

Delft University of Technology

Document Version
Final published version

Licence
CC BY

Citation (APA)
Kassimi, A., Aljuffri, A. A. M., Larmann, C. J., Hamdioui, S., & Taouil, M. (2026). Secure Implementation of RISC-V’s
Scalar Cryptography Extension Set. Cryptography, 10(1). https://doi.org/10.3390/cryptography10010006

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
In case the licence states “Dutch Copyright Act (Article 25fa)”, this publication was made available Green Open
Access via the TU Delft Institutional Repository pursuant to Dutch Copyright Act (Article 25fa, the Taverne
amendment). This provision does not affect copyright ownership.
Unless copyright is transferred by contract or statute, it remains with the copyright holder.
Sharing and reuse
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without
the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as
Creative Commons.
Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.

https://doi.org/10.3390/cryptography10010006

Academic Editors: Jun Feng and

Changqing Luo

Received: 17 December 2025

Revised: 7 January 2026

Accepted: 14 January 2026

Published: 17 January 2026

Copyright: © 2026 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license.

Article

Secure Implementation of RISC-V’s Scalar Cryptography
Extension Set
Asmaa Kassimi * , Abdullah Aljuffri , Christian Larmann , Said Hamdioui and Mottaqiallah Taouil *

Department of Computer Engineering, Faculty of Electrical Engineering, Mathematics and Computer Science,
Delft University of Technology, 2628 CD Delft, The Netherlands; a.a.m.aljuffri@tudelft.nl (A.A.);
c.j.larmann@tudelf.nl (C.L.); s.hamdioui@tudelft.nl (S.H.)
* Correspondence: a.kassimi@tudelft.nl (A.K.); m.taouil@tudelft.nl (M.T.)

Abstract

Instruction Set Architecture (ISA) extensions, particularly scalar cryptography extensions
(Zk), combine the performance advantages of hardware with the adaptability of software,
enabling the direct and efficient execution of cryptographic functions within the proces-
sor pipeline. This integration eliminates the need to communicate with external cores,
substantially reducing latency, power consumption, and hardware overhead, making it es-
pecially suitable for embedded systems with constrained resources. However, current scalar
cryptography extension implementations remain vulnerable to physical threats, notably
power side-channel attacks (PSCAs). These attacks allow adversaries to extract confidential
information, such as secret keys, by analyzing the power consumption patterns of the
hardware during operation. This paper presents an optimized and secure implementation
of the RISC-V scalar Advanced Encryption Standard (AES) extension (Zkne/Zknd) using
Domain-Oriented Masking (DOM) to mitigate first-order PSCAs. Our approach features
optimized assembly implementations for partial rounds and key scheduling alongside
pipeline-aware microarchitecture optimizations. We evaluated the security and perfor-
mance of the proposed design using the Xilinx Artix7 FPGA platform. The results indicate
that our design is side-channel-resistant while adding a very low area overhead of 0.39% to
the full 32-bit CV32E40S RISC-V processor. Moreover, the performance overhead is zero
when the extension-related instructions are properly scheduled.

Keywords: Advanced Encryption Standard (AES); scalar cryptography extensions; domain-
oriented masking; side-channel attacks; RISC-V

1. Introduction
With the exponential growth of Internet of Things (IoT) deployments—which is pro-

jected to exceed 125 billion devices by 2030 [1]—ensuring their protection from physical
threats has become a significant challenge. Side-channel analysis (SCA) is among the most
prominent classes of physical attacks, capable of compromising the security of IoT devices
by exploiting unintended physical emissions such as power consumption, electromagnetic
radiation, and timing variations. Although the National Institute of Standards and Technol-
ogy (NIST) Cybersecurity Framework [2] only provides high-level guidance for managing
cybersecurity risks, other NIST documents, such as NIST Special Publication 800-57 [3], it
acknowledges the importance of protecting cryptographic modules against side-channel
attacks. Furthermore, experimental research has shown that first-order side-channel at-
tacks (e.g., Differential Power Attack (DPA) [4], Correlation Power Analysis (CPA) [5], and

Cryptography 2026, 10, 6 https://doi.org/10.3390/cryptography10010006

https://crossmark.crossref.org/dialog?doi=10.3390/cryptography10010006&domain=pdf&date_stamp=2026-01-17
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cryptography
https://www.mdpi.com
https://orcid.org/0009-0004-9851-2123
https://orcid.org/0000-0002-2333-4754
https://orcid.org/0009-0005-3845-7510
https://orcid.org/0000-0002-8961-0387
https://orcid.org/0000-0002-9911-4846
https://doi.org/10.3390/cryptography10010006

Cryptography 2026, 10, 6 2 of 26

Template Power Attacks (TPAs) [6]) on unprotected AES implementations can achieve high
success rates with relatively few traces, emphasizing the critical need for robust counter-
measures, especially in constrained environments like IoT RISC-V-based devices. Recent
research has explored both hardware and software to secure AES implementations on
RISC-V platforms against side-channel attacks (SCAs).

On the hardware side, Sinha et al. proposed PARAM, a side-channel-resistant RISC-V
microprocessor that incorporates secure logic styles and obfuscated datapaths [7]. How-
ever, their evaluation was limited to a four-round Feistel network with an affine function,
and no experimental validation was provided for a full AES software implementation.
Therefore, the effectiveness of PARAM against practical AES-based SCAs remains unveri-
fied. Shaout et al. introduced AES-RV, a low-latency hardware AES accelerator featuring
custom RISC-V instructions [8]. Although their solution improves performance, it de-
pends on non-standard instructions, potentially limiting compatibility with existing RISC-V
compilers and toolchains. On the software side, Sajadi et al. explored lightweight counter-
measures such as dummy instruction insertion and software masking for the Secure-Ibex
core [9], though these techniques incurred noticeable performance penalties. Cui et al.
further improved masking efficiency by proposing a software-oriented instruction set
extension (ISE) for field multiplication in GF(28), integrated with an RISC-V-compatible
hardware accelerator [9]. Nevertheless, their design also relies on custom hardware and
non-standard instructions. To the best of our knowledge, there is currently no side-channel-
resistant implementation based on the standard RISC-V AES scalar cryptographic exten-
sions (Zkne/Zknd) [10].

This paper introduces a secure AES module compatible with RISC-V’s Zkne/Zknd
extensions [10], achieving minimal area and execution time overhead while being resistant
against first-order SCA attacks like CPA and TPA. The module is secured using Domain-
Oriented Masking (DOM) [11]. In summary, the contributions of this paper are as follows:

• The proposal of an optimized unsecure AES module through shared Sbox logic (i.e., logic
optimized both for encryption and decryption) for RISC-V’s Zkne/Zknd extensions.

• The proposal of a DOM-protected AES module against SCAs for RISC-V’s Zkne/Zknd
extensions with minimal area overhead.

• Assembly-level optimizations for partial-round operations and key scheduling to
realize zero execution overhead.

• Empirical security validation using evaluation-style (i.e., CPA and TPA) and conformance-
style (i.e., Test Vector Leakage Assessment (TVLA) and Signal-to-Noise Ratio (SNR))
testing to ensure compliance with NIST’s SCA resilience guidelines [12].

• Comprehensive evaluation of area and power overhead and comparisons with the
state of the art.

This paper is organized as follows: Section 2 discusses the related work. Section 3
introduces the background on AES, RISC-V cryptography extensions, and‘SCAs. Section 4
presents our proposed optimization of the AES design for the Zkne/Zknd extensions and
its DOM-based secure implementation. Section 5 evaluates the area and performance
overhead, and its security using TVLA, SNR, and key rank analysis. Section 6 discusses the
results. Finally, Section 7 concludes this paper.

2. Related Work
In this section, we describe related work that focuses on AES implementations with

eight-bit datapaths, i.e., implementations in which the number of used Sboxes is reduced
from 16 to 1 to significantly save area and power. The RISC-V AES scalar cryptographic
extensions Zkne/Zknd are also based on an eight-bit datapath. The authors of [13] per-
formed the MixColumns operation after 4 sequential Sbox operations were computed.

https://doi.org/10.3390/cryptography10010006

https://doi.org/10.3390/cryptography10010006

Cryptography 2026, 10, 6 3 of 26

In [14], the authors processed the AES state one byte per clock cycle and directly performed
a partial MixColumns operation and optimized the register file. In [15,16], the authors
created sub-modules that are shared in the datapath of both the encryption and decryption.
Other eight-bit datapath implementations [17–19] are very similar to the one proposed
in [13]. Most of these works neglect decryption, and none of them have integrated any
security or countermeasures against PSCAs. Adding countermeasures is extremely expen-
sive. Moradi et al. [17] showed that the area overhead is approximately 300% for a 128-bit
encryption-only datapath with threshold implementation (TI). Similarly, with DOM, the
area overhead is 200% [11].

In the domain of RISC-V scalar cryptography extensions, Tran et al [20] integrated
multiple extensions (Zbkb, Zbkx, Zknh, Zknd, Zkne) into the CORE-V Wally processor
using shared Sbox logic and unified datapaths, achieving substantial speedups (5× AES,
2× SHA-256) and reduced code size, but without addressing side-channel security. Simi-
larly, Marshall et al [21] implemented RISC-V AES scalar extensions, but omitted protection
mechanisms and used separate encryption/decryption Sboxes, roughly doubling the area
compared to those of the shared designs. To the best of our knowledge, there is currently
no side-channel-resistant implementation based on the standard RISC-V AES scalar crypto-
graphic extensions (Zkne/Zknd) [10] that maintains low area and performance overhead.
Hence, there is still a demand for low-cost secure scalar extensions.

3. Background
This section provides a brief background on the AES algorithm, RISC-V Zkne/Zknd

instruction set, and SCAs.

