t T r a n s i t i o n () :
8 writeMatr ix (table_row_key , t r a n s i t i o n , value+MATCH)
9 e l s e :

10 writeMatr ix (table_row_key , t r a n s i t i o n , value+MISMATCH)

When the matrix is full, the alignment between the incoming trace and the most
similar sequence of the tree can be found. Starting from the last column, the highest
number is chosen and the corresponding row and column at that position are the
items that can be aligned. Continuing to the next column we do the same and the
consistency between the two subsequent transitions is checked. If the destination of
the previous element is not the source of the current one, there are skipped transitions
in between. If a row has more than one maximum value per column then we face an
added transition.

This procedure will be better explained using an example.

Example
The idea is to annotate every transition with a level, according to their distance from
the root. As it can be seen in Figure 6.7 the Transition 0→ 1 and Transition 0→ 2
have level 1, since it is the first transition after the root (default initial transition),
Transition 1→ 3 and 2→ 5 are in the second level etc. Dynamic Programming
requires at each step to get the maximum value of the three possible previous positions.

6

58 6 Conformance Checking

In our case we have to identify the previous level first and get the corresponding
values accordingly. To the maximum value of the previous level, that leads to our
current position, the penalty of the action that should be taken is added. As in the
original algorithm we have penalties for match, mismatch and gap.

In the Table 6.1 the cost matrix for the alignment between the specification graph
shown in Figure 6.7 and the sequence "afee" can be found. The costs can be found
in Table 6.2. Always the first row and column of the matrix contain the gap action,
which is indicated by −. At each step we check the values of the previous level, for
the transitions that have destination the same as the current transition’s source.
With red color the highest score for each column is annotated, going from the bottom
up, we see that the last e is aligned with the transition 8→ 9 of the graph, the other
e with the transition 3→ 4. We notice that between transition 3→ 4 and 8→ 9
some edges are missing. The missing edges are the skipped edges. Then we continue
with f , which is aligned with 0→ 1, but also a is aligned with the same transition.
That means that after the first symbol is aligned with a transition all the rest do not
exist in the graph, thus they are the so called added edges. Consequently f is added,
and 4→ 6 (which is the symbol w) and 6→ 8 (symbol l in the graph) are skipped.

Finally, the algorithm will return: a, f/+, c/-, e, w/-, l/-, e.

level Transition - a f e e
- - 0 -2 -4 -6 -8
1 0 → 1 -2 4 2 0 -2
1 0 → 2 -2 -4 -6 -8 -10
2 1 → 3 -4 2 0 -2 -4
2 2 → 5 -4 -6 -8 -10 -12
3 3 → 4 -6 0 -2 4 2
3 3 → 5 -6 0 -2 -4 -6
4 4 → 6 -8 -2 -4 2 0
5 6 → 7 -10 -4 -6 0 -2
5 6 → 8 -10 -4 -6 0 -2
6 8 → 9 -12 -6 -8 -2 4
7 9 → 10 -14 -8 -10 -4 2

Table 6.1: Dynamic Programming matrix for the whole tree

Penalty Value
match 4
mismatch -4
gap -2

Table 6.2: Example cost table for dynamic programming approach

6.3 Handling the Differences

6

59

Figure 6.7: Tree with which the example sequence is aligned

Dynamic penalties

In the problem we are dealing with, the sequences of the tree may be long and many
gaps might be added in the middle. That creates the problem that if a transition
close to the leaf is identified as a match, the influence of that might be negligible to
the overall score and the optimal alignment might not be found.

For that reason, dynamic costs are used. More specifically the reward for a match
is increased as we go closer to the leaf. That approach has improved the results,
but it is still unclear how the penalties impact the performance thus, it has to be
investigated further.
Advantages: It can be mathematically proved that if there is an alignment, the
algorithm will find it.
Disadvantages: It depends on the penalties a lot. With different values for the
scores, different outputs are produced by the algorithm. Very slow.

6

60 6 Conformance Checking

Figure 6.8: Handling of differences

6.3 Handling the Differences
The previously presented algorithms return the traces that were not conformed by
the graph and the corresponding differences in terms of added and skipped edges.
Each invalidated trace usually contains more than one differences which should be
somehow transformed in a human recognizable format. In addition to that, there
are many traces that present exactly the same differences when compared with the
graph. Consequently, there are some next steps that should be performed, in order
to improve the output of the algorithm and make it as comprehensible as possible.
The next step is to group the traces with the same differences together, next extract
patterns from the data and use them to transform the sequences of differences to
more meaningful information. The followed steps for the handling of the differences
are presented in the Figure 6.8.

Group Results
As mentioned above, the algorithm returns the traces and their corresponding
differences to the model, however there are cases where multiple traces have exactly
the same differences to the graph. The statistical analysis of the appearances of the
differences may help to the explanation of their meaning and their importance. For
that purpose the traces that were not satisfied by the graph are grouped based on
their differences. For example, suppose the following traces and their corresponding
differences in 6.3; these two traces would be grouped together even if they are not

6.3 Handling the Differences

6

61

the same, since there differences are exactly the same.

Trace Difference
Trans_init, Pin_Entry, Connect_Backend, Validated, Approved Validated: added

Trans_init, Contactless, Connect_Backend, Validated, Approved Validated: added

Table 6.3: Example of two grouped traces

After that step, the grouped traces are returned, which decreases the amount
of results to a great degree. For the example, in Table 6.3 only one trace would be
returned after the grouping, which would be the representative of the specific group.

Additionally, the distribution of the group sizes could give us some intuition about
the importance of the difference. In case there are some groups with outlying size,
these groups might contain either unimportant or extremely important information.
This is something that again requires further investigation.

The first step that should be performed is some clustering in the differences. The
traces that have the same differences should be grouped together. The next step is
to check the distribution of the cluster size.

Pattern Extraction
Looking at the differences the data presented it was clear that they were following
some patterns. Usually there were some states that changed names in the new
version of the software, or had changes order. These two are the most frequent
changes between the data.

The following patterns will be used for the identification of the meaningful
differences between the data. In more detail we have:

• Renamed state → edge1 added, edge2 skipped and their previous states are
the same as well as the next states.

• Relocated state → edge1 removed, edge2 added and the two edges have the
same name .

Representation of the Differences
The importance of the representation of the differences was pretty clear from the
first stages of this thesis. The fact that the learned models are very complicated
makes the visualization of the difference in the graph very difficult. After many
discussions with the developers, of the software that we model, they proposed to
visualize the log lines that appeared to be different between the two datasets. Since
they are very familiar with the log files we decided to show to the developer the log
line that is not validated and the modification that were necessary in order for the
trace to get accepted. Again in terms of added and skipped actions.

The tool that was used for the visualization is d3.js 2. Color mapping for the
different types of actions, added, skipped and existing in both logs with colors blue,
red and green respectively.
2https://d3js.org

6

62 6 Conformance Checking

Prefix Tree
A prefix tree, also called digital tree, radix tree or trie, is a kind of search tree,
an ordered tree data structure used to store a dynamic set where the keys are
usually strings. In this case the keys will be the actions of the transaction. All the
descendants of a node have a common prefix of the string associated with that node,
and the root is associated with the empty string. This is extremely helpful for the
visualization of the point (the action) that diverges the traces, which is the root
cause of the difference. The nodes represent the state the transaction ends up, after
following a specific action. The edges are labeled with the name of the corresponding
event. An example of the visualization can be found in Figure 6.9.

Figure 6.9: Example of the implemented Prefix Tree

As it can be seen from the Figure 6.9, the colors show the differences and the
similarities between the logs. With green the actions that are aligned are shown,
with red the actions that were in the model, but not in the test traces and with blue
the actions that do not exist in the model but were introduced in the test traces.
At the end of the trace, on the leaf, is the id of the transaction for the developer as
a reference for the user to investigate the problem of that transaction in Adyen’s
system.

