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SUMMARY

In traditional reinforcement learning (RL) problems, agents can explore environments

to learn optimal policies through trials and errors that are sometimes unsafe. However,

unsafe interactions with environments are unacceptable in many safety-critical problems,

for instance in robot navigation tasks. Even though RL agents can be trained in simulators,

there are many real-world problems without simulators of sufficient fidelity. Constructing

safe exploration algorithms for dangerous environments is challenging because we have

to optimize policies under the premise of safety. In general, safety is still an open problem

that hinders the wider application of RL.

Constrained RL is taken as the main formalism of safe exploration, where the reward

function and cost function (related to safety) are distinct. This framework tries to mitigate

the problem of designing a single reward function that needs to carefully select a trade-off

between safety and performance, which is problematic in most instances. However, in this

formulation, it can be hazardous to set constraints on the expected safety signal without

considering the tail of the distribution. For instance, in safety-critical domains, worst-

case analysis is required to limit the frequency of very unsafe outcomes. We propose

a method called Worst-Case Soft Actor Critic (WCSAC) for safe RL that approximates

the distribution of accumulated safety costs to achieve risk control. More specifically,

a certain level of conditional Value-at-Risk from the distribution is regarded as a safety

constraint, which guides the change of adaptive safety weights to achieve a trade-off

between reward and safety. As a result, we can compute policies whose worst-case

performance satisfies the constraints. We investigate two ways to estimate the safety-cost

distribution, namely a Gaussian approximation and a quantile regression algorithm. The

Gaussian approximation is simple and easy to implement, but may underestimate the

safety cost. Moreover, the quantile regression leads to a more conservative behavior.

The empirical analysis shows that both versions of WCSAC attain better risk control

compared to expectation-based methods, and the quantile regression version shows

strong adaptability in complex safety-constrained environments.

Often, RL agents are trained in a controlled environment, such as a laboratory, before

being deployed in the real world. However, the target reward might be unknown prior

to deployment. Reward-free RL addresses this problem by training an agent without

the reward to adapt quickly once the reward is revealed. We consider the constrained

reward-free setting, where an agent learns to explore safely without the reward signal.

xi



xii SUMMARY

This agent is trained in a controlled environment, which allows unsafe interactions and

still provides the safety signal. We propose a practical Constrained Entropy Maximization

(CEM) algorithm to solve task-agnostic safe exploration problems. The CEM algorithm

aims to learn a policy that maximizes state entropy under the premise of safety. To avoid

needing to explicitly approximate the state density in complex domains, CEM leverages a

model-free entropy estimator to evaluate the efficiency of exploration. In terms of safety,

CEM minimizes the safety costs, and adaptively trades off safety to exploration based on

the current safety performance. After the target task is revealed, unsafety during training

is not allowed anymore. We present a safe guide (SaGui) framework for safe transfer

learning. To ensure safety during training, the safe exploration policy is leveraged to

compose a safe sampling policy. Drawing from transfer learning, we also regularize a

target policy towards the safe exploration policy as long as the target policy is unreliable

and gradually eliminate the influence from the guide as training progresses. The empirical

analysis shows that CEM allows learning a safe exploration policy efficiently, and with

SaGui, the learned policy can benefit downstream tasks in safety and sample efficiency.

According to the practical requirements of real-world RL applications, we design the

algorithm from two perspectives, i.e., risk control in safety, and safety during training.

The proposed algorithms effectively solve the problems of safety risk avoidance, training

process safety, and rapid adaptation to new tasks. The proposed algorithms made im-

portant steps to further apply RL in the real world. In the future, we will further explore

more efficient ways to approximate the distribution of the accumulated safety costs, and

meta-learning methods to realize the safety during training.



SAMENVATTING

In traditionele reinforcement learning (RL) problemen kunnen agenten omgevingen ver-

kennen om een optimale beleid te leren door middel van trial-and-error-methoden die

soms onveilig zijn. Echter, onveilige interacties met de omgeving zijn onacceptabel in veel

veiligheidskritieke problemen, zoals bijvoorbeeld bij robotnavigatie. Hoewel RL-agenten

kunnen worden getraind in simulaties, zijn er veel real-world problemen zonder simula-

ties met voldoende nauwkeurigheid. Het construeren van veilige exploratie-algoritmen

voor gevaarlijke omgevingen is uitdagend omdat we een beleid moeten optimaliseren

met het oog op veiligheid. Over het algemeen is veiligheid nog steeds een open probleem

dat de bredere toepassing van RL belemmert.

Constrained RL wordt beschouwd als de belangrijkste formalisering van veilige ver-

kenning, waarbij de beloningsfunctie en kostenfunctie (gerelateerd aan veiligheid) ge-

scheiden zijn. Deze formalisering tracht het probleem van het ontwerpen van een enkele

beloningsfunctie die een zorgvuldige afweging moet maken tussen veiligheid en pres-

taties te omzeilen, omdat dit in de meeste gevallen problematisch is. Echter, in deze

formulering schuilt er gevaar in het opleggen van beperkingen aan het verwachte veilig-

heidssignaal zonder rekening te houden met de staart van de verdeling. Bijvoorbeeld, in

veiligheidskritieke domeinen is een worst-case analyse vereist om de frequentie van zeer

onveilige resultaten te beperken. Wij stellen een methode voor met de naam Worst-Case

Soft Actor Critic (WCSAC) voor veilige RL die de verdeling van opgetelde veiligheidskosten

benadert om risicobeheersing te bereiken. Meer specifiek wordt een bepaald niveau

van voorwaardelijke Value-at-Risk uit de verdeling beschouwd als een veiligheidsdrem-

pel, die de verandering van aanpasbare veiligheidscoëfficiënten leidt om een afweging

tussen beloning en veiligheid te bereiken. Als resultaat kunnen we een beleidsfunctie

berekenen waarvan de prestaties in het slechtste geval aan de veiligheidsdrempel voldoen.

We onderzoeken twee manieren om de veiligheidskostenverdeling te schatten, namelijk

een Gaussische benadering en een kwantielregressie-algoritme. De Gaussische bena-

dering is eenvoudig en gemakkelijk te implementeren, maar kan de veiligheidskosten

onderschatten. Bovendien leidt de kwantielregressie tot meer conservatief gedrag. De

empirische analyse toont aan dat beide versies van WCSAC betere risicobeheersing berei-

ken in vergelijking met methoden die zich baseren op verwachtingswaarden, en de versie

met kwantielregressie toont sterke aanpasbaarheid in complexe veiligheidsbeperkte om-

gevingen.
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xiv SAMENVATTING

Vaak worden RL-agents getraind in een gecontroleerde omgeving, zoals een labora-

torium, voordat ze in de echte wereld worden ingezet. De daadwerkelijk te leren belon-

gingsfunctie kan echter nog onbekend zijn voordat de agent wordt ingezet. Reward-free

RL pakt dit probleem aan door een agent te trainen zonder beloningen, zodat deze zich

snel kan aanpassen zodra de beloningsfunctie bekend wordt. We beschouwen de con-

strained reward-free setting, waarin een agent leert om veilig te verkennen zonder de

beloningsignalen. Deze agent wordt getraind in een gecontroleerde omgeving, die on-

veilige interacties mogelijk maakt maar wel het veiligheidssignaal biedt. We stellen een

praktisch Constrained Entropy Maximization (CEM) algoritme voor om taakagnostische,

veilige verkeninnigsproblemen op te lossen. Het CEM-algoritme heeft als doel een be-

leid te leren dat de entropie van de toestand maximaliseert onder de voorwaarde van

veiligheid. Om te voorkomen dat de dichtheid van de toestand expliciet moet worden be-

naderd in complexe domeinen, maakt CEM gebruik van een modelvrije entropieschatting

om de efficiëntie van de verkenning te evalueren. Wat veiligheid betreft, minimaliseert

CEM de veiligheidskosten en maakt het dynamisch een afweging tussen veiligheid en

verkenning op basis van de huidige veiligheidsprestaties. Nadat de doeltaak bekend is,

is onveiligheid tijdens de training niet meer toegestaan. We presenteren een veilig gids

(SaGui) framework voor veilige transfer learning. Om veiligheid tijdens de training te

waarborgen, wordt het veilige verkenningbeleid gebruikt om een veilig samplingsbeleid

op te stellen. Gebaseerd op transfer learning, reguleren we ook een doelbeleidsfunctie

dichter naar het veilige verkenningbeleid zolang de doelbeleidsfunctie onbetrouwbaar

is, en elimineren we geleidelijk de invloed van de gids naarmate de training vordert. De

empirische analyse toont aan dat CEM efficiënt een veilig verkenningbeleid kan leren,

en met SaGui kan het geleerde beleid voordelen opleveren voor navolgende taken op het

gebied van veiligheid en steekproefefficiëntie.

Aan de hand van de praktische vereisten voor RL-toepassingen in de echte wereld

ontwerpen we het algoritme vanuit twee perspectieven, namelijk risicobeheersing op het

gebied van veiligheid en veiligheid tijdens training. De voorgestelde algoritmen lossen

effectief de moeilijkheid op van het vermijden van veiligheidsrisico’s, veiligheid tijdens het

trainingsproces en snelle aanpassing aan nieuwe taken. De voorgestelde algoritmen zijn

belangrijke stappen om RL verder toe te passen in de echte wereld. In de toekomst zullen

we verder onderzoeken naar efficiëntere manieren om de verdeling van de opgebouwde

veiligheidskosten te benaderen, en meta-leren methoden om veiligheid tijdens training

te realiseren.



总结

在传统的强化学习问题中，智能体通过探索环境以学习最优策略，而无需考虑安全

问题。然而，在许多现实问题中，安全性是尤其关键的。例如在机器人导航任务

中，与环境的不安全交互是不可接受的。尽管智能体可以先在模拟器中进行训练，

但在没有足够逼真度的模拟器的情况下，仍然存在许多现实问题。构建用于现实环

境的安全强化学习算法非常具有挑战性，因为智能体必须在安全的前提下进行学

习。总的来说，安全仍然是阻碍强化学习广泛应用的一个重要问题。

我们通常将强化学习中安全处理成一种约束，并将安全函数分离出奖励函数。

这种形式避免了设计单一奖励函数而需要仔细权衡安全和性能的问题。然而，我们

通常会选择约束长期安全成本的期望，在不考虑分布尾部的情况下对期望设置约束

可能是危险的。在对安全敏感的领域中，需要对最坏的情况进行分析，以避免灾难

性的结果。我们提出了一种Worst-Case Soft Actor Critic (WCSAC)算法框架，该方法

通过近似累积安全成本的分布，以实现风险控制。更具体地说，来自分布的一定水

平的条件风险值被视为安全约束，它引导自适应安全权重的变化，以实现奖励和安

全之间的权衡。因此，我们可以计算最坏情况性能满足约束的策略。我们研究了两

种估计安全成本分布的方法，即高斯近似和分位数回归算法。一方面，高斯近似简

单且易于实现，但可能低估安全成本，另一方面，分位数回归导致更保守的行为。

实验分析表明，两种估计方法都可以实现良好的风险控制，但分位数回归方法在复

杂的安全约束环境中取得更加优异的结果。

智能体在被部署到现实世界之前，会在受控环境（如实验室）中进行训练。但

是，目标奖励在部署之前可能未知。我们考虑有安全约束的无奖励环境，在其中训

练一个安全探索策略。该智能体在受控环境中进行训练，允许与环境不安全的交

互，但仍提供安全信号。我们提出了Constrained Entropy Maximization (CEM)算法，

旨在安全前提下最大化状态熵，以学习可以实现对所有状态进行均匀访问的安全探

索策略。该方法利用了无模型的熵估计器以避免对整个状态密度的近似。CEM采用

置信域算法提高安全性，并基于当前安全表现自适应地权衡安全与探索。目标任务

出现后，与环境的不安全交互将不再被允许。因此，我们提出了Safe Guide (SaGui)

安全迁移学习框架。训练好的安全探索策略将首先被用于制定安全的采样策略。同

时，在目标策略还不成熟的情况下，我们还会将目标策略往安全探索策略正则，并

随着训练的进展逐渐消除安全探索策略对目标策略的影响。实验分析表明，CEM方

法可以有效地学习安全探索策略，该策略在SaGui的框架下实现了安全迁移学习，

帮助更快地学习到解决目标任务的最优策略。
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xvi SUMMARY (CHINESE)

本文依据强化学习应用的现实要求，从安全风险控制和训练安全两个角度进行

了算法研究。提出的算法有效地解决了安全风险规避，训练过程安全及新任务快速

适应的问题，为进一步将强化学习应用于现实世界提供了新的参考。在未来，我们

会进一步深入研究对累积安全成本分布的估计，及通过元学习的方式实现训练过程

的安全。
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1
INTRODUCTION

Artificial intelligence (AI; Dick, 2019) is becoming more and more important in people’s

lives. AI-powered applications in online advertising, machine translation, smart cities, etc.

are revolutionizing our future. A milestone of AI development was the AlphaGo computer

program’s defeat of world Go champions Ke Jie and Lee Sedol. The core technology of

AlphaGo is reinforcement learning (RL; Sutton and Barto, 2018), which is inspired by

behavioral psychology (Mills, 1998) and widely considered the most likely way to achieve

universal AI. RL, a methodology within the field of machine learning (ML; Mitchell and

Mitchell, 1997), is utilized to address and solve problems where agents aim to maximize

returns or attain specific objectives by learning and adapting policies through interaction

with the environment (Sutton and Barto, 2018).

Compared to other ML paradigms, RL also requires a large amount of data for training,

but does not need any training data to be given in advance, and the types of data are

different. Instead of diversified labeled or unlabeled data, RL collects data interactively

using a reward signal. RL does not concern about the formalization of the input, but

focuses more on what action should be taken under the current input to achieve the

ultimate goal. RL has a distinct advantage over traditional supervised and unsupervised

learning approaches when it comes to solving complex sequential decision making (SDM)

problems (Roy, 2002; Sutton and Barto, 2018). In an RL setting, the environment is often

dynamic, uncertain, and modeled as a Markov decision process (MDP) (MDP; Puter-

man, 2014). Typically, an exact mathematical model of the MDP is not known, and the

Parts of this chapter have been published in (Yang, Simão, Tindemans, et al., 2021; Yang, Simão, Jansen, et
al., 2022; Yang, Simão, Tindemans, et al., 2023; Yang and Spaan, 2023).
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focus is on large MDPs where traditional methods such as dynamic programming become

impractical. In an RL problem (Figure 1.1), the agent interacts with the environment

at discrete time steps. At each step, the agent receives the current state and associated

reward, selects an action from the available options, and the environment transitions to a

new state and the reward associated with the transition is determined. The ultimate goal

of an RL agent is to find a policy that maximizes the expected cumulative reward.

RL has seen significant advancements in recent years, with key solutions emerging to

tackle various challenges. One such solution is the Soft Actor Critic (SAC; Haarnoja, Zhou,

Abbeel, et al., 2018) algorithm. SAC combines elements from previous RL algorithms, such

as Deep Q-Networks (DQN; Mnih et al., 2015) and Deep Deterministic Policy Gradient

(DDPG; Silver et al., 2014), to address the exploration-exploitation trade-off and improve

sample efficiency. DQN utilizes a neural network to approximate the action-value func-

tion, while DDPG employs an actor-critic architecture with deterministic policies. SAC

builds upon these foundations by introducing an entropy regularization term, which

encourages exploration and improves robustness. By simultaneously maximizing the

policy entropy and expected reward, SAC achieves a balance between exploration and

exploitation, leading to improved performance in RL tasks.

In classical RL, the agents learn by trial and error, where arbitrary short-term loss

is acceptable for long-term gain when exploring the environment. However, in some

situations with safety concerns, we should not only pay attention to the long-term rewards,

but also safety assurance. A few safety-critical domains of RL are listed as follows:

• RL has the potential to train autonomous robots, such as self-driving cars or service

robots, to efficiently complete assigned tasks. However, it is essential to ensure

that the safety of humans and property is prioritized over the completion of tasks.

Specifically, the RL-trained robot should never take actions that could result in

the breaking of expensive equipment or harm to humans, even if completing the

task would otherwise be possible. This emphasis on safety must be integrated into

the design and implementation of the RL system to guarantee the reliability and

security of the robot in real-world scenarios.

• The integration of new features, such as increasing amounts of renewable energy,

into power networks presents challenges for human operators. RL has the potential

to address these challenges by replacing human operators and allowing for greater

adaptability in power network operations. However, it is important to note that

the use of RL in power network operations also carries risks, particularly the po-

tential for random actions that could cause a blackout. Such outcomes are strictly

unacceptable, highlighting the importance of considering the safety and reliability

implications when implementing RL in power network operations, and implement-
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Figure 1.1: RL with a separate safety signal. In addition to the reward function in standard RL, we have a cost
function for the environment.

ing rigorous safety mechanisms to prevent catastrophic failures (Marot et al., 2020;

Subramanian et al., 2021).

• Recommender systems based on RL have the potential to be powerful tools for

improving user experience and personalization. However, it is important to note

that these systems can also pose risks for certain groups of users. Specifically,

the random exploration of the system may reveal content that is psychologically

harmful or extremist in nature. Therefore, it is crucial to consider the potential

negative impacts of these systems when designing and implementing them, and to

take steps to mitigate these risks (Di Noia et al., 2022).

Therefore, given the learning objectives, it is essential to explore safe ways to finish the

task. This sub-field within RL is called safe reinforcement learning (safe RL; García and

Fernández, 2015). Safe RL is defined as "the process of learning policies that maximize the

expectation of the return in problems in which it is important to ensure reasonable system

performance and/or respect safety constraints during the learning and/or deployment

processes" (Mihatsch and Neuneier, 2002). RL agents often learn in a safety-insensitive

controlled environment (García and Fernández, 2015), such as a laboratory or a simulator,

before they are deployed in the real world. In this case, we only need a safe policy for

deployment without safety concerns during the learning. However, when controlled

environments are not available, safety for learning and deployment are both critical.

1.1. SAFETY DEFINITIONS AND ALGORITHMS

The core issue in safe RL is determining the definition of safety and how it can be incorpo-

rated into the learning process. Throughout the whole dissertation, we formulate safety

as constraints that are not only addressed for the deployment processes, but also during

the learning.



1

4 1. INTRODUCTION

1.1.1. SAFETY-CONSTRAINED RL
Constrained RL is taken as a natural and universally-relevant formalism of safe RL (Alt-

man, 1999). Safety constraints are usually related to resource consumption (Walraven

and Spaan, 2018), or built on the most common definition of safety that is related to the

given label (safe or unsafe) of the environment state. An RL agent is considered safe if

it never exceeds the resource limit or visits unsafe states within a frequency limit (Hans

et al., 2008).

In safety-constrained RL, we have a separate safety signal, which can be regarded as a

second (negative) reward that is called cost. The cost function is an incentive mechanism

that tells the agent what is safe or unsafe. As shown in Figure 1.1, at each time step,

the agent takes into account the current cost, the state, and the reward received for the

previous action taken. The safety is evaluated by comparing the long-term safety costs to

a given safety threshold, which describes our goal in safety. For instance, when running

an electric vehicle, the consumption of electricity after taking each action can be regarded

as the cost, and the battery capacity is the safety threshold.

The safety constraints avoid designing a complex reward signal. In standard RL, we

just maximize the long-term rewards. With additional safety concerns, we must design a

single reward that carefully trades off performance for safety. However, before running an

RL algorithm, we cannot check if we have the correct trade-off parameter for the desired

safety and performance. Even though we may find a fixed trade-off parameter that results

in our desired safety specification, it ignores the fact that we also need to meet the safety

requirements during training (Ray, Achiam, and Amodei, 2019). These problems are

unavoidable with a single reward and have been observed in practice (Achiam et al., 2017;

Dalal et al., 2018; Pham, De Magistris, and Tachibana, 2018). Instead, after decoupling

safety from reward by safety constraints, we mitigate the above problems.

Accordingly, constrained RL algorithms to address safety have been proposed. The

Constrained Policy Optimization (CPO; Achiam et al., 2017) method is a general-purpose

policy search algorithm for constrained RL that allows for specifying both reward func-

tions and constraints, ensuring near-constraint satisfaction at each iteration and pro-

viding guarantees about policy behavior throughout training. The Interior-point Policy

Optimization (IPO; Liu, Ding, and Liu, 2020) method utilizes logarithmic barrier functions

inspired by the interior-point method to optimize policies in RL algorithms, enabling the

maximization of long-term rewards while satisfying cumulative constraints in various

multi-constraint settings. The Lagrangian version of a collection of traditional RL algo-

rithms, e.g., Proximal Policy Optimization (PPO-Lag; Ray, Achiam, and Amodei, 2019) and

Soft Actor Critic (SAC-Lag; Ha et al., 2020), leverages the Lagrangian relaxation technique

to handle constrained RL problems, where an augmented Lagrangian objective is incorpo-

rated into the traditional RL algorithm, enabling the optimization of constrained policies
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through the use of penalty terms. These constrained RL approaches offer valuable in-

sights into how to handle various constraints and improve RL performance in challenging

scenarios.

1.1.2. ALTERNATE APPROACHES

Over the past years, safe RL has achieved great progress in learning policies under the

premise of safety. Even though constrained RL is widely considered as the primary

approach for safe exploration, the definition of safety may not always be consistent or

identical. While previous studies such as (García and Fernández, 2015; Ray, Achiam,

and Amodei, 2019) have provided a detailed categorization of safe RL, in order to better

contextualize our work within the field, we have chosen to categorize safe RL based

on three different criteria: the specific methods and techniques used, the objectives or

outcomes that the approach aims to achieve, and the stage of the RL process at which the

approach is applied.

OPERATION METHODS

We can categorize safe RL based on the methods or techniques used to ensure safe

behavior. Then, it becomes easier to compare our methods to different approaches and

identify their strengths and weaknesses.

• Reward shaping. We can guide the RL agent towards the desired behavior by

modifying the reward signal. Specifically, we can enhance safety by implementing

reward-shaping functions, which add an additional bonus or penalty to the original

reward based on the agent’s actions (Ng, Russell, et al., 2000; Grbic and Risi, 2020;

Kamran, Simão, et al., 2022).

• Safeguard. We can leverage the environment model (Prakash et al., 2019), expert

intervention (Peng et al., 2022), or shielding mechanism (Alshiekh et al., 2018) to

make more informed decisions or provide corrections to the agent’s dangerous

actions. The methods in this category are particularly crucial when the learning

phase is required to be safe.

• Constrained RL. We use safety constraints to ensure that the agent does not violate

any predefined rules or regulations, where we have to define a set of constraints

and use a separate constraint-based algorithm (Chow et al., 2017; Yang, Rosca,

et al., 2020). All the methods presented in this dissertation can be classified within

this category.
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SAFETY GOALS

We can categorize safe RL based on the specific objectives or outcomes, which have

different implications for the safety of the agent and require different methods to achieve.

• Preventing detrimental results. When the environment is divided into safe and

unsafe states, it is crucial to guide the agent towards safe actions while limiting

its ability to take unsafe actions (Hans et al., 2008). If the RL problem is related to

resource consumption, we may also need to limit the resource consumption (Wal-

raven and Spaan, 2018). The safety goal in this dissertation can be taken as prevent-

ing detrimental results, which may be caused by exceeding the resource limit or

visiting unsafe states over a frequency limit.

• Policy improvement. Safety in RL can be defined in terms of the monotonicity

of the return during the training process. This means that we aim to prevent

any significant decrease in performance during the learning process, as it can be

detrimental to the agent’s overall performance. To achieve this, our safety goal is

to ensure that the agent’s return improves at each gradient step and that the agent

does not experience any dangerous performance degradation (Pirotta et al., 2013;

Papini, Pirotta, and Restelli, 2019; Simão and Spaan, 2019).

• Ergodicity. The safety goal can be to ensure ergodicity in RL. If an agent is not

ergodic, it may get stuck in an unsafe or suboptimal state and will not be able to limit

its cost (Moldovan and Abbeel, 2012; Turchetta, Berkenkamp, and Krause, 2016;

Eysenbach et al., 2018). In this case, safety is related to if actions are reversible. This

goal considers an agent to be safe if it has the ability to transition between any state

it encounters, without any restrictions.

LEARNING STAGES

We can categorize safe RL based on the stage of the RL process at which the approach is

applied. In this dissertation, we not only focus on ensuring safety during the deployment

phase, but also on addressing safety concerns during the entire training process.

• Deployment phase. When we have access to simulations that accurately replicate

the deployment environment, we can use them to train an agent that is safe in the

actual deployment phase (García and Fernández, 2015). In this case, we can focus

on ensuring that the final policy is safe, without worrying about safety during the

training process. This can be effective only when the simulations have high fidelity

and are able to accurately replicate the dynamics of the deployment environment.

However, it is important to keep in mind that this approach may not guarantee

safety during the training phase and additional safety mechanisms may still be
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Figure 1.2: Example Safety Gym environment. In a 2D map, a point robot navigates to reach a goal area while
trying to avoid a vase and several hazards.

required (Achiam et al., 2017; Ha et al., 2020; Yang, Rosca, et al., 2020; Qin, Chen,

and Fan, 2021).

• Learning phase. In the absence of a simulation environment, addressing safety

during the training phase becomes crucial. In such cases, incorporating prior knowl-

edge or a predictive mechanism (safeguard in operation methods) can be an effec-

tive way to avoid learning from scratch and ensure the safety of the agent (Simão,

Jansen, and Spaan, 2021; Peng et al., 2022; Yang, Simão, Jansen, et al., 2022). For

instance, we need to know an initial set of safe states to ensure the early stages

of learning are safe (Turchetta, Berkenkamp, and Krause, 2016). Then, the agent

gradually increases the set of safe states and decreases the uncertainty in the safety

function. In this case, we can ensure safety in the learning phase.

Note that the above categories for safe RL are not mutually exclusive and many safe RL

approaches may fall into multiple categories. For instance, the work by Peng et al. (2022)

can be a safeguard method to prevent detrimental results during the learning phase.

While we have provided an overview of the most popular and mainstream directions in

safe RL, it is important to keep in mind that new and innovative approaches may not fit

neatly into any one category.

