
Optimal Decision Trees for non-linear metrics
A geometric convex hull approach

Bogdan-Andrei Bancuta1

Supervisors: Emir Demirović1, Jacobus G. M. van der Linden1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 23, 2024

Name of the student: Bogdan-Andrei Bancuta
Final project course: CSE3000 Research Project
Thesis committee: Emir Demirović, Jacobus G. M. van der Linden, D.M.J. Tax

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract

In the pursuit of employing interpretable and performant Machine Learning models,
Decision Trees has become a staple in many industries while being able to produce near-
optimal results. With computational power becoming more accessible, there has been
increasing progress in constructing Optimal Decision Trees. It guarantees optimal
solutions with respect to different metrics within a given size limit on training data
while requiring a smaller number of nodes and becoming more viable to compute on
real-world data. However, non-linear metrics, which are very effective when evaluating
trees on imbalanced datasets, still represent a challenge regarding runtime performance
and scalability. Previous approaches generate the Pareto Front of the set of possible
solutions, an expensive operation in computing the optimal tree. To address this gap,
we introduce a novel merging algorithm of two Pareto Fronts using convex hulls, offering
better pruning and leading to an increase in scalability. The experiments show a
significant improvement in runtime of almost 10% on bigger datasets and higher-depth
trees using the F1-score metric, with the potential to be applied to other convex metrics.

1 Introduction
Machine Learning algorithms have recently been increasingly employed in critical domains
such as healthcare or the judicial system [1]. Unfortunately, the lack of transparency and
accountability of most of the nowadays deployed systems can lead to erroneous decisions
that cannot be explained. Therefore, interpretability is important in both revealing why
the model reached a certain outcome and offering explanations on how it arrived at that
outcome, its "thought process" [2]. This reasoning will increase the general people’s trust
in these systems, which was severely damaged by the continuous presence of biases and may
reveal patterns in data unbeknownst to engineers.

Decision trees is an important Machine Learning model, as it manages to break com-
plex data into simpler parts and is easily interpretable as each decision and its effect can
be observed. However, most common and popular decision trees use greedy heuristics such
as CART [3], which minimize an objective function at the current level, not taking into ac-
count the structure of the tree, such as the possible number of splits left, into consideration.
Therefore, the need for Optimal Decision Trees, which are more compact, needing fewer
nodes to achieve similar performance and thus increase interpretability, can optimize custom
objectives and find the global optimum on the training set while also having a relatively
high out-of-sample performance is desirable [4].

The problem of constructing an Optimal Decision Tree is an NP-hard problem [5], having
to consider all the possible combinations of feature splits to find the one that best optimizes
the desired objective. Many approaches have tried to explore this space more efficiently, us-
ing mixed-integer programming (MIP) [6, 7], constraint programming (CP) [8], or boolean
satisfiability (SAT) [9], but with severe scalability issues for trees of depth more than three or
datasets with more than a thousand instances [10]. On the other hand, Dynamic Program-
ming methods have proved to be much more effective by directly exploiting the structure of
the tree, recursively splitting the problem into two identical smaller ones.

Thus, many improvements have been introduced throughout the years, such as the DL8.5
algorithm [11] that used itemset mining and branch and bound techniques to better prune
and find the most promising trees faster. MurTree [4] has further improved the dynamic
programming approach by including a depth-two solver that returns the optimal decision
tree of depth-two iteratively by calculating the frequency counts of the positive and negative

1

labels. As a result, it can iterate through all possible trees without the need to split the
dataset over a feature or even access the dataset at all.

Another important contribution is the adaptation of decision trees to non-linear metrics.
These are particularly useful when datasets are imbalanced, and the relation between the
misclassifications of classes is much more complex, for example, when determining the false
positives and negatives of a medical test [12]. As the independence of the left and right
subtrees is no longer satisfied for this kind of metrics [13], and it represented the foundation
for many of the previous works, the key was to approach this as a bi-objective optimisation
problem. Demirović and Stuckey [13] have developed a new algorithm for tackling problems
with two different objectives. They showed that the candidate solutions lie on the Pareto
Front, a set of solutions in which no one is better than the other with respect to both
objectives. This method has allowed the algorithm to run on a wide variety of metrics at
the expense of runtime performance.

