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Abstract

The goal of this thesis is to estimate parameters in a bidimensional Ornstein-Uhlenbeck process,
namely a diffusion model which can be found in Favetto and Samson (2010), which considers plasma
and interstitium concentrations. We first look at a general linear stochastic differential equation and
some properties. Then we simulate possible paths and observations based on the diffusion model,
and derive the underlying state space model. We consider state estimation, where we use the Kalman
filter and smoother algorithm. It turns out that the smoother outperforms the Kalman filter. Next,
we apply and derive the Liu and West filter for state estimation. We see that the performance
for the Liu and West filter is close to the Kalman filter. Furthermore, we look at the parameter
estimation. We again use and derive the Liu and West filter, but now for parameter estimation.
We first apply this filter to a linear AR(1) model, which gives good results. Then we start with
estimating one parameter in the diffusion model and finally we estimate all 7 parameters in the
model, using priors concentrated around the true value and 10000 particles. For one parameter, we
obtain good results. For all 7 parameters, results are satisfactory, with for fully observed data better
results than for partially observed data. We also look at the influence of the number of particles:
for 5000 particles estimation results are somewhat worse than for 10000 particles. Furthermore, we
change some priors such that they are no longer concentrated around the true value. From this, we
see that the Liu and West filter does not seem to perform as well for certain choices of priors. Next,
we look at state and parameter estimation in a non-linear AR(1) model using the Liu and West
filter, which gives rather good results. Finally, we apply the Liu and West filter once more, but now
with a real data set. In this case we are able to obtain parameter values that provide a reasonable
estimate for the sum of the concentrations, but for the interstitium concentration it leaves much
uncertainty.
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1 Introduction

One of the many disadvantages of a tumor is that it can cause angiogenesis (see Jaszai and Schmidt
(2019)). Angiogenesis is the excessive growth of arteries due to certain factors that are produced
by the tumor. These arteries split from the main blood vessel and if they reach the tumor, it
can become much bigger and cause more damage. Certain treatments exist to prevent this from
happening, and to study the effectiveness of such treatments, we have to look at the in and out
flow of particles through the boundary of the artery. This can be modelled by a so-called Ornstein-
Uhlenbeck process (see Favetto and Samson (2010)). The parameters of this diffusion model can
tell us something about the in and out flow of particles and thus about the effectiveness of certain
treatments. The goal of this report is to estimate the model parameters using Bayesian techniques
in which we combine the knowledge of the diffusion model with observations. The observations are
obtained by injection of a contrast agent into the body and recording a sequence of medical images
from which we can measure the evolution of the contrast agent concentration. The main research
question will be: How can we use Bayesian estimation in a bidimensional Ornstein-Uhlenbeck pro-
cess?

We will first look at a general linear stochastic differential equation and its solution in section
(2). Next, we apply this to the diffusion model of Favetto and Samson (2010) and look at a sim-
ulated path in section (3). We also simulate the observations in this section and derive the state
space model. In section (4) we look at the Kalman filter and how it can be applied in our model.
We also introduce the Smoother algorithm and compare it to the Kalman filter. The Liu and West
filter for state estimation is described and derived in section (5). In this section we also look at
the effective sample size and we apply the Liu and West filter for state estimation to the diffusion
model. In section (6) we look at the Liu and West filter for parameter estimation. We derive this
filter and then apply it to an AR(1) model. Eventually we apply it to the diffusion model, starting
with the estimation of one parameter. Next, we estimate all parameters and shortly look at the
influence of the number of particles and the choice of prior distributions. In section (7) we test the
Liu and West filter in a non-linear AR(1) model for both state and parameter estimation. We look
at parameter estimation in the case of real data in section (8). In section (9) we draw conclusions
and give some suggestions for further research. References can be found in section (10), and the
majority of the MATLAB code can be found in the Appendix, section (11).
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2 A general linear Stochastic Differential Equation

We look at a linear SDE of the following form:

dXt = (BXt + b(t))dt+ σdWt, X0 = η (1)

with Xt the state vector of our system at time t, η the initial state, b(t) a given vector valued
function of t, B and σ constant matrices and Wt a multidimensional Wiener process at time t. The
unique solution of (1) is given by:

Xt = eBt
(
X0 +

∫ t

0
e−Bsb(s)ds+

∫ t

0
e−BsσdWs

)
(2)

Furthermore, we have that:

Xt | X0 ∼ N
(
eBt
(
X0 +

∫ t

0
e−Bsb(s)ds

)
, eBt

(∫ t

0
e−BsσσT (e−Bs)Tds

)
(eBt)T

)
(3)

The proof that (2) is the unique solution of equation (1) can be found in Liptser and Shiryaev
(2001). They consider a more general SDE, where B and σ can depend on time. We will follow the
same steps that they use in this section and we also show the conditional normality.

2.1 Existence of the solution

In order to verify that a solution of (1) exists, we show that expression (2) satisfies equation (1).
First, define Yt = X0 +

∫ t
0 e
−Bsb(s)ds +

∫ t
0 e
−BsσdWs. We use Ito’s formula (see e.g. Oksendal

(2000) ) to rewrite dXt:

dXt = d(eBtYt) = BeBtYtdt+ eBtdYt = BXtdt+ eBtdYt

= BXtdt+ eBtd(X0 +

∫ t

0
e−Bsb(s)ds+

∫ t

0
e−BsσdWs)

= BXtdt+ eBtd

(∫ t

0
e−Bsb(s)ds

)
+ eBtd

(∫ t

0
e−BsσdWs

)
= BXtdt+ eBt(e−Btb(t)dt) + eBt(e−BtσdWt)

= BXtdt+ b(t)dt+ σdWt = (BXt + b(t))dt+ σdWt

So we see that expression (2) is a solution of equation (1). Now we still need to prove that this is
the unique solution.

2.2 Uniqueness of the solution

Assume both Xt and X̃t, driven by the same Wiener process Wt, satisfy (1). We look at the
difference ∆t = Xt − X̃t. This difference satisfies the following equation:

d∆t = dXt − dX̃t = (BXt + b(t))dt+ σdWt − (BX̃t + b(t))dt− σdWt = B(X̃t −Xt)dt = B∆tdt

d∆t = B∆tdt

This equation we can easily solve and its solution is:

∆t = eBt∆0 = eBt(X0 − X̃0) = eBt(η − η) = 0

So we see that X̃t = Xt and thus we have a unique solution.
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2.3 Conditionally normal distribution of Xt

We also need to prove claim (3) that Xt, given X0, is normally distributed. First, define

Ct :=

∫ t

0
e−Bsb(s)ds

Zt :=

∫ t

0
e−BsσdWs

Note that Ct is deterministic and Zt is a random variable. Substituting these definitions in (2), we
get:

Xt = eBt(X0 + Ct + Zt)

Now, given X0, the distribution of Xt is the same as the distribution of Zt, only scaled and shifted.
Using the definition of an Ito integral (see e.g. Oksendal (2000) ), we can write:

Zt =

∫ t

0
e−BsσdWs = lim

∆ti→0

n∑
i=1

e−Bti−1σ(Wti −Wti−1)

with ∆ti = ti − ti−1, t0 = 0 and tn = t. Brownian motion has normal increments (see for example
Klebaner (2005) ), so we have that Wti − Wti−1 is normally distributed. So Zt is actually the
(limit of) the sum of normally distributed random variables, which means Zt itself is also normally
distributed. For the expectation of Zt we have:

E(Zt) = E

(
lim

∆ti→0

n∑
i=1

e−Bti−1σ(Wti −Wti−1)

)

= lim
∆ti→0

n∑
i=1

e−Bti−1σE(Wti −Wti−1) = 0

For the expectation of Xt we now have:

E(Xt | X0) = E(eBt(X0 + Ct + Zt) | X0) = eBt(X0 + Ct) + eBtE(Zt | X0)

= eBt(X0 + Ct) + eBtE(Zt) = eBt(X0 + Ct)

where we used that Ct and X0 (since X0 is given) are deterministic. Next, we look at the covariance
matrix of Zt. We have:

Cov(Zt) = E(ZtZ
T
t )− E(Zt)E(Zt)

T = E(ZtZ
T
t )

Using Ito’s isometry property (see Klebaner (2005)), we can write:

Cov(Zt) = E(

∫ t

0
e−BsσdWs(

∫ t

0
e−BsσdWs)

T ) = E(

∫ t

0
e−Bsσ(e−Bsσ)Tds)

=

∫ t

0
e−Bsσ(e−Bsσ)Tds =

∫ t

0
e−BsσσT (e−Bs)Tds

So for the covariance matrix of Xt we find:

Cov(Xt | X0) = Cov(eBt(X0 + Ct + Zt) | X0) = eBtCov(Zt)(e
Bt)T

where we again used that Ct and X0 are deterministic. So we can now conclude that:

Xt | X0 ∼ N
(
eBt
(
X0 +

∫ t

0
e−Bsb(s)ds

)
, eBt

(∫ t

0
e−BsσσT (e−Bs)Tds

)
(eBt)T

)
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3 Diffusion of contrast agent particles

Favetto & Samson (2010) consider the following model:

dPt = (α(t)− (λ+ β)Pt + (κ− λ)It)dt+ σ1dW1,t (4)

dIt = (λPt − (κ− λ)It)dt+ σ2dW2,t (5)

This model describes the diffusion of contrast agent particles between 2 compartments: the blood
plasma, with concentration Pt, and the interstitial fluid or interstitium, with concentration It. Fur-
thermore, we have a known function α(t), which describes the injected contrast agent concentration
in the artery, and W1,t and W2,t are two independent Wiener processes on R. The unknown param-
eters are α(t), β, λ, κ, σ1 and σ2. In order for the parameters to make sense biologically speaking,
they have to be positive and λ < κ. An overview of the diffusion model can be seen in Figure 1.

Figure 1: Simplified overview of the diffusion of contrast agent particles between the two compart-
ments with concentrations P (t) and I(t)

The diffusion model described by equations (4) and (5) is a particular case of the stochastic differ-
ential equation in (1), with:

Xt =

[
Pt
It

]
, b(t) =

[
α(t)

0

]
, B =

[
−λ− β κ− λ

λ λ− κ

]
, σ =

[
σ1 0
0 σ2

]
, dWt =

[
dW1,t

dW2,t

]
3.1 Mean reversion property

We look at the eigenvalues of the matrix B. The characteristic equation of B is:

µ2 + µ(β + κ) + β(κ− λ) = 0

with discriminant d = (β + κ)2 − 4β(κ− λ) = (β − κ)2 + 4βλ > 0. So the eigenvalues are:

µ1 =
−(β + κ)−

√
d

2
, µ2 =

−(β + κ) +
√
d

2

Clearly, µ1 < 0. For µ2 to be negative, we need −β − κ+
√

(β − κ)2 + 4βλ < 0. This is equivalent
to (
√

(β − κ)2 + 4βλ)2 < (β+κ)2. If we work this out, we get: β2−2κβ+κ2 +4βλ < β2 +2κβ+κ2.
This implies that 4βλ < 4βκ. This only holds if λ < κ, which is indeed the case. So we have two
negative eigenvalues. Recall that we have the following SDE:

dXt = (BXt + b(t))dt+ σdWt

Since B has two distinct negative eigenvalues, we can write B = PDP−1, with D the matrix of
eigenvalues and P the matrix of eigenvectors. If we plug this in, we get:

dXt = (PDP−1Xt + b(t))dt+ σdWt
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Multiply by P−1:
P−1dXt = (DP−1Xt + P−1b(t))dt+ P−1σdWt

Set Yt = P−1Xt, then we get:

dYt = (DYt + P−1b(t))dt+ P−1σdWt

Since B has negative eigenvalues we can write D = −A, where A has entries −µ1 > 0 and −µ2 > 0
on the diagonal. So we have:

dYt = (̃b(t)−AYt)dt+ σ̃dWt

with b̃(t) = P−1b(t) and σ̃ = P−1σ. We now have a mean-reverting model (see e.g. Wiersema
(2008) ). This means that if the vector AYt falls below b̃(t), then the term b̃(t) − AYt will have
positive entries, and dYt is more likely to be positive. Conversely, if AYt is above b̃(t), then the term
b̃(t)−AYt will have negative entries and dYt is more likely to be negative. So Yt will always revert
back to some mean value.

3.2 Simulating paths using Euler discretisation

To get an idea of the behaviour of the contrast agent concentration over time, we can use the
parameter values below from the simulation study by Favetto and Samson (2010), which they
obtain using a step size of h = 0.04 and n = 1000 grid points.

