

Delft University of Technology

P4QoS: QoS-based Packet Processing with P4

Turkovic, B.; Biswal, S.; Vijay, A.; Hüfner, A.E.; Kuipers, F.A.

DOI
10.1109/NetSoft51509.2021.9492539
Publication date
2021
Document Version
Accepted author manuscript
Published in
Proceedings of the 2021 IEEE Conference on Network Softwarization

Citation (APA)
Turkovic, B., Biswal, S., Vijay, A., Hüfner, A. E., & Kuipers, F. A. (2021). P4QoS: QoS-based Packet
Processing with P4. In K. Shiomoto, Y.-T. Kim, C. E. Rothenberg, B. Martini, E. Oki, B.-Y. Choi, N.
Kamiyama, & S. Secci (Eds.), Proceedings of the 2021 IEEE Conference on Network Softwarization:
Accelerating Network Softwarization in the Cognitive Age, NetSoft 2021 (pp. 216-220). Article 9492539
(Proceedings of the 2021 IEEE Conference on Network Softwarization: Accelerating Network Softwarization
in the Cognitive Age, NetSoft 2021). IEEE. https://doi.org/10.1109/NetSoft51509.2021.9492539
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/NetSoft51509.2021.9492539
https://doi.org/10.1109/NetSoft51509.2021.9492539

P4QoS: QoS-based Packet Processing with P4
Belma Turkovic, Soovam Biswal, Abhishek Vijay, Antonia Hüfner and Fernando Kuipers

Delft University of Technology, the Netherlands

Abstract—Networks often need to concurrently process mil-
lions of flows with varying Quality-of-Service (QoS) require-
ments. Doing so by deploying flow-specific rules at network nodes
would require significant memory and overhead.

In this paper, we take a fundamentally different approach,
called P4QoS, by embedding QoS requirements in the packets
themselves and leveraging P4-programmable network switches
to process the traffic based on them. We illustrate and evaluate
our approach with latency as our QoS metric, but our concept
can be applied to other metrics as well. Our evaluation, both in
software (Mininet) and in hardware (Intel Tofino), shows that
P4QoS can satisfy application-specific QoS requirements with
negligible memory overhead.

I. INTRODUCTION

Over the past years, services with very strict QoS re-
quirements (e.g., on loss, bandwidth, latency) have emerged.
Consequently, the range of application requirements that need
to be simultaneously supported by the network is increasing.
Moreover, these application requirements may vary during the
connection, depending on the user’s actions (e.g., with online
gaming or emerging tactile internet applications) [3], [10].

Considering that switches can process millions of flows
at a time, accommodating these varying requirements by
deploying per-flow rules would cause significant management
and resource overhead (e.g., queues, memory [5]). Moreover,
provisioning networks to satisfy all applications with varying
requirements at their peak would be inefficient [10]. In contrast
to per-flow rules, nearly parameterless queue-management
mechanisms, such as CoDel (Controlled Delay [9]) can be
deployed without any management/configuration overhead.
However, they treat all packets in the same way and cannot
accommodate packets that, for example, have diverse latency
constraints.

In this paper, we leverage P4-programmable networks to
enable applications to request a specific QoS from the network.
To do so, we embed the maximum allowed latency a packet
can experience (i.e., packet deadline) in the packet itself.
Subsequently, we enable P4-programmable switches [2] to
decrement the packet’s allowed latency based on the delay
experienced on each link/switch, and deploy mechanisms that
– while processing packets – ensure packet deadlines are met
without any of the flows overpowering each other.
Contributions & Outline. Our key contributions are:

• QoS-based packet forwarding: We program the network
switches to process packets based on the latency dead-
lines specified in the packets (Sec. II).

• Link-latency estimation protocol (LLEP): To estimate the
propagation and transmission delay, we develop a custom

protocol that periodically updates and stores the link-
latency information in the switches (Sec. II-A).

• Cooperative AQM: We propose a queue management
mechanism with a marking target based on packet dead-
lines (Sec. II-B).

