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Abstract

Laser light reflection mitigation in Particle Image Velocimetry (PIV) is crucial for accurate flow

field measurements. While numerous methods exist for planar PIV, fewer have been developed

for volumetric PIV systems, especially for coaxial setups like Robotic PIV. Light reflections in

volumetric PIV experiments result in high-intensity regions that corrupt particle detection and

analysis.

This study presents three novel approaches for treating light reflections in Robotic PIV ex-

periments. The first and second methods use image filtering and masking techniques in the

wavenumber space to separate particle images from reflection regions. The first technique called

Spatial Fourier Filter involves decomposing the image signal into low- and high-wavenumber

components using the 2D discrete Fourier transform (DFT). A high-pass filter is then applied to

attenuate the intensity of reflection regions. Then, the second methodology Spatial Fourier Filter +

Mask takes the resulting image from the first method and performs a step of automated adaptive

masking to remove residual reflection areas that the filtering approach is not able to eliminate.

The third methodology named 3D-based Particle Concentration Mask acts in a later stage of the

processing pipeline, creating a 3D mask on the instantaneous processed Shake-the-Box data by

analysing the particle concentration distribution over the flow domain.

The proposed methods are tested on experimental data obtained from experiments performed

with Robotic PIV on three different geometries: a side-view mirror, Formula 1 car and a propeller.

The tests were conducted at one of TU Delft Aerospace Engineering Faculty’s facilities, the

W-tunnel in the High-Speed Laboratory (HSL). Comparison between raw and pre-processed

images, as well as particle tracking results, is presented.

The results from this data comparison show unsatisfactory outcomes from both Spatial

Fourier Filter and 3D-based Particle Concentration Mask, which fail to fully remove the spurious

regions. Nevertheless, the results confirm the successful removal of reflection-induced artifacts

in instantaneous images by using the spatial Fourier filter automated masking approach. The

developed image pre-processing strategy effectively removes reflection regions in Robotic PIV

images, preventing the appearance of spurious particle tracks. The method shows promising

results mitigating unsteady light reflections in Robotic PIV, improving the accuracy of flow field

measurements. Additional attention is required in the PIV sequence creation step to ensure an

adequate level of overlap between measurement volumes. This facilitates addressing the spatial

gaps introduced by the masking procedure, that have been proven to robustly be filled in by the

multi-view advantage offered by Robotic PIV.
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Ṅ Effective bubble production rate of the

seeding rake [particles/s]

ε̂G Sub-pixel particle peak position [px]

κ Spatial frequency (or wavenumber)

[px−1]

κf Filter’s cut-on wavenumber [px−1]

κx Spatial frequency (or wavenumber) in

horizontal direction

κy Spatial frequency (or wavenumber) in

vertical direction

vi



Nomenclature vii

λ Wavelength [nm or px]]

F Fourier transform

σ Standard deviation

ϕ Phase angle [rad]

Arake Area occupied by the seeding rake

[cm2]

CHFSB HFSB particle concentration

D Aperture

dτ Particle effective diameter

f Temporal frequency [Hz] (or focal

length when referring to camera char-

acteristics)

f# f-number or f-stop

G Fourier transform

g Signal function in the real domain

H Fourier transform filter

Lr Reflection length

M Magnification

n Wind tunnel contraction ratio

P Power spectrum

s Separability criterion

t Time [s]

u Forward velocity component

U∞ Free-stream velocity [m/s]

v Sideways velocity component

w Vertical velocity component

x Forward component

y Sideways component

z Vertical component



List of Figures

2.1 Comparison of spatial resolution between PTV and PIV. Source: [1]. . . . . . . . . 3

2.2 Skecth of a set-up for 2C-2D PIV in a wind tunnel. Source: [3]. . . . . . . . . . . . 4

2.3 Diffraction example with (a) larger and (b) smaller apertures. Source: [6]. . . . . . 6

2.4 Airy disk as aperture changes. (Top) f# = 2.8; (bottom) f#=8. Source: [7]. . . . . . 6

2.5 Digital imaging of small particles. Source: [11]. . . . . . . . . . . . . . . . . . . . . 7

2.6 Sketch of cross-correlation and peak search for velocity vector determination.

Source: [12]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.7 Planar and Stereo-PIV set-ups. Source: [13]. . . . . . . . . . . . . . . . . . . . . . 8