θ1 = 0.91, θ2 = 0.99, θ3 = 0.2, θ4 = 0.03, θ5 = 0.01, θ6 = 20

However, those parameters are not the original ones, so we need to follow their parameter transfor-
mation to get back the original model parameters. The MATLAB code to do this can be found in
appendix A. We then find the following parameter values:

β = 2.23, σ1 = 2.49, σ2 = 0.77, κ = 0.37, λ = 0.11, α = 31.60

Note that Favetto and Samson take α constant, which is somewhat unnatural, but for simplicity we
will follow this assumption as well. Now that we know the parameters, we can simulate a possible
path for the contrast agent concentration. To do this, we will first discretise equations (4) and (5)
using the Euler forward discretisation. A short description of how to do this can be found in the
lecture notes by Haugh (2017). Since the parameters were obtained using h = 0.04 and n = 1000,
we will use those values as well. The discretization yields:

Pj − Pj−1 = (α− (λ+ β)Pj−1 + (κ− λ)Ij−1)h+ σ1(W1,j −W1,j−1) (6)

Ij − Ij−1 = (λPj−1 − (κ− λ)Ij−1)h+ σ2(W2,j −W2,j−1) (7)

Using the time-homogeneity property of Brownian motion (see e.g. Klebaner (2005) ), we have:

Wj −Wj−1 = W (tj)−W (tj − h)
d
= W (h)−W (0)

Since Brownian motion has normal increments with mean 0 and variance equal to the step size, we
have that:

Wj −Wj−1 = Zj ∼ N(0, h)

We can now rewrite equations (6) and (7) as:

Pj = Pj−1 + [α− (λ+ β)Pj−1 + (κ− λ)Ij−1]h+ σ1

√
hZ1,j (8)

Ij = Ij−1 + [λPj−1 − (κ− λ)Ij−1]h+ σ2

√
hZ2,j (9)

where Z1,j and Z2,j are independent and standard normal distributed. The initial condition is
P (0) = I(0) = 0, so we set P0 = I0 = 0. We implement this iteration scheme in MATLAB, see
Appendix B, using the parameter values that we found before. Since the Z1,j ’s and the Z2,j ’s
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are random, we get different realisations of the stochastic process. For reproducibility, we set the
seed of the default random number generator in MATLAB to 0. The plasma and interstitium
concentrations now follow from the iteration scheme and the total concentration St is just the sum
of the two concentrations. Figure 2 shows a realization of the process obtained by the Euler forward
discretisation.

Figure 2: One realization of the contrast agent concentrations over time, displaying the plasma
concentration (red line), the interstitium concentration (yellow line) and the sum of the
concentrations (blue line).

We see that there is more variation in the plasma concentration Pt than in the interstitial concen-
tration It, which is what we expect: σ1 was taken higher than σ2. Also, it seems that the contrast
agent concentrations first increase, due to the injection of contrast agent. Then each of them fluc-
tuates around some constant value, which means that the concentration has reached some sort of
equilibrium. Random collisions of contrast agent particles make it so that random fluctuations
around equilibrium occur.

3.3 Simulating observations

For future sections we will need some observations. For now, we simulate the observations, but in
section 8 we will look at a real data set. We assume that the observations correspond to times in
our grid, so we get observations y1, . . . , yn, with n = 1000, which are realisations of the observed
time series Yt. We use the realization of Figure 2 as the basis and then manually add some noise to
the observations. So we have an observation model of the form:

yi = HXi + ηi (10)

with yi =

[
P̃i
Ĩi

]
the noisy observation at time ti, H = I the observation matrix, Xi =

[
Pi
Ii

]
the state

of our system at time ti and ηi the noise in the observation, which we assume is N(0, R) distributed,
with R = σI. We will assume standard Gaussian noise, so we choose σ = 1. The simulated data is
displayed in Figure 3.
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Figure 3: Simulated data for the contrast agent concentrations over time, displaying the plasma
concentration (red line), the interstitium concentration (yellow line) and the sum of the
concentrations (blue line).

In practice, the contrast agent concentration is measured at discrete times by taking a sequence of
medical images of a portion of the vascular system. The intensity in the medical image can give us
an indication about the total contrast agent concentration, but we cannot distinguish between the
two compartments, so only the sum of the contrast agent concentrations, St, can be measured. In
this case of partially observed data, we need to change the measurement model to:

ỹi = H̃Xi + η̃i (11)

with ỹi = P̃i + Ĩi = S̃i, H̃ =
[
1 1

]
, Xi =

[
Pi
Ii

]
and η̃i ∼ N(0, R̃). Note that the data is now

one-dimensional, so we have R̃ = σ2 = 1, assuming standard Gaussian noise.

3.4 From SDE to state space model

In order to be able to apply the Kalman filter (see section 4.1), we have to rewrite our SDE as a
state space model. First we will do this for the general case of equation (1). We already know the
solution at any time t, given by (2). So the solution at time t+ h is:

Xt+h = eB(t+h)

(
X0 +

∫ t+h

0
e−Bsb(s)ds+

∫ t+h

0
e−BsσdWs

)
To get to the state space form, we have to relate Xt+h to Xt. We have:

Xt+h = eB(t+h)

(
X0 +

∫ t+h

0
e−Bsb(s)ds+

∫ t+h

0
e−BsσdWs

)

= eB(t+h)

(
X0 +

∫ t

0
e−Bsb(s)ds+

∫ t

0
e−BsσdWs +

∫ t+h

t
e−Bsb(s)ds+

∫ t+h

t
e−BsσdWs

)
= eBheBt

(
X0 +

∫ t

0
e−Bsb(s)ds+

∫ t

0
e−BsσdWs

)
+ eB(t+h)

(∫ t+h

t
e−Bsb(s)ds+

∫ t+h

t
e−BsσdWs

)
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Substituting (2) we find:

Xt+h = eBhXt + eB(t+h)

∫ t+h

t
e−Bsb(s)ds+ eB(t+h)

∫ t+h

t
e−BsσdWs

= AXt + Ct + ξt

with

A = eBh, Ct = eB(t+h)

∫ t+h

t
e−Bsb(s)ds, ξt = eB(t+h)

∫ t+h

t
e−BsσdWs

We assume an equidistant grid, so we can set ti−1 = t and ti = t+ h. Then we have:

Xi = AiXi−1 + Ci + ξi (12)

and

Ai = eB(ti−ti−1), Ci = eBti
∫ ti

ti−1

e−Bsb(s)ds, ξi = eBti
∫ ti

ti−1

e−BsσdWs

Equation (12) is called the state equation or process model (Kim and Bang (2018)). In section 2.3
we have seen the following:∫ t

0
e−BsσdWs ∼ N

(
0,

∫ t

0
e−BsσσT (e−Bs)Tds

)
In a similar way as in section 2.3 we can now derive the distribution of ξi. We find:

ξi ∼ N(0, Qi)

with Qi = eBti
(∫ ti

ti−1
e−BsσσT (e−Bs)Tds

)
(eBti)T . Now we go back to the diffusion model of Favetto

and Samson (2010):

b(t) =

[
α
0

]
, B =

[
−λ− β κ− λ

λ λ− κ

]
, σ =

[
σ1 0
0 σ2

]
Note that the vector b(t) is actually independent of t. This allows us to explicitly compute the
integral Ci:

Ci = eBti
∫ ti

ti−1

e−Bsbds =

(∫ ti

ti−1

eB(ti−s)ds

)
b = −B−1(I − eB(ti−ti−1))b = B−1(eBh − I)b

We can also somewhat simplify Qi by noting that for a diagonal matrix σ we have σσT = σ2. Now,
for our diffusion model we find the following process model:

Xi = FXi−1 + C + ξi (13)

where
F = eBh , C = B−1(eBh − I)b , ξi ∼ N(0, Qi)

and

Qi = eBti

(∫ ti

ti−1

e−Bsσ2(e−Bs)Tds

)
(eBti)T

Similar to the derivation in section 2.3, we can now also derive the transition distribution:

Xi | (Xi−1 = xi−1) ∼ N(Fxi−1 + C,Qi)
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with initial state X0 =

[
P0

I0

]
= 0. Now that we have the process model, we need to look at the

measurement model. We have already derived this for fully observed data in equation (10) and for
partially observed data in equation (11). Recall that it is of the following form:

Yi = HXi + ηi

with ηi ∼ N(0, R). Since the noise term is Gaussian, we have that:

Yi | (Xi = xi) ∼ N(Hxi, R)

The process model together with the measurement model form the underlying state space model of
the SDE in equations (4) and (5).

4 State estimation using Kalman filtering and smoothing

4.1 Kalman filter

The Kalman filter (1960), named after Rudolf Kalman, is nowadays used in many areas. It is used
to estimate state variables in a linear dynamical system to combine physical knowledge with data
input. We will shortly discuss how this algorithm works, based on descriptions by Kim & Bang
(2018) and Miller (2016). The model which is used in the Kalman filter considers observations
y1, . . . , yn and underlying hidden states x1, . . . , xn which form a Hidden Markov Model (i.e. the
future state only depends on the current state and not on the past). The observations and states
are assumed to satisfy the following factorisation:

p(y1:n, x1:n) = p(x1)p(y1 | x1)
n∏
i=2

p(xi | yi−1)p(yi | xi)

where we use Bayesian notation: p(yi | xi) = fYi|Xi
(yi | xi) is the probability density function f(.)

of the random variable Yi | Xi evaluated in yi | xi. The factorisation states that the joint density
of the observations and states is the product of the initial density and conditional densities, more
precisely:

• p(x1) = φ(x1;µ0, P0) is the initial density, where φ(x;µ, σ2) denotes the density of the N(µ, σ2)
distribution evaluated at x, with µ0 the initial state and P0 the initial covariance matrix which
captures the uncertainty in the initial state.

• p(xi | xi−1) = φ(xi;Fxi−1, Qi) is the transition density, which describes how to get from state
i− 1 to state i using the physical model behind it. Here F is the transition matrix, which is
derived from the physical model, and Qi describes the noise/error that is not captured by the
physical model.

• p(yi | xi) = φ(yi;Hxi, R) is the measurement density, with H the measurement matrix that
relates the measurements to the states and R the noise/error in the measurements.

In order to be able to use the Kalman filter, the system must be linear and have normally distributed
noise terms. Clearly, equations (4) and (5) are linear. Furthermore, we have seen in section 3.4 that
the noise terms for the state space model are Gaussian. Since our initial state is exactly known,

X0 = 0, we have that µ0 = 0 and P0 =

[
0 0
0 0

]
. Next, we will derive the Kalman filter equations.
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4.1.1 Derivation of Kalman filter

We assume that we have a measurement model of the form:

Yt+1 = LXt+1 + Zt+1

with Zt+1 ∼ N(0,Σ0). We also assume that the transition distribution is Gaussian, which means
that Xt+1 | (Xt = xt) ∼ N(µt,Σt), where µt depends on xt. Now we look at the vector with
components Xt+1 and Yt+1:[

Xt+1

Yt+1

]
=

[
Xt+1

LXt+1 + Zt+1

]
=

[
I
L

]
Xt+1 +

[
0
I

]
Zt+1

If we condition on Xt, and use the independence of Xt and Zt+1, then by the calculation rules for
multivariate normal distributions (see e.g. Bijma et al. (2017)), we obtain:[

I
L

]
Xt+1 | Xt ∼ N

( [
I
L

]
µt,

[
I
L

]
Σt

[
I
L

]T )

and [
0
I

]
Zt+1 ∼ N

(
0,

[
0
I

]
Σ0

[
0
I

]T )
Because of independence, we can just add up the means and the covariances:[

Xt+1

Yt+1

]
| Xt ∼ N

( [
I
L

]
µt,

[
I
L

]
Σt

[
I
L

]T
+

[
0
I

]
Σ0

[
0
I

]T )
= N

([
µ1

µ2

]
,

[
Σ11 Σ12

Σ21 Σ22

])
One of the properties of multivariate normal distributions is that now Xt+1 | (Yt+1 = yt+1, Xt = xt)
also has a multivariate normal distribution (see Majumdar and Majumdar (2017)), N(µt+1,Σt+1),
with µt+1 = µ1+Σ12Σ−1

22 (yt+1−µ2) and Σt+1 = Σ11−Σ12Σ−1
22 Σ21. We have to identify µ1, µ2,Σ11,Σ12,Σ21

and Σ22. Clearly, we have µ1 = µt and µ2 = Lµt. For the components of Σ we need to do some
calculations: [

I
L

]
Σt

[
I
L

]T
=


1 0
0 1
L11 L12

L21 L22

[Σt
11 Σt

12

Σt
21 Σt

22

] [
1 0 L11 L21

0 1 L12 L22

]

=


Σt

11 Σt
12

Σt
21 Σt

22

L11Σt
11 + L12Σt

21 L11Σt
12 + L12Σt

22

L21Σt
11 + L22Σt

21 L21Σt
12 + L22Σt

22

[1 0 L11 L21

0 1 L12 L22

]

=


Σt

11 Σt
12 L11Σt

11 + L12Σt
12 L21Σt

11 + L22Σt
12

Σt
21 Σt

22 L11Σt
21 + L12Σt

22 L21Σt
21 + L22Σt

22
L11Σt

11 + L12Σt
21 L11Σt

12 + L12Σt
22 L11(L11Σt

11 + L12Σt
21) + L12(L11Σt

12 + L12Σt
22) L21(L11Σt

11 + L12Σt
21) + L22(L11Σt

12 + L12Σt
22)

L21Σt
11 + L22Σt

21 L21Σt
12 + L22Σt

22 L11(L21Σt
11 + L22Σt

21) + L12(L21Σt
12 + L22Σt

22) L21(L21Σt
11 + L22Σt

21) + L22(L21Σt
12 + L22Σt

22)