1.1.3. BENCHMARKING RL SAFETY

In this dissertation, we evaluate the effectiveness of our proposed methods by using

various benchmark environments. These environments help to showcase the safety

concerns that can arise in RL. Generally, traditional RL benchmark environments do

not have specific safety concerns, e.g., the Arcade Learning Environment (Bellemare,

Naddaf, et al., 2013), OpenAI Gym (Brockman et al., 2016), and the Deepmind Control
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Suite (Tassa et al., 2018). However, some of the environments can be easily modified

to have an immediate constraint cost at each time step, and a given cost limit, e.g., the

adapted MountainCar and CartPole in Chapter 5.

To build the main benchmark environments in this dissertation, we leverage the

Safety Gym (Ray, Achiam, and Amodei, 2019), a suite of complex continuous control

environments for evaluating the progress towards RL agents that respect safety constraints

during training. In the standard Safety Gym benchmark suite, each environment is

formed as a combination of a robot, a task, and a level of difficulty. For instance, in

Figure 1.2, a point robot (red) navigates in a 2D map to reach a goal area (green) while

trying to avoid a vase (cyan) and several hazards (blue). The robot can get rewards when

approaching the goal, but some costs will be incurred if it touches the obstacles. In

addition to the standard suite, we can also create custom environments using the Safety

Gym engine according to our needs, e.g., the environments we build in Chapter 4 to

evaluate the exploration capabilities. In general, Safety Gym is a tool for building the

safety-constrained environments we need.

1.2. NECESSITY OF RISK CONTROL

In this dissertation, we formulate safety concerns by constraints (Achiam et al., 2017; Ray,

Achiam, and Amodei, 2019) to mitigate the problem of designing a single reward. Previous

methods usually define safety on the expected long-term safety costs, which ensures the

average performance is safe (Achiam et al., 2017; Liu, Ding, and Liu, 2020; Yang, Rosca,

et al., 2020). However, with the stochastic policy and the dynamics of the environment,

the expected value cannot capture the probable risks caused by the randomness in safety.

Hence, the individual episodic costs generated by the learned policy might exceed the

safety threshold with a high probability. Especially when the distribution of cost-return

has long tails, we will have a high risk of detrimental events. For safety-critical problems,

it can be hazardous to only ensure the average performance to be safe, where a safe policy

has higher returns and higher variance in safety may be preferred over another safe policy

with lower returns and lower variance in safety.

Although implementing expectation-based methods with a lower cost threshold could

lead to better performance in safety, their worst-case performance is not guaranteed to

be safe. After setting the safety threshold to be extremely small, we still cannot control the

tail-end of the cost distribution, and the worst-case costs could still be large. On the other

hand, for industrial and robotic settings (Jardine, Lin, and Banjevic, 2006; De Nijs, Spaan,

and De Weerdt, 2015; Boutilier and Lu, 2016), the safety constraints are always built on the

real cost limit. Hence, it is not simple to quantify how much the safety threshold should

be shrunk to explicitly limits the violations in the worst case.
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Based on the distributional Bellman operator (Sobel, 1982; Morimura et al., 2010;

Tamar, Di Castro, and Mannor, 2016), we can model the distribution of cumulative safety

costs as a Gaussian (Tang, Zhang, and Salakhutdinov, 2020). However, the Gaussian

approximation can be coarse in many domains, especially when the distribution has

long tails. With the progress in distributional RL (Bellemare, Dabney, and Munos, 2017;

Dabney, Ostrovski, et al., 2018; Dabney, Rowland, et al., 2018; Yang, Zhao, et al., 2019), we

can capture the uncertainty in safety more accurately. Even though the state-of-the-art

distributional RL algorithms are originally designed for deep Q-networks (DQN; Mnih

et al., 2015) with discrete action spaces, they are easy to be generalized to our setting

with continuous action spaces. The approximated distribution of cumulative safety

costs allows us to take the risks in safety into account, i.e., the various possibilities of

the individual episodic costs, especially in the worst cases. Compared to only modeling

expected values, better alternatives for safety-constrained RL are algorithms that compute

policies based on varying risk requirements, specialized to risk-neutral or risk-averse

behavior.

1.3. TRAINING SAFETY ASSURANCE

In traditional RL, agents learn by trial and error that is not allowed in some safety-critical

applications. Therefore, we expect to learn policies that can be used in the real world

through simulators (García and Fernández, 2015). In this way, we have no concerns about

safety, and the simulation may provide a potentially infinite data source. The trial-and-

error nature of RL usually refers to the training phase. Under the assumption that high-

fidelity simulators exist, most of the current research in safe RL focuses more on how to

learn a safe policy, while safety in the training phase is not guaranteed (Achiam et al., 2017;

Liu, Ding, and Liu, 2020; Yang, Rosca, et al., 2020). However, it is not always possible

to build a simulator with sufficient fidelity, such that the trained policy is acceptable

for real-world deployment. Even if multiple research efforts are being directed towards

improving the realism of simulations to better transfer knowledge gained in simulation

to the real world (Zhao, Queralta, and Westerlund, 2020), and the agent may learn from

a mixture of simulation data and real data (Cutler, Walsh, and How, 2014), the direct

interactions with the real world during training are still necessary in most cases, so that

we have to guarantee safety during training.

Usually, agents will emphasize exploration under an insufficient understanding of

the environment. Thus, it is unavoidable for the agents to take some undesired actions

that may be dangerous for the environment, especially at the early stage of training. In

general, we cannot ensure safety during training if learning from scratch. We may draw

ideas from human learning that never starts from scratch, especially in terms of safety
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(Grbic and Risi, 2020). To improve the chances of survival, millions of years of evolution

have enabled humans to possess many safety instincts, e.g., the evolved instinctual fear of

infants to some dangerous animals like spiders and snakes (Hoehl et al., 2017). However,

the instinct for safety cannot cope with all situations in the real world. More importantly,

infants rarely learn alone, but under the intervention of adults (Saunders et al., 2018;

Kelly et al., 2019). On the one hand, the infant can observe the right demonstrations

given by the adults and learns rapidly by imitating their behavior and learning how to

tackle dangerous situations. On the other hand, under the supervision of adults, the

infant can explore the world freely before unconsciously taking dangerous actions (Peng

et al., 2022). Therefore, the infant can learn from both the imitation of the adult and the

free exploration, which ensures the safety and efficiency of learning.

Similar to human learning, the agent’s learning for safety does not need to start from

scratch. In this dissertation, we consider that some prior knowledge is required to train

RL agents without violating the safety constraints. Instead of evolving safety instincts

that never change through lifetime learning (Grbic and Risi, 2020), we investigate how

to acquire task-agnostic knowledge to intervene in learning (Abel et al., 2017; Spencer

et al., 2020). In this case, Mutti, Pratissoli, and Restelli (2021) indicate that we can embed

the knowledge into a meta-reward function, an estimation of the environment dynam-

ics, or an exploration policy, but the exploration policy is intuitively more transferable

considering the possible environmental changes and additional policy optimization.

Similar to the intervention of adults, prior knowledge will have different influences at

different learning stages. With better performance in the target task, the learning will

become increasingly independent. In general, we expect that the prior knowledge can

give consideration to both safety and exploration, and benefit the target tasks in terms of

training-safety assurance and learning acceleration.

1.4. RESEARCH QUESTIONS
This dissertation attempts to solve the problems that hinder safe RL to be further applied

in the real world. It begins by defining safety with risk control and ends with task-agnostic

safe exploration. Our research is generally built on two natural safety requirements that

are critical for the real world:

1. Considering the randomness generated by the stochastic policy and the dynamics

of the environment, safety should be defined based on external risk requirements

that the user can specify.

2. For RL problems without simulators of sufficient fidelity, prior knowledge is neces-

sary to ensure safety during training if interactions with safety-critical environments

are inevitable.
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The above safety requirements help formulate the main research question of this

dissertation, namely:

How to control risks and ensure safety during training in cost-constrained RL?

We propose sub-questions to answer this main research question in four steps.

Q1 How to formulate the safe RL problems with risk control?

This sub-question aims to expound what is the definition of safety in this dissertation.

With separate reward and safety signals, we formulate safety by constraints, which are

potentially associated with risk requirements. Risk control means that we have different

safety constraints under different risk levels. Instead of only requiring the average perfor-

mance to be safe, we aim to define safety based on varying risk requirements, specialized

to risk-neutral or risk-averse behavior.

Q2 How to optimize a policy under the premise of safety ?

As a continuation of Q1, this question focuses on how to design an RL algorithm

for our safety definition. To achieve risk control, we focus on the safety distribution

rather than the expected value. Therefore, we must first approximate the distribution of

cost-return to set up a general view of safety. In this way, policies can be optimized given

different levels of conditional Value-at-Risk (CVaR; Rockafellar and Uryasev, 2000), which

determine the degree of risk aversion from a safety perspective.

Q3 How to ensure safety during training by transferring safe exploration policies?

This sub-question represents our additional focus on safety during training. In light of

the fact that safety cannot be guaranteed if we learn from scratch, extra knowledge before

training is essential to keep the learning process to be safe. Inspired by the intervention of

adults in the learning of infants, we propose to leverage a safe exploration policy to guide

the learning in downstream tasks, where constraint violations are not allowed during

training.

Q4 How to train a safe exploration policy in a principled way?

Following Q3, this sub-question aims to further expound the algorithm to get the

safe exploration policy. We expect a policy that can induce a uniform distribution over

the state space in a safe way. Accordingly, we maximize the entropy of the state density

under the safety constraint. The resulting policy is a general starting point to solve any

(unknown) subsequent task. Except for safety, we also expect the exploration capabilities

of the safe exploration policy to be beneficial to speed up the learning of the target task.

1.5. CONTRIBUTIONS TO SAFETY-CONSTRAINED RL
We carried out the research from two aspects, i.e., safety-constrained RL with risk control,

and training and transferring safe exploration policies1.

1The code in this dissertation is available at https://github.com/qisong-yang/.

https://github.com/qisong-yang/
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Firstly, in safety-constrained RL, it can be hazardous to set constraints on the expected

safety performance without considering the randomness in safety. In safety-critical do-

mains, worst-case analysis is required to limit the frequency of very unsafe outcomes. To

achieve risk control, we propose a new criterion, risk-averse constrained RL, for safety

critical problems, such that we can choose to be risk-averse or risk-neutral in safety.

Accordingly, we designed an off-policy algorithm framework Worst-Case Soft Actor Critic

(WCSAC). A certain level of CVaR from the distribution is regarded as a safety constraint,

which guides the change of adaptive safety weights to achieve a trade-off between reward

and safety. As a result, we can compute policies whose worst-case performance satisfies

the constraints. We investigate two ways to estimate the safety-cost distribution, namely

a Gaussian approximation and a quantile regression algorithm. The Gaussian approxi-

mation is simple and easy to implement, but may underestimate the safety cost, and the

quantile regression leads to a more conservative behavior.

Secondly, to ensure safety during training, we propose a safe transfer learning frame-

work Safe Guide (SaGui) to leverage a safe exploration policy to enhance safety and

improve sample efficiency in downstream tasks. The safe exploration policy is trained

in a constrained reward-free setting, where an agent (the guide) learns to explore safely

without the reward signal. This agent is assumed to be trained in a controlled environ-

ment, which allows unsafe interactions and still provides the safety signal. Accordingly,

we propose a practical Constrained Entropy Maximization (CEM) algorithm to solve task-

agnostic safe exploration (TASE) problems. The CEM algorithm aims to learn a policy that

maximizes state entropy under the premise of safety. Correspondingly, CEM leverages

a model-free entropy estimator to evaluate the efficiency of exploration, and adaptively

trades off safety to exploration based on the current safety performance. After the target

task is revealed, safety violations are not allowed anymore. Thus, the guide is leveraged

to compose a safe sampling policy. Drawing from transfer learning, we also regularize a

target policy (the student) towards the guide while the student is unreliable and gradually

eliminate the influence of the guide as training progresses.

1.6. OUTLINE OF THIS THESIS

Figure 1.3 shows the structure of the dissertation and how each chapter contributes to

the overall aim. The rest of this dissertation is organized as follows.

In Chapter 2, we describe mathematical definitions and notations used throughout

the dissertation. We first present the basics of CMDPs that are used to model the safety-

constrained RL problems. Accordingly, we describe how to learn safety-constrained

policies by SAC-Lag. To get more robust policies in safety-critical RL problems, we also

elaborate on the formulation of uncertainty in safety by quantile regression methods.
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Figure 1.3: Overview of the dissertation structure. Outside the dashed box, we show the introduction and
the conclusion of the dissertation. Inside the dashed box, we show the connection between all the technical
chapters, and the contribution of each chapter to the overall aim.

In addition, we introduce the state density induced by the stochastic policy and the

dynamics of the environment, and the approximation of state density in a model-free

manner.

In Chapter 3, we first make a comprehensive analysis of the necessity to control the risk

in safe RL. Because of the randomness in realized safety (long-term costs), the expectation-

based safety constraint is not enough to capture the risks. Accordingly, we define safety in

a more risk-averse way, and propose the WCSAC framework. WCSAC augments SAC with

a separate distributional safety critic (parallel to the reward critic) to make the algorithm

more adaptive when facing RL problems with higher safety requirements. We elaborate

the Gaussian approximation for the cost-return, such that the worst-case performance in

safety can be considered when updating the policy. The empirical analysis shows that our

algorithm attains better risk control compared to methods with expectation-based safety.

In Chapter 4, we further improve the WCSAC framework, and investigate the pitfalls

of the Gaussian safety critic. When the distribution of cost-return is not Gaussian, the ap-

proximation cannot describe the distribution accurately by its expectation and variance,

and the tail of the distribution might be underestimated, especially when the distribution

has long tails. Besides, the Gaussian approximation does not possess the general advan-

tages of distributional RL techniques. So, we present a distributional safety critic modeled

by an implicit quantile network (IQN; Dabney, Ostrovski, et al., 2018), which provides a

more precise estimate of the upper tail part of the distribution. We also empirically show

that, with this more accurate safety critic, WCSAC can achieve better risk control in more

complex safety-constrained environments.

In Chapter 5, we emphasize the necessity to introduce prior knowledge to ensure safety

during training, which is impossible if learning from scratch. To give consideration to

both fast adaptability and safety, we present the safe guide (SaGui) framework to leverage
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a safe exploration policy in the downstream tasks, where safety constraint violations are

not allowed during training. We explicitly point out that the safe exploration policy (the

guide) should have strong exploration capabilities under the premise of safety. Then, we

elaborate on how to use the guide to compose a safe behavior policy during data collection,

and how to adaptively regularize the target policy to the guide by policy distillation. We

also empirically show that SaGui is a safe and sample-efficient way of training the agent

on a target task.

In Chapter 6, to further improve the safe guide framework, we propose the CEM algo-

rithm to get the safe exploration policy in a principled way. We analyse the infeasibility to

solve the TASE problem based on the traditional optimization objective in RL, i.e., maxi-

mizing the long-term intrinsic rewards (exploration bonus). Considering the intricacy to

approximate the full state density in complex domains, we elaborate on how to use the

k-nearest neighbor state entropy estimator for exploration in safety-critical domains. We

also show how to update the policy with an adaptive balance between exploration and

safety, which are conflicting objectives. The empirical analysis shows that CEM allows

learning a safe exploration policy in complex continuous-control domains, and the policy

benefits the downstream tasks.

Finally, Chapter 7 concludes the dissertation by summarising our findings of the safe

RL framework designs, listing the contributions and limits of this work, and suggesting

future research directions on making RL more applicable in the real world.



2
BACKGROUND

In this dissertation, we solve safety-constrained RL problems, which can be modeled as

Constrained Markov Decision Processes (CMDPs). The goal of the agent is to maximize the

(discounted) sum of rewards, while adhering to the cost limits provided. Before detailing

the contributions and algorithms in this dissertation, we first describe the notations, the

models, and the previous methods to handle such safety-constrained RL problems. We first

present the basics of CMDPs that are used throughout the whole dissertation in Section 2.1.

Accordingly, in Section 2.2, we describe how we can learn a policy for the problem by a

Lagrangian version of Soft Actor Critic (SAC-Lag), where the safety is built on the average

case. To get more robust policies in safety-critical RL problems, we explain how to formulate

the uncertainty in safety by quantile regression methods, presented in Section 2.3.

2.1. CONSTRAINED MARKOV DECISION PROCESSES

We formulate the safe RL problem as a Constrained Markov Decision Process (CMDP;

Altman, 1999; Borkar, 2005), defined by a tuple (S ,A,P ,r,c,d ,T, ι): where S is the state

space and A is the action space. In constrained RL an agent interacts with a CMDP, with-

out knowledge about the transition, reward, and cost functions (P : S×A 7→ Dist(S),r :

S ×A 7→ [rmi n ,rmax ], and c : S ×A 7→ [cmi n ,cmax ]). Each episode begins in a random

state s0 ∼ ι(·), where ι ∈ Dist(S). At each timestep t of an episode, the agent observes the

current state st ∈ S , and takes an action at ∈A. Then, it observes a reward r (st , at ), a

cost c(st , at ), and the next state st+1 ∼P(· | st , at ). This process is repeated until some

terminal condition is met, such as reaching the time horizon T . The behavior of the agent

15
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is defined by a policy π : S 7→ Dist(A). This way, a policy π induces a distribution over

full trajectories Tπ = (s0, a0, s1, · · ·) where s0 ∼ ι, at ∼π(· | st ), and st+1 ∼P(· | st , at ). With

assigned initial state-action pair (s0, a0) = (s, a), the distribution over full trajectories is

denoted as T ′
π(s, a), where s, a are omitted if they are clear from the context.

In a CMDP there are two random variables of interest, the return Z r
π =∑T

t=0 r (st , at )

and the cost-return Z c
π =∑T

t=0 c(st , at ) that are, respectively, the sum of rewards and the

sum of costs obtained in a trajectory following a fixed policy π.

Definition 2.1 (Safety based on Expected Value). A policy π is safe if its expected cost-

return remains below a safety threshold d (Achiam et al., 2017; Yang, Simão, Tindemans,

et al., 2023):

E
[

Z c
π

]≤ d

During training, the agent aims to learn a safe policy π that maximizes the expected

return for each episode:

max
π
E
[

Z r
π

]
s.t. E

[
Z c
π

]≤ d . (2.1)

For a complex and long-horizon problem (T ≫ 1), it is common to introduce a discount

factor γ ∈ (0.0,1.0) to make the problem tractable, since it allows the agent to compute

a single stationary value function, instead of indexing it by the time step. Henceforth,

we consider the discounted return and discounted cost-return, accumulated discounted

rewards and costs, respectively, from (s, a) as

Z r
π(s, a) =

∞∑
t=0

γt r (st , at ) | s0 = s, a0 = a, and

Z c
π(s, a) =

∞∑
t=0

γt c(st , at ) | s0 = s, a0 = a.

(2.2)

We will refer to the cost-return Z c
π(s, a) as C wheneverπ, s and a are clear from the context.

We have
Qr ′
π (s, a) = E(st ,at )∼T ′

π

[
Z r
π(s, a)

]
, and

Qc
π(s, a) = E(st ,at )∼T ′

π
[Z c

π(s, a)] = E(st ,at )∼T ′
π

[C ].
(2.3)

For safety-costs, we express the value function as V c
π (s) = E(st ,at )∼T ′

π
[
∑∞

t=0γ
t c(st , at )|s0 =

s], and the advantage function for costs is Ac
π(s, a) =Qc

π(s, a)−V c
π (s).

2.2. MAXIMUM ENTROPY RL WITH SAFETY CONSTRAINTS
When the agent knows nothing about the environment, the safety constraint cannot be

strictly fulfilled during exploration. During the early steps of learning, we still hope to
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encourage exploration to learn more about the environment. Maximum policy entropy

can lead to diverse behaviors of the agent and better exploration. But the policy’s entropy

must be carefully balanced with the safety constraint, and the policy must be allowed

to converge to a relatively deterministic policy, which reduces risks in terms of (safety-

related) cost. Soft actor-critic (SAC; Haarnoja, Zhou, Abbeel, et al., 2018) is an off-policy

method built on the actor-critic framework, which encourages agents to explore by

including a policy’s entropy as a part of the reward. SAC-based methods with entropy

constraints and adaptive entropy weights (Haarnoja, Zhou, Hartikainen, et al., 2018) are

candidates to meet the above conditions.

Building on policy entropy constraints and corresponding Lagrange multipliers in

SAC (Haarnoja, Zhou, Hartikainen, et al., 2018; Haarnoja, Ha, et al., 2019), Ha et al. (2020)

augment SAC with a safety constraint and introduce a second Lagrange multiplier to

solve safety-constrained RL problems. We name this Lagrangian version of Soft Actor

Critic SAC-Lag in the following parts of this dissertation. Although the SAC-Lag method

was described as imposing a safety constraint at every time step, only a time-averaged

constraint (with a single Lagrange multiplier) was implemented. This SAC-Lag method,

which maximizes long-term rewards subject to policy entropy and safety constraints, is

described below.
max
π

E
st∼D

at∼π(·|st )

[
Qr ′
π (st , at )

]

s.t.


E

st∼D
at∼π(·|st )

[
Qc
π(st , at )

]≤ d

E
st∼D

at∼π(·|st )

[− log(πt (at | st ))
]≥ h ∀t

,

(2.4)

where D is the replay buffer, h is the minimum entropy, and d is the discounted approx-

imation of d . We define the discounted version of d as d = [(1−γTmax )d ]/[(1−γ)Tmax],

where we assume that equal cost d/Tmax is accumulated at each step, and Tmax is the

maximum length of the episode. The assumption is not strictly correct, since we do not

have equal costs at each step of a real episode, and often no costs are incurred early in

the episode. However, since our algorithm optimizes the discounted infinite horizon

from each state-action pair in the replay buffer, we should be approximately correct here.

Notice that we have a global constraint on the cost-return (over trajectories) and a local

constraint on the policy entropy (for each time step).

In general, SAC-Lag is a SAC-based method that has two critics, where we use the

reward critic to estimate the expected return (possibly with entropy) to promote reward

during learning, while the safety critic estimates the cost-return to encourage safety.

In SAC-Lag, the constrained optimization problems are solved by Lagrangian methods

(Bertsekas, 1982). To manage a trade-off among exploration, reward, and safety, adaptive
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entropy and safety weights (Lagrange-multipliers) β and ω are introduced to the con-

strained optimization (2.1). With the policy entropy weight β, we have the soft Q-function

(Haarnoja, Zhou, Abbeel, et al., 2018)

Qr
π(s, a) = E

(st ,at )∼T ′
π

[
Z r
π(s, a)+β

∞∑
t=1

γtH(π(·|st ))

]
. (2.5)

Note that the soft Q-function Qr
π is different from the Q-function Qr ′

π in (2.3).

In this dissertation, we use J to denote loss functions, and θ to denote neural network

parameters. Similar to the formulation used by Haarnoja, Zhou, Hartikainen, et al. (2018),

we can get the actor loss:

Jπ(θπ) = E
st∼D

at∼π(·|st )

[
β logπ(at | st )−Qr

π(st , at )+ωQc
π(st , at )

]
, (2.6)

where the entropy weightβ (Lagrange multiplier) manages the stochasticity of the policyπ

and also determines the relative importance of the entropy term compared to rewards

and costs. θπ indicates the parameters of the policy π.

The safety and reward critics (including a bonus for the policy entropy) are, respec-

tively, trained to minimize

JC (θC )= E
(st ,at )∼D

[
1

2

(
Qc
θC

(st , at )−
(
ct+γQc

θC
(st+1, at+1)

))2
]

(2.7)

and

JR (θR ) = E
(st ,at )∼D

[
1

2

(
Qr
θR

(st , at )−
(
rt +γ

(
Qr
θR

(st+1, at+1)−β log(π(at+1 | st+1))
)))2

]
,

(2.8)

where rt = r (st , at ), ct = c(st , at ), and at+1 ∼π(· | st+1). Qc and Qr are parameterized by

θC and θR , respectively.

Finally, let θω and θβ be the parameters learned for the safety and exploration weight

such that ω= softplus(θω) and β= softplus(θβ), where

softplus(x) = log
(
exp(x)+1

)
.

We can learn ω and β by minimizing the loss functions

Js (θω) = E
st∼D

at∼π(·|st )

[
ω

(
d −Qc

π(st , at )
)]

, and

Je (θβ) = E
st∼D

at∼π(·|st )

[−β(
log(π(at | st ))+h

)]
,

(2.9)
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simultaneously with (2.6)-(2.8). This ensures the weights will rapidly grow if the con-

straints are violated, that is, if we estimate that the current policy is unsafe or if it does not

have enough entropy.

2.3. DISTRIBUTIONAL RL BASED ON QUANTILE REGRESSION

So far, we considered only the expected value of the return and the cost return. In this

section, we describe how we can estimate the full distribution of these random variables.

Later, we will discuss how to use the tails of the cost-return to compute safer policies.

Distributional RL provides a means to estimate the return distribution instead of only

modeling expected values (Bellemare, Dabney, and Munos, 2017; Dabney, Ostrovski,

et al., 2018; Dabney, Rowland, et al., 2018; Yang, Zhao, et al., 2019). So it is natural to apply

distributional RL in risk-averse domains. Even in traditional RL problems, distributional

RL algorithms show better sample efficiency and ultimate performance compared to the

standard expectation-based approach, but the state-of-the-art techniques have not been

applied to safety-constrained RL with separate reward and safety signals.