By allowing the applications to specify the required QoS
information in the packet itself, our solution (P4QoS) not
only simultaneously supports a wide variety of application
requirements, but also applications with varying network re-
quirements. Consequently, in contrast to existing scheduling
or active queue management (AQM) schemes, our solution
dynamically adjusts the switches’ parameters based on the flow
requirements.

II. QOS-BASED FORWARDING

Programmable switches, using P4 [2], facilitate new mon-
itoring features based on the exact state packets experience
while being processed [6], [7], [11]. We leverage this possi-
bility to keep track of the “amount of latency” the packets
already “used” while being processed in the network. To
do so, each application appends an additional QoS header
containing the maximum end-to-end latency the packet can
still experience based on the packet’s QoS deadline. Next, we
develop a custom protocol that periodically calculates the link
latencies (explained further in Sec. II-A). By combining this
protocol with packet deadlines di, we program the switches to
update their threshold trgt, which defines when the switch will
start dropping or marking processed packets to signal to the
end-hosts to back-off, on-the-fly. Finally, on each switch, we
subtract the total delay the packet experienced while being pro-
cessed on the switch (processing and queuing delay) and the
delay needed to reach the next switch in the path (transmission
and propagation delay) from the packet’s deadline. Whenever
the switch determines that the packet cannot be successfully
delivered to the end-application, it invokes the mechanism to
recalculate the switches trgt parameter to match the current
network state (explained further in Sec. II-B).

A. Link latency estimation protocol (LLEP)

Switches can use timestamps from different processing
stages to estimate the propagation and transmission delay.
However, switches have independent clocks and, therefore,
timestamps are only useful locally. To evade this limitation, we
developed a custom Link Latency Estimation Protocol (LLEP).

The ingress switch (S1 in Fig. 1) periodically appends an
LLEP header, containing an egress timestamp (representing the
time the packet left the switch, tsend in Fig. 1, step 1), to the
outgoing application data packets. Upon receiving a packet978-1-6654-0522-5/21/$31.00 c©2021 IEEE

S1 S2

LLEP

LLEP

Table with
estimated
link latencies

Eth tsend IP

Latency

LLest,1

Port

1
Eth tsend tp+ tq

1 2

3

4

Fig. 1: Link latency estimation protocol (LLEP).

with an LLEP header, the next switch in the path saves its
ingress timestamp (the time the packet was received), clones
the packet, and forwards the original application data packet
further along the path. Next, while processing the clone, the
switch calculates the total processing and queuing time (tp+tq)
as the difference between the current egress and the saved
ingress timestamp and appends it to the LLEP header (step 2,
Fig. 1). Finally, it sends the cloned packet back to the previous
switch in the path (step 3, Fig. 1), which uses the appended
information and its own ingress timestamp tingress (the time
the cloned packet was received) to calculate the estimated link
latency LLest as follows (step 4, Fig. 1):

LLest =
tingress − (tsend + tq + tp)

2
(1)

Lastly, the latency register at the ingress switch is updated and
used to estimate the packet deadlines for all the flows on the
same output link. All other switches use the same procedure
to estimate all other link latencies. Note that the propagation
and transmission delays usually do not change and, hence,
this process can be infrequent. Moreover, since only the two
switches forming the link are needed to estimate each link
latency, our solution is topology independent.

B. Cooperative AQM

We developed a custom mechanism to determine the max-
imum allowed queuing delay satisfying the deadlines of all
flows processed at the switch. In essence, our solution deter-
mines the marking target (trgt) that ensures that the flow with
the lowest deadline determines the queuing delay.

First, in the QoS header, the ingress switch initializes
another field “target” tt (in addition to the deadline header
field) to d. By subtracting only the estimated link latencies
(LLEst,i) from it, the switches calculate the “amount of
latency” that can be spent (in total) on queuing and processing
(Alg. 1, line 2). Additionally, the switches estimate the number
of bottlenecks (nbtl, Alg. 1, line 4) by checking the queuing
delay/queue depth that the packet experienced and comparing
it to the sensitivity parameter s. The parameter s determines
the minimum queuing delay (or minimum size of the queue)
needed at a switch for it to be considered a bottleneck. If
set too low, it could cause an overestimation (or oscillations)
in the number of bottlenecks (i.e., switches that are not
bottlenecks would be detected as such). However, if set too
high, bottlenecks would be detected too late (i.e., after the
queue was already formed).