Since Σt is a covariance matrix, it is symmetric. So Σt
21 = Σt

12. So we can simplify the above as:

=


Σt

11 Σt
12 L11Σt

11 + L12Σt
12 L21Σt

11 + L22Σt
12

Σt
12 Σt

22 L11Σt
12 + L12Σt

22 L21Σt
12 + L22Σt

22
L11Σt

11 + L12Σt
12 L11Σt

12 + L12Σt
22 L2

11Σt
11 + 2L11L12Σt

12 + L2
12Σt

22 L21(L11Σt
11 + L12Σt

12) + L22(L11Σt
12 + L12Σt

22)

L21Σt
11 + L22Σt

12 L21Σt
12 + L22Σt

22 L11(L21Σt
11 + L22Σt

12) + L12(L21Σt
12 + L22Σt

22) L2
21Σt

11 + 2L21L22Σt
12 + L2

22Σt
22



and [
0
I

]
Σ0

[
0
I

]T
=


0 0
0 0
1 0
0 1

[Σ0
11 Σ0

12

Σ0
21 Σ0

22

] [
0 0 1 0
0 0 0 1

]
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=


0 0
0 0

Σ0
11 Σ0

12

Σ0
21 Σ0

22

[0 0 1 0
0 0 0 1

]
=


0 0 0 0
0 0 0 0
0 0 Σ0

11 Σ0
12

0 0 Σ0
21 Σ0

22


So we can now identify Σ11,Σ12,Σ21 and Σ22:

Σ11 = Σt

Σ12 = ΣtL
T

Σ21 = LΣt

Σ22 = LΣtL
T + Σ0

Because of the conditional normality, we get:

Xt+1 | (Yt+1 = yt+1, Xt = xt) ∼ N(µt+1,Σt+1)

with

µt+1 = µt + ΣtL
T (LΣtL

T + Σ0)−1(yt+1 − Lµt)

Σt+1 = Σt − ΣtL
T (LΣtL

T + Σ0)−1LΣt

Define Kt = ΣtL
T (LΣtL

T + Σ0)−1, which is the Kalman gain. Then we have:

µt+1 = µt +Kt(yt+1 − Lµt)

Σt+1 = Σt −KtLΣt = (I −KtL)Σt

These equations are precisely the Kalman filter equations.

4.1.2 Kalman filter algorithm

We will use the version of the Kalman filter algorithm as described by Kim & Bang (2018).

Algorithm 1: Kalman filter algorithm

Input: Observations y1, . . . , yn, initial values µ0, P0 and F,C and Q from the state
equation and H and R from the observation equation

Output: Mean µ and covariance matrix P of the filtering distribution
initialization: µ = µ0 and P = P0 ;
for i = 1, . . . , n do

Prediction step:
µ−i = Fµi−1 + C ;
P−i = FPi−1F

T +Q ;
Update step:
Ki = P−i H

T (R+HP−i H
T )−1 ;

µ+
i = µ−i +Ki(yi −Hµ−i ) ;
P+
i = (I −KiH)P−i ;

end

We write the superscript − for the predicted estimate, prior to observing the data, and the su-
perscript + for the updated estimate, after observing the data. Note that the update equations
are the same equations we found in the derivation in the previous section. The factor Ki is called
the Kalman gain and tells us how much we need to change an estimate now that we have a new
measurement. The filtering distribution is N(µ+

i , P
+
i ) and its mean, µ+

i , is the filtered estimate for
the state variable at time ti.
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4.1.3 A note on the implementation

The MATLAB code for the Kalman filter algorithm can be found in appendix C. For efficient
computations we follow Favetto and Samson (2010). They consider the system for St and It, so
the state is Xt = [St, It]

T . Next, they multiply this state vector with the inverse of the matrix of
eigenvectors of the system, which they call P−1, and set Ut = P−1Xt. They then derive the process
and observation model for Ut. The advantage of this is that we now have that the matrix B in
the process model in equation (13) is diagonal. This makes computations easier and allows us to
compute the matrix Q exactly. However, we need to be careful here: after performing the Kalman
filter we have to transform the state back to its original form by multiplying with P , the matrix of
eigenvectors.

4.1.4 Results of Kalman filter

We will apply the Kalman filter, Algorithm 1, in the case of fully observed data and for partially
observed data. We use the mean of the filtering distribution as the estimate for the state variable.
From the covariance matrix P we use the diagonal entries, which represent the variance in the
estimate for S and for I, to calculate approximate confidence bounds. For the fully observed data
we use the measurement model from equation (10). The Kalman filter estimates up to time t = 4,
including confidence bounds, can be found in Figure 4.

(a) (b)

Figure 4: The sum of contrast agent concentrations (left) and the interstitium concentration (right)
with the Simulated trajectory (blue line), the Data (red points) and the Kalman filter
estimate (yellow line), including approximate confidence bounds

In both graphs we see that the Kalman filter estimate is closer to the simulated trajectory than
the data points are, especially for the interstitium concentration. We also see that the simulated
trajectory is mostly contained in the 95% confidence bounds. For partially observed data we use
the measurement model from equation (11). We then find the following two graphs, which can be
seen in Figure 5.
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(a) (b)

Figure 5: The sum of contrast agent concentrations (left) and the interstitium concentration (right)
with in (a) the Simulated trajectory (blue line), the Partially Observed Data (red points)
and the Kalman filter estimate (yellow line) and in (b) the Simulated trajectory (blue
line) and Kalman filter estimate (red line), including approximate confidence bounds

One of the strengths of the Kalman filter is that we now have an available estimate of the interstitium
concentration, although no data was available for this. We see, however, that the Kalman filter
estimate is quite different from the simulated interstitium concentration. In order to get a better
estimate, we can use a different algorithm, namely the RTS smoother algorithm.

4.2 Smoother algorithm

The RTS smoother algorithm (see e.g. Miller (2016)) can be used to retrospectively improve the
estimate of the state variable at time i given by the Kalman filter, where we make use of the
additional data at steps i+ 1, . . . , n. We will use the algorithm as described in the lecture notes by
Sarkka (2011).

Algorithm 2: RTS smoother algorithm

Input: µi and Pi for all i = 1, . . . , n, as computed by the Kalman filter algorithm
Output: Mean µS and covariance matrix PS of the smoothing distribution
initialization: µS = µn and PS = Pn ;
for i = n− 1, . . . , 1 do

µ−i+1 = Fµi + C ;

P−i+1 = FPiF
T +Q ;

Gi = PiF
TP−1

i+1 ;

µSi = µi +Gi(µ
S
i+1 − µ

−
i+1) ;

PSi = Pi +Gi(P
S
i+1 − P

−
i+1)GTi ;

end

The superscript S indicates that it is the smoothed version. In this smoother algorithm we improve
the Kalman filter estimate µi by adding the term Gi(µ

S
i+1−µ

−
i+1), which is some factor Gi multiplied

by a correction term µSi+1−µ
−
i+1. The MATLAB code for this algorithm can be found in Appendix

D. After performing the RTS smoother algorithm, we obtain the smoothing distribution N(µSi , P
S
i ),

where the mean µSi is the smoothed estimate of the state variable.
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4.2.1 Comparing Kalman filter and Smoother algorithm

In order to compare the Kalman filter and the Smoother algorithm, we perform a Monte Carlo
study. We repeat the following steps N = 1000 times. First, we generate discrete time observations
from the model. Next, we apply the Kalman filter and smoother algorithm and compute the mean
of both the filtering and the smoothing distribution at all observation times. In the i-th repetition of
these steps we obtain a vector µF,i = [µF,i1 . . . µF,in ], where µF,ij is the mean of the filtering distribution

at time tj . Similarly for the smoothing distribution we obtain a vector µS,i = [µS,i1 . . . µS,in ]. For
both estimates we calculate the RMSE:

RMSEF,i =

√√√√ 1

n

n∑
j=1

(xj − µF,ij )2

RMSES,i =

√√√√ 1

n

n∑
j=1

(xj − µS,ij )2

with xj the real value of the state variable at time j from the simulation trajectory in Figure
2. The Monte Carlo study provides us with vectors RMSEF = [RMSEF,1 . . . RMSEF,N ] and
RMSES = [RMSES,1 . . . RMSES,N ]. The mean of each of those vectors can be found in Table 1
and 2 below.

fully observed data Kalman filter RTS smoother

S(t) 0.618 0.514

I(t) 0.350 0.268

Table 1: Root Mean Squared Error for fully observed data after MC simulation

partially observed Kalman filter RTS smoother

S(t) 0.626 0.516

I(t) 0.591 0.572

Table 2: Root Mean Squared Error for partially observed data after MC simulation

What we can see from this, is that for partially observed data the RMSE values are all higher than
for fully observed data. We also see that in all cases the RTS smoother performs better than the
Kalman filter, which is what we expect. It may also be interesting to see how many times the
RTS smoother outperforms the Kalman filter in our Monte Carlo simulation. We do this by simply
counting the number of times that the RMSE for the Kalman filter is higher than the RMSE for
the RTS smoother. This gives the following results:

fully observed partially observed

S(t) 100 % 100 %

I(t) 100 % 97.2%

Table 3: Percentages for fully and partially observed data

Since the smoother algorithm considers more observations, we expect it to always outperform the
Kalman filter. This is the case for S(t) and also when we have fully observed data. For I(t) and
partially observed data, the RTS Smoother outperforms the Kalman filter almost all of the time.
The reason that this is not 100% is because of the Monte Carlo error. Another way to compare the
Kalman filter and smoother algorithm is to look at a box plot. We make a box plot to show the
distribution of the Monte Carlo values for the estimate of the state variable at time t = 32 for both
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the Kalman and smoother algorithm. In each iteration of this Monte Carlo study, we generate a
new set of observations and calculate the filtered and smoothed estimate for the state variable at
time t = 32, which are the means of the filtering and smoothing distribution. The results can be
found in Figure 6 and 7 below.

(a) (b)

Figure 6: Monte Carlo values for the state variable at time t = 32 for both algorithms and fully
observed data. The dotted blue line is the true value of the state variable at t = 32 from
the simulated trajectory

(a) (b)

Figure 7: Monte Carlo values for the state variable at time t = 32 for both algorithms and partially
observed data. The dotted blue line is the true value of the state variable at t = 32 from
the simulated trajectory

From the figures above we can see that the Monte Carlo values for the smoother algorithm are
more concentrated around the median. So the smoothed estimates as computed by the smoother
algorithm have a lower variance than the filtered estimates from the Kalman filter. Also, the median
of the smoothed estimates is closer to the true simulated value of the state variable than the median
of the filtered estimates. All in all, from the tables 1 up to 3 and figures 7 and 8, we see that the
smoother algorithm outperforms the Kalman filter.

19



5 State estimation using particle filtering

Another option for state estimation is by using a particle filter. In a particle filter (see e.g. Car-
valho et al. (2010)) we do not need normality of the noise terms, in contrast to the Kalman filter,
but instead we approximate the filtering distribution by a discrete distribution, which consists of

a sample of N state variables {x(i)
t }Ni=1, which we call particles, and corresponding weights (proba-

bilities) {w(i)
t }Ni=1. A classical example is the Bootstrap Filter, which follows a propagate-resample

framework: first we propagate the state variable {x(i)
t }Ni=1 to {x(i)

t+1}Ni=1 via the state equation and

then we resample based on weights w
(i)
t+1 ∝ p(yt+1 | x(i)

t+1). The Liu and West filter (Liu and West
(2001)) is another example of a particle filter, which follows a resample-propagate framework. More
recent descriptions of the Liu and West filter algorithm can be found in Carvalho et al. (2010) and
Nemeth et al. (2015). We describe the Liu and West filter in the algorithm below.

Algorithm 3: Liu and West filter for state estimation

Input: Observations y1, . . . , yn
Output: Unweighted sample {x(i)

n }Ni=1 of particles which approximates the filtering
distribution at time tn

initialization: x
(i)
0 = x0 and w

(i)
0 = 1

N for all i = 1, . . . , N ;
for t = 1, . . . , n do

Resample {x̃(i)
t }Ni=1 from {x(i)

t }Ni=1 with weights g
(i)
t+1 ∝ p(yt+1 | µ(i)

t+1) ;

Propagate {x̃(i)
t }Ni=1 to {x̂(i)

t+1}Ni=1 by sampling from p(xt+1 | x̃(i)
t ) ;

Resample {x(i)
t+1}Ni=1 from {x̂(i)

t+1}Ni=1 with weights w
(i)
t+1 ∝

p(yt+1|x̂(i)
t+1)

p(yt+1|µ̃(i)
t+1)

;

end

where we use
µ

(i)
t+1 = E(xt+1 | x(i)

t ) , µ̃
(i)
t+1 = E(xt+1 | x̃(i)

t )

The quantities µ
(i)
t+1 and µ̃

(i)
t+1 follow from the state equation. The steps of Algorithm 3 are derived

in section 5.2. Note that we use the following Bayesian notation: p(yt+1 | µ(i)
t+1) = fYt+1|Xt+1

(yt+1 |
µ

(i)
t+1), which is the probability density function of Yt+1, given Xt+1 = xt+1, evaluated at yt+1

given µ
(i)
t+1. A common problem in particle filters is weight degeneracy, which means that as time

passes, less and less particles have a positive weight and the variance of the weights increases with
every iteration. The resampling steps in the Liu and West filter help solve this problem, since
after resampling we will end up with particles that have relatively high weights and abandon any
zero-weight particles.

