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Abstract
This thesis focuses on classifying AF and Normal rhythm ECG recordings. AF is a common arrhythmia
occurring in millions of people every year, which could lead to blood clots, stroke or even heart failure.
When AF is occurring, the P waves are often absent and RR intervals are often irregular.

This thesis proposes a new Poincaré plot based feature that exploits the distribution and position
information of the plot. The Poincaré plot can visually analyze the nonlinear aspects of the heart rate
dynamics both qualitatively and quantitatively. In this thesis, the Poincaré plot values are first quantized
into small bins, which represent whether corresponding states are visited by the system or not, by
setting ones or zeros. The bins are then given weights by the masks based on the probability of each
state being visited by the system, and the relative position between the bins and the center of the plot.
By calculating the element-wise multiplication and summation between the quantized Poincaré plot
and the masks, the expected value of the matrix of the quantized Poincaré plot is computed, and the
outliers in the plot are emphasized. Therefore, the proposed feature is assumed to have a higher value
for the AF rhythms and a lower value for the Normal rhythm.

Instead of RR intervals, the Poincaré plot used in this thesis is also generated from the peak intervals
in the autocorrelation function of both ECG and prediction error. The autocorrelation function aims to
evaluate the self-similarity of the ECG signals and thus extracts the irregularity of the AF signals.

The dataset used in this thesis comes from the Physionet Challenge 2017, containing 5076 Normal
recordings and 758 AF recordings. In total, 21 Poincaré plot based features are used to train the
SVM and random forest models, which yields the F1 score of 0.80 and 0.85, respectively. When using
features from the same intervals, RR intervals generate the highest F1 score of 0.77 and 0.81, followed
by the peak intervals in the autocorrelation of prediction error with the F1 score of 0.74 and 0.78,
followed by the peak intervals in the autocorrelation error of ECG with the F1 score of 0.63 and 0.68.
Using the minimum redundancy maximum relevance algorithm, eleven features are selected based on
their importance. Training the SVM and RF models with these features reaches the F1 score of 0.78
and 0.84, respectively.
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1
Introduction

1.1. Motivation
Atrial fibrillation (AF) is a rapid and irregular heart beat that can lead to blood clots, stroke, heart failure
and other heart-related complications. This kind of cardiac arrhythmia occurs in one to two percent
of the general population, including six million Europeans, and this number is likely to double in the
following 50 years [41].

According to the duration and underlying reasons for the condition, AF can be divided into five
different types [2]:

1. Paroxysmal: Heart can return to the normal rhythm within seven days on its own.

2. Persistent: Heart will not return to the normal rhythm on its own and the irregular rhythm can last
for longer than seven days.

3. Long-standing: Irregular rhythm lasts for longer than twelve months.

4. Permanent: The condition lasts for indefinite time.

5. Nonvalvular: AF that is not caused by a heart valve issue.

Normally, the heart contracts and relaxes at a regular beat. This starts from the upper chambers
of the heart (the atria), where the sinoatrial (SA) node stimulates the electrical wave between 60-100
times per minute to the atrioventricular (AV) node. The electrical pulses are then delayed at the AV
node before going to the ventricles, during which period the ventricles finish filling with blood. After
that, the ventricles contract and pump blood to the lungs and the whole body [1].

However, during an AF period, the SA node starts the contraction randomly and disorganized. The
AV node can not regulate all these chaotic currents, and thus leads to the rapid contraction of the
ventricles. Since the atria and the ventricles do not beat in a coordinated way, the heart rhythm becomes
fast and irregular.

There are many causes of atrial fibrillation. The most common cause is damage to the heart’s
structure [12]. Other possible causes include:

1. High blood pressure

2. Heart attack

3. Coronary artery disease

4. Exposure to stimulants, such as medications, caffeine, tobacco or alcohol

5. Previous heart surgery

6. Sleep apnea

1
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Besides the items above, atrial fibrillation can also become worse with age. Therefore, as the life
expectancy keeps increasing, it is likely that more people will suffer from atrial fibrillation in the future.

Sometimes, people with AF do not show symptoms and only physical examinations can detect the
existence of it. More often, though, people with AF may experience the following symptoms [2]:

1. General fatigue

2. Rapid and irregular heartbeat

3. Dizziness

4. Shortness of breath and anxiety

5. Chest pain or pressure

When an irregular heart beat is suspected, the following tests are common options to detect the
existence of AF: electrocardiogram (ECG), electrophysiology (EP) study, stress test, and heart monitors
[3]. Among these tests, the ECG is a non-invasive way to record the patterns of the heart beat by
placing an array of electrodes on the body surface. A typical (schematic) ECG recording of a normal
sinus rhythm is given in Figure 1.1.

Figure 1.1: Normal sinus rhythm ECG.

Figure 1.1 shows that a normal sinus rhythm ECG signal consists of the P wave, the QRS complex,
and the T wave. These waves indicate the sequence of depolarization and repolarization of the atria
and ventrivles [5]. To be specific, the P wave represents the depolarization of the atria, which is usually
80 to 100 ms in duration. The QRS complex represents the depolarization of the ventricles, whose
duration is normally 60 to 100 ms. The T wave represents the repolarization of the ventricles. It is
longer in duration than the QRS complex, because the conduction of the repolarization wave is slower
than that of the depolarization. When AF is occurring, the absence of P waves and the irregularity of
RR intervals (intervals between successive R peaks) are the main characteristics.

1.2. Related work
Most features used to classify AF signals and Normal signals can be categorized into four types: time
domain, frequency domain, time-frequency domain, and nonlinear.

1. Time domain features are often calculated from RR intervals, which are the intervals between
consecutive R peaks, or P waves. Ye et al. [42] used the local RR interval and the average RR
interval as features to characterize the rhythm near a heartbeat, where the local RR interval is
the average of ten RR intervals, and the average RR interval is the average RR interval within 5
minutes. Lin et al. [28] normalized the RR intervals by themean value of all RR intervals within the
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same ECG recording, and calculated the average one-minute and twenty-minute RR intervals.
Fukunami et al. [20] calculated the P wave duration through an averaging of 200 beats and a
significant difference was found between patients with and without paroxysmal atrial fibrillation.

2. Frequency domain features use the Fourier transform to convert ECG signals from the time do-
main into the frequency domain, where the phase and magnitude information is given per fre-
quency band. Dokur et al. [18] calculated discrete Fourier transform coefficients and found that
feature vectors formed by the DFT of the ECG signals scatter in the feature space. Pourbabaee
et al. [34] calculated the power spectral density of the ECG signals using the periodogram and
lomb estimators. The power spectral density of the whole ECG signal was found suitable for
paroxysmal atrial fibrillation prediction.

3. Time-frequency domain features represent ECG signals in both the time and frequency domains
concurrently. Guler et al. [21] decomposed the ECG signals into time-frequency representations
using the discrete wavelet transform due to its varying window size and an optimal time-frequency
resolution in all frequency ranges. Pal et al. [32] proposed an Empirical Mode Decomposition
(EMD) based ECG signal enhancement technique to denoise the signals and detect the QRS
complex.

4. Nonlinear feature extractor such as recurrence quantification analysis (RQA) [19] and higher-
order spectra (HOS) [31] can quantify the concealed characteristics in the ECG signals. The
RQA parameters investigate the recurrence of the system and measure the complexities of the
ECG signals. The HOS is a spectral representation of moments and cumulants of order greater
than two. It is a common parameter that detects and characterizes the nonlinear correlations of
the different frequency components of the ECG signals [22].

In addition to the various features discussed above, many researches focused on implementing
powerful and novel classifiers and algorithms to solve the problem. For example, in the PhysioNet Com-
puting in Cardiology (CinC) Challenge 2017, whose data is used in this thesis, four groups reached the
highest F1 score of 0.83. Datta et al. [17] proposed a two layer binary cascaded approach, which clas-
sifies the recordings into one of the two intermediate classes (‘normal+others’ and ‘AF+noisy’) before
further classification. Hong et al. [23] combined expert features, DNNs (Deep Neural Networks), and
centerwave features to train ensemble classifiers. Expert features included features from the statistical
area, the signal processing area and the medical area. Centerwave features were proposed by the
team which stand for the most representative wave. Zabihi et al. [43] extracted 150 time, frequency,
time-frequency, and phase space features out of a total of 491 features. A random forest classifier was
then used to classify the selected features. Teijeiro et al. [38] used Tree Gradient Boosting algorithm to
evaluate the recordings globally and a Recurrent Neural Network to evaluate each detected heartbeat.
The two classifiers are finally combined using a Linear Discriminant Analysis (LDA) classifier.

1.3. Research objectives
This thesis aims to achieve two goals. The first goal is to propose a new feature that can exploit the
characteristics of the AF rhythm ECG signals. The second goal is to evaluate the performance of the
new feature. The whole procedure can be divided into the following steps:

1. To understand the characteristics of AF rhythm signals and the difficulty of classifying them and
normal rhythm signals.

2. To understand the dataset used in this thesis and the potential problems of the data.

3. To understand some state-of-the-art methods and figure out what can be learned from them.

4. To propose a new feature that can extract the characteristics of the AF rhythm.

5. To implement a classifier and learn how to choose the optimal hyper parameters.

6. To evaluate the performance of the classifier and try to improve the results.
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1.4. Contribution
The contribution of this thesis is given as follows:

1. A new feature is proposed based on the Poincaré plot. The plot is divided into small bins and the
count of bins that are visited by the system at least once is used as the new feature.

2. Mask processing technique is used in this thesis to give each bin a different weight. The new
feature uses the distribution of the data from the whole training set in the Poincaré plot, and the
relative positions between each bin to the center in the plot as the weight.

3. Autocorrelation functions of both ECG and prediction error are used to generate the Poincaré
plot in addition to RR intervals. Peak intervals in the autocorrelation functions are shown to have
extra information that can be helpful with the classification.

4. Distribution of the features’ value is compared in the box plot among the proposed feature and
some other commonly used Poincaré plot based features. The proposed feature is shown to
have larger gaps between the AF and Normal classes than other features.

5. The AF and Normal rhythm ECG signals are classified using only Poincaré plot based features
by both support vector machine and random forest. The performance of the two classifiers are
compared. The results are further improved by means of a feature selection method.

6. The m-lagged analysis of the proposed feature is implemented. It shows that the feature’s value
for AF rhythm is always higher than that for Normal rhythm, although the gap is decreasing as
the increase of the lag of the Poincaré plot.

1.5. Outline
The rest of the thesis is organized as follows. Chapter 2 presents the dataset used in this thesis, and
several pre-processing methods that are performed before the feature extraction. Chapter 3 explains
concept of the Poincaré plot and some commonly used features based on this plot. A new feature is
proposed using mask processing to extract the distribution information and the position information in
the Poincaré plot. Autocorrelation function is used to expand the application scope of the Poincaré
plot. In chapter 4 the feature selection method and two classifiers including support vector machine
and random forest are introduced. Chapter 5 compares the results of different features and compares
the results of the two classifiers. The performance is further improved by the feature selection method.
Chapter 6 discusses the conclusion drawn from the results, and describes some future directions.



2
Data and pre-processing

In this chapter, the data and the pre-processing steps are discussed. Section 2.1 describes the Phy-
sionet/Computing in Cardiology (CinC) challenge 2017 dataset. In Section 2.2, R peak detection al-
gorithm, which combines an envelope-based method and the modified Pan-Tompkins algorithm, is
explained. In Section 2.3, some pre-processing steps are applied, including lead inversion detection,
normalization, and outlier removal.

2.1. Data
The dataset used in this thesis project comes from the PhysioNet/Computing in Cardiology (CinC) Chal-
lenge 2017, which focused on classifying AF from normal, noisy and other rhythms in ECG recordings
[15]. The challenge provided 12,186 recordings in total, of which 8,528 recordings are in the public
training set and 3,658 recordings are in the hidden test set. These recordings were obtained from
AliveCor’s single-channel ECG device. Due to the inaccessibility of the hidden testing set, only the
public training set was used in this thesis project. The signal length of the training set varies from 9 s
to 61 s, with a mean signal length of 32.5 s. The sampling frequency is 300 Hz. The recording labels
comply with the latest version in the challenge, where Normal rhythm constitutes more than half of
the whole training set, and Noisy rhythm only has less than 300 recordings. More details on the final
version of the labels can be seen in Table 2.1.

Table 2.1: Data profile for the training set

Label Number of recordings Percentage (%)
Normal 5076 59.5
AF 758 8.9

Noisy 279 3.3
Other 2415 28.3
Total 8528 100

Some examples of the ECG recordings for Normal, AF, Other, and Noisy rhythms are shown in
Figure 2.1 from top to bottom, respectively. In this thesis project, only Normal and AF rhythms were
used.

5
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Figure 2.1: Examples of ECG recordings. The labels and the indices of the recordings are given above each figure (For example,
“Normal - 00001” means the first recording in the dataset coming from the normal class).

2.2. R peak detection

Many features are based on the analysis of the heart rate variability (HRV), which requires the accurate
detection of R peaks. This project used an available matlab toolbox ’R-DECO’ [30], which combines
an envelope-based procedure and the modified Pan–Tompkins algorithm, to detect the R peaks. The
algorithm consists of three steps:

1) QRS complex enhancement: The upper (𝑈) and lower (𝐿) envelopes of the ECG signal are first
calculated by the secant method on 150𝑚𝑠. They are then subtracted from each other to obtain a
flattened ECG signal 𝐹: 𝐹 = 𝑈−𝐿. This emphasizes the QRS complex and flattens the remaining
of the ECG signal. This is shown in the Figure 2.2, where the grey solid line represents the ECG
signal.
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Figure 2.2: Visual explanation of enveloping procedure (Figure from [30]).

2) Searching of R peaks:

Figure 2.3: R peaks selection (Figure from [30]). The purple circles indicate the upward slopes, the green line indicates the
searching window, and the black circles indicate the R peaks.

As shown in Figure 2.3, at first the upward slopes are identified (purple circles) as the samples
lower than the samples 80 ms ahead of them. Then the slopes shorter than 80 ms are excluded
to avoid small peaks. Lastly, the peaks are selected within a window (green line) starting at the
end of the upward slope. The peaks are defined using the adaptive thresholding procedure of
the Pan–Tompkins algorithm.

3) Post-processing: In this step, the original ECG signal is used to find the exact position of the R
peaks by searching within 50 ms from the R peaks identified in step 2. The goal of this search-
back procedure is to avoid peak shift due to S waves.

2.3. Pre-processing
In this section, pre-processing steps including lead inversion detection, normalization of the RR intervals
and outlier removal are implemented on the raw ECG recordings to reduce the influence of the irrelevant
factors.

2.3.1. Lead inversion detection
Many ECG recordings in the dataset were found to be inverted, which is probably because the elec-
trodes were misplaced or held in the wrong orientation. In the inverted signal, the “R peaks” detected
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by the algorithm could be in fact a Q wave or an S wave. Without proper inspection, this will result in
wrong classification.

One way of checking whether an ECG signal is inverted is to check whether the value of the T wave
is positive or not. However, this requires an additional detection procedure for the T wave, which is not
needed in this thesis project. Therefore, an extra R peak detection was implemented after the ECG
signals were inverted. If the average peak height of the inverted signal is higher than the original one,
then the original signal is considered to be inverted and requires re-inversion.