Algorithm 1: Target calculation: Cooperative AQM.
Input: target trgt, flowID that updated the target idt

1 if hdr.qos is valid then
2 tt ← tt − LLEst,i;
3 if dqueueing > s then
4 nbtl ← nbtl + 1; . number of bottlenecks
5 end
6 if last switch is true then
7 trgtnew ← tt/max{nbtl, 1}; . calc. new trgt
8 set valid(hdr.target update);
9 end

10 end
11 if hdr.target update is valid then
12 if trgtnew < trgt or idt == id then
13 trgt← trgtnew; . apply new target
14 idt ← id;
15 end
16 send target update(id, trgtnew);
17 end

Finally, using this information (remaining “amount of la-
tency” for processing and queuing tt, and the number of
bottlenecks nbtl), the last switch on the path calculates the new
marking target (Alg. 1, line 7) and forwards a target update
packet containing this information to all the other switches in
the path (Alg. 1, line 16). Upon receiving this packet, each
switch compares the new marking target trgt to its existing
target and stores the lower one (Alg. 1, line 13). Furthermore,
to filter out short-term traffic fluctuations and account for flows
with variable requirements, our algorithm: (1) allows target
update packets of the same flow to overwrite the saved value
and (2) includes an interval-based approach that allows the
target to be updated once each fixed (or adaptable) interval
of N packets (seconds, See III-B). Further, every time a
connection that determined the target at the switch ends (e.g.,
a FIN packet is received), the marking target is reset to a
value higher than the maximum possible queueing delay on
the switch. If one of these switches is a bottleneck (or becomes
one), packets belonging to remaining flows will violate their
target trgt (due to excess queuing) at the last switch, triggering
a recalculation of trgt. Therefore, our congestion control
solution ensures the maximum latency is lower or equal than
the sum of all the marking targets of all the switches the packet
passes through. Moreover, it also ensures a fair distribution
of the resources among the competing flows present on the
switch by signaling to each flow to back-off whenever the
lowest latency flow deadline is “in danger” of being violated.

Combination with other AQMs. State-of-the-art AQMs, such
as CoDel, can easily be combined with our approach by
adjusting the marking target with our approach (see Sec. III).

C. Overhead and limitations

Links towards end-hosts. LLEP does not support latency
estimation of links connecting the end-hosts. However, if end-

2

hosts would be programmable (e.g., via smartNICs), LLEP
could be extended to include them. As this is not generally the
case, LLEP can make use of the packets involved in connection
establishment (e.g., the 3-way handshake for TCP).

Time units. To ensure the accuracy of LLEP, both switches
need to support the same time-scale (e.g., nanoseconds).
However, this problem can be circumvented by approximating
the division using bit shift operations.

Flows with a higher deadline. The switch might mark packets
with a higher deadline even if its deadline d is not violated
to signal to the applications to reduce their rate. However, if
these packets are marked (and not dropped), they will still be
received at the end-hosts. Moreover, since their latency might
be unnecessarily inflated (due to static queues), forcing them
to back-off might improve overall network performance and
ensure fairness.

Determining the reverse path for target update packets.
If traffic is bidirectional, and packets from the receiver to the
sender are processed on the same path as the traffic from the
sender to the receiver, no additional rules are needed. The last
switch can reverse the source and destination IP (or MAC)
addresses and, consequently, the target update packet will be
processed using the existing rules. Otherwise, a source route
can be created by appending the ingress port on each switch
to the QoS header during target calculation.

Delay overhead. The additional QoS header increases the
transmission delay on each output link. However, this overhead
is constant and, typically, negligible (e.g., 4µs per switch with
a 10Mbps output link).

Memory overhead. Our approach uses additional 16 B·nports
to store the link latency information (cf. Sec. II-A marking
target and the flow that updated the target (cf. Sec. II-B). Thus,
on a typical 24-port switch, our approach would consume only
386 B, which is a negligible amount on modern programmable
hardware switches.