3.1. AES Algorithm

AES is a symmetric encryption algorithm widely used in cybersecurity. It ensures data
confidentiality by protecting data through encryption and decryption. Figure 1 shows the
different modules it consists of. Data are encrypted/decrypted in fixed 128-bit blocks using
a key length of 128, 192, or 256 bits. The selected key length determines the number of
cryptographic rounds: Nr = 10, 12, or 14, respectively, for the three different key lengths.
Round keys are generated from the Key expansion module for each round. The 128-bit
input message (or plaintext) can be represented by 16 bytes, stored in a 4×4 array referred
to as a state. Each round of encryption includes four primary modules that operate on
the input message: SubBytes, ShiftRows, MixColumns, and AddRoundKey. After each
operation, the 4 × 4 array is updated and a new state is stored. The Key expansion module
and the four primary modules are explained below in more detail.
Key expansion: Let Nr be the number of rounds (10, 12, or 14 for 128/192/256-bit keys)
and Nk denote the key size in 32-bit words (i.e., Nk = 4, 6, or 8). The Key expansion module
generates 4(Nr + 1) 32-bit partial round keys from the original cipher key. An example
is shown in Figure 2 for a 128-bit key. The expanded key array W[0, 1, . . . , 4(Nr + 1)] is
constructed as follows:

• Initialization: Initialize the first Nk words with the cipher key:

W[0, 1, . . . , Nk − 1] = cipher key

• Iterative Expansion: For words i ≥ Nk, compute

https://doi.org/10.3390/cryptography10010006

https://doi.org/10.3390/cryptography10010006

Cryptography 2026, 10, 6 4 of 26

W[i] =


Wi−Nk ⊕ Sbox(SLR(Wi−1))⊕ rci/Nk

, i ≡ 0 (mod Nk)

Wi−Nk ⊕ Sbox(Wi−1), Nk > 6 ∧ i ≡ 4 (mod Nk)

Wi−Nk ⊕ Wi−1, otherwise

(1)

where

– Sbox(x) applies the AES Sbox substitution to byte x.
– SLR(x) performs a byte circular left shift on a 32-bit word. For example,

SLR([b0, b1, b2, b3]) = [b1, b2, b3, b0].
– rc[x] contains a 32-bit word that includes the round constant. For example, for

Round 2, rc[2] = (0x02, 0x00, 0x00, 0x00). All the round constants are defined in
Table 1. The last two operations, SLR and rc, are part of the F function in Figure 2,
and their implementation is shown in Figure 3.

R
ou

nd
 0

R
ou

nd
 1

 to
 N

r-
1

R
ou

nd
 N

r

K
ey

 e
xp

an
si

on

AddRoundKey

Plaintext

SubBytes

ShiftRows

MixColumns

AddRoundKey

key0

SubBytes

MixColumns

AddRoundKey

key i

ciphertext

key Nr

leak1_Round0

leak2_Round1

leak3_Round1

leak4_Round1

leak5_Round10

leak6_Round10

Cipher Key
(128, 192

or 256 bits)

Figure 1. AES Encryption and Decryption

AddRoundKey: This module performs a bitwise XOR between the state array and the
round key obtained from the Key expansion module.
SubBytes: This module (also referred to as Sbox) is the only non-linear module in AES and
plays a crucial role in thwarting differential and linear cryptanalysis [11]. Each byte in the
state array is substituted with another byte. The substitution is based on a multiplicative
inversion in the Galois Field GF(28) combined with an affine transformation [22].
ShiftRows (SR): In this module, the state matrix is updated by cyclically shifting the
second, third, and fourth rows by one, two, and three bytes to the left, respectively.
MixColumns (MC): This module performs a modular polynomial multiplication in Galois
Field GF(28) on each column of the state array in Equation (2). Given a column s of the
state matrix, MC computes the following matrix vector products:

https://doi.org/10.3390/cryptography10010006

https://doi.org/10.3390/cryptography10010006

Cryptography 2026, 10, 6 5 of 26

MixColumns(s) =




03 01 01 02

02 03 01 01

01 02 03 01

01 01 02 03

s (Encryption)


0B 0D 09 0E

0E 0B 0D 09

09 0E 0B 0D

0D 09 0E 0B

s (Decryption)

(2)

...

W9

RoundKey 2

[63:32]

[95:64]

[127:96]W3

W2

W1

[31:0]

cipher
 key

F

W6

W5

W4

W7

RoundKey 0 RoundKey 1

128 bit

W0

W10

W8

W11
F

Wi+3

RoundKey NkRoundKey Nk-1

Wi+2

Wi

Wi+1

F

Figure 2. Key Expansion

The decryption operation consists of the inverse operations of these modules: they are
called InvSubBytes, InvShiftRows, and InvMixColumns.

F function

Wi

8 8 8

32 bit

SLR 8

output

8

rc(i)

Sbox Sbox

32 bit

Sbox Sbox

Figure 3. F Function in Key Expansion Module.

https://doi.org/10.3390/cryptography10010006

https://doi.org/10.3390/cryptography10010006

Cryptography 2026, 10, 6 6 of 26

Table 1. Round Constants (rc[i]).

i 1 2 3 4 5 6 7 8 9 10

rc[i] 0x01 0x02 0x04 0x08 0x10 0x20 0x40 0x80 0x1B 0x36

3.2. AES RISC-V Zkne/Zknd Instruction Set

The RISC-V scalar cryptography extensions provide hardware acceleration for AES
operations through dedicated instructions (aes32esmi, aes32esi, aes32dsmi, and aes32dsi),
as shown in Table 2. The aes32esmi and aes32esi are used for the middle rounds (MRs)
and final rounds of the encryption, and similarly, aes32dsmi and aes32dsi for decryption.
The instruction format for aes32dsmi can be found in Figure 4. It is part of the R-format
type [23] and has four arguments: rs1 initially contains the partial-round key, and rs2,
part of the input state for that round. The bs bits are used to select which byte is being
computed, as only a single Sbox is available. The result contains an Sbox operation, SR
(based on bs), and a partial MC operation and is stored in rd. In successive instructions,
rs1 will contain partially computed MC results that were previously stored in rd. The final
round is handled in a similar manner using aes32esi instructions which only contain the
forward Sbox and SR transformations (i.e., no MC).

Table 2. AES ZKne/Zknd Instructions.

Instruction Formula

aes32esmi rd = rs1⊕ Mix(Sbox(SR(rs2)))

aes32esi rd = rs1⊕ Sbox(SR(rs2))

aes32dsmi rd = rs1⊕ InvMix(InvSbox(InvSR(rs2)))

aes32dsi rd = rs1⊕ InvSbox(InvSR(rs2))

bs 1 0 0 1 1 rs2 rs1 0 0 0 rd 0 1 1 0 0 1 1

Encoding

Mnemonic
aes32esmi rd, rs1, rs2, bs

31 30 29 25 24 20 19 15 14 12 11 7 6 0

Byte_select state Round Key
or

Partial State

New Partial
State

Figure 4. Zkne aes32esmi Middle-Round Encryption Instruction.

Similarly, the decryption operation is computed using aes32dsmi that applies inverse
Sbox (InvSbox) and partial inverse MixColumns (InvMC) for middle rounds, and aes32dsi
for the final round. To execute a complete AES round, Zkne/Zknd instructions must be
repeated 4 times to iteratively calculate the 4 bytes of the middle-round’s output.

An example is provided in Figure 5 and Table 3. It shows how four aes32esmi instruc-
tions are iteratively used to compute a full AES middle round. As shown in the figure,
we have transformed the state array from column orientation to word orientation and
reversed the byte order to have the LSB bytes on the right side to facilitate the processing
(for example, key operations).

https://doi.org/10.3390/cryptography10010006

https://doi.org/10.3390/cryptography10010006

Cryptography 2026, 10, 6 7 of 26

Table 3. Zkne Encryption Round Using aes32esmi Instructions.

Instruction State Value Initial t0 (rs1) Final t0 (rd)

aes32esmi
t0, t0, a4, 0

3 · Sbox(6c)⊕ 0x17

1 · Sbox(6c)⊕ 0xf6

1 · Sbox(6c)⊕ 0xf4

2 · Sbox(6c)⊕ 0xa0

17fefaa0 e7aeaa00

aes32esmi
t0, t0, a5, 1

1 · Sbox(1b)⊕ 3 · Sbox(6c)⊕ 0x17

1 · Sbox(1b)⊕ 1 · Sbox(6c)⊕ 0xf6

2 · Sbox(1b)⊕ 1 · Sbox(6c)⊕ 0xf4

3 · Sbox(1b)⊕ 2 · Sbox(6c)⊕ 0xa0

e7aeaa00 4801efeaa

aes32esmi
t0, t0, a6, 2

1 · Sbox(e8)⊕ 1 · Sbox(1b)⊕ 3 · Sbox(6c)⊕ 0x17

2 · Sbox(e8)⊕ 1 · Sbox(1b)⊕ 1 · Sbox(6c)⊕ 0xf6

3 · Sbox(e8)⊕ 2 · Sbox(1b)⊕ 1 · Sbox(6c)⊕ 0xf4

1 · Sbox(e8)⊕ 3 · Sbox(1b)⊕ 2 · Sbox(6c)⊕ 0xa0

4801efeaa d32c5971

aes32esmi
t0, t0, a7, 3

2 · Sbox(45)⊕ 1 · Sbox(e8)⊕ 1 · Sbox(1b)⊕ 3 · Sbox(6c)⊕ 0x17

3 · Sbox(45)⊕ 2 · Sbox(e8)⊕ 1 · Sbox(1b)⊕ 1 · Sbox(6c)⊕ 0xf6

1 · Sbox(45)⊕ 3 · Sbox(e8)⊕ 2 · Sbox(1b)⊕ 1 · Sbox(6c)⊕ 0xf4

1 · Sbox(45)⊕ 1 · Sbox(e8)⊕ 3 · Sbox(1b)⊕ 2 · Sbox(6c)⊕ 0xa0

d32c5971 0f9e371f

B0B3

SubBytes

ShiftRows

MixColumns

AddRoundKey

E
nc

ry
pt

io
n

R
ou

nd

B12B15

d5 10 77 6c

a8 c8 1b 9f

5b e8 84 fc

45 75 d7 25

d5 10 77 50

a8 c8 af 9f

5b 9b 84 fc

6e 75 d7 25

a8 c8 af 50

5b 9b 84 9f

6e 75 d7 fc

d5 10 77 25

Round Key

18 60 cd bf

5b 9b 84 9f

6e 75 d7 fc

d5 10 77 25

a4

a5

a6

a7

faa0 fe 17

0f 9e 37 1f

5b 9b 84 9f

6e 75 d7 fc

d5 10 77 25

Figure 5. Zkne Scalar Encryption Round.

