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Abstract

Model-free reinforcement learning has proved to be successful in many tasks such as robotic
manipulator, video games, and even stock trading. However, as the dynamics of the environ-
ment is unmodelled, it is fundamentally difficult to ensure the learned policy to be absolutely
reliable and its performance is guaranteed. In this thesis, we borrow the concept of stability
and Lyapunov analysis in control theory to design a policy with stability guarantee and
assure the guaranteed behaviors of the agent. A novel sample-based approach is proposed
for analyzing the stability of a learning control system, and on the basis of the theoretical
result, we establish a practical model-free learning framework with provable stability, safety
and performance guarantees. In our solution, a Lyapunov function is searched automatically
to guarantee the closed-loop system stability, which also guides the simultaneous learning
(covering both the policy and value-based learning methods). Our approach is evaluated on
a series of discrete and continuous control benchmarks and largely outperforms the state-of-
the-art results concerning unconstrained and constrained problems. It is also shown that the
algorithm has the ability of recovery to equilibrium under perturbation using the policy with
stability guarantee. (Anonymous code is available to reproduce the experimental results1.)
Since sometimes the constraint is hard to define, we introduce a novel method to learn a
constraint by representing the bad cases or situations as a distribution, and the constraint is
the Wasserstein distance between the distribution.

1https://github.com/RLControlTheoreticGuarantee/Guarantee_Learning_Control
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Chapter 1

Introduction

1-1 Background

Optimal control aims to find a control policy for a given system for a certain task with the
optimality criterion. The task is described as a cost function. An optimal control determinates
control and trajectories over a period of time to minimize the cost function[3]. But, optimal
control solutions are off-line and require complete knowledge of the system dynamics. Therefore,
they are not able to cope with uncertainties and changes in dynamics[4].

On the other hand, reinforcement learning (RL) is a useful substitute. Same with the optimal
control, it also uses a cost function as guidance. RL focus on how an agent could interact with
its environment and learn a policy could maximize expected cumulative rewards for a task.
For model-free reinforcement learning, its advantage over optimal control is that it does not
need a predefined controller structure and the dynamic model, which limits the performance
of the agent and costs more human effort. Furthermore, it could deal with uncertainties and
changes in dynamic.

In recent years, significant progress and success have been made in solving challenging and
complicated problems across various fields by using deep reinforcement learning (RL). People
use reinforcement learning to play Atari from pixels[1], or training an agent to become the
best player in Go [5]. In the domain of AutoML, it made success in neural architecture search
or design[6]. In health care, it helps make the decision in the use of medical instruments[7]
and drug dose [8].

People believe complex video games could somehow capture the messiness and continuous
nature of the real world. OpenAI and DeepMind now are working on two extremely complicated
tasks, the Dota 2 and StarCraft2 respectively. Dota 2 is a real-time strategy game played
between two teams of five players. It has long time horizons, each game usually ends more than
20000 moves, while the Go usually ends before 150 moves. The state space is partially-observed
and high-dimensional, continuous. Even with extraction, there still remain more than 20000
floating-point numbers, and the Go has only 381 enumeration values and fully-observed. The
action space is large as well, every step has more than 1000 valid actions at least on average,
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2 Introduction

and the Go is 35. Besides, the Dota rules are also very complex. Now, OpenAI’s Dota agent
has defeated the world’s top professionals at 1 on 1, has defeated the world’s top professionals
at 5 on 5, they are going to world’s top professionals’ team next year [9].

Most importantly, as mentioned before, reinforcement learning is inherent to deal with a
control problem. It has been applied to a range of robotic control tasks. In the simulator, the
trained agents could learn how to run, jump, crouch[10]. In real-world, the agent could learn
a complex door opening skill in only 2 hours[11]. Using reinforcement learning to control a
quadrotor in some critical situation shows a better result than common trajectory optimization
algorithms with an approximated model[12]. Recently, using policies trained in simulation,
the quadrupedal machine could achieves locomotion skills and run in real-world, which could
run faster than before and recover from falling even in complex configurations [13].

1-2 Problem Statement and Research Question

Relative to these mentioned AI milestones, my hope is that systems which solve complex video
games will be highly general, with applications outside of games.

However, during the literature review and thinking, I found there are still some obstacles need
to be overcome.

1-2-1 Model

Reinforcement learning aims to obtain a policy about how agents could interact with the
environment and get the highest reward or lowest cost. In other words, agents all need to be
trained in an environment, which could be a simulator or the real world. Real-world training
is time and cost inefficiency, so most RL applications are trained in the simulator.

But there are still many tasks or physical phenomena cannot be accurately modeled, like the
flow field or the real traffic, which means these tasks still hard to deal with. And the reality
gap is a serious problem as well, the difference between simulator and real-world can severe
decrease the controller performance.

1-2-2 Guarantee

Although an increasing amount of promising results are being produced, RL is still a large
black-box that we could not explain or predict the actions and the outcome. Agents may take
a temporal undesirable move, running into states unable to recover, hurting itself or human.
For example, a self-driving car should always keep away from the region of pedestrian; even
if it is perturbed to the edge of the zone of catastrophe accidentally, it still should be able
to recover before it’s too late. The ability to recover is defined as stability in control theory,
which is crucial in safety-related physical plants such as autonomous vehicles, health-care
robots and chemical industries. However, due to the formidable challenge, the stability theory
for RL is immature and still an open problem [14, 15]. And there is not any guarantee to
make sure the policy is absolutely reliable and predictable.
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1-3 Contributions 3

And, RL agents learn a policy by thousands of time trial and mistake, and they explore the
world by trying many different policies before converging. So even if we design a reward function
that leads an agent to safe policies at optimum, it could still result in unsafe exploration
behavior.

1-2-3 Research Questions

With the previous problems, this thesis will focus on the second topic and my main research
question is:

How could we train an agent with stability or safe guarantee?

1-3 Contributions

• Reinforcement Learning with Stability Guarantee We develop a novel method
for analyzing Lyapunov stability for model-free reinforcement learning. We provide
a theoretical guarantee for the performance of the stability guaranteed policy. We
show that the stability guaranteed policy is more capable of handling large external
perturbation compared to those without such guarantees.

• Safe Reinforcement Learning with UUB Guarantee With the stability analysis,
We develop the Lyapunov-based approach to guarantee the UUB of the system, and
eventually achieve the constraint or safe satisfaction in CMDP. And our safety definition
is strictly staying inside the safe region confined by the safety cost, rather than keeping
the discounted sum of safety cost under certain bounds as in normal CMDP [16], which
is far more restricted than others. Our setting is more effective and practical since no
discount parameter or bound to be tuned [17]. Our approach can be generally combined
with both on-policy and off-policy algorithms. We then introduce several practical
learning algorithms for UUB guaranteed policies and our algorithms achieving the state-
of-the-art performance in a series of continuous and discrete control benchmarks with
safety constraints. Our experiment shows that the algorithm outperforms the existing
results in [18, 19], while maintaining zero violation of the state action constraints.

• Lyapunov function in reinforcement learning We present several principled ways
for constructing Lyapunov functions and evaluate their effectiveness on various control
tasks.

• Reproducible results Reproducible is a big challenge in reinforcement learning. With
good hyper-parameters tunning, reward design and combining proper state-of-art tech-
nologies, all the results in this thesis are reproducible. And we provide all the experiment
details in 5.

• Self-Constrained method Since in many situations, the constraint might be hard to
define like the driving a car in real traffic. So, we develop a novel method could let the
agent learn a constraint by itself.
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4 Introduction

1-4 Thesis Outline

This thesis presents the proposed approach and the results from the thesis work. This thesis
report is organized as follows: Chapter 2 is the literature study, giving the basic concepts
of RL and introduction to the state-of-art RL algorithms and some related works. Chapter
3 introduces the preliminaries used in followed Chapters. Chapter 4 shows the proposed
approach. Chapter 5 explains the environment of the experiments and shows the results.
Chapter 6 is the conclusion of the thesis work and some thoughts for future research. Chapter
7 is a byproduct of this thesis.
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Chapter 2

Literature Survey

This chapter will introduce the basic idea of reinforcement learning (RL), explain some of the
state-of-art RL algorithms and some necessary control concepts used in this thesis work.

2-1 Reinforcement Learning

Figure 2-1: RL focus on how an agent could interact with its environment and to learn a policy
could maximizes expected cumulative rewards for a task.

2-1-1 Markov Decision Processes

Reinforcement learning focus on how an agent could interact with the environment to achieve
largest reward. And the whole process, is subject to Markov property and the Markov decision
processes(MDPs).

Master of Science Thesis Yuan Tian
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Markov property means the future state’s conditional probability distribution only depends
on the current state and action instead of the whole history:

P(Xn = xn | Xn−1 = xn−1, . . . , X0 = x0) = P(Xn = xn | Xn−1 = xn−1) (2-1)

MDPs are useful for solving optimization problems solved by dynamic programming and
reinforcement learning. In reinforcement learning, MDPs could model the problem or task
that the agent need to solve. A Markov decision process is a 4-tuple : (S,A, P,R). S is the
current state, A is the action that the agent make at the current state, P is the transition
probability to the next state that at the current state S with the made action A, R is the
received reward when at the current state S and make the action A.

2-1-2 Q Learning

Q learning is one of the simplest algorithm in reinforcement learning. The most basic Q
learning could solve the discrete action and state problem like finding path in a grid world. It
work as a table, the rows represent discrete state, the columns represent the different actions
at each state. And the value for every grid Q(s, a) means the future discounted reward at
the state s and implement action a:

Qπ(st, at) = Eπ(
∑
k=0

γkRt+k+1|St = s,At = a) (2-2)

If the table’s value is the ground truth, the agent could make the best action according to the
highest value at each column. The only problem is how could we get a good prediction about
the table’s value. And Q-Learning provides a effective method for this [20].

Before learning begins, The Q table need to initialize an arbitrary fixed value. Then, at each
time t,the agent selects an action at, observes a reward rt, enters a new state st+1 ,and Q is
updated. The core of the algorithm is a simple value iteration update, using the weighted
average of the old value and the new information, the γ is the discount factor for future reward:

Qnew(st, at) = (1− α)Qold(st, at) + α(rt + γmaxQ(st+1, a)) (2-3)

As we keep improving the policy, it will converge to the optimal policy.

In reinforcement learning, the algorithm could be divided into on-policy algorithms and
off-policy algorithms. Off-policy algorithms could let the agent learn off-policy, which means
it could just learn from the memory or data, like the Q learning. An on-policy agent must
learn by himself. There is an on-policy algorithm which is very similar with Q-learning called
SARSA:

Qnew(st, at) = (1− α)Qold(st, at) + α(rt + γQ(st+1, at+1)) (2-4)

The difference is the SARSA replaces the max future Q by a real Q(st+1, at+1), the action is
exactly the action will do next.
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2-1 Reinforcement Learning 7

2-1-3 Deep Q Network

The Q-learning is hard to deal with large state space problems, and it is almost impossible to
solve the continuous state problems like playing Atari games.

With the development of the deep neural networks(DNN), people find the DNN could help
solve many challenging problems like image-based detection, classification and segmentation.

Then in 2015, people use recent advances in training deep neural networks to develop a
novel artificial agent, named deep Q-network, that can learn successful policies directly from
high-dimensional image inputs using end-to-end reinforcement learning [1]. Basically, DQN

Figure 2-2: DQN [1]

is an advanced version of Q-Learning. So,like the Q-learning, the DQN input the state and
output different actions’ followed future discounted reward and the DQN build loss function
in same sense with the Q update function:

L(θ) = E[QTarget −Q(s, a, θ)] (2-5)

But there are two main problems that make the training not very stable. Firstly, in supervised
learning , we always want the data is independent and identically distributed. But in
reinforcement learning, the data is always a trajectory, which makes the training unstable.
Secondly, DQN learns the values of Q according to 2-5, but the target values for Q depends
on Q itself, which means it is chasing a non-stationary target:

QTarget = R+ γmaxaQ(s′, a) (2-6)

To address these problems, DQN uses two technology : experience replay and target network.