The current approaches compute the whole set of solutions generated by combining two
Pareto Fronts and only then reducing it to the possible candidates for the best score, which
is an expensive operation, quadratic with respect to the size of the sets. Therefore, the main
aim of this paper is to evaluate whether other methods to store the candidate solutions
can be employed to further increase the performance of the Optimal Decision Trees when
using non-linear metrics. Specifically, if the convex hull of the Pareto Front can be used
and how it will affect the performance of the algorithm. This method will allow for a faster
computation of the candidate solutions by combining and maintaining only the convex hull
of the Pareto Front; a visual representation can be seen in Figure 1. The results from
our experiments show an almost 10% improvement in runtime compared to the previous
state-of-the-art approaches.

The structure of the paper is as follows: Section 2 will present advancements and con-
tributions that have already been made in improving the runtime and generalizability of
Optimal Decision Trees. Notation that will be used throughout the paper, as well as back-
ground information about the problem, is introduced in section 3, and then our method of
achieving a faster merging algorithm is described in section 4. Section 5 presents the experi-
ments we performed to verify the runtime of our proposed algorithm and a discussion of the
results that we have obtained from these experiments and their potential impact. Section 6
documents the steps we took to ensure our findings are accessible and reproducible. Final
remarks and recommendations for future action are mentioned in section 7.

2 Related work
This section will focus on three contributions to the Dynamic Programming approach, which
has proved to be the best-performing one so far [10].

Although the problem of finding Optimal Decision Trees was framed using dynamic
programming more than 50 years ago [14], the emergence of new techniques has shifted the
focus away throughout the years [4]. Emir Demirović et al. have formalised the notation and
optimizations from the past under a conventional dynamic programming approach as well
as brought forth further improvements. They have highlighted two important properties of
decision trees, independence, once a feature is selected, the dataset is split into two disjoint
sub datasets, thus allowing to compute the misclassification score of a node as the sum
of misclassifications of its children. Overlap, refers to the order of the feature splits, more
precisely that any order of the same feature splits will lead to the same result for a particular
instance, thus allowing to establish an order of the splits, pruning away a lot of possible

2

trees. Moreover, this paper also presents a specialized depth two solver, that can give the
lowest misclassification score of a depth-two tree iteratively, without the need for accessing
the data more than once. This is achieved by computing frequency counts of instances where
the two selected features are present and then efficiently deriving from this information the
tree with the lowest score.

As already briefly stated in the Introduction, non-linear metrics are important when
optimizing multiple objectives but also when dealing with imbalanced datasets. Demirović
and Stuckey [13] have adapted the MurTree algorithm discussed above to function on non-
linear metrics by treating this as a bi-objective optimisation problem. Strictly speaking,
on the F1-score metric, the solution to a certain dataset was defined as a pair of numbers
(fp, fn), denoting the false positives and false negatives, respectively, achieved by a decision
tree of a certain depth. Due to the non-linearity of the metric, the independence of the left
and right subtrees no longer holds, and combining the best solution from each no longer
guarantees the best solution for the parent node. They proposed that the optimal solution
lies on the Pareto Front and, thus, each node will have one storing the candidate solutions.
There is, however, one limitation to this algorithm, as it can be applied to any non-linear
metric, not just the F1-score, as long as it is monotonic.

Dynamic programming approaches have proved to be more efficient than any other ap-
proach, but they lack the adaptability to different objectives or constraints [10]. van der
Linden, de Weerdt, and Demirović have created a framework, STreeD, which aims to em-
ploy the efficiency and optimizations found so far in dynamic programming to be able to
construct Optimal Decision Trees of any optimization task that is separable, a necessary
condition for DP to work. Separability is defined as the result of a subtree not being influ-
enced by any other decision taken outside it - each subtree is a separate problem from the
other ones. The results of this framework are impressive by being able to solve five tasks
such as: Cost-sensitive classification, Prescriptive policy generation, Non-linear classifica-
tion metrics, Group fairness, and Classification accuracy, while sacrificing little performance
compared to the dedicated algorithms for those tasks and still be orders of magnitude faster
than any other approach such as mixed-integer programming.