The four yellow highlighted cells at the input of the SubBytes operation and output
after AddRoundKey are targeted, as they together are involved in the MC operation
together. Note that due to the transformation, the SR operation is now performed vertically
instead of horizontally. Let us assume that the partial round key for the four targeted
output cells is equal to 0x17fefaa0 and initially stored in register t0. Furthermore, the round
inputs are stored in registers a4–a7 (e.g., a4 = 0xd5f0776c and a5 = 0xa8c81b9f). Table 3
shows how four instructions are applied to obtain the round result. The state value in the

https://doi.org/10.3390/cryptography10010006

https://doi.org/10.3390/cryptography10010006

Cryptography 2026, 10, 6 8 of 26

table (i.e., 0x17f6f4a0) represents the intermediate result of plaintext ⊕ round_key from
Round 0, which is distinct from the round key value held in t0. The active calculations are
shown in Figure 5, with the colors matching the byte colors:

– In the first instruction, where bs = 0, selects a4’s byte 0x6c, applies Sbox and partial
MixColumns, and then performs XORs with t0 (which contains the partial-round key)
to yield 0xe7aeaa00.

– Secondly, when bs = 1, it processes state input 0x1b which is stored in the second byte
of a5, performs Sbox and MC. As the MC matrix contains four columns, which are
rotated each byte, the same MC is performed as for bs = 0 but the output is byte-rotated
by one byte and subsequently XORed with the partial result of the first instruction
stored in t0; rotating the MC result is beneficial as the second column of the MC matrix
is equal to the first one when one byte is rotated, as can be seen in Equation (2). This
observation also applies to the remaining MC matrix columns.

– Thirdly, when (bs = 2), it similarly processes state input 0xe8, which is the third byte of
a6. Then, the MC result is byte-rotated by two bytes.

– Finally, when bs = 3, byte 0x45 is processed. Then, the MC result is byte-rotated by
three bytes.

After four instructions, t0 holds the final column state 0x0f9e371f, completing a full
round.

The decryption, where the ciphertext is the initial state, is performed in a similar
manner using aes32dsmi. However, it contains the inverse Sbox, SR, and MC operations.
By operating on 8 bits of the input and using the standard 32-bit registers, the design
avoids wide datapaths, prioritizing area efficiency over throughput. The RISC-V scalar
extensions [10] guarantee constant execution time (as all computations are performed
using registers), and‘hence prevent simple timing side-channel attacks. However, they
lack built-in protection mechanisms against power or electromagnetic analysis and hence,
require additional micro-architectural hardening for secure implementations.

3.3. Power Side-Channel Attacks (SCAs)

Modern power SCAs exploit statistical relationships between a device’s power con-
sumption and secret cryptographic operations. In this paper, we consider three popular
attack methods: DPA [4], CPA [5], and TPA [6]. DPA and CPA rely on simpler statistical
models and are non-profiled attacks, while TPA employs advanced multivariate profiling.

DPA statistically extracts data-dependent leakage by averaging power traces over
multiple executions. Let Ti denote a power trace and Di denote a bit of intermediate data
(e.g., the LSB output bit of the S-Box). Based on a guessed key k∗, and the provided plaintext,
the output of the S-Box can be computed. Subsequently, the N traces are partitioned into
subsets S0 and S1 based on the value of Di [4]:

Note that when a wrong key is assumed, the collected traces in S0 and S1 have no
meaning and the difference between the average between them is small (due to random
assignment). However, when the key is correctly guessed, all traces in S0 will have the
LSB output bit of the Sbox equal to 0 and similarly all traces in S1 equal to 1. Taking the
difference of the averages of both sets will reveal the slightly systematic difference between
them. This is expressed by the following equation [4]:

∆(k∗) =
1

|S1| ∑
i∈S1

Ti −
1

|S0| ∑
i∈S0

Ti (3)

where the maximum value of ∆(k∗) determines the presumed correct key guess k, as
it has the highest probability were power leakage is correlated with Di.

https://doi.org/10.3390/cryptography10010006

https://doi.org/10.3390/cryptography10010006

Cryptography 2026, 10, 6 9 of 26

CPA [5] is a powerful side-channel technique that exploits the linear relationship
between a device’s power consumption and hypothetical power models derived from
intermediate cryptographic values. It refines DPA using Pearson’s correlation coefficient
to compare a hypothetical power model H(k∗) (e.g., Hamming weight) with measured
traces T:

ρ(k∗) =
Cov(H(k∗), T)

σH(k∗)σT
(4)

The attacker computes ρ(k∗) for all key guesses k∗. The key guess with the highest
correlation |ρ(k∗)| is presumed to be correct. Popular power or leakage models are the
Hamming weight (HW) and Hamming distance. In this paper, we consider several interme-
diate attack points, as shown in Figure 1. The attack points are denoted with the different
leak keywords such as leak1_Round0. In total, we consider six leakage attack points.

TPA [6] uses multivariate statistics to profile devices. It consists of two phases: pro-
filing and extraction phase. During the profiling phase, power traces are modeled as
multivariate Gaussian distributions for each class c (e.g., intermediate value):

p(t|c) = 1
(2π)d/2|Σc|1/2 exp

(
−1

2
(t − µc)

⊤Σ−1
c (t − µc)

)
(5)

Here, µc and Σc are the mean and covariance of the traces for class c. In the extraction
phase, the templates created during the profiling phase are used to guess the key by
computing the likelihood of the observed traces for each template. Bayes’ theorem identifies
the most likely c given a target trace t:

ĉ = arg max
c

p(c|t) = arg max
c

p(t|c)p(c) (6)

4. Secure Scalar Cryptography Extension
This section presents our proposed implementation approach for the optimized un-

secure AES and its protected version using DOM [11]. We begin with the motivation
behind our approach and then provide a detailed explanation of its design, implementation,
and RISC-V integration.

4.1. Motivation

The increasing prevalence of side-channel attacks on cryptographic implementa-
tions requires robust hardware-level countermeasures. Previous AES implementations
like [21,24] typically suffer from two critical limitations: (1) conditional logic for encryp-
tion/decryption modes introduces timing and power leakage channels, and (2) unprotected
Sboxes expose intermediate values, which are prime targets for DPA, CPA, and TPA. To ad-
dress these challenges, we first focus on the optimization of the AES design presented
in [21] to reduce area and power consumption for resource-constrained IoT devices. This
unsecure and unoptimized design is shown in Figure 6. By unifying the datapath and
simplifying the logic for encryption and decryption, we eliminate redundant logic (e.g.,
no separate Sboxes for forward/inverse operations) and approximately reduce the gate
count by 22%. A high-level schematic of these optimizations is shown in Figure 7. Both
unsecure designs (i.e., the non-optimized [21] and optimized versions) will be discussed
further in the next subsection. Secondly, we propose a protected implementation based on
DOM but tailored for RISC-V’s Zkne/Zknd extensions. This protected design also benefits
from resource sharing, while enabling secure encryption and decryption. Protection is
provided by integrating masking operations (through the introduction of random numbers)

https://doi.org/10.3390/cryptography10010006

https://doi.org/10.3390/cryptography10010006

Cryptography 2026, 10, 6 10 of 26

at every layer of the Sbox, thereby guaranteeing protection against first-order SCAs without
compromising on performance. Random numbers are generated with a linear feedback
shift register (LFSR). In each cycle, new fresh random numbers are used, thus improving
resistance against higher-order side-channel attacks. Although this approach increases the
complexity of such attacks, it does not make them theoretically impossible.

32 bit
rs2

00

01

10

11

sel_byte

8 bit

dec

bs

bs

Byte Rotation

sbox_o

result_mix

32 bit

8 bit

rs1
32 bit

rd
32 bit

Sbox
sbox_fwd_o

8 bit
0
1

Inv Sbox8 bit

dec

0

1

MixColumns

InvMixColumns
32 bit

sbox_inv_o

Figure 6. Unsecure Unoptimized AES Partial Round [21].

32 bit
rs2

00

01

10

11

Shared Sbox
[forward/inverse]

sel_byte

8 bit

dec

bs

bs

Optimized
Byte Rotation

sbox_o

8 bit

dec

Shared
MixColumns /

InvMix

result_mix

32 bit

8 bit

rs1
32 bit

rd
32 bit

Figure 7. Unsecure Optimized AES Partial Round

4.2. Design and Implementation of Proposed AES Optimization

This section describes our optimizations with respect to the design proposed in [21] to
enhance both its efficiency and security, while adhering to RISC-V’s scalar cryptography
extensions [10]. As shown in Figure 7, we created a shared Sbox architecture, which allows
a single module to perform both forward and inverse Sbox operations depending whether
an encryption or decryption instruction is being run (which is denoted by the signal dec
in the figure). More details on the shared Sbox architecture design are shown in Figure 8.
The design contains three layers based on the design in [25]: linear top and bottom layers
and a shared non-linear middle layer. The top linear layer for encryption applies the
forward affine transformation, while its inverse counterpart implements the inverse affine
transform for decryption [25]. Similarly, the bottom linear layer for encryption applies
the complementary forward affine transformation to compress intermediate value back to
the final eight-bit encrypted output. Its decryption counterpart implements the inverse
affine transform to reconstruct the plaintext byte [25]. The non-linear middle layer (which
implements a GF inversion) is shared between them, eliminating redundant hardware

https://doi.org/10.3390/cryptography10010006

https://doi.org/10.3390/cryptography10010006

Cryptography 2026, 10, 6 11 of 26

and reducing the Sbox area by 22%. Optionally, we allow conditional instantiation of the
inverse Sbox. In case the decryption is disabled, 32% of the Sbox area can be reduced in
encryption-only configurations.