5.1 Two implementations

There are two possible implementations of the Liu and West algorithm, which are equivalent. Both
implementations show up in the literature. One implementation is where we follow the algorithm
above. The other implementation follows a slightly different algorithm, which can be found in
Algorithm 4 below.
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Algorithm 4: Equivalent Liu and West filter algorithm for state estimation

Input: Observations y1, . . . , yn
Output: Sample {x(i)

n , w
(i)
n }Ni=1 of particles and corresponding weights which approximates

the filtering distribution at time tn
initialization: x

(i)
0 = x0 and w

(i)
0 = 1

N for all i = 1, . . . , N ;
for t = 1, . . . , n do

Resample {x̃(i)
t }Ni=1 from {x(i)

t }Ni=1 with weights h
(i)
t+1 ∝ w

(i)
t p(yt+1 | µ(i)

t+1) ;

Propagate {x̃(i)
t }Ni=1 to {x̂(i)

t+1}Ni=1 by sampling from p(xt+1 | x̃(i)
t ) ;

Calculate corresponding weights w
(i)
t+1 ∝

p(yt+1|x̂(i)
t+1)

p(yt+1|µ̃(i)
t+1)

;

end

In Algorithm 4 we obtain a weighted sample after the final step, so a sample of states with

corresponding weights {x̂(i)
t+1, w

(i)
t+1}Ni=1. However, in Algorithm 3 we obtain an unweighted sam-

ple {x(i)
t+1}Ni=1. We can see that those algorithms are equivalent as follows. Suppose we have

a weighted sample {x̂(i)
T , w

(i)
T }Ni=1, which was produced by Algorithm 4. We apply Algorithm

4 again to find an approximation for the posterior distribution of xT+1. We calculate weights

h
(i)
T+1 ∝ w

(i)
T p(yT+1 | µ(i)

T+1) and resample based on those weights. This is, however, the same as

first resampling based on the weights w
(i)
T , which yields an unweighted sample {xT }Ni=1, and then

resampling based on weights g
(i)
T+1 ∝ p(yT+1 | µ(i)

T+1), since the resampling steps are independent of
each other. This is exactly what happens in Algorithm 3: in the final step of the previous iteration

we resampled based on weights w
(i)
T and in the first step of the current iteration we resample based

on weights g
(i)
T+1 ∝ p(yT+1 | µ(i)

T+1). In our implementation we will follow Algorithm 3. Since we have
to resample twice in this algorithm, it will be slower in computational time compared to Algorithm
4, but the advantage is that we will end up with an unweighted sample after each iteration, which
means that for calculating characteristics of interest based on this sample we do not have to take
into account the weights.

5.2 Derivation of Liu and West filter for state estimation

Assume we have state variables {xt} and observations {yt}, which form a hidden Markov model
(HMM). Then for the posterior density of the state variable at time t+ 1 we have (see also Liu and
West (2001)) :

p(xt+1 | y1:t+1) = p(xt+1 | yt+1, y1:t) ∝ p(yt+1 | xt+1, y1:t)p(xt+1 | y1:t)

= p(yt+1 | xt+1)p(xt+1 | y1:t) = p(yt+1 | xt+1)

∫
p(xt+1 | y1:t, xt)p(xt | y1:t)dxt

=

∫
p(yt+1 | xt+1)p(xt+1 | xt)p(xt | y1:t)dxt

We assume that we have a sample {x(i)
t , w

(i)
t }Ni=1 of state variables and corresponding weights such

that:

p(xt | y1:t) =

N∑
i=1

w
(i)
t δ(x

(i)
t )

with δ(.) the distribution which places all of its mass at x
(i)
t . So the integral over all values of xt

turns into a sum over the particles x
(i)
t and we can now rewrite our posterior density as:

p(xt+1 | y1:t+1) ∝
∫
p(yt+1 | xt+1)p(xt+1 | xt)p(xt | y1:t)dxt
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=

N∑
i=1

p(yt+1 | xt+1)p(xt+1 | x(i)
t )w

(i)
t

The transition density p(xt+1 | x(i)
t ) follows from the state equation. The only unknown is the

likelihood p(yt+1 | xt+1), since xt+1 is unknown. Let µ
(i)
t+1 = E(xt+1 | x(i)

t ) be the estimate for x
(i)
t+1.

Then we get:

p(xt+1 | y1:t+1) ∝
N∑
i=1

p(yt+1 | xt+1)p(xt+1 | x(i)
t )w

(i)
t

=

N∑
i=1

p(yt+1 | x(i)
t+1)

p(yt+1 | µ(i)
t+1)

p(yt+1 | µ(i)
t+1)p(xt+1 | x(i)

t )w
(i)
t

=
N∑
i=1

p(yt+1 | x(i)
t+1)

p(yt+1 | µ(i)
t+1)

p(xt+1 | x(i)
t )g

(i)
t+1

with g
(i)
t+1 ∝ w

(i)
t p(yt+1 | µ(i)

t+1), which are the initial weights based on which we will resample for the

first time. We resample the x
(i)
t ’s with probabilities proportional to g

(i)
t+1 and propagate x

(i)
t to x

(i)
t+1

via p(xt+1 | x(i)
t ). Next, we use importance sampling (see Johansen and Evers, 2007), which works

as follows. We fix i ∈ {1, . . . , N}. Let πi = p(xt+1 | y1:t+1) ∝ p(yt+1 | x(i)
t+1)p(xt+1 | x(i)

t )w
(i)
t be the

target density and ηi = q(xt+1 | y1:t+1) ∝ p(yt+1 | µ(i)
t+1)p(xt+1 | x(i)

t )w
(i)
t the importance density.

Let h be an integrable function and X a random variable with density πi. We want to estimate
h(X), in our case h(X) = X. Then:

Eπi(h(X)) =

∫
πi(x)h(x)dx =

∫
ηi(x)

πi(x)

ηi(x)
h(x)dx =

∫
ηi(x)w(x)h(x)dx = Eηi(w(X)h(X))

with wi(x) = πi(x)
ηi(x) the importance weights. This means that the expectation of h(X) under the

density πi is equal to the expectation of wi(X)h(X) under the density ηi. So, if we resample the

x
(i)
t+1’s based on the importance weights, we get a sample which approximates the target density,

which is also the posterior density. The importance weights are then:

w
(i)
t+1 =

πi
ηi

=
p(xt+1 | y1:t+1)

q(xt+1 | y1:t+1)
∝
p(yt+1 | x(i)

t+1)p(xt+1 | x(i)
t )w

(i)
t

p(yt+1 | µ(i)
t+1)p(xt+1 | x(i)

t )w
(i)
t

=
p(yt+1 | x(i)

t+1)

p(yt+1 | µ(i)
t+1)

5.3 Effective sample size for weighted samples

Johansen and Evers (2007) suggest using the effective sample size to quantify the quality of a
weighted sample. Let {Yi}Ni=1 be an unweighted sample from the target (= filtering) distribution
and {Xi}Ni=1 be a weighted sample, with normalized weights {Wi}Ni=1, which approximates the target
distribution. If we want to estimate the mean of the target distribution, then the obvious estimators
for this are:

µ̂Y =
N∑
i=1

1

N
Yi

µ̂X =
N∑
i=1

WiXi

The effective sample size is then defined as:

NESS = N
Var(µ̂Y )

Var(µ̂X)
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The effective sample size can be interpreted as the number of unweighted samples from the target
distribution we need to obtain an estimator with the same variance as µ̂X . Since we are unable
to draw samples from the unknown target distribution, we have to estimate NESS . Johansen and
Evers (2007) use the following approximation:

NESS ≈

(∑N
i=1Wi

)2

∑N
i=1W

2
i

=
1∑N

i=1W
2
i

The quality of the weights is good if NESS is close to N and bad if NESS is close to 1, which may
be a sign of weight degeneracy. Throughout this thesis we will often check the effective sample size
to see if the quality of the weights is good.

5.4 Applying Liu and West filter for state estimation

In this section we apply the Liu and West filter for state estimation to the diffusion model from
equations (4) and (5). For this we use Algorithm 4, with initial weights

g
(i)
t+1 ∝ exp(−1

2
(yt+1 −Hµ(i)

t+1)2) ,

transition distribution
N(Fx̃

(i)
t + C,Qt) ,

importance weights

w
(i)
t+1 ∝

exp(−1
2(yt+1 −Hx̂(i)

t+1)2)

exp(−1
2(yt+1 −Hµ̃(i)

t+1)2)
,

and µ
(i)
t+1 = Fx

(i)
t + C , µ̃

(i)
t+1 = Fx̃

(i)
t + C, which follow from the state equation. The estimate for

the state variable at time t will be the unweighted mean of the particles, i.e. x̂t =
∑N

i=1
1
N x

(i)
t .

The MATLAB code for this algorithm can be found in Appendix E. We will look at box plots at
time t = 32, for both partially and fully observed data, and both S(t) and I(t), similar to section
4.2.1. We perform a Monte Carlo study. In each iteration i ∈ {1, . . . ,M} we generate a new set of
observations from the diffusion model. On this set of observations we apply the Kalman filter and
smoother algorithm, and calculate the means of the filtering and smoothing distribution at time t,
which we call µF,it and µS,it . Next, we apply the Liu and West filter on the set of observations and

calculate the unweighted mean of the particles at time t, which we call µLW,it . The result is that we

have vectors µFt = [µF,1t , . . . , µF,Mt ], µSt = [µS,1t , . . . , µS,Mt ] and µLWt = [µLW,1t , . . . , µLW,Mt ]. For those
vectors we make a box plot. Because of the large computational time of the Liu and West filter, we
take the number of simulations in the Monte Carlo study M = 100 and the number of particles in
the Liu and West filter N = 100.

(a) (b)

Figure 8: Monte Carlo values for the state variable at time t = 32 for both algorithms and fully
observed data. The dotted blue line is the value of the state variable at t = 32 from the
simulated trajectory
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(a) (b)

Figure 9: Monte Carlo values for the state variable at time t = 32 for both algorithms and partially
observed data. The dotted blue line is the value of the state variable at t = 32 from the
simulated trajectory

Regarding the smoother algorithm, the results are as expected: the median of the smoother estimates
is in all cases closest to the true value of the state variable. For a linear Gaussian state space model,
we expect the Kalman filter to be preferable. Due to the Monte Carlo error (recall we only used
M = 100) the Liu and West filter seems to perform slightly better, but the values are more spread
out than for the Kalman filter. This indicates that the Liu and West filter seems to perform well
and is competitive with the Kalman filter. Furthermore, we find effective sample sizes of 96 for
partially observed case and 92 for the fully observed case, so there is no sign of weight degeneracy.

6 Parameter estimation

6.1 Liu and West filter for parameter estimation

So far, we have assumed that there are no unknown parameters in the model. In this section we
consider the case of unknown parameters. The Liu and West filter is able to simultaneously estimate
state variables and parameters. A description of this filter can be found in Carvalho et al. (2010)
and Nemeth et al. (2015). First, choose the so-called shrinkage coefficient a ∈ (0, 1). The algorithm
then works as follows.

Algorithm 5: Liu and West filter algorithm for parameter estimation

Input: Observations y1, . . . , yn
Output: Unweighted sample {x(i)

n , θ
(i)
n }Ni=1 of particles, in which {x(i)

n }Ni=1 approximates

the filtering distribution at time tn and {θ(i)
n }Ni=1 approximates the unknown parameter

initialization: x
(i)
0 = x0, w

(i)
0 = 1

N for all i = 1, . . . , N , {θ(i)
0 }Ni=1 is a sample simulated from

a specified prior distribution ;
for t = 1, . . . , n do

Resample {x̃(i)
t , θ̃

(i)
t }Ni=1 from {x(i)

t , θ
(i)
t }Ni=1 with weights g

(i)
t+1 ∝ p(yt+1 | µ(i)

t+1,m
(i)
t ) ;

Propagate {θ̃(i)
t }Ni=1 to {θ̂(i)

t+1}Ni=1 by sampling from N(m̃
(i)
t , (1− a2)Vt) ;

Propagate {x̃(i)
t }Ni=1 to {x̂(i)

t+1}Ni=1 by sampling from p(xt+1 | x̃(i)
t , θ̂

(i)
t+1) ;

Resample {x(i)
t+1, θ

(i)
t+1}Ni=1 from {x̂(i)

t+1, θ̂
(i)
t+1}Ni=1 with weights w

(i)
t+1 ∝

p(yt+1|x̂(i)
t+1,θ̂

(i)
t+1)

p(yt+1|µ̃(i)
t+1,m̃

(i)
t )

;

end
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where we use
µ

(i)
t+1 = E(xt+1 | x(i)

t , θ
(i)
t )

m
(i)
t = aθ

(i)
t + (1− a)θt

θt =

N∑
i=1

1

N
θ

(i)
t

Vt =
N∑
i=1

1

N
(θ

(i)
t − θt)(θ

(i)
t − θt)T

The quantity µ
(i)
t+1 follows from the state equation. The derivation of Algorithm 5 can be found in

section 6.2. In each iteration we use N particles. We resample the particles at time t using weights
based on observation yt+1. Then we propagate θt and xt to time t + 1 and resample again, with
weights based on the quotient of the target density and the estimated density. Note that all weights
have to be normalized. How to choose the shrinkage coefficient a can be found in Liu and West
(2001). We will take a = 0.995. After the resampling in the final step, the Liu and West filter

provides us with an unweighted sample of state variables x
(i)
t and parameter values θ