2.8 Planar PIV raw images. Source: [25]. . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.9 Tomographic-PIV set-up. Source: [13]. . . . . . . . . . . . . . . . . . . . . . . . . 10

2.10 Tomographic-PIV flow-chart. Source: [29]. . . . . . . . . . . . . . . . . . . . . . . 11

2.11 Volume self-calibration. Red line: original projection; black dot: assumed correct

particle position; dotted green line: corrected back-projection; solid blue arrow:

disparity vector. Source: [34]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.12 Disparity maps for a four-camera tomographic system obtained with the 3D self-

calibration technique. Source: [3]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.13 Schematic representation of the Shake-The-Box (STB) for a single time-step.

Source: [36]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.14 Robotic PIV set-up in a wind tunnel. Source: [39]. . . . . . . . . . . . . . . . . . . 15

2.15 (Left) Tomographic PIV setup and (Right) Coaxial velocimeter (CVV) setup. Where

cameras (blue), field of view (grey), laser illumination (green) and optical fiber

(orange). Source: [40]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.16 Signal-to-Noise ratio 1D representation, where primary peak is peak 1 and sec-

ondary peak is peak 2. Source: [41]. . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.17 Flow in the wake of a cylinder obstacle raw image taken by tomographic PIV (left)

and pre-processed image (right). Source: [3]. . . . . . . . . . . . . . . . . . . . . . 17

2.18 (Left) Raw image of Ariane 5 launcher and (right) pre-processed image with tem-

poral high-pass filter. Source: [3] [42]. . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.19 Intensity signal at a pixel location in time. Source: [64]. . . . . . . . . . . . . . . . 19

2.20 ARIANE V after-body (a) PIV raw image, (b) minimum intensity subtraction (c)

Butterworth HPF with cut-off frequency 30% of Nyquist frequency. Source: [64]. . 19

2.21 (a) Raw image, (b) minimum background substraction, (c) Butterworth high pass

filter, (d) CLAHE recontrasting, (e) mininum/maximum adjusting and (f) POD filter

approach. Source: [65]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.22 (Top) Raw image with comparison of background and pre-processed images

obtained by anisotropic diffusion method with (middle two rows) tf = 300 and

different threshold numbers (K = 5, 10, 50) and (bottom two rows) K = 10 after

different numbers of iterations (tf = 10, 300, 1000). Source: [66]. . . . . . . . . . . 21

2.23 Examples of Fourier transform pairs. Source: [68]. . . . . . . . . . . . . . . . . . . 24

2.24 (a) Gaussian distribution with σ = 0.1, (b) its Fourier spectrum and (c) Fourier

transform phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.25 Types of filters. Source: [69]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

viii



List of Figures ix

2.26 (a) Gaussian low-pass filter H(kx), (b) filtered Fourier transform G(kx) ·H(kx) and
(c) its inverse Fourier transform g′(x) for different values of standard deviation σ. . 28

2.27 (a) Gaussian high-pass filterH(kx), (b) filtered Fourier transform G(kx) ·H(kx) and
(c) its inverse Fourier transform g′(x) for different values of standard deviation σ. . 29

2.28 Gibbs effect example on a rectangle pulse (where N is the number of terms used

to approximate the pulse, with N5 > N4 > N3 > N2 > N1). Source: [70]. . . . . . . 30

