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Abstract: In response to the growing demand for sustainable products and services, the kaolin calcination
industry is developing practices that optimise the use of resources. The main challenges include more
efficient use of raw materials and a reduction in the energy consumed by the calcination furnace.
An opportunity to achieve this lies in the optimisation of the calcination process. This can be done
by giving real-time feedback on the quality parameters of the generated calcined kaolin. This study
proposes the use of infrared spectroscopy as a monitoring technique to determine the chemical
properties of the calcined kaolin product. The basis of the monitoring system is the measurement of
the kaolin soluble alumina content as one of the most important quality parameters; this property is
an indicator of the over- or under-use of raw materials and energy during the calcination process
and can advise the operations regarding the optimisation of the working conditions of the furnace.
The implementation of an infrared-based monitoring system would lead to increased efficiency in the
production of calcined kaolin.

Keywords: calcination; kaolin; soluble alumina; monitoring; quality control; optimisation; infrared
spectroscopy

1. Introduction

In the stages involved in the processing of kaolin for speciality applications, calcination is the stage
that has the highest consumption of energy [1]. Nevertheless, the focus of the minerals industry in recent
years has been towards the sustainable extraction and processing of raw materials. As a consequence,
mining companies are developing and implementing practices that include, among others, reduction
of energy consumption and reduction of CO2 emissions [2]. In this scenario, the optimisation of the
calcination process during the generation of kaolin products is of increasing importance.

The industrial calcination of kaolin occurs in calciners such as the Multiple Hearth Furnace (MHF) [3].
The use of energy and resources in the process greatly depends upon the performance of the calciner,
which is operated following a control strategy based on the online measurements of temperature, gas
flow and feed rate for the calciner [4]. The quality control of the calcined kaolin product (i.e., soluble
alumina and brightness parameters) is carried out with laboratory analyses which prohibit consistent
and timely feedback for process control. Buxton and Benndorf [5] stated that, in this scenario, on-site
sensor-based material characterisation has the potential to increase the performance of the process by
ensuring the adherence of the product to the quality specifications, reducing the necessity of off-line
analyses and providing reconciliation data for real-time monitoring and control.

To optimise the performance of the calciner, Jämsä-Jounela et al. [4] proposed the concept for
a control strategy enhanced by mineralogy-driven algorithms, which would also include the online
measurement of the soluble alumina parameter. Recently, Guatame-García and Buxton [6] proposed
the use of infrared sensors to predict the soluble alumina content in calcined kaolin by using a Support
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Vector Regression (SVR) model. Such a measurement could be integrated into the proposed control
strategy, thus providing physical data to optimise the performance of the calciner. The results from that
study provided a proof of concept for the validity of the approach and encouraged a more thorough
analysis to increase its reliability. The successful implementation of the soluble alumina measurement
would depend upon the performance of the predictions and on their relevance for decision making in
the control strategy.

In order take a step further towards the implementation of the infrared-based soluble alumina
measurements as a monitoring tool in the calcination of kaolin, this study is a continuation on the
previous work of the authors [6]. The primary objective is to propose a framework for the monitoring
and quality control of products in the generation of calcined kaolin that can be integrated into the
enhanced control strategy. The product control builds upon the previously developed measurement
of the soluble alumina, presenting an updated model to improve the accuracy of the predictions.
This paper further discusses how the soluble alumina measurement can be incorporated into the
enhanced control strategy. The integration of the monitoring of kaolin calcination products with the
enhanced control strategy would improve its performance having a direct impact on the optimisation
of the calcination process.

2. Industrial Calcination of Kaolin

Raw kaolin that is used for generating speciality products contains more than 90% of kaolinite and
small amounts of muscovite, illite and quartz. In the industrial calcination of kaolin, the raw material
is thermally treated to temperatures above 1000 ◦C using the soft calcination method, i.e., exposing
the material to high temperatures for a prolonged time. In the initial stage of the process, around
600 ◦C, the kaolinite (Al2Si2O5(OH)4) dehydroxylates and transforms into amorphous metakaolinite
(Al2Si2O7) (Equation (1)), which has typically high chemical reactivity. Around 980 ◦C, the metakaolinite
transforms into the spinel phase (Al-spinel (Al2O3) and Si-spinel (SiO2)) (Equation (2)), followed by
the nucleation of the spinel and transformation into characteristically abrasive mullite above 1100 ◦C
(Equation (3)) [7–9].