(i)
t . The final

estimates at time t are then the unweighted averages:

x̂t =
N∑
i=1

1

N
x

(i)
t , θ̂t =

N∑
i=1

1

N
θ

(i)
t

6.2 Derivation of Liu and West filter for parameter estimation

Suppose we are given a sample of state variables and parameters at time t, {x(i)
t , θ

(i)
t }Ni=1, and

associated weights {w(i)
t }Ni=1, which represent an importance sample approximation to the posterior

p(xt, θt | Dt), with Dt = {Dt−1, yt} and Dt−1 the observations up to and including time t− 1. Then
for the posterior density of xt+1 and θt+1 we have (see also Liu and West (2001)) :

p(xt+1, θt+1 | Dt+1) = p(xt+1, θt+1 | yt+1, Dt) ∝ p(yt+1 | xt+1, θt+1, Dt)p(xt+1, θt+1 | Dt)

= p(yt+1 | xt+1, θt+1)p(xt+1, θt+1 | Dt) ∝ p(yt+1 | xt+1, θt+1)p(xt+1 | θt+1, Dt)p(θt+1 | Dt)

where p(yt+1 | xt+1, θt+1) follows from the measurement model and p(xt+1 | θt+1, Dt) follows from
the state equation. We approximate the posterior p(θt+1 | Dt) by:

p(θt+1 | Dt) ≈
N∑
i=1

w
(i)
t N(θt+1 | m(i)

t , h
2Vt)

which is a mixture of multivariate normal densities which have mean m
(i)
t and variance matrix h2Vt,

and
m

(i)
t = aθ

(i)
t + (1− a)θt

Vt =
N∑
i=1

w
(i)
t (θ

(i)
t − θt)(θ(i) − θt)T

θ =

N∑
i=1

w
(i)
t θ

(i)
t

Liu and West (2001) state that this mixture of normal densities has variance (1 + h2)Vt if we

use m
(i)
t = θ

(i)
t , and is thus overdispersed. As a solution they take m

(i)
t = aθ

(i)
t + (1 − a)θt,

with a =
√

1− h2 the shrinkage coefficient and h the smoothing parameter. Then the mixture
has the correct mean θt and variance Vt. The derivation of this can be found in Liu and West
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(2001) and we derive it here as well. Assume that Θt ∼ N(θt, Vt), where θt = 1
N

∑N
i=1 θ

(i)
t and

Vt = 1
N

∑N
i=1(θ

(i)
t − θt)(θ

(i)
t − θ)T . We consider θt, Vt to be fixed. Let a ∈ (0, 1). Take

Θt+1 | (Θt = θt) ∼ N(aθt + (1− a)θt, (1− a2)Vt) (14)

Then Θt+1 has again a Normal distribution with, using the law of total expectation,

E(Θt+1) = E(E(Θt+1 | Θt)) = E(aΘt + (1− a)θt) = aθt + (1− a)θt = θt

and, using the law of total variance,

Cov(Θt+1) = E(Cov(Θt+1 | Θt)) + Cov(E(Θt+1 | Θt))

= E((1− a2)Vt) + Cov(aΘt + (1− a)θt) = (1− a2)Vt + a2Cov(Θt) = Vt

with h2 = 1− a2 and a =
√

1− h2. So we see that by taking m
(i)
t = aθ

(i)
t + (1− a)θt and variance

(1− a2)Vt we get the correct mean θt and variance Vt for Θt+1. Now for the posterior p(θt+1 | Dt)
we have:

p(θt+1 | Dt) =

∫
p(θt+1 | θt, Dt)p(θt | Dt)dθt =

∫
p(θt+1 | θt)p(θt | Dt)dθt

We estimate p(θt | Dt) by
∑N

i=1w
(i)
t δ(θ

(i)
t ). Then:

p(θt+1 | Dt) =
N∑
i=1

p(θt+1 | θ(i)
t )w

(i)
t

Using (14) we get that:

p(θt+1 | Dt) ≈
N∑
i=1

w
(i)
t N(θt+1 | aθ(i)

t + (1− a)θt, (1− a2)Vt)

with N(x | µ,Σ) the normal density with mean µ and covariance matrix Σ, evaluated in x. Next,
we will show how to relate the smoothing parameter h and shrinkage coefficient a as follows. We
can write:

θt+1 = aθt + (1− a)θt + hεt

with εt ∼ N(0, Vt). We can rewrite this as:

θt+1 − θt = aθt + (1− a)θt − θt + hεt = a(θt − θt) + hεt

If we assume stationarity, then θt = µ. Define Zt = θt − µ, then:

Zt+1 = aZt + hεt

This is an AR(1) process. Under stationarity, we have Var(Zt) = c2. Then:

Var(Zt+1) = a2Var(Zt) + h2Var(εt)

c2 = a2c2 + h2Vt

(1− a2)c2 = h2Vt

The variance of θt, and therefore the variance of Zt, has to be equal to Vt. So c2 = Vt. This means
that a =

√
1− h2. In the last step of the Liu and West filter we resample for a second time, using

importance sampling. This works the same as in the derivation of the Liu and West filter for state
estimation. However, now we have the following target density (see Nemeth et al. (2015) ) :

p(xt+1, θ, i | Dt+1) = p(xt+1, θ, i | yt+1, Dt) ∝ p(yt+1 | x(i)
t+1, θ

(i))p(xt+1 | x(i)
t , θ

(i))w
(i)
t

and importance density q:

q(xt+1, θ, i | Dt+1) = p(xt+1, θ, i | yt+1, Dt) ∝ p(yt+1 | µ(i)
t+1,m

(i)
t )p(xt+1 | x(i)

t , θ
(i))w

(i)
t

So the importance weights are:

w
(i)
t+1 =

p(xt+1, θ, i | Dt+1)

q(xt+1, θ, i | Dt+1)
∝

p(yt+1 | x(i)
t+1, θ

(i))p(xt+1 | x(i)
t , θ

(i))w
(i)
t

p(yt+1 | µ(i)
t+1,m

(i)
t )p(xt+1 | x(i)

t , θ
(i))w

(i)
t

=
p(yt+1 | x(i)

t+1, θ
(i))

p(yt+1 | µ(i)
t+1,m

(i)
t )
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6.3 Application to AR(1) model

Before we apply the Liu and West filter to our diffusion model, we will first apply it to the following
AR(1) model:

xt+1 = θxt + εt

yt+1 = xt+1 + ηt

with εt and ηt independent standard Gaussian random variables. We apply Algorithm 5 to the
AR(1) model, with initial weights

g
(i)
t+1 ∝ exp(−1

2
(yt+1 − µ(i)

t+1)2) ,

transition distribution
N(θ

(i)
t+1x

(i)
t , 1) ,

and importance weights

w
(i)
t+1 =

exp(−1
2(yt+1 − x(i)

t+1)2)

exp(−1
2(yt+1 − µ̃(i)

t+1)2)
,

where µ
(i)
t+1 = θ

(i)
t x

(i)
t . Then the estimates for the state variable and parameter at time t+ 1 are the

unweighted averages:

x̂t+1 =
N∑
i=1

x
(i)
t+1 , θ̂t+1 =

N∑
i=1

θ
(i)
t+1

We simulate n = 1000 observations from the AR(1) model, using θ = 0.8. In the Liu and West filter
we set: a = 0.995 as the shrinkage coefficient, N = 5000 as the number of particles and x0 = 0 as
the initial state. Recall that an AR(1) model is stationary for θ ∈ (−1, 1). Since θ = 0.8 > 0, we use
the Uniform[0, 1] distribution as the prior for θ. We simulate a sequence of length n from the AR(1)
model, setting rng(0) in MATLAB. Observations are then simulated according to the measurement
equation. The MATLAB code can be found in Appendix F. Confidence bounds are calculated as
the empirical quantiles of the particles (i.e. we sort the particles and look at the 0.025N -th and
0.975N -th values). For the weights we calculate at t = n the effective sample size. Furthermore,
we will compare the estimate from the Liu and West filter with the maximum likelihood estimate
using the conditional maximum likelihood (see e.g. lecture notes by Zivot (2005)), which can be
computed in closed form.

Lemma 1. Given an AR(1) model, xt+1 = θxt + εt, with εt ∼ N(0, 1) and observations y =
{y1, . . . , yn} = {x1, . . . , xT }. Then the Conditional Maximum Likelihood Estimate (CMLE) of θ is
given by:

θ̂CMLE =

∑T
t=2 ytyt−1∑T
t=2 y

2
t−1

Proof. We can compute the likelihood function as:

L(y1, . . . , yT ; θ) = f(y1; θ)

T∏
t=2

f(yt | Dt−1; θ)

with Dt−1 = {y1, . . . , yt−1} and f(.) the pdf of the observations. The log-likelihood is then:

L(y1, . . . , yT ; θ) = ln(L(y1, . . . , yT ; θ)) = ln(f(y1, θ)) +
T∑
t=2

ln(f(yt | Dt−1, θ))

The conditional maximum likelihood estimate is then defined as:

θ̂CMLE = arg max
θ

T∑
t=2

ln(f(yt | Dt−1, θ))
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In the AR(1) model we have:

yt | Dt−1 ∼ N(θyt−1, 1) , t = 2, 3, . . . , T

So the conditional density is:

f(yt | Dt−1, θ) =
1√
2π
e−

1
2

(yt−θyt−1)2

So the conditional maximum likelihood estimate is:

θ̂CMLE = arg max
θ

T∑
t=2

−1

2
ln 2π − 1

2
(yt − θyt−1)2

= arg max
θ

T∑
t=2

−1

2
(yt − θyt−1)2 = arg max

θ

T∑
t=2

θytyt−1 −
1

2
θ2y2

t−1

We can work this out analytically by calculating the derivative and setting it equal to 0:

0 =

T∑
t=2

(ytyt−1 − y2
t−1θ̂CMLE)

θ̂CMLE

T∑
t=2

y2
t−1 =

T∑
t=2

ytyt−1

So we find that:

θ̂CMLE =

∑T
t=2 ytyt−1∑T
t=2 y

2
t−1

Next, we calculate 95% confidence bounds for the ML estimate. We know the asymptotic distribu-
tion of our ML estimate (see e.g. lecture notes by Blasques and Koopman (2019)):

θ̂ ∼ N(θ, (1− θ2)/T )

So the approximate confidence lower and upper bound for the ML estimate are the α/2 and 1−α/2
quantiles of the N(θ, (1 − θ2)/T ) distribution, where we take α = 0.95. In the figures below we
plot the estimate of the parameter θ over time, for both the Liu and West filter and the Maximum
Likelihood, including their confidence bounds.

Figure 10: Estimate for the parameter θ over time by the Liu and West filter
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Figure 11: Estimate for the parameter θ over time by Maximum Likelihood

Furthermore, we find that the effective sample size is 3953, which is relatively high compared to
N = 5000, so the weights are of good enough quality. As a second check we we plot the weights at
time n/2 and time n, which are shown in Figure 12.

(a) (b)

Figure 12: Weights at time n/2 and time n

We see that there are still many non-zero weights, so we do not have weight degeneracy. The
estimate for θ at t = 1000 by Maximum Likelihood and Liu and West, together with the confidence
bounds, can be found in the table below.

method θ estimate Lower bound Upper bound

MLE 0.816 0.763 0.837

Liu and West 0.820 0.779 0.851

Table 4: Maximum likelihood and Liu and West estimate for the parameter θ, including correspond-
ing confidence bounds

From the table we see that the real value, θ = 0.8, is contained in the 95% confidence interval for
both the ML estimate and the Liu and West estimate. The MLE is somewhat better than the Liu
and West estimate, since it is closer to the true value and the confidence interval is somewhat more
concentrated around the true value, but the performance of the Liu and West filter in case of an
AR(1) model is very satisfactory.

29



6.4 Application to the diffusion model

In this section we apply Algorithm 5 to the diffusion model in equations (4) an (5), with initial
weights

w
(i)
t+1 ∝

exp(−1
2(yt+1 −Hµ(i)

t+1)TR(m
(i)
t )−1(yt+1 −Hµ(i)

t+1))√
detR(m

(i)
t )

,

transition distribution
N(F (θ̂

(i)
t+1)x̃

(i)
t + C(θ̂

(i)
t+1), Q(θ̂

(i)
t+1)) ,

and importance weights

w
(i)
t+1 ∝

exp(−1
2(yt+1 −Hx̂(i)

t+1)TR(θ̂
(i)
t+1)−1(yt+1 −Hx̂(i)

t+1))

exp(−1
2(yt+1 −Hµ(i)

t+1)TR(θ̂
(i)
t+1)−1(yt+1 −Hµ̂(i)

t+1))
,

where µ
(i)
t+1 = F (θ

(i)
t )x

(i)
t + C(θ

(i)
t ) and µ̂

(i)
t+1 = F (θ

(i)
t )x̂

(i)
t + C(θ

(i)
t ).