Packet overhead. Our approach generates additional packets
to estimate the link latency and update the marking target.
While link latencies can be infrequent, target updates will
occur depending on latency deadlines on three different oc-
casions: (1) a new flow is elected as the one with the lowest
deadline on a switch, (2) the deadline of the flow determining
the deadlines changes, or (3) a change in the traffic pattern
causes the formation of a new bottleneck or shifting of an
existing one. Thus, target updates can be frequent, for which
we explored two periodic filtering approaches (see Sec. III-B).

Floating-point operations. To make sure that switches will
run at line-rate, certain operations are restricted. In particular,
the programmable switches lack division and floating-point
operations. Thus, while calculating the target (Alg. 1, line 7),
we use the bit-shift operation. Consequently, if the number
of switches is not a power of 2, the configured trgt is
lower/higher than needed causing the switch to react too
fast/slow.

III. EVALUATION

Experiment topology. To evaluate our solution, we used the
topologies shown in Fig. 2. For the first topology (Fig. 2a) we
used the Intel Tofino switch [4]. Since we only had one Tofino
switch, nodes 1-2 were run using the same Tofino switch with
two different physical ports connected. Since the processing
is not the limiting factor (the switch runs at line-rate), this
should not affect our results. For the second topology (Fig. 2b)
we used Mininet with the software switch (behavioural model
2 [1]).

1 2
C1

Cn Sn

S1

.

limited output rate
& limited queue length

Configurable delay

Clients Servers

(a) Single bottleneck topology (2-switches, 1 links).

1 2 3 4 5 6
C1

Cn Sn

S1

C1 C2

S1 S2

.

Clients ServersCross-traffic
clients

Cross-trafficservers

(b) Multiple-bottlenecks topology (6-switches, 5 links).

Fig. 2: Topologies.

Experiment scenarios. We generated two concurrent 60s-
long TCP Cubic flows with different deadlines (d1 and d2).
To perform measurements, we relied on iperf, netem, switch
statistics, and tcpdump. Next, in the “multiple bottlenecks”
scenario (Fig. 2b), we generated the same two flows, and
additional cross-traffic between C1 and S1 from 10-40s, and
between C2 and S2 from 20-50s in an attempt to emulate
different traffic volumes. Each scenario was run ten times,
and for all of them we observed similar results.

Performance metrics. To evaluate our approach, we used the
following metrics: (1) the percentage of packets violating their
deadline, (2) the average and maximum round-trip times and
the one-way delays, (3) utilization as the percentage of the
total available bandwidth used by all the connections, (4) Jain’s
fairness index (that ranges from 1/n to 1, where n is the
number of flows) and (5) number of sent trgt updates.

Comparison baselines. We compared our solution against (1)
a simple switch without any mechanism to either differentiate
between flows or address excessive queuing (NoAQM), (2)
P4-CoDel as the state-of-the-art AQM solution [8], and (3)
priority queuing (Prio) that assigns packets with lower dead-
lines to higher priority queues. Additionally, we tested three
different versions of P4QoS: (1) P4QoS, that marks all packets
exceeding the marking target trgt, (2) P4QoS+CoDel, that
adjusts the marking target of P4-CoDel based on the P4QoS
algorithm, and (3) Interval P4QoS, that only marks one packet
that exceeds trgt (configured using P4QoS) each interval,
where that interval is auto-tuned in the same way as for Codel

3

- NoAQM - Priority Queuing - P4-Codel - P4QoS - P4QoS+CoDel - Interval P4QoS

0.5 1 3 5 7 10

40

60

80

100

min(d)[ms]

U
til

iz
at

io
n
[%

]

(a) Average utilization.

0.5 1 3 5 7 10

0.6

0.8

1

min(d) [ms]

Ja
in

’s
in

de
x

(b) Average fairness index.