Experience replay: DQN build a place to save or remember memories. While training, it
uses a batch random memories instead of the current online experience. This forms an input
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dataset which is stable enough for training and more independent of each other and closer to
independent and identically distributed.
Target network: DQN create two networks θ′ and θ. It use the first one called target network
to generate action or get the Q values while the second to optimization. The purpose is to fix
the Q-value targets temporarily and make the objective function is not non-stationary.
So, the whole training process is in Fig 2-3 below.

Figure 2-3: DQN training algorithm [1]

2-1-4 Policy Gradient

In reinforcement learning, the algorithm could also be divided into policy-based algorithms
and value-based algorithms. Value-based learning uses V or Q value to derive the optimal
policy like the Q-Learning. while the policy-base method focuses on the policy itself.
The Q-Learning or value-based can only deal with discrete action problems, but some other
tasks need the action space continuous, like balaceing a Cart-Pole. Then, people explored an
alternative approach called policy gradient. In policy gradient, π(a|s) is the probability of
taking the action a given a state s [21].
In policy-based methods, instead of learning a value function that tells us what is the expected
sum of rewards given a state and an action, it learn directly the policy function that maps
state to action.
And, there is a trick to build the objective function:

f(x)∇θ log f(x) = ∇θf(x) (2-7)
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2-1 Reinforcement Learning 9

Then, we replace the f(x) with π :

π∇θ log π = ∇θπ (2-8)
So, the objective function could be :

J(θ) = Eτ∼πθ(τ)[r(τ)] =
∫
πθr(τ)dτ (2-9)

The policy gradient becomes:

∇J(θ) ≈
∫
∇θπθ(τ)r(τ)dτ

≈
∫
πθ(τ)∇θ log πθ(τ)r(τ)dτ

≈ E[∇θ log πθ(τ)r(τ)]

≈ 1
N

N∑
i

(
T∑
t

∇θlogπθ(ai,t|si,t)(
T∑
t

r(si,t, ai,t))

(2-10)

It means to increase the likelihood of a policy if the trajectory results in a high positive reward.
On the contrary, to decrease the likelihood of a policy if it results in a high negative reward.
When it converges, the best action will have highest probability.

2-1-5 Actor Critic

The PG algorithm is successful, however, some glaring issues with vanilla policy gradients:
noisy gradients and high variance. Because we compute the gradient is to sample a bunch of
trajectories from the current policy (τ ∼ πθ(τ)) and average their values. Then the computed
gradient becomes dependent on the randomly sampled trajectories. As a result, itâĂŹs going
to have variance, since its values depend on the sampled trajectories. This variance can be
quite high. This is because each trajectory can take very different paths depending on the
states visited and actions sampled from your policy.
And the Actor-Critic structure could improve it. The policy gradient algorithm’s objective
function has two parts:

∇J(θ) ≈ 1
N

N∑
i

(
T∑
t

∇θlogπθ(ai,t|si,t)(
T∑
t

r(si,t, ai,t)) (2-11)

The first part is ∇θlogπθ(ai,t|si,t), which is a direction vector. Its direction is the steepest
way to change the logπθ(ai,t|si,t). The parameters update in this direction could significant
increase or decrease the trajectory τ ′s probability P (τ ; θ).
The second part is R, which is a scalar. It acts as vector’s amplitude. The larger the R is, the
larger the τ ′s probability P (τ ; θ) will be after update.
Intuitively, the trajectory τ ′s reward is like a critic. In other words, how a policy will change
after update is according to the critic.
During my literature research, I found six frequently-used critic:
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* Trajectory’s total reward:
∑∞
t=0 γ

(t− 1)rt

* Total reward after action:
∑∞
t′=t γ

(t′ − 1)r′t

* Total reward after action with baseline:
∑∞
t′=t γ

(t′−1)r′t − b(st)

* Q value: Q(st, at)

* Advantage value: A(st, at)

* TD error: rt + γV (st+ 1)− V (st)

The first three type of critic, they used trajectory’s cumulative reward. With this, the gradient
will have no bias but high variance.

When the critic used the last three types, the algorithm is the classical Actor-Critic structure.
These critic will have low variance.

To sum up, Actor-critic combines the policy gradient with function fitting. It use the actor to
model the policy and the critic to model V . And the whole training process is :

1 Take action a ∼ πθ(a|s), get (s,a,s’,r)

2 Update V π
target(s) using r + γV π

target(s′)

3 Evaluate Aπ(s, a) = r + r + γV π
target(s′)− V π

target(s)

4 ∇J(θ) ≈ ∇θlogπθ(a|s)Aπ(s, a)

5 θ = θ + α∇J(θ)

2-1-6 Deep Deterministic Policy Gradient

Deep Deterministic Policy Gradient (DDPG) is an algorithm with actor-critic structure, which
learns a Q-function and a policy. It uses off-policy data and the Bellman equation to learn the
Q-function, and uses the Q-function to learn the policy.

It has same idea with the DQN that uses target network to make the training more stable.
DDPG uses four neural networks: a Q network, a deterministic policy network, a target Q
network, and a target policy network. The Q network and policy network like the Actor-Critic
very much. And the only difference is the Actor directly maps states to actions instead of
outputting the probability distribution and sampling.

And it also uses memory to ensure the training data is independent and identically distribute.

In normal policy-based or actor-critic algorithms, the exploration is done via probabilistically.
In the DDPG , the exploration is by adding noise to the action output:

a = a+N (2-12)

The Pseudocode is:
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Figure 2-4: DDPG Pseudocode
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2-1-7 Trust Region Policy Optimization

In the whole policy-base algorithms included the Actor-Critic method, there is always a big
problem about the learning rate α:

θ = θ + α∇J(θ) (2-13)

Like I mentioned in 2-1-5, the policy gradient’s update equation’s second part represents the
steepest ascent direction for the rewards, the equation means to update the policy towards
that direction. It assumes that the policy’s hyperplane is supposed to be flat. If the surface
has high curvature, a large step will be a bad move. But, if the step is too small, the model
learns too slow. Like the Fig 2-5, the blue diamonds is the current position, the red circle
is the optimal point. If the learning rate is too large, it takes step that may lead the policy
fall down from the cliff. Mostly, the agent will start from a bad performance situation with a
poorly policy. Once the policy collapses, it will take a long time if ever, to recover. And the
learning rate is very difficult to tune in reinforcement learning, so the previous policy-based
reinforcement learning algorithms always suffer from convergence problem badly.

Figure 2-5: Hyperplane example

Then, people are wondering if there is a way could make the agent do better after every update.
That is what the the trust region policy optimization(TRPO) could do.

As the TRPO aims to make the reward monotone increasing during every update, a natural
thought is to represent the new policy’s reward by the old policy’s reward added with a other
term. With this thought, we could build the objective function 2-14, and its proof is equation
2-15:

η(πnew) = η(πold) + Eτ∼πnew(
∞∑
t=0

γtAπ(st, at)) (2-14)

Yuan Tian Master of Science Thesis



2-1 Reinforcement Learning 13

Eτ∼πnew(
∞∑
t=0

γtAπ(st, at)) = Eτ∼πnew((
∞∑
t=0

γt(Qπ(st, at)− Vπ(st)))

= Eτ∼πnew(
∞∑
t=0

γt(r + γVπ(st+1)− Vπ(st))

= Eτ∼πnew(
∞∑
t=0

γtrt) + Eτ∼πnew(
∞∑
t=0

γ1+tVπ(st+1)− γVπ(st))

= η(πnew) + Eτ∼πnew(γnVπ(sn)− Vπ(s0))
= η(πnew) + Es0(−Vπ(s0))
= η(πnew)− η(πold)

(2-15)

But from the equation 2-14, we could find it is impossibble to sample the τ ∼ πnew. So we do
an approximation:

L(πnew) = η(πold) +
∑
s

P (s)
∑
a

πnew(a|s)Aπ(st, at) (2-16)

From the equation 2-16, there still is a problem that we could not sample action from the new
policy due to the parameters of new policy is unknown. So, we do the next approximation by
importance sampling:

* Importance Sampling: In statistics, importance sampling is a general technique for
estimating properties of a particular distribution, while only having samples generated
from a different distribution than the distribution of interest.

πnew(a|s)Aπ(st, at) =
∑
a

πold(a|s)
πnew(a|s)
πold(a|s)

Aold(s, a)

= Ea∼πold
πnew(a|s)
πold(a|s)

Aold(s, a)
(2-17)

Then, the objective function is :

Lπold(πnew) = η(πold) + Es∼ρold,a∼πold
πnew(a|s)
πold(a|s)

Aold(s, a) (2-18)

And the policy update objective function could be :

maximizeθ(Ea∼πθold
πθnew(a|s)
πθold(a|s)

Aθold(s, a))

subject to Dmax
KL (θold, θ)) ≤ σ

(2-19)

But the max KL divergence is unsolvable, the last step is using mean KL divergence to
approximate the max KL divergence. Finally, the policy update objective function is :

maximizeθ(Ea∼πθold
πθnew(a|s)
πθold(a|s)

Aθold(s, a))

subject to Dmean
KL (θold, θ)) ≤ σ

(2-20)

And it use conjugate gradient to Solve the update.
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2-1-8 Proximal Policy Optimization

PPO is based on some idea with the TRPO, to take the biggest possible improvement at
every update, without stepping so far that causes performance collapse. But the TRPO’s
solution is a very complex second-order methor, it needs large computation and times. And
PPO methods are significantly simpler to implement, and empirically seem to perform at least
as well as TRPO.

The objective function is :

LCLIP (θ) = E[min(r(θ)Ât, clip(r(θ), 1− ε, 1 + ε)Ât)] (2-21)

Which means that we will take the minimum of the clipped and non clipped objective, so the
final objective is a lower bound (pessimistic bound) of the unclipped objective. Like the Fig
2-6 below. For example, when the Ât > 0, it means at this state, the action is better than
the average of all the actions in that state. Therefore, we should encourage our new policy
to increase the probability of taking that action at that state, to increase the r(t). However,
because of the clip, r(t) ill only grows to as much as 1 + ε.

Figure 2-6: Plots showing one term (i.e., a single timestep) of the surrogate function LCLIP as
a function of the probability ratio r, for positive advantages left and negative advantages right Â
The red circle on each plot shows the starting point for the optimization, i.e., r = 1 Note that
LCLIP sums many of these terms

In baseline 1, the objective function is :

L(θ) = E[LCLIP (θ)− c1L
V F (θ)− c2S(πθ)] (2-22)

Where the LV F is squared error value loss :

LV F (θ) = [V (ω)− Vtarget]2 (2-23)

And the S(πθ is entropy term, which ensure sufficient exploration.
1https://github.com/openai/baselines
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2-1-9 Soft Q

In reinforcement learning, there is a step called choosing action. In Q-learning or other
value-based algorithm, we used epsilon-greedy schedule for action selection. In policy-based
algorithm, , the actions are defined as a probability distribution, according to the current
state p(a|s). For example , in continuous control agent, the action probability distribution
could be a gaussian distribution with a mean and standard deviation, which could be a neural
network [22].
These actions selection will help the agent to know, to explore about the environment with
least a priori knowledge about the world. So, it sometimes leads to different ends. For instance,
the Fig 2-7 below is a Gym task called HalfCheetah, which the agent focus on how to move
faster. With the same reward setting, the agent learned two different policies, one use legs to
run, the other use the back to move.