2.29 Example of shift invariance in Fourier transform. Source: [71]. . . . . . . . . . . . 31

2.30 Examples of sinusoid gratings with different frequency and direction. Source: [72]. 32

2.31 Two examples and their Fourier and phase spectrums (from left to right). Source:

[71]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.32 (a) Input images, (b) Fourier spectrum |G(kx)|, (c) phase angle, (d) images recon-
structed using only their spectrum and (e) images reconstructed using only their

phase angle. Source: [73]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.33 Two images are Fourier transformed. Their phases are swapped and then, they

are inverse Fourier transformed. Source: [74]. . . . . . . . . . . . . . . . . . . . . 36

2.34 Nyquist frequency representation in 2D. . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1 Laser light reflection on (a) a planar PIV case, (b) robotic PIV case. Source: [85],

[86]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 (a) Instantaneous Robotic PIV raw image of sphere case, close-up on a region (b)

with particles and (c) the reflection. . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Left: Raw and time-filtered (Butterworth) images (top to bottom). Right: corre-

sponding Shake-the-Box data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4 Particle concentration on (a) raw image case and (b) time-filtered (Butterworth) case. 42

4.1 Reflection-particle wavelength comparison. . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Left: particle, reflection and unit impulse signals (top to bottom). Right: The

corresponding Fourier transforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3 (a) Raw image and its (b) Fourier transform. . . . . . . . . . . . . . . . . . . . . . . 45

4.4 Fourier Transform magnitude for particle (blue) and reflection (red) signals. . . . . 46

4.5 (a) Raw image. (b)-(j) Left: high-pass filters with different cut-on wavenumbers.

Middle: filtered Fourier transforms. Right: resulting filtered images. . . . . . . . . . 47

4.6 Signal-To-Noise ratio (SNR) vs. κf for the sphere case. . . . . . . . . . . . . . . . 48

4.7 Signal-To-Noise ratio (SNR) vs. κf for the sphere case. . . . . . . . . . . . . . . . 48

4.8 Region within (left) raw and (right) Fourier-filtered images. . . . . . . . . . . . . . . 49

4.9 Probability density function of ∆ε̂G (between raw and Fourier-filtered images). . . . 49

4.10 (a) Raw image and its (b) Fourier-filtered image. . . . . . . . . . . . . . . . . . . . 50

4.11 Close-up on the reflection region of the Fourier filtered image (κf = 0.1 px−1). . . . 50

4.12 Left: Processed images (from top to bottom: raw images, time-filtered Butterworth

and spatial Fourier-filtered). Right: Resulting velocity field. . . . . . . . . . . . . . . 51

4.13 (a) Raw image and its (b) spatial Fourier-filtered image. . . . . . . . . . . . . . . . 52

4.14 SSIM pipeline. Source: [88]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.15 SSIM map on the sphere case image from Figure 4.13. . . . . . . . . . . . . . . . 54

4.16 Mask obtained after applying SSIM threshold to SSIM Map. . . . . . . . . . . . . . 54

4.17 Mask obtained from considering the blobs with area larger than 200 px2. . . . . . . 55

4.18 Masked filtered image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.19 Left: raw, Butterworth time-filtered, spatial Fourier filtered and Fourier masked

images (top to bottom). Right: resulting Shake-the-Box data. . . . . . . . . . . . . 56

4.20 Shake-the-Box data on the pre-processed images with Minimum Subtraction (over

entire series) for the sphere case. . . . . . . . . . . . . . . . . . . . . . . . . . . . 57



x List of Figures

4.21 Particle concentration CHFSB on the pre-processed images with Minimum Sub-

traction (over entire series) for the sphere case. . . . . . . . . . . . . . . . . . . . . 58

4.22 Representation of wind tunnel contraction. . . . . . . . . . . . . . . . . . . . . . . . 59

4.23 Particle seeding concentration vs. velocity for different contraction ratios and wind

tunnels (considering a production rate of 30,000 bubbles/s per nozzle). . . . . . . 59

4.24 Isolated reflection binning data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.25 Reflection volume obtained by alpha shape approximation. . . . . . . . . . . . . . 60