Additionally some features are implemented in order to make the visualization
simpler, like having collapsible nodes to minimize the printed results. Hovering over
the edge labels, additional information about the type of difference and the specific
event are showed.

6.4 Efficiency Analysis
In Table 6.4, the runtime complexity of the various parts of our methodology is
estimated. Even though with the first look the complexity of all algorithms seems to

6.4 Efficiency Analysis

6

63

be almost same, it has to be made clear that in the Greedy and Best-First algorithm
just a small part of the tree (specification graph) is searched. On the other hand for
the dynamic programming approach for the whole tree (which usually is very big) a
scoring table is created. Consequently k >>m, since with fixed m usually around
25 transitions are investigated and k is more than 1000. It will also be proven in
the Chapter 7, that the runtime performance of Greedy and Best-First algorithms is
much better than Dynamic Programming.

Algorithm Complexity Explanation
Conformance Checking O(n) n: number of actions per trace

Sequence Alignment (Alg. 1 & 2) O(n*m) n: number of actions per trace
m: depth of search in tree

Sequence Alignment (Alg. 3) O(k*n) n: number of actions per trace
k: transitions of the tree

Total for Greedy & Best-First O(l*n*m)
l: number of traces
n: number of actions per trace
m: depth of search

Total for Dynamic Programming O(l*n*k)
k: transitions of the tree
n: number of actions per trace
l: number of traces

Table 6.4: Runtime complexity of the various algorithms used, Algorithm 1: Greedy, Algorithm 2:
Best-First, Algorithm 3: Dynamic Programming

Accordingly, investigating the space complexity of the sequence alignment algo-
rithms the space needed for dynamic programming is much more than the other
two approaches. This happens because for the dynamic programming a table with
dimensions k ∗n has to be computed for each trace. The other two methods, do
not store any other information, except of the chosen alignment for each incoming
action.

Algorithm Space Complexity Explanation
Greedy O(n) n: number of actions per trace
Best-First O(n) n: number of actions per trace

Dynamic Programming O(n*k) k: transitions of the tree
n: number of actions per trace

Table 6.5: Space complexity for each trace

7

65

7
Experiments

T he evaluation of the log differencing tool is not an easy task. The data provided
by Adyen are real transaction logs from various releases of the POS terminal’s

software both in live and test. Never before has been tried at Adyen to compare the
behavior of their software in order to identify the runtime differences, thus, it was
more or less an unknown field for everyone. The proposed pipeline is completely
different to what has been tried by related work for the same problem. Consequently
there is no direct comparison with various methods, nonetheless we implemented
three different algorithms which will be extensively compared in the current Chapter.

7.1 Experimental Configuration
The algorithms presented in this work are implemented in Java. However the analysis
and the mutation of the data, as well as the evaluation is performed in Python (by
calling the jar files). The visualization of the differences is accomplished with the
d3.js library, thus there is also javascript and html code for the handling the results
of the algorithms.

All the experiments run locally in a Macbook Pro with 16GB memory and
processor Intel Core i7 at 3.1GHz.

7.1.1 Experimental Approach
The evaluation of the presented problem is not that easy, because it is not a classical
supervised learning problem. The algorithm returns for each trace the differences
that are presented with respect to the specification model. Unfortunately there
are no labels given and in the production level manual inspection of the results is
necessary. Nonetheless to test the performance of the current, tool mutation testing
will be performed, as a way to artificially create labeled data and then evaluate the
tool using them.

The results will be evaluated in trace level, meaning all the returned differences
should be correct for the result to be considered correct and to difference level, where
each returned difference will be checked. In the second case some measures from the
confusion matrix will be used. The notion of True Positives - TP (differences, that

7

66 7 Experiments

were correctly identified) is helpful in this problem, as well as the False Positives -
FP (the algorithm thought is a difference, but it is not). The False Negatives -FN
will be computed as the complement of TP thus, the differences the algorithm should
have found but didn’t. The True Negatives - TN (the parts of the sequence that do
not have any differences and were correctly identified by the algorithm) will only be
computed, when accuracy has to be estimated. In the trace level, the whole sequence
will just be marked as correct or wrong.

The evaluation will be conducted using two different datasets, one dummy and a
real one. The dummy is used to explain the tool functionalities and the real one to
evaluate the performance of the algorithms. In the real dataset there are no labels,
therefore the concept of mutation testing will be used. The original data will be
modified and the types of modifications will be used as labels, in order to create a
labeled dataset.

7.2 Evaluation with dummy Dataset
This section presents some examples of the methodology explained in 6.3 using a
dummy dataset to make clear the output of the algorithm as well as the expected to
work and fail cases.

The following example shows the specification graph and the traces that had to
be checked. In the table 7.1, for each trace, the output of the algorithm is shown. In
addition, the third column explains in which case of difference each output refers to.

I

0

1

a

2

b

3

c

5

b

a

4

e

6

w

7

z

Figure 7.1: Specification State Machine for the example

7.2 Evaluation with dummy Dataset

7

67

Data Algorithm Output Case
a, b, b Added State→a Added State
a, c, e, z Skipped State → w Skipped State
a, e, f, w, z Skipped State → c, Added State → f Both Added & Skipped
a, z Skipped States → c, e, w Multiple Skipped States
a, w, z, c, e, w, z - Multiple Appearances 1

Table 7.1: Algorithm input and output for various cases

The first case in Table 7.1, starts with the symbol a, which exists in the graph
and leads to node 1, which however does have only one outgoing edge, c. In the
observed sequence, a b has to follow the a. Consequently we have to check two
scenarios. One is the possibility that the transition a is added and one that there
might be some skipped states between a and b. Looking at the graph in Figure 7.1
we notice that there is no b at any of the children, if at the first step the a is followed.
We can conclude then, that a is added since the sequence b,b is validated by the
specification graph.

The sequence at the second row of Table 7.1, is starting with the symbol a, which
exists in the specification graph at the first level and it takes us to node 1. Then the
symbol c is an outgoing transition of node 1 and it takes us to node 3. The next
symbol of the sequence is e and it leads us to node 4. The final symbol, z is not
an outgoing edge of node 4, thus it is either skipped or added. The skipped case is
checked first and it seems to be the case since one of the children of that node have
z as an outgoing edge. The node is number 6, thus the transition w is skipped.

The same procedure is followed for every trace that has to be aligned. The last
sequence is a bit challenging a,w,z,c,e,w,z, the output of the algorithm depends on
the depth parameter. The output can be either a,w/+,z/+, c,e,w,z which has edit
distance 2, or a,c/−,e/−,w,z,c/+,e/+,w/+,z/+, whose distance is 6. Nonetheless
the first two algorithms (Greedy and Best-First) that do not consider the whole
sequence but just the closest n-neighboring nodes (according to the depth parameter),
will output the second alignment. Dynamic Programming works for these complicated
case, since it aligns the whole sequence, before returning the one with the minimum
cost.

However when the method has to be applied in real company data way too
many differences were returned, namely for 2144 traces 144 traces had one or more
differences. Thus the new step of the algorithm was introduced, which clusters the
traces based on the differences they have. In that way it was feasible to examine if a
difference frequently appears in the results.

1the correct output for this case depends on the depth allowed to perform depth-first, see Subsection
6.2.3.