Figure 2-7: Trained HalfCheetah

Considering the role of randomness in action selection. People find a technology could
improved exploration and compositionality that allows transferring skills between tasks called
soft Q-Learning [23].
In reinforcement learning, the optimal policy maximizes the discounted cumulative reward:

π∗ = argmaxEπ(
inf∑
t

γt−1r) (2-24)

The Q-value Q(s,a) represents the expected discounted cumulative reward after taking an
action a at state s. Consider the robot Fig 2-7. The Q-function may look like the grey curve
in Fig 2-8, with two peaks corresponding to the two move methods(back move and leg move).
Normal RL approaches will have a policy distribution centered at the maximal Q-value with
a variance for exploration. Due to the shape and the one peak of the policy , the agent will
fix its policy little by little and ignores the lower method completely. In other words, the
normal RL algorithms will obtain a policy like the red curve. But the optimal policy is the
greed curve which make the agent could explores all promising states while select the most
promising one. And this kind of policy could be like the exponentiated Q:

π(a|s) ∝ expQ(s, a) (2-25)

With this policy, the agent will be aware of all possible actions that may solve problems, which
allows transferring skills and helps the agent adapt to changing situations. And, people shows
that the policy defined upon is an optimal solution for the maximum-entropy RL objective:

π∗MaxEnt = argmaxπEπ(
T∑
t=0

γt(rt + αH(π(∗st))) (2-26)
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Figure 2-8: A multimodal Q-function

And they defined the soft Q-function by:

Q∗soft(st, at) = rt + E(st+1,....)∼ρ(
∞∑
l=1

γl(rt+l + αH(π∗MaxEnt(∗|st+l))) (2-27)

And the soft value function is:

V ∗soft(st) = α log
∫
A

exp( 1
α
Q∗soft(st, a′))da′ (2-28)

Then the the optimal policy is

π∗MaxEnt(at|st) = exp( 1
α
Q∗soft(st, at)− V ∗soft(st)) (2-29)

The soft Q-function satisfies the soft Bellman equation

Q∗soft(st, at) = rt + γEst+1∼ρs(V ∗soft(st+1)) (2-30)

The soft Bellman equation have been proved that can hold for the optimal Q-function of the
entropy augmented reward function [24].

Soft Q-Iteration

The Soft Q-Iteration is to iteratively update the estimates of V ∗soft 2-28 and Q∗soft 2-30 until
convergence just like the Q-iteration. But this is hard to be performed in continuous or large
state and action spaces, and sampling from the energy-based model in is intractable in general.

Soft Q-Learning

So, a more general solution is soft Q-Learning. First, it converts the problem into a stochastic
optimization problem, and the soft value function becomes by doing importance sampling like
the TRPO:

V θ
soft(st) = α logEqa′(

exp( 1
αQ

θ
soft(st, a′))

qa′(a′)
) (2-31)

And the objective function is:

JQ(θ) = Est∼qst ,at∼qat (
1
2(Qθsoft(st, at)−Qθ

′
soft(st, at))2) (2-32)
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2-1-10 Soft Actor-Critic

As mentioned before, the maximum entropy Q function is:

Q(st, at) = rt + γEst+1∼ρs(V (st+1)) (2-33)

The entropy term could be :

H(π(a|s)) =
∫
π(a|s) log π(a|s)da = Ea∼π log π(a|s) (2-34)

And the Value function is :

V (st) = Eat∼π(Q(st, at)− α log π(at|st)) (2-35)

With the same idea of soft Q-learning, people introduced the soft actor-critic. It uses a
parameterized Q network Qθ(st, at) and a policy network πφ(at|st). The soft Q-function
parameters can be trained to minimize the soft Bellman residual :

JQ(θ) = Est,at∼D(1
2(Qθ(st, at)− (r(st, at) + γEst+1∼p(Vθ′t+ 1)))2) (2-36)

So the critic network update function is :

∇θJQ(θ) = ∇Qθ(st, at)(Qθ(st, at)− (r(st, at) + γ(Qθ′(st+1, at+1)− α log(πφ(at+1|st+1)))))
(2-37)

Where the policy network’s update objective function is :

Jπ(φ) = Est∼D(Eat∼πφ(α log(πφ(at|st)−Qθ(st, at))) (2-38)

2-1-11 Constrained Policy Optimization

Constrained Policy Optimization (CPO) is a trust region method for constrained RL which ap-
proximately enforces the constraints in every policy update. It could constrained reinforcement
learning with guarantees for near-constraint satisfaction at each iteration.

The objective function is :

maximizeθ(Ea∼πθold
πθnew(a|s)
πθold(a|s)

Aθold(s, a))

subject to Dmean
KL (θold, θ)) ≤ σ,

and Jci(πθold) + 1
1− γ [Ea∼πθold

πθnew(a|s)
πθold(a|s)

Aθold(s, a)] ≤ di ∀i

(2-39)

Where the first term is same with the TRPO or PPO, the second term is the policy’s KL
divergence and the third term is the constrain term.
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2-2 Control Theory

2-2-1 Stable

Consider an autonomous nonlinear dynamical system

ẋ = f(x(t)), x(0) = x0 (2-40)

Suppose f has an equilibrium at xe so that f(xe) = 0 then

This equilibrium is said to be Lyapunov stable, if , for every ε, there exists a δ > 0 such that,
if ||x(0)− xe|| < δ , then for every t ≥ 0 we have ||x(t)− xe|| < ε

Figure 2-9: Lyapunov stable

2-2-2 Asymptotic stable

Consider an autonomous nonlinear dynamical system

ẋ = f(x(t)), x(0) = x0 (2-41)

Suppose f has an equilibrium at xe so that f(xe) = 0 then

This equilibrium is said to be asymptotic stable, if it is stable and there exists there exists a
δ > 0 such that if ||x(0)− xe|| < δ , then limt→∞ ‖x(t)− xe‖ = 0

Figure 2-10: Asymptotic stable

Yuan Tian Master of Science Thesis



2-2 Control Theory 19

2-2-3 Uniformly bounded

The system is said to be uniformly bounded in mean square if there exists ε > 0 and there
exists a d(ε) <∞ , such that for every t > t0, we have

‖x(t0)‖ < ε =⇒ ‖x(t)‖ < d(ε) (2-42)

Figure 2-11: Uniformly bounded

2-2-4 Ultimately uniformly bounded

The system is said to be uniformly bounded in mean square if there exists ε > 0 and there
exists a W ⊂ Rn , such that for every t > t0 + T , we have

‖x(t0)‖ < ε =⇒ ‖x(t)‖ ∈W (2-43)

Figure 2-12: Ultimately uniformly bounded
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2-3 Auto-encoder

Auto-encoders are an unsupervised learning technique which consists two parts, an encoder
and a decorder. Both of these two parts are represented by a neural network. The general
structure shows below 2-13.

Basically, the encoder works like PCA, which could extract features. And the performance of
the extraction is evaluated by the decoder. The decoder aims to reconstruct the input from
the information after encoder. By training encoder and decorder together, the network could
learn a good representation of the input.

Figure 2-13: Auto-encoder structure
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2-3-1 Variational Autoencoder

An Auto-encoder could find some latent state representation of that data. A variational
autoencoder (VAE) provides a probabilistic apsect for describing an observation in latent
space, see Fig 2-14 below. The encoder encodes the input to a distribution. And the decoder
aims to sample a data from a distribution then decode it to original input.

Figure 2-14: AE VS. VAE
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Chapter 3

Preliminaries

This chaper will introduce to the notations and concepts of this thesis , which includes the
control theory and reinforcement learning.

3-1 MDP and CMDP

A Markov decision process (MDP) is a tuple, (S,A, c, P, ρ), where S is the set of states, A is
the set of actions, c(s, a) ∈ [0,∞) is the cost function, P (s′|s, a) is the transition probability
function, and ρ(s) is the starting state distribution. The CMDP model is a extension of MDP,
where the tuple consists of (S,A, r, P, b, ρ). b(s, a) ∈ [0,∞) is the constraint function which
we want to keep lower than safety threshold d, while r(s, a) is the reward function. π(a|s) is a
stationary policy denoting the probability of selecting action a in state s. In addition, the cost
functions under stationary policy are defined as cπ(s) .= Ea∼πc(s, a) and bπ(s) .= Ea∼πb(s, a)
correspondingly.

In RL, we aim to find a policy π which minimizes J(π), Jc(π) .= π
∑∞
t=0 γ

tc(st, at). Accordingly,
for the CMDP problem, the objective is to maximize J(π) .= π

∑∞
t=0 γ

tr(st, at) while keeping
b under d, which we select to be zero in this paper. Here γ ∈ [0, 1) is the discount factor,
τ denotes a trajectory (τ = (s0, a0, s1, ...)), and τ ∼ π is shorthand for indicating that
the distribution over trajectories depends on π: s0 ∼ ρ, at ∼ π(·|st), st+1 ∼ P (·|st, at).
Letting C(τ) denote the discounted cost of a trajectory, we express the on-policy value
function as V π(s) .= Eτ∼π[C(τ)|s0 = s] and the on-policy action-value function as Qπ(s, a) .=
Eτ∼π[C(τ)|s0 = s, a0 = a]. The advantage function is Aπ(s, a) .= Qπ(s, a)− V π(s).

Also of interest is the discounted future state distribution, dπ, defined as dπ(s) = (1 −
γ)
∑∞
t=0 γ

tP (st = s|π, ρ). It allows us to express the performance measure in the form of
Jc(π) = Es∼dπc(s, a)
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3-2 Stability

Among the various kinds of stability, we found that the following two definitions are particularly
useful for the general class of learning control problems.

First, the so-called mean square stability (MSS) is generally used in the study of stochastic
nonlinear systems[25]. In control theory, MSS implies that expectation over the norm of state
converges to zero as time approaches infinity. For physical plants like drones and spacecrafts,
MSS implies that the drones and spacecrafts will converge to the origin of the state space
eventually, which is called stabilization in control theory. This is generalized to handle the
tracking tasks for autonomous vehicles and field robots, where the norm of the position
difference from the desired way point is considered instead.

Obviously, the classic definition of MSS is not directly applicable control tasks such as Atari
games or Go. Thus We extend the MSS to the more general class of problems by replacing
the measure of norm with a semi-definite cost function as following,

Definition 1. Suppose cπ(·) is the cost function, cπ : S → R+. The system is said to be mean
square stable (MSS) limt→∞ Estcπ(st) = 0 holds for any initial condition s0.

The meaning of the definition above varies with the different choices of c(·). When chosen to
be the norm ‖·‖2, it still makes sense for systems involving physical dynamics. For the tasks
like Breakout and Pac-Man, the cost could be chosen to be the remaining amount of bricks
and Pac-dots. In these scenarios, MSS implies that the task converges towards the state where
no bricks or dots remain.

Similarly, for the scenarios where constraints exist, maintaining the safety cost under a certain
thresholds rather than zero is also needed. Thus we introduce the following concept about
Ultimately Uniformly Boundness,

Definition 2. The system is said to be ultimately uniformly bounded (UUB) in mean square
if there exists d > 0 and for every d ∈ (0, c), there exists T = T (d, d) independent of t0, such
that Es0bπ(s0) ≤ d =⇒ Estbπ(st) ≤ d,∀t ≥ t0 + T .

In the definition above , the term uniform indicates that the bound d does not depend on t0.
The term ultimate indicates that boundedness holds after the lapse of a certain time T . The
constant d defines a neighborhood of the origin, independent of t0, such that all trajectories
starting in the neighborhood will remain bounded in time. If c can be chosen arbitrarily large
then the UUB notion becomes global.

UUB suggests that the state converges to and stays inside the level set determined by the cost
function. For tasks with the presence of constraints, UUB means the state will be driven into
the so-called safe set where the constraints are satisfied. Take the Pong with Catastrophe
Zone [2] as an example, the board will not crash into the obstacle if UUB holds. For the
real-world applications like agriculture drone or autonomous vehicle, UUB guarantees that
the machine will not leave the working area or road.

The concept of UUB and the conceptual idea on how Lyapunov analysis can be used to study
UUB are illustrated Fig 3-1 below:
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(b) Lyapunov analysis in UUB

Figure 3-1: UUB Concept and Lyapunov Analysis. To demonstrate how Lyapunov analysis can be
used to study UUB, consider a continuously differentiable positive definite function L(x). Choose
0 < ε < c. Suppose that the sets Πε = {L(x) ≤ ε} and Πc = {L(x) ≤ c} are compact. Let
Π = {ε ≤ L(x) ≤ c} = Πc −Πε and suppose that it is known that the time derivative of L(x(t))
along the trajectories of the nonautonomous dynamical system is negative definite inside Π, that
is L̇(x(t)) ≤ −W (x(t)) < 0, ∀x ∈ Π,∀t ≥ t0 where W (x(t)) is a continuous positive definite
function. Since L̇ is negative in Π, a trajectory starting in Π must move in the direction of
decreasing L(x(t)). In fact, it can be shown that in the set Π the trajectory behaves as if the origin
was uniformly asymptotically stable. Consequently, the function L(x(t)) will continue decreasing
until the trajectory enters the set Πε in finite time and stays there for all future time. Therefore,
the solution of the dynamical system are UUB with the ultimate bound b = maxx∈Πε ‖x‖
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Chapter 4

Proposed Approach

In this charpter, we give the practical RL algorithms with stability guarantees given in
Appendix. Based on the result in Appendix A-1, we formulate an Actor-Critic style learning
algorithm, called the Lyapunov-based Actor Critic (LAC), to solve the general MDP problems.
Based on the result in Section A-2, we combine with various popular off-policy and on-policy
RL algorithms, to solve the CMDP problems.