Al2Si2O5(OH)4
450 − 700 ◦C−−−−−−−→ (Al2O3 · 2 SiO2) + 2 (H2O) ↑ (1)

2 (Al2O3 · 2 SiO2)
980 ◦C−−−→ 2 Al2O3 · 3 SiO2 + SiO2 (amorphous) (2)

3 (2 Al2O3 · 3 SiO2)
>1100 ◦C−−−−−→ 3 (Al2O3 · 2 SiO2) + 5 SiO2 (amorphous) (3)

In the calcination of kaolin for speciality applications, the aim is to generate a product in an
intermediate stage between the amorphous and crystalline spinel phase. This stage marks the balance
point between low reactivity, measured as the soluble alumina content (i.e., amount of Al2O3 that can
be extracted under chemical attack with strong acids), and low abrasiveness, given by the presence of
mullite. The presence of soluble alumina and mullite above-determined thresholds are deleterious in
calcined kaolin products [10].

The Multiple Hearth Furnace (MHF) that is used for the calcination of kaolin is presented in
Figure 1. The MHF is composed of eight hearths and eight burners, located at the fourth and sixth
hearths, which combust natural gas to provide the necessary heat to trigger the calcination reactions.
Adjustment of the gas flow controls the temperature inside the calciner [3,10,11].
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Figure 1. Schematic cross-section of a Multiple Hearth Furnace depicting the location of the feed
inlet and product outlet, as well as the burners that control the temperature profile (Reproduced after
Eskelinen et al. [3], with permission).

Highly refined kaolin is fed into the calciner using an upper weigh feeder bin at the top of the
furnace, followed by a weighed hopper via a rotary valve. The feed rate is expressed in kg/minute of
zero moisture feed. Once inside the MHF, the kaolin flows downstream through the hearths of the
furnace, stirred spirally by rotating rabble blades. Following the changes in the temperature profile,
the calcination reactions previously described occur. At the bottom of the eighth hearth, the calcined
kaolin is discharged through two drop holes on either side of the furnace base. The calcined kaolin,
which leaves the furnace with an approximate temperature of 750 ◦C as a powder, is first cooled down
to 100 ◦C using a high flow stream of ambient air (blast cooling) and then taken to cooler-bag filters to
reach ambient temperature. Thomas et al. [10] calculated a residence time for the kaolin within the
furnace of 42 min under standard operating conditions. The time comprised between discharge and
blast cooling is about 30 min.

In ideal conditions, the transformation from kaolinite to metakaolinite occurs at the fourth hearth,
and the transformation of metakaolinite into Al-Si spinel occurs at towards the sixth hearth [4]. As part
of the process control strategy, the temperature at hearth six is manipulated to facilitate the absorption
of Al into the spinel phase. Since the optimum calcination stage is defined by a point where kaolin
has been fully but not excessively calcined, this step is a critical part of the process. At this specific
point, over-heating would result in the nucleation of abrasive mullite, whereas under-heating would
prevent the absorption of Al in the spinel phase, resulting in a product with high soluble alumina.
The produced calcined kaolin has a soluble alumina target of less than 0.55 wt %.

3. Methods

3.1. Samples

The study of Guatame-García and Buxton [6], which proposed infrared-based measurements
to predict the soluble alumina content in calcined kaolin, was limited to a sample set with values
near to the maximum accepted soluble alumina. Based on those values, it is only possible to detect
samples that are potentially under-calcined. In order to extend the capacity of the predictions also to
detect samples that can be over-calcined, it was necessary to include lower soluble alumina values
into the prediction models. For this purpose, samples of calcined kaolin products collected in four
different sampling campaigns were combined to form a larger sample set with a wide range of soluble
alumina. All the samples were obtained from the production route of a kaolin processing plant in
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Devon (south-west England) after blast cooling. Every sample corresponds to approximately 1 kg of
cumulative and homogenised powders taken over a pre-defined period in every campaign.