7

68 7 Experiments

Match Mismatch Gap Dyn. Mutation Accuracy F1-score
3 -4 -2 yes 2 added 53% 69%
3 -4 -2 no 2 added 51% 65%
4 -2 -2 no 2 added 18% 46%
4 -2 -2 yes 2 added 25% 47%
6 -2 -2 no 2 added 14% 24%
6 -2 -2 yes 2 added 12% 31%
6 -4 -2 no 2 added 56% 70%
6 -4 -2 yes 2 added 51% 71%
6 -6 -2 no 2 added 55% 70%
6 -6 -2 yes 2 added 51% 67%
6 -6 -4 no 2 added 54% 70%
6 -6 -4 yes 2 added 53% 69 %
6 -6 -6 no 2 added 13% 22%
6 -6 -6 yes 2 added 20% 33%
6 -10 -6 yes 2 added 50% 66%
12 -10 -6 no 2 added 55% 70%
12 -10 -6 yes 2 added 53% 69%
14 -10 -6 no 2 added 59% 74%
14 -10 -6 yes 2 added 56% 71%
14 -12 -6 no 2 added 50% 66%
14 -10 -8 yes 2 added 49% 65%
14 -10 -8 no 2 added 57% 72%

Table 7.2: Evaluation metrics for various parameter values. The presented values are the average of
10 executions.

7.3 Parameter Tuning for Dynamic Programming
As mentioned in 3.6.1, the penalties influence the outcome of the sequence alignment
using dynamic programming in a huge degree. Nonetheless there is no standard
way to find the best values, additionally it is heavily dependent on the problem.
Since sequence alignment, using dynamic programming, is not widely used for log
differencing, we will greedily try to understand the impact these scores have in our
implementation. For that purpose the algorithm will be run with various values and
the accuracy and F1 score will be computed in the difference level. The mutations
are random and for consistency purposes each experiment is run 10 times and the
average accuracy, recall and F1 score are presented in Table 7.2.

It is interesting to notice how small changes in the penalties influence the accuracy
of the tool. For example for the following setting: match=3, mismatch=-4 and gap=-
2 (no dynamic costs) the accuracy is 51%, however when match=4 and mismatch=-2
the accuracy drops to 18%.

7.4 Difference Detection in Real Dataset

7

69

7.4 Difference Detection in Real Dataset
During the first phase of the mutation testing, new states are randomly added and
some are randomly removed. However the last state cannot be neither removed nor
changed (since there are four fixed final states). That’s the only necessary restriction.

7.4.1 One Change per Log Line
First the most simple mutation of the data was tried. Each line is modified by adding
or removing an existing event of the transaction log line.

For this testing scenario the specification graph is learned from 17300 transactions
of the testing environment of Adyen. The fact that the data are from the testing
environment it means they are pretty distinctive and they create a more wide graph
than the same amount of real data would create, because many different scenarios
need to be covered. The used data are the result of filtering of an initial dataset in
order to contain contactless transactions. This aims to the reduction of the graph and
the modeling of the behavior of a specific form of payment. However if the user tries
contactless it fails and then tries a different method this will also be included in our
dataset. The reason for choosing specifically contactless transactions is because they
constitute the most common and consequently the most extensively tested method.
The incoming data that we will try to match with the graph will be again these
17300 transactions but altered, in a way that they do not exist in the specification
graph.

In the Table 7.3 we can see how the algorithms perform for each mutation. The
same experiment runs 10 times with random modification in the incoming data.
One important observation from these results is that there are some transitions that
are much more important than others. When these transitions are removed the
algorithms mixes up the observed trace with others that look almost the same, the
impact the mutation’s position is further investigated in Subsection 7.4.4.

Algorithm # Traces Mutation TP FP Time (sec)
Greedy 17300 1 skipped 15421 1819 259.9781
Best-First 17300 1 skipped 16327 917 11.4503
Dynamic Pr. 17300 1 skipped 10823 4550 12780.6448

Table 7.3: One skipped state

In Figure 7.2 the time for every part of the tool for the different algorithms
is visualized. Using the optimizations of Flexfringe 2 the time needed for the
model learning is almost negligible. The preprocessing needs triple the time of the
model learning procedure. The alignment algorithm (together with the conformance
checking) take a lot of time for Greedy and DP. Especially for DP we had to divide
the time by 10 to make it visual. The Best-First Algorithm needs the same time as
the model-learning procedure. The burden of DP is extreme if we compare it with
the other methods.
2https://automatonlearning.net/flexfringe/

https://automatonlearning.net/flexfringe/

7

70 7 Experiments

Figure 7.2: Comparison of the overall tool for the different algorithms. Important! The time for
DP is divided by 10, for visualization purposes.

7.4.2 Two Sequences Changes per Log Line
In order to test how the tool performs for more complicated differences, two sub-
sequent mutations are conducted in each transaction log line. Table 7.4 clearly
shows that the DP approach performs worst for two skipped or added transitions.
In addition to that, it also needs much more time to execute in comparison to the
other two algorithms. The Best-First approach seems to be the most efficient (both
fast and good performance) for the two subsequent mutations. From Table 7.4 some
conclusions about the performance of the algorithms for the different mutations
can be drawn. For example Best-First performs better for added transitions in
comparison to skipped ones, on the other hand the exactly opposite happens with
the greedy algorithm.

Algorithm # Traces Mutation TP FP Time
Greedy 17300 2 skipped 29284 5225 238.49357
Best-First 17300 2 skipped 30464 4016 10.8728
Dynamin Pr. 17300 2 skipped 20712 13341 13404.1993
Greedy 17300 2 added 28547 6002 243.9584
Best-First 17300 2 added 32360 2237 8.1962
Dynamin Pr. 17300 2 added 24673 9994 15692.8251

Table 7.4: Difference level Evaluation. Two subsequent mutations (either two skipped or two added
transitions), for the DP the penalties are: match=3, mismatch=-4, gap=-2

7.4 Difference Detection in Real Dataset

7

71

7.4.3 Multiple Sequenced and Unsequenced Modifications
In this section, the performance of the algorithms for multiple mutations are inves-
tigated. From Table 7.4 it was shown that the algorithms Greedy and Best-First
perform better for minor mutations. In this section, more severe mutations are
examined. As we can see in Table 7.5 when new states are added that haven’t been
encountered before the algorithm always finds them. On the other hand, as we in-
crease the number of randomly added states from the existing ones, the performance
of the Greedy algorithm drops.

In Table 7.6 the performance for the Dynamic Programming is presented. The
more transitions are added the better the algorithm can find them. As presented
using the dummy data, the fact that dynamic programming aligns the whole sequence
before determining the modifications makes it work best for multiple mutations.

Size # Traces Mutation Correct Wrong Accuracy Time(sec)
17300 17300 50 new 17300 0 100% 1282.7432
17300 17300 100 new 17300 0 100% 1788.1801
17300 17300 1 existing 14657 2643 84.7225% 303.5634
17300 17300 2 existing 12391 4909 71.6242% 357.9557
17300 17300 3 existing 10767 6533 62.2369% 461.3995

Table 7.5: Results for added states either new or existing with Greedy Algorithm, trace level
evaluation.

Match Mismatch Gap Mutation Accuracy Recall F1 std
14 -10 -6 3 added 65% 100% 78% 2.1447%
14 -10 -6 4 added 73% 100% 84% 2.6833%
14 -10 -6 5 added 76% 100% 86% 3.5213%
14 -10 -6 6 added 81% 100% 89% 0.8944%
14 -10 -6 7 added 83% 100% 90% 1.0954%
14 -10 -6 20 added 94% 100% 96% 0%
14 -10 -6 100 added 99% 100% 99% 0%

Table 7.6: Performance of Dynamic Programming for multiple subsequently added transitions.

7.4.4 Impact of the Mutation’s Position
We investigated further the impact of the position of the mutation to the amount
of errors per execution. Again the experiments are conducted with 17300 traces,
were we perform two simple mutations and a complex one, namely replaced state
(more information in Section 4.3). Then for the results we count the number of
mistakes for each position that the corresponding mutation took place. It is obvious
in Figure 7.4, that all the mutations behave in a similar way. In more detail, when
the mutation happens in one of the first 5 states, the amount of error is the highest.
That happens because the first actions in a transaction are important, since they

7

72 7 Experiments

Figure 7.3: F1 score visualized with error, information from Table 7.6.

determine the way of payment for example. For added states close to the end of the
sequence (after position 40) there are no errors.