Besides, to address the problem that some constraints are hard to define, we develop a novel
method to model a constraint by conditional representation model and define the Wassertein
constraint.

4-1 Off-policy algorithm

Off-policy algorithms are capable of learning from past experience, thus possesses higher
sample efficiency compared with on-policy methods. DDPG [26] is a well known off-policy
actor-critic method, which is capable of dealing a large class of continuous control tasks. A
lately proposed actor-critic method SAC [27], based on the maximum entropy framework,
outperformes DDPG and other policy gradient methods in a series of complex control tasks
[27]. In our experiment, we adopt SAC as the benchmark for comparison and the baseline
for developing safety guaranteed learning algorithm. Meanwhile, we also give a DDPG-based
policy gradient method with safety guarantee in Algorithm 1.

First, based on the maximum entropy actor-critic framework, we use the Lyapunov function as
the critic in the policy gradient formulation. In this algorithm, a critic Lyapunov function Lc
is needed, which satisfies L(s) = Ea∼πLc(s, a). The objective function J(π) is given as follow,

J(π) = E(s,a,s′,c)∼D [β log(πθ(fθ(ε, s)|s)) + λ(Lc(s′, fθ(ε, s′))− Lc(s, a) + α3c(s, a))] (4-1)

where πθ is parameterized by a neural network fθ, ε is an input vector consisted of Gaussian
noise. In the above objective, β and λ are positive variables which control the relative
importance of policy entropy versus energy decreasing constraint. As in [27], the entropy of
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policy is expected to remain above the target entropy Ht. Both the values of β and λ are
adjusted through gradient method, where the gradient of (4-1) is approximated by

∇θJ(π) = ∇θβ log(πθ(a|s)) +∇aβ log(πθ(a|s))∇θfθ(ε, s) + λ∇a′Lc(s′, a′)∇θfθ(ε, s′). (4-2)

For the CMDP problems, we combine our approach with the SAC through Lagrangian
method. We call the combined algorithm Lyapunov-based soft actor critic (LSAC), of which
the objective function for policy update is

J(π) = E(s,a,s′)∼D [β[log(πθ(fθ(ε, s)|s)) +Ht]−Q(s, fθ(ε, s))]
+ E(s,a,s′,b)∼De [λ(Lc(s′, fθ(ε, s′))− Lc(s, a) + α3b(s, a))]

(4-3)

Since the constraint (A-9) in Theorem 3 on UUB is built upon the samples from the edge set
∆, an edge memory buffer De is needed. Following a similar derivation as (4-2), the gradient
estimator is obtained. Due to space limitation, the update details of Q function and Lyapunov
function, as well as β and λ, are referred to Algorithm 2 and Algorithm 3 , along with the
pseudo-codes of LAC and LSAC.
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Algorithm 1 Lyapunov-based Deep Deterministic Policy Gradient (LDDPG)
Initialize the edge set ∆, replay buffer R and edge replay buffer Rc, and the noise distribution
ε ∼ N , Lagrangian multiplier λ
Randomly initialize a critic network Q(s, a), Lyapunov critic network Lc(s, a), actor µ(s)
with parameters φQ, φLc , θ
Initialize the parameters of target networks with φQ ← φQ, φLc ← φLc , θ ← θ
for each episode do
Sample s0 according to ρ
for each time step do
Sample at from µ(s) + ε and step forward
Observe st+1, rt, bt and store (st, at, rt, bt, st+1) in R
if st ∈ ∆, store (st, at, rt, bt, st+1) in Rc
Sample minibatches of N and Nc transitions from R and Rc
Update Q by minimizing the TD-error δ = 1

N

∑
i(ri + γQ′(si+1, µ

′(si+1))−Q(si, ai))2

Update Lc by minimizing δL = 1
N

∑
i(bi + γL′c(si+1, µ

′(si+1))− Lc(si, ai))2

Estimate policy gradient:

∇θJ ≈ ∇θ
( 1
N

N∑
i

Q(si, µ(si))− Lλ
)

where

Lλ
.= 1
Nc

Nc∑
j

λ [Lc(sj+1, µ(sj+1))− Lc(sj , aj) + α3bt]

Update actor and Lagrangian multiplier:

θ ←θ + α∇θJ
λ←max (0, λ+ αλLλ)

Update the target networks:

φQ ← τφQ + (1− τ)φQ
φLc ← τφLc + (1− τ)φLc
θ ← τθ + (1− τ)θ

end for
end for
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4-1-1 Lyapunov-based Actor Critic

We use the following as the objective function for updating the Lyapunov critic,

J(Lc) = E(s,a)∼D

[1
2(Lc(s, a)− Ltarget(s, a))2

]
(4-4)

where Ltarget is the approximation target for Lc. For the case that use cost as Lyapunov
function, Ltarget(s, a) = c(s, a); for the case of value function as Lyapunov function,

Ltarget(s, a) = c(s, a) + γL′c(s′, f(ε, s′)) (4-5)

where L′c is the target Lyapunov critic function as typically used in the actor critic methods
[27, 26], which has the same structure with Lc but the parameter is updated through the
exponentially moving average of weights of Lc controlled by a hyperparameter τ .

The value of temperature β and Lagrangian multiplier λ are automotive, adjusted by the
policy gradient method optimizing the following objectives, respectively,

J(β) = E(s,a)∼D − β[log(πθa|s)) +Ht] (4-6)
J(λ) = E(s,a)∼D − λ[Lc(s′, fθ(ε, s′))− Lc(s, a) + α3c(s, a)] (4-7)
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Algorithm 2 Lyapunov-based Actor Critic (LAC)
Initialize replay buffer R and the Lagrangian multiplier λ
Randomly initialize Lyapunov critic network Lc(s, a), actor π(a|s) with parameters φLc , θ
Initialize the parameters of target networks with φLc ← φLc , θ ← θ
for each iteration do
Sample s0 according to ρ
for each time step do
Sample at from π(s) and step forward
Observe st+1, rt, bt and store (st, at, rt, bt, st+1) in R
if st ∈ ∆, store (st, at, rt, bt, st+1) in Rc

end for
for each update step do
Sample minibatches of N and Nc transitions from R and Rc
Estimate policy gradient:

φLc ← φLc + αφLc∇φLcJ(Lc)
θ ← θ + αθ∇θJ(π)

λ← max (0, λ+ αλLλ)

Update the target networks:

φQ ← τφQ + (1− τ)φQ
φLc ← τφLc + (1− τ)φLc
θ ← τθ + (1− τ)θ

end for
end for

4-1-2 Lyapunov-based Soft Actor Critic

As in [27], the soft value function V is defined as

V (s) = Ea∼π(Q(s, a)− βlog(π(a|s))) (4-8)

which augments a standard value function with the entropy of policy at the given state. In
practice, the Q-functions are updated by minimizing

J(Q) = E(s,a,r,s′)∼D
1
2
[
r(s, a) + γV (s′)−Q(s, a)

]2 (4-9)

In our implementation, two soft Q-functions {Q1, Q2} are used and the target networks
{Q′1, Q′2} are constructed accordingly. Following the objective function of actor (4-3), the
gradient estimator in the double Q-function implementation is obtained as

∇θJ(π) =ED[∇θβ log(πθ(a|s)) +∇a(β log(πθ(a|s))−min
i
Qi(s, a))∇θfθ(ε′, s)]+

EDc [λ∇a′Lc(s′, a′)∇θfθ(ε, s′)]
(4-10)
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The policy gradient is composed of two parts, the gradient estimated by the Q-function based
on the samples from replay buffer D, and that estimated by the Lyapunov critic based on the
samples from the edge buffer Dc. In a lot tasks, the violation of constraints only happens after
the agent mastering certain level of skills, such as running forward in the HalfCheetah-Safe
task. This implies that with a randomly initialized policy, the content of Dc hardly grows
while D is ready for the updates. Thus, to overcome this inconvenience, we setup a initial
objective function Ĵ(π) by setting the λ to zero until the Dc has stored enough transitions. In
practice, we find this to be data-efficient and does not endanger the agent. Another point to
be noted is that the policy gradient is estimated by the Q-function with lower value, which
is found to be useful in migrating performance degradation caused by the bias in the value
estimation [27]. The updates of Lyapunov critic Lc, temperature β and multiplier λ are the
same as in LAC subsection 4-1-1.
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Algorithm 3 Lyapunov-based Soft Actor Critic (LSAC)
Initialize the edge set ∆, replay buffer R and edge replay buffer Rc, and the Lagrangian
multiplier λ
Randomly initialize a critic network Q(s, a), Lyapunov critic network Lc(s, a), actor π(a|s)
with parameters φQ, φLc , θ
Initialize the parameters of target networks with φQ ← φQ, φLc ← φLc , θ ← θ
for each iteration do
Sample s0 according to ρ
for each time step do
Sample at from π(s) and step forward
Observe st+1, rt, bt and store (st, at, rt, bt, st+1) in R
if st ∈ ∆, store (st, at, rt, bt, st+1) in Rc

end for
for each update step do
Sample minibatches of N and Nc transitions from R and Rc

φQ ← φQ + αφQ∇φQJ(Q)
φLc ← φLc + αφLc∇φLcJ(Lc)

θ ← θ + αθ∇θJ(π)
λ← max (0, λ+ αλLλ)
β ← β + αβ∇βJ(β)

Update the target networks:

φQ ← τφQ + (1− τ)φQ
φLc ← τφLc + (1− τ)φLc
θ ← τθ + (1− τ)θ

end for
end for
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4-2 On-policy algorithm

A on-policy Lyapunov-based safe RL algorithms will be formulated, i.e., Lyapunov-based
proximal policy optimization (LPPO).

4-2-1 Lyapunov-based Proximal Policy Optimization

In PPO, the clipped surrogate objective is designed as

Jclip(s, a) = min(r(θ)Aπ(s, a), clip(r(θ), 1− δ, 1 + δ)Aπ(s, a)) (4-11)

Where r(θ) = πθ(a|s)
πθold(a|s) , θold is the parameter of policy π of the last update. And where

δ ∈ [0, 1) is the clip range for the importance coefficient r(θ).

For the LPPO variant, following similar idea as in LSAC, we combine our approach with PPO
[28] through Lagrangian method, forming a soft constrained objective function as follows

J(πθ) = Eτ [−Jclip(s, a) + λ(r(θ)L(s′)− L(s) + α3bπ(s))] (4-12)

As the LPPO is based on the result from 1, the safety constraint is implemented globally
on the state space, ignoring the value of safety cost b. This could lead the policy update
to be overly conservative. To mitigate the conservatism caused by global constraint, we use
introduce an adaptive alpha3, of which the value starts from a small positive number and
gradually climbs to the designed value. This is reasonable since on general, the value of alpha3
only determines whether the constrained problem is feasible and the robustness of validity of
constraints in presence of estimation error, and the magnitude is not related to the stability
guarantee. The update of α3 follows the rule below:

if
∑
τ

b(s, a) > 0, αk+1
3 ← min(1.5 ∗ αk3 , α3)

else, αk+1
3 ← min(1.01 ∗ αk3 , α3)

(4-13)

where α3 is the designed upper bound. We found this technique useful in improving the
performance while guaranteeing safety as using constant α3 in LPPO.