Quantile regression, one of the main techniques in distributional RL, is widely used to

estimate the return distribution, which has been combined with DQN (Mnih et al., 2015)

to generate distributional variants such as QR-DQN (Dabney, Rowland, et al., 2018),

IQN (Dabney, Ostrovski, et al., 2018), and FQF (Yang, Zhao, et al., 2019). In these methods,

the difference between distributions is measured by 1-Wasserstein distance:

W1(u, v)
.=

∫ 1

0
|F−1

u (x)−F−1
v (x)|d x, (2.10)

where u and v are random variables (e.g., the return or cost-return), and F is the cumu-

lative distribution function (CDF). In these methods, we learn the inverse CDF of the

return distribution, i.e., mapping quantile fraction τ ∈ [0,1] to the corresponding quantile

function value Z τ1, which can be expressed as Z τ = F−1
Z (τ). QR-DQN, IQN, and FQF differ

in how to generate the quantile fractions during training. Compared to fixing the quantile

fractions (QR-DQN) and random sampling (IQN), we can theoretically better approxi-

mate the real distribution by using a proposal network (FQF) that generates appropriate

quantile fractions for each state-action pair. However, IQN has been found to perform

better in experiments and has fewer parameters to tune in complex environments (Ma et

al., 2020). The quantile values of IQN are learned based on the Huber quantile regression

1In this section, Z stands for the return Z r
π(s, a), but this method can easily be adapted to estimate the cost-

return distribution.
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loss (Huber, 1964):

J κ
τ (ϱ) = |τ− I{ϱ< 0}|Lκ(ϱ)

κ
, where Lκ(ϱ) =

{
1
2ϱ

2, if |ϱ≤ κ|
κ(|ϱ− 1

2κ|),otherwise
, (2.11)

where κ is the threshold to make the loss within the intervals [−κ,0] and [0,κ] quadratic

but a regular quantile loss if outside the interval. Based on the distributional Bellman

operator (Sobel, 1982; Morimura et al., 2010; Tamar, Di Castro, and Mannor, 2016)

BπZ (s, a)
.= r (s, a)+γZ (s′, a′), (2.12)

we can get the TD error ϱi j between the quantile values at quantile fractions τi and τ′j ,

i.e.,

ϱi j = r (s, a)+γZ
τ′j (s′,π(s′))−Z τi (s, a), (2.13)

where (s, a,r, s′) is sampled from the replay buffer D, and π(s) = argmaxa∈AQr ′ (s, a) for

a deterministic policy. Subsequently, with N and N ′ i.i.d. samples of τ,τ′ ∼ U ([0,1])

respectively, we can get the loss function for IQN, i.e.,

J (s, a,r, s′) = 1

N ′
N∑

i=1

N ′∑
j=1

J κ
τi

(ϱ
τi ,τ′j
t ). (2.14)

To evaluate the policy, we can approximate Qr ′ (s, a) using K i.i.d. samples of τ̃∼U ([0,1]):

Qr ′ (s, a)
.= 1

K

K∑
k=1

Z τ̃k (s, a). (2.15)

It is important to note that τ, τ′, and τ̃ are sampled from continuous and independent

distributions in IQN. τ′ is for the TD target (average quantile values at several τ′), and τ is

the given quantile we aim to estimate.



3
WORST-CASE CONSIDERATION

With separate reward and safety signals, it is natural to cast safety in RL as constraints,

where expected cost-return of policies are constrained. However, it can be hazardous to set

constraints on the expected safety signal without considering the tail of the distribution.

For instance, in safety-critical domains, worst-case analysis is required to avoid disastrous

results. We present a novel reinforcement learning algorithm called Worst-Case Soft Actor

Critic, which extends the Soft Actor Critic algorithm with a safety critic to achieve risk

control. More specifically, a certain level of conditional Value-at-Risk from the distribution

is regarded as a safety measure to judge the constraint satisfaction, which guides the change

of adaptive safety weights to achieve a trade-off between reward and safety. As a result,

we can optimize policies under the premise that their worst-case performance satisfies the

constraints. The empirical analysis shows that our algorithm attains better risk control

compared to expectation-based methods.

3.1. INTRODUCTION
Ray, Achiam, and Amodei (2019) propose to make constrained RL the main formalism

of safe exploration, where the reward function and cost function (related to safety) are

distinct. This framework tries to mitigate the problem of designing a single reward

function that needs to carefully select a trade-off between safety and performance, which

is problematic in most instances. In addition, it is generally desirable to optimize the

sample efficiency, i.e., to minimize the number of samples required to learn safe optimal

This chapter has been published in AAAI (2021) (Yang, Simão, Tindemans, et al., 2021).

21



3

22 3. WORST-CASE CONSIDERATION

policies. Off-policy methods can reuse past experience to be more sample efficient, and

which safe exploration can benefit from (Mnih et al., 2015). Thus off-policy methods

are preferred over on-policy methods, which need new experiences to evaluate a policy

(Schulman, Levine, et al., 2015; Achiam et al., 2017; Schulman, Wolski, et al., 2017).

In this chapter, we focus on designing an off-policy algorithm for safety-constrained

RL. Soft actor critic (SAC; Haarnoja, Zhou, Abbeel, et al., 2018; Haarnoja, Zhou, Har-

tikainen, et al., 2018) is an off-policy method built on the actor critic framework, which

encourages agents to explore by including a policy’s entropy as a part of the reward. SAC

exhibits better sample efficiency and asymptotic performance compared to prior on-

policy and off-policy methods. SAC-Lag (Ha et al., 2020) combines SAC with Lagrangian

methods to address safety-constrained RL with local constraints, i.e., constraints are set

for each timestep instead of each episode. The empirical analysis of SAC-Lag shows that

the optimal policy with constraint-satisfying expected long-term costs can be learned

with a low number of constraint violations. However, the cost of individual episodes might

exceed the expected-cost bound with a high probability. For safety-critical problems,

it can be hazardous to use the expected long-term costs as safety evaluation. Instead,

better alternatives for safety-constrained RL are algorithms that compute policies based

on varying risk requirements, specialized to risk-neutral or risk-averse behavior (Duan

et al., 2020; Ma et al., 2020).

We propose the Worst-Case Soft Actor Critic (WCSAC) algorithm that uses a separate

safety critic to estimate the distribution of accumulated cost to achieve risk control. We

focus on the upper tail of the cost distribution, represented by the conditional Value-

at-Risk (CVaR; Rockafellar and Uryasev, 2000). In this way, policies can be optimized

given different levels of CVaR, which determine the degree of risk aversion from a safety

perspective. In addition, we endow safety and entropy with weights that are automatically

adapted according to the performance of current policies. Experimental analysis shows

that by setting the level of risk control, the WCSAC algorithm attains stronger adaptability

(compared to expectation-based baselines) when facing RL problems with higher safety

requirements.

3.2. RISK-AVERSE CONSTRAINED RL
Traditional expectation-based safe RL methods maximize the return under the premise

that the expected cost-return remains below the safety threshold d . In this way, RL agents

are not aware of the potential risks because of the randomness in cost-return, which is

generated by the stochastic policy and the dynamics of the environment. In expectation-

based cases, if a safe policy has higher returns and higher variance in safety costs, it will

be preferred over another safe policy with lower returns and lower variance in safety costs.
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Figure 3.1: A CMDP example with d = 1.8 and T = 2. It has state space {a,b} and action space {m,n}.

In safety-critical domains, the optimal policies are expected to be more robust, i.e., to

have a lower risk of hazardous events even for stochastic or heavy-tailed cost-return.

An example of such a case is a simple CMDP shown in Figure 3.1. In each state, we

can choose to move or not. If we choose to move (take action m), we will get a reward

1 and a cost 1, otherwise, both reward and cost will be 0. With an episode length of

two timesteps and safety threshold d = 1.8 for each episode, the optimal policy will be

π(m|a) = 0.9,π(n|a) = 0.1,π(m|b) = 0.9,π(n|b) = 0.1. But the real costs generated by the

policy will be larger than the threshold with probability p = 0.81. Thus the optimal policy

is hardly thought to be acceptable for safety-critical problems, even though it satisfies the

constraint.

In Figure 3.2, the x-axis depicts the cost-return C (Equation (2.2)). The y-axis depicts

the density of its probability distribution. The expectation-based algorithm focuses

on the average performance in safety when optimizing policies. Thus, π, Qc
π, and the

shape of the cost-return distribution pπ(C | s, a) will be changed during the training

process until Qc
π (blue line) is shifted to the left side of the boundary (red line). After

that, there is still a strong likelihood that the constraint value d is exceeded. For a policy

π, Qc
π can only be used as the evaluation of average performance in safety, however, in

safety-critical domains, the worst-case performance in safety is preferred over the average

performance. Therefore, we replace the expected value with the Conditional Value-at-

Risk (CVaR; Rockafellar and Uryasev, 2000), using the upper α of the distribution to assess

the safety of a policy. In the right panel of Figure 3.2, we set the constraint on CVaR. Thus

we optimize policies that will move the tail-end of pπ(C | s, a) (blue line) to the left side of

the boundary d (red line).

Definition 3.1 (Risk level.). A positive scalar α ∈ (0,1] is used to define the risk level in
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Figure 3.2: In the average case (left panel), the policies are optimized to ensure Qc (blue line) is moved to the
left side of the fixed boundary d (red line). In the worst case (right panel), we optimize policies to ensure the
CVaRα (blue line) measure on the left side of the fixed boundary d (red line).

WCSAC. A WCSAC with smallerα (α→ 0) is expected to be more pessimistic and risk-averse.

Conversely, a larger value of α leads to a less risk-averse behavior, with α= 1 corresponding

to the risk-neutral case.

Considering the probability distribution of cost-returns pπ(C ) induced by the aleatoric

uncertainty of the environment and the policy π, we model the safety-constrained RL

problem in a more risk-averse way than the traditional formulation (2.1). We focus on the

α-percentile F−1
C (1−α), where FC is the CDF of pπ(C | s, a), so we can get the CVaR:

Γπ(s, a,α)
.= CVaRαπ(C ) = E

pπ
[C |C ≥ F−1

C (1−α)]. (3.1)

The following definition gives us a new constraint to learn risk-averse policies, which

differs from the traditional constraint (2.1).

Definition 3.2 (Safety based on CVaR). Given the risk level α, a policy π is safe if it satisfies

Γπ(st , at ,α) ≤ d ∀t , where (st , at ) ∼ Tπ and s0 ∼ ι.

Now we can generalize the framework from Section 2.2, using maximum entropy RL

with the above risk-sensitive safety constraints. That is, the optimal policy in a constrained

RL problem might be stochastic therefore it is reasonable to seek a policy with some
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entropy (2.4). So, the policy is optimized to satisfy

max
π

E
[

Z r
π

]
s.t. CVaRαπ(C ) ≤ d and E

(st ,at )∼Tπ
[− log(πt (at | st ))

]≥ h ∀t .
(3.2)

With (3.2) it is possible to solve safe RL problems using the Soft Actor Critic (SAC; Haarnoja,

Zhou, Abbeel, et al., 2018) framework, maintaining a minimum expected entropy (Haarnoja,

Zhou, Hartikainen, et al., 2018).

3.3. WORST-CASE SOFT ACTOR CRITIC
To solve the risk-averse constrained RL problem (3.2), we design the Worst-Case Soft

Actor Critic (WCSAC) algorithm. WCSAC generalizes SAC-Lag (Section 2.2), because

SAC-Lag can be regarded as WCSAC with α = 1, such that Γπ(s, a,1) = Qc
π(s, a) (3.1). In

this section, we start describing a safety critic that assumes the cost-return distribution is

Gaussian, then we show how to optimize the actor with the new safety critics and present

an overview of the full algorithm.

3.3.1. GAUSSIAN SAFETY CRITIC

In this section, we present how to obtain a Gaussian approximation of the safety critic. We

will refer to the WCSAC with a Gaussian safety critic as WCSAC-GS in the following parts.

GAUSSIAN APPROXIMATION

WCSAC-GS uses a separate Gaussian safety critic (parallel to the reward critic for the

return) to estimate the distribution of C instead of computing a point estimate of the

expected cost-return, as the SAC-Lag algorithm. To obtain the cost-return distribution,

pπ(C | s, a) is approximated with a Gaussian, i.e.,

Z c
π(s, a) ∼N (Qc

π(s, a),V c
π (s, a)), (3.3)

where V c
π (s, a) = Epπ [C 2 | s, a]− (Qc

π(s, a))2 is the variance of the cost-return.

Given the Gaussian approximation (Khokhlov, 2016), the CVaR measure is easily

computed. At each iteration, Qc
π(s, a) and V c

π (s, a) can be estimated (Tang, Zhang, and

Salakhutdinov, 2020). Thus, the new safety measure for risk level α is computed by

Γπ(s, a,α)
.=Qc

π(s, a)+α−1φ(Φ−1(α))
√

V c
π (s, a), (3.4)

whereφ(·) andΦ(·) denote the probability distribution function (PDF) and the cumulative

distribution function (CDF) of the standard normal distribution (Khokhlov, 2016).
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WCSAC-GS learns the mean and variance of pπ(C ). To estimate Qc
π, we can use the

standard Bellman function:

Qc
π(s, a) = c(s, a)+γ ∑

s′∈S

p(s′ | s, a)
∑

a′∈A

π(a′ | s′)Qc
π(s′, a′). (3.5)

The projection equation for estimating V c
π (s, a) is:

V c
π(s, a) = c(s, a)2 −Qc

π(s, a)2

+2γc(s, a)
∑

s′∈S

p(s′ | s, a)
∑

a′∈A

π(a′ | s′)Qc
π(s′, a′)

+γ2
∑

s′∈S

p(s′ | s, a)
∑

a′∈A

π(a′ | s′)V c
π (s′, a′)

+γ2
∑

s′∈S

p(s′ | s, a)
∑

a′∈A

π(a′ | s′)Qc
π(s′, a′)2.

(3.6)

We refer the reader to Tang, Zhang, and Salakhutdinov (2020) for the proof of (3.6).

GAUSSIAN SAFETY CRITIC LEARNING

WCSAC-GS uses two neural networks parameterized by θµC and θσC , respectively, to esti-

mate the safety critic, i.e.,

Qc
θ
µ
C

(s, a) → Q̂c
π(s, a) and V c

θσC
(s, a) → V̂ c

π (s, a).

In order to learn the safety critic, the distance between value distributions is mea-

sured by the 2-Wasserstein distance (Olkin and Pukelsheim, 1982; Bellemare, Dabney,

and Munos, 2017): W2(u, v)
.=

(∫ 1
0 |F−1

u (x)−F−1
v (x)|2d x

)1/2
, where u ∼ N (Q1,V1), v ∼

N (Q2,V2). WCSAC-GS uses the simplified 2-Wasserstein distance (Tang, Zhang, and

Salakhutdinov, 2020) to estimate the safety critic loss:

W2(u, v) = ∥Q1 −Q2∥2
2 + trace(V1 +V2 −2(V 1/2

2 V1V 1/2
2 )1/2). (3.7)

The 2-Wasserstein distance, in comparison to the 1-Wasserstein distance, incorporates

the variance or spread of probability distributions, providing a more refined measure

of dissimilarity that captures the geometric structure of the distributions, particularly

beneficial for analyzing distributions with different variances or high-dimensional data.

The 2-Wasserstein distance can be computed as the Temporal Difference (TD) error based

on the projection equations (3.5) and (3.6) to update the safety critic, i.e., WCSAC-GS
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minimizes the following values:

JµC (θµC ) = E
(st ,at )∼D

∥∆Q(st , at ,θµC )∥2
2, and

JσC (θσC ) = E
(st ,at )∼D

trace(∆V (st , at ,θσC )),
(3.8)

where JµC (θµC ) is the loss function of Qc
θ
µ
C

, and JσC (θσC ) is the loss function of V c
θσC

. So,

∆Q(st , at ,θµC ) =Q
c
θ
µ
C

(st , at )−Qc
θ
µ
C

(st , at ), (3.9)

where Q
c
θ
µ
C

(st , at ) is the TD target from (3.5), and

∆V (st , at ,θσC ) =V
c
θσC

(st , at )+V c
θσC

(st , at )

−2(V c
θσC

(st , at )1/2V
c
θσC

(st , at )V c
θσC

(st , at )1/2)1/2,
(3.10)

where V
c
θσC

(st , at ) is the TD target from (3.6).

3.3.2. WORST-CASE ACTOR

For a certain risk level α, we optimize the policy π until it satisfies the safety criterion

Γπ(st , at ,α) ≤ d ∀t according to Definition 3.2. Based on the balance between safety

and performance, the policy will be gradually adjusted according to the current policy

evaluation X π
α,ω(s, a) =Qr

π(s, a)−ωΓπ(s, a,α) (Haarnoja, Zhou, Abbeel, et al., 2018). The

role of safety changes over the training process. As the policy becomes safe, the influence

of the safety term wanes, then the return optimization will play a greater role in our

formulation.

In practice, based on the work by Haarnoja, Zhou, Abbeel, et al. (2018), we minimize

the following KL divergence (Kullback and Leibler, 1951) to update the policy within a

parametric spaceΠ:

min
π∈Π

DK L

(
π(· | st )

∥∥∥∥∥exp( 1
β (Qr

π(st , ·)−ωΓπ(st , ·,α)))

Λπ(st )

)

=min
π∈Π

DK L

(
π(· | st )∥exp(

1

β
X π
α,ω(st , ·)− log(Λπ(st )))

)
,

(3.11)

where Λπ(st ) is the partition function to normalize the distribution. β and ω are the

adaptive entropy and safety weights, respectively. A loss function can be constructed by

averaging the KL divergence over all states in the sample buffer and approximating the KL
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divergence using a single sampled action, resulting in

E
st∼D

at∼π(·|st )

[
log(

π(at | st )

exp( 1
βX π

α,ω(st , at )− log(Λπ(st )))
)

]

= E
st∼D

at∼π(·|st )

[
logπ(at | st )− 1

β
X π
α,ω(st , at )+ log(Λπ(st ))

]
.

(3.12)

Λπ(st ) has no influence on updating θ, thus it can be omitted. The resulting actor loss is

Jπ(θπ) = E
st∼D

at∼π(·|st )

[
β logπ(at | st )−Qr

π(st , at )+ωΓπ(st , at ,α)
]

. (3.13)

We update the reward critic Qr (2.8) and entropy weight β (2.9) in the same way as the

SAC-Lag method in Section 2.2. Based on the new safety measure, the safety weight ω can

be learned by minimizing the loss function:

Js (θω) = E
s∼D

a∼π(·|s)

[
ω(d −Γπ(s, a,α))

]
, (3.14)

so ω will be decreased if d ≥ Γπ(s, a,α), otherwise ω will be increased to emphasize safety

more. The main difference to how SAC-Lag optimizes its policy and safety weight, is the

use of the CVaR estimate, in opposite to the mean estimate in (2.6) and (2.9). We note that

in (3.14), we sample from the replay buffer D, whereas (2.2) suggests that the constraint

applies to the initial state distribution. This replacement is certainly valid in the strongly

discounted regime, or when episodes are very long. In this case, each visited state can be

considered an initial state for the cost calculation. Although the replay buffer may initially

be strongly off-policy, this deviation reduces over time. Moreover, this replacement also

turns out to work well in practice when these conditions do not apply.

3.3.3. COMPLETE ALGORITHM

Algorithm 1 presents our method. At each environment step, the agent executes a new

action sampled from the current policy and then proceeds to the next state. The expe-

rience will be stored in the replay buffer (lines 3-6). For the gradient descent steps, the

method uses batches sampled from the replay buffer to update all function parameters

(lines 7-17).

In standard maximum entropy RL, the entropy of the policy is expected to be as

large as possible. However, relatively deterministic policies are preferred over stochastic

policies in safe exploration, even though it is essential to encourage exploration during the

early steps of learning. In SAC, the entropy of the policy is constrained to ensure that the
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Algorithm 1 WCSAC-GS

Require: Hyperparameters α, d , h, η
1: initialize θπ, θR , θC , θβ, θω, 〈θR ,θC 〉← 〈θR ,θC 〉, D←;
2: for each iteration do
3: for each environment step do
4: at ∼π(at | st ), st+1 ∼P(st+1 | st , at )
5: D←D∪ {(st , at ,r (st , at ),c(st , at ), st+1)}
6: end for
7: for each gradient step do
8: Sample experience from replay buffer D
9: θR ← θR −λR ∇̂θR JR (θR ) ▷ Reward critic (2.8)

10: θC ← θC −λC ∇̂θC JC (θC ) ▷ Safety critic (3.8)
11: Compute Γπθ ▷ CVaR estimate (3.4)
12: θπ← θπ−λπ∇̂θπ Jπ(θπ) ▷ Actor (3.13)
13: θβ← θβ−λβ∇̂θβ Je (θβ) ▷ Exploration weight (2.9)

14: θω← θω−λω∇̂θω Js (θω) ▷ Safety weight (3.14)

15: θR ← ηθR + (1−η)θR

16: θC ← ηθC + (1−η)θC

17: end for
18: end for

Output: Optimized parameters θπ, θR , θC , θβ, θω

final optimal policy is more robust (Haarnoja, Zhou, Hartikainen, et al., 2018). Therefore,

for safety-critical domains, it is preferred to set a relatively low minimum requirement H0

for the entropy, or omit this constraint altogether.

For the reward critic, to avoid overestimation and reduce the positive bias during the

policy improvement process, we also learn two soft Q-functions independently, which are

parameterized by θR1 and θR2. The minimum Q-function is used in each gradient step.

For the safety critic, we use two separate neural networks to estimate the mean function

and variance function respectively. The size of each network can be smaller than using

one network to estimate the mean function and variance together, so it does not add

more parameters to be trained. Besides, it is much easier to compare the distributional

safety critic of WCSAC to the regular safety critic of SAC-Lag, which can be seen as

ablation of WCSAC. We use four target networks to achieve stable updating, a common

technique used in DQN (Mnih et al., 2015) and DDPG (Lillicrap et al., 2015). Specifically,

the parameters of target networks (including safety critic and reward critic) are updated

by moving averages (lines 15-16), where hyperparameter η ∈ [0,1] is used to reduce

fluctuations.
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Figure 3.3: Point navigation domains StaticEnv and DynamicEnv. The environments differ in the number and
size of hazards, and generation of goal and hazards’ locations.
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Figure 3.4: Comparison of SAC, CPO, SAC-Lag, and WCSAC during training in StaticEnv (top row) and Dynami-
cEnv (bottom row). The lines are the average of all runs, and the shaded area is the standard deviation.

3.4. EMPIRICAL ANALYSIS

We evaluate our method on the Safety Gym benchmark (Ray, Achiam, and Amodei, 2019).

In these environments (see Figure 3.3) a point agent (one actuator for turning and another

one for moving forward/backward) navigates in a 2D map to reach the goal position while

trying to avoid hazardous areas. In StaticEnv (Figure 3.3 left), the agent gets a reward

r −0.2 in each step, where r is the original reward signal of Safety Gym (distance towards

goal plus a constant for being within range of goal), and the offset −0.2 incentivizes the

agent to reach the target in the smallest number of time steps. DynamicEnv keeps the

original reward signal. In both environments, the initial state of the agent is randomly

initialized in each episode. The episodic locations of goal and hazards are also arbitrarily

generated in DynamicEnv but fixed in StaticEnv. In each step, if the agent stays in the

hazardous area, it incurs a cost c = 1, otherwise c = 0. We use a discount factor γ= 0.99.
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(a) SAC-Lag0 (b) SAC-Lag1 (c) SAC-Lag2 (d) Random (e) SAC

(f) CPO (g) WCSAC-0.9 (h) WCSAC-0.5 (i) WCSAC-0.1

Figure 3.5: Trajectory analysis. (a)-(c) show the trajectories generated by policies from SAC-Lag at the beginning,
middle stage and end of training respectively. (d)-(i) show the final trajectories from random policy, SAC, CPO,
and WCSAC separately.

We set d = 15 for the expected (real-world) cost limit, which needs to be reverse-

discounted in SAC-Lag and WCSAC. All the agents are trained for 100 epochs, where the

length of each epoch is 30000 environment interaction steps and the maximal length of

each episode is 1000 environment interaction steps. Furthermore, all experiments were

run with three random seeds. Specifically, we will compare SAC, CPO (Achiam et al., 2017),

SAC-Lag, and WCSAC with different risk levels in safety, i.e., WCSAC-0.1 (α= 0.1: highly

risk-averse), WCSAC-0.5 (α = 0.5) and WCSAC-0.9 (α = 0.9: almost risk-neutral). Four

CPUs were used in parallel for training in all cases. In our following experimental results,

the shown return and cumulative cost are undiscounted.

3.4.1. RESULTS

During training, we use the following metrics: average episodic return, average episodic

cost, and cost rate (Ray, Achiam, and Amodei, 2019). The cost rate at each epoch is

computed by dividing the cumulative costs by the number of environment interaction

steps. Figure 3.4 shows the results. We observe that all algorithms find policies that can

reach the goal at the end of the training (Figure 3.4(a)), but with different convergence

rates. Compared to safe methods (SAC-Lag, CPO, and WCSAC), SAC has better and more

stable performance in average episodic return obviously, however it does not satisfy the

constraint. Regarding safety, Figures 3.4(b) and 3.4(c) show that all safe methods except

for CPO converge to constraint-satisfying policies, and WCSAC-0.9 performance is close



3

32 3. WORST-CASE CONSIDERATION

EC C0.9 C0.5 C0.1 ER
SAC 21.7 24.1 42.8 56.5 0.97
SAC-Lag 14.3 15.9 28.6 141.8 0.27
WCSAC-0.9 4.2 4.6 8.4 31.4 0.56
WCSAC-0.5 1.8 2.0 3.6 17.9 0.19
WCSAC-0.1 1.4 1.6 2.9 14.3 -0.43
CPO 16.3 18.1 32.5 58.3 0.84
Random Policy 49.1 54.5 98.1 431.6 -20.10

Table 3.1: Performance of the agents on the StaticEnv according to multiple metrics: expected cost (EC), cost-
CVaR-0.9 (C0.9), cost-CVaR-0.5 (C0.5), cost-CVaR-0.1 (C0.1), and expected return (ER). In bold we indicate the
constraint used by the agent.

to SAC-Lag. Besides, WCSAC with a lower risk level generates fewer constraint violations

during training.

We execute a trajectory analysis in StaticEnv, see Figure 3.5. We only show the training

process of SAC-Lag at different stages because other methods show similar behavior

during training. At the beginning of learning (Figure 3.5(a)), it is possible that the agent

cannot get out of the hazard, and gets stuck before arriving at the goal area. In Fig-

ure 3.5(d), the trajectories of random policy are highly chaotic. The final policies from

SAC-Lag, CPO, and WCSAC-0.9 perform better than before, but still prefer to take a risk

within the budget to get a larger return (Figures 3.5(c), 3.5(f) and 3.5(g)). Conversely, the

agent from WCSAC-0.5 becomes more risk-averse in Figure 3.5(h). The behavior of the

SAC agent is presented in Figure 3.5(e), the agent chooses the shortest path to reach the

target directly since the safety constraint is not considered. Finally, in Figure 3.5(i), we can

see that the agent from WCSAC-0.1 prefers to stay away from the hazardous area given its

risk level setting.