3 Preliminaries
Section 3.1 will introduce notation that will be used throughout the rest of the paper, while
Section 3.2 will formally describe the problem that we want to solve.

3.1 Notation
feature A variable encoding information about an object
instance A collection of features and a value denoting the label of the instance
D Set of instances
|D| Number of instances
D+ Set of instances where label is 1
D− Set of instances where label is 0
D(f) Set of instances where the value for feature f is 1
D(f) Set of instances where the value for feature f is 0

d Depth of tree
F Set of available features to split on

3

3.2 Problem definition
Described more formally, given a dataset D and a maximum depth d, the goal is to find a
decision tree of depth d or smaller that attains the best F1-score. Thus, the solution will
be of the form (fp, fn), denoting the false positives and false negatives associated with the
tree with the best F1-score.

Since this metric is non-linear and monotonic, the optimal solution lies on the Pareto
Front of all candidate solutions [13].

Definition 1. (Pareto Front) Pareto Front is a set of non-dominated solutions, where
no solution is strictly better than any other with regard to both false positives and false
negatives.

PF (S) = {(x, y) ∈ S|¬∃(x′, y′) ∈ S, x < x′ ∧ y < y′}.

Definition 2. (Merge) Given a parent node p with feature f and Pareto fronts of its
children PFleft and PFright, the Pareto Front PFp,f = merge(PFleft, PFright) of the parent
node p is computed as ([13]):

PFp,f = PF ({(x1 + x2, y1 + y2) : (x1, y1) ∈ PFleft ∧ (x2, y2) ∈ PFright}) .

Now, we present the general recurrence of the dynamic programming approach, which
represents the high-level idea of the algorithm, with other enhancements and optimizations
not included for simplicity reasons (adapted from [13]). The algorithm takes two parameters:
the dataset we wish to find the best F1-score of and the maximum depth of the tree that
we should consider.

T (D, d) =

{
PF ({(|D+|, 0), (0, |D−|)}) if d = 0

PF
(⋃

f∈F merge
(
T (D(f), d− 1), T (D(f), d− 1)

))
if d > 0

(1)

As previously described, in Definition 3.2, the merge function combines every point from
the left Pareto Front with every other one from the right Pareto Front, and then the Pareto
Front of the resulting set is computed, resulting in a complexity of O(|PFleft| × |PFright|).
The size of these Pareto Fronts is bounded by O(min(|D+|, |D−|)), in the case where there is
a tree with every possible number of false positives or negatives. Thus, we can observe how,
on big datasets, this becomes a significant problem. Moreover, the merging is performed
for every feature split in order to combine the best solutions from the left and right child,
resulting in a complexity of O(|PFleft| × |PFright| × |F |) for a node at a given depth. As
the depth of the tree grows, not only the sizes of the Pareto Fronts will grow as a result of
adding more and more candidate solutions, but also the complexity of the algorithm will
grow exponentially in terms of the size of the feature space. Therefore, to achieve more
scalability and to be able to make the construction of bigger Optimal Decision Trees more
feasible, significantly reducing the complexity of the merging operation is desired, and also
the contribution of this paper.

4 The Minkowski Sum Merge algorithm
Our approach relies on the observation that if the metric we are using is monotonic and
convex, then the optimal solution from the search space, in our case all trees of depth d, is
going to be included in the convex hull of this space [15]. Adapted to our problem, if we
plot all the decision trees of depth d according to the false positives and false negatives, the

4

optimal solution according to the metric will be present in the convex hull of this space, thus
it is only needed to maintain the convex hull of our search space. Intuitively, only the most
extreme points in the space are reasonable candidates for best score, and the convex hull
allows us to do exactly that by keeping only those points that form the polygon enclosing
all others. As can also be observed in Figure 1 left, the Pareto Front is still identifying
non-extreme points as potential candidates.

Property 1. (Monotonicity) If we consider classifiers of the form f(fp, fn) then mono-
tonicity is described by the following property which describes the benefit of always improving
the classification ([13]):

∀fp, fn, fp′, fn′iffp ≤ fp′ ∧ fn ≤ fn′ =⇒ f(fp, fn) ≤ f(fp′, fn′)

This study also mentions that most practical metrics satisfy this property, including F1-
score.