6.4.1 Estimating one parameter

Before estimating all parameters, we will start by estimating only one parameter, namely: θ = α.
The true value of this parameter is 31.60. As a prior for θ we use a normal distribution with mean
θ0 = 31.60 and standard deviation 10. This prior is taken just as an example, in section 6.4.2 we
will look closer at how to choose the prior distributions when we estimate all parameters. We apply
the Liu and West filter with N = 5000 particles and the estimate for α is the mean of the particle
values at time t = 40. If we plot the estimated value for θ over time and use partially observed
data, we get the following graph:

Figure 13: Estimated value for parameter α over time, by Liu and West filter

The estimated value at t = 40 with confidence bounds can be seen in the table below.

Parameter True value Estimate Lower bound Upper bound

α 31.60 32.43 31.28 33.54

Table 5: Parameter estimate for θ = α and confidence bounds

We see that for estimating one parameter, the Liu and West filter gives good results, since the true
value of the parameter is contained in the confidence interval and the estimate is close to the true
value. Also, we find that NESS = 4057, which is relatively high, so the quality of the weights is
good.
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6.4.2 Choice of priors

For the priors we will take normal distributions around the real parameter values. We need to be
careful in choosing the standard deviation of this distribution. We will use the condition that all
parameters have to be positive and that λ < κ to come up with a choice of the standard deviation.
We know as a rule of thumb that for a normal distribution the chance that a random variable is
less than 2σ away from the mean is approximately 95%. So, if we take σ such that µ−2σ = 0, then
almost all values generated from N(µ, σ) will be positive. This gives rise to the following standard
deviations for the prior distributions from Table 6. Note that choosing the priors with a mean equal
to the true value has as a consequence that the initial parameter estimate, which is the unweighted
average of the particles, will already be close to the true value. In section 6.4.4 we look at what
happens when this is not the case.

Parameter Standard deviation of prior

β 1.11

λ 0.05∗

κ 0.08∗

α 15.8

σ 0.5

σ1 1.24

σ2 0.38

Table 6: Choice of standard deviation of prior distributions

*For the parameters λ and κ we have the additional condition λ < κ. Using the same rule of thumb
as before, we get that λ+ 2σλ ≤ κ− 2σκ (i). The positivity constraint means that κ− 2σκ ≥ 0 (ii)
and λ−2σλ ≥ 0 (iii). One can easily verify that the choice σλ = 0.05 and σκ = 0.08 satisfies (i), (ii)
and (iii).

6.4.3 Estimating all parameters

In this section we apply the Liu and West filter algorithm, see Algorithm 5, in order to estimate all
7 parameters from the state space model. We use N = 10000 particles and the prior distribution
for the parameters from the table above. The MATLAB code for the estimation can be found in
Appendix G. We will look at both partially observed and fully observed data. For a fixed time t,
we have N = 1000 particles for each parameter. The estimate for a parameter at time t is then the
average of the particle values. The results of the estimation can be seen in the tables below.

Parameter True value Estimate Lower bound Upper bound

β 2.23 2.31 2.03 2.56

λ 0.11 0.13 0.12 0.14

κ 0.37 0.39 0.36 0.42

α 31.60 33.21 29.11 36.93

σ 1 1.00 0.98 1.01

σ1 2.49 2.61 2.35 2.87

σ2 0.77 0.88 0.76 0.99

Table 7: Parameter estimates at time t = 40 for fully observed data, using N = 10000
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Parameter True value Estimate Lower bound Upper bound

β 2.23 2.74 2.47 2.97

λ 0.11 0.12 0.10 0.13

κ 0.37 0.44 0.41 0.46

α 31.60 40.87 36.66 45.15

σ 1 1.00 0.97 1.02

σ1 2.49 2.71 2.44 3.01

σ2 0.77 1.16 0.84 1.52

Table 8: Parameter estimates at time t = 40 for partially observed data, using N = 10000

Furthermore, we find an effective sample size of 7423 for fully observed data, and 7544 for partially
observed data. We see that the results are rather good. In the case of fully observed data, the
parameter estimates are close to the true values and the true value is for all but one parameter
contained in the 95% confidence interval. For partially observed data, we see that 4 of the 7 true
parameter values are contained in the confidence interval for that parameter. So it is clear that
for fully observed data the results are better than for partially observed data, which is what we
expect. Note that these results depend on the data set which we simulated. For more accurate
results we have to perform a Monte Carlo study, where in each iteration we simulate a new data set.
However, due to the large computational time of the MATLAB code in Appendix G, we stick to one
simulated data set. This also means that any bad estimation results may be due to this particular
simulated data set. To gain some insight in how the parameter estimates evolve over time, we plot
the estimates for α and β over time, using fully observed data.

(a) (b)

Figure 14: Parameter estimates over time for the parameter (a) α and (b) β

Due to the choice of priors, the initial estimate is already close to the true value. What we can see,
however, is that the variance in the parameter estimate decreases over time. Also, for both α and
β, the estimate for the parameter stays close around the true value after some time. To investigate
the influence of the number of particles N , we will also look at the case where N = 5000. Those
results can be seen in the tables below.
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Parameter True value Estimate Lower bound Upper bound

β 2.23 2.35 2.17 2.53

λ 0.11 0.08 0.06 0.10

κ 0.37 0.34 0.31 0.38

α 31.60 32.83 30.01 35.39

σ 1 1.05 1.03 1.07

σ1 2.49 2.85 2.68 3.05

σ2 0.77 1.10 1.00 1.22

Table 9: Parameter estimates at time t = 40 for fully observed data, using N = 5000

Parameter True value Estimate Lower bound Upper bound

β 2.23 3.11 2.72 3.46

λ 0.11 0.10 0.07 0.13

κ 0.37 0.37 0.32 0.42

α 31.60 45.18 38.51 51.00

σ 1 0.98 0.95 1.02

σ1 2.49 3.08 2.91 3.24

σ2 0.77 0.85 0.58 1.06

Table 10: Parameter estimates at time t = 40 for partially observed data, using N = 5000

Here we find effective sample sizes of 3755 and 3724. For fully observed data we see that now in
only 3 out of the 7 cases the true value is contained in the confidence interval, so the results are
not as good as for N = 10000. For partially observed data, we see that still in 4 out of the 7 cases
we have that the true value lies inside the confidence interval. However, for the other parameters,
the estimate is farther away from the true value than for N = 10000. Furthermore, we see that
there is a smaller difference between the performance of the estimation in case of fully and partially
observed data. For partially observed data, for more parameters we have that the true value is
contained in the confidence interval, but when this is not the case, the estimate is often farther
away from the true value then for fully observed data. All in all, we have satisfactory estimation
results and we see that results are better for a higher value of the number of particles.

6.4.4 Change of prior distributions

In the previous section we have estimated the parameters of the diffusion model, where we used
priors concentrated around the true value of the parameter. This means that when we generate
N parameter values according to this prior, the average of those values will be close to the mean
of the prior distribution, which is the true value. So the initial estimate for the parameter is
already close to the true value. In this section we will look at a case where some priors are not
concentrated around the true value. We will change the priors for the parameters β and α. We
take the exponential distribution for this. We try 2 different scenarios: one where the mean of
the exponential distribution is below the true parameter value and one where it is above the true
parameter value. In the first case, we take for β the mean 1 and for α we take the exponential
distribution with mean 15. The other priors we keep the same as before. A graph of the estimates
for α and β over time can be found in the figures below.
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(a) (b)

Figure 15: Parameter estimates over time for the parameter (a) α and (b) β, using exponential
priors with a mean lower than the true value

We see that after a short period of time the estimate for the parameter is better than the initial
estimate. Also, we see that the estimates for α and β behave similarly over time. If we go back
to Figure 1, then we see that this is no surprise: the parameter α represents the inflow of contrast
agent concentration and β the outflow.

The second scenario we will now look at, is the case where the exponential priors have a mean
that is larger than the true parameter value. For α we take an exponential distribution with 60 as
the prior mean and for β we take 4. We then find the following two graphs.

(a) (b)

Figure 16: Parameter estimates over time for the parameter (a) α and (b) β, using exponential
priors with a mean higher than the true value

We see that in this case the estimates are not as good as before. For both α and β we have an
overestimate of the parameter value and the confidence interval does not include the true value.
However, the estimate is still better than the initial estimate. It is again important to note that
this is based only on one simulated data set. What we can see from this, is that the Liu and West
filter for parameter estimation performs better for certain priors than for other priors.
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7 State and parameter estimation in a non-linear model

In this section we will see if the Liu and West filter is able to estimate state variables and parameters
in a non-linear AR(1) model. We will look at the following model:

xt+1 = θ arctanxt + εt

yt+1 = xt+1 + νt

with εt, νt ∼ N(0, 1). We will start by taking θ = 0.8 constant, and try to estimate the state variable
xt. We use Algorithm 3 for this, with initial weights

g
(i)
t+1 ∝ exp(−1

2
(yt+1 − µ(i)

t+1)2) ,

transition distribution
N(θ arctan x̃

(i)
t , 1) ,

importance weights

w
(i)
t+1 ∝

exp(−1
2(yt+1 − x̂(i)

t+1)2)

exp(−1
2(yt+1 − µ̃(i)

t+1)2)

and µ
(i)
t+1 = θ arctanxt, µ̃

(i)
t+1 = θ arctan x̃

(i)
t , which follow from the state equation. We generate

a sequence of length n = 1000 from the non-linear AR(1) model, using x0 = 0. We generate
observations from this sequence based on the observation equation. We use N = 5000 particles in
the Liu and West filter. The state estimate at time t is calculated as the unweighted average of the
particles at that time. The result for the state estimation can be seen in the graph below.

Figure 17: Simulated trajectory, observations and Liu and West estimate for the state variable

The RMSE is 0.76 and the effective sample size is 4098. We see that the Liu and West filter
performs well, and is often closer to the simulated trajectory than the data points are. Next, we
look at parameter estimation in the non-linear AR(1) model. We apply Algorithm 5, with initial
weights

g
(i)
t+1 ∝ exp(−1

2
(yt+1 − µ(i)

t+1)2) ,
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transition distribution
N(θ̂

(i)
t+1 arctan x̃

(i)
t , 1) ,

and importance weights

w
(i)
t+1 ∝

exp(−1
2(yt+1 − x̂(i)

t+1)2)

exp(−1
2(yt+1 − µ̃(i)

t+1)2)
,

where µ
(i)
t+1 = θ

(i)
t arctanx

(i)
t and µ̃

(i)
t+1 = θ̃

(i)
t arctan x̃

(i)
t . We now use N = 10000 particles. The

MATLAB code for the non-linear AR(1) model is very similar to the one with the linear AR(1)
model, which can be found in Appendix F . In the table below we show the Liu and West estimate,
together with the confidence bounds.

Parameter True value Liu and West estimate Lower bound Upper bound

θ 0.8 0.81 0.73 0.90

Table 11: Liu and West estimate and corresponding confidence bounds

We also plot the Liu and West estimate over time, in order to see how the estimate behaves over
time. This can be found in Figure 18.

Figure 18: Liu and West estimate for the parameter θ over time

From Table 11 we can see that the estimate is very close to the true value and the true value is
contained in the confidence interval. Also, from Figure 18 we can see that the estimate converges
nicely to the true value and that the variance decreases over time. Thus it seems that the Liu and
West filter also performs well in case of a simple non-linear model.
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8 Application to real data

In this section we will test the Liu and West filter for parameter estimation on a real data set. This
data is from Thomassin (2008) and contains n = 115 observations of the sum of the contrast agent
concentrations. The observations are shown in the figure below.

Figure 19: Real data points in time

The MATLAB code for the estimation is exactly the same as we used in section 6.4.3, only with
a different data set and different priors. Since we do not know the true parameter values, we
have to make sure that the prior is wide enough. We choose the exponential distribution as prior
distribution. The choice of the mean of this prior distribution can be seen in the table below.

Parameter Mean of prior distribution

β 5

λ 5

κ 5

α 300

σ 5

σ1 5

σ2 5

Table 12: Choice of prior distributions

For most parameters we take a mean of 5 for the exponential distribution, which we think is high
enough considering previous parameter values were all well below 5. Since λ has to be smaller than
κ, we first draw 2 values from the Exp(5) distribution and then assign the largest value to κ and the
smallest one to λ. We repeat this until we have N values for both parameters. From Figure 19 it
is clear that the real data points are much higher than the simulated data we used previously. The
magnitude of those values is for a large part due to the parameter α, which is the injected contrast
agent concentration. For the simulated data we had α = 31.6, with S(t) fluctuating around 20 for
the most part. In Figure 19 we see that now the data points fluctuate around 150, so α is probably
also a large value, which is why we take the Exp(300) as its prior. For the parameter estimation
we use N = 10000 particles in the Liu and West filter. Estimates are calculated as the mean of the
particle values. The result can be seen in the table below.
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Parameter Estimate Lower bound Upper bound

β 5.13 3.26 7.50

λ 2.83 0.47 5.59

κ 9.33 4.85 14.73

α 512 429 607

σ 7.15 6.31 7.99

σ1 5.65 -0.94 12.53

σ2 3.80 -2.15 9.83

Table 13: Parameter estimates at time t = 115, using N = 10000

Also, we find an effective sample size of 8612. In the table we see that most parameters have rather
wide confidence intervals. However, in all cases the variance in the estimate is smaller than the
prior variance. To see if the estimated values are accurate, we look at the state variable estimate
for S(t), which is also provided by the Liu and West filter. We plot this trajectory together with
the data points, which can be seen in the figure below, together with the estimated trajectory for
the interstitium concentration I(t).