After training, we use 300 test runs (100 runs for each random seed) to evaluate the

final policies of these algorithms. In Table 3.1, the results show that each WCSAC variation

satisfies its corresponding CVaR bound (estimated by the average costs of the worst 300α

trajectories), while only WCSAC-0.1 results in CVaR0.1 < 15. In Figure 3.6, we compare

the SAC-based methods. The whiskers of the boxplot Figure 3.6(a) are set at the [1,99]

percentiles of the data. To make the boundary d more clear, we set the y-axis view limits

(so the data of SAC-Lag is out of the chart). The optimal policies learned by SAC have

poor performance in safety without considering the constraint. The optimal policies from

SAC-Lag can ensure that most of the trajectories are safe, but some dangerous events

happen, which is undesirable for safety-critical problems. As to the proportion of budget

exceedance, WCSAC-0.9 has a similar average performance to SAC-Lag, but the boxplot

shows that extreme cost events are much less likely to happen. Compared to SAC-Lag

and WCSAC-0.9, WCSAC with lower risk levels has a more stable performance in terms of
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Figure 3.6: Evaluation after training (StaticEnv). The boxplot (a) shows the statistical properties of long-term
costs generated by the SAC-based algorithms, and the dashed line indicates the safety threshold. In (b), we use
the proportion of budget exceedance to analyse the safety of the SAC-based algorithms.

safety. Although the policies from WCSAC-0.1 and WCSAC-0.5 still generate some unsafe

trajectories, the likelihood is much lower.

3.5. CONCLUSION
In this chapter, we propose the WCSAC algorithm to solve safety-constrained RL problems.

We augment SAC with a separate distributional safety critic (parallel to the reward critic)

to make the algorithm more adaptive when facing RL problems with higher safety require-

ments. In the experiments, the agent has different performance in safety under different

risk levels. When α≪ 1, we can get more risk-averse policies for a safety-critical domain.

Hence, our research is meaningful for the development of safe exploration. In this chapter,

the distribution of long-term costs is approximated to be a Gaussian distribution. In the

future, we can further explore modeling the uncertainty of the safety critic in different

ways. Moreover, the focus of this chapter has been on safety, but a similar approach could

be taken to consider the variability of long-term rewards. It is then also interesting to

consider trade-offs between a distributional reward critic and a distributional safety critic.
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REFINED RISK MANAGEMENT

In this chapter, we propose an improved WCSAC that uses an implicit quantile network

(WCSAC-IQN) to approximate the distribution of accumulated safety-costs. Chapter 3

described WCSAC with a Gaussian safety critic (WCSAC-GS), which can attain better risk

control compared to expectation-based methods. However, the total cost-return distribution

of different trajectories is still largely unexplored. The Gaussian approximation can be

coarse in many domains, especially when the cost-return distribution has long tails. Using

an accurate estimate of the cost-return distribution, in particular of the upper tail of the

distribution, greatly improves the performance of risk-averse RL agents. The empirical

analysis shows that WCSAC-IQN achieves good risk control in complex safety-constrained

environments.

4.1. INTRODUCTION
Following the work in Chapter 3, we model the problem using a risk-averse constrained

Markov decision process (CMDP; Altman, 1999), where the safety constraints are ex-

pressed by the conditional value at risk (CVaR; Rockafellar and Uryasev, 2000). However,

in Chapter 3, we estimate the distribution of accumulated costs using a coarse Gaussian

approximation. While this might be reasonable for some tasks, in some situations this

can lead to an underestimation of the CVaR, leading the agent to an unsafe behavior.

Considering such situations, one should compute a more refined distribution of the

safety-costs to ensure the safety constraints are satisfied even in extreme scenarios.

This chapter has been published in Machine Learning (2023) (Yang, Simão, Tindemans, et al., 2023).
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Figure 4.1: Overview of the safety critics. The traditional safety critic only estimates the average of the cost-return
distribution QC , while the critics of the WCSAC algorithms keep track of the full distribution, and estimate the
CVaR for the safety constraints. The first assumes the distribution is Gaussian and the second uses the IQN
algorithm for quantile regression.

While distributional RL method (Bellemare, Dabney, and Munos, 2017; Dabney, Ostro-

vski, et al., 2018) have shown great improvements with respect to its non-distributional

counterparts, for instance, controlling a balloon in the stratosphere (Bellemare, Candido,

et al., 2020), the use of the distribution of the costs in the safe RL literature still remains

largely under-explored. Some exceptions include risk-averse RL algorithms to ensure

the agent maintains a reasonable performance (Chow et al., 2017) and the use of an

implicit quantile network (IQN; Dabney, Ostrovski, et al., 2018) in an offline setting to

estimate the distribution of returns instead of only the average, making the final policy

more pessimistic (Urpí, Curi, and Krause, 2021). Inspired by these results, we use IQN

to compute a distributional safety critic, which provides a more precise estimate of the

upper tail part of the distribution, as illustrated on Figure 4.1 (Right).

The improved version of WCSAC extends IQN (WCSAC-IQN), originally designed for

discrete action spaces, to safe RL with continuous action spaces, and addresses the key

limitation of WCSAC-GS in Chapter 3 caused by the approximation errors, resulting in a

general framework for safe RL. In this case, we show the versatility of WCSAC by using two

methods to approximate the cost-return distribution. To validate the efficiency of WCSAC-

IQN, we design two toy games: Spy-Unimodal (approximately Gaussian) and Spy-Bimodal

(non-Gaussian), where WCSAC-IQN has significant advantages in the non-Gaussian case.

When deploying the algorithms on large and complex standard environments, WCSAC-
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Figure 4.2: Unreliability of Gaussian approximation. The top curve depicts the true cost distribution, while the
bottom curve depicts the estimated Gaussian distribution, based on the correct mean and standard deviation.
In this case, the (1−α)-quantile and corresponding CVaR are underestimated.

IQN attains outstanding performance compared to other safe RL baselines. After limited

training, only the WCSAC-IQN agent attains constraint-satisfying policies.

4.2. SAFETY CRITIC WITH QUANTILE REGRESSION

Although the Gaussian approximation leverages distributional information to attain

more risk-averse policies, only an additional variance is estimated compared to regular

constrained RL methods. This means the information of the experiences collected are

only used to a limited extent. Thus, the Gaussian approximation does not possess the

general advantages of distributional RL algorithms.

Besides, it is not always appropriate to approximate the cost-return by a Gaussian

distribution, as shown in Figure 4.2, since the contribution from the tail of the cost

distribution might be underestimated. In this case, the agent might converge to an unsafe

policy, according to Equation 3.2. In this section, we present a distributional safety critic

modeled by IQN, as illustrated on Figure 4.1, which provides a more precise estimate of

the upper tail part of the distribution. Henceforth, we refer to WCSAC with a safety critic

modeled by IQN as WCSAC-IQN.

4.2.1. ESTIMATING SAFETY CRITIC WITH IQN

We propose to use an implicit quantile network to model the cost-return distribution

(WCSAC-IQN), regarded as the safety critic of the SAC method. WCSAC-IQN maps the

samples from a base distribution (usually τ ∼ U ([0,1])) to the corresponding quantile

values of the cost-return distribution. In theory, by adjusting the capacity of the neural

network, WCSAC-IQN can fit the cost-return distribution with arbitrary precision, which
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is essential for safety-critical problems.

We denote F−1
C (τ) as the quantile function for the cost-return C and, for clarity of

exposition, we define Cτ = F−1
C (τ). We use θC to parameterize the safety critic in WCSAC-

IQN. The approximation is implemented as Ĉτ(s, a) ← fIQN (s, a,τ | θC ), which also takes

the quantile fraction τ as the input of the model, so that it uses the neural network to fit

the entire continuous distribution. When training fIQN , two quantile fraction samples

τ,τ′ ∼U ([0,1]) at time step t are used to get the sampled TD error:

ϱτ,τ′
t = ct +γCτ′ (st+1, at+1)−Cτ(st , at ). (4.1)

Following Equation (2.11), we can get the loss function for the safety critic, i.e.,

JC (θC ) = E
(st ,at ,ct ,st+1)∼D

JC (st , at ,ct , st+1 | θC ), (4.2)

where

JC (st , at ,ct , st+1 | θC ) =
(a)

N∑
i=1

E
BπC

[J κ
τi

(BπC (st , at )−Cτi (st , at ))]

=
(b)

N∑
i=1

E
C

[J κ
τi

(ct +γC (st+1, at+1)−Cτi (st , at ))]

.=
(c)

1

N ′
N∑

i=1

N ′∑
j=1

J κ
τi

(ct +γC
τ′j (st+1, at+1)−Cτi (st , at ))

=
(d)

1

N ′
N∑

i=1

N ′∑
j=1

J κ
τi

(ϱ
τi ,τ′j
t ).

(4.3)

In Equation 4.3: J κ
τ is the quantile regression loss (2.11), (a) indicates that the total

loss of all the target quantiles τi , i = 1, · · · , N is computed at once, and applies the dis-

tributional Bellman operator B (Bellemare, Dabney, and Munos, 2017), (b) expands the

Bellman operator BπC (st , at ) to get ct +γC (st+1, at+1), taking an action for the next state

sampled from the current policy at+1 ∼ π(· | st+1), (c) introduces τ j to estimate the TD

target, and (d) uses Equation 4.1. We point out that for the estimation of quantiles, the

quantile loss is replaced by the Huber loss to ease training, as in the regular IQN method

(Dabney, Ostrovski, et al., 2018). However, this may lead to a bias in the safety distribution

(Rowland et al., 2019), especially for larger values of κ. The imputation approach pro-

posed in the work by (Rowland et al., 2019) can be combined with the proposed method

to reduce this bias. Investigation of the extent of the bias and the efficacy of the correction

in risk-averse RL is a subject for future research.
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Figure 4.3: WCSAC’s structure. The elements are grouped by function: Safety, Reward, and Policy.

4.2.2. CVAR SAFETY MEASURE BASED ON SAMPLE MEAN

Since we base our estimate of the distribution of cost-return on a quantile-parameterized

approximation, we approximate the CVaR based on the expectation over the values of the

quantile τ as Γπ(s, a,α)
.= Eτ∼U ([1−α,1])

[
Cτ
π(s, a)

]
. This allows us to estimate Γπ(s, a,α) at

each update step using K i.i.d. samples of τ̃∼U ([1−α,1]):

Γπ(s, a,α)
.= 1

K

K∑
k=1

C τ̃k
π (s, a). (4.4)

While the Gaussian approximation leverages a closed-form approach to estimate the

CVaR, which is inherently limited by the Gaussian assumption, our method efficiently

estimates the CVaR using a sampling approach. This can attain higher accuracy due to

the quantile regression framework. We also highlight that this method still estimates the

full distribution, sampling τ,τ′ from U ([0,1]) to compute the safety critic loss. We use

Equation 4.4 only when estimating the CVaR to compute the Lagrangian safety loss Js .

Figure 4.3 shows a general overview of the proposed algorithm, indicating the relations

between safety, reward, and policy components. The arrows depict the relations between

all terms in the method, i.e., the element at the beginning of an arrow influences the

element at its end. We may notice that the safety and reward terms only influence each

other through the policy.

4.2.3. COMPLETE ALGORITHM

The complete algorithm WCSAC-IQN is presented in Algorithm 2, where we list the

input of the algorithm and all initialization objects in line 1. Under a certain safety

requirement α, we input 〈d ,h〉 for the constraints. With the WCSAC-IQN, we also need



4

40 4. REFINED RISK MANAGEMENT

Algorithm 2 WCSAC-IQN

Require: Hyperparameters α, d , h, η, N , N ′,K
1: initialize θπ, θR , θC , θβ, θω, 〈θR ,θC 〉← 〈θR ,θC 〉, D←;
2: for each iteration do
3: for each environment step do
4: at ∼π(at | st ), st+1 ∼P(st+1 | st , at )
5: D←D∪ {(st , at ,r (st , at ),c(st , at ), st+1)}
6: end for
7: for each gradient step do
8: Sample experience from replay buffer D
9: Sample τi ∼U ([0,1]), τ′j ∼U ([0,1]), and τ̃k ∼U ([α,1])

10: θR ← θR −λR ∇̂θR JR (θR ) ▷ Reward critic (2.8)
11: θC ← θC −λC ∇̂θC JC (θC ) ▷ Safety critic (4.2)
12: Compute Γπθ ▷ CVaR estimate (4.4)
13: θπ← θπ−λπ∇̂θπ Jπ(θπ) ▷ Actor (3.13)
14: θβ← θβ−λβ∇̂θβ Je (θβ) ▷ Exploration weight (2.9)

15: θω← θω−λω∇̂θω Js (θω) ▷ Safety weight (3.14)

16: θR ← ηθR + (1−η)θR

17: θC ← ηθC + (1−η)θC

18: end for
19: end for

Output: Optimized parameters θπ, θR , θC , θβ, θω

the hyperparameters 〈N , N ′〉 for updating the safety critic, K for computing the new safety

measure Γπ. For the environment steps (lines 3-6), we sample actions from the policy

to attain experience for the replay buffer D, which allows us to get batches for updating

all parameters at each gradient descent step (lines 7-18). After line 19, we return all the

optimized parameters of the algorithm.

As to the neural network structure of safety critic, we use the same function as in IQN

for return (Dabney, Ostrovski, et al., 2018), i.e., a DQN-like network with an additional

embedding for the quantile fraction τ. When selecting the learning rate for the neural

networks (λR , λC , λπ, λβ, and λω) which are used to minimize the corresponding loss

functions (JR , JC , Jπ, Jβ, and Jω), we usually make λω larger than the others to enhance

the safety constraint. A relatively low learning rate for the safety weight does not converge

fast enough to improve the safety of the actor’s policy, but the practical learning rate

should be set according to the environment. Typically, the disparity between λω and the

remaining learning rates (λR , λC , λπ, and λβ) will be more pronounced in more complex

and safety-critical environments.
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4.3. EMPIRICAL ANALYSIS

In this section, we evaluate our methods WCSAC-GS and WCSAC-IQN on the tasks with

different difficulties, i.e., two SpyGame environments and a Safety Gym benchmark (Ray,

Achiam, and Amodei, 2019). This section has three goals: i) test the hypothesis that

WCSAC-IQN can achieve good risk control in an environment with a Gaussian cost-return

distribution; ii) test the hypothesis that WCSAC-IQN can find a safe policy on environ-

ments with a non-Gaussian cost-return distribution when equipped with an appropriate

estimate of the distribution; and iii) evaluate the performance of the proposed method in

highly-complex environments.

4.3.1. SPYGAME ENVIRONMENTS

The SpyGame is a toy model, meant to give rise to unimodal (approximately Gaussian) and

bimodal cost distributions. To test whether the two WCSAC algorithms can achieve safe

behavior in environments with a Gaussian cost-return, and whether WCSAC-IQN indeed

has better performance in environments with non-Gaussian cost-return distribution, we

designed two SpyGame environments: Spy-Unimodal and Spy-Bimodal. For any policy,

Spy-Unimodal leads to a unimodal cost-return distribution (approximately Gaussian),

while Spy-Bimodal has a bimodal cost-return distribution (non-Gaussian). For this model,

we consider an agency that trains spies to go on covert missions. On each mission, the

spy gets a random amount of useful information (the reward) and leaves some traces (the

cost). If too many clues to the spy’s identity are left across missions, the spy is likely to get

discovered. In order to control the risk of discovery, a safety constraint is implemented on

cumulative cost. For each mission, the spy has a choice of low-risk, low-reward, and high-

risk, high-reward approaches, parameterized by the action a ∈ [0,1]. For a choice of a,

random rewards and costs are drawn from uniform distributions as follows (Figure 4.4):

r (a) ∼U (−0.25+a,0.75+a +0.5a2) (4.5)

c(a) ∼U (0.5a,1.5a). (4.6)

Two variants of the game are implemented in the SpyEnv environment, which are named

Spy-Unimodal and Spy-Bimodal according to the shape of their cost distributions.

Spy-Unimodal: Each spy executes 100 missions until retirement. The aim is to max-

imize the expected reward subject to a cost constraint (in expectation or CVaR). The

cumulative costs are a linear sum of a large number of independent random variables, so

they are approximately normally distributed.

Spy-Bimodal: In this variant, spies face early retirement if they do not gain sufficiently

useful information. After 5 missions, a stopping criterion is evaluated that terminates the
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Figure 4.4: The PDF and CDF of the reward and cost functions under different actions.

game unless the average reward per mission exceeds 0.15. This results in a significant

fraction of spies retiring early, which is reflected in a bimodal cost distribution.

We set the safety thresholds d = 25 for Spy-Unimodal, and d = 15 for Spy-Bimodal. We

use WCSAC-GS and WCSAC-IQN with risk-neutral and risk-averse constraints (cost-CVaR-

α) to solve both variations of the SpyGame. Each algorithm uses small neural networks (2

layers with 16 units) and trains for 30000 steps. After training, we run each of the final

policies for 10000 episodes to evaluate the cost-returns of our algorithms.

COST-RETURN DISTRIBUTION EVALUATION

In Figure 4.5, we compare the two algorithms with risk-neutral (α= 1) and risk-averse

(α = 0.1) constraints on both versions of the SpyGame. We report the distribution of

cost-returns. This gives a clear overview of the full cost-return distribution, allowing us to

evaluate the frequency the safety constraint is violated. We also report the metric used as

safety constraints to verify when each agent can reach the designated safety requirements.

At the top of Figure 4.5 (risk-neutral case), we can see that the two WCSAC algorithms

approximately attain a constraint-satisfying expected cost-return in both environments,

and the realized values are very close. So, in the average case, WCSAC-GS and WCSAC-IQN

have similar performances independently of the underlying distribution.

At the bottom of Figure 4.5 (risk-averse case), first we notice that on the Spy-Unimodal

environment (Gaussian) both WCSAC algorithms attain a cost-CVaR-0.1 below the thresh-

old. We can also notice that WCSAC-IQN is closer to the bound showing a slightly better
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constraints with CVaR-1.0 (top) and risk-averse constraints with CVaR-0.1 (bottom). Dashed lines show the
imposed safety threshold d and solid lines the realized values for each method.

control over the cost-CVaR-0.1. On Spy-Bimodal (non-Gaussian), WCSAC-GS is unable

to satisfy the safety constraint, attaining a cost-CVaR-0.1 larger than the bound. This

indicates that the Gaussian approximation cannot control the risk level in this domain.

Overall, comparing to the top and bottom plots in Figure 4.5, we can see that both

WCSAC algorithms can attain a more risk-averse behavior by setting the risk level α to be

a small value, reducing significantly the probability that a trajectory violates the safety

constraints.

VARYING LEVEL OF SAFETY CONSTRAINT

To get a better overview of when the safety constraints are violated or not, we consider the

same environment setting different risk level constraints. In Figure 4.6, the x-axis depicts

the risk level α, under which the agents are trained. The y-axis depicts the corresponding

cost-CVaR-α (Figure 4.6 top) and expected return (Figure 4.6 bottom) generated by the

final policies and the standard deviation over 5 repetitions.

At the bottom of Figure 4.6, we can see that, in the more risk-averse settings (lower

value of α), WCSAC-GS and WCSAC-IQN will both have lower expected return. In general,

the changes of the cost-CVaR-α and expected return under different risk levels show the

same trend, i.e., a larger cost-CVaR-α corresponds to a larger expected return at the risk

level α.
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When we have a unimodal cost-return distribution (left panel of Figure 4.6), we can

see that the WCSAC algorithms attain safe performance with different risk levels α. But

when we have higher safety requirements, both WCSAC algorithms generate a greater vari-

ance, and the distance between the corresponding cost-CVaR-α and the safety bound d

becomes larger. Compared to WCSAC-IQN, WCSAC-GS is more over-conservative with

lower α.

At the right panel of Figure 4.6, we show the results with a bimodal cost-return distribu-

tion, where a Gaussian approximation can underestimate the CVaR, as we have seen in the

previous section. In this case, WCSAC-IQN is safe in all different α, and WCSAC-GS can

also obtain safe performance for values closer to the risk-neutral constraint (α ∈ [0.7,1.0]).

However, WCSAC-GS starts to become increasingly unsafe for lower values of α (more

risk-averse constraints).

No matter in the unimodal or bimodal cases, both WCSAC algorithms approach the

safety boundary better with higher α (more risk-neutral). But we have greater deviation

with lower α, especially in the bimodal case. Even with WCSAC-IQN, our safety perfor-

mance is becoming more pessimistic when we decrease α. Based on the experimental

results in the work by (Théate et al., 2021), it appears to be the case that the quantile

regression methods may result in more approximation errors for higher-order moments

compared to the first-order moment.
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Table 4.1: Performance of policies after training in terms of expected return (ER), expected cost-return (EC), and
cost-CVaR-0.5 (C0.5). The metric of the safety constraint used by each agent is in bold.

Env
StaticEnv (d = 8) PointGoal (d = 25) CarButton (d = 25)

ER EC C0.5 ER EC C0.5 ER EC C0.5

SAC 0.87 18.53 19.11 28.85 62.77 71.59 21.36 201.06 247.13

CPO -0.63 9.25 14.71 21.48 42.99 50.39 3.62 80.16 116.31
PPO-Lag -0.76 6.31 8.93 17.81 24.47 30.11 0.45 26.18 35.09
GS-1.0 0.75 8.04 13.42 23.08 40.39 61.19 11.45 65.03 80.86
IQN-1.0 0.46 7.83 9.61 15.46 23.41 28.74 1.40 24.02 32.34

GS-0.5 0.66 6.16 7.30 19.50 37.23 38.29 7.06 58.51 62.97
IQN-0.5 0.40 5.10 7.18 9.23 20.80 22.60 0.64 15.95 20.13

4.3.2. SAFETYGYM ENVIRONMENTS

Next, we evaluate our method in three domains from the Safety Gym benchmark suite

(Ray, Achiam, and Amodei, 2019), where a robot navigates in a 2D map to reach target

positions while trying to avoid dangerous areas, with different complexity levels (Fig-

ure 4.7). The first one is StaticEnv with one fixed hazard and one fixed goal, but the

initial position of the Point agent is randomly generated at the beginning of each episode.

The second is PointGoal (Safexp-PointGoal1-v0 in Safety Gym) with one Point agent,

several hazards, and one vase. The third and more complex environment is CarButton

(Safexp-CarButton1-v0 in Safety Gym) where a Car robot (higher dimensional action

space than Point) is navigating to press a goal button while trying to avoid hazards and

moving gremlins, and not pressing any of the wrong buttons. These tasks are particularly

complex due to the observation space, instead of observing its location, the agent has

a lidar that indicates the distance to other objects. All experiments are performed with

10 random seeds. In all environments, c = 1 if an unsafe interaction happens, otherwise

c = 0. We use the original reward signal in Safety Gym, i.e., the absolute distance towards

the goal plus a constant for finishing the task, e.g., pressing the goal button.

We evaluate four versions of the WCSAC: GS-1.0 (WCSAC-GS with α = 1.0), GS-0.5

(WCSAC-GS withα= 0.5), IQN-1.0 (WCSAC-IQN withα= 1.0), and IQN-0.5 (WCSAC-IQN

with α= 0.5). For comparison, we used SAC (Haarnoja, Zhou, Hartikainen, et al., 2018),

CPO (Achiam et al., 2017), and PPO-Lagrangian (PPO-Lag; Schulman, Wolski, et al., 2017;

Ray, Achiam, and Amodei, 2019) as baselines. In this experiment, we use the discount

factor γ= 0.99 and κ= 1 for the Huber loss in WCSAC-IQN. The safety thresholds are set

to be d = 8 for StaticEnv, and d = 25 for PointGoal and CarButton. We train each agent for

50 epochs in StaticEnv, and for 150 epochs in PointGoal and CarButton. The epoch length

is 30000 environment steps, and the maximal episodic length is 1000 environment steps.

To evaluate the performance of the algorithms, we use the following metrics: CVaR-
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.

0.5 of the cost-return (cost-CVaR-0.5), expected cost (AverageEpCost), and expected

reward (AverageEpRet). Table 4.1 shows the performance of the policies returned by

the algorithms after training. We use 1000 episodes (100 runs for each random seed)

to evaluate the final policy of each method; the expected cost and expected return are

estimated by the average of all runs, while the cost-CVaR-0.5 is estimated by the average

of the worst 500 runs. In Figure 4.8, we visualize the distribution by plotting the PDF and

CDF histograms of sampled episodic costs in PointGoal and CarButton. Finally, Figure 4.9

shows the behavior of the algorithms during training. We provide a collection of videos of

the execution of the final policies on the following webpage: https://sites.google.
com/view/wcsac.

FINAL BEHAVIOR

We start our analysis by considering the behavior of the final policy. In Table 4.1, we

can see that only IQN-1.0 and IQN-0.5 can be considered safe, because they satisfy the

cost constraint with which they trained in all environments. In particular, only IQN-0.5

satisfies the risk-averse threshold on cost-CVaR-0.5, demonstrating its suitability for risk-

averse agents. PPO-Lag has competitive safety performance in all environments, but fails

to achieve a high return in StaticEnv and CarButton. Compared to the safe RL methods

(CPO, PPO-Lag, and WCSAC), SAC has an excellent performance in expected return, but,

naturally it does not satisfy the safety constraint, this shows that a safe agent must find a

tradeoff between safety and performance. Although the final policies of the remaining

algorithms CPO, GS-1.0 (SAC-Lag), and GS-0.5 may show better expected return, these

methods are not safe in PointGoal and CarButton.

In Figure 4.8, we can observe that the distributions in PointGoal and CarButton are not

https://sites.google.com/view/wcsac
https://sites.google.com/view/wcsac
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Figure 4.8: Cost-return distributions in PointGoal and CarButton (based on the same data as Table 4.1). The
x-axis depicts the cost-return, while the y-axis depicts the binned probability density and the cumulative
density functions. The gray dashed line indicates the safety threshold.

Gaussian, which justifies the use of a quantile regression algorithm and the safe behavior

of the WCSAC-IQN algorithms in these more complex environments. Compared to GS-1.0,

GS-0.5, and IQN-1.0, the distribution of IQN-0.5 displays a smaller range of costs, most of

which are within the safety bound. Although the policies from GS-0.5 still generate some

unsafe trajectories, the likelihood is much lower.

BEHAVIOR DURING TRAINING

Figure 4.9 shows the behavior of the agents during training. The top row shows the

expected return, while the bottom row shows the expected cost-return.