0.5 1 3 5 7 10
0

5

10

15

min(d) [ms]

L
at

en
cy

[m
s
]

(c) Maximum delay per flow.

d1 [ms]
0.5 1 3 5 7 10

d
2
[m
s]

0.5 99.99 99.98 99.91 99.31 98.46 96.60

1 99.98 99.96 99.72 99.33 98.50 97.00

3 99.91 99.72 99.31 98.86 98.81 97.13

5 99.31 99.33 98.86 98.92 99.27 99.22

7 98.46 98.50 98.81 99.27 99.52 98.26

10 96.60 97.00 97.13 99.22 98.26 98.10

(d) NoAQM. Average percentage of packets that
violated their deadline.

d1 [ms]
0.5 1 3 5 7 10

d
2
[m
s]

0.5 99.99 99.80 99.89 99.78 99.76 99.63

1 99.80 99.97 99.84 99.74 99.71 99.69

3 99.89 99.84 99.88 99.62 99.68 99.56

5 99.78 99.74 99.62 99.73 99.49 98.27

7 99.76 99.71 99.68 99.49 99.31 91.70

10 99.63 99.69 99.56 98.27 91.70 98.29

(e) Priority queueing. Average percentage of
packets that violated their deadline.

d1 [ms]
0.5 1 3 5 7 10

d
2
[m
s]

0.5 99.82 99.36 98.97 81.51 49.59 50.95

1 99.36 99.76 98.94 79.97 50.56 50.22

3 98.97 98.94 97.53 79.83 51.00 48.28

5 81.51 79.97 79.83 62.84 33.56 30.91

7 49.59 50.56 51.00 33.56 2.16 1.41

10 50.95 50.22 48.28 30.91 1.41 0.21

(f) P4-CoDel. Average percentage of packets
that violated their deadline.

d1 [ms]
0.5 1 3 5 7 10

d
2
[m
s]

0.5 0.89 0.54 0.50 0.47 0.54 0.51

1 0.54 0.92 0.54 0.53 0.53 0.50

3 0.50 0.54 0.35 0.15 0.18 0.17

5 0.47 0.53 0.15 0.11 0.07 0.08

7 0.54 0.53 0.18 0.07 0.09 0.08

10 0.51 0.50 0.17 0.08 0.08 0.13

(g) P4QoS. Average percentage of packets that
violated their deadline.).

d1 [ms]
0.5 1 3 5 7 10

d
2
[m
s]

0.5 99.28 84.77 52.84 50.50 49.77 49.43

1 84.77 99.00 53.60 51.22 49.42 49.90

3 52.84 53.60 88.60 46.49 45.22 44.53

5 50.50 51.22 45.49 66.04 34.15 32.95

7 49.77 49.42 44.22 34.15 46.36 24.33

10 49.43 49.90 45.53 32.95 24.33 28.72

(h) P4QoS+CoDel. Average percentage of pack-
ets that violated their deadline.

d1 [ms]
0.5 1 3 5 7 10

d
2
[m
s]

0.5 1.87 1.11 0.83 1.01 0.82 0.94

1 1.11 1.97 0.99 0.98 0.99 0.92

3 0.83 0.99 0.21 0.10 0.09 0.10

5 1.01 0.98 0.10 0.15 0.07 0.05

7 0.82 0.99 0.09 0.07 0.05 0.02

10 0.94 0.92 0.10 0.05 0.02 0.05

(i) Interval P4QoS. Average percentage of pack-
ets that violated their deadline.

Fig. 3: Evaluation using the Tofino switch (topology 2a). Confidence intervals 95%.

(i.e., if a packet is marked the interval is reduced, otherwise the
interval is reset to its default value (100ms)). Furthermore, to
limit the number of target update packets, we tested two back-
off mechanisms: (1) fixed P4QoS, which sends a target update
only once each N packets (seconds), and (3) adaptive P4QoS,
which adapts the interval between each target update based on
current traffic conditions, i.e., bottleneck counts.

A. Single-bottleneck topology

LLEP accuracy. In our hardware experiments, we estimated
the middle link to be between 59− 67ns.

Utilization. Due to its very aggressive marking policy, P4QoS
experienced a drop in throughput, especially for lower val-
ues of trgt. In contrast, by only marking one packet each
interval, and thus only punishing one flow at a time, P4-
CoDel, P4QoS+Codel, and Interval P4QoS maintained a high
utilization independently of trgt (Fig. 3a).