Figure 2.4: An example showing an original ECG signal (left) and its inversion (right).

For example, the left figure in Figure 2.4 shows an inverted ECG signal. But the R peak detection
algorithm can still result in a series of positive “R peaks”. The average peak height is 0.37 mV. In the
figure on the right side, the whole signal is inverted and the R peak detection algorithm is implemented
again. This time, the average peak height is 0.53 mV. So the lead inversion detection algorithm will
choose the signal in the right figure in Figure 2.4.

2.3.2. Normalization of the RR intervals
The heart rate can be calculated from the RR intervals. This can change a lot among people. A
healthy heart rate varies from 60 to 100 beats per minute when in rest [7]. The maximum of the heart
rate during exercise could be roughly calculated as 220 heart beats per minute minus the age of that
person, according to the American Heart Association (AHA). So, for example, the maximum heart rate
for a 40 year-old man is around 180 heart beats per minute. Therefore, both the status and the age of
a person can influence his heart rate.

Different heart rates can impact the performance of heart rate variability (HRV) based features. HRV
is the variation in the time interval between consecutive heartbeats. Chapter 1 already mentioned that
AF causes the heart rate to be aperiodic. When checking the irregularity of RR intervals of AF signals,
the difference between consecutive RR intervals of signals with a higher heart rate might not be as
obvious as that of those signals with a lower heart rate. In other words, a person with a fast heart rate
has shorter RR intervals. When suffering from AF, the changes of RR intervals are relatively small, and
thus makes it difficult to separate from a Normal rhythm.

In order to get rid of the influence of the heart rate when extracting HRV based features, the heart
rate of all recordings needs to be normalized to the same scale at first. In this thesis, this is achieved
by dividing all the RR intervals by the average value of RR intervals of that recording:

𝑅𝑅ፍ፨፫፦ፚ፥።፳፞፝ =
𝑅𝑅

𝑚𝑒𝑎𝑛(𝑅𝑅) . (2.1)

This means the unit of the normalized RR intervals is no longer in milliseconds, but a ratio. Hence two
recordings with different heart rate will have the same mean RR interval value (equal to one), and are
thus comparable with each other.
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Figure 2.5 shows examples of the tachograms for the normalized RR intervals and the correspond-
ing ECG recordings, with Normal rhythm on the left and AF rhythm on the right. In the tachogram, the
normalized RR intervals are plotted on the y-axis against the time at which the R peak occurs on the
x-axis. Compared with the Normal class, the AF class shows a higher fluctuation for the normalized
RR intervals along time in the tachogram. It should be noted that part of the reasons that lead to the
high value of the normalized RR intervals around 10 seconds for the AF class is because of the failure
of the R peak detection, which can be seen in the corresponding ECG recording. To partially reduce
the influence of the failure of the R peak detection algorithm, some outliers are removed in the next
subsection.

Figure 2.5: Examples of the tachograms (the second row) and the ECG recordings for the two classes (the first row).

2.3.3. Outlier removal

After the normalized RR intervals are calculated, most intervals are centered around the average (which
is thus equal to one), while a number of recordings are found to have outliers larger than 2, sometimes
even up to 5. This is not likely to be caused by AF, because during AF periods, the heart is contracting
faster, leading to a smaller RR interval. After a careful check, some outliers are found to be caused by
artifacts. An example is shown in Figure 2.6, with the plot of the signal on the left and the histogram
of normalized RR intervals on the right. It can be seen from the left figure that around 50 seconds, the
signal is rather different from other parts of the signal, which results in a RR interval of more than four
times the average interval.
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Figure 2.6: Outlier due to artifacts.

Other outliers are found to be caused by failure of the R peak detection algorithm. An example is
shown in Figure 2.7. It can be seen in the left figure that between 40 to 45 seconds, three consecutive
R peaks are neglected by the detection algorithm (marked by a large red ellipse). This leads to an RR
interval with a length of more than three times the average interval.

Figure 2.7: Outlier due to failure of R peak detection.

These outliers do not contribute to the correct classification of AF and Normal ECG signals. Thus,
in this thesis, any RR interval larger than twice the average interval is removed.



3
Feature extraction

In this chapter, the procedure for feature extraction is introduced. In Section 3.1, the concept of the
Poincaré plot is introduced. In Section 3.2, some Poincaré plot based features are explained. In Section
3.3, a new Poincaré plot based feature is proposed. In Section 3.4, the autocorrelation function is used
to generate an alternative Poincaré plot.

3.1. Poincaré plot

The Poincaré plot is a type of recurrence plot used to evaluate the self-similarity nature of states. It
has shown to be a useful graphical representation to analyze the nonlinear aspects of the heart rate
dynamics [14]. It presents the correlation (by calculating the Pearson’s correlation coefficient) between
two consecutive data points in a time series, with a greater correlation between the present and past
implying the presence of memory in the time series [36]. The Poincaré plot can be evaluated qualita-
tively by categorizing the shape into a fan or comet as normal, or a random pattern with asymmetrical
RR interval clusters as abnormal. It can also be evaluated quantitatively to provide an estimation of
short-term and long-term variability of a time series (by calculating the standard deviation perpendicular
and parallel to the line of identity) [24] The quantitative analysis is based on the notion of different tem-
poral effects of changes in the vagal and sympathetic modulation of the heart rate on the subsequent
RR intervals, which does not require the data to be stationary [40].

Let 𝑋፧ (𝑛 = 1, 2, … ,𝑀) be a sequence of data points, the lag-1 Poincaré plot presents 𝑋፧ዄኻ on the
y-axis as a function of 𝑋፧ on the x-axis. RR intervals are widely investigated as the data sequence in
the Poincaré plot, where the values of a pair of consecutive RR intervals represent a point in the plot.
The idea of using consecutive points is based on the assumption that the current point significantly
influences the next point [26]. The plot provides beat-to-beat information of the patterns that are gener-
ated by the nonlinear processes and thus can not be detected by the standard time-domain analysis of
the HRV signal. The variability of the RR intervals increases from the onset till the end of AF. Besides,
baseline wandering and noise are more likely to contaminate the morphology of the fibrillatory waves
than the HRV [33], which makes visual inspection of the patterns of HRV a useful method to detect AF.

11
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Figure 3.1: The normalized Poincaré plots for a normal ECG signal (left) and an AF ECG signal (right).

Figure 3.1 illustrates interval 𝑅𝑅(𝑛+1) as a function of the previous interval 𝑅𝑅(𝑛) to show the differ-
ence between Normal rhythm and AF rhythm. The figures on the top left and bottom left show a Normal
ECG recording and the corresponding Poincaré plot, respectively. Most points can be found around
the center in the Poincaré plot, which implies the corresponding RR intervals have a low variance. Still,
these points show a higher variance along the identity line than the direction perpendicular to it, which
means the signal has a relatively large long-term correlation and a small short-term correlation.

The figures on the top right and bottom right, on the other hand, show an AF ECG recording and the
corresponding Poincaré plot, respectively. The Poincaré plot on the bottom right has a higher dispersion
than that of the normal signal, which means the corresponding RR intervals are more irregular. To
be specific, the variances along both the identity line and the direction perpendicular to it are higher
than those in the case of Normal rhythm recordings, meaning the short-term correlation and long-term
correlation of an AF rhythm signal are both large. Therefore, this provides some promising ways to
differentiate an AF signal from a Normal signal, as can be seen in the next section.

3.2. Commonly used Poincaré plot based features
The previous section explained the basic concept of the Poincaré plot. This section introduces some
commonly used features based on the Poincaré plot together with a proposed modified Poincaré plot
feature 𝐹዁ which will be explained in detail in the section 3.3. These features will be calculated di-
rectly from the RR intervals in the ECG signals at first, but this thesis also investigates the scenario of
calculating these features from the peak intervals in the autocorrelation of the ECG signal and of the
prediction error. The latter two will be explained in the section 3.4. Therefore, 21 features in total are
used in this thesis.

All the features used in this thesis can be seen in Table 3.1. All in all, features 𝐹ኻ to 𝐹ኽ reflect the
standard deviation of the data. Features 𝐹ኾ and 𝐹኿ capture the temporal structure of the plot. Feature 𝐹ዀ
shows the sparseness of the data in the plot. Feature 𝐹዁ uses the distribution and position information of
the data in the plot as weight to each bin in the feature 𝐹ዀ. The details of each feature will be explained
in the following subsections.
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Table 3.1: All the extracted features

Annotation Features Explanation

𝐹ኻ SD1 Standard deviation along the identity line in the
Poincaré plot

𝐹ኼ SD2 Standard deviation along the direction perpen-
dicular to the identity line

𝐹ኽ SD1/SD2 Ratio of SD1 and SD2
𝐹ኾ Mean stepping increment [33] Mean distance between the consecutive

points in the Poincaré plot
𝐹኿ Complex correlation measure

(CCM) [26]
Mean area of the triangles composed of the
consecutive three points in the Poincaré plot

𝐹ዀ Unweighted area of bins Count of bins in the Poincaré plot that are vis-
ited by the system at least once

𝐹዁ Weighted area of bins Giving weights to the bins in feature 𝐹ዀ

3.2.1. Ellipse-fitting technique

Figure 3.2: Popular Poincaré plot features: SD1 and SD2. The Poincaré plot is less scattered for the Normal rhythm compared
with the AF rhythm.

Figure 3.2 shows a popular way to quantitatively analyze the Poincaré plot [40]: fitting an ellipse to the
plot. The center of the ellipse is at the center of the plot, the major axis is along the identity line, and the
minor axis is perpendicular to the major axis. The standard deviation of the data along the minor axis,
denoted as SD1, represents the short-term variability of the data, which reflects the parasympathetic
activity and relates mainly to the effects of respiration on vagal drive [29]. The standard deviation of
the data along the major axis, denoted as SD2, represents the long-term variability of the data, which
reflects the sympathetic modulation and relates to other heart rate changes, including those associated
with sympathetic oscillations, baroreflex loop, thermoregulation, and fluctuations in humoral factors. If
the heart rhythm is regular, the points in the plot will be populated around the line of identity.

The line of SD2 and SD1 can be expressed as:

𝑆𝐷2 ∶ 𝑅𝑅(𝑛 + 1) = 𝑅𝑅(𝑛) (3.1)

𝑆𝐷1 ∶ 𝑅𝑅(𝑛 + 1) = −𝑅𝑅(𝑛) + 2𝑅𝑅(𝑛) (3.2)

where 𝑅𝑅(𝑛) is the mean value of RR intervals. The distance of point (𝑥ኺ, 𝑦ኺ) from a line Ax+By+C=0
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can be expressed as:

𝑑 = |𝐴𝑥ኺ + 𝐵𝑦ኺ + 𝐶|
√𝐴ኼ + 𝐵ኼ

(3.3)

Let 𝑑፧ኻ and 𝑑፧ኼ be the distance from the 𝑛th point (𝑅𝑅(𝑛), 𝑅𝑅(𝑛 + 1)) in the plot to the major and minor
axis, respectively:

𝑑፧ኻ =
|𝑅𝑅(𝑛) − 𝑅𝑅(𝑛 + 1)|

√2
(3.4)

𝑑፧ኼ =
|𝑅𝑅(𝑛) + 𝑅𝑅(𝑛 + 1) − 2𝑅𝑅(𝑛)|

√2
. (3.5)

SD1 and SD2 can thus be expressed as

𝑆𝐷1 = √ 1
𝑀 − 1

ፌዅኻ

∑
፧዆ኻ

𝑑ኼ፧ኻ (3.6)

𝑆𝐷2 = √ 1
𝑀 − 1

ፌዅኻ

∑
፧዆ኻ

𝑑ኼ፧ኼ (3.7)

where 𝑀 is the number of RR intervals.
Let SDNN be the standard deviation of the RR intervals:

𝑆𝐷𝑁𝑁 = √ 1𝑀

ፌ

∑
፧዆ኻ

(𝑅𝑅(𝑛) − 𝑅𝑅(𝑛))
ኼ

(3.8)

and SDSD be the standard deviation of the successive differences of the RR intervals:

𝑆𝐷𝑆𝐷 = √ 1
𝑀 − 1

ፌዅኻ

∑
፧዆ኻ

(𝛿𝑅𝑅(𝑛) − 𝛿𝑅𝑅(𝑛))
ኼ

(3.9)

where
𝛿𝑅𝑅(𝑛) = 𝑅𝑅(𝑛) − 𝑅𝑅(𝑛 + 1) (3.10)

and 𝛿𝑅𝑅(𝑛) is the mean value of 𝛿𝑅𝑅(𝑛). Note that 𝛿𝑅𝑅(𝑛) = 𝐸[𝑅𝑅(𝑛)] − 𝐸[𝑅𝑅(𝑛 + 1)] = 0 for
stationary intervals. Thus, SDSD is statistically equivalent to the root mean square of the successive
differences of the RR intervals. According to [14], these descriptors, SD1 and SD2, are still related to
the time domain statistics of the HRV, which are SDSD and SDNN:

𝑆𝐷1 = 1
√2
𝑆𝐷𝑆𝐷 (3.11)

𝑆𝐷2 = √2𝑆𝐷𝑁𝑁ኼ − 12𝑆𝐷𝑆𝐷
ኼ (3.12)

𝑆𝐷1ኼ + 𝑆𝐷2ኼ = 2𝑆𝐷𝑁𝑁ኼ (3.13)

3.2.2. Temporal based features
The limitation of the features 𝐹ኻ to 𝐹ኽ is that they reveal the global variability of the RR intervals, and fails
to capture the nonlinear temporal structure of the plot quantitatively. Further, when there are multiple
clusters in the plot due to complex dynamic behaviors, the above features yields mixed results because
they rely on the existence of a single cluster or a defined pattern [26]. On the other hand, features 𝐹ኾ
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and 𝐹኿ aim to investigate the temporal information of the time series, which is distinguishing between
Normal and AF, and these features are based on the correlation between consecutive two and three
points in the plot, respectively.

Feature 𝐹ኾ in Table 3.1 calculates the mean distance of the consecutive points in the Poincaré plot
divided by mean value of intervals:

𝐹ኾ =
ኻ

ፌዅኼ ∑
ፌዅኼ
፧዆ኻ √(𝑅𝑅(𝑛) − 𝑅𝑅(𝑛 + 1))ኼ + (𝑅𝑅(𝑛 + 1) − 𝑅𝑅(𝑛 + 2))ኼ

ኻ
ፌ ∑

ፌ
፧዆ኻ 𝑅𝑅(𝑛)

. (3.14)

Figure 3.3: Schematic of feature ፅᎶ.

Figure 3.3 illustrates the feature 𝐹ኾ for a Normal signal and an AF signal, respectively. Since the
points for Normal rhythm are clustering in the center, the mean distance between points is only 0.050.
This means the RR intervals are almost uniformly distributed. The points for AF rhythm do not have
a certain pattern and disperse highly in the plot. This indicates that the RR intervals are statistically
independent from each other, except a small correlation between the immediate subsequent points
[33]. This leads to a higher mean distance between points: 0.284, which is more than five times of that
of a Normal rhythm.