It should be noted that this variant is based on the result from Theorem 1, i.e., suppressing
the bπ to zero. Thus the system is guaranteed to converge to and stay inside a safe region
{s ∈ S|bπ(s) = 0}. Specifically, we use the clipped version of PPO, of which the pseudo-code
and other details are referred to Algorithm 4.
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Algorithm 4 Lyapunov-based Proximal Policy Optimization (LPPO)
Initialize Lagrangian multiplier λ
Randomly initialize a critic network V (s), Lyapunov critic network L(s), policy π(a|s) with
parameters φV , φL, θ
for each episode do
Collect a set of trajectories D = τi by running policy πk = π(θk) in the environment.
Compute return estimates

R̂t = rt + γV (st+1)

Compute advantage estimates, Ât using GAE based on current value function Vφ
Update the policy by with gradient of the LPPO-clip objective (??):

θ ← θ + αθ∇θJ(π)

Fit value function by regression on mean-squared error:

φV ← φV + αφV∇φV ED
1
2(VφV (s)− R̂t)2

Fit Lyapunpv function by regression on mean-squared error:

φL ← φL + αφL∇φLED
1
2(LφL(s)− Ltarget)2

Update Lagrangian multiplier:

λ←max (0, λ+ αλLλ)

Update α3 as Equation 4-13
end for

4-3 Lagrangian-based Safe Algorithm

We use two Lagrangian based methods as baseline in our experiments, namely the safe soft
actor critic (SSAC) and safe proximal policy optimization (SPPO). Both of these approaches
attempts to solve the following unconstrained optimization problem

min
π

max
λ≥0
L(π, λ) = Eτ∼π[C(τ) + λ(D(τ)− d)] (4-14)

where D(τ) denotes the discounted sum of safety cost over the trajectory τ and d is the safety
threshold.

For the SSAC variant, the Lagragian function L(π, λ) in (4-14) is modified as the following,

L(π, λ) = E(s,a,s′)∼D
[
β[log(πθ(fθ(ε, s)|s)) +Ht]−Q(s, fθ(ε, s)) + λ(Qc(s, a)− d)

]
(4-15)
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where Qc is the safety Q-function. By employing the same PG algorithm as in SAC, a safe
policy is obtained. The temperature β and Lagrangian multiplier are updated in the same
way as (4-6) and (4-7) in LAC.

For SPPO, the Lagragian function is as following,

L(π, λ) = Eτ
[
Jclip(s, a) + λ(r(θ)Ac(s, a) +D(τ)− d)

]
(4-16)

where Ac is the estimated safety advantage through the generalized advantage estimator (GAE)
[29].

4-4 Model the constraint

However, in many complex tasks, the constraints are hard to define or difficult to design a
sophisticated cost function, or even the constraints are dynamic. For example, a vehicle on
roundabout, the constraint are dynamic and uncertain, it is hard to define a proper constraint
or even we do not know what should be the constraint. Maybe we finally define the constraints
are the distance between vehicles and velocity differences between others, we still need to tune
the coefficients.

When humans driving a car, they do not know a specific constraint, but still perform well.
Understanding the latent information of situation and awareness whether is safety or not is
one of the key capabilities of humans which we heavily rely on to make decisions in daily
life. A model that can accurately awareness current situation must internally represent the
complex dynamics and covering enough latent information like constraints. Furthermore, such
models can be inherently useful for reinforcement learning, for example, to allow an agent to
decide how to interact with the world to bring about a desired outcome. Most importantly,
the representation model, including the action-conditioned settings and dynamics uncertainty,
is in fact not deterministic, and a deterministic model can lose many of the nuances. So, the
model should be a distributional model.

To represent constraints by distribution, we propose a novel Conditional Representation Model
based on conditional variantional auto-encoder (CVAE) for input representation learning.
In other words, we model the distribution of the latent of the input, which contains the
constraints information. The CVAE is a conditional directed graphical model whose input
observations modulate the prior on Gaussian latent variables that generate the outputs. It
is trained to maximize the conditional log-likelihood. And we use Wasserstein distance to
measure the distance between constraints.

4-4-1 Conditional Representation Model

In Conditional Graphical Model, there are three types of variables in a conditional represen-
tation model (CRMs): input variables x, conditional variables c, and latent variables z. We
use a same structure as VAE to train our model. The representation model encode the input
x into latent z, and the reconstruct model decode the sample of the latent distribution to
original. The difference is we assume p(z) is a isotropic Gaussian distribution N(c, 1). The
CRMs are trained to maximize the conditional log-likelihood. Often the objective function is
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intractable, and we apply the SGVB framework to train the model. The variational lower
bound of the model is written as follows(complete derivation will be done soon):

logpθ(x) = −KL(qφ(z|x)||pθ(z|c)) + Eqφ [logpθ(x|z)] (4-17)

And the empirical lower bound is written as:

L(x; θ, φ) = −KL(qφ(z|x)||pθ(z|c)) + 1
L

L∑
l=1

logpθ(x|z(l)) (4-18)

The difference between some CVAE is we do not use any other parameters during inference.
The conditional variables only work on training stage. During inference time, our model could
encode the input to distinguishable representations.

Basically, the CRM could represent different inputs into different distributions and we could
sample from these priors to generate new situations.

4-4-2 Wasserstein Constraint

Wasserstein distances are metrics between probability distributions that are inspired by
the problem of optimal transportation. Wasserstein distances can be used to derive weak
convergence and convergence of moments, and can be easily bounded; they are well-adapted
to quantify a natural notion of perturbation of a probability distribution.

The p-Wasserstein1 distance between probability measures µ and ν on Rd is defined as:

WP (µ, ν) = infX∼µ,Y∼ν(E||X− Y||p)1/p (4-19)

As the constraints is represented by a Gaussian distribution, the current Wasserstein distance
between the constraints is:

W 2
2 (X,Y ) = ||m1 −m2||2 − tr[Σ1 + Σ2 − 2(Σ1/2

1 Σ2Σ1/2
1 )] (4-20)
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Chapter 5

Experiments and Results

In our experiments, We aim to answer the following questions:

Based on the stability definitions in Section 3-2, how does our policy with stability guar-
antee ensure the system to recover to normal status under external perturbations?

How does our approach perform compared with a baseline in the continuous control
tasks in terms of convergence speed and performance measure in the presence of stability
guarantee? What’s the influence of using different Lyapunov candidates?

How does our approach perform compared with other safe learning algorithms in CMDP
tasks?

Does the partially constrained method (LSAC) outperform the globally constrained method
(LPPO) in terms of safety and performance measure? Does our approach maintain safety
in presence of function approximation error?

We designed ten MDP and CMDP experiments that are easy to interpret and motivated by
these questions. These experiments involved many kind of environment. The very classic
control task like CartPole, and some reinforcement learning benchmark experiment like
Mujoco and Atari, as well as some robotics control task demo like UAV and UGV demos.
Most importantly, all the experiments are reproducible.

5-1 Experiment environment

All the experiments are in OpenAI Gym structure.
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5-1-1 CartPole Balancing

Controlling a CartPole has been widely analyzed in reinforcement learning and control
literature[30] [31][32][33]. So we design this experiment . In this experiment, we aim to balance
a Cartpole in a given location and keep it vertical absolutely instead of repeatedly moving left
and right to prevent falling down.

To achieve this, we build a new environment. We used the OpenAI Gym’s CartPole’s dynamic
model but change its action space from discrete to continuous, which used to be discrete , only
support -10N or 10N. Now the action is a horizontal force on cart, and the range is in [-20N,
20N]

Figure 5-1: CartPole Balancin

For this task, we designed the a new reward function according to current position and
angle, higher reward means that the cart is closer to the target position and the pole stands
more straightly. The xthreshold and θthreshold represents the boundary of position and angle
respectively. The position range is [-10m, 10m], the xthreshold is 10 and the θthreshold is 40 deg.
When the state achieves the threshold, an episode will be done.

For the MDP task, we want the Cart stay at middle of the slide way with the pole stand
straightly. So the target position is 0 and the Cost is designed as :

c = ( x10)2 + 20( θ

θthreshold
)2 (5-1)

For the CMDP task, we want the Cart stay at the right of the slide way with the pole stand
straightly. So the we set the target position at 6m and the Reward is designed as :

r1 = xthreshold/10− |x− 6|
xthreshold/10

r2 = θthreshold/4− |θ|
θthreshold/4

r = 20 ∗ sign(r1) ∗ r12 + sign(r2) ∗ r22

(5-2)
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And we set the constraint to be defined on the position limit. We constrain the position to be
less than 4, and the Safety Cost is :

b = max(|x| − 0.8 ∗ 4, 0)2

5 (5-3)

For these experiments, the episodes are of length 2500, the maximum global steps is 6e5,
maximum episodes is 1e6.

5-1-2 Point-Circle

Point-Circle is a well-know reinforcement learning CMDP task, which has been done in
Constrained Policy Optimization [18] and Lyapunov-based Safe Policy Optimization for
Continuous Control [19]. The agent moves a point mass by controlling the orientation and
movement increment.
For this environment, we rewrite the rllab 1 and CPO 2 open source environment into Gym’s
Mujoco structure.

Figure 5-2: Point-Circle

And the task is moving the point mass counter-clockwise along a circle of radius 15m.
For CMDP task, we use CPO [18] default Reward, which is :

r = −y ∗ vx + x ∗ vy
1 + |

√
(x2 + y2)− 15|

(5-4)

And we set the constraint to be defined on the x-axis position limit. We constrain the x-axis
position to be less than 3, and we designed the Safety Cost as :

b = max(|x| − 0.8 ∗ 3, 0) (5-5)

For this experiment, the episodes are of length 65, the maximum global steps is 1e6, maximum
episodes is 1e6.

1https://github.com/rll/rllab
2https://github.com/jachiam/cpo
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5-1-3 Ant-Safe

Ant is a classical reinforcement learning benchmark [34], the agent controls an ant (a 4-legged
simulated robot) to run as fast as possible with lowest control cost and contact cost, which is
a MDP task. And the Ant-Safe is a CMDP task, which has same goal but with constrains.

Figure 5-3: Ant-Safe

For CMDP task, we use we use CPO [18] default Reward, which is :

rewardforward = v

costctrl = 0.5 ∗
∑

a2

costcontact = 5e− 4 ∗
∑

clip(cfrcext,−1, 1)2

rewardsurvive = 1
r = rewardforward − costctrl − costcontact + rewardsurvive

(5-6)

where v is the speed of the ant’s center of mass, a is the action. And we set the constraint to
be defined on the speed limit. We constrain the speed to be less than 3, and the Safety Cost
is :

b = max(|v| − 0.9 ∗ 3, 0)2 (5-7)

For this experiment, the episodes are of length 200, the maximum global steps is 1e6, maximum
episodes is 1e6.

5-1-4 HalfCheetah-Safe

HalfCheetah is a classical reinforcement learning benchmark [34], the agent controls a HalfChee-
tah (a 2-legged simulated robot) to run as fast as possible with lowest control cost, which
is a MDP task. And the HalfCheetah-Safe is a CMDP task, which has same goal but with
constrains.

For CMDP task, For CMDP task, we use we use CPO [18] default Reward, which is :

rewardctrl = −0.1
∑

a2rewardrun = vr = rewardrun + rewardctrl (5-8)

where v is the speed of the HalfCheetah’s center of mass, a is the action. And we set the
constraint to be defined on the speed limit. We constrain the speed to be less than 3, , and
the Safety Cost is :
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Figure 5-4: HalfCheetah-Safe

b = max(|v| − 0.9 ∗ 3, 0)2 (5-9)

For this experiment, the episodes are of length 200, the maximum global steps is 1e7, maximum
episodes is 1e6.

5-1-5 Pong-Safe

Pong is a classical reinforcement learning benchmark [34], which is an Atari 2600 game, the
agent aims to get higher score. And Pong-Safe is our changed version from the standard
Gym’s Atari Task Pong-v0. In this environment, the observation is an RGB image of the
screen, which is a data shaped in [210, 160, 3], and the action is the fixed discrete operation
in the game.

And in this experiment, we defined that it’s a catastrophe if the green paddle enters the
Catastrophe Zone, see Fig 5-5 below:

Figure 5-5: Catastrophe Zone [2]

To achieve this, we need to locate the green paddle’s position. But the state is RGB image of
the screen. So we use some simple computer vision technology to process the image and locate
it ( this step is only for obtain the constraint cost) : we first extract the grey-scale map from
the RGB frame, and use a player paddle size filter to locate the player paddle. And we define
the origin is the white line, and the Catastrophe Zone is y-axis position larger than 150.
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The Reward is set as default. And we set the constraint to be defined on the green paddle
y-axis position. We constrain the green paddle y-axis position to be less than 150, and the
Safety Cost is :

b = max(y − 150, 0) (5-10)

For this experiment, the episodes are of length 1e6, the maximum global steps is 2e7, maximum
episodes is 1e6.