4.26 (a) Original Shake-the-Box data and (b) Masked Shake-the-Box data. . . . . . . . 61

5.1 W-Tunnel at TU Delft’s HSL. Source: [92]. . . . . . . . . . . . . . . . . . . . . . . . 62

5.2 Side-view mirror (a) model and (b) setup. . . . . . . . . . . . . . . . . . . . . . . . 63

5.3 Formula 1 car (a) model and (b) setup. . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.4 Propeller model setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.5 Example RoboDK interface. Source: [95]. . . . . . . . . . . . . . . . . . . . . . . . 65

5.6 (a) Robotic arm and (b) its installation setup. . . . . . . . . . . . . . . . . . . . . . 66

5.7 Calibration plate acquired images. . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.8 Volume Self-Calibration instantaneous image with recorded particles. . . . . . . . 68

6.1 Set of measurement volumes acquired for the side-view mirror. . . . . . . . . . . . 70

6.2 Set of consecutive pre-processed images (from left to right) with no filter, Butter-

worth time filter and Spatial Fourier Filter + Mask (View 2). . . . . . . . . . . . . . . 71

6.3 Set of consecutive pre-processed images (from left to right) with no filter, Butter-

worth time filter and Spatial Fourier Filter + Mask (View 3). . . . . . . . . . . . . . . 72

6.4 Number of tracked particles per recording for each view (side-view mirror case). . 72

6.5 Side-view mirror acquired and pre-processed images of View 1. . . . . . . . . . . 73

6.6 Side-view mirror binning results on the YZ plane at x = -50 mm (View 1). . . . . . . 74

6.7 Side-view mirror acquired and pre-processed images of View 8. . . . . . . . . . . 74

6.8 Side-view mirror binning results on the XZ plane at y = 0 mm (View 8). . . . . . . . 75

6.9 Side-view mirror binning results on the YZ plane at x = 50 mm (View 8). . . . . . . 75

6.10 Close-up view of Spatial Fourier Filter and Spatial Fourier Filter + Mask methods

in View 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.11 Side-view mirror binning results on the XZ plane at y = -10 mm (all views). . . . . . 77

6.12 Side-view mirror binning results on the YZ plane at x = 50 mm (all views). . . . . . 77

6.13 Side-view mirror binning results on the XY plane at z = 85 mm (all views). . . . . . 78

6.14 Side-view mirror Butterworth, SFFM and SFFM with intensity normalization results

on the XZ plane at y = -10 mm (all views). . . . . . . . . . . . . . . . . . . . . . . . 79

6.15 Side-view mirror Butterworth, SFFM and SFFM with intensity normalization results

on the XY plane at z = 85 mm (all views). . . . . . . . . . . . . . . . . . . . . . . . 79

6.16 Side-view mirror Butterworth, SFFM and SFFM with intensity normalization results

on the YZ plane at x = 50 mm (all views). . . . . . . . . . . . . . . . . . . . . . . . 80

6.17 Side-view mirror binned results on XZ plane at y = 0 mm for single and merged

views (Butterworth and Spatial Fourier Filter and Mask). . . . . . . . . . . . . . . . 81

6.18 Side-view mirror binned results on YZ plane at x = 30 mm for single and merged

views (Butterworth and Spatial Fourier Filter and Mask). . . . . . . . . . . . . . . . 81

6.19 Set of measurement volumes acquired for the Formula 1 car. . . . . . . . . . . . . 82

6.20 Number of particles per recording for each view (Formula 1 car case). . . . . . . . 82

6.21 Formula 1 car acquired and pre-processed images of View 6. . . . . . . . . . . . . 83

6.22 Formula 1 car binning results on the XZ plane at y = 0 mm (View 6). . . . . . . . . 84

6.23 Formula 1 car binning results on the YZ plane at x = 220 mm (View 6). . . . . . . . 84

6.24 Formula 1 car binning results on the XY plane at z = 20 mm (View 6). . . . . . . . 84



List of Figures xi

6.25 Formula 1 car binning results on the XZ plane at y = 0 mm. . . . . . . . . . . . . . 85

6.26 Formula 1 car binning results on the XY plane at z = 20 mm. . . . . . . . . . . . . 85

6.27 Formula 1 car binning results on the YZ plane at x = 220 mm. . . . . . . . . . . . . 86

6.28 Formula 1’s Butterworth, SFFM and SFFM with intensity normalization results on

the XZ plane at y = 0 mm (all views). . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.29 Formula 1’s Butterworth, SFFM and SFFM with intensity normalization results on