Figure 7.4: Number of errors per position in the sequence

Most of the mutated transactions are almost impossible to happen in real life
scenarios because the removal of some states means either we have a different payment
scenario or something is really wrong with the system.

7.5 Scalability

7

73

7.4.5 Impact of Model Size in the Accuracy
Another attribute that influences the performance of the log differencing tool is the
model size. As expected, the bigger the model the more complicated, thus the more
difficult to identify the requested difference. When the models are big there are many
traces that look alike, which means that with the mutation testing, when a trace is
modified the algorithm may think that it looks more to a different trace. The impact
of the model’s size in the performance is visualized in Figure 7.5. The increase of
the error rate is severe for just 5000 traces more (from learning a model using 12300
traces to 17300), the error from 4.5% goes to approximately 12%. Increasing the
traces by 5000 more, thus learning a model from 22300 traces increases the error
rate 6% more.

Figure 7.5: Error rate of the tool for difference model size.

7.5 Scalability
As mentioned multiple times, one of the goals of this thesis is to find a method,
which will scale up to a huge amount of traces that should be investigated and to
the number of added states. We will focus on the added because they increase the
number of iterations.

Having a fixed specification graph, we experiment using various number of added
states. It is obvious from Figure 7.6 that the Best-First algorithm is the fastest and
Dynamic Programming the slowest. Comparing Best-First and Greedy approach,
the latter seem to be slower (more than 10 times). This is not really related to
the algorithm itself, rather to the fact that in the Best-First implementation many
optimizations for speed up and memory were used.

In the following table 7.7, the time needed for the executing of each algorithm for
just one trace can be found. It is obvious the the Best-First algorithm is the fastest
one, having a huge difference with the dynamic programming approach, which is
more than 100 times slower.

The presented results prove that the application of a tool like that in production
is definitely feasible, especially with the Best-First algorithm, which is the fastest.
The fact that each observed trace is separately aligned makes the use of parallelism
possible, therefore even dynamic programming which is relatively slow can be applied.

7

74 7 Experiments

Figure 7.6: Runtime for various numbers of added states

Algorithm Time Per Trace (sec)
Greedy 0.015028
Best-First 0.000662
Dynamic Programming 0.996206

Figure 7.7: Running time for one trace for the three different algorithms

7.6 Identified Differences
In this section, the actual results of the comparison with real data will be presented.
Even though somebody could expect that there will be just few differences between
live and test data, or between two subsequent software releases, that did not seem
to be the case.

7.6.1 Live and Test Differences
An important result of this research is that test and live behavior of a software can
be very different. For that experiment, the test environment was modeled using
17300 traces, the data of the robot transactions for a week. The observed data used,
were 2200 traces from the live environment. 600 transactions out of the 2200 were
not conformed by the model using the replay technique, thus they had to be aligned.
After the alignment we had 67 groups of differences. In more detail 25 of these
groups contained traces, which after the alignment were conformed by the model
and 42 that were not validated at all.

The fact that 27.27% (600/2200) of the transactions needed alignment to be
validated by the test behavior, shows us how different the expected from the actual
behavior of a software can be.

7.6.2 Configurations Differences
One of the differences found by the tool can be seen in Figure 7.8. In this tree some
of the differences between live and test data can be seen. The second trace has

7.7 Discussion

7

75

multiple added and skipped states, specifically we have marked two skipped states
that show that the authentication procedure between test and live is different. With
red are the actions that are followed in the testing environment and the blue states
in between, are the events that determine the authentication procedure for the live
environment.

At the third trace three subsequent skipped states are identified. There are three
states that exist in the test environment but not in the live.

Figure 7.8: Configuration Differences

7.7 Discussion
From the performed experiments, multiple useful conclusions can be drawn. Algo-
rithms Greedy and Best-First work well in identifying minor changes, like one or two

7

76 7 Experiments

subsequently changed states. However their performance is not good for multiple and
more complicated changes. On the other hand, the dynamic programming solves this
issue, since it does not perform very well identifying small differences in the incoming
sequences, but as the differences become more complicated the results drastically
improve. The reason behind this behavior is that Greedy and Best-First focus on
the neighboring nodes thus, for small differences they find the best candidate for
alignment. In contrast, dynamic programming considers all possible transitions of
the tree as possible alignments. In that way, the complicated mutations can be found,
because the score is based on the alignment of the whole sequence, but for minor
differences the algorithm might find an over complicated alignment with transitions
that are out of context. That is also related to the depth optimization described
in Section 6.2.3 for the Greedy algorithm, where the depth parameter has been
introduced in order to improve the results. Nonetheless, in dynamic programming
we couldn’t limit the search in a similar way.

8

77

8
User Study

F or the evaluation of the visualiztion method implemented for the log differencing
tool, qualitative interviewing was used. As mentioned by Kvale in [81], research

interviews are attempts to understand the world from the subjects’ point of view,
to unfold the meaning of peoples’ experiences, to uncover their lived world prior to
scientific explanations.

The reason why interviewing was chosen for the evaluation is to understand and
evaluate the individual outcomes for each user, since our tool may have multiple
functionalities. In that way, we will manage to see the differences between participants’
experiences and outcomes. Last but not least, we aim to find where this tool can be
mostly used, by interviewing people from various teams.

Based on the definition provided by Callor et al. [82] this interviewing aims to
tier 3, namely understand and refining. By discussing with the participants, program
satisfaction data and lessons learned can be found for the improvement of our tool
and the determination of the future improvements. In addition, the program impact
to its users needs to be identified. In order to achieve that, results are shown to the
participants and they provide feedback on how useful the visualized information is.
This is tier 5, based on the aforementioned work by [82].

8.1 Interview Design
The main goal of this interview is to understand how easily this tool can be used
by the participants. There are some closed questions along with some more free
questions, with more informal conversational style. The interview is split in three
parts. In the first one, the goal is to get to know the participant, in the second we
check its familiarity with log files. We necessarily need participants that use log files
in their everyday work. After the second part, a real example of the implemented
visualized is shown to the participant and some simple things are explained. More
specifically, we show Figure 8.1 to the participants which represents the differences
between live and test for a specific software version. The color mapping is briefly
explained, by saying what each color is and then they have 1 minutes to play with

8

78 8 User Study

the visualization. Then the Tool Evaluation questions are asked. Finally there is
some time for open conversation, ideas and feedback.

Figure 8.1: Differences between test and live shown to participants

8.2 Interview Questions
Personal Information

• Role and Team

Familiarity with Logs
• How often do you need to need information from log files?

• Do you ever have to compare log data?

Tool Evaluation
• Would you spend time to review all differences?

• Did you expect so many differences between live and test?

• Do you see anything noticeable in the graph?

• Is the color mapping helpful?

8.3 Results

8

79

• Is the visualization easy?

• For which purpose do you think this tool would be helpful?

Feedback
• Free feedback and ideas

8.3 Results
For the user study, the questions presented in the previous Sections were asked to 11
people from Adyen, where in Figure 8.2 their roles in the company can be found. All
the employees asked, were often working with log files, most of them had to retrieve
some information from logs almost every day.

Figure 8.2: Role of participants at Adyen

All the participants had a minute to
play with the visualization tool. Most of
them found things that looked interesting
to what they already knew about the be-
havior of the system.

The visualized differences were a lot
and none of the participants was willing
to investigate each one of them. Only one
person mentioned that if it was an one
time procedure, he/she was willing to do
it. All the participants proposed the use
of some filters. As most of them indicated,
the most frequent or the most rare differ-
ences are the ones that have to first be
investigated.

The majority of the interviewees did not expect so many differences between live
and test, although there were some developers that were really happy that it is so
clearly pointed out by this tool the insufficiency of the current test coverage.