The MixColumns operation is further optimized by reducing the number of performed
GF multiplications (xtimeN_opt) by reusing intermediate terms (e.g., x2 = xtime2(a)); this
reduces the combinatorial delay by 19% and gate count by 18%.

Finally, handshake logic is simplified and rotation operations are transformed into
a barrel-shifter structure, reducing the logic by 12%. Altogether, these optimizations
achieve a 22% overall gate reduction while maintaining single-cycle throughput. An in-
depth explanation of the AES module optimizations presented in Figure 7 are detailed
further below.

1. Shared Forward and Inverse Sbox: The original design [21] instantiates both forward
and inverse Sboxes separately and uses a multiplexer to select between Sbox outputs
(see Figure 6):

Sbox_o =

inv Sbox(sel_byte), if dec=1

Sbox(sel_byte), otherwise
(7)

However, our optimized AES Sbox (Figure 7) uses linear top and bottom layers to
apply either the forward or inverse affine transforms while sharing the non-linear
middle layer between encryption and decryption[25]:

sbox_fwd_out = Bottom_layerfwd(GFinv(Top_layerfwd(sel_byte)))

sbox_inv_out = Bottom_layerinv(GFinv(Top_layerinv(sel_byte)))
(8)

The shared non-linear middle layer in Equation (9) computes a GF inversion in GF(28)

(denoted by GFinv) using the multiplicative inverse with irreducible polynomial
P(x) = x8 + x4 + x3 + x + 1:

GFinv(x) = x−1 mod P(x) (9)

Overall, the shared Sbox outputs can be expressed as follows:

sbox_o =

sbox_fwd_out (encryption)

sbox_inv_out (decryption)
(10)

2. MixColumns Optimization: The reduced GF multiplication logic is shared within
the MixColumns/InvMixColumns block, as shown in Figure 7, reducing hardware
for both operations. The MixColumns operation in AES, which depends on the inputs
after shiftRows, requires finite field multiplications with fixed constants (e.g., 2, 3, 9,
11). The original design in [21] computed these constants dynamically using nested
calls to the xtime2 function. The xtime2 function [26] is defined as

xtime2(a) =

(a ≪ 1) if a7 = 0

(a ≪ 1)⊕ 0x1B otherwise
(11)

For constants like 11 = 1 + 2 + 8, the original code is calculated using the following
equation:

a · 11 = a ⊕ xtime2(a)⊕ xtime23(a) (12)

where xtime23(a) = xtime2(xtime2(xtime2(a))).

https://doi.org/10.3390/cryptography10010006

https://doi.org/10.3390/cryptography10010006

Cryptography 2026, 10, 6 12 of 26

The optimized version simplifies the intermediate term by computing xtime2(a) once
and reusing it as follows:

x2 = xtime2(a) (13)

x4 = xtime2(x2) (14)

x8 = xtime2(x4) (15)

xtimeN_opt(a, b) =
3⊕

i=0

bi · x2i (16)

This saves one xtime2() operation.
3. Byte Rotation Optimization: The original rotation logic uses explicit bitwise oper-

ations for each byte_sel operation, which is synthesized into a 4:1 multiplexer. The
optimized version uses a barrel-shifter-like structure (where bs represents the byte
selected):

rotated = result ≫ (8 × bs) | result ≪ (32 − 8 × bs) (17)

Top linear Layer

21-bit

8-bit

18-bit

sel_byte

sbox_fwd_out / sbox_inv_out

dec

Bottom linear layer

Shared Non-linear Middle layer

8-bit

t1

t2

dec

Figure 8. Shared Forward/Inverse Sbox Design.

4.3. Design and Implementation of Proposed DOM Countermeasure

The DOM design safeguards against first-order side-channel attacks by splitting sensi-
tive variables into two shares and injecting fresh randomness between linear and non-linear
computational layers. As the countermeasure must be compliant to the instruction def-
inition, prior to computing the partial round, we first generate the shares and combine
them at the end to produce rd, as illustrated in Figure 9. It is not possible to store rd as
2 shares as there is no room in the instruction for it. Instead, each instruction generates
its own new fresh shares, which are combined after the computation. The design of the
DOM-protected AES accelerator features a shared pipeline that processes both encryp-
tion and decryption operations, which is similar to that of the unsecure but optimized
design. By sharing critical resources such as Sboxes and MixColumns modules, the design
minimizes area overhead while preserving security guarantees. The design employs a
four-stage pipeline that synchronizes the processing of the shares without having leakage
due to temporary glitches in different paths. Random numbers are injected at strategic
points inside the Sbox to disrupt statistical dependencies between shares. The optimized
shared Sbox implementation, depicted in Figure 10, shares the logic for forward (AES) and
inverse (AES−1) operations. Four key optimizations drive our design’s efficiency. They
are explained below.

https://doi.org/10.3390/cryptography10010006

https://doi.org/10.3390/cryptography10010006

Cryptography 2026, 10, 6 13 of 26

share0_rs2

share1_rs1
share0_rs1

Share
Gen

share0_o share1_o

result_o

rs1 rs2

 fresh_random

share0_mix

Shared
MixColumns

share0_in

Byte
Selector

share0_sbox_o

share1_sbox_o

Shared
Sbox

bs

share1_rs2

share1_in

Shared
Rotation/Shiftrows

share1_mix

mix32 bit
share0_rs2

00

01

10

11

share0_in

8 bit

bs

8 bit

32 bit
share1_rs2

00

01

10

11

share1_in

8 bit

bs

8 bit

rs2 Shared
Forward/
inverse

Sbox

Shared
MixColumns/

InvMix

dec

8 bit

8 bit

share0_Sbox_out

share1_Sbox_out

32 bit

share0_mix

32 bit

share1_mix

dec

fresh_random

32 bit

32 bit

32 bit

share1_rot

32 bit

Optimized
Byte Rotation

bs

rs1 fresh_random

share0_rs1 share1_rs1

32 bit 32 bit
rd

32 bit
32 bit

32 bit

share1_rot

32 bit

share0_rot

32 bitshare0_rs2

00
01
10
11

share0_in
8 bit

8 bit

share1_rs2
share1_in

8 bit

rs2 Shared
Forward/
inverse

Sbox

Shared
MixColumns/

InvMix

dec

8 bit

8 bit

share0_Sbox_out

share1_Sbox_out

32 bit
share0_mix

32 bit
share1_mix

dec

fresh_random
32 bit

32 bit

32 bit

Optimized
Byte Rotation

bs

rs1 fresh_random

share0_rs1 share1_rs1

32 bit 32 bit

rd
32 bit

32 bit

32 bit
share1_rot

32 bit
share0_rot

32 bit

00
01
10
11

8 bit
bs

bs

Figure 9. Proposed Design for DOM Encryption and Decryption.

Random Number Generation: The DOM design splits sensitive rs1 and rs2 inputs
into two shares using fresh random numbers:

share0_rs1 = rs1 ⊕ fresh_random_number

share1_rs1 = fresh_random_number

share0_rs2 = rs2 ⊕ fresh_random_number

share1_rs2 = fresh_random_number

(18)

Ideally, a true random number generator is used to generate the fresh random numbers.
However, as it might be costly to generate each cycle of fresh numbers, we propose using a
32-bit linear feedback shift register (LFSR). The LFSR is used to generate a random number
each clock cycle. It has a period of (232 − 1) cycles, i.e., it requires that amount of cycles
before the same random number is repeated. This ensures that the random state does
not repeat within any practical measurement window, preventing statistical correlation
between masks. To prevent potential leakage, we initialize the seed with an actual random
number each time an encryption or decryption takes place. This design ensures resilience
against side-channel attacks, including vertical attacks based on trace collection [27].

Layered Randomness Injection and Shared Encryption/Decryption Sbox Logic: The
fresh random number (fresh_random_number) generated by the LFSR module is injected
between the linear top layer and non-linear middle layer, as well as between the middle
layer and linear bottom layer of the shared DOM Sbox module, as shown in Figure 10. The
Sbox implementation is similar to the unprotected optimized design, but two shares are
computed instead. The inputs and outputs of this module can also be seen in Figure 9,
where the computed masks are highlighted in red boxes and present the following:

mask_t1_0 = share0_t1 ⊕ r_top

mask_t1_1 = share1_t1 ⊕ r_top

mask_t2_0 = share0_t2 ⊕ r_mid

mask_t2_1 = share1_t2 ⊕ r_mid

(19)

https://doi.org/10.3390/cryptography10010006

https://doi.org/10.3390/cryptography10010006

Cryptography 2026, 10, 6 14 of 26

Equation (19) provides distinct masks for forward and inverse operations, effectively
isolating cross-domain leakage inside the Sbox. They include the following security fea-
tures: (1) mathematical independence between shares and (2) fresh random numbers
breaking statistical dependencies and preventing vertical attacks [27]. The design ensures
first-order side-channel resistance by having all intermediates as uniform random variables
while preserving cryptographic correctness.

Top linear Layer

Mask_t1_1

share1_in

21-bit

21-bit

Mask_t2_1

18-bit

Bottom linear layer

share1_Sbox_out

LFSR

Top linear Layer

Mask_t1_0

Non-linear Middle layer

Mask_t2_0

Bottom linear layer

share0_Sbox_out

21-bit
r_top

r_mid
18-bit

8-bit

share0_t1

share0_t2

dec

18-bit

21-bit

dec

share0_in

18-bit

21-bit

share0_rs2 share1_rs2

share1_t1

share1_t2

8-bit

dec

8-bit8-bit

dec

18-bit

Non-linear Middle layer

pipeline

pipeline

pipeline

Figure 10. Proposed 1st-order DOM Shared Sbox Module

Shared MixColumns Logic: The linear MixColumns transformation operates on
individual shares in GF(28) through two key arithmetic optimizations. First, the shared
MixColumns forward/inverse logic is integrated into a single hardware module to compute
both AES encryption (using coefficients 0x03, 0x02, 0x01) and decryption (using coefficients
0x0B, 0x0D, 0x09, 0x0E) using Equation (2) controlled by the dec control signal. This
eliminates duplicate circuitry by dynamically selecting Galois Field GF(28) multiplication
factors through multiplexers, reducing the area overhead by 15%.