the YZ plane at x = 220 mm (all views). . . . . . . . . . . . . . . . . . . . . . . . . 87

6.30 Set of measurement volumes acquired for the propeller. . . . . . . . . . . . . . . . 88

6.31 Set of consecutive pre-processed images (from left to right) with no filter, Butter-

worth time filter and Spatial Fourier Filter + Mask (View 2) of the propeller. . . . . . 89

6.32 Set of consecutive pre-processed images (from left to right) with no filter, Butter-

worth time filter and Spatial Fourier Filter + Mask (View 4) of the propeller. . . . . . 89

6.33 Number of particles per recording for each view (propeller case). . . . . . . . . . . 90

6.34 Propeller acquired and pre-processed images of View 2. . . . . . . . . . . . . . . . 91

6.35 Propeller binning results on the YZ plane at x = 50 mm (View 2). . . . . . . . . . . 91

6.36 Side-view mirror binning results on the XZ plane at y = 0 mm (View 2). . . . . . . . 92

6.37 Side-view mirror binning results on the XY plane at z = 200 mm (View 2). . . . . . 92

6.38 Propeller acquired and pre-processed images of View 4. . . . . . . . . . . . . . . . 93

6.39 Side-view mirror binning results on the XZ plane at y = 0 mm (View 4). . . . . . . . 94

6.40 Propeller binning results on the YZ plane at x = 50 mm (View 4). . . . . . . . . . . 94

6.41 Propeller binning results on the YZ plane at x = 50 mm (all views). . . . . . . . . . 95

6.42 Side-view mirror binning results on the XZ plane at y = 0 mm (all views). . . . . . . 96

6.43 Side-view mirror binning results on the XY plane at z = 200 mm (all views). . . . . 96

6.44 Propeller Butterworth, SFFM and SFFM with intensity normalization results on the

YZ plane at x = 50 mm (all views). . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.45 Propeller Butterworth, SFFM and SFFM with intensity normalization results on the

XZ plane at y = 0 mm (all views). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.46 Propeller Butterworth, SFFM and SFFM with intensity normalization results on the

XY plane at z = 200 mm (all views). . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.47 Propeller binned results on YZ plane at x = 50 mm for single and merged views

(Butterworth and Spatial Fourier Filter and Mask). . . . . . . . . . . . . . . . . . . . 99

6.48 Propeller binned results on XY plane at z = 200 mm for single and merged views

(Butterworth and Spatial Fourier Filter and Mask). . . . . . . . . . . . . . . . . . . . 99

B.1 Side-view mirror raw and pre-processed images from Views 1-8. . . . . . . . . . . 118

C.1 Formula 1 car raw and pre-processed images from Views 1-10. . . . . . . . . . . . 120

D.1 Propeller raw and pre-processed images from Views 1-9. . . . . . . . . . . . . . . 122



List of Tables

2.1 Technical specifications of seeding particles. Source: [4] . . . . . . . . . . . . . . 4

2.2 Technical specifications of three most popular lasers. Source: [3] . . . . . . . . . . 5

2.3 Technical specifications of two examples of recording systems. Source: [3] . . . . 5

5.1 Overview of models tested. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 Test matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

xii



1
Introduction

One of the main challenges in the aerospace industry is the characterization of flow fields. By

understanding how air or other fluids flow around objects, engineers can optimize the design for

improved performance and efficiency under different conditions. Additionally, it is essential for

ensuring the safety and stability of vehicles and structures, particularly in cases of high speeds or

turbulent flow conditions. Knowing the flow field characteristics allows to predict aerodynamic

forces, like the drag and lift forces, from which engineers can improve fuel consumption efficiency