Property 2. (Convexity) A function f : R2 → R is convex if for ∀ a,b ∈ R2 and λ ∈
[0, 1], the following inequality holds ([15]):

f(λ× a+ (1− λ)× b) ≤ λ× f(a) + (1− λ)× f(b)

Definition 3. (Convex hull) Having a set of points S in R2, the convex hull CH(S) is
the minimal superset of S for which holds that if x, y ∈ CH(S) and λ ∈ [0, 1] ([15]):

λ× x+ (1− λ)× y ∈ CH(S)

In our case of 2D space, the convex hull is a convex polygon enclosing all the points in S.
There are many algorithms for computing the convex hull, but our solution does not rely
on any specific implementation. We have decided to use the Graham Scan algorithm, which
finds the convex hull in O(n × log(n)).

Comparing these two approaches, the convex hull and the Pareto Front, in terms of the
number of candidate solutions considered, we observe interesting patterns, specifically that
neither one of them is completely enclosed in the other, as can be seen in Figure 1 left.
While the convex hull approach also takes into consideration solutions that have a high
value for both objectives, it also disregards some that the Pareto Front approach is taking.
Moreover, according to Michael Mampaey et al. [15], the size of the convex hull in this
particular space is bounded by O(|D|2/3), which is sublinear with respect to the number of
instances, a better bound than the one computed above for the Pareto Front. And, since
both approaches include the optimal solution, our method combines these two approaches,
achieving an even smaller set of candidate solutions than either of them that still contains
the optimal solution that we are looking for.

This combining step is easily done by calculating the convex hull on the already-determined
Pareto Front (see Figure 1 right). Important to note that this happens for every possible
feature split, and thus, the result of calculating the Pareto Front of the union (equation 1)
does not necessarily return a convex polygon. Therefore, in order for the assumptions made
below about the Minkowski Sum to be true, a convex hull needs to be computed at the end
to guarantee the convexity of the set of solutions stored in the current node.

Minkowski Sum. As mentioned before, combining two Pareto Fronts is quite expensive,
and one of the major advantages of using convex hulls is the fact that they are convex
polygons which are much faster to combine using the algorithm of Minkowski Sums; an
example can be seen in Figure 2.

5

Figure 1: Pareto Front and Convex hull of depth two solutions (left), and our combined
approach (right)

Definition 4. (Minkowski sum) The Minkowski Sum of two sets A, B ⊆ R2 is defined
as ([15]):

A⊕B = {a+ b | a ∈ A, b ∈ B}

As can be seen from the definition above, the Minkowski Sum has virtually the same
definition as the Merge function above in Definition 3.2. The property that makes this
approach much better is the fact that performing the Sum on two convex polygons can be
done in linear time with respect to the number of points of the two polygons [16], by just
"walking" along the edges of these polygons. Therefore, with this updated method, we can
bring down the complexity of the merge function from O(|PFleft| × |PFright|) to O(|PFleft
+ |PFright|), which should have a great impact, especially on higher-depth trees.

Figure 2: The Minkowski sum of two convex
polygons. Each point in A ⊕ B is the sum of
a point in A and a point in B [15].

A pseudocode of the algorithm de-
scribed above can be seen in Algorithm
1. It has a final time complexity of
O(|PFleft| × log(|PFleft|) + |PFright| ×
log(|PFright|)), the two logarithms com-
ing from the counterclockwise ordering.

After outlining the algorithm’s two
primary components, we will give a
brief run-through of how they function
together. Looking at the children of a
non-leaf node, each will have its set of
candidate solutions corresponding to a
convex polygon. Using the Minkowski
Sum algorithm described above, we ob-
tain another convex polygon represent-
ing the convex hull of their Cartesian
product. Afterwards, we will apply the
Pareto property to further prune points
on the convex hull that are guaranteed
not to contribute to the optimal solution. Lastly, we compute the convex hull of the re-

6

maining set, as there are still points left that can be pruned out, and we are not guaranteed
to have a convex shape yet, which is crucial. Now, we end up with the set of candidate
solutions of the parent node, representing a convex polygon. Repeating the same process
until we reach the root of the tree will lead to the optimal result. Since every step of this
method requires some form of sorting, the final complexity is dominated by the largest set of
candidate solutions, which is represented by the combination of the sets of the two children,
so |PFleft| + |PFright|.