Feature 𝐹኿ in Table 3.1 calculates the mean area of the triangles composed of the consecutive three
points in the Poincaré plot divided by the area of the fitting ellipse. Let ||𝑆(𝑖)|| be the area of the 𝑖th
triangle, and 𝜋 × 𝑆𝐷1 × 𝑆𝐷2 represent the area of the fitted ellipse over the Poincaré plot, 𝐹኿ can be
expressed as:

𝐹኿ =
1

𝜋 × 𝑆𝐷1 × 𝑆𝐷2 × (𝑀 − 2)

ፌዅኼ

∑
።዆ኻ

||𝑆(𝑖)||. (3.15)
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Figure 3.4: Schematic of feature ፅᎷ.

Figure 3.4 illustrates about how to define triangles in feature 𝐹኿ for an AF signal, where the triangles
are composed of the points 123, 234, ..., (M-3)(M-2)(M-1), respectively. In this way, not only the distance
between points are contributing to the feature, but also the relative direction among the consecutive
three points will impact the final value. Using the same two examples as in Figure 3.3, 𝐹኿ = 0.1849 for
Normal rhythm, and 𝐹኿ = 0.232 for AF rhythm. This feature again shows a higher value for AF rhythm
and a lower value for Normal rhythm.

3.2.3. Count of bins in the Poincaré plot
The feature 𝐹ዀ measures the sparseness of the Poincaré plot. First, the plot is quantized into 𝑄 levels
along each dimension, as can be seen in Figure 3.5. The bin is blue if at least one point is located
inside the bin, otherwise it is white.

Figure 3.5: Quantization of Poincaré plot, with normal sinus rhythm on the left and AF on the right.

This can then be easily expressed as a 𝑄 × 𝑄 matrix R:

R = [
𝑅ኻ,ኻ ⋯ 𝑅ኻ,ፐ
⋮ ⋱ ⋮
𝑅ፐ,ኻ ⋯ 𝑅ፐ,ፐ

] (3.16)

where:

𝑅።,፣ = {
1, If a particular (𝑅𝑅። , 𝑅𝑅፣) combination occurred in the Poincaré plot at least once,
0, otherwise,

(3.17)

where 𝑖, 𝑗 denote the row and column of the matrix, respectively. It can be seen from Figure 3.5 that
for normal sinus rhythm signals, less states occurred due to its periodic characteristics. This results in
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less non-zero entries in R and most of them are populating around the center of R, while for AF signal
the opposite is the case.

In order to encode information contained by patterns in the Poincaré plot, let 𝐹ዀ be the feature
showing the regularity characteristic of RR intervals, which can be expressed as the number of states
visited by the system at least once:

𝐹ዀ =
ፐ

∑
።,፣዆ኻ

𝑅።,፣ . (3.18)

This feature measures the density of the matrix, with high values for AF signals and low values for
Normal signals. In Figure 3.5, 𝐹ዀ = 6 for normal sinus rhythm on the left, while 𝐹ዀ = 21 for AF on the
right.

However, the separable case as in Figure 3.5 does not occur all the time. For example, some
Normal signals occasionally contain outlier bins (i.e., states), which is possibly due to noise. This
would have been noticed by manual check because the outlier bins occur at improbable places. In
other cases, some AF signals might contain only few clusterings in the plot and have fewer bins visited
by the system than a typical AF signal, which leads to a low value of feature 𝐹ዀ. This could have
been corrected because the clusterings of the points are far from each other and thus the signal is
not likely to be normal rhythm. In these cases, the feature 𝐹ዀ assumes each bin in the Poincaré plot
has the same weight contributing to the final value of the feature. However, this may lose some crucial
information concerning the distribution of data that each bin conveys, and the relative position that each
bin locates compared with other bins, as mentioned in the above examples. Therefore, the concept of
mask processing is introduced in the next section to solve the problem.

3.3. Weighted count of bins in the Poincaré plot
3.3.1. Mask processing
Mask processing technique has been commonly applied to filter the image. A mask is a matrix whose
values are called weights. For a 2D mask, it gives weights to the entries of the input matrix by element-
wise multiplying with the input matrix and summing all the results to get one value at the corresponding
place, as the red part shows in Figure 3.6. Then the mask slides across the whole input matrix to obtain
the output matrix.

Figure 3.6: Diagram of the mask processing.

By doing so, certain pattern in the input matrix that is similar to the mask can be extracted by the
filter and the element-wise multiplication and summation operation results in a high value. A pattern in
the input matrix that is different from the mask does not activate the filter and leads to a low value [6],
as the low value in the output matrix shows in Figure 3.6.

The mask used in this thesis is a two-dimensional 𝑄 × 𝑄 matrixW:

W = [
𝑊ኻ,ኻ ⋯ 𝑊ኻ,ፐ
⋮ ⋱ ⋮

𝑊ፐ,ኻ ⋯ 𝑊ፐ,ፐ
] (3.19)

The operation that contains element-wise multiplication and summation between R and W is defined
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by:

R ∗W = [
𝑅ኻ,ኻ ⋯ 𝑅ኻ,ፐ
⋮ ⋱ ⋮
𝑅ፐ,ኻ ⋯ 𝑅ፐ,ፐ

] ∗ [
𝑊ኻ,ኻ ⋯ 𝑊ኻ,ፐ
⋮ ⋱ ⋮

𝑊ፐ,ኻ ⋯ 𝑊ፐ,ፐ
] (3.20)

=
ፐ

∑
።዆ኻ

ፐ

∑
፣዆ኻ
𝑅።,፣𝑊።,፣ (3.21)

It should be noted that the masks used in this thesis have the same size as the input matrix, while in
image processing the mask is much smaller than the input image. This is because an image might have
hundreds of pixels along one dimension, and a mask with the size of 3 × 3 or 5 × 5 extracts the local
features from everywhere of the image and helps reduce the storage of the mask parameters. But this
is not the case for the matrix R which indicates if the state combination (𝑅𝑅። , 𝑅𝑅፣) of the Poincaré plot
is visited by the system. A matrix W with the same size as a matrix R does not cause the problem of
storing too many parameters and the mask aims to extract the features globally. So it only implements
the element-wise multiplication and summation operations without the sliding part as it is for image
processing.

Clearly, different masks W can extract different features from R. This thesis proposes two kinds of
masks, W1 and W2, to detect AF pattern in matrix R, which will be explained in the section 3.3.2 and
3.3.3.

3.3.2. Distribution of bins in the Poincaré plot
The first maskW1 gives weights to the elements in the matrix R and aims to obtain a high value for the
AF class and a low value for the Normal class after the mask processing. This is done by combining
the distributions of the two classes in the Poincaré plot and the probability of a new data belonging to
the two classes as the value of weight in the maskW1.

Figure 3.7: 2D histogram of Normal (left) and AF (right) sinus rhythm showing the times of each state (ፑፑᑚ , ፑፑᑛ) that was visited
by the system.

Figure 3.7 is a 2D histogram of the Poincaré plot of all Normal and AF sinus rhythm recordings for
the training data. It shows an approximate distribution of Normal and AF sinus rhythms in the Poincaré
plot, with the value of each bin representing the number of times each state (𝑅𝑅። , 𝑅𝑅፣) visited by the
system. It can be seen that for Normal signals, the system is more likely to visit states closer to the
center of the histogram. This means stable heart rate and little variability between beats no matter
short-term or long-term. For AF signals, the histogram shows a higher dispersion, meaning the system
is experiencing a larger beat-to-beat fluctuation. Therefore, both short-term and long-term variabilities
between RR intervals increase, while the short-term variance witnesses a larger rise.

Let N and A be two 𝑄 × 𝑄 matrices, which stand for the histogram of Normal and AF sinus rhythm
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in Figure 3.7 respectively:

N = [
𝑁ኻ,ኻ ⋯ 𝑁ኻ,ፐ
⋮ ⋱ ⋮
𝑁ፐ,ኻ ⋯ 𝑁ፐ,ፐ

] (3.22)

A = [
𝐴ኻ,ኻ ⋯ 𝐴ኻ,ፐ
⋮ ⋱ ⋮
𝐴ፐ,ኻ ⋯ 𝐴ፐ,ፐ

] (3.23)

where 𝑁።,፣ is the number of times that a particular (𝑅𝑅። , 𝑅𝑅፣) combination occurred in the Poincaré plot
for all Normal sinus rhythm recordings in the training set, and similar for 𝐴።,፣. The matrices are then
scaled to the range [0,1] by:

N = N−min(N)
max(N) −min(N) (3.24)

A = A−min(A)
max(A) −min(A) (3.25)

to make sure distributions of Normal and AF signal have the same weight in the mask W1.

Figure 3.8: Frequency distribution of RR intervals .

Figure 3.8 shows the frequency distribution of RR intervals for all the Normal ECG signals (left) and
AF ECG signals (right). It can be seen that 𝑅𝑅(𝑛) of Normal signals have a lower variance than those
of AF signals.

Before computing the probability of a new data coming from the two classes, whether the distribu-
tions in Figure 3.8 come from a distribution in the normal family needs to be checked at first. This is
done by performing a hypothesis test called Lilliefors test at first [9]. The null hypothesis is that the
sample comes from a distribution in the normal family, against the alternative that it does not come
from such a distribution. The test statistics is

𝑂ኻ =max
፱
(|𝐻ኻ(𝑥) − 𝐺(𝑥)|) (3.26)

where 𝐻ኻ(𝑥) is the empirical distribution function of the sample data, and 𝐺(𝑥) is the cumulative distri-
bution function of the normal distribution with estimated parameters equal to the sample parameters.
The result turned out to reject the null hypothesis, so that neither of the distributions is Gaussian. This
can be easily seen in Figure 3.8 for AF ECG signals which have an asymmetric distribution around
value one and thus should not be assumed to be Gaussian.

Since the distributions are not supposed to be assumed Gaussian, the probabilities are calculated
using Kolmogorov–Smirnov test, which is a nonparametric hypothesis test that evaluates the difference
between the empirical distribution functions of the distributions of two samples. The null hypothesis is
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that the two samples are from the same continuous distribution, while the alternative hypothesis is that
the two samples are from different continuous distribution. The test statistic is

𝑂ኼ =max
፱
(|𝐻ኻ(𝑥) − 𝐻ኼ(𝑥)|) (3.27)

where 𝐻ኻ(𝑥) and 𝐻ኼ(𝑥) are the empirical distribution functions of two samples.
If the null hypothesis is assumed to be correct, the probability that a higher test statistic is observed

is denoted as p-value. In other words, p-value can be regarded as the probability that the null hypoth-
esis is accepted. Commonly, if 𝑝 < 0.05, the two samples can be assumed to come from different
distributions. In this paper, the classical one-dimensional Kolmogorov–Smirnov test is used for calcu-
lating the similarity between RR intervals. First, the hypothesis test is made between the RR intervals
of a new data and all the Normal data. p-value of Normal, denoted as 𝑝፧, is obtained which is propor-
tional to the probability that this new data comes from Normal class. Then, the hypothesis between
the same new data and all the AF data is made, and p-value of AF, denoted as 𝑝ፚ, is obtained which
is proportional to the probability that this new data comes from AF class. Then these two p-values are
normalized:

𝑝̃ፍ =
𝑝፧

𝑝፧ + 𝑝ፚ
(3.28)

𝑝̃ፀ =
𝑝ፚ

𝑝፧ + 𝑝ፚ
(3.29)

where 𝑝̃ፍ and 𝑝̃ፀ are the normalized p-values that indicate the probabilities of a particular realization
generated by Normal rhythm distribution and AF rhythm distribution respectively, and the summation
of these values equals to one:

𝑝̃ፍ + 𝑝̃ፀ = 1 (3.30)

Now that every term needed for calculatingW1 is available, the equation is given as follows. Let the
first mask W1 be a 𝑄 × 𝑄 matrix, which extracts features based on the combination of the distribution
of the Poincaré plot for the two classes and the probability of a new data generated by the two classes:

W1 = 𝑝̃ፍN+ 𝑝̃ፀA. (3.31)

In equation (3.31), 𝑝̃ፍ and 𝑝̃ፀ are proportional to the probability of a new data coming from the class
Normal and AF, respectively. Each element in the matrices N and A is proportional to the probability
that the corresponding state in the Poincaré plot is visited by the system, given the class is Normal or
AF. Therefore, equation (3.31) is approximately equal to:

W1 ≈ 𝜌(𝑁)𝜌(R|𝑁) + 𝜌(𝐴)𝜌(R|𝐴) (3.32)

where 𝜌(𝑁) and 𝜌(𝐴) are the marginal probabilities, and 𝜌(R|𝑁) and 𝜌(R|𝐴) are the conditional prob-
abilities. According to the law of total probability,

𝜌(R) = 𝜌(𝑁)𝜌(R|𝑁) + 𝜌(𝐴)𝜌(R|𝐴) (3.33)

where 𝜌(R) is the probability that each element in the matrixR is visited by the system. Therefore, what
equation (3.31) does is approximating the probability of each state in the Poincaré plot being visited by
the system for a new data:

W1 ≈ 𝜌(R). (3.34)

After the maskW1 is obtained, the element-wise multiplication and summation between R andW1
(denoted as R ∗W1) is given as:

R ∗W1 = [
𝑅ኻ,ኻ ⋯ 𝑅ኻ,ፐ
⋮ ⋱ ⋮
𝑅ፐ,ኻ ⋯ 𝑅ፐ,ፐ

] ∗ [
𝑊1ኻ,ኻ ⋯ 𝑊1ኻ,ፐ
⋮ ⋱ ⋮

𝑊1ፐ,ኻ ⋯ 𝑊1ፐ,ፐ
] (3.35)

=
ፐ

∑
።዆ኻ

ፐ

∑
፣዆ኻ
𝑅።,፣𝑊1።,፣ . (3.36)
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This operation functions similar to calculating the probability-weighted average of the state 𝑅።,፣:

𝐸(R) =
ፐ

∑
።዆ኻ

ፐ

∑
፣዆ኻ
𝑅።,፣𝜌(𝑅።,፣) (3.37)

where 𝐸(R) is the expected value of the matrix R in the Poincaré plot on the training data. Therefore,
the mask processing between R andW1 aims to approximate the expected value of R:

R ∗W1 ≈ 𝐸(R). (3.38)

After filtered by the mask W1, certain features from the matrix R would be extracted based on the
distribution of 𝑅𝑅(𝑛). In other words, a sequence of 𝑅𝑅(𝑛) from the AF sinus rhythm would show more
similarity to typical AF sinus rhythm. Its states in the matrix R that are likely to be visited by an AF
signal would be detected by the maskW1 and lead to a higher expected value at last, while a new data
of normal sinus rhythm has fewer states in general that can be detected by the filter, and would result
in a lower expected value.

3.3.3. Position of bins in the Poincaré plot
In addition toW1, another maskW2 is also implemented to help with the classification. LetW2 be a 𝑄×
𝑄matrix. The elements ofW2 consists of the Euclidean distance of each point to the center. Therefore,
elements on the edge have a higher value than the elements around the center. The visualization of
the maskW2 can be seen in Figure 3.9.

Figure 3.9: MaskW2.