(drag-reduction techniques), stability and overall performance. Furthermore, acquiring experi-

mental data is essential for validating and improving computational fluid dynamics (CFD) models,

allowing to improve their accuracy and reliability. Therefore, understanding the properties of

a flow field is essential for optimizing designs, predicting system behaviour and improving the

efficiency and reliability of systems in various engineering applications.

Among a wide variety of methodologies for flow field characterization, Particle Image Ve-

locimetry (PIV) has gained more importance in the past few years, becoming one of the most

promising flow measurement techniques. PIV is a non-intrusive flow measurement technique

that allows to retrieve quantitative information of the velocity field at a certain time and location.

Its simplest set-up is the 2D or Planar PIV, which measures the velocity within a two-dimensional

plane using a single camera. However, the vast majority of flows are 3D in nature, like turbulent

flows.

Robotic PIV is an example of a technique that allows to retrieve the 3D volumetric velocity

field. The process involves capturing 2D images from three or more camera views and then

reconstruct the 3D particle field from the individual images of an illuminated measurement volume.

One of the main advantages is its flexibility and adaptability in camera positioning, that allows to

study complex geometries or experimental setups with difficult access. In short, the pipeline of

Robotic PIV includes first a system calibration, then when everything is set to start, the images are

acquired. These are pre-processed and then post-processed with a volumetric particle tracking

algorithm called Shake-the-Box, which allows to obtain the velocity field in the measurement

volume.

The problem arises when the laser light hits on a solid surface, resulting in unwanted light

reflections. These reflections appear with an intensity higher than that of the particle images,

yielding a considerable issue during data processing. The regions where reflections appear often

exhibit a complete absence of data, creating voids within the flow field information. Moreover,

they can introduce inaccuracies in the obtained flow field velocity, leading to potentially erroneous

interpretations of the flow dynamics. This presents a challenge, particularly due to the loss of

information caused by the incidence angle of the camera perspective capturing these reflections.

The impact of reflections becomes even more detrimental when they do not present themselves as

1
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data gaps but rather as misleading velocity values within the flow field, significantly compromising

the accuracy and reliability of the interpretation.

Consequently, it is essential to develop a robust methodology capable of detecting, not only

the presence of spurious regions in the 2D images captured in the camera plane, but also tackle

and control their impact on the epipolar lines within the 3D reconstructed volume. Investigating

and developing such methodology is crucial to address the challenges posed by reflections in the

Tomographic or Robotic PIV process, aiming to improve the accuracy and reliability of flow field

analysis and interpretation.

The main objective of this research project is to minimize the erroneous data due to reflec-

tions and ensure an acceptable particle tracking by defining a procedure to detect and mitigate

reflections in Robotic PIV data.

1.1. Research Formulation

The main research question of this project would be:

• (RQ.) How can a methodology effectively identify and mitigate the effects of spurious

regions of reflections in Robotic PIV across various PIV datasets?

From the latter, a set of sub-questions can be considered:

• (RSQ1) Which image pre-processing technique can be applied to detect and mitigate

reflections by only using an instantaneous image?

• (RSQ2) How do reflections appear in the 3D velocity field? Is there a distinguishable

characteristic that could be attributed to and, hence used to remove this region of the data?

• (RSQ3) What are the advantages of the developed methodologies against state-of-the-art

techniques in identifying and mitigating spurious regions?

• (RSQ4) What are the potential challenges and limitations in implementing the proposed

methodology and how can these be addressed?

1.2. Report structure

The structure of the report is as follows. First, Chapter 2 presents a literature review, discussing the

fundamentals of PIV, a brief summary of the state-of-the-art reflection treatment techniques and

information about the implementation of Fourier analysis in image pre-processing. The report then

delves into Chapter 3 where a characterization of light reflections is exposed before presenting

the three proposed methods for reflection mitigation in Chapters 4.1, 4.2 and 4.3, respectively,

where each method is detailed, including its theoretical background and implementation steps.