Second, the lightweight xtimeN function replaces traditional lookup tables with com-
binatorial logic for GF(28) multiplication. The core operation uses the xtime2 primitive
in the same way as previously explained for the unsecure optimized AES, as shown in
Equation (16).

The shared MixColumns module is applied to each share separately (share0_sbox_out
and share1_sbox_out). Since MixColumns is a linear operation, processing shares individu-
ally preserves the correctness based on the following equation:

Mix_Col(s0 ⊕ s1) = Mix_Col(s0)⊕ Mix_Col(s1) (20)

https://doi.org/10.3390/cryptography10010006

https://doi.org/10.3390/cryptography10010006

Cryptography 2026, 10, 6 15 of 26

Prevention of Leakage Due to Glitches: The four-stage DOM pipeline is balanced to
prevent leakages due to glitches, which sometimes occurs when the computational paths
are not synchronized. For example, leakage can occur when the random numbers arrive
later to the XOR gates in Equation (18) than the actual signal (i.e., rs1 or rs2). However, due
to forced synchronization using pipelines, this is not possible in the design.

4.4. Integrating Zkne/Zknd Scalar Cryptography into the CV32E40S Pipeline

The AES extension unit is integrated into the CV32E40S 5-stage pipeline as a functional
unit in the execute stage. To decode the instructions, the decoder in the instruction/decode
stage was extended to recognize the four AES scalar instructions (aes32esmi, aes32esi,
aes32dsmi, aes32dsi). It generates control signals for operation type, byte select, and source
operands. Note that no modifications to the load/store unit were required, as AES in-
structions operate solely on register operands. To provide the AES module with random
numbers in each cycle, a 32-bit LFSR is used.

5. Experimental Results
This section presents the experimental setup, and the security and performance evalu-

ations of the unprotected and DOM-protected AES implementations.

5.1. Experimental Setup

We evaluated the security and efficiency of the unprotected design proposed in [21],
our optimized version, and the DOM-protected design by subjecting them to compre-
hensive testing. To quantify security, we performed DPA, CPA, and TPA using Python
3.6.13 and Python’s SCALib library 0.3.4, and NumPy 1.19.2 against the unprotected and
DOM-protected AES designs. We further validated the leakage resilience of the three
designs using empirical methods such as TVLA and SNR. We generated all traces on a
ChipWhisperer CW305 board manufactured by NewAE Technology Inc., Halifax, Nova
Scotia, Canada [28], which contains an Artix-7. To measure the overhead and power con-
sumption, we implemented the three designs in TSMC CMOS 40nm technology using
Cadence Genus [29]. The power consumption was estimated in Genus using Value Change
Dump (VCD) files that contain thousands of encryptions and decryptions.

5.2. Security Evaluation

In this section, we analyze the security of the designs using the potential leakage
points shown in Figure 1. They are listed again in Table 4 with their leakage models.
Using DPA, CPA, and TPA, we targeted the critical operations: AddRoundKey, SubBytes,
and MixColumns. The number of traces required for successful attacks for the unsecure
unoptimized design [21] is shown in Table 5. For example, at point Leak1_Round0 with
the leakage model Hamming weight (HW) applied to the plaintext (pt) XORed with the
key (i.e., HW[pt ˆ key), 300 to 500 traces are needed to attack all key bytes with CPA, while
only 10 to 50 traces are needed when TPA is used. The range denotes the minimum and
maximum number of traces needed to perform a successful attack on the key bytes. Note
that some bytes of the key are easier to attack. We added a specific attack point for the
Zkne/Zknd instructions called Leak4_round1. This potential leakage point attacks the
partial round computed following the instructions. We further split this attack point into
two cases: Leak4a, where we attack a single byte of the instructions, and Leak4b, where all
four bytes are attacked.

https://doi.org/10.3390/cryptography10010006

https://doi.org/10.3390/cryptography10010006

Cryptography 2026, 10, 6 16 of 26

Table 4. Different leakage points in AES Algorithm.

Attack Point Leakage Model

Leak1_Round0 HW[pt ˆ key]

Leak2_Round1 HW[Sbox[pt ˆ key]]

Leak3_Round1 HW[(Sbox[pt ˆ key] * 2) & 0xFF]

Leak4_Round1 HW[mc_out ˆ Round_key]

Leak5_Round10 HW[Sbox(ct ˆ key)]

Leak6_Round10 HW[cipher ˆ key]

Table 5. DPA, CPA, and TPA Results for All Attack Points.

Attack Point DPA Traces
Min-Max

CPA Traces
Min-Max

Template Traces
Min-Max

Leak1_Round0 50–200 300–500 10–50

Leak2_Round1 100–300 500–4000 20–50

Leak3_Round1 300–500 500–5000 30–100

Leak4a_Round1 300–500 500–4000 20–50

Leak4b_Round1 500–1000 1000–10,000 50–200

Leak5_Round10 50–200 500–4000 10–50

Leak6_Round10 50–200 300–500 10–50

The results in Table 5 show critical vulnerabilities in the unprotected AES imple-
mentation. For some attack points, only 50 traces were needed to attack all key bytes.
Similarly, the results of our optimized unprotected design have been omitted. These results
highlight the critical need for countermeasures like DOM to prevent exploitable power
side-channel leakage.

The DOM-protected implementation (see Figure 9) demonstrates significant resilience
against CPA attacks. The key rank analysis results in Figure 11 shows that the correct
key candidates for all tested bytes (the figure shows only bytes 0 to 5) remain at high
ranks (>100) even with 10,000 traces, indicating no leakage. The key rank analysis across
traces confirms that DOM effectively prevents power side-channel leakage. Similar results
were obtained for TPA attacks, as shown in Figure 12, which shows the partial guessing
entropy (PGE). The unprotected design is very vulnerable as it requires very few traces for
a successful attack. In contrast, the DOM-protected design maintains a high PGE (>100
at 10,000 traces), demonstrating robust resistance. Residual leakage, visible as minor PGE
fluctuations, likely arises from noise and the mismatches between the attack’s unmasked
Hamming weight model and DOM’s masked implementation.

https://doi.org/10.3390/cryptography10010006

https://doi.org/10.3390/cryptography10010006

Cryptography 2026, 10, 6 17 of 26

250

0 2000 4000 6000 8000 10,000

 DOM-Secure AES

Number of Traces

C
or

re
ct

 K
ey

 C
an

di
da

te
 R

an
k

Byte 0

Byte 1

Byte 2

Byte 3

Byte 4

Byte 5

200

150

100

 50

 0

Figure 11. Key Rank Analysis of DOM-Protected AES Designs.

200

175

150

125

100

75

50

25

0

0 5000 10,000

Number of Traces
15,000

20,000

TPA Security Analysis

Unsecure Unoptimized Design

DOM implementation

25,000

Pa
rt

ia
l G

ue
ss

in
g

En
tr

op
y

(P
G

E)

Figure 12. TPA Analysis of Unsecure [21] and DOM-Secure AES Designs.

Moreover, we assessed the side-channel leakage using: (1) TVLA [30] to detect informa-
tion leakage through power trace analysis, and (2) SNR [31] to quantify potential exploitabil-
ity by measuring key-dependent signal strength against operational noise. The unsecure
AES implementation [21] has a lot of leakage as shown in Figure 13a. Through the appli-
cation of the standard leakage threshold (|t| > 4.5) [30], the unprotected design shows
widespread signal leakage across all sample points (0–5000 index range), with t-values
significantly exceeding the threshold. This is validated by its SNR profile [31], shown in
Figure 14a, where values peak at 0.25, significantly exceeding the 0.1 threshold [32]. This
indicates a strong correlation between power consumption and sensitive operations.

https://doi.org/10.3390/cryptography10010006

https://doi.org/10.3390/cryptography10010006

Cryptography 2026, 10, 6 18 of 26

0 1000 2000 3000 4000 5000
Number of traces

200

150

100

50

0

50

100

150

t-v
al

ue

TVLA Results - Unsecure AES
TVLA t-values
Leakage Threshold

(a)

0 1000 2000 3000 4000 5000
Number of traces

4

2

0

2

4

t-v
al

ue

TVLA Results - DOM-Secure AES
TVLA t-values
Leakage Threshold

(b)

Figure 13. General TVLA Analysis of Unsecure [21] and DOM-Secure AES Designs. (a) TVLA
Analysis for Unsecure AES [21]; (b) TVLA Analysis for DOM-Secure AES.

0 1000 2000 3000 4000 5000
Number of traces

0.00

0.05

0.10

0.15

0.20

SN
R

(d
B

)

SNR Profile - Unsecure AES

(a)

0 1000 2000 3000 4000 5000
Number of traces

0.00

0.05

0.10

0.15

0.20

SN
R

(d
B

)

SNR Profile - DOM-Secure AES

(b)

Figure 14. SNR Analysis of Unsecure [21] and DOM-Secure AES designs. (a) Unprotected AES [21]
Signal-to-Noise-Ratio; (b) DOM-Protected AES Signal-to-Noise-Ratio.

https://doi.org/10.3390/cryptography10010006

https://doi.org/10.3390/cryptography10010006

Cryptography 2026, 10, 6 19 of 26

To confirm that the leakage comes from the Sbox, we also applied the TVLA and
SNR analysis method proposed in [33], which is tailored to leakage in Sboxes. Again,
the unprotected Sbox shows alarming TVLA spikes (∥t∥ > 20) in Figure 15a and a high
SNR > 0.15 in Figure 15b, making the secret key extraction trivial.

In contrast, the DOM-secured design demonstrates significantly improved resilience.
Under identical TVLA thresholds, leakage amplitudes are drastically reduced (see
Figure 13b), with t-values below the threshold of 4.5. The SNR profile shown in Figure 14b
confirms this, showing maximum values below 0.10 and reduced trace deviations, which
reflect DOM’s effectiveness in obscuring data-dependent patterns.