Again, the element-wise multiplication and summation between the matrix R and the mask W2
(denoted as R ∗W2) is given as:

R ∗W2 = [
𝑅ኻ,ኻ ⋯ 𝑅ኻ,ፐ
⋮ ⋱ ⋮
𝑅ፐ,ኻ ⋯ 𝑅ፐ,ፐ

] ∗ [
𝑊2ኻ,ኻ ⋯ 𝑊2ኻ,ፐ
⋮ ⋱ ⋮

𝑊2ፐ,ኻ ⋯ 𝑊2ፐ,ፐ
] (3.39)

=
ፐ

∑
።዆ኻ

ፐ

∑
፣዆ኻ
𝑅።,፣𝑊2።,፣ . (3.40)

Because of the normalization of the RR intervals, the average value of the normalized RR intervals
is one. It corresponds to the (𝑅𝑅ᑈ

Ꮄ
, 𝑅𝑅ᑈ

Ꮄ
) combination in the Poincaré plot. For Normal rhythm, most

combinations are around (𝑅𝑅ᑈ
Ꮄ
, 𝑅𝑅ᑈ

Ꮄ
), while for AF rhythm, the situation becomes complicated and

the combinations could have more outliers. This means for both the rhythms, the element 𝑅ᑈ
Ꮄ ,
ᑈ
Ꮄ
in the
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matrix R is the state most likely to be visited by the system. Other than this, for the Normal rhythm,
states around 𝑅ᑈ

Ꮄ ,
ᑈ
Ꮄ
are likely to be visited by the system and thus are set to be one in the matrix R.

However, for the AF rhythm, the matrix R has more states that are far from the center and still likely to
be visited by the system. By giving these outliers higher weights, the maskW2 aims to detect the non
periodic characteristcs of the AF ECG recordings. Therefore, in the maskW2, the weight is chosen as
the Euclidean distance between each state 𝑅።,፣ and the center of the Poincaré plot.

After element-wise multiplying R with matrix W2 (denoted as R ∘W2), an element in the matrix R
that is far from the center will have a higher weight, while an element close to the center will have a
lower weight. This also complies with the intention to give a high weight for AF signal and a low weight
for Normal signal, because an AF signal shows a higher dispersion than Normal signal and thus has
more points far from the center. The example are shown in Figure 3.10, where the matrix R ∘W2 of
a Normal signal has entries ranging from 0 to 2, and the matrix R ∘W2 of an AF signal has entries
ranging from 0 to 7. Finally, the summation of all the elements after element-wise multiplication leads
to a higher value for AF rhythm, due to the outliers with higher weights; and a lower value for Normal
rhythm, due to the states around the center with lower weights.

Figure 3.10: Results of element-wise multiplication of R ∘W2. An example of Normal ECG recordings is shown on the left. An
example of AF ECG recordings is shown on the right.

3.3.4. Combination of distribution and position
Given that the masks W1 and W2 are calculated in the previous subsections, both of them can be
element-wise multiplied and summarized with R together as one feature to reduce the dimension of
the feature space. Let 𝐹዁ be the new feature this paper proposes - weighted area of bins:

𝐹዁ = R ∗ (W1 ∘W2) (3.41)

= [
𝑅ኻ,ኻ ⋯ 𝑅ኻ,ፐ
⋮ ⋱ ⋮
𝑅ፐ,ኻ ⋯ 𝑅ፐ,ፐ

] ∗ [
𝑊1ኻ,ኻ𝑊2ኻ,ኻ ⋯ 𝑊1ኻ,ፐ𝑊2ኻ,ፐ

⋮ ⋱ ⋮
𝑊1ፐ,ኻ𝑊2ፐ,ኻ ⋯ 𝑊1ፐ,ፐ𝑊2ፐ,ፐ

] (3.42)

=
ፐ

∑
።዆ኻ

ፐ

∑
፣዆ኻ
𝑅።,፣𝑊1።,፣𝑊2።,፣ (3.43)

where ∘ is element-wise multiplication for matrix, and ∗ contains element-wise multiplication and sum-
mation. Generally speaking, feature 𝐹዁ combines the weights from the masksW1 andW2. In this way,
while approximating the expected value of the matrix R, the feature 𝐹዁ also gives higher weights to the
outliers from the center of the Poincré plot, which are likely to occur during the AF rhythm, thus leading
to a larger difference for the feature value between the two classes.

Compared with SD1 and SD2, 𝐹዁ explores the nonlinear dynamics of the Poincaré plot and the
resolution of the plot can be tuned by changing the level of quantization 𝑄; Compared with 𝐹ኾ and 𝐹኿,
𝐹዁ aims to consider the distribution and location information of the states visited by the system, which
makes sure the irregularity pattern of AF sinus rhythm is better exploited.
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3.4. Autocorrelation function
In the previous section, the Poincaré plot for RR intervals is analyzed. In this section, the thesis pro-
poses that the Poincaré plot can also be calculated from the autocorrelation function.

The autocorrelation measures the correlation of a signal with itself across time. It is defined as:

𝐴𝐶𝐹ፗፗ(𝑚) = 𝐸[𝑋፧ዄ፦𝑋∗፧] (3.44)

In this thesis, the autocorrelation function 𝐴𝐶𝐹ፗፗ of a vector 𝑋 with length of 𝑁 is estimated as:

𝐴𝐶𝐹ፗፗ(𝑚) =
1

∑ፍዅኻ፧዆ኺ 𝑋፧𝑋∗፧

ፍዅ፦ዅኻ

∑
፧዆ኺ

𝑋፧ዄ፦𝑋∗፧ (3.45)

where 𝑚 = 0, 1, 2,⋯ ,𝑁 − 1, the asterisk denotes complex conjugation, and 𝐸 is the expected value
operator [11]. Because the autocorrelation function is symmetric about the origin, only 𝑚 ≥ 0 part is
taken into account.

At first, the ECG recordings are segmented into 5 second windows. The step of the sliding window
is 50% of the size of the window, 2.5 seconds. Then, for each window, a 2-order Butterworth high-pass
filter with cut-off frequency of 0.5 Hz is applied to remove the baseline wander, which is computationally
cheap and almost as accurate as other baseline wander removal methods [27]. The effect of baseline
wander removal by this filter can be seen in Figure 3.11.

Figure 3.11: An example of Normal sinus rhythm showing the original signal (bottom left) and the filtered signal (bottom right).

3.4.1. Autocorrelation of ECG
In Figure 3.12, a filtered segment of Normal and AF sinus rhythm is shown on the left. The autocorre-
lation of the signal is then calculated in the middle. It can be clearly seen that compared with AF ECG
signals, the peaks in the autocorrelation function of Normal rhythm are higher and more periodic. This
is because of the irregular pattern of the AF rhythm which causes the R peaks do not coincide with
each other when shifting. To deal with the situation where peaks are too close to each other or too low
and therefore do not show cyclic characteristics, many combinations of defining the peak height and
the peak distance are visually inspected, and only peaks that are higher than 0.1 and at least 100 lags
away from each other are finally selected (implying that the heart rate is assumed to be lower than 180
bpm) and marked as red circles in the plot.

After all the peaks of the autocorrelation function from the sliding window for one recording are
detected, a sequence of peak intervals, denoted as 𝑃𝑃(𝑛), are obtained. The sequence can be used
to generate the Poincaré plot as it was done for 𝑅𝑅(𝑛). This is shown in Figure 3.12 on the right. Again,
the Poincaré plot of AF rhythm shows a higher dispersion than that of Normal rhythm. This method is
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based on calculating the repeating pattern of the ECG signal, instead of simply counting the heart rate.
Therefore, it shows more information hidden in the morphology feature.

(a) Normal

(b) AF

Figure 3.12: Examples of Normal and AF rhythm recordings showing how the peaks in autocorrelation function are defined and
how the Poincaré plot is generated.

3.4.2. Autocorrelation of the prediction error
In this section, the autocorrelation of the prediction error is calculated instead of the autocorrelation of
the ECG. The autocorrelation of the prediction error provides another perspective to model an ECG
signal. The concept of prediction error in this scenario comes from linear predictive coding (LPC),
which appears to be powerful for many applications including speech signal processing and ECG signal
processing. LPC predicts the current sample of a signal based on a linear combination of previous
samples of the signal [35], that is,

𝑥̃(𝑛) =
፪

∑
።዆ኻ
𝑏።𝑥(𝑛 − 𝑖) (3.46)

where 𝑥̃(𝑛) is the predicted value, 𝑥(𝑛 − 𝑖) is the previous observation, 𝑏። is the LPC coefficient, and
𝑞 is the order of LPC. The prediction error is then the difference between the predicted value 𝑥̃(𝑛) and
the measured value 𝑥(𝑛):

𝑒(𝑛) = 𝑥̃(𝑛) − 𝑥(𝑛) (3.47)

and it is minimized in the least squares sense to get the LPC coefficients. Given the coefficients 𝑏።,
one can construct the prediction error filter 𝐵(𝑧), which can be used to calculate the prediction error by
filtering the ECG signal with 𝐵(𝑧), that is,

𝐵(𝑧) = 1 −
፪

∑
።዆ኻ
𝑏።𝑧ዅ። . (3.48)

In Figure 3.13, a filtered segment of the Normal and AF sinus rhythm after baseline wander removal
is again shown in the first column. This is then filtered by the prediction error filter 𝐵(𝑧), where 𝑞 = 10.
The prediction error is shown in the second column. It can be seen that in the prediction error, short-
term correlation within 𝑞 samples is partly reduced, and the major variation occurs at the same place
of the QRS complex. This can reduce the influence of P wave and T wave to some extent.
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In the third column, the autocorrelation of the prediction error is calculated. Just like the autocorre-
lation of the ECG, the autocorrelation of the prediction error also has higher and more periodic peaks
for Normal rhythm, and more irregular and uneven peaks for AF signal. In general, the peaks in the
autocorrelation of the prediction error are not as obvious as those in the autocorrelation of the ECG,
which is probably due to the high variation of the prediction error. Therefore, the peaks in this case are
defined when higher than 0.05 and having a minimum distance of 100 lags (marked in red circles).

After all the peaks of the autocorrelation function of prediction error from the sliding window for one
recording are detected, a sequence of peak intervals, denoted as 𝑃𝑃1(𝑛), are obtained. 𝑃𝑃1(𝑛 + 1)
is plotted against 𝑃𝑃1(𝑛) to get the Poincaré plot, which is shown in the forth column in Figure 3.13.
The plot in this case also shows that the AF signal has a higher dispersion than the Normal signal, and
therefore it is again assumed to be a potential feature to detect AF from Normal.

(a) Normal

(b) AF

Figure 3.13: Examples of Normal and AF rhythm recordings showing how the peaks in autocorrelation function of prediction
error are defined and how the Poincaré plot is generated.





4
Feature selection and classification

In this chapter, features generated from the Chapter 3 are selected and used to classify Normal and
AF signals. In Section 4.1, the minimum redundancy maximum relevance algorithm is applied to rank
the extracted features based on their importance. In Section 4.2 and 4.3, support vector machines and
random forests are introduced to perform the classification task.

4.1. Minimum redundancy maximum relevance algorithm
After features are extracted, part of the features are often found to be irrelevant or reduntant, which
can reduce the performance of the classifier. In this thesis we use the minimum redundancy maximum
relevance (mrmr) algorithm to select features. It aims to select a subset 𝑇 of all the features with a high
correlation with the class and a low correlation with each other. The algorithm uses mutual information
𝐼 of variables to represent redundancy 𝑈፱ and relevance 𝑉፱ of a feature 𝑥 [44]:

𝐼(𝑋, 𝑌) = ∑
፱,፲∈ፓ

𝜌(𝑥, 𝑦) log( 𝜌(𝑥, 𝑦)
𝜌(𝑥)𝜌(𝑦)) (4.1)

𝑈፱ =
1
|𝑇| ∑

ፗ,ፙ∈ፓ
𝐼(𝑋, 𝑍) (4.2)

𝑉፱ = 𝐼(𝑋, 𝑌) (4.3)

where 𝜌(𝑥, 𝑦) is the joint probability density, 𝜌(𝑥) and 𝜌(𝑦) are themarginal probability density functions,
𝑍 is the class label, 𝑋 and 𝑌 are features, and |𝑇| is the number of features in the set 𝑇. Features are
selected one-by-one using a greedy search to maximize the criterion of feature importance, mutual
information quotient (MIQ):

𝑀𝐼𝑄፱ =
𝑉፱
𝑈፱

(4.4)

The mrmr feature selection process is as follows [10]:

1. The feature with the highest relevance is selected into the feature set 𝑇

2. The feature with the highest relevance and zero redundancy in the complement of 𝑇, denoted as
𝑇ፂ, is selected into 𝑇

3. Repeat step 2 until no feature in 𝑇ፂ has zero redundancy

4. The feature with the highest MIQ value in 𝑇ፂ is selected into 𝑇

5. Repeat step 4 until no feature in 𝑇ፂ has non-zero relevance

6. Features with zero relevance are added into 𝑇 in random order

27
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The ranking of all the features for the whole dataset using mrmr algorithm is shown in the following
figure.

Figure 4.1: Results of mrmr algorithm.

The indices of the features in Figure 4.1 are given in the table below and the corresponding rankings
are shown in the bracket.

Table 4.1: index of features

Features RR intervals Peak intervals in acf
of ECG

Peak intervals in acf
of prediction error

SD1 (𝐹ኻ) 1 (14) 8 (21) 15 (4)
SD2 (𝐹ኼ) 2 (15) 9 (19) 16 (20)
SD1/SD2 (𝐹ኽ) 3 (10) 10 (17) 17 (2)
Mean stepping increment (𝐹ኾ) 4 (6) 11 (8) 18 (13)
Complex correlation measure
(𝐹኿)

5 (3) 12 (18) 19 (16)

Unweighted area of bins (𝐹ዀ) 6 (11) 13 (12) 20 (9)
Weighted area of bins (𝐹዁) 7 (1) 14 (5) 21 (7)

It can be seen in the table 4.1 that among the seven kinds of features from RR intervals, peak intervals
in acf of ECG, and those of prediction error, four of them have the highest ranking for RR intervals, and
the other three of them have the highest ranking for peak intervals in acf of prediction error. While peak
intervals in acf of ECG do not have the highest ranking feature for any of the seven kinds of features,
some of them rank relatively high among the whole 21 features. For example, 𝐹዁ and 𝐹ኾ rank the fifth
and eighth, respectively.

When analyzing the features for RR intervals only, traditional features (𝐹ኻ, 𝐹ኼ and 𝐹ኽ) have a low
score, while the features that explore the temporal structure (𝐹ኾ and 𝐹኿) and distribution (𝐹዁) score
higher. When looking at only the features for peak intervals in the acf of the ECG, 𝐹዁ and 𝐹ኾ seem more
important than others. As for the features for peak intervals in acf of prediction error, traditional features
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(𝐹ኻ and 𝐹ኽ) and new features (𝐹ዀ and 𝐹዁) rank in the first half of all the features, and the temporal related
features, on the other hand, do not rank high. In all of these three domains, 𝐹዁ shows a promising score,
which means the distribution of data in the Poincaré plot and the relative position of states visited by
the system are helpful with classification of AF signals from Normal signals.