Fairness. All evaluated solutions, except priority queuing,
were able to maintain a high fairness index (≥ 0.80 on
average, Fig. 3b). Due to its strict priority approach, priority
queueing always favored the lower deadline packets. Thus, in
all scenarios in which the flows had different d, those flows
(with the lower d) claimed all the link resources, resulting in
low fairness. In scenarios where flows had the same d, priority
queueing had the same performance as NoAQM. Further, due

to its very aggressive marking policy and consequent drops in
utilization, P4QoS has a slightly lower fairness index on lower
values of trgt.

Delay. Taking flow properties into account (using P4QoS)
reduces the maximum end-to-end delay experienced by the
flows (Fig. 3c). P4QoS and Interval P4QoS maintained the
maximum end-to-end delay around the lowest deadline. P4-
CoDel (and P4QoS+P4-CoDel) only dropped a packet when
the queueing delay of all packets processed in an interval was
higher than trgt. Consequently, they allowed the queues to
form far beyond d and had a higher maximum delay (Fig. 3c).
Finally, NoAQM and priority queueing formed static queues,
and all packets experienced the maximum queueing delay.

Percentage of packets violating the deadline. As Fig. 3d-
3h illustrate, P4QoS and Interval P4QoS have the best per-
formance and were able to maintain a low percentage of
packets that violate the deadline (≤ 2%). In contrast, NoAQM,
Priority Queueing, and P4-CoDel had the worst performance.
Consequently, even when they had higher utilization compared
to P4QoS, most of the processed packets were outdated at
the destination host and, thus, no longer useful (e.g., 70.30%
utilization with only 0.89% outdated packets on average for
P4QoS compared to 93.11% utilization with 99.99% outdated
packets on average for NoAQM). Similarly, P4QoS-Codel, in
which trgt specifies the minimum queueing delay all packets

4

1 2 5 10 25 50 75 100 150

0

5

10

dlink,conf [ms]

∆
d
li

n
k

[%
]

(a) Average error in the LLEP estimation
(∆dlink) for different configured link la-
tencies (dlink,conf) with 90% confidence.

Time interval [sec]
0-10 10-20 20-30 30-40 40-50 50-60

n
b
tl

0 17.74 27.42 15.96 22.18 27.82 14.52

1 80.31 62.70 61.01 57.26 59.68 83.67

2 1.75 9.68 22.22 20.16 12.30 1.81

3 0.20 0.20 0.81 0.40 0.20 0.00

(b) Average percentage of bottleneck counts per time
interval each representing a specific traffic scenario in
the simulation.

0.2 0.4 0.6 0.8 1
0

200

400

600

Control interval [sec]

n
u
p
d
a
t
e
s Fixed-time

Adaptive

(c) Comparison of fixed-time and adaptive-
time interval P4QoS schemes based on the
average frequency of target updates.

Fig. 4: Simulation results using Mininet (topology 2b).

processed in an interval need to have for it to kick-in, violated
almost all latency constraints for the flow with the lower
deadline, leading to ≈ 50% of packet violations. Interval
P4QoS, that kicks-in when the queueing delay of any packet
exceeds trgt (but then idles for the duration of an interval),
combined the best of both P4QoS and P4-Codel. First, using
the auto-tuned interval approach and only marking one packet
per interval achieved high utilization. Second, setting trgt
based on the packets’ current deadlines, maintained a low
percentage of packets violating their deadline.

B. Multiple Bottleneck Scenario

LLEP accuracy. First, we evaluated the accuracy of LLEP
by varying the configured link latency dlink,conf (Fig. 4a).
In all the scenarios, the difference between the configured
and estimated link latency was less than 200µs (Fig. 4a).
As this value was nearly constant in our experiments, we
conclude that this overhead is the processing overhead of the
egress block (i.e., processing after setting the timestamp in
the LLEP packet), the parser, the deparser, and the additional
overhead while processing the packet in the kernel. Especially
on higher dlink,conf , this inaccuracy was negligible (≤ 0.5%
for dlink,conf = 25ms).
Bottleneck count By generating different patterns of cross-
traffic, we evaluated the ability of our solution to detect
bottlenecks and to adjust the dropping target adequately. As
illustrated in Fig. 4b, without cross-traffic, the number of
detected bottlenecks is relatively low. As the cross-traffic flows
commence at 10s, a greater number of bottlenecks is detected.
This trend increases further once both cross-flows are present
and decreases upon their completion (≥ 50s).
Target update overhead. Depending on the traffic pattern,
P4QoS can generate a lot of updates (≈ 34107±1323 packets
over the 60s). Fixed P4QoS - that sends a single update
each control interval - produced far fewer update packets
(≈ 296±11 over 60s) with only a slight drop in throughput in
some experiments. Finally, adaptive P4QoS had no perceptible
difference in performance compared to P4QoS, but sent a
higher amount of updates than fixed P4QoS (≈ 638± 23 over
60s, Fig. 4c).