An experimental campaign description follows in Chapter 5, outlining the setup and procedure

used to validate the proposed methods. The results of the experimental campaign are then

presented in Chapter 6, evaluating the effectiveness of each method and discussing their impact

on flow field analysis accuracy. Finally, the report concludes with Chapter 7 with a summary of

the findings and their implications for Robotic PIV experiments, along with recommendations for

future research in this area.
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Literature Review

2.1. Particle Image Velocimetry

Fluid visualization by introducing smoke or paint in the test section is usually used to observe the

behaviour of the flow in a qualitative way. Moreover, there are other techniques like Hot-Wire

Anemometry (HWA) or Laser-Doppler Anemometry (LDA) that provide the velocity information

at a specific point. However, these are unable to capture the instantaneous behaviour of the

flow field, as would be useful in the case of turbulent flows. Consequently, Particle Tracking

Velocimetry (PTV) and Particle Image Velocimetry (PIV) appeared to fill this need. In PTV,

individual particles are tracked (Lagrangian framework), hence it is restricted to low-seeding

density images. Conversely, PIV is a flow measurement technique that aims to provide the

instantaneous velocity field in a cross-section of the flow, determining the velocity of the fluid

within finite rectangular areas (Eulerian framework). Therefore, the latter technique can be applied

to higher density images, allowing to obtain the velocity field of larger areas. In Figure 2.1, the

difference in the spatial resolutions between both methodologies is shown.

Figure 2.1: Comparison of spatial resolution between PTV and PIV. Source: [1].

Both techniques rely on the definition of velocity:

u = lim∆t→0
∆s

∆t
(2.1)

where ∆s is the displacement and ∆t the time step separation between two consecutive images
acquired. PTV is restricted to low-speed flows, for instance in cases of microscale flows or flows

3
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with separation or recirculation regions. PIV is mostly used in the research field, and due to

the continuous development and innovation, its popularity on the application in the industrial

environment is rising. For instance in the development of engines, automotive aerodynamics,

wind turbines, sprays, multi-phase flows, etc [2].

Figure 2.2 shows an example of set-up for planar PIV able to measure two velocity components

within the flow field in a plane in a wind tunnel (2C-2D PIV) [3].

Figure 2.2: Skecth of a set-up for 2C-2D PIV in a wind tunnel. Source: [3].

Tracer particles are introduced into the flow domain. Table 2.1 shows the typical seeding

particles used in PIV.

Table 2.1: Technical specifications of seeding particles. Source: [4]

Fluid Material Diameter (µm) Density (kg/m3)

Air DEHS 1− 3 103

Glycol-water solution 1− 3 103

Vegetable oil 1− 3 103

TiO2 0.2− 0.5 1− 4 · 103

Water Latex 5− 50 103

Sphericell 10− 100 0.95− 1.05 · 103

Silver coated hollow glass spheres 30− 100 > 103

The size of these particles is not arbitrary. When compared to air, the density of the particles

is normally much higher than that of the fluid. Therefore, the particle diameter must be chosen

sufficiently small so that the flow is minimally disturbed (PIV is considered a non-intrusive technique

because of this) and they can properly follow the flow motion. However, there is an aspect that

opposes this requirement: the particles also need to scatter enough light to be visible and, hence
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captured by the recording device. The efficiency in how well the particle scatters the light depends

on: the ratio of the refractive indexes n = c/c0 (where c the local speed of light and c0 is the speed
of light in vacuum) of the particles to that of the fluid, the wavelength of the light source used λ
and the particle diameter dp. The larger the particle diameter, the more light will scatter, but, at the
same time, the higher the danger to disturbing the flow field. Therefore, there is a clear trade-off

when choosing the right particle size. An alternative option is to introduce a fluorescent dye to

the tracer particles. In this case, when the dye in the particle absorbs the laser light, it will emit it

at a longer wavelength, which facilitates distinguishing between particles from other objects or

artefacts in the environment. Adding a dye into the particles can be suitable when used in water

(products with density close to water is achievable), but in the case of air, it can be challenging to

obtain similar density such that the buoyancy is preserved, hence this approach is not preferred.