Algorithm 1 Minkowski sum algorithm for combining the solutions of the left and right
child

Input: Solleft, Solright - set of solutions corresponding to the left and right child respec-
tively
Output: Solcomb - set of solutions corresponding to the combining of Solleft and Solright
Order Solleft and Solright counter-clockwise
Solleft := Solleft ∪ {Solleft[0]} ∪ {Solleft[1]}
Solright := Solright ∪ {Solright[0]} ∪ {Solright[1]}
Solcomb := {}
i← 0, j ← 0
while i < |Solleft| ∧ j < |Solright| do

Solcomb := Solcomb ∪ {Solleft[i] + Solright[j]}
cross← CounterClockwise(Solleft[i+ 1]− Solleft[i], Solright[j + 1]− Solright[j])
if cross ≥ 0 then

i← i+ 1
end if
if cross ≤ 0 then

j ← j + 1
end if

end while
while i < |Solleft| do

Solcomb := Solcomb ∪{Solleft[i] + Solright[j]}
i← i+ 1

end while
while j < |Solright| do

Solcomb := Solcomb ∪{Solleft[i] + Solright[j]}
j ← j + 1

end while
return Solcomb

5 Experiments and Results
Section 5.1 describes the two types of tests executed, the methods we compare against as
well as the depth of trees we construct, and the technical specifications of the machine on
which the experiments were performed. Section 5.2 presents the results and analysis of the
merging algorithm on artificially created Pareto Fronts, while section 5.3 the integration of
the merging approach into the Optimal Decision Tree algorithm.

7

5.1 Experiment setup
In order to show the efficiency and scalability boost of our new approach and to answer our
research question of how this method affects the runtime, we perform several experiments.
First, we compare the performance of the merge step, described in Definition 2, between the
normal Pareto Front approach and Minkowski Sum on artificially created Pareto Fronts of
different sizes. Second, we also compare the performance of the merge step integrated into
the Optimal Decision Tree algorithm against two state-of-the-art algorithms in this field, the
STreeD implementation with the Pareto Front [10] and the Bi-objective MurTree [13], a spe-
cialized approach for optimizing bi-objective problems. As both STreeD implementations,
with and without Minkowski Sums, are orders of magnitude faster than the Bi-objective
MurTree, for clarity, we have decided to omit these results from the runtime performance
tables.

The experiments run on a 3.2Ghz AMD Ryzen 7 5800HS with 16GB of RAM using only
one thread. We test on a total of 21 binary classification datasets used in previous works
[13] with the mean of five runs being recorded. We construct trees of depth 4 (see Table 2)
and 5 (see Table 3), as for depth 3, the trees are too small to observe any difference between
the approaches as well as the computation being done in the range of milliseconds.

5.2 Artificial Pareto Merging results
In the isolated case, running our Minkowski Sum method against the traditional Pareto
Front approach yields improvements that are several orders of magnitude faster (see Table
1). This difference is given by the fact that our Minkowski Sum Algorithm manages to
combine the two Pareto Fronts in linear time after sorting instead of quadratic, which has
a massive impact, especially on bigger datasets.

Table 1: Runtime(ms) for merging artificially created Pareto Fronts of different sizes. Best
results are shown in bold. Average of five runs.

Size Pareto Front Minkowski Sum
500 8 <1
1000 28 <1
5000 898 1
10000 3355 2
20000 13711 4

5.3 Tree Construction Results
Looking at the runtime performance presented in Tables 2 and 3, we can conclude that
the STreeD approach with Minkowski Sums is 8% faster than the STreeD using Pareto
Fronts and over 400% faster than the Bi-objective MurTree (computed with geometric mean
[17]). This not only indicates that on average, our approach is faster than the previous
implementation of STreeD, but looking at the performance on depth 5, we start to notice
a much bigger improvement than on depth 4, of over 12%. Moreover, we can observe that
a higher number of instances and a bigger imbalance in the dataset results in a bigger
improvement for our approach since there would be more candidate solutions generated
that would be closer to each other in terms of false positives and negatives and thus harder
to prune away (for example yeast or german-credit datasets). Another interesting result to

8

note is that our method performs worse than the Pareto Front approach when the number
of features is higher than the number of instances, on the ionosphere dataset. This may
be due to the relatively low number of instances which may produce lower-sized candidate
solution sets that do not favour our approach, but more experiments need to be performed
to confirm the validity of this theory.