Figure 20: Liu and West estimate for the state variable S (red) and I (blue) in time, dotted lines are
the confidence bounds, dots are the data points and solid lines are estimated trajectories.

From the figure we see that the estimated trajectory for S(t) is close to the data points. We have
estimated the standard deviation of the noise in the data, σ, as 7.15, so the result from the graph
seems to be reasonable. For the interstitium concentration I(t) we also get an estimated trajectory,
but, as can be seen by the confidence bounds, there is much uncertainty here, with the lower bound
even being negative for the most part. So it seems that for real data the Liu and West filter performs
rather good when it comes to estimating S(t), but for I(t) there is much uncertainty in the estimate.
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9 Conclusion

In this thesis we started with the state estimation in a bidimensional Ornstein-Uhlenbeck process.
We have used 3 algorithms for this: the Kalman filter, the smoother algorithm and the Liu and
West filter. We have seen that the smoother algorithm outperforms the other two. We expect the
Kalman filter to be preferable for a linear Gaussian system, but from the Monte Carlo experiments
we have seen that the Liu and West filter also performs well and is competitive with the Kalman
filter.

Furthermore, we have used the Liu and West filter for parameter estimation. In case of the linear
AR(1) model, results were very satisfactory and close to results of Maximum Likelihood. Next, we
applied the Liu and West filter to the bidimensional Ornstein-Uhlenbeck process. We have simu-
lated 1000 observations from this model. When we only estimated the parameter α, we obtained
good results where the true value was contained in the confidence interval. For the estimation of
all parameters, we used N = 10000 particles and we first looked at priors centered around the true
value. For fully observed data, we have seen that the estimation results were rather good: for all but
one parameter the true values was contained in the confidence interval. For partially observed data
the results were slightly worse: for 4 out of the 7 parameters the true value was contained in the
confidence interval. We have also seen that the choice of the number of particles, N , is important,
since for N = 5000 the results became worse, especially for the fully observed data, because in that
case only for 3 out of the 7 parameters the true value was contained in the confidence interval.
Note that we only used one simulated data set, which may influence estimation results. We have
also seen that the choice of prior distribution is important: certain priors for α and β led to better
results than others.

Next, we have applied the Liu and West filter to a non-linear model. For both state and pa-
rameter estimation the performance was good, with a low RMSE and a confidence interval that
contained the true parameter value. Finally, we applied the Liu and West filter to real data, which
also seemed to give reasonable results: the estimated trajectory for S(t) seemed reasonable consid-
ering the data, but for I(t) there was much uncertainty in the estimate.

Throughout this thesis we have assumed that the parameter α(t), which describes the injected
contrast agent concentration, is constant. This assumption is rather unnatural. For further re-
search it might be interesting to look at the case where α is not constant. We can for example take
a parametrization of a function with 2 unknown parameters. This function has to initially increase
(injection of the contrast agent), then become constant (reaching equilibrium) and then decrease
again (wash out of contrast agent). Another option is to use an Ornstein-Uhlenbeck process for α(t)
itself: dαt = (λ − µαt)dt + σdWt, with λ, µ, σ > 0. Since this is a mean-reverting model, α(t) will
first increase due to the drift term, stay more or less constant for a while, and eventually decrease
again until it reaches some mean value.
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11 Appendix

Appendix A: Transformation of the parameters

function param = convparam ( theta , h)
mu 1 = log ( theta ( 1 ) ) / h ;
mu 2 = log ( theta ( 2 ) ) / h ;
the ta3 hat = ( theta (3)∗2∗mu 1∗(mu 2−mu 1 )ˆ2 )/ (exp(2∗mu 1∗h)−1) ;
the ta4 hat = ( theta (4)∗2∗mu 2∗(mu 2−mu 1 )ˆ2 )/ (exp(2∗mu 2∗h)−1) ;
the ta5 hat = ( theta ( 5 )∗ (mu 1+mu 2 )∗ (mu 2−mu 1 )ˆ2 )/ (exp( (mu 1+mu 2)∗h)−1) ;

fun = @root3d ;
x0 = [ 0 . 5 , 0 . 5 , 0 . 5 ] ;
x = f s o l v e ( fun , x0 ) ;
beta = x (1) ;
s igma 1 = sqrt ( x ( 2 ) ) ;
s igma 2 = sqrt ( x ( 3 ) ) ;

kappa = −mu 1 − mu 2 − beta ;
lambda = −mu 1∗mu 2/beta + kappa ;

d = (beta−kappa)ˆ2+4∗beta∗ lambda ;
H = [1 1 ] ;
D = [mu 1 0 ; 0 mu 2 ] ;
P = [1 1 ; ( beta−kappa−sqrt (d ) )/ (2∗beta ) (beta−kappa+sqrt (d ) )/ (2∗beta ) ] ;
F = [1 ; 0 ] ;
c = − ( (H/D) / P) ∗F ;
alpha = theta (6)/ c ;

param (1) = beta ;
param (2) = sigma 1 ;
param (3) = sigma 2 ;
param (4) = kappa ;
param (5) = lambda ;
param (6) = alpha ;

function F = root3d (x )
b = x (1) ;
s 1 sq = x (2) ;
s 2 sq = x (3) ;

F(1 ) = (mu 2+b)ˆ2∗ s 1 sq+mu 2ˆ2∗ s2 sq−the ta3 hat ;
F(2 ) = (mu 1+b)ˆ2∗ s 1 sq+mu 1ˆ2∗ s2 sq−the ta4 hat ;
F(3 ) = s1 sq ∗bˆ2+s1 sq ∗(mu 1+mu 2)∗b +( s1 sq+s2 sq )∗mu 1∗mu 2 + theta5 hat ;

end
end

Appendix B: Discretization of the SDE

n = 1000 ; % number o f g r i d po in t s
h = 0.04 ; % step s i z e

P = zeros (1 , n ) ;
I = zeros (1 , n ) ;

rng (0 ) ; % use d e f a u l t random number genera tor wi th seed 0
Z = normrnd ( 0 , 1 , [ 2 , n−1]) ;

for k = 2 : n
P(k ) = P(k−1) + h∗( alpha−(lambda+beta )∗P(k−1)+(kappa−lambda )∗ I (k− 1 ) ) . . .
+sigma 1 ∗sqrt (h)∗Z(1 , k−1) ;
I ( k ) = I (k−1) + h∗( lambda∗P(k−1)−(kappa−lambda )∗ I (k− 1 ) ) . . .
+sigma 2 ∗sqrt (h)∗Z(2 , k−1) ;

end
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Appendix C: Kalman filter algorithm

%% load ing the s imu la ted data
data = load ( ’ data . mat ’ ) ;
S sim = data . S sim ;
I s im = data . I s im ;

%% load ing ph y s i c a l t r a j e c t o r y
data2 = load ( ’ phys . mat ’ ) ;
I phys = data2 . I ;
S phys = data2 . S ;

%% Se t t i n g up Kalman f i l t e r
F0 = [ alpha ; 0 ] ;
d = (beta−kappa )ˆ2 + 4∗beta∗ lambda ;
P0 = [1 1 ; (beta−kappa−sqrt (d ) )/ (2∗beta ) (beta−kappa+sqrt (d ) )/ (2∗beta ) ] ;
mu1 = .5∗(−beta−kappa−sqrt (d ) ) ;
mu2 = .5∗(−beta−kappa+sqrt (d ) ) ;
D = [mu1 0 ; 0 mu2 ] ;
S = [ sigma1 sigma2 ; 0 sigma2 ] ;
C = (P0\S )∗ (P0\S ) ’ ;
R i = [ ( exp(2∗mu1∗h)−1)/(2∗mu1)∗C(1 , 1 ) , (exp(mu1∗h+mu2∗h)−1)/(mu1+mu2)∗C( 1 , 2 ) ; . . .

(exp(mu1∗h+mu2∗h)−1)/(mu1+mu2)∗C(2 , 1 ) , (exp(2∗mu2∗h)−1)/(2∗mu2)∗C( 2 , 2 ) ] ;

F = expm(D∗h) ;
Q = R i ;
B = D\( (expm(D∗h) − eye ( 2 ) )∗ (P0\F0) ) ;
H = P0 ; % or H = [1 , 1 ] f o r p a r t i a l l y observed data
R = sigmaˆ2∗eye (2 ) ; % or R = sigmaˆ2 f o r p a r t i a l l y observed data
mu0 = [ 0 ; 0 ] ;
V0 = [0 0 ; 0 0 ] ;

%% Kalman a lgor i thm
z = zeros (2 , n ) ;
z ( : , 1 ) = mu0 ;
P = zeros (2 , 2∗n) ;
P( : , 1 : 2 ) = V0 ;
for j = 2 : n

% pred i c t i on s t ep
z ( : , j ) = F∗z ( : , j−1) + B ;
P( : , 2 ∗ j −1:2∗ j ) = F∗P( : , 2 ∗ j −3:2∗ j −2)∗F’ + Q ;
% update s t ep
y = [ S sim ( j ) ; I s im ( j ) ] ;
r e s = y − H∗z ( : , j ) ;
S = R + H∗P( : , 2 ∗ j −1:2∗ j )∗H’ ;
K = (P( : , 2 ∗ j −1:2∗ j )∗H’ ) / S ;
z ( : , j ) = z ( : , j ) + K∗ r e s ;
P( : , 2 ∗ j −1:2∗ j ) = (eye(2)−K∗H)∗P( : , 2 ∗ j −1:2∗ j ) ;

end

% trans forming back
for j = 1 : n

z ( : , j ) = P0∗z ( : , j ) ;
end

S ka l = z ( 1 , : ) ;
I k a l = z ( 2 , : ) ;
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Appendix D: RTS Smoother algorithm

z smooth = zeros (2 , n ) ;
P smooth = zeros (2 ,2∗n) ;

% i n i t i a l i z e
z smooth ( : , end) = z ( : , end) ;
P smooth ( : , end−1:end) = P( : , end−1:end) ;
% z and P are from the Kalman f i l t e r

% i t e r a t e
for j = f l i p ( 1 : n−1)

z min = F∗z ( : , j ) + C ;
P min = F∗P( : , 2∗ j −1:2∗ j )∗F’ + Q ;
G = (P( : , 2 ∗ j −1:2∗ j )∗F’ ) / P min ;
z smooth ( : , j ) = z ( : , j ) + G∗( z smooth ( : , j +1) − z min ) ;
P smooth ( : , 2∗ j −1:2∗ j ) = P( : , 2 ∗ j −1:2∗ j ) + G∗( P smooth ( : , 2∗ j : 2∗ j +1) − P min )∗G’ ;

end

% trans forming back
for j = 1 : n

z smooth ( : , j ) = P0∗ z smooth ( : , j ) ;
end

S smooth = z smooth ( 1 , : ) ;
I smooth = z smooth ( 2 , : ) ;

Appendix E: Liu and West filter with constant parameters

N = 100 ; % #sample po in t s
w = zeros (n ,N) ;
w( 1 , : ) = repmat (1/N, [ 1 ,N] ) ; % equa l we i gh t s a t time t=0
x = zeros (2∗n ,N) ;

for t=1:n−1
% resample
for i = 1 :N

mu = F∗x (2∗ t−1:2∗ t , i )+B ;
y = [ S sim ( j , t+1) ; I s im ( j , t+1) ] ;
w( t+1, i ) = exp(− .5∗(y−H∗mu) ’ / (R)∗ ( y−H∗mu) ) ;

end
w( t +1 , : ) = w( t +1 , :)/sum(w( t +1 , : ) ) ;
x (2∗ ( t )−1:2∗( t ) , : ) = datasample (x (2∗ ( t )−1:2∗( t ) , : ) , N, 2 , ’Weights ’ , w( t +1 , : ) ) ;

% propagate x
for i = 1 :N

mu = F∗x (2∗ ( t )−1:2∗( t ) , i )+B ;
x (2∗ ( t +1)−1:2∗( t +1) , i ) = mvnrnd(mu, Q) ;

end

% resample again
for i = 1 :N

y = [ S sim ( j , t +1); I s im ( j , t+1) ] ;
mu = F∗x (2∗ ( t )−1:2∗( t ) , i )+B ;
w( t+1, i ) = exp ( . 5 ∗ ( y−H∗mu) ’ / (R)∗ ( y−H∗mu) −.5∗(y−H∗x (2∗ ( t +1)−1:2∗( t +1) , i ) ) ’ / (R ) . . .