The samples from the first and second campaigns are the same ones originally used for developing
the prediction models based on IR spectroscopy [6]. The first campaign corresponds to daily shifts
collected over 23 consecutive days. In the second campaign, the samples were collected every 12 h
during 16.5 consecutive days. The samples from the third campaign were obtained in the time span of
26 h in sampling intervals of 2 h. In the fourth campaign, one sample was collected every hour in a
time span of six hours for four consecutive days. Table 1 summarises the sampling parameters of all
the sample sets.

Table 1. Sampling collection parameters for the four sampling campaigns and descriptive statistics of
their corresponding soluble alumina content (wt %).

Sampling campaign 1st 2nd 3rd 4th

Sampling shift (hours) 24 12 2 1
Number of samples 23 33 14 26

Soluble alumina minimum 0.26 0.30 0.23 0.21
Soluble alumina maximum 0.43 0.64 0.32 0.54
Soluble alumina mean 0.34 0.46 0.27 0.28
Soluble alumina SD 0.04 0.06 0.03 0.06

3.2. Soluble Alumina

The extraction of soluble alumina is employed as the standard operational procedure (SOP) to
determine the quality of the calcined kaolin product. This method makes use of the solubility of Al2O3

in the spinel phase (γ-alumina) in strong acids to estimate the reactivity of the calcined kaolin [12–14].
The measurement of soluble alumina followed the methods described by Taylor [15] and Thomas [16],
in which 0.1 g of sample is diluted into 10 mL of concentrated (16M) nitric acid (Analar grade) for 4 h.
The concentration of soluble alumina in solution was determined by using inductively coupled plasma
atomic emission spectroscopy (ICP-AES) at the plant’s laboratory using a Thermo Electron Iris-AP
emission spectrometer. The overall error of the method is reported as 0.015 wt %. Table 1 presents the
descriptive statistics of the soluble alumina values of all the sample sets.

3.3. Infrared Data Acquisition and Processing

Soluble alumina can be estimated from the IR spectra of calcined kaolin by using the method
proposed by Guatame-García and Buxton [6]. For the acquisition of the infrared spectra, each sample
was placed in a sample cup where the powder was compacted and flattened with a spatula to minimise
void spaces. The infrared spectra of kaolin feed and product samples were collected using an Agilent
4300 handheld FTIR spectrometer using a diffuse reflectance interface and coarse silver calibration.
To capture the spectral feature that serves as a proxy for the presence of soluble alumina, the spectra
of the samples were recorded in the mid-wavelength (MWIR) range, from 1800 to 1538 cm−1 (5.5 to
6.5 µm).

The spectral processing and analysis were carried out in the R environment using the prospectr
package [17]. First, the average of five spectral measurements corresponding to each sample was
computed; the resulting spectra were subsequently smoothened using the Savitzky-Golay filter with a
polynomial order of 3 and windows size of 55 data points. The dataset was subject feature enhancement
by applying the continuum removal (CR) technique [18].

3.4. Soluble Alumina Prediction Model

For updating the Support Vector Regression (SVR) model, the datasets from the first, second and
third sampling campaigns were merged into a single dataset consisting of 70 samples. The merged
data set was split into a training set of 55 samples and a test set of 15 samples using random selection.
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The update of the SVR model followed the same methodology used in the calibration of the original
model: using the R environment, interface to LIBSVM (open source machine learning library for
SVM) [19], package e1071 (functions for SVM) [20], and an RBF (radial basis function) kernel function.
The optimisation of the parameters ε and C used a grid search and 10-fold cross-validation.

The assessment of the model performance was based on the statistical parameters root mean
squared error of the cross-validation (RMSECV), root mean squared error of the calibration (RMSEC),
root mean squared error of the prediction (RMSEP), calculated by Equation (4):

RMSE =

√
Σn

i=1(yi − ŷi)2

n
(4)

where n refers to the number of samples and yi and ŷi are values determined by the SVR model.
Additionally, the dataset of the fourth sampling campaign was used to independently validate the
performance of the updated model, using the root mean squared error of the validation (RMSEV) as
performance indicator.

The models were also compared by using the coefficient of multiple determination (R2) and the
Mean Absolute Error (MAE), which is calculated by Equation (5)

MAE =
Σn

i=1|yi − xi|
n

(5)

as the arithmetic average of the absolute errors of the prediction (yi) in realtion to the measured
values (xi).