4.2. Support vector machines
The Support vector machines (SVMs) algorithm is a widely used classifier for both linear and nonlinear
(non-)separable data in the pattern recognition field. The goal of SVM is to create a hyperplane that
makes sure that the distance from the nearest point of every class to the hyperplane is maximized
[16, 39]. The hyperplane is defined as:

𝑔(x) = wፓx+𝑤ኺ = 0 (4.5)

wherew determines the direction of the hyperplane,𝑤ኺ determines its exact position and xi (𝑖 = 1,… ,𝑁)
is the feature vector of the dataset 𝑋, which belongs to the classes 𝑤ኻ or 𝑤ኼ. The distance of a point to
the hyperplane is given by:

𝑧 = |𝑔(x)|
||w|| . (4.6)

By scaling w and 𝑤ኺ, the value of 𝑔(x) is equal to one at the nearest points for 𝑤ኻ, and minus one at
the nearest points for 𝑤ኼ. For linearly separable data, the goal can be expressed as maximizing the
margin between the two classes:

1
||w|| +

1
||w|| =

2
||w|| (4.7)

with the constraints that

wፓx+𝑤ኺ ≥ 1, ∀x ∈ 𝑤ኻ (4.8)
wፓx+𝑤ኺ ≤ −1, ∀x ∈ 𝑤ኼ. (4.9)

By representing 𝑦። = 1 for xi ∈ 𝑤ኻ and 𝑦። = −1 for xi ∈ 𝑤ኼ, the objective function can be stated as:

min 𝐽(w, 𝑤ኺ) =
1
2||w||

ኼ (4.10)

subject to 𝑦።(wፓxi +𝑤ኺ) ≥ 1, 𝑖 = 1,… ,𝑁. (4.11)

Let 𝐿(w, 𝑤ኺ, 𝜆𝜆𝜆) be the Lagrangian function where 𝜆𝜆𝜆 is the vector of the Lagrange multipliers:

𝐿(w, 𝑤ኺ, 𝜆𝜆𝜆) =
1
2w

ፓw−
ፍ

∑
።዆ኻ
𝜆።[𝑦።(wፓxi +𝑤ኺ) − 1]. (4.12)

According to the Karush–Kuhn–Tucker (KKT) conditions for optimality, the following constraints have
to be satisfied:

𝜕
𝜕w𝐿(w, 𝑤ኺ, 𝜆𝜆𝜆) = 0 (4.13)

𝜕
𝜕𝑤ኺ

𝐿(w, 𝑤ኺ, 𝜆𝜆𝜆) = 0 (4.14)

𝜆። ≥ 0, 𝑖 = 1,… ,𝑁 (4.15)
𝜆።[𝑦።(wፓxi +𝑤ኺ) − 1] = 0, 𝑖 = 1,… ,𝑁. (4.16)

Substituting equation 4.12 into equation 4.13 and 4.14 results in

𝑤𝑤𝑤 =
ፍ

∑
።዆ኻ
𝜆።𝑦።𝑥። (4.17)

ፍ

∑
።዆ኻ
𝜆።𝑦። = 0. (4.18)
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The problem can then be constructed as its equivalent Lagrangian duality form:

max
᎘᎘᎘

(
ፍ

∑
።዆ኻ
𝜆። −

1
2∑

።,፣
𝜆።𝜆፣𝑦።𝑦፣xiፓxj) (4.19)

subject to
ፍ

∑
።዆ኻ
𝜆።𝑦። = 0 (4.20)

𝜆𝜆𝜆 ≥ 0. (4.21)

Once 𝜆𝜆𝜆 is calculated, w can be obtained from equation 4.17, and 𝑤ኺ can be obtained from equation
4.16.

When the data can not be separated linearly, slack variables 𝜉። are introduced to penalize the outliers
that are misclassified. The objective function becomes:

min 𝐽(w, 𝑤ኺ, 𝜉𝜉𝜉) =
1
2||w||

ኼ + 𝐶
ፍ

∑
።዆ኻ
𝜉። (4.22)

subject to 𝑦።(wፓxi +𝑤ኺ) ≥ 1 − 𝜉። , 𝑖 = 1,… ,𝑁 (4.23)
𝜉። ≥ 0, 𝑖 = 1,… ,𝑁 (4.24)

where 𝐶 is a positive constant to balance between the width of the margin and the number of misclas-
sified points. The corresponding dual representation is formulated as:

max
᎘᎘᎘

(
ፍ

∑
።዆ኻ
𝜆። −

1
2∑

።,፣
𝜆።𝜆፣𝑦።𝑦፣xiፓxj) (4.25)

subject to
ፍ

∑
።዆ኻ
𝜆።𝑦። = 0 (4.26)

0 ≤ 𝜆። ≤ 𝐶, 𝑖 = 1,… ,𝑁 (4.27)

When the number of data in each class is unbalanced, which is the case in this thesis, the penalty
parameter 𝐶 for different classes is multiplied with a weight that is reversely proportional to the size of
that class. The idea is to penalize heavily the outliers from the class with less data, so that the classifier
can reduce its bias towards the class with more data.

For the nonlinear case, a kernel function is often used to project the input feature space into a
higher dimension, where the classes are more easily separated by a hyperplane. This is achieved by
expressing the inner product of the vectors in the higher dimension space as a function of the inner
product of the corresponding vectors in the original feature space [39]. Commonly used kernel functions
from the pattern recognition field include:

Polynomials ∶ 𝐾(𝑥, 𝑧) = (𝑥ፓ𝑧 + 1)፪ , 𝑞 > 0 (4.28)
Radial Basis Functions ∶ 𝐾(𝑥, 𝑧) = 𝑒𝑥𝑝(−𝛾||𝑥 − 𝑧||ኼ) (4.29)

Sigmoid ∶ 𝐾(𝑥, 𝑧) = tanh (𝛽𝑥ፓ𝑧 + 𝛾) (4.30)

After a certain kernel function is selected, the dual problem becomes:

max
᎘᎘᎘
(∑

።
𝜆። −

1
2∑

።,፣
𝜆።𝜆፣𝑦።𝑦፣𝐾(xi,xj)) (4.31)

subject to 0 ≤ 𝜆። ≤ 𝐶, 𝑖 = 1,… ,𝑁 (4.32)

∑
።
𝜆።𝑦። = 0. (4.33)
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4.2.1. Searching for optimal parameters
In this thesis, Radial Basis Function (RBF) is selected as the kernel function of SVM. This is because the
RBF kernel can nonlinerly map the dataset into a higher dimensional space, so that the SVM classifier
works better with the nonlinear data. Another reason is the number of parameters which affects the
complexity of the classifier. For RBF kernel, there is only one parameter 𝛾, while polynomial kernal has
much more parameters. Furthermore, sigmoid kernel is not chosen because it behaves like RBF kernal
for certain parameters, and it is not valid in some case [25]. Therefore, when RBF kernel is used, the
penalty parameter 𝐶 and RBF kernel parameter 𝛾 need to be tuned during the training procedure.

In order to search for the optimal parameters 𝐶 and 𝛾, a grid search using 10-fold cross-validation is
used in this thesis. For a certain parameter pair (𝐶, 𝛾) value, a 10-fold cross-validation is implemented
to get an average performance. This is illustrated in Figure 4.2. The whole training set is first divided
into ten subsets with the same size. The first subset is selected as validation set, while the other nine
subset is used as training set. The SVM classifier is trained on the training set and then evaluated on
the validation set. The accuracy of the classifier is recorded as 𝐴𝑐𝑐ኻ and the corresponding model is
discarded. Next, the second subset is used as the validation set, while the other 9 subset is used for
training the SVM classifier. This is repeated ten times until every single subset has been chosen once
as the validation set.

Figure 4.2: Diagram of 10-fold cross validation. Training set is denoted as white. Validation set is denoted as blue.

When all ten accuracies are obtained, the cross-validation accuracy 𝐴𝑐𝑐 is calculated as the average
of all the accuracies:

𝐴𝑐𝑐 = 1
10

ኻኺ

∑
።዆ኻ
𝐴𝑐𝑐። (4.34)

This is the performance for a certain parameter pair. According to [25], it is reasonable to search for
the parameters exponentially. Therefore, the range for these two parameters in this thesis is defined
as 𝐶 ∈ [2ኻ, 2ዃ] and 𝛾 ∈ [2ዅ዁, 2ኻ] with the step size being 2ኼ, as shown in Figure 4.3.
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Figure 4.3: Grid search for the optimal ፂ and ᎐.

After the cross-validation accuracy for every (𝐶, 𝛾) pair is calculated, the optimal (𝐶, 𝛾) is selected
from the SVM model with the highest accuracy (marked as a red cross in the figure). They are then
used to model the final SVM classifier on the entire training set.

4.3. Random forest
Besides the SVM classifier, this thesis report also uses random forest (RF) as comparison to see which
classifier can reach a better result. Random forest is an ensemble learning method consisting of mul-
tiple decision trees as basic classifiers. This section starts with the concept of decision trees, followed
by the algorithm of random forest.

4.3.1. Decision tree
A decision tree is a tree-like non-linear supervised classifier consisting of a sequence of decision stages
until a final class is accepted, as illustrated in Figure 4.4. Each block (denoted as a decision node) in the
figure represents a question asking if a certain feature is larger or smaller than a value. The answers
‘yes’ and ‘no’ split a node into two different sub-nodes with no overlapping. The first node (denoted as
the root node) of the decision tree is associated with the whole training set. The node at the end of a
branch (denoted as a leaf node) contains data from the same class.

Figure 4.4: Diagram of a decision tree.
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In general, the decision trees aim to divide the data so that after the splitting, data coming from
different classes are divided into different child nodes as much as possible. In other words, the purity
of the data in the child nodes becomes higher than in the parent nodes. The commonly used splitting
criterion at each decision node includes ‘ID3’, ‘C4.5’, and ‘CART’. In this thesis, CART (Classification
and Regression Tree) is applied to measure the purity of the data set. It uses Gini index to create binary
splits. Lower value of Gini means higher homogeneity. Suppose the proportion of the 𝑘th class in the
data set 𝐷 is 𝑃፤ (𝑘 = 1, 2, … , |𝐾|), Gini index of the data set 𝐷 is then calculated as:

𝐺𝑖𝑛𝑖(𝐷) =
|ፊ|

∑
፤዆ኻ

∑
፤ᖤጽ፤

𝑃፤𝑃፤ᖤ (4.35)

= 1 −
|ፊ|

∑
፤዆ኻ

𝑃ኼ፤ (4.36)

It reflects the probability of selecting two different samples randomly from the data set 𝐷. Suppose a
feature 𝑎 has 𝑉 possible values {𝑎ኻ, 𝑎ኼ, … , 𝑎ፕ}, if a is chosen to split the data set 𝐷, there will be 𝑉
possible splitting point. All the samples with the feature 𝑎 = 𝑎፯ are denoted as 𝐷፯. Gini index of a
feature 𝑎 is defined as:

𝐺𝑖𝑛𝑖(𝐷, 𝑎) =
ፕ

∑
፯዆ኻ

|𝐷፯|
𝐷 𝐺𝑖𝑛𝑖(𝐷፯) (4.37)

where |ፃᑧ|
ፃ is the weight for the splitting point 𝑎፯. Therefore, in the feature set 𝐴, the optimal splitting

feature 𝑎∗ is the one leads to the smallest Gini index after splitting:

𝑎∗ = argmin
ፚ∈ፀ

𝐺𝑖𝑛𝑖(𝐷, 𝑎). (4.38)

The algorithm for growing a decision tree is summarized as follows:

1. The algorithm begins with the root node which contains the whole training set.

2. For each node, Gini index for each feature and each value is calculated. The feature and associ-
ated splitting value leading to the smallest Gini index are chosen and two descendant nodes are
generated.

3. Declare a node as a leaf if all the data belong to the same class or the cardinality of the data is
small enough or the depth of the branch reaches a certain value. Otherwise, repeat step 2.

The algorithm of decision trees is straightforward and easy to interpret. It can handle both numerical
and categorical data. It performs well on large datasets [8]. However, decision trees are prone to
overfitting. This issue can be mitigated by setting a max depth of the tree. But, this could increase
error rate due to bias. Another solution to lessen the overfitting issue is random forest.

4.3.2. Random forest
Random forests combine the idea of bagging together with random feature selection [13]. Random
forests are based on the growth of various different decision trees. The samples used to grow a decision
tree are selected randomly from the whole dataset with replacement. This makes sure each decision
tree has different input data. As decision trees are sensitive to the training set, even small changes lead
to different tree structures. Another randomness for random forest comes from the feature selection.
For each node in a decision tree, the optimal feature is chosen from a randomly selected subset of the
whole feature set. Without the random feature selection, certain predictive features would be chosen
in many base trees, causing these trees in the forest to become highly correlated.

These two kinds of randomness make a random forest combat error due to variance. A number of
relatively uncorrelated models work together can outperform any single one of them. While one tree
might grow too deep and tend to have a low bias and a high variance, various trees together average
the multiple results and reduce the variance, with a small increase of the bias. In practice the variance



34 4. Feature selection and classification

reduction is often significant. When having a new data, the output of a random forest is the one with
the most votes of the decision trees. Therefore, a random forest is less likely to overfit than a decision
tree.

In this thesis, parameters of the random forest algorithm are set to be the default value of the ‘scikit-
learn’ machine learning library, since searching for the optimal parameters does not witness a noticable
improvement. The number of trees in the forest is set to be 100, which makes sure the performance
generalize well to different unknown data, yet do not increase the complexity of the algorithm too much.
The number of features to consider when looking for the best split is set to be the square root of the
number of the total features. This makes each tree grow differently from each other, and still includes
the important features for the majority of the trees at the same time. The weight for each class is set to
be one. This already generates a satisfying result, and giving more weight to the class with less data
does not lead to better results.
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Results

In this chapter, performance of the SVM and RF classifiers using the Poincaré plot based features is
presented. In Section 5.1, the evaluation metrics used in this thesis are introduced. In Section 5.2,
the choice of the quantization level 𝑄 in the Poincaré plot is discussed. In Section 5.3, the distribution
of all the features including the data quartiles and medians are compared in the box plot. In Section
5.4, the classification results using RR intervals and/or peak intervals in autocorrelation are shown. In
Section 5.5, feature selection is implemented to see if the classification results improve. In Section 5.6,
m-lagged analysis for the feature 𝐹዁ is discussed.

5.1. Evaluation metrics
Table 5.1: Confusion matrix

Predicted Positive (class 1) Predicted Negative (class 2)

Actual Positive (class 1) True positive (𝑇𝑃) False negative (𝐹𝑁)
Actual Negative (class 2) False positive (𝐹𝑃) True negative (𝑇𝑁)

Table 5.1 shows a direct way to present the results of a classification model - Confusion matrix, which
consists of true positive, true negative, false negative, and false positive respectively. Each row shows
the actual labels in the dataset, while each column shows the predicted label generated by the classifier.
So, for example, 𝑇𝑃 includes all the data that belong to class 1 and are predicted as class 1 by the
classifier.

Four commonly used evaluationmetrics that can be calculated from a confusionmatrix are accuracy,
precision, recall, and F1 score. Accuracy is the proportion of all the correctly classified data in the whole
dataset:

Accuracy = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁 . (5.1)

Precision is the proportion of the true positive in the predicted positive:

Precision = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃 . (5.2)

Recall is the proportion of the true positive in the actual positive:

Recall = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁 . (5.3)

F1 score is a combination of Precision and Recall:

F1 = 2 × Precision × Recall
Precision+ Recall . (5.4)

35
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Calculating accuracy is an intuitive way to measure how accurate a classification model is, but some-
times it can be misleading, especially when the class labels are imbalanced. When a model predicts
correctly the majority of the class with a large size but fails in predicting the class with a small size,
accuracy can still be high, but this does not mean it is a good model. Precision shows that out of all
the predicted positive samples, how many of them are indeed positive. This could be useful when the
cost of false positives is high. Recall calculates how many actual positives are indeed predicted as
positive by the model. This is useful when the cost is high for false negative. F1 score, on the other
hand, balances between Precision and Recall, and is more reliable when the data class is uneven [37].