∗(y−H∗x (2∗ ( t +1)−1:2∗( t +1) , i ) ) ) ;
end
w( t +1 , : ) = w( t +1 , :)/sum(w( t +1 , : ) ) ;
x (2∗ ( t )−1:2∗( t ) , : ) = datasample (x (2∗ ( t )−1:2∗( t ) , : ) , N, 2 , ’Weights ’ , w( t +1 , : ) ) ;

end
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Appendix F: Liu and West filter applied to AR(1) model

t h e t a r e a l = 0 .8 ;
n = 1000 ; % t = 1 , . . . , n
N = 5000 ; % #sample po in t s
a = 0.995 ; % shr inkage c o e f f i c i e n t
s t r u c t = load ( ’AR1 ’ ) ;
y = s t r u c t . x data ;

% i n i t i a l i s a t i o n
x = zeros (n ,N) ;
x ( 1 , : ) = 0 ;
w = zeros (n ,N) ;
w( 1 , : ) = 1/N ;
theta = zeros (n ,N) ;
theta ( 1 , : ) = uni f rnd ( 0 , 1 , [ 1 ,N] ) ;
x e s t = zeros (1 , n ) ;
x e s t (1 ) = 0 ;
t h e t a e s t = zeros (1 , n ) ;
t h e t a e s t (1 ) = mean( theta ( 1 , : ) ) ;

for t = 1 : n−1
% ca l c u l a t e i n i t i a l we i gh t s
g = zeros (1 ,N) ;
for i = 1 :N

% a p r i o r i e s t ima t e s
mu = theta ( t , i )∗x ( t , i ) ;
g ( i ) = exp(− .5∗(y ( t+1)−mu)ˆ2) ;

end
g = g/sum( g ) ;

% resample f o r f i r s t time
resamp = datasample ( cat (1 , x ( t , : ) , theta ( t , : ) ) , N, 2 , ’Weights ’ , g ) ;
x ( t , : ) = resamp ( 1 , : ) ;
theta ( t , : ) = resamp ( 2 , : ) ;

% propagate t h e t a
the ta bar = sum(1/N∗ theta ( t , : ) ) ;
V = sum(1/N∗( theta ( t , : )− the ta bar ) . ˆ 2 ) ;
for i = 1 :N

m = a∗ theta ( t , i )+(1−a )∗ the ta bar ;
theta ( t+1, i ) = normrnd (m, sqrt ( (1−a ˆ2)∗V)) ;

end

% propagate x
for i = 1 :N

x ( t+1, i ) = normrnd ( theta ( t+1, i )∗x ( t , i ) , 1) ;
end

% ca l c u l a t e we i gh t s
for i = 1 :N

mu = theta ( t+1, i )∗x ( t , i ) ;
w( t+1, i ) = exp(− .5∗(y ( t+1)−x ( t+1, i ) ) ˆ2 )/exp(− .5∗(y ( t+1) − mu)ˆ2) ;

end
w( t +1 , : ) = w( t +1 , :)/sum(w( t +1 , : ) ) ;

% resample f o r second time
resamp = datasample ( cat (1 , x ( t +1 , : ) , theta ( t +1 , : ) ) , N, 2 , ’Weights ’ , w( t +1 , : ) ) ;
x ( t +1 , : ) = resamp ( 1 , : ) ;
theta ( t +1 , : ) = resamp ( 2 , : ) ;

% ca l c u l a t e c h a r a c t e r i s t i c o f i n t e r e s t
x e s t ( t+1) = mean( x ( t +1 , : ) ) ;
t h e t a e s t ( t+1) = mean( theta ( t +1 , : ) ) ;

end
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Appendix G: Liu and West filter for estimating all parameters

%% i n i t i a l i s a t i o n
theta0 = [ beta , sigma1 , sigma2 , kappa , lambda , alpha sigma ] ;
part = 0 ; % 0 fo r f u l l y observed , 1 f o r p a r t i a l l y observed
N = 10000 ; % # number o f sample po in t s
w = zeros (n ,N) ;
w( 1 , : ) = repmat (1/N, [ 1 ,N] ) ; % equa l we i gh t s a t time t=0
x = zeros (2∗n ,N) ;
theta = zeros (7∗n ,N) ;
a = 0.995 ;

% i n i t i a l e s t ima t e s f o r t h e t a
theta ( 1 , : ) = normrnd ( theta0 ( 1 ) , 1 . 11 , [ 1 ,N] ) ; % beta
theta ( 2 , : ) = normrnd ( theta0 ( 2 ) , 1 . 24 , [ 1 ,N] ) ; % sigma1
theta ( 3 , : ) = normrnd ( theta0 ( 3 ) , 0 . 38 , [ 1 ,N] ) ; % sigma2
theta ( 4 , : ) = normrnd ( theta0 ( 4 ) , 0 . 08 , [ 1 ,N] ) ; % kappa
theta ( 5 , : ) = normrnd ( theta0 ( 5 ) , 0 . 05 , [ 1 ,N] ) ; % lambda
theta ( 6 , : ) = normrnd ( theta0 ( 6 ) , 15 . 8 , [ 1 ,N] ) ; % alpha
theta ( 7 , : ) = normrnd ( theta0 ( 7 ) , 0 . 5 , [ 1 ,N] ) ; % sigma

%% parameter e s t ima t ion
for t=1:n−1

% resample
the ta bar = zeros ( 7 , 1 ) ;
for i = 1 :N

the ta bar = the ta bar + 1/N∗ theta (7∗ t−6:7∗ t , i ) ;
end

for i = 1 :N
m = a∗ theta (7∗ t−6:7∗ t , i )+(1−a )∗ the ta bar ;
output = CalcMatrix (m, part ) ;
F = output ( : , 1 : 2 ) ;
Q = output ( : , 3 : 4 ) ;
B = output ( : , 5) ;
i f part == 0

H = output ( : , 6 : 7 ) ;
H = reshape (H, [ 2 , 2 ] ) ;
R = m(7)ˆ2∗eye (2 ) ;
y = [ S sim ( t +1); I s im ( t+1) ] ;

else
H = [ 1 , 1 ] ;
R = m(7)ˆ2 ;
y = S sim ( t+1) ;

end
mu = F∗x (2∗ t−1:2∗ t , i )+B ;
w( t+1, i ) = 1/ sqrt (det (R) )∗exp(− .5∗(y−H∗mu) ’ / (R)∗ ( y−H∗mu) ) ;

end
w( t +1 , : ) = w( t +1 , :)/sum(w( t +1 , : ) ) ;
l i s t = cat (1 , x (2∗ t−1:2∗ t , : ) , theta (7∗ t−6:7∗ t , : ) ) ;
l i s t = datasample ( l i s t , N, 2 , ’Weights ’ , w( t +1 , : ) ) ;
x (2∗ t−1:2∗ t , : ) = l i s t ( 1 : 2 , : ) ;
theta (7∗ t−6:7∗ t , : ) = l i s t ( 3 : 9 , : ) ;

% propagate t h e t a
the ta bar = zeros ( 7 , 1 ) ;
for i = 1 :N

the ta bar = the ta bar + 1/N∗ theta (7∗ t−6:7∗ t , i ) ;
end

V = zeros ( 7 , 7 ) ;
for i = 1 :N

V = V + 1/N∗( theta (7∗ t−6:7∗ t , i )− the ta bar )∗ ( theta (7∗ t−6:7∗ t , i )− the ta bar ) ’ ;
end

45



for i = 1 :N
m = a∗ theta (7∗ t−6:7∗ t , i )+(1−a )∗ the ta bar ;
theta (7∗ ( t +1)−6:7∗( t +1) , i ) = mvnrnd(m, (1−a ˆ2)∗V ) ;

end

% propagate x
for i = 1 :N

output = CalcMatrix ( theta (7∗ ( t +1)−6:7∗( t +1) , i ) , part ) ;
F = output ( : , 1 : 2 ) ;
Q = output ( : , 3 : 4 ) ;
B = output ( : , 5) ;
mu = F∗x (2∗ t−1:2∗ t , i )+B ;
x (2∗ ( t +1)−1:2∗( t +1) , i ) = mvnrnd(mu, Q ) ;

end

% resample again
the ta bar = zeros ( 7 , 1 ) ;
for i = 1 :N

the ta bar = the ta bar + 1/N∗ theta (7∗ t−6:7∗ t , i ) ;
end

for i = 1 :N
m = a∗ theta (7∗ t−6:7∗ t , i )+(1−a )∗ the ta bar ;
output = CalcMatrix (m, part ) ;
F = output ( : , 1 : 2 ) ;
Q = output ( : , 3 : 4 ) ;
B = output ( : , 5) ;
i f part == 0

H = output ( : , 6 : 7 ) ;
H = reshape (H, [ 2 , 2 ] ) ;
R = m(7)ˆ2∗eye (2 ) ;
y = [ S sim ( t +1); I s im ( t+1) ] ;

else
H = [ 1 , 1 ] ;
R = m(7)ˆ2 ;
y = S sim ( t+1) ;

end
mu = F∗x (2∗ t−1:2∗ t , i )+B ;
e s t d en s = 1/( sqrt (det (R) ) )∗ exp(− .5∗(y−H∗mu) ’ / (R)∗ ( y−H∗mu) ) ;

output = CalcMatrix ( theta (7∗ t−6:7∗ t , i ) , part ) ;
vec = theta (7∗ t−6:7∗ t , i ) ;
i f part == 0

H = output ( : , 6 : 7 ) ;
H = reshape (H, [ 2 , 2 ] ) ;
R = vec (7)ˆ2∗eye (2 ) ;

else
H = [ 1 , 1 ] ;
R = vec (7)ˆ2 ;

end

t a r g e t d en s = 1/( sqrt (det (R) ) ) ∗ . . .
exp(− . 5∗ ( y−H∗x (2∗ ( t +1)−1:2∗( t +1) , i ) ) ’ /R∗(y−H∗x (2∗ ( t +1)−1:2∗( t +1) , i ) ) ) ;

w( t+1, i ) = ta rg e t den s / e s t d en s ;

end
w( t +1 , : ) = w( t +1 , :)/sum(w( t +1 , : ) ) ;
l i s t = cat (1 , x (2∗ ( t +1)−1:2∗( t +1) , : ) , theta (7∗ ( t +1)−6:7∗( t +1) , : ) ) ;
l i s t = datasample ( l i s t , N, 2 , ’Weights ’ , w( t +1 , : ) ) ;
x (2∗ ( t +1)−1:2∗( t +1) , : ) = l i s t ( 1 : 2 , : ) ;
theta (7∗ ( t +1)−6:7∗( t +1) , : ) = l i s t ( 3 : 9 , : ) ;

end

46



% trans forming back
d = (beta−kappa )ˆ2 + 4∗beta∗ lambda ;
P0 = [ 1 , 1 ; (beta−kappa−sqrt (d ) )/ (2∗beta ) , (beta−kappa+sqrt (d ) )/ (2∗beta ) ] ;
for j = 1 : n

for i = 1 :N
x(2∗ j −1:2∗ j , i ) = P0∗x (2∗ j −1:2∗ j , i ) ;

end
end

t h e t a e s t = zeros (7 , n ) ;
I e s t = zeros (1 , n ) ;
S e s t = zeros (1 , n ) ;
for i = 1 : n

t h e t a e s t ( 1 : 7 , i ) = zeros ( 7 , 1 ) ;
for j = 1 :N

th e t a e s t ( 1 : 7 , i ) = th e t a e s t ( 1 : 7 , i ) +1/N∗ theta (7∗ i −6:7∗ i , j ) ;
end
s t a t e = x(2∗ i −1:2∗ i , : ) ;
I e s t ( i ) = sum(1/N∗ s t a t e ( 2 , : ) ) ;
S e s t ( i ) = sum(1/N∗ s t a t e ( 1 , : ) ) ;

end

function output = CalcMatrix ( theta , part )
for i = 1 : length ( theta )

i f theta ( i ) < 0 % theta ’ s shou ld be p o s i t i v e
theta ( i ) = 0.001 ;

end
end

i f theta (4 ) < theta (5 )
theta (4 ) = theta (5)+0.001 ; % kappa shou ld be l a r g e r than lambda

end

beta = theta (1 ) ;
sigma1 = theta (2 ) ;
sigma2 = theta (3 ) ;
kappa = theta (4 ) ;
lambda = theta (5 ) ;
alpha = theta (6 ) ;
h = 0.04 ; % step s i z e

F0 = [ alpha ; 0 ] ;
d = (beta−kappa )ˆ2 + 4∗beta∗ lambda ;
P0 = [ 1 , 1 ; (beta−kappa−sqrt (d ) )/ (2∗beta ) , (beta−kappa+sqrt (d ) )/ (2∗beta ) ] ;
mu1 = .5∗(−beta−kappa−sqrt (d ) ) ;
mu2 = .5∗(−beta−kappa+sqrt (d ) ) ;
D = [mu1 0 ; 0 mu2 ] ;
S = [ sigma1 sigma2 ; 0 sigma2 ] ;
C = (P0\S )∗ (P0\S ) ’ ;
R i = [ ( exp(2∗mu1∗h)−1)/(2∗mu1)∗C(1 ,1 ) (exp(mu1∗h+mu2∗h)−1)/(mu1+mu2)∗C(1 ,2 ) ; . . .
(exp(mu1∗h+mu2∗h)−1)/(mu1+mu2)∗C(2 ,1 ) (exp(2∗mu2∗h)−1)/(2∗mu2)∗C( 2 , 2 ) ] ;
F = expm(D∗h) ;
Q = R i ;
B = D\( (expm(D∗h) − eye ( 2 ) )∗ (P0\F0) ) ;

output = zeros ( 2 , 7 ) ;
output ( : , 1 : 2 ) = F ;
output ( : , 3 : 4 ) = Q ;
output ( : , 5) = B ;

i f part == 0
output ( : , 6 : 7 ) = P0 ;

end
end
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