We can see that all safe RL methods manage to make some safety improvements,

while SAC obviously has better and more stable performance in average episodic return

across all the environments since it ignores the safety constraints.

In StaticEnv (Figure 4.9(a)), we notice that all safe RL algorithms converge toward the

optimal policy. However, compared to the off-policy WCSAC, the on-policy baselines CPO

and PPO-Lag take more time to do so. When we look closely, we notice that CPO and

GS-1.0 exceed slightly the cost bound at the end of the training, while PPO-Lag, GS-0.5,

and IQN-1.0 end slightly below the cost bound. In particular, we highlight that IQN-0.5

achieves a lower expected cost without sacrificing much performance in terms of return.

In PointGoal (Figure 4.9(b)), we see a different behavior: only the PPO-Lag and WCSAC-

IQN algorithms manage to find a satisfactory policy. Although WCSAC-GS and CPO

manage to find policies with high returns, they fail to achieve safe behavior.

Finally, in the most complex environment, CarButton (Figure 4.9(c)), we see that the

cost constraints severely limit the ability to find high-reward policies: PPO-Lag, IQN-1.0,

and IQN-0.5 manage to find safe policies, however, they cannot improve significantly
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Figure 4.9: Performance of the algorithms during training in terms of mean (solid lines) and ±1 standard
deviation (shaded area) of the runs within an epoch. The black dashed lines indicate the safety thresholds.

in terms of return; GS-1.0 and GS-0.5 also approach a safe policy and manage to get

some improvements in terms of return; and CPO does not find a safe policy whilst

simultaneously struggling to improve returns.

As to the unsafe performance of CPO in PointGoal and CarButton, Ray, Achiam, and

Amodei (2019) conclude that the function (value and policy network) approximation

error and sampling error (caused by using a finite number of samples) in CPO greatly

degrade its performance on these Safety Gym environments. PPO-Lag has competitive

performance in safety, but it converges slowly compared to the off-policy baselines.

This phenomenon is even more obvious in relatively simple StaticEnv. For WCSAC-GS

in the relatively more complex environments PointGoal and CarButton (Figures 4.9(b)

and 4.9(c)), we can see that the return and cost-return of WCSAC-GS start to stabilize

near a certain value, instead of making continuous improvement until satisfying the

constraint. However, in Figure 4.10, the safety weights of GS-1.0 and GS-0.5 quickly

converge to a small value. It appears to be the case that the algorithm mistakenly takes

the policy as safe, which means we get a convergent safety approximation (CVaR or

expectation) that is below the safety threshold, but the safety of the policy is not truly

reflected. Then, the algorithm stops making any progress in safety. Compared to the

Gaussian approximation, the safety weights of IQN-1.0 and IQN-0.5 have drastic changes

at the beginning of training (Figures 4.10(b) and 4.10(c)), but they finally converge to a safe

policy according to the training process in Figure 4.9. We hypothesize that WCSAC-IQN

benefits from the quantile regression to enhance exploration and avoid overfitting. That

may also explain why distributional RL can converge to a better policy than traditional RL

(Dabney, Ostrovski, et al., 2018).
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Figure 4.10: Change of the adaptive safety weightsω in WCSAC during training. A small stable weight means that
the constraint is approximately satisfied. In StaticEnv, the safety weights in the four WCSAC algorithms change
similarly, which accord with the convergence process of cost-return in Figure 4.9(a). In PointGoal and CarButton,
compared to IQN-1.0 and IQN-0.5, the safety weights of GS-1.0 and GS-0.5 quickly converge to a small value, but
they fail to obtain a constraint-satisfying policy from the results in Figures 4.9(b) and 4.9(c). Although the safety
weights of IQN-1.0 and IQN-0.5 have drastic changes at the beginning of training (Figures 4.10(b) and 4.10(c)),
they finally converge to a safe policy, according to the training process in Figure 4.9.

Given the additional intricacy arising from the estimation of the distribution, a more

sophisticated neural network architecture would be necessary to accurately approximate

the underlying distribution in WCSAC-IQN. Despite the improved performance and en-

hanced sample efficiency exhibited by WCSAC-IQN, it should be noted that, with the

hyperparameters in this dissertation, each iteration of the gradient step incurs approxi-

mately double the required computational time for the gradient step when compared to

WCSAC-GS in all the environments.

TRAJECTORY ANALYSIS

Finally, we execute a trajectory analysis in StaticEnv, see Figure 4.11. Specifically, we

will compare SAC, CPO, PPO-Lag, WCSAC with different risk levels in safety, i.e., α= 0.1

(highly risk-averse), α= 0.5, α= 0.9, and α= 1.0 (risk-neutral).

The behavior of the SAC agent is presented in Figure 4.11(a), the agent chooses the

shortest path to reach the target directly since the safety constraint is not considered.

We also consider the training process of GS-1.0 at different stages1. At the beginning

of learning (Figure 4.11(d)), it is possible that the agent cannot get out of the hazard,

and gets stuck before arriving at the goal area. We can observe the number of constraint

violations being reduced over time (Figures 4.11(e) and 4.11(f)).

The final policies from CPO, PPO-Lag, GS-1.0, GS-0.9, IQN-1.0, and IQN-0.9 perform

better than before, but still prefer to take a risk within the budget to get a larger return

(Figures 4.11(b), 4.11(f), 4.11(g), 4.11(j) and 4.11(k)). Conversely, the agents GS-0.5 and

IQN-0.5 are more risk-averse (Figures 4.11(h) and 4.11(l)). Finally, in Figures 4.11(i)

and 4.11(m), we can see that the agents GS-0.1 and IQN-0.1 prefer to avoid the hazardous

area more strictly given its risk level setting.

1Other methods show similar behavior during training.
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(a) SAC (b) CPO (c) PPO-Lag (d) GS-1.0 † (e) GS-1.0 ‡

(f) GS-1.0 (g) GS-0.9 (h) GS-0.5 (i) GS-0.1

(j) IQN-1.0 (k) IQN-0.9 (l) IQN-0.5 (m) IQN-0.1

Figure 4.11: Trajectory analysis. (c)-(e) show the trajectories generated by policies from GS-1.0 (SAC-Lag) at the
beginning, middle stage and end of training respectively. (a), (b), and (f)-(l) show the final trajectories from SAC,
CPO, PPO-Lag, and WCSAC separately.

Overall, we observe that with a higher risk level α (around 1.0), WCSAC can attain

risk-neutral performance similar to expectation-based methods. Both WCSAC algorithms

can become more risk-averse by setting lower risk level α.

4.4. RELATED WORK

Risk-averse methods have commonly been used in RL problems with a single signal

(reward or cost). Although CVaR in the context of IQN was used in the work by Dabney,

Ostrovski, et al. (2018) (with only a reward signal) to get risk-sensitive policies, the imple-

mentation is significantly different from ours. We deploy IQN in the safety-constrained RL

problems (with separate reward and cost signals) with continuous action spaces, instead

of problems with a discrete action space.

Based on the work by Bellemare, Dabney, and Munos (2017), Keramati et al. (2020)

propose to perform strategic exploration to quickly obtain the optimal risk-averse policy.

Following Dabney, Ostrovski, et al. (2018), Urpí, Curi, and Krause (2021) propose a new

actor critic method to optimize a risk-averse criterion in terms of return, where only sam-

ples previously collected by safe policies are available for training. Although their paper
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provides the off-policy algorithm version, it is not clear how the exploration-exploitation

tradeoff is handled, while we explicitly define a SAC-based method with an entropy-

related mechanism for exploration. Chow et al. (2017) propose efficient RL algorithms for

risk-constrained MDPs, but their goal is to minimize an expected cumulative cost while

keeping the cost CVaR below a given threshold, instead of maintaining reward and cost sig-

nals independently. To some extent, the way they update the Lagrange multiplier inspired

our use of adaptive safety weights. However, in the real world, safe RL problems typically

involve multiple objectives, some of which may be contradictory, like collision avoidance

and speed on an autonomous driving task (Kamran, Lopez, et al., 2020). Therefore, the

setting with an explicit safety signal can be more practical (Dulac-Arnold et al., 2021).

The safe RL setting with separate reward and cost signals has also been studied in

several works (Achiam et al., 2017; Liu, Ding, and Liu, 2020; Yang, Rosca, et al., 2020;

Bharadhwaj et al., 2021). Specifically, Achiam et al. (2017); Liu, Ding, and Liu (2020);

Yang, Rosca, et al. (2020) propose a series of on-policy constrained policy optimization

methods with trust-region property, where the worst case performance is bounded at each

update. However, they do not present a clear risk aversion mechanism for the intrinsic

uncertainty, captured by the distribution over the cost-return. In addition, on-policy

methods (with worse sample efficiency compared to off-policy methods) are usually not

favored in safe RL domains. Under a similar problem setting, Bharadhwaj et al. (2021)

work on a conservative estimate of the expected cost-return (Kumar, Zhou, et al., 2020)

for each candidate state-action tuple, which is used in both safe-exploration and policy

updates. With the conservative safety estimate, their proposed method can learn effective

policies while reducing the rate of catastrophic failures. However, they only focus on the

parametric uncertainty over the value estimate instead of the intrinsic uncertainty. On

the other hand, their paper focuses on catastrophic events, which is a binary signal. While

our work considers safety according to the accumulated cost in a trajectory. Overall, our

approach gives more freedom to the designer of the system to indicate which behaviors

are more or less desirable.

Finally, we did not find state-of-the-art distributional RL techniques had been used in

safety-constrained RL with separate reward and safety signals prior to our work.

4.5. CONCLUSION

In this chapter, we propose to improve the WCSAC framework by employing an implicit

quantile network as safety critic to overcome considerable errors caused by the Gaussian

assumption. The experiments show that both WCSAC-GS and WCSAC-IQN can attain

better risk control compared to expectation-based methods. In complex environments,

WCSAC-GS does not show improvements in safety, where the safety weight is not up-
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dated fast enough to truly reflect the current policy. However, WCSAC-IQN has strong

performance with the benefits from IQN, which provides a stronger safety signal than

the one from the Gaussian approximation. The novel use of IQN for safety constraints

can potentially be extended to other safe RL methods. Without any knowledge about the

environment, it is hard to strictly fulfill the safety constraint during exploration. Thus,

WCSAC still focuses more on the performance of the final policy. While our method has

good risk control for the safety-constrained RL problems, one limitation is that we cannot

ensure a safe training process. Also, although our method shows good performance in

practice, our work has not established theoretical proof of convergence.
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GUIDED SAFE EXPLORATION

In this chapter, we propose to leverage a safe guide (SaGui) to ensure safety during train-

ing. While WCSAC (Chapters 3 and 4) achieves risk control for the safety-constrained

RL problems, safety during training is not guaranteed. In the real world, it is impossible

to have training safety assurance if learning from scratch. Often, RL agents are trained

in a controlled environment, such as a laboratory, before being deployed. However, the

real-world target task might be unknown prior to deployment. Reward-free RL addresses

this problem by training an agent without the reward to adapt quickly once the reward

is revealed. We consider the constrained reward-free setting, where an agent (the guide)

learns to explore safely without the reward signal. This agent is trained in a controlled

environment, which allows unsafe interactions and still provides the safety signal. After

the target task is revealed, safety violations are not allowed anymore. Thus, the guide

is leveraged to compose a safe behavior policy. Drawing from transfer learning, we also

regularize a target policy (the student) towards the guide while the student is unreliable

and gradually eliminate the influence from the guide as training progresses. The empirical

analysis shows that this method can achieve safe transfer learning and helps the student

solve the target task faster.

5.1. INTRODUCTION
Developments in safe RL have allowed us to learn safe policies by solving constrained

Markov decision processes (CMDPs; Altman, 1999). For instance, SAC-Lag (Ha et al., 2020)

This chapter has been published in ALA (2022) (Yang, Simão, Jansen, et al., 2022).
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combines the SAC (Haarnoja, Zhou, Abbeel, et al., 2018; Haarnoja, Zhou, Hartikainen,

et al., 2018) algorithm with Lagrangian methods to learn a safe policy in an off-policy way.

This algorithm solves high-dimensional problems with a sample complexity lower than

on-policy algorithms. Unfortunately, it only finds a safe policy at the end of the training

process and may be unsafe while learning.

Some knowledge about the safety dynamics can ensure safety during learning. One

can precompute unsafe behavior and mask unsafe actions using a so-called shield (Al-

shiekh et al., 2018; Jansen et al., 2020; Carr et al., 2023), or start from an initially safe

baseline policy and gradually improve its performance while remaining safe (Achiam

et al., 2017; Tessler, Mankowitz, and Mannor, 2019; Yang, Rosca, et al., 2020). However,

these approaches may necessitate numerous interactions with the environment before

they find an adequate policy (Zanger, Daaboul, and Zöllner, 2021). Moreover, reusing

a pre-trained policy can have a detrimental effect, since the agent encounters a new

trajectory distribution as the policy changes (Igl et al., 2021). Therefore, we investigate

how to efficiently solve a task without violating the safety constraints.

s,c

a

s,r,c

πb
a

π♢
π♢

source (controlled environment) target (real world)

π♢ π⊙
M♢ M⊙

transfer
distillation
composition

Figure 5.1: Transferring the Safe Guide (SaGui) policy π♢ from the source task (♢) to the target task (⊙) with
three steps: i) training the SaGui policy; ii) distilling the guide’s policy into a student policy, and iii) composing a
safe behavior policy.

We make two key observations. First, RL agents often learn in a controlled environ-

ment, such as a laboratory or a simulator before being deployed in the real world (García

and Fernández, 2015). Second, an agent can often benefit from expert guidance instead of

solely relying on trial-and-error (Peng et al., 2022). For instance, in autonomous driving,

the driver agent can quickly learn by mimicking an expert’s behavior to handle danger-

ous situations. Such a process is referred to as policy distillation. Furthermore, under

expert guidance, the agent can safely explore before taking dangerous actions (composite

sampling).

Transfer learning (Taylor and Stone, 2009) investigates how to improve the learning

of a target task with some knowledge from a source task. In these settings, the source

task may provide only partial knowledge of the target task. We adopt a transfer learning

framework Taylor and Stone (2009) and refer to (i) the controlled environment as the

source task (♢) and (ii) the real world as the target task (⊙). In our setting, the controlled

environment provides only the cost signals related to safety but not the reward signals of
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the target task in the real world. The central problem is then to avoid any safety violations

after the target task is revealed.

Our approach. We show how to transfer knowledge encoded by a policy to enhance

safety. Here, we refer to the policy that has been learned in the source task as the safe

guide (SaGui, Figure 5.1). The intuition is that, in the real world, the agent is guided to

accomplish the target task in a safe manner. We propose to transfer SaGui from the source

task to the target task. Our approach has three central steps:

• train the SaGui policy and transfer it to the target task;

• distill the guide’s policy into a student policy which is dedicated to the target task,

and

• compose a behavior policy that balances safe exploration (using the guide) and

exploitation (using the student).

As we train the guide in a reward-free constrained RL setting (Miryoosefi and Jin, 2021),

the agent only observes the costs related to safety, and it does not access the reward signals.

This task-agnostic approach allows us to train a guide independently of the reward of

the target task, so this guide can be useful for different reward functions. Furthermore,

we assume the source task preserves the safety dynamics, which allows us to train a

guide that can act safely when transferred to the target task. Inspired by advances in

robotics where an agent is trained under strict supervision, we assume the source task is

a simulated/controlled environment (Schuitema et al., 2010; Xie et al., 2019). Therefore,

safety is not required while training the SaGui policy. Once the target task is revealed,

SaGui safely collects the initial trajectories in the target environment and the student

starts learning based on these trajectories. To ensure that the new policy quickly learns

how to act safely, we also employ a policy distillation method, encouraging the student to

imitate the guide.

Contributions. Our main contributions are: we i) formalize transfer learning for RL

from a safety perspective, ii) propose to guide learning using a task-agnostic agent with

exploration benefits, iii) show how to adaptively regularize the student policy to the guide

policy based on the student’s safety, iv) investigate when to sample from the student or

from the guide to ensure safe behavior in the target environment and fast convergence

of the student policy, and v) demonstrate empirically that, compared to learning from

scratch and adapting a pre-trained policy, our method can learn to solve the target task

faster without violating the safety constraints on the target task.
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5.2. SAFE AND EFFICIENT EXPLORATION

Naturally, to train RL agents without violating the safety constraints, some prior knowledge

is required (Sui et al., 2015). Often, a safe initial policy collects the initial trajectories

(Achiam et al., 2017; Tessler, Mankowitz, and Mannor, 2019; Yang, Rosca, et al., 2020).

However, these approaches largely neglect how this policy is computed or what makes it

effective. Therefore, we explicitly consider the problem of how to obtain an initial policy

that can safely expedite learning in the target task. This section formalizes this problem

and provides an overview of our approach.

5.2.1. PROBLEM STATEMENT

We formalize our problem setting using the transfer learning (TL) framework. In general,

TL allows RL agents to use expertise from source tasks to speed up the learning process on

a target task (Taylor and Stone, 2009; Zhu, Lin, and Zhou, 2020). The source tasks {M♢}

should provide some knowledge K♢ to an agent learning in the target task M⊙, such that,

by leveraging K♢, the agent learns the target task M⊙ faster.

As we are particularly interested in the safety properties of the transfer, we consider

a reward-free source task, which only provides information about the safety dynamics.

Moreover, we use a policy to encode the knowledge transferred. Formally, given a source

task M♢ = 〈S♢,A♢,P♢,;,c♢,d♢, ι♢,γ〉, we compute the policy π♢ in the absence of

a reward signal. This provides knowledge K♢ = {π♢} to help solving the target task

M⊙ = 〈S⊙,A⊙,P⊙,r⊙,c⊙,d⊙, ι⊙,γ〉.

To apply the source policy π♢ in the target task S⊙, we have a mapping from the

source state space to the target state space Ξ : S⊙ → S♢. Then, we can define a target

policy π♢→⊙ as follows: π♢→⊙(s) = π♢(Ξ(s)). Furthermore, we assume the source task

M♢ and target task M⊙ share the same action space. To build the source task based on

a target task and a mapping Ξ from the target state space to the source state space, we

assume Ξ is a state abstraction function (Li, Walsh, and Littman, 2006).

Let Ξ :S⊙ →S♢ be the state abstraction function. We define Ξ−1 as the inverse of the

abstraction function such that Ξ−1(s⊙) = {s♢ ∈S♢|Ξ(s♢) = s⊙}. We assume a weighting

function w : S 7→ [0,1], where

∑
s⊙∈Ξ−1(s♢)

w(s⊙) = 1,∀s♢ ∈S♢. (5.1)
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Now we can define the transition and cost function of the target task:

P♢(s♢
′ | s♢, a) = ∑

s⊙∈Ξ−1(s♢)

∑
s⊙′∈Ξ−1(s♢′ )

w(s⊙)P⊙(s⊙
′ | s⊙, a) (5.2)

c♢(s♢, a) = ∑
s⊙∈Ξ−1(s♢)

w(s⊙)c⊙(s⊙, a) (5.3)

ι♢(s♢) = ∑
s⊙∈Ξ−1(s♢)

w(s⊙)ι⊙(s⊙). (5.4)

Assumption 5.1. A♢ =A⊙ =A.

To enable the knowledge transferable between tasks, having the same action spaces

ensures that the policy learned in the source task is directly applicable to the target task.

5.2.2. TRANSFER METRICS

To evaluate a safe transfer RL algorithm, Figure 5.2(a) presents a schematic of transfer

metrics related to safety (inspired by (Taylor and Stone, 2009)): safety jump-start indicates

how much closer to the safety threshold the expected cost-return of an agent learning

with the source knowledge is compared to the expected cost-return of an agent learning

from scratch in the first episodes, and ∆ time to safety is the difference in the number of

interactions required to become safe.

Notice that a trained agent might start with an expected cost-return lower than the

safety threshold, for instance, when the safety threshold in the source task is lower than

in the target task (Figure 5.2(b)). In this case, safety jump-start would be the difference

between the safety threshold and the cost-return of an agent learning from scratch.

Similarly, the ∆ time to safety would be the number of interactions an agent learning from

scratch needs to become safe.

In the case of two methods that can solve the target task without violating the safety

constraints, we can also consider the usual metrics of transfer learning with respect to the

reward (Taylor and Stone, 2009). For instance, Figure 5.2(c) shows the initial improvement

in terms of performance which we call return jump-start, and the time necessary to reach

an optimum performance, which we call the ∆ time to optimum.

Problem statement. We aim to maximize the safety jump-start (potentially prevent-

ing safety violations in the target task) and to reduce the time to optimum (improving

exploration) when transferring a policy π♢ from a source task M♢ to a target task M⊙.
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Figure 5.2: Pictorial illustration showing different transfer metrics for safe reinforcement learning. Usually, we
consider safety jump-start and ∆ time to safety. If we can develop agents that learn without violating the safety
constraint, we can also consider return jump-start and ∆ time to optimum.

5.2.3. METHOD OVERVIEW

Recall that for our transfer setting, we consider a single source task that only provides

the safety signals, which we use to train the guide. Without the reward signal, the guide

aims to explore the world safely and efficiently. We are interested in using the guide’s safe

exploration capabilities to train the student on the target task without violating the safety

constraints. Notably, i) the guide and the student are trained separately; ii) the guide is

only trained once and can support the training of different students; and iii) the guide

only has access to safety information and no knowledge about the student’s task.

To ensure the source policy is safe when deployed in the target task, we assume that

the source task has a safety threshold lower than or equal to the target task, and Ξ is a

state abstraction that preserves the safety dynamics, as formalized next.

Assumption 5.2. The safety threshold of the target task upper bounds the safety threshold

of the source task: d♢ ≤ d⊙.

Assumption 5.3. Ξ is a Qc
π-irrelevance abstraction (Li, Walsh, and Littman, 2006), therefore

Ξ(s) =Ξ(s′) ⇒Qc
π⊙ (s, a) =Qc

π⊙ (s′, a),∀s, s′ ∈S⊙, a ∈A,π⊙.

This assumption allows us to connect the expected cost-return of a policy on the source

task to the expected cost-return on the target task.

Given Assumption 5.1 and Assumption 5.3, we have Qc,♢
π♢

(Ξ(s), a) =Qc,⊙
π♢→⊙ (s, a) ∀s ∈

S⊙, a ∈A,π♢. That is, the expected cost of a source policy is the same in the source task

and in the target task. With additional Assumption 5.2, any policy that is safe on the

source task M♢ is also safe when deployed on the target task M⊙.

It is important to note, however, that the reward function r⊙ in the target task may

not be related to the state space of the source task S♢. Therefore, although a policy that is

safe on the source task is also safe on the target task, the behavior required to accomplish

the target task may not be defined on the source task. Consider, for instance, an agent

with access to its position and the position of a threat. In each target task, the agent might
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need to visit a different goal position, which is not defined on the source task. Then, a

safe policy may be conditioned only on the positions of the agent and the threat, but to

achieve the target the agent must consider the goal position. This highlights the need to

compute a policy dedicated to the target task.

5.3. GUIDED SAFE EXPLORATION

In this section, we consider how to train the safe guide (SaGui) policy. Then, we describe

how the student learns to imitate the SaGui policy after the task is revealed, while learning

to complete the target task. Finally, we investigate how to prevent safety violations while

the student has not yet learned how to act safely.

5.3.1. TRAINING THE SAFE GUIDE

Since the source task does not provide information regarding the reward of the target task,

we adopt a reward-free exploration approach to train the guide. To efficiently explore the

world, we first consider maximizing the policy entropy under safety constraints. Then,

we can solve the problem defined in (2.4) with r (s, a) = 0 : ∀s ∈ S , a ∈A to get a guide

MAXENT. However, although MAXENT tends to have diverse behaviors, that does not

imply efficient exploration of the environment. Especially for continuous state and action

spaces, it is possible that a policy provides limited exploration even if it has high entropy.

To enhance the exploration of the guide, we adopt an auxiliary reward that motivates

the agent to visit novel states. To measure the novelty, we first define the metric space

(S‡,ς), whereS‡ is an abstracted state space, and ς :S‡×S‡ → [0,∞) is a distance function,

that is

ς(s, s′) = 0 ⇔ s = s′,ς(s, s′) = ς(s′, s),and ς(s′, s′′) ≤ ς(s, s′)+ς(s, s′′),∀s, s′, s′′ ∈S‡.

Notice that S‡ may not be the original state space S . Especially when S is high dimen-

sional, S‡ can be some selected dimensions from S , or a latent space from representation

learning. Next, we define the auxiliary rewards as the expected distance between the

current state and the successor state:

r ςt = E
st+1∼P(·|st ,at )

[
ς( f ‡(st ), f ‡(st+1))

]
, ∀st , at ∈S×A, (5.5)

where we may apply a potential abstraction f ‡ : S → S‡. So, we train the guide agent

by solving the constrained optimization problem (2.4) based on the auxiliary reward r ς.

Then, the SAC-Lag algorithm can be directly employed to solve the problem (2.4), as

Algorithm 3. Our auxiliary reward does not explicitly promote exploration, but we find
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Algorithm 3 Maximum exploration RL for safe guide

Require: Task M♢

Require: Hyperparameters β, d
1: initialize D←;
2: initialize θ♢x for x ∈ {π,R,C ,ω}
3: for each iteration do
4: for each environment step do
5: at ∼π♢(· | st )
6: st+1 ∼P(· | st , at )
7: r ςt ← ς( f ‡(st ), f ‡(st+1)) ▷ Auxiliary task (5.5)

8: c♢t ← c♢(st , at )

9: D←D∪ {(st , at ,r ςt ,c♢t , st+1)} ▷ Replay buffer
10: end for
11: for each gradient step do
12: Sample experience from replay buffer D
13: for x ∈ {π,R,C ,ω} do
14: θ♢x ← θ♢x −λx∇̂θ♢x Jx (θ♢x ) ▷ Parameter updating

15: end for
16: end for
17: end for

Output: Optimized parameters θ♢π for π♢

that increasing both the step size and policy entropy significantly improves exploration in

practice. Overall, our experiment with the auxiliary reward aimed to evaluate the impact

of the exploration of the guide on how safely and quickly the student learns.