IV. CONCLUSION

This paper leveraged the advanced monitoring possibilities
of programmable data-planes to enable the network to process

packets based on their per-packet specified QoS, by enabling
the switches to keep track of the latency the packet experi-
enced while being processed in the network. Next, this paper
introduced a queue management system with low processing
and memory overhead that works entirely on a per-packet
basis without keeping track of flow states. Furthermore, we
showed that our solution P4QoS, especially when combined
with the interval approach (Interval P4QoS), can significantly
improve the performance in the network, especially for low-
latency traffic, by significantly reducing the amount of marked
(outdated) packets without causing a drop in throughput.
Finally, we evaluated our solution in a more complex topology,
and included two mechanisms that can improve the stability
by reducing the amount of sent target updates.

REFERENCES

[1] P4 behavioral model. https://github.com/p4lang/behavioral-model. Ac-
cessed: 19-03-2018.

[2] BOSSHART, P., DALY, D., GIBB, G., IZZARD, M., MCKEOWN,
N., REXFORD, J., SCHLESINGER, C., TALAYCO, D., VAHDAT, A.,
VARGHESE, G., AND WALKER, D. P4: Programming protocol-
independent packet processors. SIGCOMM Comput. Commun. Rev. 44,
3 (July 2014), 87–95.

[3] CLAYPOOL, M., AND CLAYPOOL, K. Latency and player actions in
online games. Communications of the ACM 49, 11 (2006), 40–45.

[4] Intel R© TofinoTM: P4-programmable Ethernet switch ASIC that delivers
better performance at lower power. https://www.intel.com/content/www/
us/en/products/network-io/programmable-ethernet-switch/tofino-series.
html. [Online; accessed 03-November-2020].

[5] KARAKUS, M., AND DURRESI, A. Quality of service (qos) in software
defined networking (sdn): A survey. Journal of Network and Computer
Applications 80 (2017), 200–218.

[6] KIM, C., BHIDE, P., DOE, E., HOLBROOK, H., GHANWANI, A., DALY,
D., AND HIRA, MUKESH AMD DAVIE, B. In-band network telemetry
(int), 2016. https://p4.org/assets/INT-current-spec.pdf, Last accessed on
10-06-2020.

[7] KIM, C., SIVARAMAN, A., KATTA, N., BAS, A., DIXIT, A., AND
WOBKER, L. J. In-band network telemetry via programmable data-
planes. In ACM SIGCOMM (2015).

[8] KUNDEL, R., BLENDIN, J., VIERNICKEL, T., KOLDEHOFE, B., AND
STEINMETZ, R. P4-codel: Active queue management in programmable
data planes. In 2018 IEEE Conference on Network Function Virtualiza-
tion and Software Defined Networks (NFV-SDN) (2018), IEEE, pp. 1–4.

[9] NICHOLS, K., JACOBSON, V., MCGREGOR, A., AND IYENGAR, J.
Controlled delay active queue management. RFC 8289 1 (2018).

[10] POLACHAN, K., TURKOVIC, B., PRABHAKAR, T., SINGH, C., AND
KUIPERS, F. A. Dynamic network slicing for the tactile internet. In 2020
ACM/IEEE 11th International Conference on Cyber-Physical Systems
(ICCPS) (2020), IEEE, pp. 129–140.

[11] TURKOVIC, B., KUIPERS, F., VAN ADRICHEM, N., AND LANGEN-
DOEN, K. Fast network congestion detection and avoidance using p4.
In Proceedings of the 2018 Workshop on Networking for Emerging
Applications and Technologies (2018), pp. 45–51.

5