5-1-6 FetchReach-v1

FetchReach is a OpenAI Gym’s robotics environment, which is an ingredient for robotics
research. For this experiment, we use the default Gym’s robotics environment. A goal position
is randomly chosen in 3D space. The agent control Fetch’s end effector to reach that goal as
quickly as possible.

Figure 5-6: FetchReach

For MDP task, we use we use OpenAI’s default Cost, which is :

c = d (5-11)

where d is the distance between the target.

For these experiments, the episodes are of length 50, the maximum global steps is 3e5,
maximum episodes is 1e5.

5-1-7 Car

Car environment is our changed version from a open source environment 3 into OpenAI Gym’s
structure. The task is controlling a car to drive on the road and avoid the wall according to
sensor information.

Car has 5 sensors to obtain distance information. And each sensor provides the minimum
distance between obstacles or the environment bound, and the intersections. The state is
defined as : st = [d, endx, endy], which is the the minimum distance between obstacle or the

3https://morvanzhou.github.io/tutorials/
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Figure 5-7: Car

environment bound, the possible intersection between obstacle and the possible intersection
between environment bound. The car has constant velocity, and the agent only control the
steering wheel’s angle. The action range is [-1,1].

For MDP task, we hope it drive with out collision and with least actions. If collision, an
episode will done, then the Cost is:

c = 1000 (5-12)

And if not done, the Cost is :

c = a (5-13)

where a is the actions.

For these experiments, the episodes are of length 600, the maximum global steps is 1e6,
maximum episodes is 1e6.

5-1-8 Quadrotor

We transfer a open source Crazyflie simulator Matlab code 4 into OpenAI Gym’s structure.
The simulator has three main parts, the CrazyFlies physical parameters, the PD controller
and the quadrotor equations of motion. The task is motion planning

We simplified the control problem in discretized time. The control proceeds as follows: The
quadrotor simulator outputs the next state of the quadrotor given the force, torques and the
current state. The control policy, implemented by a MLP, maps the observation of the current
state to the desired step, and the desired state is the desired step added with the current state.
Last, the PD controller converts the current state and desired state to force and torques, and
the loop continues.

4https://github.com/yrlu/quadrotor

Master of Science Thesis Yuan Tian

https://github.com/yrlu/quadrotor


46 Experiments and Results

Figure 5-8: Quadrotor

The state describes the quadrotor’s position, velocities, attitude ,angular velocities and target
position, which is defined as st = [x, y, z, ẋ, ẏ, ż, p, q, r, ṗ, q̇, ṙ, xtarget, ytarget, ztarget]. The policy
aims to plan the desired state, but as the state range is quite large, the desired state could
not be too far from the current state. So, we set the policy output the desired step, which
added with current state is desired state. And due to our goal is about the position, we
only focus on the desired position and velocity and keep the same angle. So, the action
represents the desired changes in position and velocity from current state, which is defined
as at = [∆x,∆y,∆z,∆ẋ,∆ẏ,∆ż]. And an episode ’done’ happened in the current position is
too far from the target position. The target position is provided by a fine designed trajectory
according to time.

For MDP task, the target position is 0. So the Cost is designed as :

c = ||d|| (5-14)

where the d is the distance between the current position and target position.

For CMDP task, the Reward is designed as :

r = −||d||+ 1 (5-15)

where the d is the distance between the current position and target position.

And we set the constraint to be defined on the z-axis position limit. We constrain the z-axis
position to be less than 0.5, and the Safety Cost is :

b = 100 ∗max(|x| − 0.8 ∗ 0.5, 0) (5-16)

For these experiments, the episodes are of length 2000, the maximum global steps is 1e7,
maximum episodes is 1e6.
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5-1-9 CartPole stability against perturbations

This experiment is aiming to test the different policy’s stability against perturbations. We use
the same environment setting as the CMDP CartPole. To see whether the agent could recover
to normal status from perturbations such as external forces and wind. We give the cart a
large perturbation F (around 5 times of the input force) in the CartPole environment, and
observe the behavior. The θthreshold is 40 deg. If the pole’s angle achieve the θthreshold is dead,
and we record the death rate during repeated experiment, the lower death rate the better the
policy’s stability is.

5-2 Hyperparameters

Here is the hyperparameters we used in all these experiments:

Hyperparameters Point-Circle Ant-Safe HalfCheetah-Safe Quadrotor Pong-Safe
form of Lyapunov function Cost Cost Cost Cost Cost
minibatch size 32 32 32 16 4
GAE parameter(λ) 0.95 0.95 0.95 0.95 0.95
ent.coef 0 0 0 0 0.01
learning rate 3e-4 3e-4 3e-4 1e-3 2.5e-4
discount(γ) 0.99 0.99 0.99 0.99 0.99
α3 0.8* 0.2* 0.2* 0.2* 0.005

*α3 is adaptive and initialized in 1e-9 and the upper bound is 0.2

Table 5-1: LPPO Hyperparameters used for CMDP experiments

Hyperparameters Point-Circle Ant-Safe HalfCheetah-Safe Quadrotor Cartpole
Lyapunov function Cost Value Value Value/Cost Value
Minibatch size 256 256 256 256 256
Actor learning rate 1e-4 1e-4 1e-4 1e-4 1e-4
Critic learning rate 3e-4 3e-4 3e-4 3e-4 3e-4
Lyapunove learning rate 3e-4 3e-4 3e-4 3e-4 3e-4
Target entropy -2 -8 -6 -6 -1
Target smoothing coefficient(τ) 0.005 0.005 0.005 0.005 0.005
Discount(γ) 0.99 0.99 0.99 0.99 0.99
alpha3(fixed) 0.8 1 1 0.8 0.8

Table 5-2: LSAC Hyperparameters used for CMDP experiments
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Hyperparameters Quadrotor Cartpole FetchReach Car
Lyapunov function Value/Cost Value/Cost Value/Cost Value/Cost
Minibatch size 256 256 256 256
Actor learning rate 1e-4 1e-4 1e-4 1e-4
Critic learning rate 3e-4 3e-4 3e-4 3e-4
Lyapunove learning rate 3e-4 3e-4 3e-4 3e-4
Target entropy -6 -1 -4 -1
Soft replacement(τ) 0.005 0.005 0.005 0.005
Discount(γ) 0.99 0.99 0.99 0.99
α3(fixed) 0.1/0.2 1/0.8 1/0.1 0.8/0.5

Table 5-3: LAC Hyperparameters used for MDP experiments

5-3 Network Structure

5-3-1 LPPO

For LPPO, we have three networks: the policy network, the value network and the Lyapunov
network. For the policy network and the value network, we used the OpenAI baselines’
5 default structure setting. The Point-Circle, Ant-Safe, HalfCheetah-Safe and Quadrotor
are all Mujoco type environment. For Mujoco type environments, the policy network is a
fully-connected MLP with two hidden layers of 64 units, and tanh nonlinearities, outputting
the mean of a Gaussian distribution with variable standard deviations. And the value network
and Lyapunov network use a fully-connected MLP with two hidden layers of 64 units, and
tanh nonlinearities, outputting V value and Lyapunov value.

The Pong-Safe is an Atari-type environment that uses an image as state input. So we use a
CNN with three convolutional layers and two fully connected layers as policy network. The
first convolutional layer has 32 8x8 size filters with stride 4. The second convolutional layer
has 64 4x4 size filters with stride 2. The third convolutional layer has 64 3x3 size filters with
stride 1. The first fully connected layer has 512 units. The second fully connected layer is the
output layer. And each hidden layer is followed by a ReLU nonlinearity. The policy network’s
input is an 84x84x4 image produced by the preprocessing map. While the Lyapunov network
and the value network shares the parameters between the policy network with additional one
fully connected layer each.

5-3-2 LSAC and LAC

For LSAC and LAC, we have three networks as well: the policy network, the Q network and
the Lyapunov network. For the policy network, we use a fully-connected MLP with two hidden
layers of 256 units, and tanh nonlinearities, outputting the mean of a Gaussian distribution,
with variable standard deviations with variable standard deviations. For the Q network and
the Lyapunov network, we use a fully-connected MLP with two hidden layers of 256 units,
and tanh nonlinearity respectively, outputting the Q value and the Lyapunov value.

5https://github.com/openai/baselines
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5-4 Selection of Lyapunov function

The constraint Equation A-3 confines a rather broad range of parameterization for Lyapunov
function. The sum of quadratic polynomials, e.g., L(s) = sTQs where Q is a positive definite
matrix, are extensively used in the control theory. Such Lyapunonv functions can be efficiently
discovered by the semidefinite programming solvers and brings in limited conservatism for
the control tasks where the cost are also of quadratic form. In [35], a neural network φθ(·) is
designed to construct the Lyapunov function, L(s) = φθ(s)Tφθ(s). As explored in [36] and
[37], value function could be exploited as Lyapunonv function as well. Additionally, Lyapunov
function could also be chosen to be the cost or the sum of cost over a limited time horizon, i.e.,
L(s) = cπ(s) or L(s) = Σt+N

t Ecπ(st) respectively. In principle, the value function evaluates
the longest time horizon and thus produces better performance on general, but it is rather
difficult to approximate, containing significant variance and bias. On the contrary, for the
choice of cost function, though the approximation converges considerably fast, the agent may
suffer from the short-sighted behaviour. In the experiments we will show the effect of these
different choices and provide a principled way for Lyapunov design.

5-5 Selection of α3

The hyperparameter α3 dominates the speed of energy decreasing and takes a significant
impact on the performance. The optimization may be infeasible for unreasonable large values;
contrarily, with a too small α3, the right hand-side of inequality could be submerged in the
error of Lyapunov function, eventually failing in stabilizing the system. The range of α3 varies
with the choice of Lyapunov function. For the cost function choice, α3 must be in the range of
[0, 1), since values larger than 1 will make the problem analytically infeasible.

5-6 Result

5-6-1 MDP Tasks

We compare our approach to SAC [27], a recent off-policy actor-critic algorithm, which aims
to simultaneously maximize expected return and entropy. And itachieves state-of-the-art
performance, and outperforms such DDPG [26], PPO [28] and twin delayed deep deterministic
policy gradient algorithm (TD3) [38] on the continuous control benchmarks. So, we think
SAC is a suitable and qualified baseline for comparison. To make fair comparison, we give
every advantage to SAC, such as adaptive temperature and double Q functions, that reported
to achieve the best performance. As for tuning, we use the default hyperparameter setting
in [27]. We only did primary tuning to determine α3 and clipped the value of Lagrangian
multiplier between [0, 1] to avoid divergence.

These results show the total average cost during training over 10 rollouts and the shaded areas
standing for 1-sd confidence intervals. We include two versions of our LAC approach, the
version that Lyapunov function approximates the value function and the one where Lyapunov
function is to approximate cost.
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CartPole

In MDP CartPole experiment, our algorithm LAC achieve the state-of-art result when the
Lyapunov function approximates the value function. And the variance of LAC is generally
less than SAC as in this task. While the Lyapunov function approximates the undiscounted
sum of cost, the result is not as good as the other one.
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Figure 5-9: Cartpole Result

FetchReach

In FetchReach experiment, our algorithm LAC get better result than the state-of-art result,
which converges quickier. And the variance of LAC is generally less than SAC as in this task.
And the Lyapunov function approximates the value function or the undiscounted sum of cost
both could get good result.
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Figure 5-10: FetchReach Result
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Quadrotor

In MDP Quadrotor experiment, our algorithm LAC achieve the state-of-art result. And the
Lyapunov function approximates the value function or the undiscounted sum of cost both
could get good result.
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Figure 5-11: Quadrotor Result

Stability against perturbations

An inherent property of stability is to enable the system to recover to normal status from
perturbations such as external forces and wind. To show this, we introduce a large external
impulsive force F (around 5 times of the input force) in the Cartpole environment, and observe
the performance difference between agents trained by LAC and SAC. As shown in the Table
1, the agent trained by LAC outperforms that trained by SAC by large in the presence of
impulsive forces with different magnitudes.