We could also consider more sophisticated reward-free exploration strategies such as

maximizing the the entropy of the state occupancy distribution (Hazan et al., 2019; Seo

et al., 2021; Svidchenko and Shpilman, 2021). However, we address it in Chapter 6 and

focus on how to use the guide to improve how the student learns in this chapter.

5.3.2. POLICY DISTILLATION FROM THE SAFE GUIDE

When the agent is trained for a certain task, it is difficult to generalize when faced with

a new task (Igl et al., 2021). Similarly, it is not trivial to adjust the guide’s policy that was

trained to explore the environment to perform the target task. Therefore, we train a new

policy, referred as the student, dedicated to the target task.

We can leverage the guide agent to make the student quickly learn how to act safely.

Through the mapping function Ξ, the transferred policy can be used by most constrained

RL algorithms to regularize the student policy π⊙ towards the guide policy π♢ using KL

divergences, as shown in Figure 5.3. So, with π♢ fixed, we have an augmented reward
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Student

Guide

s♢

s⊙ Ξ(s⊙)

Observation Reward

r⊙
r⊙+ωr KL

DKL(π♢(·|s♢)∥π⊙(·|s⊙))

Distillation Bonus

safety-related

safety-related

reward-related

π⊙(· | s⊙)

π♢(· | s♢)

r KL

Figure 5.3: Overview of the policy distillation. We can leverage the guide agent to make the student quickly learn
how to act safely. The target policy π⊙ may have an input space different from the guide policy π♢. Through the
mapping function Ξ, the transferred policy can be used to regularize the student policy π⊙ towards the guide
policy.

function

r ′
t = r⊙

t +ϖr KL
t +βrHt ,

where

r KL
t = log

π♢(at |Ξ(st ))

π⊙(at | st )
,and rHt =− logπ⊙(at | st ).

The weights ϖ and β indicate the strengths of the KL and entropy regularization (respec-

tively). Then, setting r♢t = logπ♢(at |Ξ(st )), we can define the student’s objective:

max
π⊙

E
τ∼ρπ⊙

∞∑
t=0

γt
[

r⊙
t +ϖr♢t + (β+ϖ)rHt

]
. (5.6)

To find an appropriate ϖ, our goal is to follow the guide more for safer exploration if

the student’s policy is unsafe, but eliminate the influence from the guide and focus more

on the performance if the student’s policy is safe. Therefore, we propose to set ϖ=ω to

determine the strength of the KL regularization since the adaptive safety weight ω reflects

the safety of the current policy.

In summary, we have an entropy regularized expected return with redefined (regu-

larized) reward r ′′
t = r⊙

t +ωr♢t . This augmented reward encourages the student to yield

actions that are more likely to be generated by the guide. Then, SAC-Lag can be directly

used to solve (5.6) with the additional entropy constraint (Algorithm 4, lines 18-23).

5.3.3. COMPOSITE SAMPLING

To enhance safety and improve the student during training (Algorithm 4, lines 4-17), we

leverage a composite sampling strategy, which means our behavior policy (πb) is a mixture

of the guide’s policy (π♢) and the student’s policy (π⊙). So, at each environment step,
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Algorithm 4 Guided Safe Exploration

Require: Task M⊙
Require: The guide’s policy π♢

Require: Hyperparameters H, d
1: initialize D←;
2: initialize θ⊙x for x ∈ {π,R,C ,β,ω}
3: for each iteration do
4: for each environment step do
5: if linear-decay then
6: b ← fld(♢,⊙) ▷ linearly eliminate the effect of π♢

7: else if control-switch then
8: b ← fcs(♢,⊙) ▷ π♢ takes control if unsafe
9: end if

10: at ∼πb(· | st ) ▷ Composite sampling (5.7)
11: It ← I(st , at ) ▷ IS ratio (5.8)
12: r⊙

t ← r⊙(st , at )

13: r♢t ← logπ♢(at |Ξ(st ))
14: c⊙t ← c⊙(st , at )
15: st+1 ∼P⊙(· | st , at )
16: D←D∪ {(st , at ,r⊙

t ,r♢t ,c⊙t ,It , st+1)}
17: end for
18: for each gradient step do
19: Sample experience from D
20: for x ∈ {π,R,C ,β,ω} do
21: θ⊙x ← θ⊙x −λx∇̂θ⊙x I Jx (θ⊙x ) ▷ Parameter updating
22: end for
23: end for
24: end for

output: Optimized parameters θ⊙π for π⊙

at ∼πb(· | st ), st ∈S⊙ where

πb(· | st ) =
π♢(· |Ξ(st )), if b =♢,

π⊙(· | st ), otherwise.
(5.7)

We investigate two strategies to define b:

Linear-decay (Algorithm 5). This strategy, denoted as b = fld(♢,⊙), linearly decreases

the probability of using π♢ with a constant decay rate after each iteration of the algorithm,

conversely increasing the probability of using π⊙. We have two modes with linear-decay:

step-wise, where in each time step we may change πb ; and trajectory-wise, where πb only

changes at the start of a trajectory. The mode is decided before executing an episode,
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Algorithm 5 Composite sampling (linear-decay)

Require: π♢, π⊙, υ
1: initialize Pπ← 1, Pwi se ← 1
2: for each iteration do
3: Pb(♢) = Pπ ▷ The probability of using π♢

4: Pb(⊙) = 1−Pπ ▷ The probability of using π⊙
5: Sample κwi se ∼U (0,1)
6: if κwi se < Pwi se then
7: step-wise ← true
8: else
9: step-wise ← false

10: b ←∼ Pb ▷ Choose behavior policy
11: end if
12: Pwi se = Pwi se −υ ▷Decrease the probability of step-wise
13: for each environment step do
14: if step-wise then
15: b ←∼ Pb ▷ Choose behavior policy
16: end if
17: end for
18: Pπ = Pπ−υ ▷Decrease the probability of using π♢

19: end for

Output: πb

and smoothly switches from the complete step-wise to the complete trajectory-wise over

the training process. We linearly decrease the probability to execute the step-wise and

use the guide with a constant decay rate after each iteration of the algorithm, conversely

increasing the probability of executing the trajectory-wise and using the student policy.

So, we initialize the probabilities Pπ = 1 to determine πb , and Pwi se = 1 to determine

the mode at the beginning (line 1). We linearly decrease them with a constant decay

rate υ (lines 12 and 18), determined by the training length. At the beginning of each

episode, we sample κwi se ∼U (0,1), so if κwi se < Pwi se , we will execute step-wise, or we

are in trajectory-wise (lines 5-11). Under step-wise, at each time step, we sample from the

guide π♢ with probability Pπ, and sample from the student π⊙ with probability 1−Pπ
(lines 14-16). Under trajectory-wise, we only make a decision once at the beginning of the

trajectory (line 10).

Control-switch (Algorithm 6). To balance between the safe exploration and the sample

efficiency (the samples from the target policy is relatively more valuable), the student

policy keeps sampling, i.e., πb =π⊙ at the start of a trajectory (line 3); after we meet the

first ct−1 > 0, we have πb =π♢ until the end of the trajectory (lines 13-16). Therefore, the
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Algorithm 6 Composite sampling (control-switch)

Require: π♢, π⊙
1: initialize D♢ ←;, D⊙ ←;
2: for each iteration do
3: b ←⊙ ▷ Start sampling from the student
4: control-switch(t ) ← f al se
5: for each environment step do
6: at ∼πb(· | st )
7: E ← (st , at ,r⊙

t ,r♢t ,ct ,It , st+1) ▷ Generate experience
8: if b =♢ then
9: D♢ ←D♢∪ {E } ▷ Save the guide samples

10: else
11: D⊙ ←D⊙∪ {E } ▷ Save the student samples
12: end if
13: if ¬ control-switch(t ) ∧ ct > 0 then
14: b ←♢ ▷ Switch behavior policy
15: control-switch(t ) ← tr ue
16: end if
17: end for
18: end for

Output: πb

guide policy serves as a rescue policy to improve safety during sampling. In addition, we

leverage two replay buffers D♢ and D⊙ to save the guide and student samples separately

(lines 8-12), so as to control the probability PD⊙ to use the more on-policy samples in D⊙.

Thus, we have the probability PD♢ = 1−PD⊙ to sample from D♢. In practice, we train the

safe guide to achieve Qc
π♢

(s, a) ≤ d , s ∼D, a ∼ π♢(· | s). From the definition of Qc
π♢

(s, a),

we can basically ensure E(st ,at )∼T ′
π♢

[∑∞
t=0γ

t ct
∣∣s0 = s, a0 = a

]≤ d even starting with c0 > 0.

We denote this strategy as b = fcs(♢,⊙).

With the composite sampling strategy, the function approximation may diverge, be-

cause π⊙ and πb are too different, especially when we collect most data following π♢.

This phenomenon is related to the deadly triad (Sutton, Mahmood, and White, 2016). To

eliminate its negative effect, we endow each sample with an importance sampling (IS)

ratio:

I(s, a) = min

(
max

(
π⊙(a | s)

πb(a | s)
,Il

)
,Iu

)
. (5.8)

The clipping hyper-parameters Iu and Il are introduced to reduce the variance of the

off-policy TD target. Notice that if πb is using the student π⊙ then I(s, a) = 1. Here, in

addition to use the IS ratio I for learning values (the critics), we also use it in the policy

update, as shown in line 21 of Algorithm 4.
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(a) Static (b) Semi-Dynamic (c) Dynamic

Figure 5.4: Navigation tasks with different complexity levels: static, semi-dynamic and dynamic. In these
environments, a robot (red) navigates in a 2D map to reach the goal position (green) while trying to avoid
hazards (blue) and vases (cyan).

5.4. EMPIRICAL ANALYSIS
We evaluate how well our method transfers from the reward-free setting using the Safety-

Gym engine (Ray, Achiam, and Amodei, 2019), where a random-initialized robot navigates

in a 2D map to reach target positions while trying to avoid dangerous areas and obstacles

(Figure 5.4). These tasks are particularly complex due to the observation space; instead

of observing its location, the agent observes the other objects with a lidar sensor. We

considered three environments with different complexity levels:

Static. A static environment with a point robot, and a hazard (Figure 5.4(a)). The locations

of the hazard and goal are the same in all episodes.

Semi-Dynamic. A semi-dynamic environment with a car robot, four hazards, and four

vases (Figure 5.4(b)). The locations of the hazards and vases are the same in all

episodes. The location of the goal is random-initialized in each episode.

Dynamic. A dynamic environment with a point robot, eight hazards, and a vase (Fig-

ure 5.4(c)). The locations of the goal, vase, and hazards are random-initialized in

each episode.

The guide agent is trained without the goals, and its auxiliary reward is the magni-

tude of displacement at each time step. We provide a detailed description of the safety-

mapping function in Section 5.4.1. Since our focus is on the target task and the guide

is trained in a controlled environment, we do not consider the guide’s training in the

evaluation. In the target tasks, we use the original reward signal from Safety Gym, i.e.,

the distance towards the goal plus a constant for finishing the task (Ray, Achiam, and

Amodei, 2019). In all environments: c = 1 if an unsafe interaction happens, and c = 0
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otherwise. All experiments are performed over 10 runs with different random seeds and

the plots show the mean and standard deviation of all runs.

To evaluate the performance of the algorithms during training, we use the following

metrics: safety of the behavior policy (Cost-Return πb), performance of the behavior

policy (Return πb), safety of the target policy (Cost-Return π⊙), and performance of

the target policy (Return π⊙). To check the convergence of the target policy, we have a

test process with 100 episodes after each epoch (in parallel to the training) to evaluate

Return π⊙ and Cost-Return π⊙.

5.4.1. HYPERPARAMETERS

We list the hyperparameters used in SAGUI, which are summarized in Table 5.1. As to

the baselines, we use the default hyperparameters in https://github.com/openai/
safety-starter-agents. All runs in the experiment use separate feedforward Multi-

layer Perceptron (MLP) actor and critic networks. The size of the neural network (all actors

and critics of the algorithms) depends on the complexity of the tasks. We use a replay

buffer of size 106 for each off-policy algorithm to store the experience. The discount factor

is set to be γ= 0.99, the target smoothing coefficient is set to be 0.005 to update the target

networks, and the learning rate to 0.001. The clipping interval hyper-parameters [Il ,Iu]

are set to [0.1,2.0], while the sampling probabilities PD♢ and PD⊙ are set to 0.25 and 0.75,

respectively. The maximum episode length is 1000 steps in all experiments. We set the

safety constraint d based on the problem. All experiments are performed on an Intel(R)

Xeon(R) CPU@3.50GHz with 16 GB of RAM.

Parameter Static Semi-Dynamic Dynamic Note

Size of networks (32,32) (64,64) (256,256)
Size of replay buffer 106 106 106 |D|
Batch size 32 64 256
Number of epochs 50 100 150
Safety constraint 5 8 25 d

Table 5.1: Summary of hyperparameters in SAGUI.

Safety-mapping function. The state spaces of the source and target task differ by the

presence of the LiDAR observation of the target location. While the source task only has

a safety-related signal xc , the target task has an additional goal-related signal xr . Thus,

following the definition in Section 5.2.1, we can map the target state [xc , xr ] to the source

state ignoring the target-related signal: Ξ([xc , xr ]) = [xc ].

https://github.com/openai/safety-starter-agents
https://github.com/openai/safety-starter-agents
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Static Semi-Dynamic

MAXENT SAGUI MAXENT SAGUI

Figure 5.5: Exploration analysis. Trajectories collected by the guide agent, with and without the distance bonus,
after training.

5.4.2. ABLATION STUDY

We investigate each component of the proposed SAGUI algorithm individually to answer

the following questions: i) Does the auxiliary reward enlarge the exploration range? ii)

Does a better guide agent result in a better student in the target task? iii) How does

the adaptive strength of the KL regularization affect the performance? iv) How does the

composite sampling benefit the safe transfer learning?

i) Auxiliary reward leads to more diverse trajectories. We performed an ablation of

our approach where no auxiliary reward is added while training the guide agent, called

MAXENT. We refer to the agent with the auxiliary reward as SAGUI. This teases apart the

role the designed auxiliary task plays in the exploration. In Figure 5.5, we can see that

SAGUI can explore larger areas in Static and Semi-Dynamic, which have the same layout

in each episode. We notice that MAXENT is safe, but the explored space is limited.

ii) An effective guide can speed up the student’s training. We compare how these

guides (MAXENT and SAGUI) affect the learning in the target task. In Figure 5.6, we notice

that both methods can collect samples safely but the agent using the auxiliary reward

needs fewer interactions to find highly performing policies.

iii) Safety-adaptive regularization improves the student’s convergence rate. To

combine the original reward with the bonus to follow the guide (ϖ), we have the following

choices: fix the weights of the bonus and make it to be a hyperparameter to tune (FIXREG);

apply a decay rate to linearly decrease the weights during training (DECREG); and, adapt

the weights of the bonus based on the safety performance (SAGUI). In Figure 5.6(a) we

observe that this weight does not affect the safety of the agent, but both FIXREG and

DECREG cause the student to converge slower in terms of performance (Figure 5.6(b)).

iv) Composite sampling enhances safety and final performance. We modify the

composite sampling approach, sampling only from the guide (GUISAM) or the student

(STUSAM) instead. From the results in Figure 5.6(a), we can see that GUISAM can ensure

safety, but the student does not learn a safe optimal policy (Figure 5.6(b)). Compared to
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Figure 5.6: Ablation study in Static showing the safety and performance of the behavior policy (a) and target
policy (b). The black dashed line indicates the safety threshold.

our method, STUSAM performs similarly converging to a safe target policy, but fails to

satisfy the constraint at the early stage of training. So, composite sampling is necessary to

avoid the dangerous actions from a naive policy and to ensure the target task is solved.

5.4.3. COMPARISON WITH BASELINES

Finally, we compare our algorithms SAGUI (control-switch) and SAGUI (linear-decay)

with five baselines, divided into three groups.

Learning from scratch. (1) SAC-LAG (Ha et al., 2020) shows the performance when

starting to learn from scratch, representing an off-policy algorithm. Similarly, (2)

CPO (Achiam et al., 2017) is an on-policy algorithm that maximizes the reward in a

small neighbourhood to enforce the safety constraints.

Pre-training. (3) CPO-PRE and (4) SAC-LAG-PRE are used to show how CPO and SAC-Lag

perform after being pre-trained in a task that replaces the original reward function

of the target task by the auxiliary reward. So, we also encourage exploration in the

task for pre-training, which shares the same observation space with the target task.

Expert-in-the-loop. (5) As an upper bound, we also consider the Expert Guided Policy

Optimization (EGPO; Peng et al., 2022) algorithm, which uses knowledge from the
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target task in the form of an expert to train a student policy. EGPO proposes a

guardian mechanism that shows replaces the actions of the student by the expert

when the student takes actions too different from the expert. In summary, EGPO

uses an expert policy as a demonstrator as well as a safety guardian.

EGPO constrains safety behaviors at each timestep, which is different from our safety

defined on long-term cost-return. In terms of the safe guide, EGPO assumes access to

the well-performing expert policy, but our safe guide is task-agnostic. Thus, the expert in

EGPO depends on the target task and does not undertake the task of exploration, while

our safe guide can be useful for different reward functions and enhance the exploration

capabilities of the student. Even though, EGPO can be easily adapted to our setting. The

constraint of EGPO on the guardian intervention frequency can be directly transferred to

be our safety constraint. Also, we do not minimize intervention anymore. Once the EGPO

agent starts to take unsafe actions, the expert policy can take over the control until the

end. Notice, for CPO-PRE, SAC-LAG-PRE and EGPO we adapt the source task to have the

same observation space as the target task, which gives them some advantage compared

to SAGUI. Even further, EGPO has access to a policy trained on the target task, while

SAGUI only has access to the source task without the observations of the goal.

Safety during training. In Figure 5.7, we observe that SAGUI (control-switch) and EGPO

are the only methods that exhibit safe behavior during the full training process.

Learning from scratch is unsafe and may converge to sub-optimal and even unsafe

policies. SAC-LAG and CPO can learn safe policies in relatively simpler environments

(Static and Semi-Dynamic) but they violate the safety constraints at the beginning of train-

ing, which is expected. In Dynamic, SAC-LAG and CPO fail to attain safe performance.

However, with benefits from the guide, SAGUI (control-switch), on the basis of SAC-LAG,

attains a better balance between safety and performance.

Pre-training is insufficient. With pre-training, a safe initialization cannot benefit CPO-

PRE and SAC-LAG-PRE in safety, and may have negative effects. We infer that it is difficult

to generalize a task when faced with a new reward signal (Igl et al., 2021). Especially for

SAC-LAG-PRE with an initialized Qr , the difficulty to adapt is evident.

Fast convergence rates. Benefiting from the targeted expert policy, the behavior policy

of EGPO has a high return throughout the training in the target environment. We notice

that SAGUI (control-switch) quickly finds policies with similar performance even though

it has no knowledge of the target task (Figure 5.7).
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Figure 5.7: Evaluation ofπb for CPO, CPO-PRE, SAC-Lag, SAC-LAG-PRE, EGPO, SAGUI (linear-decay), and SAGUI

(control-switch) over 10 seeds. The solid lines are the average of all runs, and the shaded area is the standard
deviation. The black dashed lines indicate the safety thresholds. The behavior policy (πb ), a mixture of the

guide’s policy (π♢) and the student’s policy (π⊙) in SAGUI, reflects the real interactions with the environment
during training.

The distillation mechanism ensures the safety of the target policy. Figure 5.8 shows

that SAGUI (control-switch) can learn a well-performing target policy in a safe way. With-

out the policy distillation mechanism like SAGUI, EGPO (learning only from the expert

demonstrations) fails to find a safe target policy. This indicates that the target policy

computed with SAGUI may eventually take full control of the target task, while the policy

computed by EGPO may still require interventions from the expert.

Control-switch can be more effective than linear-decay. SAGUI (linear-decay), which

lacks samples from π⊙ at the early stage of training, does not achieve similar perfor-

mance as SAGUI (control-switch). Figures 5.7(b) and 5.7(c) show that linear-decay fails to

compose the behavior policy πb in a safe way.

Summary. Overall, SAGUI (control-switch) does not violate the safety constraints on

the target environment, quickly finds high-performing policies, and can train a student

that can act independently from the teacher.

5.5. RELATED WORK AND FUTURE DIRECTIONS
As we discussed in the introduction, safe RL has multiple facets (García and Fernán-

dez, 2015), considering alternative optimization criteria (Chow et al., 2017; Yang, Simão,

Tindemans, et al., 2021), and different types of prior knowledge to ensure safe exploration
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Figure 5.8: Evaluation of π⊙ for CPO, CPO-PRE, SAC-Lag, SAC-LAG-PRE, EGPO, SAGUI (linear-decay), and
SAGUI (control-switch) over ten seeds. To check the convergence of the target policy, we have a test process with
100 episodes after each epoch. The solid lines are the average of all runs, and the shaded area is the standard
deviation. The black dashed lines indicate the safety thresholds.

(Sui et al., 2015; Achiam et al., 2017; Alshiekh et al., 2018; Jansen et al., 2020; Yang, Rosca,

et al., 2021). We will discuss alternatives to train the guide and how to adapt to new tasks

using a pre-trained policy.

Multiple algorithms have been proposed for generalising policies from reward-free RL

for better performance in target tasks (Srinivasan et al., 2020; Zhang, Cheung, et al., 2020;

Gimelfarb et al., 2021). However, only (Savas et al., 2018; Miryoosefi and Jin, 2021) have

considered the reward-free RL with constraints, focusing on tabular and linear settings,

while we consider general function approximation algorithms.

While we considered a relatively simple strategy to achieve rich exploration, our

framework allows the translation of any progress in reward-free RL into training the guide

agent. For instance, we could adopt works with the entropy of the state density (Hazan

et al., 2019; Islam, Ahmed, and Precup, 2019; Vezzani et al., 2019; Zhang, Cheung, et

al., 2020; Qin, Chen, and Fan, 2021; Seo et al., 2021; Svidchenko and Shpilman, 2021).

Another option to improve exploration is to find a set of diverse policies to the same

problem (Kumar, Kumar, et al., 2020; Ghasemi et al., 2021; Zahavy et al., 2021). Our

framework could easily combine multiple guides.

Work in transfer learning has leveraged meta-RL (Finn, Abbeel, and Levine, 2017)

for safe adaptation (Grbic and Risi, 2020; Luo et al., 2021; Lew et al., 2022). Our work is

also related to curriculum learning (Bengio et al., 2009; Turchetta, Kolobov, et al., 2020;

Marzari et al., 2021). We first train an agent to be safe and later solve a target task. However,

our approach focuses on safe exploration and is able to transfer to tasks with different
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reward functions, so the guide’s training is ignored. For curriculum learning, it would be

interesting to consider when to stop training the guide and start training the student.

Our work also has similarities to SPACE (Yang, Rosca, et al., 2021), an on-policy

constrained RL algorithm that uses different baseline policies to help the agent learn

faster. In SPACE, the baseline policies are often dedicated to the target task, although they

might be sub-optimal, while in our framework the guide is task-agnostic. Since we use an

off-policy approach to train the student we can sample using the guide, while SPACE is an

on-policy method so it always samples from the student. Finally, SPACE assumes that the

state and action spaces are equal for both policies. Under different state spaces, it is not

clear how to adapt SPACE even with a mapping function.

As to composite sampling strategies, recovery and shielding mechanisms (Alshiekh

et al., 2018; Thananjeyan et al., 2021) could be further explored to combine with a safe

guide, in particular using the control-switch mechanism that we evaluated. Nevertheless,

we would like to highlight that while a student using a recovery policy would need to

perform exploration alone, the safe guide can enhance the exploration capabilities of the

student, speeding up the learning of the target task.

5.6. CONCLUSION
This chapter handles multiple challenges of reinforcement learning with safety con-

straints. It shows how we can use a safe policy (the guide) during data collection and

gradually switch to a policy that is dedicated to the target task (the student). It tackles

the off-policy issue that arises from collecting data with a policy different from the target

policy. It shows how the student can make the best use of the guide’s policy using an

incentive to imitate the guide, which makes the student learn faster how to behave safely.

It demonstrates that simply initializing an agent with a safe policy may not be as effective

as learning a new policy dedicated to the target task through policy distillation. Finally,

it proposes a method that can collect diverse trajectories, which reduces the sample

complexity of the student on the target task. In summary, the framework proposed is a

safe and sample-efficient way of training the agent on a target task.
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SAFE UNSUPERVISED EXPLORATION

In this chapter, we propose to train the safe exploration policy in a more principled way.

The pursuit of exploration will inevitably bring more safety risks for an agent. An under-

explored aspect of reinforcement learning is how to achieve safe efficient exploration when

the task is unknown. We propose the Constrained Entropy Maximization (CEM) algorithm

to solve task-agnostic safe exploration problems, which naturally require a finite horizon

and undiscounted constraints on safety costs. The CEM algorithm aims to learn a policy

that maximizes state entropy under the premise of safety. To avoid approximating the state

density in complex domains, CEM leverages a k-nearest neighbor entropy estimator to

evaluate the efficiency of exploration. In terms of safety, CEM minimizes the safety costs,

and adaptively tradeoffs safety to exploration based on the current safety performance. The

empirical analysis shows that CEM enables the acquisition of a safe exploration policy

in complex environments, resulting in improved performance in both safety and sample

efficiency for target tasks.

6.1. INTRODUCTION
In RL, exploration is critical to avoid the learning agent finally converging into a subopti-

mal policy. However, in safety-critical domains, unlimited exploration is unacceptable

(García and Fernández, 2015; Dulac-Arnold et al., 2021). For instance, while running a

power network, an agent trying unlimited exploration could cause a blackout (Marot et

al., 2020; Subramanian et al., 2021). Hence, encouraging exploration is bound to increase

This chapter has been published in AAAI (2023) (Yang and Spaan, 2023).
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safety risks.

Many learning problems may start from an unsupervised setting. The knowledge

gained can make an agent easier to achieve a variety of tasks later. For instance, when em-

ploying a safe exploration policy as a safe guide (SaGui; Yang, Simão, Jansen, et al., 2022),

an agent can adapt safely and quickly to a revealed task (Chapter 5), especially when

the task’s reward signal is sparse. In this chapter, we focus on learning such a task-

agnostic safe exploration policy. While task-agnostic exploration has been given attention

(Badia et al., 2019; Hazan et al., 2019; Tao, François-Lavet, and Pineau, 2020; Liu and

Abbeel, 2021; Mutti, Pratissoli, and Restelli, 2021; Seo et al., 2021), its safety aspects are

still under-explored.