5.2. Choice of quantization level 𝑄
From section 3.2.3 to 3.3, features 𝐹ዀ and 𝐹዁ quantized the Poincaré plot into 𝑄 levels in order to
extract the distribution information and the position information of a certain (𝑅𝑅። , 𝑅𝑅፣) combination
that occurred in the plot. However, exact value of 𝑄 has not been specified until the classifiers are
introduced.

In this section, different values of 𝑄 are chosen and the SVM and RF classifiers are used with all
the 21 features. To make sure the ratio of the two classes is consistent in both the training set and the
test set, 50% of each class in the dataset is selected randomly to model the SVM classifier, and the
other 50% is used to evaluate the performance of the model. The optimal value of 𝑄 will be chosen as
the one that can lead to the highest F1 score in the test set. Results can be seen in Table 5.2.

Table 5.2: Choice of ፐ

Value of 𝑄 length of the bin SVM Accuracy SVM F1 score RF Accuracy RF F1 score

5 0.4 94.47% 0.79 95.41% 0.82
10 0.2 94.10% 0.78 96.40% 0.86
20 0.1 94.65% 0.80 96.56% 0.87
25 0.08 94.96% 0.81 96.69% 0.87
40 0.05 95.09% 0.82 96.80% 0.87
50 0.04 95.06% 0.82 96.76% 0.88
100 0.02 95.47% 0.83 96.85% 0.88
200 0.01 92.83% 0.68 95.11% 0.78
400 0.005 88.78% 0.31 90.89% 0.48
800 0.0025 86.86% 0.06 87.82% 0.15

It can be seen from the table that as the value of 𝑄 increases from 5 to 100, the F1 score also rises
from 0.88 to 0.90. When the value of 𝑄 further increases, the F1 score drops, and the running time
of the algorithm increases noticeably. The possible reason of the low F1 score with a high value of
𝑄 could be due to the deficiency in the size of the training set. The training set only contains around
three thousand of ECG recordings, of which less than four hundred recordings belong to AF rhythm.
When the value of 𝑄 is too high, many states might not even be visited by the system, leading to an
unsatisfying results of the F1 score. Therefore, in the following sections, the value of 𝑄 is set to be 100.

5.3. Comparison of the distribution of the features
In this section, the distribution of all the features are compared with each other, in respect of the RR
intervals, the peak intervals in the autocorrelation of ECG, and the peak intervals in the autocorrelation
of the prediction error. The most extreme data, the quartiles and the medians are presented in the box
plot. The means and the standard deviations are presented in the table. All the features are again
presented in Table 5.3.
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Table 5.3: Brief explanation of the features

Annotation Features Explanation
𝐹ኻ SD1 Standard deviation along the identity line in the

Poincaré plot
𝐹ኼ SD2 Standard deviation along the direction perpen-

dicular to the identity line
𝐹ኽ SD1/SD2 Ratio of SD1 and SD2
𝐹ኾ Mean stepping increment Mean distance between the consecutive

points in the Poincaré plot
𝐹኿ Complex correlation measure

(CCM)
Mean area of the triangles composed of the
consecutive three points in the Poincaré plot

𝐹ዀ Unweighted area of bins Count of non-zero bins in the Poincaré plot
𝐹዁ Weighted area of bins Giving weights to the bins in feature 𝐹ዀ

5.3.1. RR intervals

(a) ፅᎳ (b) ፅᎴ (c) ፅᎵ

(d) ፅᎶ (e) ፅᎷ

(f) ፅᎸ (g) ፅᎹ

Figure 5.1: Comparison of features.
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Figure 5.1 illustrates the comparison of distribution of features 𝐹ኻ to 𝐹዁ using the box plot, where the
bottom and top edges of the box indicate the 25th and 75th percentiles of the feature values, and the
central mark indicates the median of the feature value. The whiskers indicate the most extreme data
points that are not considered as outliers, and the outliers are plotted using the red ‘+’ symbol [4].

It can be seen from Figure 5.1 that except for feature 𝐹ኽ, there is no overlap between the two classes,
although the boxes for feature 𝐹኿ are very close to each other. For features 𝐹ኻ, 𝐹ኼ, and 𝐹ዀ, the upper
whisker of the Normal rhythm is overlapping with the box of the AF rhythm. Themost separable features
are 𝐹ኾ and 𝐹዁, where the upper whisker of the Normal rhythm is obviously not overlapping with the box
of the AF rhythm.

The mean value, standard deviation value, and p-value from the Mann–Whitney U test of each
feature are shown in Table 5.4. Among these seven features, the mean value of feature 𝐹ኽ for the two
classes is the closest. The mean value of other features for the AF class is around twice or three times
of that for the Normal class, while the mean value of the feature 𝐹዁ for the AF class is more than five
times of that for the Normal class. All the p-values are much smaller than 0.001, meaning there is
significant difference between the two classes for these features.

Table 5.4: Mean ± standard deviation of all features

Feature Normal AF p-value

𝐹ኻ 0.14 ± 0.15 0.48 ± 0.15 2.44e-165
𝐹ኼ 0.14 ± 0.12 0.35 ± 0.13 1.88e-135
𝐹ኽ 0.01 ± 0.01 0.02 ± 0.01 1.31e-62
𝐹ኾ 0.10 ± 0.11 0.44 ± 0.15 5.25e-184
𝐹኿ 0.28 ± 0.15 0.45 ± 0.11 1.28e-86
𝐹ዀ 0.15 ± 0.08 0.33 ± 0.19 2.86e-103
𝐹዁ 0.05 ± 0.05 0.27 ± 0.19 3.08e-159

5.3.2. Peak intervals in autocorrelation of ECG
Figure 5.2 shows the box plots of features 𝐹ኻ to 𝐹዁ from the peak intervals in autocorrelation of ECG.
Like the previous section, feature 𝐹ኽ is the only case where the two boxes are overlapping with each
other. For features 𝐹ኻ and 𝐹ኼ, the box bottom of the class AF is close to the box top of the class Normal.
For features 𝐹ኾ to 𝐹዁, boxes of the two classes are relatively far from each other, while the upper whisker
of the class Normal is overlapping with the box of the class AF.

(a) ፅᎳ (b) ፅᎴ (c) ፅᎵ
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(d) ፅᎶ (e) ፅᎷ

(f) ፅᎸ (g) ፅᎹ

Figure 5.2: Comparison of features.

The mean value, standard deviation value, and p-value from the Mann–Whitney U test of each
feature are shown in Table 5.5. The mean value of feature 𝐹ኽ for the two classes is again the closest.
The mean value of other features for the AF class is around twice or three times of that for the Normal
class, among which the features 𝐹ኾ and 𝐹኿ show the biggest difference between the two classes. All the
p-values are much smaller than 0.001, meaning there is significant difference between the two classes
for these features.

Table 5.5: Mean ± standard deviation of all features

Feature Normal AF p-value

𝐹ኻ 0.21 ± 0.16 0.45 ± 0.13 3.40e-121
𝐹ኼ 0.25 ± 0.18 0.49 ± 0.14 2.43e-101
𝐹ኽ 0.20 ± 0.09 0.24 ± 0.06 4.94e-23
𝐹ኾ 0.13 ± 0.13 0.39 ± 0.13 1.34e-147
𝐹኿ 0.08 ± 0.10 0.25 ± 0.14 1.04e-123
𝐹ዀ 0.15 ± 0.09 0.34 ± 0.18 1.05e-102
𝐹዁ 0.09 ± 0.07 0.24 ± 0.16 4.33e-93
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5.3.3. Peak intervals in autocorrelation of prediction error

(a) ፅᎳ (b) ፅᎴ (c) ፅᎵ

(d) ፅᎶ (e) ፅᎷ

(f) ፅᎸ (g) ፅᎹ

Figure 5.3: Comparison of features.

Figure 5.3 compares the value distribution of features 𝐹ኻ to 𝐹዁ from the peak intervals in autocorrelation
of prediction error in the form of the box plot. Feature 𝐹ኽ, as usual, showsmuch overlapping between the
two classes. Features 𝐹ኻ and 𝐹ኼ do not show overlapping between the boxes, but the upper whisker
of the Normal class is still higher than the box of the AF class. For features 𝐹ኾ and 𝐹ዀ, there is no
overlapping between the two boxes, but there is overlapping between the upper whisker of the Normal
class and the box of the AF class. For features 𝐹኿ and 𝐹዁, the boxes of the two classes do not overlap,
and the upper whisker of the Normal class is lower than the box of the AF class.

The mean value, standard deviation value, and p-value from the Mann–Whitney U test of each
feature are shown in Table 5.6. The difference of feature 𝐹ኽ for the two classes is the smallest, while
the difference of feature 𝐹዁ for the two classes is the biggest. All the p-values are again much smaller
than 0.001, meaning there is significant difference between the two classes for these features.

Table 5.6: Mean ± standard deviation of all features

Feature Normal AF p-value

𝐹ኻ 0.18 ± 0.15 0.50 ± 0.12 2.09e-162
𝐹ኼ 0.19 ± 0.16 0.40 ± 0.13 1.33e-106
𝐹ኽ 0.26 ± 0.11 0.32 ± 0.09 3.93e-28
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𝐹ኾ 0.14 ± 0.13 0.46 ± 0.13 2.66e-173
𝐹኿ 0.06 ± 0.09 0.24 ± 0.11 1.09e-155
𝐹ዀ 0.16 ± 0.09 0.37 ± 0.20 8.38e-113
𝐹዁ 0.06 ± 0.07 0.30 ± 0.20 4.59e-146

5.4. Classification results
In this section, the training set is again selected randomly from 50% of the dataset, and the other 50% is
used as the test set. To investigate the dependence of the classifier on the randomly-selected training
set for different feature sets, experiments are repeated ten times, and the performance metrics are
reported.

5.4.1. RR intervals
In this section, seven features including 𝐹ኻ to 𝐹዁ for RR intervals are used to train both the SVM and
RF classifiers. This is repeated for ten times and the mean value and the corresponding standard
deviation of the performance metrics for the test set are shown in Table 5.7. For SVM, the accuracy
is 93.86%, the F1 score is 0.77, and the standard deviations for these performance metrics are from
0.01 to 0.04. For RF, the accuracy is 95.46%, the F1 score is 0.81, and the standard deviations for
these performance metrics are from 0 to 0.02. The F1 score for RF is slightly better than that for SVM,
because the RF classifier can generalize well for the unknown data. The low standard deviation for RF
is due to the large number of decision trees, which makes the majority voting insensitive for different
training sets and test tests.

Table 5.7: Results

Performance SVM RF

Accuracy 93.86% ± 0.01 95.46% ± 0

Precision 0.75 ± 0.02 0.88 ± 0.02

Recall 0.79 ± 0.04 0.76 ± 0.02

F1 score 0.77 ± 0.02 0.81 ± 0.01

Corresponding confusion matrices for SVM and RF are given in Table 5.8 and 5.9. It can be seen
from the tables that SVM correctly classifies more AF recordings than RF, at the cost of much more
wrongly classified Normal rhythm. Therefore, although the F1 score for RF is higher than SVM, if the
cost of false negative is much higher than false positive (in this case, it means actual AF predicted as
Normal is more dangerous than actual Normal predicted as AF), it is still recommended to choose the
SVM classifier.

Table 5.8: Confusion matrix

SVM Predicted AF Predicted Normal

Actual AF 326 53

Actual Normal 112 2425
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Table 5.9: Confusion matrix

RF Predicted AF Predicted Normal

Actual AF 310 69

Actual Normal 45 2492

As comparison, results for only features 𝐹ኻ to 𝐹኿ (features proposed in this thesis are not included)
are shown below. It can be seen that when 𝐹ዀ and 𝐹዁ are missing, accuracy decreases 0.02, and F1
score decreases 0.01 for SVM; while accuracy decreases 0.01, and F1 score decreases 0.03 for RF.
This shows that the proposed features have extra value to the traditional Poincaré plot based features.
The standard deviations for SVM increase a little, which means the performance of the classifier is not
as stable as before. The standard deviations for RF are as low as the previous case, suggesting the
performance of the classifier is stable even with fewer features.

Table 5.10: Results

Performance SVM RF

Accuracy 92.40% ± 0.01 94.35% ± 0

Precision 0.65 ± 0.04 0.79 ± 0.02

Recall 0.90 ± 0.03 0.76 ± 0.02

F1 score 0.76 ± 0.04 0.78 ± 0.01

Corresponding confusion matrices for the test set are given in Table 5.11 and 5.12. Again, SVM
correctly classifies more AF class while RF correctly classifies more Normal class.

Table 5.11: Confusion matrix

SVM Predicted AF Predicted Normal

Actual AF 347 31

Actual Normal 149 2387

Table 5.12: Confusion matrix

RF Predicted AF Predicted Normal

Actual AF 303 76

Actual Normal 75 2462

5.4.2. Peak intervals in autocorrelation of ECG
In this section, seven features including 𝐹ኻ to 𝐹዁ for peak intervals in autocorrelation of ECG are used
to train both the SVM and RF classifiers. This is repeated for ten times and the mean value and the
corresponding standard deviations of the performance metrics for the test set are shown in Table 5.13.
Both Accuracy and F1 score are lower than those in the previous section. For SVM, the accuracy
decreases 0.05, and the F1 score decreases 0.14. For RF, the accuracy decreases 0.02, and the F1
score decreases 0.13. This indicates that RR intervals might contain more useful information than peak
intervals in autocorrelation of ECG to classify AF and Normal ECG signals. The standard deviations
of SVM increases, while the standard deviations of RF stay the same. This means that with different
features, the performance of SVM is more sensitive to the variation of the training set than RF.
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Table 5.13: Results

Performance SVM RF

Accuracy 88.61% ± 0.02 93.77% ± 0

Precision 0.55 ± 0.06 0.81 ± 0.02

Recall 0.73 ± 0.04 0.59 ± 0.02

F1 score 0.63 ± 0.05 0.68 ± 0.01

Corresponding confusion matrices for the test set are given in Table 5.14 and 5.15. It is clear that
in these tables, both AF and Normal are less correctly predicted than in Table 5.8 and 5.9.