F (Newton) 100 95 90 85 80
LAC 27.6% 5.8% 0.0% 0.0% 0.0%
SAC 62.8% 40.6% 25.2% 3.2% 1.2%

Table 5-4: Death rate of agents trained by LAC and SAC in the presence of sudden impulsive
force F with different magnitudes. An agent is marked as dead when θ > θthreshold which means
the pole will fall over. Both agents are evaluated over 500 random seeds in each setting.

5-6-2 CMDP Tasks

In this part, we evaluate the performance of the Lyapunov-based safe RL algorithms (LSAC,
LPPO, LCPO) on the CMDP tasks and compare them with a few safe RL algorithms, including
CPO [18], safe SAC (SSAC) and safe PPO (SPPO) [19] with optimized hyperparameters.
SSAC and SPPO are safety constrained variants of the original algorithms through Lagrangian
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relaxation procedure [39]. Details of the Lagrangian-based safe baselines are referred to 4-3.
We also include SAC and PPO to show that the optimal behaviours are generally unsafe in our
setting. In the Pong with Catastrophe Zone, only PPO and LPPO is implemented, since SAC
is developed for the continuous control tasks and does not have a discrete action counterpart.
We use the undiscounted sum of safety cost of episodes as the measure of safety. The goal is
to suppress this measure to zero, i.e., zero violation of the state constraints.

Since the trust region methods (LCPO, CPO) require large batch sizes and only take a small
step at each update, these methods take more global steps than the gradient-based methods
to reach convergence and thus these two classes are compared separately.

Comparison with SSAC and SPPO As demonstrated in experiment results, though SSAC
and SPPO could maintain state constraint satisfaction on some of the tasks (see Fig 5-17
and Fig 5-15), on the other tasks these methods may cause large overshoot (see Fig 5-19)
or continuous swings (see Fig 5-23) in the safety cost, and even fail in finding safe policy
completely (see Fig 5-19 and Fig 5-13). On the other hand, our methods(LSAC and LPPO)
quickly converge to safe policies across all the tasks while maintaining reasonable return.
In addition, LSAC maintains low safety cost (almost zero) throughout the training with
low variance in all the continuous control tasks, even though all the policies are randomly
initialized.

Partially constrained v.s. Globally constrained Compared with the globally constrained
method (SSAC, LPPO), the partially constrained method (LSAC) obtains equal or less
constraint safety cost (almost zero) across different tasks with less variance as shown in Fig
5-17, 5-19, 5-15, 5-23, 5-13 while maintaining higher or equal return. In CartPole experiment,
even though LSAC converges to a safe policy, it still obtains higher return than SSAC.

Comparison with CPO As discussed in [17], the discounted-sum constrained methods suffer
from tricky tuning for the safety threshold to handle the state constrained problems, thus we
tested different threshold setting for CPO. In Fig 5-27, LCPO performs stably in terms of
safety cost throughout the training, whereas the performance of CPO swings due to different
setting of safety threshold. CPO either fails to find the feasible policy or reaches convergence
after being unsafe for a long period (more than 500,000 steps). In Fig 5-25 , both methods
converge to the safe policy, potentially due to the rather loose safety constraint. One more
thing to note is that CPO requires additional cost shaping, by having a network evaluating
the chance of constraint violation to achieve the best performance, while our approach doesn’t
need such techniques.

5-6-3 Ablation on Constraint

We compare the performance of LSAC in Cartpole-Safe with different sizes of safety set, see
Fig 5-28 and Fig 5-29. We gradually strengthen the constraint and see how does LSAC trade
off between safety and optimality. Specifically, we reduce the size of safety set {x|x ∈ [0, x]}
by assigning x with {0, 1, 2, 3, 4}. As x approaches zero, the average return of LSAC also
decreases while safety is maintained. However, when x = 0 and only the origin is safe, the
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agent fails to sustain the pole and dies almost immediately. This implies that LSAC may fail
in the case that safety constraints are too strong.
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CartPole
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Figure 5-12: Cartpole return
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Figure 5-13: Cartpole safety cost
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Point-Circle
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Figure 5-14: Point-Circle return
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Figure 5-15: Point-Circle safety cost
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Ant-Safe
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Figure 5-16: Ant-Safe return

0 200 400 600 800 1000
0

1

2

3

4

5 Antcpo-v1

SSAC
SPPO
SAC
LSAC
LPPO

Figure 5-17: Ant-Safe safety cost
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HalfCheetah-Safe
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Figure 5-18: HalfCheetah-Safe return
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Figure 5-19: HalfCheetah-Safe safety cost
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Pong-Safe
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Figure 5-20: Pong-Safe return
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Figure 5-21: Pong-Safe safety cost

Yuan Tian Master of Science Thesis



5-6 Result 59

Quadrotor
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Figure 5-22: Quadrotor-Safe return
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Figure 5-23: Quadrotor-Safe safety cost
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Ant-Safe CPO

0 500 1000 1500 2000 2500 3000 3500

300

200

100

0

100

200

Antcpo-v1

LCPO
CPO-10
CPO-1
CPO-0

Figure 5-24: Ant-Safe CPO return
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Figure 5-25: Ant-Safe CPO safety cost
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HalfCheetah-Safe CPO
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Figure 5-26: HalfCheetah-Safe CPO return
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Figure 5-27: HalfCheetah-Safe CPO safety cost
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CartPole with different Constrain
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Figure 5-28: CartPole return
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Figure 5-29: CartPole safety cost
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Chapter 6

Conclusion

In this thesis, we proposed a novel model-free Lyapunov-based approach of analyzing the MSS
and UUB stability of a learning control system and searching for the stability guaranteed
policy. Based on these theoretical underpinnings, we developed various RL algorithms and
exploit them in solving normal control tasks and those with state constraints. For MDP
tasks, we developed the LAC algorithm to search stability guaranteed policy with maximum
entropy. For safety constrained tasks, we proposed a novel locally constrained off-policy safe
RL algorithm, LSAC, as well as two on-policy algorithms, LPPO and LCPO. We evaluated
our algorithms on 9 MDP and CMDP benchmarks, including both continuous control and
discrete tasks, such as robot locomotion, quadrotor motion planning and Atari game. Our
works represent an initial step in combining RL and control theory for the purpose of applying
learning agents in real-world. Besides, we proposed a conditional representation model to help
agent learn a constraint.
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Byproduct
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1 Motivation

A simple controller is desired to be sought in robust and op-
timal control [3]. This is referred to as controller reduction.
Typically, simple linear controllers are normally preferred
over complex controllers in control system designs for some
obvious reasons: they are easier to understand and compu-
tationally less demanding, they are also easier to implement
and have higher reliability.

A challenging problem for modern control system is that
system models and dynamics are not available. A compelling
alternative is Reinforcement Learning, which requires min-
imal craftsmanship and promotes the natural evolution of
a control policy. Recently, Deep Reinforcement Learning
achieved state-of-the-art results in continuous and optimal
control applications,by directly maximizing cumulative re-
ward, where the controller policy can be modeled by DNN.
However, it is known that real-world applications in robotics
usually requires the response time to be less than 1ms. How-
ever, a large deep neural network is in general incapable of
achieving such real-time inference speed. In this work, we
will consider the DNN based controller reduction problem
without performance degradation.

2 Algorithm

A straightforward way is to compress the trained policy net-
work can be done off-line as a supervised learning problem
similar to DNN compression for computer vision tasks, e.g.,
image classification. However, it does not work at all. Similar
to the classic controller reduction, the new sparse controller
needs to be re-derived/re-trained by optimizing the cost from
beginning. Then we implement the reduction procedure into
the typical policy gradient update in actor-critic algorithms,
such as DDPG and PPO. We use CartPole model as our ex-
periment environment in OpenAI Gym. Different from the
default settings, we make the state and action space contin-
uous. The control goal is to stabilize the CartPole in the
middle and make the pendulum stand straightly.
In NN, the weight matrix from layer `−1 to layer `, W` =[
(W`

1,:)
>, . . . ,(W`

n`−1,:)
>
]>

=
[
W`

:,1, . . . ,W
`
:,n`

]
where W`

i,:

denote the i-th row of W`, i = 1, . . . ,n`−1; W`
:, j denote the

j-th column of W`, j = 1, . . . ,n`. We denote the parameter
in policy network as θ µ = [W].

Inspired by [2], our approach is to modify the update proce-
dure for policy gradient. For example in DDPG [1], we have
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Figure 1: Controller reduction or policy compression in actor-
critic algorithm

∇θ a J ≈ 1
N ∑

i
∇aQ(s,a|θ Q)|s=si,a=µ(si)∇θ µ µ(s|θ µ )|si +∇θ µ R

R = λ1

L

∑̀
=1

n`

∑
j=1

√√√√n`−1

∑
i=1

(
W `

i j

)2
+λ2

L

∑̀
=1

n`−1

∑
i=1

√√√√ n`

∑
j=1

(
W `

i j

)2

3 Result
For DDPG’s actor network, we use a five layers structure
(4−256−256−256−128−1), and we only compressed the
middle three layer. Almost without any performance degra-
dation, the compression ratios (the number of zero weights
/ the number of weights ) are 50.56%,46.17%,83.62% re-
spectively. A compressed weight matrix of can be found in
Figure 2.
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Figure 2: The weight matrix of the fourth layer after reduction
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Appendix A

Appendix

A-1 Reinforcement Learning with MSS Guarantee

*Appendix A1,A2 and A3 are cited from another paper, and all the proofs are
done by MINGHAO HAN, these parts are not my contribution. The paper is sub-
mitted to 33rd Conference on Neural Information Processing Systems (NeurIPS
2019).

To achieve the “eventual" behaviour by Definition 1, the approach utilizes the Lyapunov
function to construct the stability guarantee. This tool has long been used in the control
theory for the purpose of stability analysis and controller design [40], but mostly exploited
along with a known model, whether deterministic or probabilistic. The Lyapunov function is
a class of continuously differentiable semi-definite functions L : S → R+. The general idea of
exploiting Lyapunov function is to ensure that the derivative of Lyapunov function along the
state trajectory is semi-negative definite, so that the state goes in the direction of decreasing
the value of Lyapunov function and eventually converges to the set or point where the value is
zero.

Next, we show how Lyapunov function is engaged in stability analysis for stochastic systems
following the proof of [41, Theorem 1].

Lemma 1. The system is mean square stable if there exists a set of C1 functions L(s) : S→ R
and positive constants α1, α2 and α3, such that

α1cπ(s) ≤ L(s) ≤ α2cπ(s), (A-1)

Es′∼PπL(s′)− L(s) ≤ −α3cπ(s),∀s ∈ S (A-2)

Proof of above Lemma is given in Appendix A-3-1(The proof is cited from another paper). In the
Lemma and the following, Pπ refers to the closed-loop dynamics, i.e., Pπ(s′|s) .= Ea∼πP (s′|s, a).
Though the mean square stability of the system has been proved, we should note that this is
based on the condition that energy decreasing condition (A-2) holds everywhere in the state
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space, which is a rather strong condition. In our model-free formulation, this requires the
same amount of constraints as the number of states, which is impractical for the tasks in
continuous state spaces. Thus the following sample-based stability theorem is proposed to
guarantee closed-loop stability of the model-free learning approaches.
Theorem 1. [MSS] The system is mean square stable if there exists a continuous differentiable
function L : S → R+ and positive constants α1, α2 and α3, such that

α1cπ (s) ≤ L(s) ≤ α2cπ (s) (A-3)

Es∼τ (Es′∼PπL(s′)− L(s)) ≤ −α3Es∼τ cπ (s) (A-4)

where τ is the sampled trajectory with length of N .