The accuracy of the models was compared using the F-test, which uses the ratio of the RMSEP of
two models according to Equation (6)

Fcalculated =
RMSEP2

1
RMSEP2

2
(6)

where RMSEP1 > RMSEP2 The Fcalculated value is compared against Fcritical
v1,v2,α , where v = sample size,

and α = significance level. The differences in the accuracy of the models are evaluated by hypothesis
testing to verify if the variances are homogeneous; if Fcalculated is greater than Fcritical

v1,v2,α , the hypothesis
is rejected.

4. Results

4.1. Model Update

The original SVR model was built based on the samples of the first and second sampling campaigns,
with soluble alumina content ranging from 0.26 to 0.64 wt %. As Table 1 shows, the soluble alumina
values of the samples of the third campaign range from 0.23 to 0.32 wt % and have a mean of 0.27 wt %,
which indicates that a significant part of the data set lies outside the range of the SVR model. Despite
this, the IR spectra were used to calculate the soluble alumina content on these samples using the
original SVR model. A comparison with the reference laboratory measurements evidenced the poor
performance of the prediction, as noted by an RMSE = 0.14 wt %, which is three times as high as the
error that the model allows (RMSECV = 0.046 wt %). These results made evident that the SVR model
does not adequately represent the entire range of soluble alumina values of the calcined kaolin products.

The newly built data set for updating the model has soluble alumina values that range from
0.23 to 0.64 wt % and a mean value of 0.38 wt %. Table 2 summarises the calibration and performance
parameters of the original and updated models. Regarding the calibration parameters, the ε value
is smaller in the updated model, and the required number of support vectors (SV) is proportionally
larger. A smaller ε value implies that, in order to compensate for the variation added by the low soluble
alumina values, this model became more rigid than the original one. Consequently, the model requires
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a larger proportion of the dataset as support vectors. Nevertheless, the number of SV guarantees that
the model does not over-fit the data.

The adjustment of the model comes with the cost of decreased accuracy, as evidenced by the
performance indicators. The R2 value decreases from 0.87 to 0.77 which can be interpreted as 11 %
less accuracy in terms of the variance-accounted-for (VAF). The increase of 0.011 wt % in the RMSECV
and 0.015 wt % in the RMSEC is also an indication of the reduced accuracy of the updated model.
However, a look at the MAE shows that the difference in the accuracy is not substantial. Compared
to the RMSE, the increased error of the updated model as indicated by the MAE is only 0.004 wt %.
This is because the RMSE is more sensitive to a small number of outliers that increase the variance of
absolute error. The greater variance in the dataset used for the updated model increases the RMSE but
does not necessarily imply a significant worsening of the performance of the updated model.

Table 2. Summary of the optimisation parameters and performance indicators of the original [6] and
updated support vector regression (SVR) calibrations.

Model Samples C ε SV RMSECV RMSEC RMSEP MAE R2

Total Training Test (wt %) (wt %) (wt %) (wt %)

Original 56 46 10 3.1 0.46 19 0.046 0.025 0.044 0.027 0.87
Updated 70 55 15 3.0 0.3 30 0.057 0.040 0.039 0.031 0.77

From Table 2 it is also possible to note that the prediction error of the updated model is lower than
the original one. The F-test for these errors resulted in Fcalculated = 1.27 < Fcritical

v1=10,v2=15,α=0.05 = 2.54,
indicating, with a 95 % of confidence, that the original model is more accurate than the updated model
for the prediction of soluble alumina.

A representation of the results in Figure 2 shows that, despite the increased errors, the updated
model produces reasonably good predictions that do not differ significantly from those of the original
model, presented in Figure 3. Similarly to the original model, the updated one seems to under-predict
high soluble alumina values (above 0.5 wt %) and over-predict low values (below 0.3 wt %), although in
a bigger magnitude than the original model, as evidenced by the residuals plot. These results indicate
that even though the updated model compromises the accuracy to cover a more extensive range of
soluble alumina values, the model is nonetheless valid.

Figure 2. (a) Measured vs Predicted plot of the updated SVR model in the calibration and validation
samples, and (b) their respective residuals.
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Figure 3. (a) Measured vs Predicted plot of the original SVR model in the calibration and validation
samples and (b) their respective residuals. Reproduced after Guatame-García and Buxton [6].