Overall, the DOM-secured AES achieves a strong balance between security and per-
formance and prevents side-channel risks inherent to the unsecured design.

0 1000 2000 3000 4000 5000
Number of traces

20

10

0

10

20

30

40

t-v
al

ue

TVLA Results - Unsecure AES Sbox-output
TVLA t-values
Leakage Threshold

(a)

0 1000 2000 3000 4000 5000
Number of traces

0.00

0.05

0.10

0.15

0.20

SN
R

(d
B

)

SNR Profile - Unsecure AES Sbox-output

(b)

Figure 15. TVLA and SNR Analysis of Unsecure AES Sbox Output [21]. (a) TVLA Analysis of
Unprotected AES Sbox-Output in [21]; (b) AES Sbox-output Signal-to-Noise-Ratio.

5.3. Performance Evaluation

Table 6 shows the area and power comparison of the three designs.We synthesized the
designs for a clock frequency of 100 MHz and 200 MHz, and for all three cases, the synthesis
results are the same, indicating that the three designs can run at higher frequencies. The area
of our secure DOM-based design is 12.8% smaller than that of the unsecure unoptimized
design presented in [21], and only 37% larger than that of our unsecure optimized design.
The DOM-based design only adds 0.39% to the complete CV32E40S RISC-V processor. Also,
the power consumption of our optimized designs is much lower (about 50%). However,

https://doi.org/10.3390/cryptography10010006

https://doi.org/10.3390/cryptography10010006

Cryptography 2026, 10, 6 20 of 26

in the case of DOM, four cycles are required to complete the instruction, and hence, the total
energy required is higher for the secure implementation.

Table 6. Standalone Unsecure and DOM-Secure AES Overhead Analysis Using TSMC 40nm.

Design Freq. (MHz) Area (µm2) Area Ratio Power (µW)

Unsecure 1-Sbox
unoptimized AES [21] 100–200 966.024 1 18.404

Unsecure 1-Sbox
optimized AES 100–200 530.098 0.55 8.864

1-Sbox Secure
DOM 100–200 841.666 0.87 6.407

As shown in Table 7, the DOM-protected design exhibits nearly identical FPGA
resource usage to the unsecure 1-Sbox AES baseline, with only a slight reduction in LUT
consumption (12.40% vs. 13.10%) and marginal differences in FF usage, while all other
resources (BRAMs, DSPs, IOs, BUFGs) remain unchanged.

Table 7. Comparison of FPGA Resource Utilization: DOM-Protected vs. Unsecure 1-Sbox Unopti-
mized AES [21].

Resource DOM-Protected Unsecure 1-Sbox AES [21]

Util. Avail. Util.% Util. Avail. Util.%
LUTs 7863 63,400 12.40% 8304 63,400 13.10%
FFs 4985 126,800 3.93% 4947 126,800 3.90%
BRAMs 29 135 21.48% 29 135 21.48%
DSPs 7 240 2.92% 7 240 2.92%
IOs 44 170 25.88% 44 170 25.88%
BUFG 2 32 6.25% 2 32 6.25%

The drawback of the secure DOM implementation is that it requires four cycles to
complete a single instruction. The pipeline stall logic was extended to account for the
four-cycle DOM latency, hence the dependency between instructions; see, for example,
the four instructions in the first column of Table 3, which will lead to a significantly longer
execution time. However, this drawback can be fully mitigated when instructions are
reordered. This will be shown in the following subsection. The DOM implementation is
fully pipelined, allowing for the start of a new operation each cycle. The full pipeline was
needed anyway to protect against leakages due to temporary glitches.

5.4. AES Assembly Optimization

To understand how to optimize the assembly instructions, we first have to explain how
the instructions are used to calculate a complete round. For brevity, we only demonstrate
this for the middle rounds (MRs) using aes32esmi and ignore register initialization. Note
that the final round works in a similar manner but uses the aes32esi instruction instead.

A complete middle round (MR) is shown in Listing 1. It first loads the 128-bit round
key and stores it in four registers (U0 to U3). The Key expansion module generates the
round keys; it performs its computations separately and is addressed later. Thereafter, four
groups with four instructions each are used to complete the entire round. An example
of a single group of four instructions is shown in Table 3. Together, the four instructions
compute four bytes of the middle round. Hence, 4 × 4 instructions are needed to compute
the 16 output bytes.

https://doi.org/10.3390/cryptography10010006

https://doi.org/10.3390/cryptography10010006

Cryptography 2026, 10, 6 21 of 26

For the unsecure designs, pipeline stalling does not occur when the aes32esmi instruc-
tions are executed, as the results are directly available in the next cycle when forwarding is
used. However, it takes four cycles to complete the DOM operation, and hence, a secure
implementation will have a large execution overhead as the pipeline has to be stalled three
cycles each time a dependency occurs. To eliminate this overhead, we propose reordering
the instructions, as shown in Listing 2. Each time we compute a partial round belonging to
a certain group of four instructions (which generates the four output bytes of the round),
we switch the next cycle to a partial round instruction of the next group. This helps us
completely hide the latency.

Listing 1. Conventional MR.

// Load Round Key\\
lw U0, 16(RK) \\
lw U1, 20(RK)\\
lw U2, 24(RK)\\
lw U3, 28(RK)\\

aes32esmi U0, U0, T0, 0 \\
aes32esmi U0, U0, T1, 1\\
aes32esmi U0, U0, T2, 2\\
aes32esmi U0, U0, T3, 3\\

aes32esmi U1, U1, T1, 0\\
aes32esmi U1, U1, T2, 1\\
aes32esmi U1, U1, T3, 2\\
aes32esmi U1, U1, T0, 3\\

aes32esmi U2, U2, T2, 0\\
aes32esmi U2, U2, T3, 1\\
aes32esmi U2, U2, T0, 2\\
aes32esmi U2, U2, T1, 3\\

aes32esmi U3, U3, T3, 0\\
aes32esmi U3, U3, T0, 1\\
aes32esmi U3, U3, T1, 2\\
aes32esmi U3, U3, T2, 3 \\

The Key expansion module is shown in Figure 2 and presented in Listing 3. The top
part defines the different round constants. The important part is the loop (presented by
.aes_128_enc_ks_l0). During the execution of the loop, it stores the round key, computes
the F-function in Figure 3 (consisting of a rotate operation, four Sbox operations, and a
round constant), and finally performs three XOR operations at the end (see also Figure 2).
The F-function is primarily computed using four aes32esi instructions. Unfortunately, these
instructions are also affected by pipeline stalling, and hence, we also propose to reorder
them by combining middle rounds with the key expansion.

Listing 4 shows the optimized Key expansion module mixed with the middle round
operations. During the execution of Round i, we already compute the key for the next
round. This ensures that we have no performance penalties, despite having a latency of
four cycles to compute the AES-related instructions. Another benefit of computing in this
manner is that the round keys do not have to be stored as they are directly used in the
next round.

https://doi.org/10.3390/cryptography10010006

https://doi.org/10.3390/cryptography10010006

Cryptography 2026, 10, 6 22 of 26

Listing 2. Optimized MR.

// Load Round Key
lw U0, 16(RK)
lw U1, 20(RK)
lw U2, 24(RK)
lw U3, 28(RK)

aes32esmi U0, U0, T0, 0
aes32esmi U1, U1, T1, 0
aes32esmi U2, U2, T2, 0
aes32esmi U3, U3, T3, 0

aes32esmi U0, U0, T1, 1
aes32esmi U1, U1, T2, 1
aes32esmi U2, U2, T3, 1
aes32esmi U3, U3, T0, 1

aes32esmi U0, U0, T2, 2
aes32esmi U1, U1, T3, 2
aes32esmi U2, U2, T0, 2
aes32esmi U3, U3, T1, 2

aes32esmi U0, U0, T3, 3
aes32esmi U1, U1, T0, 3
aes32esmi U2, U2, T1, 3
aes32esmi U3, U3, T2, 3

Listing 3. Key Expansion logic.

aes_round_const:
.byte 0x01, 0x02, 0x04, 0x08, 0x10
.byte 0x20, 0x40, 0x80, 0x1b, 0x36

AES_LOAD_STATE C0,C1,C2,C3,CK,t0,t1,t2,t3

mv RKP, RK
addi RKE, RK, 160
la RCP, aes_round_const

.aes_128_enc_ks_l0: // Loop~start

sw C0, 0(RKP) // rkp[0] = a2
sw C1, 4(RKP) // rkp[1] = a3
sw C2, 8(RKP) // rkp[2] = a4
sw C3, 12(RKP) // rkp[3] = a5

addi RKP, RKP, 16 // increment~rkp

lbu RCT, 0(RCP) // Load rc byte
addi RCP, RCP, 1 // Increment rc byte
xor C0, C0, RCT

ROR32I T1, RCT, C3, 8
aes32esi C0, C0, T1, 0
aes32esi C0, C0, T1, 1
aes32esi C0, C0, T1, 2
aes32esi C0, C0, T1, 3

xor C1, C1, C0
xor C2, C2, C1
xor C3, C3, C2

https://doi.org/10.3390/cryptography10010006

https://doi.org/10.3390/cryptography10010006

Cryptography 2026, 10, 6 23 of 26

Listing 4. Complete AES Round with Key Scheduling.