The results of the question "For which purpose is this tool helpful?" are interesting.
The participants were from different teams and had different expertise. Most of the
back end developers and the automation engineers proposed the improvement of the
Test Coverage as the main purpose of this tool. However front end developers, people
from support and security believe that it can be used for Documentation purposes,
to show how a transaction should be processed and compare it with anomalous
transactions, but also for giving Merchant Insights, by for example comparing the
volume of their transactions for two subsequent weeks.

The discussions with Adyen’s employees helped us improve the tool but also gave
us a good understanding of how useful it can be. Almost all the participants were
really satisfied with this tool and believe it can have multiple uses.

8

80 8 User Study

(a) How often do you retrieve information
from log files.

(b) Do you ever need to compare log data.

Figure 8.3: Questions about familiarity with logs.

(a) Would you spend time to review all differ-
ences.

(b) Did you expect so many differences.

(c) For which purpose is this tool helpful.

Figure 8.4: Questions about tool evaluation.

9

81

9
Conclusion & Final Remarks

T he goal of this thesis is to develop a tool that will be able to differentiate log
files, with the purpose to detect and visualize potential anomalies in the software

execution. The main difficulty was to find the right methods to perform the compari-
son between the log data, since the requirements of the system entailed the handling
of large amounts of data. In this research, various comparison algorithms were tried,
some not suitable at all, some more than others (Chapter 7, 10). Additionally an
algorithm from another field -bioinformatics- was modified to serve our purposes,
which seem promising, especially for complicated patterns.

The comparison of log data does not seem to be a field which is thoroughly
investigated, however the results prove that the behavior of the software many times
is different than the expected. Just in the simplest case, comparing the behavior
of the test environment with the live transactions showed that there are way more
differences that most of the people expected (Figure 8.4.b). We showed that the
test coverage can be improved by comparing test with live and learn from their
differences (uncovered test cases were revealed). Furthermore the release monitoring
procedure can be improved by comparing the logs of a stable software version with
the new introduced release.

To conclude, we managed to create a tool, which compares the expected behavior
of a system and the observed. Output of the comparison are the aligned traces
grouped based on their differences. There is also the option to visualize the deviating
traces using a data structure that makes the result understandable for the developer.
Additional information about the deviating traces is provided in the visualization in
order to investigate the difference further.

9.1 Reflection on Research Questions
At this point it would be useful to go back and reflect how this thesis answered the
initially set research questions.
1. How can software’s behavior comparison be performed for large
amounts of data?
The answer to the first question is twofold, because in order to answer if there are

9

82 9 Conclusion & Final Remarks

comparison methods for large amounts of data, first all the possible methods for any
amount of data should be gathered. Thus we tried in this thesis to gather as many
methods as possible to address the specific issue. These methods are presented in
Chapter 3.7, where we realized that comparing two DFAs is not efficient for large
amounts of data and some more general approaches have been proposed in Chapter 3.
A very important outcome of this work, is the modification of the sequence alignment
algorithms that are usually used in bioinformatics, for our problem. At the end we
propose three different implementations, each one of them with district advantages
and disadvantages.
2. What kind of differences can be identified?
The types of differences we aimed to find are described in Section 4.3. There are
some simple and some more complicated patterns that the algorithm should be able
to identify. However every difference will be represented in terms of added and
skipped states are explained in the aforementioned section. The effectiveness of the
algorithm to identify the differences is analyzed in Chapter 7. We proved that all
the patterns can be found, however there are some, which seem to be more difficult
than others. Also the three different algorithms we implemented do not perform
that good at every difference. Nonetheless the performance is very promising since
the problem we are dealing with is not trivial.
3. How can the differences of the software’s behavior be visualized effec-
tively?
This is a difficult question, since it is not easy to measure how good a visualization
is. However we implemented a visualization using d3 that seem to be very helpful
for the developers. To evaluate the impact the visualization does, a user study was
conducted, where after discussions with more than 10 developers we concluded that
it is actually a good way to visualize the differences between log files, but also some
really clever improvements were proposed. Some of them were implemented, some
are proposed as future work.
4. What kind of data are more suitable for the specification graph (to
build the model)?
The data for building the specification model should have some characteristics, they
should be as "complete" as possible, which means the functionality of the software
should be covered and not only the most frequent flows. For that reason, the data
from the robots (test transactions) seem to be the most appropriate, since they
cover a wide range of possible flows and not only the happy ones (Chapter 7 for
more details). Nonetheless it also depends on the comparison we are interested to
perform. In some cases the data should just include specific flows with more detail,
like when comparing two subsequent weeks of data for a specific merchant, there
for the specification graph, it would help to have a model that would cover all the
normal flows, but if it is not possible just the most frequent ones are necessary.

5. How does the model size affect the results?
This question is addressed in Chapter 7. We showed that the bigger the model,
the more complex, the worse the results. In Chapter 5 the learning decision were
explained that led to the models we are actually using later on.

9.2 Threats to Validity

9

83

9.2 Threats to Validity
As mentioned previously, the data constitute one of the most important factors that
affect the results. It is important to compare data that have some common behavior
and the detection of the deviating flows will make some sense.

• Correctness of Models That’s a general problem not easily approached.
A model can be evaluated in terms of its simplicity, fitness, generalization
and precision. In this project, we did not deal with the correctness of our
models and we made the assumption that when a difference is returned by
the comparison algorithm, it is an actual difference and not a mistake of the
learning process.

• Tool’s performance is specification model sensitive. That is maybe
something expected, that the more complex the model the worse the results
of the sequence alignment will be. Models with more than 1000 states were
used for the experiments and the results are good, but we also concluded that
for smaller models the performance is even better. That also means, that for
bigger models the performance is worse. What is the "optimal" size of a model
is a topic that concerns the research community a lot, because for small models
(more merges) information is lost, and for big models (many states) it becomes
very complicated, without good generalization. Consequently the balance
between these two should be found. However, with more data, inevitably
bigger models will be created thus, the question that needs to be answered is
how much data is enough?

• Dynamic Programming heavily depends on the defined penalties. As
explained in Chapter 7, the scores play a very important role to the dynamic
programming approach. For some scores the accuracy may be less than 20%.
By the method trial and error, various penalties’ values are tried and the
ones with the best results are chosen. We also tried to improve our results by
introducing dynamic scoring. Nonetheless the specific problem needs further
investigation and is quite possible that the best possible value is not found. To
conclude the influence the scores have to the performance of the algorithm,
can be considered a limitation, since we do not know the way to tune the
parameters effectively.

• Unlabeled real data. Since there are no labeled data in terms of what
differences appear between the comparing logs, we had to mutate the dataset
by ourselves. We tried to resemble the actual differences, however it would
always be more accurate to evaluate it with real data that we know what
differences they present.

9.3 Future Work
The nature of the data makes the tool produce too many differences, which means
that the manual inspection is too time consuming. However it is proven that some
differences are not meaningful and should be removed from the results or at least

9

84 9 Conclusion & Final Remarks

filtered if the user chooses to. For example the configurations differences between
test and live constitute a big part of the returned results and hinder the detection
of important deviations, which could be bugs of the system or missing test cases.
Consequently there could be further investigation on how these redundant differences
could be filtered out. In addition to that a database with the non-anomalous
differences could be created to avoid the aforementioned problem.

The log differencing tool between live and test data can be used to check the test
coverage and create automatically test scenarios. With the pipeline presented in
Figure 9.1 the live transactions that deviate from the expected behavior (the one
indicated by test data) could automatically create a test case which would run at
Adyen’s testing framework and verify the correct or wrong execution according to the
specifications. During the initial stages of this project a developer would be required,
to manually annotate the flows that need to be tested and then automatically a test
case will be created in order to achieve that. At some point the test coverage will be
much better thus, every difference identified by the log differencing tool could be
tested and annotated as anomaly or not for future improvement of the identification
process.

Figure 9.1: Automatic Testing using log differencing tool.