Prior approaches to boosting exploration usually shape the reward signal using an

exploration bonus (Stadie, Levine, and Abbeel, 2015; Bellemare, Srinivasan, et al., 2016;

Ostrovski et al., 2017; Pathak, Agrawal, et al., 2017; Tang, Houthooft, et al., 2017; Fox,

Choshen, and Loewenstein, 2018; Haarnoja, Zhou, Abbeel, et al., 2018; Haarnoja, Zhou,

Hartikainen, et al., 2018; Burda, Edwards, Pathak, et al., 2019; Burda, Edwards, Storkey,

et al., 2019; Pathak, Gandhi, and Gupta, 2019; Sun et al., 2019; Seo et al., 2021). Most

of them are based on a measure of state novelty to lead the agent to new unseen states.

However, these typically heuristic measures are not part of the optimization objectives.

They are designed to only transiently affect the process of learning, but not the final

result. In contrast, to quantify exploration in a more principled way, Badia et al. (2019);

Hazan et al. (2019); Tao, François-Lavet, and Pineau (2020); Liu and Abbeel (2021); Mutti,

Pratissoli, and Restelli (2021); Seo et al. (2021) propose to encourage uniform coverage

of the state space. With an explicit target to maximize the entropy of the state density,

the interpretability of the learned exploration policy is improved significantly (Seo et

al., 2021).

In safe RL, it is natural to formulate safety concerns by constraints (Achiam et al., 2017;

Qin, Chen, and Fan, 2021). In this case, safety can be decoupled from reward to mitigate

the issue of constructing a single reward signal that must carefully trade-off task perfor-

mance and safety. When our focus is solely on efficient exploration, however, it is not clear

how we can design a traditional reward to maximize the state entropy. With additional

safety concerns, it is even more challenging to construct a single reward signal that is

sensible for both safety and exploration. Therefore, in task-agnostic safe exploration, the

need to treat safety as a constraint is exacerbated.

In safety-constrained RL problems, the discounted long-term costs are usually con-

strained within a pre-defined cost limit (Achiam et al., 2017; Liu, Ding, and Liu, 2020;

Yang, Rosca, et al., 2020). However, for industrial and robotic settings (Jardine, Lin, and

Banjevic, 2006; De Nijs, Spaan, and De Weerdt, 2015; Boutilier and Lu, 2016), the safety

constraints are always built on the real costs within a finite horizon instead of the dis-
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counted cost-return. For instance, a safety constraint for an electric vehicle is based on

its real battery capacity, so the battery consumption cannot be discounted.

In this chapter, we aim to achieve safe and efficient exploration when the target task

is unknown. We propose to formulate the problem by maximizing the entropy of the

state density under safety constraints. Specifically, we designed the Constrained Entropy

Maximization (CEM) algorithm, which leverages the k-nearest neighbor state entropy

estimator to avoid approximating the full state density, which hardly scales to complex

domains (Hazan et al., 2019). Based on the real safety costs, CEM leverages an adaptive

safety weight (Lagrangian multiplier) to automatically trade off exploration and safety

during policy updates instead of taking it as a reward-shaping factor. We improve the

safety of the policy by calculating the gradient on the discounted cost-return but updating

the safety weight following the undiscounted real costs.

Summarizing, the main contributions of this chapter can be summarized as follows:

i) we propose a practical and approximately convergent CEM algorithm for task-agnostic

safe exploration problems with convergence guarantees, ii) and we empirically show that

CEM enables the acquisition of a safe exploration policy in complex domains, and that

the policy benefits the target tasks.

6.2. TASK-AGNOSTIC SAFE EXPLORATION

In this section, we formulate the task-agnostic safe exploration (TASE) problems, where

only safety signals are provided. Without the reward signal, the agent aims to explore the

world safely and efficiently. The obtained policy with safe exploration capabilities may

provide useful prior knowledge required to enhance the safety in potential target tasks.

In this chapter, we focus on a finite-horizon setting like the work by Mutti, Pratissoli,

and Restelli (2021). Most real-world constrained RL problems are finite-horizon, and the

constraints on cumulative safety costs do not include discounts, which also mitigates the

problem of designing a safety threshold based on the discounted cost-return (Walraven

and Spaan, 2018). For instance, an electric vehicle can take its battery capacity as the cost

limit d . Naturally, we can select the horizon T in alignment with the horizon of the target

task that the policy is expected to confront. When the target task is not clear, we can tune

T to balance the exploration efficiency and quality (Mutti, Pratissoli, and Restelli, 2021).

In contrast to the policy entropy in Section 2.2, we address the state entropy in this

chapter. We use a state density function ρ : S 7→ R≥0 that quantifies the distribution

of states within the state space S . When a policy π is applied to a CMDP, it influences

the state distribution over time. For each time step t , the state density function ρπt (s)

calculates the concentration of states at that moment. The initial state distribution ι

serves as the starting point, and the policy interaction with the CMDP produces the state
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density ρπt (s) = ρ(st = s|π) for each subsequent time step t > 0. For CMDPs with finite

horizon T , the stationary density of state s can be expressed as:

ρπT (s) = 1

T

T∑
t=1

ρπt (s), (6.1)

which is the average state density, and
∫
S ρ

π
T (s)ds = 1.

Then, we formulate the TASE problem as maximizing the entropy of the average state

density under the premise of safety (Definition 2.1 in Chapter 2):

max
π∈Π

H(ρπT ) s.t. E
(st ,at )∼Tπ

[
T∑

t=1
ct

]
≤ d . (6.2)

We are particularly interested in problems where the set of initial states is small since they

are more challenging for task-agnostic exploration. If the trajectory can start at any state,

it will be meaningless to maximize the state entropy. The best policy for the agent might

then be to stay still in the initial state.

We choose to use the k-nearest neighbors (k-NN) entropy estimator Ĥk
N (ρ) by a group

of particles {si }N
i=1 to avoid estimating the state density directly (Singh et al., 2003). In the

RL process, we may need to use the samples from the current policy to estimate the state

entropy of the target policy, for which we can employ an Importance-Weighted (IW) k-NN

estimator Ĥk
N (ρ|ρ′) (Ajgl and Šimandl, 2011). We refer the reader to Mutti, Pratissoli, and

Restelli (2021) for the detailed expression of Ĥk
N (ρ|ρ′).

6.3. SAFETY-CONSTRAINED ENTROPY MAXIMIZATION

In this section, we first clarify that traditional value function based methods are not

suitable for maximizing the state entropy when the original environment reward does

not exist. To achieve task-agnostic safe exploration (TASE), we will establish the duality

of the original problem, then propose a practical algorithm called Constrained Entropy

Maximization (CEM) for TASE with convergence guarantees.

6.3.1. VULNERABLE RELIANCE ON RETURN

Traditional RL agents learn from the reward signal when interacting with the environment.

We call this original environment signal the extrinsic reward, and the signal designed for

encouraging exploration the intrinsic reward. When we have no access to the extrinsic

reward, it is important to ask whether we can design an intrinsic reward, such that we can

solve the TASE problems by traditional RL methods.

When learning is only for exploration without extrinsic rewards, we need to design
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an intrinsic reward that is stationary and implies efficient exploration of the environ-

ment in the standard RL framework. Many different intrinsic rewards are designed in

previous works, e.g., count-based exploration (Bellemare, Srinivasan, et al., 2016; Ostro-

vski et al., 2017), prediction-based exploration (Stadie, Levine, and Abbeel, 2015; Pathak,

Agrawal, et al., 2017), and auxiliary task (Fox, Choshen, and Loewenstein, 2018; Burda,

Edwards, Pathak, et al., 2019). However, they are not easy to be generalized to explicitly

maximize the state entropy in the task-agnostic setting. Even though we may finally get

better exploration by maximizing the long-term (intrinsic) rewards, the interpretability

of the exploration policy is not clear. Thus, before we have an intrinsic reward that can

incentivize exploration in a principled way, it is not suitable to enhance the exploration

for a policy based on the traditional optimization objective in RL.

6.3.2. DUALITY OF CONSTRAINED ENTROPY MAXIMIZATION

The standard RL algorithms that optimize long-term rewards cannot solve the TASE

problem (6.2) directly. Even for constrained RL algorithms, traditional RL rewards are also

necessary. Without a reward signal, the TASE problem (6.2) is dual to a problem that is

solvable in a Lagrangian way. We denote the Lagrangian multiplier for E
(st ,at )∼Tπ

[∑T
t=1 ct

]≤
d as ω :Π→R≥0. Note that ω is an overall safety evaluation of the current policy and does

not depend on the state. Then we consider the following optimization problem:

min
ω≥0

max
π

F (π,ω)
.= f (π)−ωg (π), (6.3)

where f (π) =H(ρπT )

and g (π) = E
(st ,at )∼Tπ

[
T∑

t=1
ct

]
−d .

We can solve the problem by alternating between updating the policy π and updating

the safety weight ω until the Karush-Kuhn-Tucker (KKT; Gordon and Tibshirani, 2012)

condition ωg (π) = 0 is satisfied.

We search for a policy within a parametric space ΠΘ = {πθ : θ ∈Θ}. Ideally, we have

two loss functions for the constrained optimization problem (6.2), i.e.,

Jπ(θ) =ωg (θ)− f (θ),

Js (ω) =−ωg (θ).
(6.4)

In practice, if we calculate the policy gradient based on E(st ,at )∼Tπθ
[∑T

t=1 ct
]
, the train-

ing is likely to be unstable because of the high variance in policy evaluation, especially for

complex and long-horizon problems (Kakade, 2001; Peters and Bagnell, 2010). Instead,
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we will optimize the policy π by using the gradient of its induced long-term discounted

costs, i.e.,

g (θ) = E(st ,at )∼Tπθ

[ ∞∑
t=0

γt ct

]
−d , (6.5)

where d = d
T (1−γ) is the discounted approximation of d (Section 2.2). We propose to

replace g (θ) in Jπ(θ) by g (θ), so that we have the adapted loss function

J ′π(θ) =ωg (θ)− f (θ), (6.6)

but Js (ω) remains as in (6.4), because the constraint satisfaction of a policy can be easily

estimated by the real costs of the sampled trajectories. In the following, we argue that it is

valid to optimize the policy π by minimizing the discounted cumulative costs until the

original undiscounted cost constraint is satisfied.

Theorem 6.1. Let the constrained optimization in (6.2) be feasible with a solution S ∗ =
(θ∗,ω∗) that satisfies the KKT conditions, which is found by minimizing the loss functions

(6.4). Then, S
∗ = (θ∗,ω∗) withω∗ = ω∗

h′(0) is a solution to the problem obtained by replacing

g (θ) in Jπ(θ) with h(g (θ)), where h :R→R is a strictly monotone increasing function. The

reverse also holds.

Proof. For (6.2), when the KKT conditions are satisfied,

∇ f (θ∗)−ω∗∇g (θ∗) = 0.

By complementary slackness, ω∗g (θ∗) = 0. When ω∗ = 0, the constraint is not effective,

and the replacement of g (θ) does not affect the results.

If ω∗ > 0, then g (θ∗) = 0, and ω∗ is the solution of ∇ f (θ∗) =ω∗∇g (θ∗). When h(g (θ))

is a strictly monotone increasing function, we have

∇h(g (θ∗)) = h′(g (θ∗))∇g (θ∗).

Then,

∇ f (θ∗) = ω∗

h′(0)
∇h(g (θ∗)).

Therefore, (θ∗,ω∗) with ω∗ = ω∗
h′(0) is a solution of the adjusted problem where h(g (θ))

is used in the loss function. In addition, it follows that if (θ∗,ω∗) is a solution to the

amended problem, then (θ∗,ω∗h′(0)) is a minimizer of (6.4).

We argue that g (θ) is approximately an increasing monotone map of g (θ) if we have a

long episode length T ≫ 1/(1−γ) and on-policy sampling at each gradient step. Then we
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Algorithm 7 Constrained Entropy Maximization

Require: Initial parameters T , N , δ, λ, k, and d
1: initialize θ, ω, D←;, θ′ ← θ

2: for each epoch do
3: for each environment step do
4: at ∼πθ′ (at |st ) ▷ Sample trajectories with current policy
5: ct ∼ c(at |st )
6: st+1 ∼P(st+1|st , at )
7: D←D∪ {(st , at ,ct , st+1)}
8: end for
9: ω← max(0,ω+λω ĝ (θ′)) ▷Update safety weight (6.10)

10: while DK L(ρT (θ)||ρT (θ′)) ≤ δ do
11: θ← θ+λπ∇θ Jπ(θ) ▷ Policy gradient (6.13)
12: end while
13: θ′ ← θ

14: D←;
15: end for

Output: Safe exploration policy πθ

have

g (θ) = E(st ,at )∼Tπθ

[ ∞∑
t=0

γt ct

]
−d

≈ E(st ,at )∼Tπθ [ct ] ·
∞∑

t=0
γt − d

T (1−γ)

= E(st ,at )∼Tπθ [ct ]
1

(1−γ)
− d

T (1−γ)

= E(st ,at )∼Tπθ

[
T∑

t=1
ct

]
1

T (1−γ)
− d

T (1−γ)

= g (θ)

T (1−γ)
.

(6.7)

We see that g (θ) is approximately an affine function of g (θ). Therefore, invoking The-

orem 6.1, we can optimize the policy π for (6.2) by calculating the gradient on the dis-

counted cost-return g (θ), but updating the safety weight ω based on the undiscounted

real costs.

6.3.3. THE CEM ALGORITHM

To solve the safety-constrained entropy maximization problem (6.2) in complex domains,

we propose a CEM method (Algorithm 7) to optimize the policy within ΠΘ. At each

gradient step, CEM will perform a series of fine-tuned optimizations centered around the

current policy (Schulman, Levine, et al., 2015). We take the trust region as a constraint to
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ensure that the optimizations are conducted within a reliable and stable neighborhood of

the current policy θ′. Considering the trust-region threshold δ, we are presented with a

constrained optimization problem as follows:

max
θ∈Θ

Ĥk (ρT (θ))

s.t.

{
DK L(ρT (θ)||ρT (θ′)) ≤ δ
E(st ,at )∼Tπθ

[∑T
t=1 ct

]≤ d .

(6.8)

Before updating the policy, we can determine the safety weightω by evaluating the current

safety performance. With the current policy parameters θ′, we can sample a batch of

trajectories of length T (Algorithm 7, lines 3-8). We useλπ andλω to represent the learning

rate for the policy π and safety weight ω respectively. Then, we can update the safety

weight (Algorithm 7, line 9) by

ω← max(0,ω+λω ĝ (θ′)), (6.9)

where

ĝ (θ′) = 1

NT

NT∑
n=0

[
T∑

t=1
ct |(st , at ) ∼ Tπθ′

]
−d , (6.10)

where NT is the number of trajectories. Then, we construct the loss function for the policy

Jπ(θ) = JH(θ)+ωJg (θ), (6.11)

where JH(θ) =−Ĥk (ρT (θ)|ρT (θ′))

and Jg (θ) = g (θ)− g (θ′).

The loss function for the state entropy JH(θ) is based on the IW k-NN estimator Ĥk
N (ρ|ρ′).

Note that the entropy cannot be calculated directly, but needs to be estimated based on

the current policy, the target policy, and the sampled particles from the current policy. We

can first compute the normalized importance weight for each sample, then approximate

the state density (Mutti, Pratissoli, and Restelli, 2021). We use the states in the replay

buffer to estimate the entropy Ĥk
N (ρ|ρ′). Although these states are not all independent

(trajectories are sampled independently, but states within a trajectory are correlated), we

observe satisfactory behavior when k and the number of trajectories is sufficiently large.

Notice that we use the surrogate advantage g (θ)− g (θ′) to approximate our objective

in minimizing the discounted safety costs, and build our loss function for safety Jg . The

surrogate advantage is a measure of how the target policy πθ performs in safety relative to
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the current policy πθ′ using data from πθ′ (Schulman, Levine, et al., 2015), i.e.,

Jg (θ) = g (πθ)− g (π′
θ)

.= E
(st ,at )∼Tπθ′

[
πθ (a|s)

πθ′ (a|s)
Ac
πθ′ (s, a)

]
, (6.12)

where Ac
π(s, a) =Qc

π(s, a)−V c
π (s) is the advantage function for costs, defined in Section 2.1.

The surrogate advantage is designed for maximizing the long-term return, but it can be

easily adapted to minimize the discounted safety costs g (π) in our setting. We refer the

reader to Schulman, Levine, et al. (2015) for the proof of (6.12).

At each gradient step, we exploit a KL estimator D̂K L(ρ∥ρ′) to compute the trust-

region constraint. We refer the reader to Ajgl and Šimandl (2011); Mutti, Pratissoli, and

Restelli (2021) for the detailed derivation and expression of D̂K L(ρ∥ρ′). While the up-

dated policy satisfies D̂K L(ρT (θ)||ρT (θ′)) ≤ δ, we can optimize the policy several times

(Algorithm 7, lines 10-12) by

θ← θ+λπ∇θ Jπ(θ)

= θ+λπ∇θ JH(θ)+λπω∇θ Jg (θ),
(6.13)

where

∇θ Jg (θ) = 1

N

N∑
n=1

∇θ
[
πθ (an |sn)

πθ′ (an |sn)
Ac
πθ′ (sn , an)

]
.

We employ the Theorem 5.1 by Mutti, Pratissoli, and Restelli (2021) to compute the

gradient of the IW entropy estimator in ∇θ JH(θ), where θ is updated without constraints.

Even though we use Ac
π(s, a) in Jg (θ), we still need to train the value functions Qc

π(s, a) and

V c
π (s) during the learning process. We refer the reader to Schulman, Levine, et al. (2015)

for more details of the TRPO method. Using the Lagrangian cost constraint, we leverage

ω to balance safety during policy updates instead of a reward-shaping factor.

6.3.4. BOUNDS ON APPROXIMATE CONVERGENCE

In this section, we demonstrate the approximate convergence of CEM to the optimal solu-

tion by transforming the problem (6.3) into the framework by Qin, Chen, and Fan (2021).

At each gradient step, CEM updates the policy based on the gradient descent algorithm

with the modifications shown by Theorem 6.1, which finds the direction of the maximum

increase in the entropy of the average state density but only considers the immediate

surroundings of the current policy. Thus, the policy ascent is noisy due to limited samples

and constrained due to the trust-region constraint. Then, the question is whether the

gradient descent of the weight ω is sufficiently perturbed to no longer find a solution.

Theorem 2 by Qin, Chen, and Fan (2021) has shown that a density-constrained RL algo-

rithm can eventually converge around the optimal policy even under suboptimal policy
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updates at each gradient step.

The amended Lagrangian optimization in Section 6.3.2 can be written as:

max
ω≥0

F (ω),

where F (ω) =ωg (ρ∗(ω))–H(ρ∗(ω))

and ρ∗(ω) = argmin
ρ
ωg (ρ)–H(ρ).

(6.14)

In this representation, the state density ρ = ρπT is implicitly generated by the policy π. The

associated discounted safety costs can be expressed as

g (ρ) =
∫

S
ρπT (s)V c

π (s)ds −d ≈ 1

1−γ
[∫

S
ρπT (s)c(s)ds − d

T

]
,

where g (ρ) is (approximately) affine in ρ, and we assumed that costs c(s) are incurred by

the presence in states, not by actions. We note that the optimized expression ωg (ρ)–H(ρ)

in Eq. 6.14 is strongly convex, because −H is strongly convex and g (ρ) is (approximately)

affine in ρ. We set its modulus to be µ, which measures the degree of convexity.

We optimize ω to achieve maxω≥0F (ω). The set of its optimal solutions is denoted

as Ω∗ = {ω|F (ω) = maxω≥0F (ω)}, with ω∗ ∈ Ω∗ in line with Theorem 6.1. For a given

ω, we use the TRPO method (with discounted safety costs) to solve the state density

optimization problem. For a suboptimal update in policy, we assume the imperfect

solution ρ̂ satisfies

ωg (ρ̂)−H(ρ̂)−F (ω) ≤ ϵ.

The corresponding update in the safety weight is ω ← max(0,ω+ λω∇F̂ (ω)), where

∇F̂ (ω) = g (ρ̂). Then, we can invoke Lemma 2 and Theorem 2 by Qin, Chen, and Fan (2021)

to get the following convergence result.

Convergence result. For a step size λω ≤µ, CEM with suboptimal policy updates will

converge to a ω̂ that satisfies

min
ω′∈Ω∗ ∥ω̂−ω′∥ ≤ψ√

ϵ/µ

with constant ψ > 0. With another constant ξ > 0, F (ω̂) also converge to a bounded

neighborhood of its optimal value:

min
ω′∈Ω∗ ∥F (ω̂)−F (ω′)∥ ≤ ξϵ/µ2.
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(a) BasicNav (b) MountainCar (c) CartPole

(d) PointGoal (e) CarButton

Figure 6.1: Safety-constrained exploration tasks with different complexity levels, i.e., the state spaces, the type of
the obstacles, and the potential downstream tasks.

6.4. EMPIRICAL ANALYSIS

We evaluate our method based on a wide variety of TASE benchmarks. We organize our

empirical analysis as follows: 1) We demonstrate that CEM can facilitate learning a safe

exploration policy in various complex environments; 2) We reveal that the safe exploration

policy can benefit the target tasks in safety and sample efficiency.

Benchmarks. We first evaluate our safe unsupervised exploration in a 2D navigation do-

main BasicNav (2D states, Figure 6.1(a)), where a hazard in the center should be avoided.

Then, we consider two simple environments: MountainCar (2D, Figure 6.1(b)) and Cart-

Pole (4D, Figure 6.1(c)). Note that they are different from the original versions in OpenAI

Gym (Brockman et al., 2016) because of the additional constraints. In MountainCar, the

constraint is to not go too far to the left (indicated by the red line in Figure 6.1(b)), every

step the cart is too far on the left a cost of 1 is received. In CartPole, the constraint is

to keep the cart in a certain region. Finally, we test our method in two complex envi-

ronments from the Safety Gym suite (Todorov, Erez, and Tassa, 2012; Ray, Achiam, and

Amodei, 2019): PointGoal (36D, Figure 6.1(d)), CarButton (56D, Figure 6.1(e)). In Point-

Goal, we control the point robot to navigate in the 2D map to reach a goal while trying to

avoid a vase and several hazards. In CarButton, we control a more complex car robot to
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Figure 6.2: Comparison of MEPOL, SAC-Lag-RF, SAC-Lag-IR, and CEM during training in exploration (top row)
and safety (bottom row). The solid lines are the average of all runs, and the shaded area is the standard deviation.
The red dashed lines indicate the safety thresholds.

push the right button while trying to avoid the wrong button, several moving gremlins,

and several fixed hazards. In all environments: c = 1 if an unsafe interaction happens,

and c = 0 otherwise. All experiments are performed over 10 runs with different random

seeds and the plots show the mean and standard deviation of all runs.

Environment builder. We use the Safety Gym engine (https://github.com/openai/
safety-gym/blob/master/safety_gym/envs/engine.py) to build the PointGoal and

CarButton environments (Ray, Achiam, and Amodei, 2019). Two configuration dictionar-

ies are used to specify the size of the map, the type of the robot, the task to finish, the size

and location of the goal, the signals the agent can receive, and the size and location of the

hazard. The environments are created through the configuration file:

https://github.com/openai/safety-gym/blob/master/safety_gym/envs/engine.py
https://github.com/openai/safety-gym/blob/master/safety_gym/envs/engine.py
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1 import safety_gym

2 from gym. envs . r e g i s t r a t i o n import r e g i s t e r

3

4 r e g i s t e r ( id= ’PG−v0 ’ / ’CB−v0 ’ , entry_point= ’ safety_gym . envs . mujoco : Engine ’ , kwargs ={ ’

config ’ : config_pg / config_cb } )

5

6 config_pg = { ’ task ’ : ’ goal ’ ,

7 ’ robot_base ’ : ’ xmls/ point . xml ’ ,

8 ’ observe_goal_lidar ’ : True ,

9 ’ observe_box_lidar ’ : True ,

10 ’ l idar_max_dist ’ : 3 ,

11 ’ lidar_num_bins ’ : 8 ,

12 ’ goal_size ’ : 0 . 3 ,

13 ’ goal_keepout ’ : 0.305 ,

14 ’ hazards_size ’ : 0 . 2 ,

15 ’ hazards_keepout ’ : 0 . 1 ,

16 ’ constrain_hazards ’ : True ,

17 ’ observe_hazards ’ : True ,

18 ’ observe_vases ’ : True ,

19 ’ placements_extents ’ : [ −1.5 , −1.5 , 1 . 5 , 1 . 5 ] ,

20 ’hazards_num ’ : 8 ,

21 ’vases_num ’ : 1}

22

23 config_cb = { ’ task ’ : ’ button ’ ,

24 ’ robot_base ’ : ’ xmls/ car . xml ’ ,

25 ’ observe_goal_lidar ’ : True ,

26 ’ observe_box_lidar ’ : True ,

27 ’ l idar_max_dist ’ : 3 ,

28 ’ lidar_num_bins ’ : 8 ,

29 ’buttons_num ’ : 3 ,

30 ’ buttons_size ’ : 0 . 1 ,

31 ’ buttons_keepout ’ : 0 . 1 ,

32 ’ observe_buttons ’ : True ,

33 ’ hazards_size ’ : 0 . 2 ,

34 ’ hazards_keepout ’ : 0 . 1 ,

35 ’ gremlins_travel ’ : 0 . 1 ,

36 ’ gremlins_keepout ’ : 0 . 1 ,

37 ’ constrain_hazards ’ : True ,

38 ’ constrain_buttons ’ : True ,

39 ’ constrain_gremlins ’ : True ,

40 ’ observe_hazards ’ : True ,

41 ’ observe_gremlins ’ : True ,

42 ’ placements_extents ’ : [ −1.5 , −1.5 , 1 . 5 , 1 . 5 ] ,

43 ’hazards_num ’ : 3 ,

44 ’ gremlins_num ’ : 3}
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Hyperparameters. We list the hyperparameters used in CEM, which are summarized

in Table 6.1. The specific hyperparameters of the SAC-λ baselines are listed in Table 6.2.