Table 5.14: Confusion matrix

SVM Predicted AF Predicted Normal

Actual AF 283 95

Actual Normal 187 2347

Table 5.15: Confusion matrix

RF Predicted AF Predicted Normal

Actual AF 243 136

Actual Normal 60 2477

5.4.3. Peak intervals in autocorrelation of prediction error
In this section, seven features including 𝐹ኻ to 𝐹዁ for peak intervals in autocorrelation of prediction error
are used to train both the SVM and RF classifiers. This is repeated for ten times and the mean value
and the corresponding standard deviations of the performance metrics for the test set are shown in
Table 5.16. The results in this part are not as good as those for RR intervals, but still better than
those for peak intervals in autocorrelation of ECG. This means the peak intervals in autocorrelation
of prediction error could be better feature candidates than those in autocorrelation of ECG. For SVM,
the standard deviations are as small as those for RR intervals; while for RF, the standard deviations
increase a little compared with those for RR intervals. This suggests that the performance of SVM is as
stable as before, but the performance of RF becomes sensitive to different training sets and test sets

Table 5.16: Results

Performance SVM RF

Accuracy 92.62% ± 0.01 94.80% ± 0

Precision 0.68 ± 0.02 0.86 ± 0.02

Recall 0.80 ± 0.04 0.72 ± 0.03

F1 score 0.74 ± 0.02 0.78 ± 0.02

Corresponding confusion matrices for the test set are given in Table 5.17 and 5.18. For SVM, com-
paring the table with Table 5.8, the number of correctly predicted AF data increases a little, but Normal
data are less correctly predicted. For RF, both AF and Normal data are less correctly classified than
those for RR intervals. Compared with Table 5.14 and 5.15, both classifiers classify more recordings for
the two classes. This means when using the peak intervals in autocorrelation of prediction as features,
the performance of the two classifiers are worse in general than using the RR intervals as features, but
still better than using the peak intervals in autocorrelation of ECG as features.
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Table 5.17: Confusion matrix

SVM Predicted AF Predicted Normal

Actual AF 331 48

Actual Normal 141 2395

Table 5.18: Confusion matrix

RF Predicted AF Predicted Normal

Actual AF 293 86

Actual Normal 57 2480

5.4.4. Combination of RR intervals and peak intervals in autocorrelation function
In this section, 21 features including 𝐹ኻ to 𝐹዁ for both RR intervals and peak intervals in autocorrelation
function are used to train both the SVM and RF classifiers. This is repeated for ten times and the mean
value and the corresponding standard deviations of the performance metrics for the test set are shown
in Table 5.19. For SVM, the accuracy is 0.95, the F1 score is 0.80, and the standard deviations are
lower than previous subsections. For RF, the accuracy is 0.96, the F1 score is 0.85, and the standard
deviations are also the lowest compared with other cases. Apparently, the results with all the features
used are better than any of those in the previous subsections, but at the cost of higher complexity of
the algorithm at the same time.

Table 5.19: Results

Performance SVM RF

Accuracy 94.84% ± 0 96.37% ± 0

Precision 0.81 ± 0.02 0.91 ± 0.01

Recall 0.79 ± 0.03 0.80 ± 0.02

F1 score 0.80 ± 0.02 0.85 ± 0.01

Corresponding confusion matrices for the test set are given in Table 5.20 and 5.21. It can be seen
that both the classifiers show the best performance this time. While RF correctly classifies more Normal
rhythms than SVM, it also show a comparable ability for classifying AF rhythm as SVM.

Table 5.20: Confusion matrix

SVM Predicted AF Predicted Normal

Actual AF 317 62

Actual Normal 82 2454

Table 5.21: Confusion matrix

RF Predicted AF Predicted Normal

Actual AF 318 61

Actual Normal 27 2510
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5.5. Feature selection
Figure 5.4 shows the results of feature selection using the mrmr algorithm. The x-axis shows the num-
ber of top important features used to train the SVM classifier, and the y-axis shows the corresponding
accuracy and F1 score for the test set. Each time a training set is randomly selected, causing a slight
change to the ranking of the feature importance, the corresponding accuracy and F1 score for the test
set are calculated. This is repeated ten times, and the final results are the average of the ten repetitions.

Figure 5.4: Results of feature selection.

Figure 5.4 shows that both lines are increasing more or less until the number of features is thirteen,
after which they are fluctuating and do not improve too much even with more features. Therefore,
although the accuracy reaches 0.95 and the F1 score reaches 0.81 with nineteen features, it is still
reasonable to choose the top thirteen most important features to get a satisfying performance and
reduce the complexity of the algorithm at the same time. With the top thirteen important features, the
accuracy reaches 0.95, and the F1 score reaches 0.79.

For each one of the ten experiments, the most important thirteen features were recorded. The
frequency of each feature ranked as the most important thirteen features for the whole ten repetitions
is given in Table 5.22.

Table 5.22: Frequency of each feature showing up in the thirteen most important features during the ten experiments.

Feature 1 2 3 4 5 6 7

Frequency 9 10 10 10 10 0 10

Feature 8 9 10 11 12 13 14

Frequency 0 0 4 10 0 4 10

Feature 15 16 17 18 19 20 21

Frequency 10 0 10 10 0 3 10

From the table it can be seen that for the ten repeated experiments, eleven features including 𝐹ኼ,
𝐹ኽ, 𝐹ኾ, 𝐹኿, 𝐹዁ for RR intervals, 𝐹ኾ, 𝐹዁ for peak intervals in autocorrelation of ECG, and 𝐹ኻ, 𝐹ኽ, 𝐹ኾ, 𝐹዁ for
peak intervals in autocorrelation of prediction error are ranked as the most important thirteen features
for every single time. This implies that these eleven features contain useful information for different
training sets. It can be concluded from these features that the peak intervals in autocorrelation of ECG
contain less information than the other two interval series because only two features from that are
included.
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As for each single feature, 𝐹ዀ for all the three interval series are not assumed to be important, 𝐹ኻ,
𝐹ኼ, 𝐹኿ for one of the interval series are selected, 𝐹ኽ for two of the interval series are selected. On the
other hand, 𝐹ኾ and 𝐹዁ are chosen for all of the three interval series, which means they are assumed
to be important and useful, and thus show their potential to classify AF and Normal ECG signals. To
investigate why feature 𝐹ዀ is not selected, the relationship between features 𝐹ዀ and 𝐹዁ for the three
interval series are illustrated in Figure 5.5.

Figure 5.5: Scatter plots between features ፅᎸ and ፅᎹ for the three interval series. Normal rhythms are marked as blue circle. AF
rhythms are marked as red plus sign.

It can be seen that these two features have a positive association. The correlation coefficient be-
tween two random variables 𝐴 and 𝐵 measures their random dependence and is defined as

𝜌(𝐴, 𝐵) = 1
𝑁 − 1

ፍ

∑
።዆ኻ
(𝐴። − 𝜇ፀ𝜎ፀ

)(𝐵። − 𝜇ፁ𝜎ፁ
) (5.5)

where 𝜇ፀ and 𝜇ፁ are the mean of 𝐴 and 𝐵, and 𝜎ፀ and 𝜎ፁ are the standard deviation of 𝐴 and 𝐵. The
correlation coefficient between features 𝐹ዀ and 𝐹዁ for the three interval series are given in Table 5.23.

Table 5.23: Correlation coefficient between features ፅᎸ and ፅᎹ.

Interval series All data Normal rhythm AF rhythm

RR intervals 0.79 0.51 0.90

Peak intervals in acf of ECG 0.75 0.52 0.88

Peak intervals in acf of prediction error 0.81 0.55 0.92

For all the three interval series, while the correlation coefficients between the two features for Normal
rhythm are around 0.5, those for AF rhythm are around 0.9, leading to those for all data being around
0.8. It can be concluded that the positive relationship between these two features are strong. Therefore,
it is reasonable to choose only one feature from them.

Using the eleven most often selected features in Table 5.22 to train the SVM classifier, the accuracy
and F1 score for the test test are 94.26% and 0.78, while using 21 features attains accuracy and F1
score at 94.84% and 0.80. Using the eleven most often selected features in Table 5.22 to train the
RF classifier, the accuracy and F1 score for the test test are 96.15% and 0.84, while using 21 features
attains accuracy and F1 score at 96.37% and 0.85. With half of the features, the F1 score of the SVM
and RF classifiers decreases only 0.02 and 0.01, respectively.

5.6. M-lagged Poincaré plot analysis
Instead of plotting 𝐴፧ against 𝐴፧ዄኻ in the Poincaré plot, some researches focus on plotting 𝐴፧ against
𝐴፧ዄ፦ to investigate the change of the plot along with the increase of lag 𝑚. It has been shown that
different lags𝑚 of the Poincaré plot give a better understanding about the autonomic control of the heart
rate that impact the short-term and long-term variability of the heart rate [26]. The short-term and long-
term correlations can be different on different time scales. When the sampling interval is shorter than
the short-term correlation length, these short-term correlations can be predominantly seen. Therefore,
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the m-lagged Poincaré plot might provide more information than the conventional one-lagged Poincaré
plot.

In this section, lag 𝑚 increases from one to twenty, and corresponding value of feature 𝐹዁ is calcu-
lated for the whole dataset. The 25th, 75th percentile and median for the two classes are presented
as the shadow area and the bold line, respectively. Figure 5.6 to 5.8 show the relationship of feature
𝐹዁ with different lag 𝑚 for RR intervals, peak intervals in autocorrelation of ECG, and peak intervals in
autocorrelation of prediction error, respectively.

Figure 5.6: M-lagged analysis of feature ፅᎹ for RR intervals.

Figure 5.7: M-lagged analysis of feature ፅᎹ for peak intervals in autocorrelation of ECG.
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Figure 5.8: M-lagged analysis of feature ፅᎹ for peak intervals in autocorrelation of prediction error.

It can be seen from either of the three figures that feature 𝐹዁ for the class AF has wider 25/75
percentile range than that for the class Normal, given a certain lag 𝑚. This means the variability of
feature 𝐹዁ for the class AF is larger. The value for the AF rhythm is always larger than the Normal
rhythm, but the gap becomes smaller as the lag 𝑚 increases. So, it is better for the feature 𝐹዁ to
choose a small value of the lag 𝑚, for example any number from one to four. The variation of value
along the lag 𝑚 for the class AF is also slightly higher than that for the class Normal. This implies that
the fluctuation of feature 𝐹዁ along the increase of the lag 𝑚 could also be a possible feature to classify
the AF and Normal classes.
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Conclusion

6.1. Conclusion
In this thesis, a new Poincaré plot based feature, which combines the distribution and position informa-
tion in the Poincaré plot, is proposed to classify AF and Normal rhythms. The Poincaré plot generated
from the peak intervals in the autocorrelation function in addition to the RR intervals is investigated.
The performance of the new features is compared using the support vector machine and random for-
est classifiers.

A normal sinus rhythm ECG signal consists of P waves, QRS complexes, and T waves. For AF
rhythm, the P waves are normally absent and the RR intervals become rapid and irregular. The AF
period are caused by complex nonlinear processes, which can not be easily detected by the typical
time domain analysis. The Poincaré plot, on the other hand, provides a visual representation of the
nonlinear aspects of the heart rate variability, both quanlitatively and quantitatively.

The dataset used in this thesis comes from the PhysioNet/Computing in Cardiology (CinC) Chal-
lenge 2017. After several pre-processing steps, RR intervals of the data are used to generate the
Poincaré plot. Because the AF rhythm has both larger short-term and long-term variability, it shows
random and chaotic patterns in the plot; while the Normal rhythm shows less clusters and usually
concentrates around the center in the plot, due to its periodic characteristics.

In chapter 3, the Poincaré plot are quantized into small bins, which are given different weights by
the mask processing technique. The first mask aims to approximate the distribution of the two classes,
while the second mask aims to give higher weight to the states far from the center of the plot. These two
masks are then element-wise multiplied and summarized with the quantized Poincaré plot of the new
data, resulting in a higher value if the new data is AF, or the opposite if the new data is Normal. By doing
so, the new feature aims to approximate the expected value of the matrix of the Poincaré plot, whose
entries are ones if corresponding states are visited by the system, otherwise are zeros. Meanwhile, It
attempts to increase the gap between the two classes by giving more weight to the outliers, which are
more likely to occur during an AF period.

Another contribution in chapter 3 is that the peak intervals in the autocorrelation function of both ECG
and prediction error are used to generate the Poincaré plot, similar as the typical Poincaré plot does
with the RR intervals. The autocorrelation function evaluates the self-periodicity of a time series, and
thus is assumed to add extra information to the heart rate variability. Therefore, some commonly used
Poincaré plot based features together with the new feature proposed in this thesis, are extracted from
the Poincaré plot based on both the RR intervals and the peak intervals of the autocorrelation function.
21 features in total are included in the thesis, including three standard deviation related features, two
temporal based features, and two features that are investigated in this thesis.

In chapter 4, 21 features are ranked based on their importance calculated by the minimum redun-
dancy maximum relevance algorithm. In general, the RR interval related features contain the most
useful information, followed by the peak intervals in the autocorrelation of prediction error related fea-
tures. Peak intervals in the autocorrelation of ECG related features are ranked as the least important.
Classifiers used during the experiments include SVM and RF. SVM has been used widely to classify
nonlinear data by mapping them into higher dimensions using the kernel trick. The computational com-
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plexity of the algorithm depends on the number of support vectors instead of the number of the training
data, therefore reduces the curse of dimensionality to some extent and increases the robustness of the
model. Random forests are an ensemble learning method consisting of a collection of decision trees.
The randomness between various decision trees originates from the randomly selected input data and
feature set for each tree. This makes the random forest generalize well to the unknown data.

Chapter 5 presents the results of the experiments. The comparison of the distribution of the feature
values in the box plot shows that the proposed feature has no overlapping between the two boxes for the
two classes, for any of the three kinds of intervals. As for the performance of the two classifiers, using
all these 21 features generates the highest F1 score of 0.80 and 0.85 for SVM and RF, respectively.
When using only seven features from the same intervals, RR intervals generates the highest F1 score
of 0.77 and 0.81 for SVM and RF, followed by the peak intervals in the autocorrelation of prediction
error at 0.74 and 0.78 for SVM and RF, and the peak intervals in the autocorrelation of ECG gives the
lowest F1 score of 0.63 and 0.68 for SVM and RF. The poor performance of the peak intervals in the
autocorrelation of ECG is probably due to the definition of the peak in the autocorrelation function. Only
looking for peaks that are higher than a threshold and far from each other with a certain distance might
not be enough to exploit the autocorrelation function’s potential of evaluating the self-similarity.

For the above results, random forests always achieve a higher F1 score with a lower variance than
SVM for ten repeated experiments. This is mainly because of the large number of trees in the forest
and the majority vote among various trees that makes the forest avoid overfitting and perform stably to
different training set and test set. Using the mrmr feature selection algorithm, eleven most important
features are selected and lead to a comparable F1 score of 0.78 and 0.84 for SVM and RF, respectively.

6.2. Future work
This thesis achieves a decent performance to classify AF and Normal ECG signals using only the
Poincaré plot based features. However, when checking the confusion matrix of both the SVM or RF,
more proportion of AF signals are wrongly predicted as Normal signals than vice versa. This means
that a number of AF rhythms do not show noticeable dispersion in the Poincaré plot. This leads to the
other characteristics of the AF rhythms: the absence of the P waves. Other features that investigate
the morphology of the ECG signals are recommended to be considered to further improve the accuracy
of the classifiers.

In addition to normal and AF rhythms, the dataset used in this thesis also includes other arrhythmia
and noisy classes, which are found to be difficult to differentiate by many teams during the CinC chal-
lenge 2017. The other arrhythmia contains relatively regular RR intervals similar to the normal class,
and the noisy class shows a chaotic pattern as the AF class does. This makes it difficult to classify all
the four classes, and using only the Poincaré plot based features is not enough in this case. Therefore,
time-frequency features like discrete wavelet transform (DWT) features and other nonlinear analysis
are suggested to be investigated.