Proof of Theorem 1 is given in Appendix A-3-2. The theorem above enforces a step-by-step
constraint over the agent’s trajectory. The policy satisfying the above theorem would drive the
trajectory asymptotically to the null space of cost function, producing predictable behaviour
of the agent.
One may notice that there are two hyperparameters to be determined, the selection of Lyapunov
function and selection of the positive constant α3. Various choices for Lyapunov function in
the literature, such as quadratic polynomials, Lyapunov Neural Network and value function
[35, 36, 37], which has a significant effect on the policy performance and we will discuss in
Chapter 5. It is also important to select proper α3, on which the discussion and we will discuss
in Chapter 5 as well.
Though the stability guarantee is obtained in the above Theorem, it still remains unknown
how does the agent perform in terms of the discounted total cost J(π). The following Theorem
will give an upper bound guarantee for the performance of stability guaranteed policy.
Theorem 2. If there exists a continuous differentiable functional L : S → R+ and positive
constants α1, α2, α3, such that

α1cπ(s) ≤ L(s) ≤ α2cπ(s) (A-5)

Es∼dπ (Es′∼PπL(s′)− L(s)) ≤ −α3Es∼dπcπ (s) (A-6)
Then the objective function J satisfies

Jc(π) ≤ α2 (1− γ)
α1γ (1 + α3 − γ)Es0∼ρcπ(s0). (A-7)

Proof of Theorem 2 is given in Appendix A-3-3. As shown in (A-7), the value of the upper
bound is related to the value of constants α1,2,3. Large α3 leads the cost to decrease steeply,
producing lower upper bound. On the other hand, though the values of α1,2 are not set by
the designer, they are actually relevant to the parameterization of Lyapunov function. For
example, in the case of quadratic polynomials, α1 = min(eig(Q)) and α2 = max(eig(Q)).
Similarly, in the case of neural networks [35], α1,2 are the product of minimum and maximum
eigenvalues of weight matrices of each layer, respectively. For the choice of approximating cost,
it is obvious that α1,2 = 1, while for the value function choice it may need optimization to
determine the exact values.
Additionally, by optimizing the proposed upper bound over α3 together with the previous
constraints, an method of optimal control with stability guarantee is further obtained, where
α3 is automatically searched. Since this is not the main focus of this work, we leave it for
future work.
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A-2 Safe Reinforcement Learning with UUB Guarantee

To achieve the “eventual" behaviour by Definition 2, it will demonstrate how to exploit the
Lyapunov-based approach to guarantee the ultimately uniform boundness of the system, and
eventually achieve the constraint satisfaction in CMDP. First, the Theorem for UUB guarantee
is given as follow.

Theorem 3. [UUB] For the given safety constraint d, let Ω =
{
s ∈ S|bπ(s) < d

}
. The system

is ultimately uniformly bounded if there exists a set of C1 functions L(s) : S → R and positive
constants α1, α2, α3, such that ∀s ∈ Ω

α1bπ(s) ≤ L(s) ≤ α2bπ(s) (A-8)

and for s ∈ ∆ =
{
s ∈ S|bπ(s) ≥ η, η ∈ [0, α−1

2 α1d)
}
,

Es∼τ (Es′∼PπL(s′)− L(s)) ≤ −α3Es∼τ bπ(s) (A-9)

where τ is is the trajectory sampled from ∆ of the length N . For trajectories starting inside
the inner safe set B = {s ∈ S|bπ(s) <= α−1

2 α1d}, the state will not leave the safe set Ω, while
the trajectories with initial states outside B will be attracted by B and stay inside Ω.

Proof of the above Theorem is referred to Appendix A-3-4. As guaranteed above, the
trajectories will be kept in the safe set once it has entered it, and trajectories in the unsafe
region will recover safety in finite time. It’s also noteworthy that the safe set Ω is confined by
the safety cost, rather than by setting a bound for the discounted sum of safety cost, which is
hard for the designer to predict how many times the agent would violate the state constraint
and thus difficult to implement [17].

Another point to be noted is that the energy decreasing constraint (A-9) is only applied on
the edge set ∆. This indicates that the safety guarantee takes effect only in the "dangerous"
state space, while the actions in the inner safe region B will not be interfered by the safety
constraint. In the case of α1,2 = 1, it’s even possible that the intersection between edge set ∆
and safe set Ω infinitely approach the empty set, which implies that the agent acts in the safe
set with unconstrained freedom.

A-3 Proofs of Theorem and Lemma

A-3-1 Proof of Lemma 1

Proof. The condition (A-2) implies that the Lyapunov value between two consecutive instants
is strictly decreasing, i.e.

EPπL(st+1) ≤ −α3cπ(st) + L(st),∀t ∈ [0,∞)

Starting from the initial instant, iterate the above relation in for t steps and make expectation
on both sides, one has

Est+1L(st+1) ≤ −α3

t∑
i=0

Esicπ(si) + EρL(s0) (A-10)
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Combined with (A-1), it infers that

t∑
i=0

Esicπ(si) ≤
α2
α3

Eρcπ(s0)− α1
α3

Eρcπ(st+1) (A-11)

Take limitation on both sides, it follows that

lim
t→∞

t∑
i=0

Esicπ(si) ≤
α2
α3

Eρcπ(s0)

Since the right side is a finite positive constant and cπ(·) is a semi-positive definite function, it
holds that limt→∞ Estcπ(st) = 0, which infers mean square stability by Definition 1.

A-3-2 Proof of Theorem 1

Proof. (A-4) can be written as

t0+N∑
i=t0

Esi∼Pπ(si|si−1)(Esi+1∼PπL(si+1)− L(si) + α3cπ (si)) ≤ 0

Est0+NL(st0+N )− Est0L(st0) ≤ −α3

t0+N∑
i=t0

Esicπ (si)(A-12)

Since the trajectory is sampled randomly as the agent interacts with the environment, the
starting instant t0 can be viewed as equally distributed, which follows that (A-12) holds for
∀t0 ∈ [0,∞). Iterate (A-12) from 0 to t gives that

Est+NL(st+N )−
N−1∑
i=0

EsiL(si) ≤ −α3N
t∑

i=N
Esicπ (si)− α3

N−1∑
i=0

iEsicπ (si)

Taking (A-4) into consideration, take the limitation on both sides

lim
t→∞

Est+NL(st+N ) ≤ lim
t→∞
−α3N

t∑
i=N

Esicπ (si)−
N−1∑
i=0

Esi(L(si)− iα3cπ (si))

Given to (A-3), 0 ≤ α1cπ (s) ≤ L(s) ≤ α2cπ (s) , thus

α3N lim
t→∞

t∑
i=N

Esicπ (si) ≤
N−1∑
i=0

(α3i− α2)Esicπ (si)

where the right hand side is a finite positive constant. Due to the semi-definity of cost
function cπ (s), it is inferred that cπ (s)→ 0 as t→∞, which infers mean square stability by
Definition 1.
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A-3-3 Proof of Theorem 2

Proof. First, as explored in [18], let ptπ ∈ R|S| denote the vector with elements being
P (st = s|π, ρ), and let Pπ ∈ R|S| × R|S| denote the transition matrix with components
P (s′|s, π) =

∫
a P (s′|s, a)π (a|s) da. Then ptπ = Pπp

t−1
π = P t−1

π ρ and the vector form of dπ is
obtained as follow:

dπ = (1− γ)
∞∑
t=0

(γPπ)t ρ

= (1− γ) (I − γPπ)−1 ρ

Let L ∈ R|S| be the vector composed of L(s), then the expectation of L(s) can be expressed
in the form of innerproduct of two vectors:

Es∼dπL(s) = 〈dπ, L〉
= (1− γ)

〈
(I − γPπ)−1 ρ, L

〉
And

Es∼dπ
(
Es′∼PπL(s′)− L(s)

)
= (1− γ)

〈
(Pπ − I) (I − γPπ)−1 ρ, L

〉
= (1− γ)

〈
[(1− γ)Pπ + (γPπ − I)] (I − γPπ)−1 ρ, L

〉
= (1− γ)

(
(1− γ)

〈
Pπ (I − γPπ)−1 ρ, L

〉
− 〈ρ, L〉

)
= (1− γ)Es∼dπEs′∼PπL(s′)− (1− γ)Es0∼ρL (s0)

With (A-6) holds, it follows that

Es∼dπEs′∼PπL(s′) ≤ Es0∼ρL(s0)− α3
(1− γ)Es∼d

πcπ (s) (A-13)

Take a closer look at the left hand side of the inequality,

Es∼dπEs′∼PπL(s′) = (1− γ)
〈
Pπ

∞∑
t=0

(γPπ)t ρ, L
〉

= (1− γ)
γ

〈 ∞∑
t=0

(γPπ)t+1 ρ, L

〉

= (1− γ)
γ

(〈 ∞∑
t=0

(γPπ)t ρ, L
〉
− 〈ρ, L〉

)
Thus combining with (A-13) we got

Es∼dπL(s) ≤ 1
γ
Es0∼ρL(s0)− α3

(1− γ)Es∼d
πcπ (s)

With (A-5) and the prior that L(s) is positive def finite,
J = Es∼dπcπ(s)

≤ 1
α1

Es∼dπL(s)

≤ 1
α1γ

Es0∼ρL(s0)− α3
(1− γ)J

≤ α2
α1γ

Es0∼ρcπ(s0)− α3
(1− γ)J
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Thus moving the objective J to the left side, one gets

J ≤ α2 (1− γ)
α1γ (1 + α3 − γ)Es0∼ρcπ(s0). (A-14)

A-3-4 Proof of Theorem 3

Proof. Following similar procedure as in Theorem 1, the Lyapunov function at instant t+N
satisfies

Est+NL(st+N ) ≤ EstL(st)− α3

t+N∑
i=t

Esibπ (si) (A-15)

Since the trajectory is randomly sampled on the edge set ∆, (A-15) holds ∀t ∈ [0, ts − N)
where ts is the instant of termination or leaving the set ∆. Thus connect the consecutive
trajectories along the time sequence, one has that

Est+NL(st+N ) ≤ Es0L(s0)− α3

t+N∑
i=0

Esibπ (si) (A-16)

Combined with (A-8), it follows that

Est+N bπ(st+N ) ≤ α−1
1 α2Es0bπ(s0)− α3

t+N∑
i=0

Esibπ (si) (A-17)

For trajectories starting from the inner safe set B = {s ∈ S|bπ(s) <= α−1
2 α1d}, following the

above inequality,

Est+N bπ(st+N ) < α−1
1 α2Es0bπ(s0) ≤ d (A-18)

, i.e., the system will not leave the safe set Ω. For the case that a trajectory starting from the
edge set ∆, taking limitation on both sides of (A-17),

α3 lim
t→∞

t+N∑
i=0

Esibπ (si) ≤ α−1
1 α2Es0bπ(s0)− Est+N bπ(st+N ) (A-19)

which implies that bπ(s) converges to zero as t approaching infinity. Thus there exits a finite
instant ts that the trajectory enters the inner safe set B. Combining both cases above, the
system is ultimately uniformly bounded by Definition 2.

A-4 Installation instruction

All the experiments in this thesis are running in OSX system, so this instruction is for OSX.
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A-4-1 Conda environment

From the general python package sanity perspective, it is a good idea to use conda environments
to make sure packages from different projects do not interfere with each other. And we choose
python 3.6 as our experiment used version.

A-4-2 Mujoco

Some of the experiments use MuJoCo (multi-joint dynamics in contact) physics simulator,
which is proprietary and requires binaries and a license (temporary 30-day license can be
obtained from www.mujoco.org).

A-4-3 Installation

When you get the conda and Mujoco, run the following code in terminal to install all the
necessary libraries and our code:

1 conda create −n test python=3.6
2 conda activate test
3 git clone https : //github.com/RLControlTheoreticGuarantee/

Guarantee_Learning_Control
4 pip install numpy==1.16.3
5 pip install tensorflow==1.13.1
6 pip install tensorflow−probability==0.6.0
7 pip install opencv−python
8 pip install cloudpickle
9 pip install gym

10 pip install gym [ atari ]
11 pip3 install −U ’mujoco -py==1.50.1.68’
12 pip install matplotlib

A-4-4 Example 1. LPPO with Atari Pong

For instance, to train a CNN network controlling Atari Pong using LPPO for 20M timesteps,
run :

1 conda create −n test python=3.6
2 conda activate test
3 python run . py

The hyperparameters, the tasks and the learning algorithm can be changed via change the
run.py.

A-4-5 Example 2. LSAC with continous CartPole

For instance, to train a MLP network controlling CartPole using LSAC for, run :
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1 conda create −n test python=3.6
2 conda activate test
3 python main_for_sac . py

The hyperparameters, the tasks and the learning algorithm can be changed via change the
variant.py.
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