Table 2: Runtime(s) for maximizing F1-score for two classes with trees of depth 4 with
timeouts beyond 1200s denoted with ‘-’. Best results are shown in bold. Average of five
runs.

Dataset |D| |D+| |D−| |F| Minkowski Sum Pareto Front
anneal 812 625 187 93 1 2
audiology 216 57 159 148 3 3
australian-credit 653 357 296 125 13 13
breast-wisconsin 683 444 239 120 5 5
diabetes 768 500 268 112 8 9
german-credit 1000 700 300 112 23 25
heart-cleveland 296 160 136 95 4 4
hepatitis 137 111 26 68 <1 <1
hypothyroid 3247 2970 277 88 2 2
ionosphere 351 225 126 445 1142 1163
kr-vs-kp 3196 1669 1527 73 2 2
letter 20000 813 19187 224 271 277
lymph 148 81 67 68 <1 <1
mushroom 8124 4208 3916 119 <1 <1
pendigits 7494 780 6714 216 152 152
primary-tumor 336 82 254 31 <1 <1
segment 2310 330 1980 235 <1 <1
soybean 630 92 538 50 <1 <1
tic-tac-toe 958 626 332 27 <1 <1
vote 435 267 168 48 <1 <1
yeast 1484 463 1021 89 5 6

6 Responsible Research
For our research to meaningfully contribute to the scientific community and the collective
of human knowledge, we must adhere to the FAIR guidelines. This entails that the data
that we use needs to be Findable, for which we provide proper documentation in terms
of links or other papers. Accessible, this data can be viewed by anyone interested, which
is achieved through a publicly available repository1, without requiring any authentication.
By using the common CSV format, we ensure that the data is Interoperable and can be
used for any means. Lastly, Reusability is a very important aspect of research, and we
provide instructions and comments meant to help understand and run the code as well as
comprehensive descriptions of the setup process of our experiments to ensure reproducibility,
including the code that was used to perform these experiments.

1As some parts of the codebase contain unpublished work, the repository will be made available at a
later date.

9

Table 3: Runtime(s) for maximizing F1-score for two classes with trees of depth 5 with
timeouts beyond 1200s denoted with ‘-’. Best results are shown in bold. Average of five
runs.

Dataset |D| |D+| |D−| |F| Minkowski Sum Pareto Front
anneal 812 625 187 93 20 23
audiology 216 57 159 148 <1 <1
australian-credit 653 357 296 125 333 351
breast-wisconsin 683 444 239 120 36 39
diabetes 768 500 268 112 184 209
german-credit 1000 700 300 112 822 929
heart-cleveland 296 160 136 95 72 82
hepatitis 137 111 26 68 <1 <1
hypothyroid 3247 2970 277 88 33 36
ionosphere 351 225 126 445 998 948
kr-vs-kp 3196 1669 1527 73 27 42
letter 20000 813 19187 224 - -
lymph 148 81 67 68 <1 <1
mushroom 8124 4208 3916 119 <1 <1
pendigits 7494 780 6714 216 345 347
primary-tumor 336 82 254 31 <1 <1
segment 2310 330 1980 235 <1 <1
soybean 630 92 538 50 7 9
tic-tac-toe 958 626 332 27 3 4
vote 435 267 168 48 10 10
yeast 1484 463 1021 89 92 122

7 Conclusions and Future Work
Non-linear metrics are an important tool to assess the performance of Machine Learning
models on imbalanced datasets. Optimal Decision Trees is a model that can return the
optimum value for a given objective and is more interpretable than standard Decision Trees.
However, since constructing one is an NP-hard problem [5] and non-linear metrics add an
additional layer of complexity, all approaches encountered so far lack scalability with respect
to the size of datasets and trees computed. We have presented a novel merge algorithm
that increases the performance of obtaining Optimal Decision Trees by using convex hulls
to directly construct a set of candidate solutions from the sets of the left and right child.
When incorporated into STreeD [10], a framework for calculating Optimal Decision Trees, we
have obtained an almost 10% percent improvement on the solution using Pareto Fronts, the
current state-of-the-art implementation. Therefore, we have managed to reach our scalability
goal of making it more feasible to compute bigger Optimal Decision Trees, which will yield
better misclassification scores. As a result, critical domains such as healthcare or the judicial
system can make use of this advancement to make much more accurate decisions, achieving
optimal results instead of just an approximation with standard Decision Trees while also
being easier to understand due to the low number of decision nodes.