In Figure 9.2 a different scenario partly implemented by this project can be found.
In this case, the goal is to compare the usual behavior of one merchant with the
observed transactions. The comparison of one log line is very fast and using some
optimizations and parallelism it is feasible to develop a system that will be able to
check every observed transaction on the fly. The learning of the merchant’s behavior
is a time-consuming procedure, which however needs to be performed only once per
week in order to keep the system up to date with the most recent data.

Finally based on the feedback provided during the interviews we propose the use of
some filters to reduce the amount of the results in the visualization. More specifically,
the transactions could be filtered based on the payment type, like contactless or

9.3 Future Work

9

85

Figure 9.2: Alert system based on Merchant’s expected behavior.

inserting the card or the final state. In Figure 9.3 an example of the filters that
could be applied is presented.

Figure 9.3: Proposed filters for the visualization.

10

87

10
Model Checkers

O ne of the most powerful features of model checkers, is that they can efficiently
determine if two learned models are equivalent or not, and in case they are

not, return a counter example. There are different algorithms to determine the
equivalence of two models, some strict some more relaxed, as explained in Chapter
2. In this Chapter it is investigated, how model checker’s equivalence checking can
be used for the comparison of state machines.

The are two reasons, why two models are not equivalent, of course there is the
obvious reason, that there is a difference that makes them at some point deviate,
but there is also the possibility that one of them is learned correct. In that case, the
models were supposed to be equivalent, but a flaw at the learning process produced
an unexpected model. Just by the output of the equivalence checker, one counter-
example, it is difficult to identify if there was an issue in the learning procedure or
a difference between the models. The models used for comparison are supposed to
have differences in our case thus, every difference returned by the model checker will
be considered a difference and will be handled as one. This is an assumption we
make, that the models are correctly learned and all the counter-examples from the
model checkers, are actual differences between the two models. Future work should
reconsider that and investigate further the correctness of the learning procedure.

Using model checkers there is no other way of identifying differences between
two state machines, other than applying active learning. Suppose a model checker
returns a difference between the models as a counterexample, there is no other way
to avoid this difference show up in the next iteration, instead of relearning one of
the two models in order to satisfy this property. Then, the relearned model and
the unmodified one have to be fed to the model checker again, to check if they are
equivalent. Of course it is necessary to keep track of all the returned counterexamples
in order to detect all the differences.

10.1 Preprocessing
The chosen model checker was mcrl2, because it has an active community still
working on it and it is well documented. In addition to these, it also has many

10

88 10 Model Checkers

Figure 10.1: Preprocessing for Model Checker’s approach

features and a big variety of algorithms.
The required flow to use the unstructured log files with the model checkers in

shown in Figure 10.1. The first thing that enters the flow is the unstructured dataset,
in our case the log files. They go through the tx-log preprocessor, which as mentioned
above, structures the information included and outputs a log file with the right
structure to get accepted by the DFASAT. DFASAT is our learning tool for the state
machines.

DFASAT outputs .dot files, which can not be parsed by the mcrl2. For that
purpose a python program was developed to read the .dot files and translate it into
the mcrl2 language [83]. How the dot file looks like can be found in 10.2 and how its
corresponding mcrl2 format is, in 10.3.

digraph DFA I -> s0;
s0 -> s1 [label="transition_1"];
s0 -> s2 [label="transition_2"];
s2 -> s5 [label="transition_3"];
s1 -> s3 [label="transition_4"];
s3 -> s4 [label="transition_5"];

Figure 10.2: Dot file format

act transition_1, transition_2, transition_3, transition_4, transition_5;

10.2 Comparison Pipeline

10

89

proc root=s0.transition_1 + s1. transition_2;
s2 = s5.transition_3;
s1 = s3.transition_4;
s3 = s4.transition_5;
s4 = delta;

init root;

Figure 10.3: MCRL2 file format

However that is not enough in order to use the equivalence checking, the mcrl2 file
has to be translates from mCRL2 process specification to a linear process specification
(LPS), which can be done with the command mcrl22lps. There are three different
linearisation methods for that purpose, however we just use the regular one, which
is the restricted Greibach Normal Form. This is not the most suitable method if
the graphs contain loops, because if some process has an infinite number of control
states, the tool will attempt to generate all of them, causing it to run out of memory

The final step of the preprocessing is necessary to visualize or compare the graph
with another one, the transformation of the lps to lts using the lps2lts command,
which generates a labelled transition system from a linear process. The whole pipeline
for the transformation of the raw log file to an mcrl2 format can be found in figure 10.1.

At that point the comparison can be performed if the two files have the same
format using the command ltscompare.

10.2 Comparison Pipeline
The chosen pipeline for the comparison of two state machined using model checkers
can be found in 10.4. The active learning framework has been used for this approach,
since at each iteration the output of the model checker should be used for the relearn-
ing of one of the input models. Each counter example is a difference between the
two behaviors and then it is resolved in order to identify the next one. Consequently
the procedure is like modifying the traces of model 2 in example 10.4 to look like
the ones in model 1.

10

90 10 Model Checkers

Figure 10.4: Model Checker Active Learning Framework

10.3 Discussion
The implementation using Model Checkers requires multiple iterations to identify
one difference at each step and multiple repetitions of the learning process, fixing
something small at the time. Working with small graphs, with not many differences
makes this approach feasible. However in our case, where graphs have hundreds
of nodes (at the best case) and lots of differences this approach takes a really long
time just to change the first difference and relearn the model. Nonetheless at the
beginning it was not possible to see that clear; throughout this thesis’ procedure more
knowledge about the domain was gained and after a while and some tries it became
clear that this method can not be used for real data and real world specifications.

The main disadvantage of this approach is the fact that every iteration takes a lot
of time. In addition to that the comparisons that are usually performed are between
models with huge structural differences. That means, many iterations are required
to make the two graphs equivalent. For the comparison of the graph presented in
Figure 6.1, which represents the test behavior, with the live behavior learned only
by 2200 transactions more than 5.000 iterations were necessary. Actually the model
checker did not find the two graphs equivalent after that amount of iterations, thus
the execution was stopped.

Another disadvantage of this method, is that we can not prove the completeness
of the returned differences. The fact that at each iteration, one of the models is
relearned, to resolve one of their differences, might resolve a difference that is not
found yet. This is another issue that requires further investigation, but it is not
performed in the current work, since it was decided to not continue further with this
approach, because it does not seem to have much potential.

91

Bibliography

References
[1] Martin Hiller, Arshad Jhumka, and Neeraj Suri. Propane: an environment for

examining the propagation of errors in software. In ACM SIGSOFT Software
Engineering Notes, volume 27, pages 81–85. ACM, 2002.

[2] Christina Warrender, Stephanie Forrest, and Barak A. Pearlmutter. Detecting
intrusions using system calls: Alternative data models. In IEEE Symposium on
Security and Privacy, 1999.

[3] T-TY Lin and Daniel P Siewiorek. Error log analysis: statistical modeling and
heuristic trend analysis. IEEE Transactions on Reliability, 39(4):419–432, 1990.

[4] Qiang Fu, Jian-Guang Lou, Yi Wang, and Jiang Li. Execution anomaly detection
in distributed systems through unstructured log analysis. In International
conference on Data Mining (full paper). IEEE, December 2009.

[5] Leonardo Mariani and Fabrizio Pastore. Automated identification of failure
causes in system logs. In Proceedings of the 2008 19th International Symposium
on Software Reliability Engineering, ISSRE ’08, pages 117–126, Washington,
DC, USA, 2008. IEEE Computer Society.

[6] R. Wieman. What Does Passive Learning Bring To Adyen? Master’s thesis,
Delft University of Technology, 2017.

[7] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection
for discrete sequences: A survey. IEEE Transactions on Knowledge and Data
Engineering, 24(5):823–839, 2010.

[8] Dana Angluin. Learning regular sets from queries and counterexamples. Infor-
mation and computation, 75(2):87–106, 1987.