.aes_128_enc_ks_l0: // Loop start
lbu RCT, 0(RCP)
addi RCP, RCP, 1
xor C0, C0, RCT

ROR32I TMP, RCT, C3, 8
aes32esi C0, C0, TMP, 0

aes32esmi U0, U0, T0, 0
aes32esmi U1, U1, T1, 0
aes32esmi U2, U2, T2, 0
aes32esmi U3, U3, T3, 0

aes32esi C0, C0, TMP, 1
aes32esmi U0, U0, T1, 1
aes32esmi U1, U1, T2, 1
aes32esmi U2, U2, T3, 1
aes32esmi U3, U3, T0, 1

aes32esi C0, C0, TMP, 2
aes32esmi U0, U0, T2, 2
aes32esmi U1, U1, T3, 2
aes32esmi U2, U2, T0, 2
aes32esmi U3, U3, T1, 2

aes32esi C0, C0, TMP, 3
aes32esmi U0, U0, T3, 3
aes32esmi U1, U1, T0, 3
aes32esmi U2, U2, T1, 3
aes32esmi U3, U3, T2, 3

// Finish key expansion
xor C1, C1, C0
xor C2, C2, C1
xor C3, C3, C2

6. Discussion
In this paper, we introduced a highly efficient secure AES accelerator optimized for

low power and a compact area, without compromising on performance. Nevertheless,
several aspects require further attention. They are discussed below:

Area Overhead vs. Security: Using techniques such as resource sharing, targeted
module optimizations, and instruction rescheduling, our design achieves significant im-
provements over the only existing solution, reducing area by up to 45% and power con-
sumption by 51% compared to the unoptimized implementation [21]. Furthermore, we
extended these optimizations to develop a lightweight DOM-based side-channel counter-
measure, resulting in a secure Sbox design that still has a 12.9% lower area than the original
proposed unsecured AES module. Additionally, our DOM implementation incurs only
a 37% area overhead compared to the unprotected optimized design; this is significantly
lower than the typical 200–300% overhead in masked implementations [11,17,34]. Although
the DOM-protected design significantly reduces power leakage (evidenced by 60% lower
SNR values and 3.15× reduced leakage amplitude in TVLA tests), residual leakage near

https://doi.org/10.3390/cryptography10010006

https://doi.org/10.3390/cryptography10010006

Cryptography 2026, 10, 6 24 of 26

detection thresholds persists, leaving a potential vulnerability window for advanced or
new attacks.

Larger Datapaths: The current work focuses on a single Sbox configurations (i.e.,
an eight-bit datapath), limiting throughput for latency-critical applications. It is possible to
explore 32-bit or 64-bit datapaths. However, maximum performance will be challenging
to achieve. For example, when using a 32-bit datapath based on four available Sboxes,
the challenge would be to select the correct four bytes each round, as illustrated in Figure 5.
If four additional instructions are used for byte selection, all gains are lost. Hence, smarter
schemes need to be considered.

Higher-Order Attacks: To evaluate the security of our DOM implementation, we
also have to consider higher-order side-channel attacks that target multiple attack points
simultaneously. A practical example is the second-order CPA proposed in [35], where
the combination of leakages from multiple points is analyzed. For example, in attacks
on masked AES implementations, attackers typically combine leakages from the masked
Sbox output [36]. Furthermore, deep learning-based profiled attacks [37] have successfully
broken high-order DOM implementations. These methods are particularly effective against
hardware implementations, where temporary glitches leak information [11]. In part, our
future work aims to improve the resilience of the DOM design against these higher-order at-
tacks.

7. Conclusions
In this study, we conducted a comprehensive security assessment of an innovative AES

accelerator for RISC-V’s Zkne/Zknd extensions. The accelerator was optimized for low
power, compact area, and execution time overhead. Our approach features three key inno-
vations: a shared Sbox architecture enabling combined encryption/decryption operations,
a lightweight DOM-based countermeasure providing side-channel protection with minimal
area impact, and assembly-level optimizations for efficient partial-round processing.

The designs were rigorously evaluated through empirical TVLA testing and side-
channel vulnerability analysis, confirming compliance with the National Institute of Sci-
ence and Technology (NIST)’s SCA resilience guidelines. The results demonstrate that our
DOM-protected implementation not only maintains equivalent first-order security com-
pared to conventional approaches but also achieves significant area reduction. This paper
demonstrates that a low-cost security overhead for IoT-constrained devices is feasible.

Author Contributions: Conceptualization, A.K., A.A. and M.T.; Methodology, A.K., A.A., C.L., S.H.
and M.T.; Software, A.K., A.A., C.L., S.H. and M.T.; Validation, A.K., A.A., C.L., S.H. and M.T.;
Formal analysis, A.K., A.A. and M.T.; Investigation, A.K., A.A. and M.T.; Resources, A.K., A.A. and
M.T.; Data curation, A.K. and M.T.; Writing—original draft, A.K.; Writing—review & editing, A.K.,
A.A., S.H. and M.T.; Visualization, A.K., A.A. and M.T.; Supervision, A.A., S.H. and M.T.; Project
administration, S.H. and M.T.; Funding acquisition, S.H. and M.T. All authors have read and agreed
to the published version of the manuscript. .

Funding: The project is supported by the Chips JU and its members including top-up funding by the
Netherlands Enterprise Agency under grant agreement No. 101112282.

Data Availability Statement: The original contributions presented in this study are included in the
article. Further inquiries can be directed to the corresponding authors.

Conflicts of Interest: The authors declare no conflict of interest.

https://doi.org/10.3390/cryptography10010006

https://doi.org/10.3390/cryptography10010006

Cryptography 2026, 10, 6 25 of 26

References
1. IHS Markit. The Internet of Things: A Movement, Not a Market. 2017. Available online: https://cdn.ihs.com/www/pdf/IoT_

ebook.pdf (accessed on 1 June 2025).
2. National Institute of Standards and Technology. The NIST Cybersecurity Framework (CSF) 2.0; NIST Cybersecurity White Paper

(CSWP) NIST CSWP 29; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2024. https://doi.org/10.602
8/NIST.CSWP.29.

3. National Institute of Standards and Technology. Recommendation for Key Management—Part 1: General; Technical Report
NIST SP 800-57 Part 1 Revision 5, NIST; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2020.
https://doi.org/10.6028/NIST.SP.800-57pt1r5.

4. Kocher, P.C.; Jaffe, J.; Jun, B. Differential Power Analysis. In Proceedings of the Advances in Cryptology—CRYPTO ’99, 19th Annual
International Cryptology Conference, Santa Barbara, CA, USA, 15–19 August 1999; Proceedings; Wiener, M.J., Ed.; Lecture Notes in
Computer Science; Springer: Berlin/Heidelberg, Germany, 1999; Volume 1666, pp. 388–397. https://doi.org/10.1007/3-540-4840
5-1_25.

5. Brier, E.; Clavier, C.; Olivier, F. Correlation Power Analysis with a Leakage Model. In Proceedings of the Cryptographic Hardware
and Embedded Systems—CHES 2004: 6th International Workshop Cambridge, MA, USA, 11–13 August 2004; Proceedings; Joye, M.,
Quisquater, J., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2004; Volume 3156, pp. 16–29.
https://doi.org/10.1007/978-3-540-28632-5_2.

6. Chari, S.; Rao, J.R.; Rohatgi, P. Template Attacks. In Proceedings of the Cryptographic Hardware and Embedded Systems—CHES
2002, 4th International Workshop, Redwood Shores, CA, USA, 13–15 August 2002; Revised Papers; Kaliski, B.S., Koç, Ç.K., Paar, C.,
Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2002; Volume 2523, pp. 13–28. https:
//doi.org/10.1007/3-540-36400-5_3.

7. F, M.A.K.; Ganesan, V.; Bodduna, R.; Rebeiro, C. PARAM: A Microprocessor Hardened for Power Side-Channel Attack Resistance.
In Proceedings of the 2020 IEEE International Symposium on Hardware Oriented Security and Trust, HOST 2020, San Jose, CA,
USA, 7–11 December 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 23–34. https://doi.org/10.1109/HOST45689.2020.9300263.

8. Shaout, A.; Ahmad, O.; Al-Dulaimi, Y. AES-RV: A Low-Latency and Energy-Efficient AES Accelerator with Instruction Extension
for RISC-V SoC. arXiv 2024, arXiv:2505.11880.

9. Cui, S.; Balasch, J. Efficient Software Masking of AES through Instruction Set Extensions. In Proceedings of the Design,
Automation & Test in Europe Conference & Exhibition, DATE 2023, Antwerp, Belgium, 17–19 April 2023; IEEE: Piscataway, NJ,
USA, 2023; pp. 1–6. https://doi.org/10.23919/DATE56975.2023.10137150.

10. RISC-V Cryptography Extension Task Group. RISC-V Cryptography Extensions Volume I: Scalar & Entropy Source Instructions;
Version 0.9.3-DRAFT; RISC-V: Zurich, Switzerland, 2023.

11. Groß, H.; Mangard, S.; Korak, T. Domain-Oriented Masking: Compact Masked Hardware Implementations with Arbitrary
Protection Order. In Proceedings of the ACM Workshop on Theory of Implementation Security, TIS@CCS 2016, Vienna, Austria, 24 October
2016; Bilgin, B., Nikova, S., Rijmen, V., Eds.; ACM: New York, NY, USA, 2016, p. 3. https://doi.org/10.1145/2996366.2996426.

12. National Institute of Standards and Technology. Security Requirements for Cryptographic Modules. Federal Information
Processing Standards Publication; FIPS 140-3; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2019.
https://doi.org/10.6028/NIST.FIPS.140-3.

13. Lu, M.; Fan, A.; Xu, J.; Shan, W. A Compact, Lightweight and Low-Cost 8-Bit Datapath AES Circuit for IoT Applications
in 28nm CMOS. In Proceedings of the 17th IEEE International Conference on Trust, Security and Privacy in Computing
and Communications/12th IEEE International Conference On Big Data Science And Engineering, TrustCom/BigDataSE 2018,
New York, NY, USA, 1–3 August 2018; IEEE: Piscataway, NJ, USA, 2018, pp. 1464–1469. https://doi.org/10.1109/TRUSTCOM/
BIGDATASE.2018.00204.

14. Dhanuskodi, S.N.; Allen, S.; Holcomb, D.E. Efficient Register Renaming Architectures for 8-bit AES Datapath at 0.55 pJ/bit in
16-nm FinFET. IEEE Trans. Very Large Scale Integr. Syst. 2020, 28, 1807–1820. https://doi.org/10.1109/TVLSI.2020.2999593.

15. Wamser, M.S.; Sigl, G. Pushing the limits further: Sub-atomic AES. In Proceedings of the 2017 IFIP/IEEE International Conference
on Very Large Scale Integration, VLSI-SoC 2017, Abu Dhabi, United Arab Emirates, 23–25 October 2017; IEEE: Piscataway, NJ,
USA, 2017, pp. 1–6. https://doi.org/10.1109/VLSI-SOC.2017.8203470.