Deep learning algorithms appear to be promising these days and therefore might be helpful with this
problem. They do not need the feature extraction and reach a satisfying performance as long as the
parameters and the structure of the model are well tuned. One limitation of deep learning algorithms
is that they are lacking interpretation.

One possible application of detecting arrhythmia is to implement the algorithm in the wearable de-
vices, in which case the requirements include real-time detection, low complexity, and low power con-
sumption. Therefore, the balance between the accuracy rate and the complexity of the algorithm and
the size of the feature space needs to be found. One example are deep learning methods, which could
generate a high performance but are computationally expensive at the same time.



Bibliography
[1] Why Atrial Fibrillation (AF or AFib) Matters. https://www.heart.org/en/health-top

ics/atrial-fibrillation/why-atrial-fibrillation-af-or-afib-matters, . On-
line; accessed 4-July-2020.

[2] What are the Symptoms of Atrial Fibrillation (AFib or AF)? https://www.heart.org/en/h
ealth-topics/atrial-fibrillation/what-are-the-symptoms-of-atrial-fibri
llation-afib-or-af, . Online; accessed 4-July-2020.

[3] Atrial Fibrillation in Children. https://www.heart.org/en/health-topics/atrial-f
ibrillation/who-is-at-risk-for-atrial-fibrillation-af-or-afib/atrial-f
ibrillation-in-children, . Online; accessed 4-July-2020.

[4] visualize summary statistics with box plot - matlab boxplot - mathworks benelux. https://nl
.mathworks.com/help/stats/boxplot.html. Online; accessed 25-June-2020.

[5] Electrocardiogram (EKG, ECG). https://www.cvphysiology.com/Arrhythmias/A009.
Online; accessed 21-Aug-2020.

[6] A Beginner’s Guide To Understanding Convolutional Neural Networks. https:
//adeshpande3.github.io/A-Beginner’s-Guide-To-Understanding-Convolu
tional-Neural-Networks/. Online; accessed 23-May-2020.

[7] Heart rate: What is a normal heart rate? https://www.medicalnewstoday.com/artic
les/235710. Online; accessed 16-May-2020.

[8] Decision Trees and Random Forests. https://towardsdatascience.com/decision-t
rees-and-random-forests-df0c3123f991. Online; accessed 19-Aug-2020.

[9] Lilliefors test - MATLAB lillietest - MathWorks Benelux. https://nl.mathworks.com/help/
stats/lillietest.html. Online; accessed 16-July-2020.

[10] Rank features for classification using minimum redundancy maximum relevance (MRMR) algo-
rithm - MATLAB fscmrmr - MathWorks Benelux. https://nl.mathworks.com/help/stat
s/fscmrmr.html. Online; accessed 2-June-2020.

[11] Cross-correlation - MATLAB xcorr - MathWorks Benelux. https://nl.mathworks.com/hel
p/matlab/ref/xcorr.html. Online; accessed 26-May-2020.

[12] Atrial fibrillation. https://www.mayoclinic.org/diseases-conditions/atrial-fib
rillation/symptoms-causes/syc-20350624, Jun 2019. Online; accessed 4-July-2020.

[13] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[14] Michael Brennan, Marimuthu Palaniswami, and Peter Kamen. Do existing measures of poincare
plot geometry reflect nonlinear features of heart rate variability? IEEE transactions on biomedical
engineering, 48(11):1342–1347, 2001.

[15] Gari D Clifford, Chengyu Liu, Benjamin Moody, H Lehman Li-wei, Ikaro Silva, Qiao Li, AE John-
son, and Roger G Mark. Af classification from a short single lead ecg recording: the phys-
ionet/computing in cardiology challenge 2017. In 2017 Computing in Cardiology (CinC), pages
1–4. IEEE, 2017.

[16] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning, 20(3):273–297,
1995.

51

https://www.heart.org/en/health-topics/atrial-fibrillation/why-atrial-fibrillation-af-or-afib-matters
https://www.heart.org/en/health-topics/atrial-fibrillation/why-atrial-fibrillation-af-or-afib-matters
https://www.heart.org/en/health-topics/atrial-fibrillation/what-are-the-symptoms-of-atrial-fibrillation-afib-or-af
https://www.heart.org/en/health-topics/atrial-fibrillation/what-are-the-symptoms-of-atrial-fibrillation-afib-or-af
https://www.heart.org/en/health-topics/atrial-fibrillation/what-are-the-symptoms-of-atrial-fibrillation-afib-or-af
https://www.heart.org/en/health-topics/atrial-fibrillation/who-is-at-risk-for-atrial-fibrillation-af-or-afib/atrial-fibrillation-in-children
https://www.heart.org/en/health-topics/atrial-fibrillation/who-is-at-risk-for-atrial-fibrillation-af-or-afib/atrial-fibrillation-in-children
https://www.heart.org/en/health-topics/atrial-fibrillation/who-is-at-risk-for-atrial-fibrillation-af-or-afib/atrial-fibrillation-in-children
https://nl.mathworks.com/help/stats/boxplot.html
https://nl.mathworks.com/help/stats/boxplot.html
https://www.cvphysiology.com/Arrhythmias/A009
https://adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-Convolutional-Neural-Networks/
https://adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-Convolutional-Neural-Networks/
https://adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-Convolutional-Neural-Networks/
https://www.medicalnewstoday.com/articles/235710
https://www.medicalnewstoday.com/articles/235710
https://towardsdatascience.com/decision-trees-and-random-forests-df0c3123f991
https://towardsdatascience.com/decision-trees-and-random-forests-df0c3123f991
https://nl.mathworks.com/help/stats/lillietest.html
https://nl.mathworks.com/help/stats/lillietest.html
https://nl.mathworks.com/help/stats/fscmrmr.html
https://nl.mathworks.com/help/stats/fscmrmr.html
https://nl.mathworks.com/help/matlab/ref/xcorr.html
https://nl.mathworks.com/help/matlab/ref/xcorr.html
https://www.mayoclinic.org/diseases-conditions/atrial-fibrillation/symptoms-causes/syc-20350624
https://www.mayoclinic.org/diseases-conditions/atrial-fibrillation/symptoms-causes/syc-20350624


52 Bibliography

[17] Shreyasi Datta, Chetanya Puri, Ayan Mukherjee, Rohan Banerjee, Anirban Dutta Choudhury, Rit-
uraj Singh, Arijit Ukil, Soma Bandyopadhyay, Arpan Pal, and Sundeep Khandelwal. Identifying
normal, af and other abnormal ecg rhythms using a cascaded binary classifier. In 2017 Computing
in Cardiology (CinC), pages 1–4. IEEE, 2017.

[18] Zümray Dokur and Tamer Ölmez. Ecg beat classification by a novel hybrid neural network. Com-
puter methods and programs in biomedicine, 66(2-3):167–181, 2001.

[19] JP Eckmann, S Oliffson Kamphorst, D Ruelle, et al. Recurrence plots of dynamical systems.World
Scientific Series on Nonlinear Science Series A, 16:441–446, 1995.

[20] Masatake Fukunami, Takahisa Yamada, Masaharu Ohmori, Kazuaki Kumagai, Kiyoshi Umemoto,
Akihiko Sakai, Nobuhiko Kondoh, Tetsuo Minamino, and Noritake Hoki. Detection of patients
at risk for paroxysmal atrial fibrillation during sinus rhythm by p wave-triggered signal-averaged
electrocardiogram. Circulation, 83(1):162–169, 1991.

[21] İnan Güler and Elif Derya Übeylı. Ecg beat classifier designed by combined neural network model.
Pattern recognition, 38(2):199–208, 2005.

[22] Yuki Hagiwara, Hamido Fujita, Shu Lih Oh, Jen Hong Tan, Ru San Tan, Edward J Ciaccio, and
URajendra Acharya. Computer-aided diagnosis of atrial fibrillation based on ecg signals: A review.
Information Sciences, 467:99–114, 2018.

[23] Shenda Hong, Meng Wu, Yuxi Zhou, Qingyun Wang, Junyuan Shang, Hongyan Li, and Junqing
Xie. Encase: An ensemble classifier for ecg classification using expert features and deep neural
networks. In 2017 Computing in cardiology (cinc), pages 1–4. IEEE, 2017.

[24] Che-Hao Hsu, Ming-Ya Tsai, Go-Shine Huang, Tso-Chou Lin, Kuen-Pao Chen, Shung-Tai Ho,
Liang-Yu Shyu, and Chi-Yuan Li. Poincaré plot indexes of heart rate variability detect dynamic
autonomic modulation during general anesthesia induction. Acta Anaesthesiologica Taiwanica,
50(1):12–18, 2012.

[25] Chih-Wei Hsu, Chih-Chung Chang, Chih-Jen Lin, et al. A practical guide to support vector classi-
fication, 2003.

[26] Chandan K Karmakar, Ahsan H Khandoker, Jayavardhana Gubbi, and Marimuthu Palaniswami.
Complex correlation measure: a novel descriptor for poincaré plot. Biomedical engineering online,
8(1):17, 2009.

[27] Gustavo Lenis, Nicolas Pilia, Axel Loewe, Walther HW Schulze, and Olaf Dössel. Comparison of
baseline wander removal techniques considering the preservation of st changes in the ischemic
ecg: a simulation study. Computational and mathematical methods in medicine, 2017, 2017.

[28] Chun-Cheng Lin and Chun-Min Yang. Heartbeat classification using normalized rr intervals and
morphological features. Mathematical Problems in Engineering, 2014, 2014.

[29] Ali R Mani, Sara Montagnese, Clive D Jackson, Christopher W Jenkins, Ian M Head, Robert C
Stephens, Kevin P Moore, and Marsha Y Morgan. Decreased heart rate variability in patients
with cirrhosis relates to the presence and degree of hepatic encephalopathy. American Journal of
Physiology-Gastrointestinal and Liver Physiology, 296(2):G330–G338, 2009.

[30] Jonathan Moeyersons, Matthew Amoni, Sabine Van Huffel, Rik Willems, and Carolina Varon. R-
deco: An open-source matlab based graphical user interface for the detection and correction of
r-peaks. PeerJ Computer Science, 5:e226, 2019.

[31] Chrysostomos L Nikias and Jerry M Mendel. Signal processing with higher-order spectra. IEEE
Signal processing magazine, 10(3):10–37, 1993.

[32] Saurabh Pal and Madhuchhanda Mitra. Empirical mode decomposition based ecg enhancement
and qrs detection. Computers in biology and medicine, 42(1):83–92, 2012.



Bibliography 53

[33] Jinho Park, Sangwook Lee, and Moongu Jeon. Atrial fibrillation detection by heart rate variability
in poincare plot. Biomedical engineering online, 8(1):38, 2009.

[34] B Pourbabaee and C Lucas. Automatic detection and prediction of paroxysmal atrial fibrillation
based on analyzing ecg signal feature classification methods. In 2008 Cairo International Biomed-
ical Engineering Conference, pages 1–4. IEEE, 2008.

[35] Pratiksha Sarma, SR Nirmala, and Kandarpa Kumar Sarma. Classification of ecg using some
novel features. In 2013 1st International Conference on Emerging Trends and Applications in
Computer Science, pages 187–191. IEEE, 2013.

[36] ReemSatti, Noor-Ul-Hoda Abid, Matteo Bottaro, Michele De Rui, Maria Garrido, MohammadReza
Rauofy, Sara Montagnese, and Alireza Mani. The application of the extended poincaré plot in the
analysis of physiological variabilities. Frontiers in physiology, 10:116, 2019.

[37] Koo Ping Shung. Accuracy, Precision, Recall or F1? https://towardsdatascience
.com/accuracy-precision-recall-or-f1-331fb37c5cb9, Apr 2020. Online; accessed
24-June-2020.

[38] Tomás Teijeiro, Constantino A García, Daniel Castro, and Paulo Félix. Arrhythmia classification
from the abductive interpretation of short single-lead ecg records. In 2017 Computing in cardiology
(cinc), pages 1–4. IEEE, 2017.

[39] Sergios Theodoridis and Konstantinos Koutroumbas. Pattern recognition &Matlab intro. Academic
Press, Inc., 2010.

[40] Mikko P Tulppo, TH Makikallio, TE Takala, THHV Seppanen, and Heikki V Huikuri. Quantitative
beat-to-beat analysis of heart rate dynamics during exercise. American journal of physiology-heart
and circulatory physiology, 271(1):H244–H252, 1996.

[41] Developed with the special contribution of the European Heart Rhythm Association (EHRA), En-
dorsed by the European Association for Cardio-Thoracic Surgery (EACTS), Authors/Task Force
Members, A John Camm, Paulus Kirchhof, Gregory YH Lip, Ulrich Schotten, Irene Savelieva,
Sabine Ernst, Isabelle C Van Gelder, et al. Guidelines for the management of atrial fibrillation:
the task force for the management of atrial fibrillation of the european society of cardiology (esc).
European heart journal, 31(19):2369–2429, 2010.

[42] Can Ye, Miguel Tavares Coimbra, and BVK Vijaya Kumar. Arrhythmia detection and classification
usingmorphological and dynamic features of ecg signals. In 2010 Annual International Conference
of the IEEE Engineering in Medicine and Biology, pages 1918–1921. IEEE, 2010.

[43] Morteza Zabihi, Ali Bahrami Rad, Aggelos K Katsaggelos, Serkan Kiranyaz, Susanna Narkilahti,
and Moncef Gabbouj. Detection of atrial fibrillation in ecg hand-held devices using a random forest
classifier. In 2017 Computing in Cardiology (CinC), pages 1–4. IEEE, 2017.

[44] Zhenyu Zhao, Radhika Anand, and Mallory Wang. Maximum relevance and minimum redun-
dancy feature selection methods for a marketing machine learning platform. arXiv preprint
arXiv:1908.05376, 2019.

https://towardsdatascience.com/accuracy-precision-recall-or-f1-331fb37c5cb9
https://towardsdatascience.com/accuracy-precision-recall-or-f1-331fb37c5cb9

	Introduction
	Motivation
	Related work
	Research objectives
	Contribution
	Outline

	Data and pre-processing
	Data
	R peak detection
	Pre-processing
	Lead inversion detection
	Normalization of the RR intervals
	Outlier removal


	Feature extraction
	Poincaré plot
	Commonly used Poincaré plot based features
	Ellipse-fitting technique
	Temporal based features
	Count of bins in the Poincaré plot

	Weighted count of bins in the Poincaré plot
	Mask processing
	Distribution of bins in the Poincaré plot
	Position of bins in the Poincaré plot
	Combination of distribution and position

	Autocorrelation function
	Autocorrelation of ECG
	Autocorrelation of the prediction error


	Feature selection and classification
	Minimum redundancy maximum relevance algorithm
	Support vector machines
	Searching for optimal parameters

	Random forest
	Decision tree
	Random forest


	Results
	Evaluation metrics
	Choice of quantization level Q
	Comparison of the distribution of the features
	RR intervals
	Peak intervals in autocorrelation of ECG
	Peak intervals in autocorrelation of prediction error

	Classification results
	RR intervals
	Peak intervals in autocorrelation of ECG
	Peak intervals in autocorrelation of prediction error
	Combination of RR intervals and peak intervals in autocorrelation function

	Feature selection
	M-lagged Poincaré plot analysis

	Conclusion
	Conclusion
	Future work

	Bibliography