[9] Francesco Calzolai, Rocco De Nicola, Michele Loreti, and Francesco Tiezzi.
TAPAs: A Tool for the Analysis of Process Algebras, pages 54–70. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2008.

[10] Jan Friso Groote, Jeroen Keiren, Aad Mathijssen, Bas Ploeger, Frank Stappers,
Carst Tankink, Yaroslav Usenko, Muck van Weerdenburg, Wieger Wesselink,
Tim Willemse, et al. The mcrl2 toolset. In Proceedings of the International
Workshop on Advanced Software Development Tools and Techniques (WASDeTT
2008), page 53, 2008.

92 Bibliography

[11] Sjoerd Cranen, Jan Friso Groote, Jeroen JA Keiren, Frank PM Stappers,
Erik P De Vink, Wieger Wesselink, and Tim AC Willemse. An overview of the
mcrl2 toolset and its recent advances. In International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, pages 199–213.
Springer, 2013.

[12] David W Mount. Bioinformatics: sequence and genome analysis. 2nd, volume
692. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press. xii, 2004.

[13] Eric Sven Ristad and Peter N Yianilos. Learning string-edit distance. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 20(5):522–532, 1998.

[14] Richard Bellman. The theory of dynamic programming. Bull. Amer. Math.
Soc., 60(6):503–515, 11 1954.

[15] Peter Evers. Finding relevant errors in massive payment log data. Master’s
thesis, Delft University of Technology, 2017.

[16] Quincy Bakker. Designing, developing and evaluating a log management tool
for developers to improve monitoring practices. Master’s thesis, University of
Utrecht, 2018.

[17] Joop Aue. An exploratory study on faults in web api integration. Master’s thesis,
Delft University of Technology, 2017.

[18] Peter Evers. A large-scale evaluation of tracing back log data to its origin with
static analysis. Master’s thesis, Delft University of Technology, 2018.

[19] F. Farahmandi and P. Mishra. Fsm anomaly detection using formal analysis.
In 2017 IEEE International Conference on Computer Design (ICCD), pages
313–320, Nov 2017.

[20] T. Ohmann, K. Thai, I. Beschastnikh, and Y. Brun. Mining precise performance-
aware behavioral models from existing instrumentation. In 36th International
Conference on Software Engineering, ICSE Companion 2014 - Proceedings,
pages 484–487, 2014. cited By 8.

[21] Alan W Biermann and Jerome A Feldman. On the synthesis of finite-state
machines from samples of their behavior. IEEE transactions on Computers,
100(6):592–597, 1972.

[22] Ivan Beschastnikh, Yuriy Brun, Sigurd Schneider, Michael Sloan, and Michael D
Ernst. Leveraging existing instrumentation to automatically infer invariant-
constrained models. In Proceedings of the 19th ACM SIGSOFT symposium and
the 13th European conference on Foundations of software engineering, pages
267–277. ACM, 2011.

[23] Maayan Goldstein, Danny Raz, and Itai Segall. Experience report: Log-based
behavioral differencing. In 2017 IEEE 28th International Symposium on Software
Reliability Engineering (ISSRE), pages 282–293. IEEE, 2017.

References 93

[24] Robert S Boyer and J Strother Moore. A fast string searching algorithm.
Communications of the ACM, 20(10):762–772, 1977.

[25] Hen Amar, Lingfeng Bao, Nimrod Busany, David Lo, and Shahar Maoz. Using
finite-state models for log differencing. In Proceedings of the 2018 26th ACM
Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, pages 49–59. ACM, 2018.

[26] Edmund M. Clarke, Orna Grumberg, Hiromi Hiraishi, Somesh Jha, David E.
Long, Kenneth L. McMillan, and Linda A. Ness. Verification of the futurebus+
cache coherence protocol. volume 6, pages 217–232, Mar 1995.

[27] J. R. Burch, E. M. Clarke, K. L. McMillan, and D. L. Dill. Sequential cir-
cuit verification using symbolic model checking. In 27th ACM/IEEE Design
Automation Conference, pages 46–51, June 1990.

[28] Yu-Tong He and Ryszard Janicki. Verifying protocols by model checking: A
case study of the wireless application protocol and the model checker spin.
In Proceedings of the 2004 Conference of the Centre for Advanced Studies on
Collaborative Research, CASCON ’04, pages 174–188. IBM Press, 2004.

[29] David Basin, Cas Cremers, and Catherine Meadows. Model Checking Security
Protocols, pages 727–762. Springer International Publishing, Cham, 2018.

[30] George C. Necula. Translation validation for an optimizing compiler. SIGPLAN
Not., 35(5):83–94, May 2000.

[31] Xavier Rival. Symbolic transfer function-based approaches to certified compila-
tion. SIGPLAN Not., 39(1):1–13, January 2004.

[32] Aditya Kanade, Amitabha Sanyal, and Uday Khedker. A pvs based framework
for validating compiler optimizations. In Proceedings of the Fourth IEEE
International Conference on Software Engineering and Formal Methods, SEFM
’06, pages 108–117, Washington, DC, USA, 2006. IEEE Computer Society.

[33] Mathijs Schuts, Jozef Hooman, and Frits Vaandrager. Refactoring of legacy
software using model learning and equivalence checking: An industrial experience
report. In Proceedings of the 12th International Conference on Integrated Formal
Methods - Volume 9681, IFM 2016, pages 311–325, Berlin, Heidelberg, 2016.
Springer-Verlag.

[34] E.Allen Emerson and Edmund M. Clarke. Using branching time temporal logic
to synthesize synchronization skeletons. Science of Computer Programming,
2(3):241 – 266, 1982.

[35] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of
finite state concurrent system using temporal logic specifications: A practical
approach. In Proceedings of the 10th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages, POPL ’83, pages 117–126, New York,
NY, USA, 1983. ACM.

94 Bibliography

[36] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Sym-
bolic model checking: 1020 states and beyond. Information and Computation,
98(2):142 – 170, 1992.

[37] Béatrice Bérard, Michel Bidoit, Alain Finkel, François Laroussinie, Antoine
Petit, Laure Petrucci, Philippe Schnoebelen, and Pierre Mckenzie. SMV —
Symbolic Model Checking, pages 131–138. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2001.

[38] A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and Y. Zhu. Symbolic model
checking using sat procedures instead of bdds. In Proceedings of the 36th Annual
ACM/IEEE Design Automation Conference, DAC ’99, pages 317–320, New
York, NY, USA, 1999. ACM.

[39] Jerry Banks, II Carson, Barry L Nelson, David M Nicol, et al. Discrete-event
system simulation. Pearson, 2005.

[40] Arya Adriansyah, Boudewijn F van Dongen, and Wil MP van der Aalst. Con-
formance checking using cost-based fitness analysis. In 2011 IEEE 15th Interna-
tional Enterprise Distributed Object Computing Conference, pages 55–64. IEEE,
2011.

[41] Anne Rozinat and Wil MP Van der Aalst. Conformance checking of processes
based on monitoring real behavior. Information Systems, 33(1):64–95, 2008.

[42] Saul B Needleman and Christian D Wunsch. A general method applicable to
the search for similarities in the amino acid sequence of two proteins. Journal
of molecular biology, 48(3):443–453, 1970.

[43] Temple F Smith, Michael S Waterman, et al. Identification of common molecular
subsequences. Journal of molecular biology, 147(1):195–197, 1981.

[44] Walter M Fitch and Temple F Smith. Optimal sequence alignments. Proceedings
of the National Academy of Sciences, 80(5):1382–1386, 1983.

[45] Eagu Kim and John Kececioglu. Learning scoring schemes for sequence alignment
from partial examples. IEEE/ACM Transactions on Computational Biology
and Bioinformatics, 5(4):546–556, 2008.

[46] Dan Gusfield and Paul Stelling. [28] parametric and inverse-parametric sequence
alignment with xparal. In Methods in enzymology, volume 266, pages 481–494.
Elsevier, 1996.