16. Banik, S.; Bogdanov, A.; Regazzoni, F. Atomic-AES: A Compact Implementation of the AES Encryption/Decryption Core. In
Proceedings of the Progress in Cryptology—INDOCRYPT 2016—17th International Conference on Cryptology in India, Kolkata, India,
11–14 December 2016; Proceedings; Dunkelman, O., Sanadhya, S.K., Eds.; Lecture Notes in Computer Science; Springer: Cham,
Switzerland, 2016; Volume 10095, pp. 173–190. https://doi.org/10.1007/978-3-319-49890-4_10.

17. Moradi, A.; Poschmann, A.; Ling, S.; Paar, C.; Wang, H. Pushing the Limits: A Very Compact and a Threshold Implementation
of AES. In Proceedings of the Advances in Cryptology—EUROCRYPT 2011, Tallinn, Estonia, 15–19 May 2011; Springer:
Berlin/Heidelberg, Germany, 2011; Volume 6632, Lecture Notes in Computer Science, pp. 69–88.

https://doi.org/10.3390/cryptography10010006

https://cdn.ihs.com/www/pdf/IoT_ebook.pdf
https://cdn.ihs.com/www/pdf/IoT_ebook.pdf
https://doi.org/10.6028/NIST.CSWP.29
https://doi.org/10.6028/NIST.CSWP.29
https://doi.org/10.6028/NIST.SP.800-57pt1r5
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1007/3-540-36400-5_3
https://doi.org/10.1007/3-540-36400-5_3
https://doi.org/10.1109/HOST45689.2020.9300263
https://doi.org/10.23919/DATE56975.2023.10137150
https://doi.org/10.1145/2996366.2996426
https://doi.org/10.6028/NIST.FIPS.140-3
https://doi.org/10.1109/TRUSTCOM/BIGDATASE.2018.00204
https://doi.org/10.1109/TRUSTCOM/BIGDATASE.2018.00204
https://doi.org/10.1109/TVLSI.2020.2999593
https://doi.org/10.1109/VLSI-SOC.2017.8203470
https://doi.org/10.1007/978-3-319-49890-4_10
https://doi.org/10.3390/cryptography10010006

Cryptography 2026, 10, 6 26 of 26

18. Yu, J.; Aagaard, M. Benchmarking and Optimizing AES for Lightweight Cryptography on ASICs. In Proceedings of the
Lightweight Cryptography Workshop, Gaithersburg, MD, USA, 4–6 November 2019.

19. Dao, M.H.; Hoang, V.P.; Dao, V.L.; Tran, X.T. An Energy Efficient AES Encryption Core for Hardware Security Implementation
in IoT Systems. In Proceedings of the 2018 International Conference on ATC, Ho Chi Minh City, Vietnam, 18–20 October 2018;
pp. 301–304. https://doi.org/10.1109/ATC.2018.8587500.

20. Tran, K. Integration of the AES Cryptography Extension into a RISC-V Architecture. Master’s Thesis, Oklahoma State University,
Stillwater, OK, USA, 2025.

21. Marshall, B.; Newell, G.R.; Page, D.; Saarinen, M.O.; Wolf, C. The design of scalar AES Instruction Set Extensions for RISC-V.
IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021, 2021, 109–136. https://doi.org/10.46586/TCHES.V2021.I1.109-136.

22. Zhang, X.; Parhi, K.K. High-speed VLSI architectures for the AES algorithm. IEEE Trans. Very Large Scale Integr. Syst. 2004,
12, 957–967.

23. Waterman, A.; Asanović, K. The RISC-V Instruction Set Manual; RISC-V International: Zurich, Switzerland, 2019.
24. Hojati, Z.; Jahanpeima, Z.; Rajabalipanah, M.; Ta’ati, H.; Rabiei, A.; Navabi, Z. Sharing AES Engine for RISC-V Custom Instructions

Performing Encryption and Decryption. In Proceedings of the IEEE East-West Design & Test Symposium, EWDTS 2024, Yerevan,
Armenia, 13–17 November 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 1–6. https://doi.org/10.1109/EWDTS63723.2024.10873766.

25. Boyar, J.; Peralta, R. A small depth-16 circuit for the AES S-box. In Proceedings of the SEC 2012; Springer: Berlin/Heidelberg,
Germany, 2012; pp. 287–298.

26. Daemen, J.; Rijmen, V. The Design of Rijndael: AES—The Advanced Encryption Standard; Springer: Berlin/Heidelberg, Germany,
2002. https://doi.org/10.1007/978-3-662-04722-4.

27. Clermont, J.; Heuser, A.; Rioul, O.; Standaert, F.X. Vertical Attack Correlation: Exploiting Data Compression in Side-Channel
Analysis. In Proceedings of the IACR Transactions on Cryptographic Hardware and Embedded Systems; Ruhr-Universität Bochum,
Germany, 2021; Volume 2021, pp. 1–27. https://doi.org/10.46586/tches.v2021.i3.1-27.

28. NewAE Technology Inc. CW305 Artix FPGA Target Board. 2023. Available online: https://rtfm.newae.com/Targets/CW305%2
0Artix%20FPGA/ (accessed on 15 April 2023).

29. Cadence Design Systems, Inc. Cadence Genus Synthesis Solution. 2021. Available online: https://www.cadence.com/en_US/
home/tools/digital-design-and-signoff/synthesis/genus-synthesis-solution.html (accessed on 8 May 2021).

30. Becker, G.; Cooper, J. Test Vector Leakage Assessment (TVLA) Methodology in Practice. Available online:
https://www.semanticscholar.org/paper/Test-Vector-Leakage-Assessment-(-TVLA-)-methodology-Becker-Cooper/60
b993cb11fff28c9ea657b0e2882867b8f810e1 (accessed on 9 November 2023).

31. Mangard, S. Hardware Countermeasures against DPA—A Statistical Analysis of Their Effectiveness. In Proceedings of the Topics in
Cryptology—CT-RSA 2004, San Francisco, CA, USA, 23–27 February 2004; Okamoto, T., Ed.; Lecture Notes in Computer Science;
Springer: Berlin/Heidelberg, Germany, 2004; Volume 2964, pp. 222–235. https://doi.org/10.1007/978-3-540-24660-2_18.

32. Mangard, S.; Oswald, E.; Popp, T. Power Analysis Attacks—Revealing the Secrets of Smart Cards; Springer: Berlin/Heidelberg,
Germany, 2007.

33. Schneider, T.; Moradi, A. Leakage Assessment Methodology. In Proceedings of the Cryptographic Hardware and Embedded
Systems (CHES), Saint-Malo, France, 13–16 September 2015; pp. 495–513. https://doi.org/10.1007/978-3-662-48324-4_25.

34. Trichina, E.; Seta, D.D.; Germani, L. Simplified Adaptive Multiplicative Masking for AES. In Proceedings of the Cryptographic
Hardware and Embedded Systems—CHES 2002, 4th International Workshop, Redwood Shores, CA, USA, 13–15 August 2002; Revised
Papers; Kaliski, B.S., Koç, Ç.K., Paar, C., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2002;
Volume 2523, pp. 187–197. https://doi.org/10.1007/3-540-36400-5_15.

35. Moradi, A.; Mischke, O.; Eisenbarth, T. Correlation-Enhanced Power Analysis Collision Attack. In Proceedings of the Cryptographic
Hardware and Embedded Systems, CHES 2010, 12th International Workshop, Santa Barbara, CA, USA, 17–20 August 2010; Proceedings;
Mangard, S., Standaert, F., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2010; Volume 6225,
pp. 125–139. https://doi.org/10.1007/978-3-642-15031-9_9.

36. Prouff, E.; Rivain, M.; Bevan, R. Study of Second-Order Side-Channel Attacks on AES Masked Implementations. IEEE Trans. Inf.
Forensics Secur. 2009, 4, 636–645. https://doi.org/10.1109/TIFS.2009.2033229.

37. Maghrebi, H. Deep Learning based Side Channel Attacks in Practice. IACR Cryptol. ePrint Arch. 2019, 2019, 578.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/cryptography10010006

https://doi.org/10.1109/ATC.2018.8587500
https://doi.org/10.46586/TCHES.V2021.I1.109-136
https://doi.org/10.1109/EWDTS63723.2024.10873766
https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.46586/tches.v2021.i3.1-27
https://rtfm.newae.com/Targets/CW305%20Artix%20FPGA/
https://rtfm.newae.com/Targets/CW305%20Artix%20FPGA/
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/synthesis/genus-synthesis-solution.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/synthesis/genus-synthesis-solution.html
https://www.semanticscholar.org/paper/Test-Vector-Leakage-Assessment-(-TVLA-)-methodology-Becker-Cooper/60b993cb11fff28c9ea657b0e2882867b8f810e1
https://www.semanticscholar.org/paper/Test-Vector-Leakage-Assessment-(-TVLA-)-methodology-Becker-Cooper/60b993cb11fff28c9ea657b0e2882867b8f810e1
https://doi.org/10.1007/978-3-540-24660-2_18
https://doi.org/10.1007/978-3-662-48324-4_25
https://doi.org/10.1007/3-540-36400-5_15
https://doi.org/10.1007/978-3-642-15031-9_9
https://doi.org/10.1109/TIFS.2009.2033229
https://doi.org/10.3390/cryptography10010006

	Introduction
	Related Work
	Background
	AES Algorithm
	AES RISC-V Zkne/Zknd Instruction Set
	Power Side-Channel Attacks (SCAs)

	Secure Scalar Cryptography Extension
	Motivation
	Design and Implementation of Proposed AES Optimization
	Design and Implementation of Proposed DOM Countermeasure
	Integrating Zkne/Zknd Scalar Cryptography into the CV32E40S Pipeline

	Experimental Results
	Experimental Setup
	Security Evaluation
	Performance Evaluation
	AES Assembly Optimization

	Discussion
	Conclusions
	References