Moreover, the positive results of applying Minkowski Sums to optimize the F1-score may
encourage the application of this method to other partially ordered tasks or metrics where
the merging step represents a bigger bottleneck or when multiple dimensions are needed, as

10

long as the two mentioned properties of monotonicity and convexity are satisfied.

References
[1] C. Rudin, “Stop explaining black box machine learning models for high stakes decisions

and use interpretable models instead,” Nature Machine Intelligence, pp. 206–215, 2019.

[2] L. H. Gilpin, D. Bau, B. Z. Yuan, A. Bajwa, M. Specter, and L. Kagal, “Explaining
explanations: An overview of interpretability of machine learning,” in 2018 IEEE 5th
International Conference on Data Science and Advanced Analytics (DSAA), pp. 80–89,
2018.

[3] L. Breiman, J. Friedman, R. Olshen, and C. Stone, Classification and Regression Trees.
Chapman and Hall/CRC, 1984.

[4] E. Demirović, E. H. Anna Lukina, J. Chan, J. Bailey, C. Leckie, K. Ramamohanarao,
and P. J. Stuckey, “Murtree: Optimal decision trees via dynamic programming and
search,” Journal of Machine Learning Research, vol. 23(26), pp. 1–47, 2022.

[5] L. Hyafil and R. L. Rivest, “Constructing optimal binary decision trees is np-complete,”
Information Processing letters, pp. 15–17, 1976.

[6] D. Bertsimas and J. Dunn, “Optimal classification trees,” Mach Learn 106, pp. 1039–
1082, 2017.

[7] S. Verwer and Y. Zhang, “Learning optimal classification trees using a binary linear
program formulation,” in Proceedings of AAAI-19, pp. 1625–1632, 2019.

[8] H. Verhaeghe, S. Nijssen, G. Pesant, C.-G. Quimper, and P. Schaus, “Learning optimal
decision trees using constraint programming,” Constraints 25, pp. 226–250, 2020.

[9] Mikolá Janota and António Morgado, “Sat-based encodings for optimal decision trees
with explicit paths,” in Proceedings of the International Conference on Theory and
Applications of Satisfiability Testing, pp. 501–518, 2020.

[10] J. G. M. van der Linden, M. M. de Weerdt, and E. Demirović, “Necessary and sufficient
conditions for optimal decision trees using dynamic programming,” in Advances in
NeurIPS-23, pp. 9173–9212, 2023.

[11] G. Aglin, S. Nijssen, and P. Schaus, “Learning optimal decision trees using caching
branch-and-bound search,” in Proceedings of the AAAI Conference on Artificial Intel-
ligence, pp. 3146–3153, 2020.

[12] D. R. Grimes, E. M. Corry, T. Malagón, C. O’Riain, E. L. Franco, and D. J. Brennan,
“Challenges of false positive and negative results in cervical cancer screening,” medRxiv,
2020.

[13] E. Demirović and P. J. Stuckey, “Optimal decision trees for nonlinear metrics,” in
Proceedings of AAAI-21, pp. 3733–3741, 2021.

[14] M. R. Garey, “Optimal binary identification procedures,” SIAM Journal on Applied
Mathematics, vol. 23, no. 2, pp. 173–186, 1972.

11

[15] M. Mampaey, S. Nijssen, A. Feelders, R. Konijn, and A. Knobbe, “Efficient algorithms
for finding optimal binary features in numeric and nominal labeled data,” Knowledge
and Information Systems, pp. 465–492, 2015.

[16] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars, Computational Geometry:
Algorithms and Applications. Springer, 2008.

[17] P. J. Fleming and J. J. Wallace, “How not to lie with statistics: the correct way to
summarize benchmark results,” Communications of the ACM, vol. 29, pp. 218–221,
1986.

12