[47] Julie D Thompson, Desmond G Higgins, and Toby J Gibson. Clustal w:
improving the sensitivity of progressive multiple sequence alignment through
sequence weighting, position-specific gap penalties and weight matrix choice.
Nucleic acids research, 22(22):4673–4680, 1994.

References 95

[48] Neil Walkinshaw and Kirill Bogdanov. Automated comparison of state-based
software models in terms of their language and structure. ACM Transactions
on Software Engineering and Methodology (TOSEM), 22(2):13, 2013.

[49] Fides Aarts, Harco Kuppens, Jan Tretmans, Frits Vaandrager, and Sicco Verwer.
Learning and testing the bounded retransmission protocol. In International
Conference on Grammatical Inference, pages 4–18, 2012.

[50] Kevin J Lang, Barak A Pearlmutter, and Rodney A Price. Results of the
abbadingo one dfa learning competition and a new evidence-driven state merging
algorithm. In International Colloquium on Grammatical Inference, pages 1–12.
Springer, 1998.

[51] Neil Walkinshaw, Kirill Bogdanov, and Ken Johnson. Evaluation and comparison
of inferred regular grammars. In International Colloquium on Grammatical
Inference, pages 252–265. Springer, 2008.

[52] Doron Peled, Moshe Y. Vardi, and Mihalis Yannakakis. Black Box Checking,
pages 225–240. Springer US, Boston, MA, 1999.

[53] M. P. Vasilevskii. Failure diagnosis of automata. Cybernetics, 9(4):653–665, Jul
1973.

[54] T. S. Chow. Testing software design modeled by finite-state machines. IEEE
Transactions on Software Engineering, SE-4(3):178–187, May 1978.

[55] David Combe, Colin de la Higuera, and Jean-Christophe Janodet. Zulu: An
interactive learning competition. In Anssi Yli-Jyrä, András Kornai, Jacques
Sakarovitch, and Bruce Watson, editors, Finite-State Methods and Natural
Language Processing, pages 139–146, Berlin, Heidelberg, 2010. Springer Berlin
Heidelberg.

[56] Kirill Bogdanov and Neil Walkinshaw. Computing the structural difference
between state-based models. In 2009 16th Working Conference on Reverse
Engineering, pages 177–186. IEEE, 2009.

[57] Neil Walkinshaw and Kirill Bogdanov. Comparing software behavior mod-
els. Technical report, Technical report: CS-08-16, The University of Sheffield,
Sheffield, UK, 2008.

[58] Udo Kelter and Maik Schmidt. Comparing state machines. In Proceedings of the
2008 international workshop on Comparison and versioning of software models,
pages 1–6. ACM, 2008.

[59] Shiva Nejati, Mehrdad Sabetzadeh, Marsha Chechik, Steve Easterbrook, and
Pamela Zave. Matching and merging of statecharts specifications. In Proceedings
of the 29th international conference on Software Engineering, pages 54–64. IEEE
Computer Society, 2007.

96 Bibliography

[60] Jochen Quante and Rainer Koschke. Dynamic protocol recovery. In 14th Working
Conference on Reverse Engineering (WCRE 2007), pages 219–228. IEEE, 2007.

[61] Rick Wieman, Maurício Finavaro Aniche, Willem Lobbezoo, Sicco Verwer, and
Arie van Deursen. An experience report on applying passive learning in a large-
scale payment company. In 2017 IEEE International Conference on Software
Maintenance and Evolution (ICSME), pages 564–573. IEEE, 2017.

[62] Samuel C Hsieh. Product construction of finite-state machines. In Proc. of the
World Congress on Engineering and Computer Science, pages 141–143. Citeseer,
2010.

[63] Olivier Coudert, Christian Berthet, and Jean Christophe Madre. Verification
of synchronous sequential machines based on symbolic execution. In Joseph
Sifakis, editor, Automatic Verification Methods for Finite State Systems, pages
365–373, Berlin, Heidelberg, 1990. Springer Berlin Heidelberg.

[64] Giampiero Cabodi, Paolo Camurati, Fulvio Corno, Paolo Prinetto, and Mat-
teo Sonza Reorda. The general product machine: a new model for symbolic fsm
traversal. Formal Methods in System Design, 12(3):267–289, Apr 1998.

[65] Michael Sipser. Introduction to the theory of computation. PWS Publishing
Company, 1997.

[66] Martin Tappler, Bernhard K Aichernig, and Roderick Bloem. Model-based
testing iot communication via active automata learning. In 2017 IEEE Inter-
national Conference on Software Testing, Verification and Validation (ICST),
pages 276–287. IEEE, 2017.

[67] David Gries. Describing an algorithm by hopcroft. Acta Informatica, 2(2):97–109,
Jun 1973.

[68] John E. Hopcroft. An n log n algorithm for minimizing states in a finite
automaton. Technical report, Stanford, CA, USA, 1971.

[69] Timo Knuutila. Re-describing an algorithm by hopcroft. Theoretical Computer
Science, 250(1):333 – 363, 2001.

[70] Giuseppe De Ruvo, Antonella Santone, and Domenico Raucci. Powerful equiv-
alence checking in the bank supply process. In Services (SERVICES), 2014
IEEE World Congress on, pages 87–94. IEEE, 2014.

[71] Nicoletta De Francesco, Giuseppe Lettieri, Antonella Santone, and Gigliola
Vaglini. Heuristic search for equivalence checking. Software & Systems Modeling,
15(2):513–530, 2016.

[72] John Abela, François Coste, and Sandro Spina. Mutually compatible and
incompatible merges for the search of the smallest consistent dfa. In International
Colloquium on Grammatical Inference, pages 28–39. Springer, 2004.

References 97

[73] SE Verwer, MM De Weerdt, and Cees Witteveen. An algorithm for learning real-
time automata. In Benelearn 2007: Proceedings of the Annual Machine Learning
Conference of Belgium and the Netherlands, Amsterdam, The Netherlands, 14-15
May 2007, 2007.

[74] Marijn JH Heule and Sicco Verwer. Software model synthesis using satisfiability
solvers. Empirical Software Engineering, 18(4):825–856, 2013.

[75] Sicco Verwer and Christian A Hammerschmidt. flexfringe: a passive automa-
ton learning package. In 2017 IEEE International Conference on Software
Maintenance and Evolution (ICSME), pages 638–642. IEEE, 2017.

[76] Christian Hammerschmidt. Learning Finite Automata via Flexible State-Merging
and Applications in Networking. PhD thesis, 2017.

[77] K Lang. Evidence driven state merging with search. Rapport technique TR98–
139, NECI, 31, 1998.

[78] Neil Walkinshaw, Bernard Lambeau, Christophe Damas, Kirill Bogdanov, and
Pierre Dupont. Stamina: a competition to encourage the development and as-
sessment of software model inference techniques. Empirical software engineering,
18(4):791–824, 2013.

[79] Franck Thollard, Pierre Dupont, Colin de la Higuera, et al. Probabilistic dfa
inference using kullback-leibler divergence and minimality. In ICML, pages
975–982, 2000.

[80] Sicco Verwer, Mathijs de Weerdt, and Cees Witteveen. A likelihood-ratio test
for identifying probabilistic deterministic real-time automata from positive data.
In International Colloquium on Grammatical Inference, pages 203–216. Springer,
2010.

[81] Jeanne M Plas, Steinar Kvale, and STEINAR AUTOR KVALE. Interviews: An
introduction to qualitative research interviewing. Sage, 1996.

[82] S Callor, SC Betts, R Carter, and M Marczak. State strengthening evaluation
guide. Tucson, AZ: USDA/CSREES & University of Arizona, 1997.

[83] Jan Friso Groote, Aad Mathijssen, Michel Reniers, Yaroslav Usenko, and Muck
Van Weerdenburg. The formal specification language mcrl2. In Dagstuhl Seminar
Proceedings. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2007.