4.2. Model Validation

The final validation of the updated SVR model was done using the data set corresponding to
the samples of the fourth campaign. This set consists of 26 samples with soluble alumina values
that vary from 0.21 to 0.54 wt %, with only one value falling outside the range of the updated SVR
model (i.e., 0.21 wt %). Figure 4 displays the measured and IR-predicted soluble alumina values
of the validation samples using the updated model. In general, there seems to be an acceptable
match between the IR-predicted and the measured values, with a reported error RMSE = 0.059 wt %.
This error is similar to the RMSECV of the updated model (RMSE = 0.057 wt %), which indicates
that the model is adequate for this set of samples. Despite this, there are two remarkable differences
between the predicted and the measured values that deserve more detailed analysis.

So
lu

bl
e A

l 2
O

3 (
w

t %
)

Sample time

 IR predicted
 Measured

          Model error

Figure 4. IR-predicted values of the validation sample set using the updated SVR calibration model,
compared to the measured values. The samples are labelled as x-y, where x = sampling day and y =
sampling time. Sample 1–6 (measured) not displayed for purposes of scale (measured value = 0.54 wt %).

The most striking difference between the measured and predicted values occurs in the sample
labelled as 1–6, namely the last sample collected on day one. The measured soluble alumina value of
this sample is 0.54 wt %, whereas the predicted value is 0.31 wt %, a difference almost four times as big
as the error of the model. Observing the trends of the samples on day 1 (samples 1–2 to 1–6), all the
predicted and measured values fluctuate in a narrow range, with the only exception of the measured
data point of sample 1–6. Given these trends, and taking into account the operation of the calciner and
the consistency of the feed, an error in the laboratory measurement is more likely than the error in the
prediction, which suggests a value between 0.26 and 0.37 wt %. Without this data point, the RMSEV
drops to 0.039 wt %, which is similar to the RMSEC and RMSEP in the model.
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The second difference also occurs in the samples collected on day one. Except for sample 1–6,
explained above. In the remainder samples, the soluble alumina values are strongly over-predicted,
with the measured values lying outside or close to the margin of error. The over-prediction of low
values was already observed in the calibration set (Figure 2), and in this validation set, most of the
samples have also over-estimated predictions. However, these results indicate that the discrepancy
between measured and predicted values becomes stronger at very low values. Nonetheless, taking into
account that very low soluble alumina is not critical for the control of the calcined product, the updated
SVR model can be considered adequate for monitoring the quality of the calcined kaolin product
regarding its reactivity. Since low soluble alumina might be an indicator for over-calcination, low
values predicted using the updated model can instead be used as an advising parameter to check the
mullite content in the calcined product.

5. Product Monitoring

Currently, in the production of calcined kaolin, the method for the estimation of soluble alumina
follows the procedure described by Taylor [15]. Even though it provides accurate measurements,
the fact that it is a laboratory-based technique that depends on highly specialised equipment creates
a turnaround time of 3 to 4 days [16]. Moreover, the number of assays per day are often limited to
minimise the costs. These restrictions in the measurements prohibit timely operational feedback and
process optimisation.

The proposed system for product monitoring aims to provide soluble alumina measurements
that give timely feedback to the operation of the calciner. The system is based on the soluble alumina
SVR-estimation using the IR spectra. The previous results indicate that there is a trade-off between a
robust model that has a broad range of soluble alumina detection but a reduced accuracy, that is to say,
the updated SVR model, and a model limited to a narrower detection range but with better accuracy,
namely the original SVR model. Nevertheless, both models can estimate the amount of soluble alumina
in the calcined kaolin with a level of accuracy that is acceptable for practical applications, as in the
monitoring of the process.

The SVR models can be incorporated and become an integral part of the enhanced quality control
strategy for the MHF proposed by Jämsä-Jounela et al. [4]. The control strategy seeks to optimise the
capacity of the furnace and minimise its energy consumption while maintaining the quality standards
of the calcined product. Figure 5 presents a simplified version of the concept of the quality control
scheme of the furnace developed by Jämsä-Jounela et al. [4], with focus on the input of the IR-based
soluble alumina measurement.

In practice, the quality requirements for soluble alumina specify a threshold of 0.55 wt % as the
maximum amount allowed in the product. Therefore, that threshold is the critical value that the monitoring
and control system should focus. In this scenario, a combination of the updated and original models would
give a more reliable estimation of the quality of the samples.