As to MEPOL, we use the same parameters as CEM except for the safety-related ones. The

discount factor for the cost-return in CEM is set to be γ= 0.99, which is also used in the

SAC-λ baselines. In CEM, the maximum iterations to reach the trust-region threshold is

30, and the activation functions in the policy networks and value networks are ReLU. In

all experiments, the number of episodes is 20. We set the safety constraint d based on the

problem. As to the evaluation of safe transfer learning, we use the hyperparameters for

the Dynamic environment in SaGui, listed in Table 5.1. The rest of the hyperparameters

are explained in the Empirical Analysis part of the paper. All experiments are performed

on an Intel(R) Xeon(R) CPU@3.50GHz with 16 GB of RAM.

Parameter BasicNav MountainCar CartPole PointGoal CarButton Note

Number of epochs 200 300 300 500 500
Number of neighbors 50 4 4 4 4 k
Safety constraint 10 0.5 5 25 25 d
Learning rate of policy 0.00001 0.0001 0.0001 0.00001 0.00001 λπ
Learning rate of safety 0.001 0.01 0.01 0.01 0.01 λω
Trajectory length 1200 400 300 500 500 T
Trust-region threshold 1.0 0.5 0.5 0.1 0.1 δ

Size of policy networks [300,300] [300,300] [300,300] [400,300] [400,300] π

Size of value networks [64,64] [64,64] [64,64] [64,64] [64,64] VC

Table 6.1: Summary of hyperparameters in CEM.

Parameter BasicNav MountainCar CartPole PointGoal CarButton

Policy entropy weight 0.2 0.2 0.2 0.2 0.2
Learning rate 0.001 0.001 0.001 0.001 0.001
Batch size 32 32 32 256 256
Size of networks [32,32] [32,32] [32,32] [256,256] [256,256]
Size of replay buffer 106 106 106 106 106

Target smoothing coefficient 0.005 0.005 0.005 0.005 0.005

Table 6.2: Specific hyperparameters in the SAC-λ baselines.

6.4.1. EVALUATION OF SAFE EXPLORATION

During training, the agent is not aware of the extrinsic environment reward, i.e., r (s, a) =
0,∀s ∈S , a ∈A. We have identified the entropy value Ĥk (ρT (θ)) and the average episodic

costs over each epoch as the key metrics to assess the effectiveness of the policy. We

hand-tuned hyperparameter k to attain reasonable performance of the entropy estimator.

Similar to the work by Mutti, Pratissoli, and Restelli (2021), we chose the horizon T

according to the potential task for the agent in each specific environment. To evaluate
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Figure 6.3: Exploration analysis after training. The heat maps show the final state density of the learned policies.
The red line indicates the dangerous area.

how our method performs in pure safe exploration tasks, we compare CEM with three

baselines:

MEPOL To show how well the agent can explore the world without taking into account

any safety concerns, we also take MEPOL as a baseline, which is the state-of-the-art

algorithm in maximizing the state entropy (Mutti, Pratissoli, and Restelli, 2021).

SAC-Lag-RF To efficiently explore the world, we first consider SAC-Lag (Ha et al., 2020)

to maximize the policy entropy under the safety constraints with r (s, a) = 0 : ∀s ∈S , a ∈A,

rather than optimize the state entropy directly.

SAC-Lag-IR Inspired by the off-policy version for efficient exploration in the work by

(Seo et al., 2021), we introduce an auxiliary reward r (s) := log(∥s − sk-NN∥2 +1) to further

enhance the exploration under the framework of SAC-Lag (Ha et al., 2020).

As we show in Figure 6.2, compared to the safe methods (SAC-Lag-RF, SAC-Lag-IR, and
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CEM), MEPOL shows the ability to acquire policies with remarkably strong exploration

across all domains, but it does not satisfy the safety constraint. Both SAC-Lag-RF and

SAC-Lag-IR can converge to safe policies even in more complex environments. In the

classic control environments MountainCar and CartPole, the two SAC-Lag methods can

also make prominent improvements in state entropy, but failed in BasicNav (Figure 6.2(a)),

PointGoal (Figure 6.2(d)), and CarButton (Figure 6.2(e)). In general, with the benefits

from the intrinsic reward, SAC-Lag-IR attained higher state entropy than SAC-Lag-RF.

Compared to all the baselines, only CEM managed to learn a policy that finally gets

remarkable results in exploration and satisfies the safety constraint.

After training, we leverage the heat maps in Figure 6.3 to show the exploration of the

final policies in the illustrative environments BasicNav, MountainCar, and CartPole. Note

that the states in CartPole are 4D, but we just focus on the cart position and pole angle.

We can see that MEPOL can always achieve efficient exploration in all environments.

However, the unsafe areas are also covered by the learned agents. The exploration heat

maps also show that the two SAC-Lag methods are too conservative in safety. Even though

SAC-Lag-IR is generally better than SAC-Lag-RF, the learned agent cannot cover the safe

areas well, especially in BasicNav and CartPole. Only CEM can efficiently explore the safe

areas in all the illustrative environments.

6.4.2. PARAMETER SENSITIVITY

In this section, we examine the effect of altering the parameters k (number of neighbors

for entropy estimation), T (finite horizon/trajectory length), δ (trust-region threshold to

determine the gradient step size), and γ (discount factor) on both the entropy and safety

costs in the BasicNav environment.

From Figures 6.4(a) and 6.4(d), it is obvious that CEM is not sensitive to the number of

neighbors k and the discount factor γ in exploration and safety. In terms of the trajectory

length (Figure 6.4(b)), a short T makes the learning in exploration slow compared to the

curves with much longer trajectories, but the difficulty to be safe will be increased if we

have a longer T . A high trust-region threshold δ negatively impacts learning stability, and

could cause sudden performance degradation in exploration, as shown in Figure 6.4(c). A

low δ will make the learning very slow in safety, but the performance of the final policy is

not affected.

6.4.3. EVALUATION OF SAFE TRANSFER LEARNING

In this section, we evaluate how a safe exploration policy learned by CEM can benefit

the target tasks in safety and sample efficiency. To evaluate the policy in safety, we use

the safety costs generated during the interaction with the environment. In terms of
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Figure 6.4: Parameters 〈k,T,δ,γ〉 sensitivity analysis in BasicNav. The solid lines are the average of all runs, and
the shaded area is the standard deviation. The red dashed lines indicate the safety thresholds.

performance, we use the average episodic rewards over 100 episodes in an extra test

process after each epoch. In the downstream tasks, the extrinsic environment reward is

revealed to the agent. We leverage the safe exploration policy to guide learning in the

off-policy safe guide (SaGui; Yang, Simão, Jansen, et al., 2022) framework (control-switch

version in Chapter 5), which achieves safe transfer learning by two mechanisms:

• Adaptively regularize the student policy to the guide policy based on the student’s

safety;

• Use the safe exploration policy as a recovery policy when the student starts to take

unsafe actions.
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Figure 6.5: Effects of the safe exploration policies on the downstream tasks. The solid lines are the average of all
runs, and the shaded area is the standard deviation. The red dashed lines indicate the safety thresholds.

To show how the quality of the safe exploration policies plays a role in learning, we use

the policy learned by CEM to represent a teacher with a good balance between safety and

exploration (Balance). For comparison, we use the policy learned by MEPOL to represent

an unsafe teacher but with efficient exploration over the whole state space (OverExplore),

so we deactivate the recovery mechanism in SaGui to avoid worse results from this unsafe

guide. On the other hand, we also use the policy learned SAC-Lag-RF, which is safe but

very conservative in exploration (OverlySafe). We also take the agent that starts learning

from scratch (FromScratch) as a baseline.

In Figure 6.5, we show how the quality of the safe exploration policies influences the

learning in the downstream tasks, where the agent needs to reach the goal in PointGoal,

and push the right button in CarButton. In general, we can observe that the different safe

exploration policies benefit the downstream tasks in different ways. The agent guided

by the OverExplore policy can learn to get high rewards quickly, but cannot get obvious

improvement in safety compared to learning from scratch. The OverlySafe policy can

stay the agent to be absolutely safe when interacting with the environment. However, the

resulting performance is even worse than learning from scratch. The policy learned by

CEM (Balance) can guide the agent to obtain high rewards quickly under the condition of

ensuring the safety of training.

In this experiment, we opt to assess our proposed method in two selected environ-
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ments out of the five available, specifically targeting those deemed more complex. This

deliberate choice is motivated by the objective of conducting a comprehensive analysis of

the method’s performance in challenging scenarios characterized by intricate dynamics

and higher-dimensional state-action spaces. While the remaining three environments

are not included in this particular experiment, they present potential avenues for future

investigations within the broader problem domain.

6.5. RELATED WORK
Task-agnostic exploration has been studied in three different directions (Mutti, Pratissoli,

and Restelli, 2021), estimating the environment dynamics (Jin et al., 2020; Tarbouriech,

Shekhar, et al., 2020), learning a transferable meta-reward function (Zheng, Oh, et al., 2020;

Bechtle et al., 2021), and learning an efficient exploration policy (Hazan et al., 2019; Tar-

bouriech and Lazaric, 2019; Mutti and Restelli, 2020; Guo et al., 2021; Mutti, Pratissoli,

and Restelli, 2021; Nedergaard and Cook, 2022). These works made impressive progress in

exploring the environment efficiently without a reward signal (Laskin, Yarats, et al., 2021).

Nevertheless, task-agnostic exploration with safety concerns is still under-explored. Com-

pared to our method, their learned policies cannot explore safely, which is important

when we need to explore the real world and the downstream tasks are safety critical.

The constrained cross-entropy method proposed by Wen and Topcu (2018) could be

extended to the TASE problem, but its efficiency under the state-entropy maximization

objective has not yet been tested. To some extent, SAC-λ can also be used to solve our

problem. By maximizing the policy entropy, the agent trained by SAC-λ tends to have

diverse behaviors, but it does not imply efficient exploration of the environment. With

an additional intrinsic reward, the exploration of SAC-λ can be enhanced (Yang, Simão,

Jansen, et al., 2022), but the interpretability of the learned policy in exploration is not

clear. Achiam et al. (2017); Liu, Ding, and Liu (2020); Yang, Rosca, et al. (2020) propose

a series of constrained policy optimization methods, where the constraints are built on

long-term costs instead of real costs within a finite horizon. To apply their methods in

our domain, more work is needed to process the different optimization objectives and

constraints.

6.6. CONCLUSION
In this chapter, we propose the CEM algorithm to solve safety-constrained entropy maxi-

mization problems in a completely reward-free manner. We argue that it is more practical

to formulate the problem to be finite-horizon without discounting, which mitigates the

problem of designing a safety threshold based on the discounted cost-return. To trade

off exploration with safety, we adaptively change the safety weights based on the undis-
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counted real costs. Accordingly, we can update the policy under the adjusted balance

between safety and exploration. The learned policy can maximize exploration under the

premise of safety even in complex continuous-control domains, and benefit the potential

downstream tasks in sample efficiency and safety.
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CONCLUSION

This dissertation focuses on two challenges that hinder the application of RL in the real

world. Firstly, potential safety risks exist because of the randomness in long-term costs,

which is generated by the stochastic policy and the dynamics of the environment. A worst-

case analysis is required to limit the frequency of very unsafe outcomes. Thus, we propose to

define safety based on varying risk requirements that the user can indicate. Accordingly, we

present the safety-constrained RL algorithms with risk control. Secondly, many real-world

RL problems do not have simulators of sufficient fidelity, so interactions with safety-critical

environments are inevitable. In this case, safety during training needs to be guaranteed.

However, it is not possible to be absolutely safe if learning from scratch. We propose to

train and transfer a safe exploration policy to ensure safety during training and also

improve sample efficiency. In Section 7.1, we first answer the research questions raised

in Section 1.4, and summarise our contributions to the main research goal. Then, in

Section 7.2, we elaborate on the limitations of our work and suggest future directions.

Finally, in Section 7.3, we expound our final thoughts on some other aspects that hinder RL

to be more applicable in the real world.

7.1. ANSWERS TO THE RESEARCH QUESTIONS
We briefly summarise the answers to the research question and sub-questions below.

How to control risks and ensure safety during training in reinforcement learning?

The overall aim of this dissertation is to answer this main question, so as to promote

the application of RL in the real world. However, it is impossible for us to cover all

93
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the critical factors for real-world RL applications. We select two perspectives, i.e., risk

control in safety-constrained RL, and safety assurance during training, to answer the

main question, which is addressed by answering the following four sub-questions.

Q1 How to formulate the safe RL problem with risk control?

This sub-question is answered in Chapter 3, where we analyze the vulnerable reliance

on expected cost-return. In this case, the learned policies are unaware of the potential

risks because of the randomness generated by the stochastic policy and the dynamics

of the environment. To have a lower risk of hazardous events even under stochastic

or heavy-tailed cost-return, we consider the uncertainty in safety. Given the risk level,

we can define the safety based on the corresponding upper tail of the cost distribution,

represented by the conditional Value-at-Risk (CVaR). In this way, policies can be optimized

under different levels of CVaR, which determine the degree of risk aversion from a safety

perspective.

Q2 How to optimize the policy under the premise of safety?

In Chapters 3 and 4, we present two versions of Worst-Case Soft Actor Critic algo-

rithms with different ways to estimate the cost-return distribution, namely a Gaussian

approximation and a quantile regression algorithm. The Gaussian approximation is

simple and easy to implement, but may underestimate the safety cost, and the quantile

regression leads to a more conservative behavior. Thus, under the given risk level, we

can approximate the CVaR from the distribution to guide the change of adaptive safety

weights to achieve a trade-off between reward and safety. As a result, we can compute

policies whose worst-case performance satisfies the constraints. The empirical analysis

shows that both versions of WCSAC attain better risk control compared to the expectation-

based methods, and the quantile regression version shows strong adaptability in complex

safety-constrained environments.

Q3 How to ensure safety during training by transferring safe exploration policies?

This sub-question was answered in Chapter 5, where we present the safe guide (SaGui)

framework to leverage a safe exploration policy to ensure safety during training and also

improve sample efficiency. A safe exploration policy, trained in a constrained reward-

free setting, can be taken as a universal guide to enhancing safety and learning in the

potential target tasks, where safety violations are not allowed during training. The safe

exploration policy is leveraged to compose a safe behavior policy that directly interacts

with the environment for sampling. Also, we regularize the target policy towards the safe

exploration policy while the student is unreliable, and gradually eliminate the influence

from the guide as training progresses. The empirical analysis shows that this method can

achieve safe transfer learning and helps the student solve the target task faster.

Q4 How to train a safe exploration policy in a principled way?

This sub-question was answered in Chapter 6, where we present the practical Con-



7.2. LIMITATIONS AND FUTURE WORK

7

95

strained Entropy Maximization (CEM) algorithm to solve task-agnostic safe exploration

(TASE) problems. The CEM algorithm aims to learn a policy that maximizes state entropy

under the premise of safety. To avoid approximating the state density in complex domains,

CEM leverages a k-nearest neighbor (k-NN) entropy estimator to evaluate the efficiency

of exploration. In terms of safety, CEM minimizes the advantage in cost-return, and

adaptively tradeoffs safety to exploration based on the current safety performance. We

empirically show that CEM allows learning a safe exploration policy in complex domains,

and under the SaGui framework, the learned policy benefits downstream tasks in safety

and sample efficiency.

Conclusions on the main research goal

To address each of the four subquestions identified in response to the two perspec-

tives of the main research question, we have proposed novel formulations for safety-

constrained RL problems, and designed corresponding algorithms. Since our proposed

formulations and algorithms cover different perspectives in safe RL, they can complement

each other. With the WCSAC algorithms for risk-averse constrained RL, we can learn

safe policies under different risk levels, but safety during training is ignored. Instead, the

SaGui framework aims to ensure safety during training by leveraging a safe exploration

policy. Under different domain conditions, the proposed algorithms can be used alone or

in combination. In summary, by addressing safety from the two perspectives, our work

significantly improves the reliability and practicality of RL for real-world use.

7.2. LIMITATIONS AND FUTURE WORK

This dissertation only focuses on the two perspectives in safety-constrained RL, but more

extensive research is necessary to bring RL closer to real-world applications. We also made

assumptions and simplifications on the proposed formulations and algorithms, thereby

leaving room for further development. Below we suggest future research directions that

can further consolidate the safety mechanism in RL.

More complex scenarios

In complex safe RL scenarios, such as those with multiple constraints, our proposed

methods rely on more networks for policy optimization and constraint enforcement. How-

ever, updating several networks can be computationally expensive and time-consuming.

To improve scalability, approaches such as network architecture optimization, parallel

computing, approximate worst-case estimation, and hardware acceleration can be em-

ployed. These techniques reduce computational and memory requirements, speed up

training through parallelization, and utilize specialized hardware. Ongoing research is

also exploring scalable safe RL algorithms. When faced with contradictory constraints that

do not allow for a feasible solution, we infer that our Lagrangian methods will increase
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the penalty terms associated with the conflicting constraints. This leads to a higher cost

or objective function value. The algorithms adjust the Lagrange multipliers to balance

the penalties, striving to find a compromise between the conflicting objectives. The

methods aim to minimize the overall cost while considering the trade-offs imposed by the

conflicting constraints, seeking a policy that satisfies the constraints as much as possible

while still maximizing the expected reward. However, in cases of severe conflicts where no

feasible solution exists, our methods may converge to suboptimal or infeasible solutions.

We can further explore the constrained RL problems with multiple constraints, especially

when they are conflicting.

Intrinsic uncertainty and parametric uncertainty

We can further explore modeling the uncertainty of the cost-return in different ways.

We have shown the versatility of WCSAC by using two methods to approximate the cost-

return distribution. Therefore, WCSAC can be further improved with any progress in

distributional RL. Our method captures the randomness in the cost-return intrinsic to

the CMDP, but not the uncertainty in approximating the value function or the cost-return

distribution, i.e., the parametric uncertainty (Dearden, Friedman, and Russell, 1998;

Engel, Mannor, and Meir, 2005). Approximation error of parameters also brings potential

risks for the learned policies. Hence, the safety in RL can be further strengthened if we

can also take the parametric uncertainty into account.

Difference between transfer tasks

Safe transfer learning can be formulated with larger differences between the tasks. In

the SaGui framework, we assume the safe exploration policy is trained in a controlled

environment, which allows unsafe interactions. Mostly, we have no access to a simulator

with enough fidelity. Thus, the learned policy cannot be deployed in the real world directly.

Even though we consider the observation spaces are different between source and target

tasks, there is still considerable space to explore the settings with larger differences be-

tween the tasks (Cutler, Walsh, and How, 2014), e.g., incompatible environment dynamics.

In this case, the SaGui framework needs to meta-learn the safe guide on a diverse set of

environments to adapt to a wide range of tasks.

Knowledge for safe transfer learning

Training and transferring safe exploration policies is not the only way to safe adapta-

tion. The SaGui framework leverages the knowledge learned from a reward-free setting.

In a simulator, it is also possible that we can freely generate different tasks of the same

type. Meta-RL addresses the fast adaptation challenge by leveraging knowledge learned

from training different tasks to perform well in previously unseen tasks (Finn, Abbeel,

and Levine, 2017; Rakelly et al., 2019). Thus, we may meta-learn some knowledge, e.g.,

a transferable meta-reward function, or a meta policy, from the limited or unlimited

amount of tasks in the simulator to benefit the real-world learning process (Grbic and
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Risi, 2020; Luo et al., 2021; Lew et al., 2022). Another direction is to leverage the epistemic

uncertainty about the safety dynamics to ensure safety also during training (Zheng and

Ratliff, 2020; Simão, Jansen, and Spaan, 2021).

State density estimation and state abstraction

We leverage the k-NN entropy estimator to avoid approximating the state density in

high-dimensional observation spaces. On the one hand, it is still an open problem to

scale the state density estimation to complex domains (Hazan et al., 2019). With more

efficient ways to approximate the state density, TASE problems can be further extended

by more complex convex constraints (Miryoosefi, Brantley, et al., 2019; Qin, Chen, and

Fan, 2021). On the other hand, we treat all dimensions in the observation equally, which

may reduce the efficiency of optimization, and not accurately capture the concerns

of the task. Instead, we could learn a low-dimensional latent representation space to

better express our exploration focus, but the complexity and instability of the algorithm

will increase, especially when we have additional safety concerns. For this reason, it is

essential to investigate how to efficiently abstract the observation space in TASE problems

(Tao, François-Lavet, and Pineau, 2020; Liu and Abbeel, 2021; Seo et al., 2021; Yarats

et al., 2021).

Different exploration objectives

The safe exploration policy is trained by maximizing the state entropy under the

premise of safety. The resulting policy is able to explore the state space in a diffuse

manner without compromising safety. However, a policy that maximizes the state entropy

may not visit all transitions (Zhang, Cai, and Li, 2021). In some cases, e.g., the reward

is related to the state-action pairs, covering all the transitions is more important than

covering all the states. It is a promising direction for future work to consider more different

pretraining settings, e.g., maximum entropy over the state-action pairs (Zhang, Cai, and

Li, 2021), maximum mutual information between tasks and policy-induced states (Liu and

Abbeel, 2021) or between state-transitions and latent skill vectors (Laskin, Liu, et al., 2021),

pretraining in a class of multiple environments (Mutti, Mancassola, and Restelli, 2022),

and pretraining for history-based policies (Mutti, De Santi, and Restelli, 2021).

Risk-averse safe transfer learning

The proposed approaches in this dissertation cover different perspectives and com-

plement each other. Nevertheless, it is worth to further explore how to use them in

combination. The safety in SaGui is defined to be risk-neutral, but SaGui can be easily

generalized to the risk-averse case. In the first place, for the guide in SaGui (safe explo-

ration policy), we can update the adaptive safety weights based on the approximated

CVaR by the undiscounted real costs. In the second place, the internal algorithm of

SaGui is SAC-Lagrangian, therefore, risk control can be augmented to SaGui by using the

distributional safety critic rather than the expectation safety critic. In general, the combi-
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nation just means a different safety requirement in SaGui. But, additional theoretical and

empirical proofs of convergence need to be established.

7.3. FINAL THOUGHTS

In this dissertation, we made efforts to enhance the safety mechanism in RL. The proposed

formulations and algorithms make RL more applicable in the real world. However, except

for the aspects we addressed, there are still many problems to be solved. In this section, we

will discuss some other factors that have a significant impact on the successful application

of RL.

Uncontrolled data collection. Unlike supervised learning, the data of RL comes from

the interactions between the agent and the environment. To achieve data balance without

skewed class proportions in a classification data set, supervised learning can resample

the training set, cluster the abundant class, etc. However, it is challenging to define

the training data balance in RL so as to maintain it, while data collection is executed

by the policy. Also, data balance during training may not have a positive effect on the

long-term objectives. No matter which RL algorithm we use, it is difficult to have a perfect

understanding of the reward signal, with the result that the RL agent is collecting repeated

data of little value most of the time. To some extent, a prioritized replay buffer can solve

the problem of training priority, but it actually discards the repeated experience data

(Schaul et al., 2015). To finally obtain feasible policies in the face of complex tasks, it is still

necessary to collect a lot of redundant data. However, in practice, the data collection is

not always free, especially when the simulation is not possible. In summary, data balance

is a challenge in RL due to the dynamic nature of the interactions between the agent and

the environment, and the difficulty of understanding the reward signal.

Environmental restrictions. Many real-world environments start from the initial states,

which limits many possible optimization directions. In the state space, we may prioritize

certain states or novel states and aim to visit them more frequently. However, the state

transition functions (represented by probability functions) of many real-world environ-

ments are stochastic (Puterman, 2014). It can be difficult to optimize for certain critical

states in RL due to the uncertainty of the environment, even when the previous action

sequence is recorded. This becomes even more challenging when using a stochastic

policy, which adds an additional layer of uncertainty through the double stochastic su-

perposition. In addition, this limitation makes impossible some test scenarios that are

essential for some applications. For instance, automatic driving needs to test a certain

bend, but it is hardly possible to repeatedly test the robustness of the policy in this state.



7.3. FINAL THOUGHTS

7

99

Poor interpretability. To solve complex RL problems, we often rely on deep RL meth-

ods, which typically involve the use of value functions to evaluate the quality of a policy.

Originally, value function learning is a process to estimate the impact of current actions

on the future return through gradual learning (Gaskett, Wettergreen, and Zelinsky, 1999).

For deep RL algorithms in large continuous problems, deep neural networks are intro-

duced to approximate the value functions. In this case, it is challenging to verify the

convergence of the value function, and the correctness of the policy. Both of these are not

problems for tabular Q-learning (Sutton and Barto, 2018). For deep RL algorithms, we can

only demonstrate their effectiveness by rendering the policy and checking the learning

processes of return and parameters. Accordingly, careful tuning of hyperparameters and

reward functions may be necessary to achieve good performance, but this can come at

the cost of interpretability. Overall, deep RL methods offer a promising approach for

solving complex RL problems, but they can be challenging to verify and interpret due to

the use of value functions and deep neural networks.

Difficult encapsulation. In some visual classification frameworks, users do not need

to care about model building and parameter setting, but only need to collect their own

data sets and load them (Voulodimos et al., 2018). Also, the whole training process is

transparent to users. However, this is still impossible in RL, partly because of the reward

design (Dewey, 2014; Hadfield-Menell et al., 2017). The original intention of RL research

was to let the machine learn by itself without human intervention. But now, there is a lot

of human engineering in RL, which goes against the original intention of RL. The most

time-consuming work to solve practical problems with RL is not in algorithm selection

but in reward design. We need to consider various mechanisms to guide the agent to learn

the knowledge we expect it to learn, and make the reward meaningful. The current RL is

not intelligent enough to quickly self-evolve without human participation. Therefore, the

diversity of scenarios and the complexity of reward design make RL algorithms difficult to

be encapsulated. To address this, we can improve encapsulation by using modular design,

standard interfaces, abstraction, etc. By taking a structured approach and minimizing

dependencies between components, RL algorithms can be easier to understand and use.

To sum up, the research progress of making RL more applicable is slower than the

expectation of the public. Even though it is widely believed that real AI can be further

realized by combining RL with deep learning, deep RL has not been extensively applied

in the real world. In highly complex problems, the cost of trial and error is high, the task

objective is not easy to be quantified by the reward function, data collection is demanding,

etc. Hence, to apply RL in the real world, we still have a long way to go.
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