At first instance, the updated SVR model can provide with an initial estimation of the soluble
alumina content in the product, and discriminate low or high values. Based on the response of both
models, as observed in Figures 2 and 3, a low–high threshold can be set at 0.4 wt %. Low values do not
impose a warning for the process, and therefore, precise estimation is not highly relevant. Nevertheless,
low soluble alumina might suggest over-calcination of the kaolin, in which case, the mullite content of
the calcined product should be considered. The furnace control strategy includes a soft-sensor for the
determination of mullite, which also dictates changes in the feed rate.

In the case of high values, the soluble alumina content can be re-calculated using the original
model that would generate a more accurate estimation. Since the accuracy of the original model is
0.046 wt %, a threshold at 0.50 wt % can be set as the point where action needs to be taken to increase
the temperature in the furnace, which is controlled by adjusting the gas flow to hearths 4 and 6.
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Optimisation controller
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Modify gas flow
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Figure 5. Proposed monitoring scheme for the quality control of the production of calcined kaolin
based on the IR estimation of soluble alumina to be integrated into the enhanced control strategy
proposed by Jämsä-Jounela et al. [4].

The implementation of an IR-based monitoring strategy for calcined products would enable the
frequent collection of data, also creating permanent records. The integration of these data with other
historical plant records could be used to perform trend analysis, develop soft-sensors and explore the
opportunities for detecting other properties. Furthermore, the routine collection of data would serve
to periodically recalibrate the models with the laboratory measurements that are regularly taken for
official reporting.

With the existing instrumentation, the system can be used in a semi-offline mode, that is to say,
on-site but with the intervention of an operator who collects the sample and manipulates the instrument.
The biggest impact of the proposed framework is on the reduction of the turnaround time for operational
feedback, which enables the optimisation of the processes with a direct effect on the energy consumption
of the furnace and the use of the raw materials. The product monitoring could be carried out at earliest
after blast cooling when the temperature of the calcined material allows its manipulation. The collection of
the infrared measurements following the procedures used in this work and the calculation of the soluble
alumina value using the SVR models takes approximately 10 min. Consequently, the infrared-based
soluble alumina value can be obtained about 45 min after the discharge of the calcined powder. This delay
is not only adequate for operational feedback but also indicates a significant time improvement from the
current laboratory measurements, which are on the scale of days. The implementation of the system does
not require extensive knowledge of chemometrics or infrared spectroscopy. A regular plant operator
with minimal training could perform the measurements.

Even though the infrared instruments used for conducting this research are portable, full on-site
implementation of the methods proposed in this work requires adapting the spectrometers to the
mine operations. Adapting the spectrometer to an industrial set-up would require a system to collect
and present the samples to the instrument, protection of the spectrometer head to avoid the need
for constant cleaning, protection against dust –which is abundant at the operations–, and protection
against humidity or moisture, to minimise the influence from the environment. The full automation
of the system would require major design modifications of the instrument to make it more robust
and autonomous.
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6. Conclusions

The increasing demand for generating calcined kaolin products together with the increasing
concerns regarding the economics and energy consumption related to the calcination process itself
has created the need to generate strategies to optimise the process. This study proposed a framework
for the monitoring and quality control of calcined kaolin products that can be integrated into a
mineralogy-driven control strategy of the calcination process. The monitoring system estimates the
soluble alumina content in the calcined product. It uses a sensor-based approach that uses infrared
(IR) spectroscopy and multivariate predictions modelled using Support Vector Regression (SVR).
Even though the set-up for the collection of the measurements is used in a semi-offline mode, it has
the capacity to be adapted to become an automated on-line system.

The system uses a combination of two SVR models. First, a medium-level accuracy model
(RMSECV = 0.057 wt %) that discriminates low and high soluble alumina values (i.e., higher or
lower than 0.4 wt %). Second, a higher-accuracy model (RMSECV = 0.046 wt %) that focuses on
the prediction of values near to the threshold for quality specifications (soluble alumina > 0.5 wt %).
The integration of this monitoring framework into the enhanced control strategy for the MHF furnace
can influence the decision parameters for feed rate and temperature control, with direct repercussions
on the optimisation the resource utilisation and energy consumption of the calcination process.
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