In order to make the tracer particles visible and clearly detected by imaging devices, lasers are

used as illumination sources. Some of the properties that make them suitable for PIV purposes

are that they can produce a pulsed, collimated (parallel to each other) and monochromatic light

beam that can be easily shaped into a thin light sheet. The most popular lasers commonly used

with PIV are listed in Table 2.2.

Table 2.2: Technical specifications of three most popular lasers. Source: [3]

Type Wavelength [nm] Power or pulse energy Repetition rate [Hz]

Argon ion 514, 488 10-30 W CW

Nd:YAG 532 320 mJ 10

Nd:YLF 526 10-30 mJ 10 - 10000

The most common light source used for PIV experiments is the solidstate frequency-doubled

neodymium-doped yttrium aluminium garnet laser (Nd:YAG). Along with this light source, lenses

are added to the set-up to generate the appropriate laser sheet to illuminate the desired volume

allowing keeping the sheet thickness constantly small (see Figure 2.2). The laser is fired at least

twice within a very short and known time interval ∆t. This ∆t will then be used to obtain the

displacement of the particles between the consecutive frames taken by the recording device(s).

Commonly a CCD or CMOS camera conforms the recording system. The acquisition rate

(frames per second, fps in Hz) has to be sufficient enough to enable recording consecutive images

given the ∆t, time separation between laser pulses. Table 2.3 shows the specifications of two
cameras typically used in PIV.

Table 2.3: Technical specifications of two examples of recording systems. Source: [3]

Type Sensor Pixel size Frame rate Exposure time

LaVision sCMOS 16-bit 6.5µm 0.5-0.1 kHz 1µs - 100 ms

Photron Fastcam SA1.1 12-bit ADC 20µm 1-675 kHz 1/fps to 1µs

The imaging system is characterized by its focal length f , f-number (or f-stop) f# = f/D
(where D is the lens aperture diameter) and image magnification M . The latter is defined as the

ratio of di the distance between the image plane and lens and do the distance between the lens
and the object plane.

1

di
+

1

do
=

1

f
M =

di
do

(2.2)
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Ideally, if the tracer particles were captured by the imaging system as spots, the particle images

would present a diameter of:

dgeom = Mdp (2.3)

where dp is the effective particle diameter and M is the magnification.

Nevertheless, imaging systems are affected by diffraction [5]. This effect occurs when plane

light waves impinge on an opaque screen containing a circular aperture and, in consequence, a

far-field diffraction pattern is generated as shown in Figure 2.3.

(a) (b)

Figure 2.3: Diffraction example with (a) larger and (b) smaller apertures. Source: [6].

The use of a lens allows the far field pattern to be imaged on the image sensor. However,

when a point is to be imaged (e.g. a small scattering particle inside the light sheet), it does not

appear as a point in the image plane but appears as a diffraction pattern even if it is imaged

by a perfectly aberration-free lens. The pattern imaged results in a central peak of the intensity

distribution called Airy disk, where the rings around the maximum showing decreasing brightness

are called Airy rings (Figure 2.4). The light distribution in the Airy disk is well approximated by a

Figure 2.4: Airy disk as aperture changes. (Top) f# = 2.8; (bottom) f#=8. Source: [7].

Gaussian intensity distribution I(x) [8].

I(x) = Imaxe

(
− (x−xo)

2

2σ2

)
(2.4)
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where Imax is the maximum value of intensity, σ represents the radius of the Gaussian-like

intensity profile and must be set to σ = λ(1+M)f#
√
2π, in order to approximate diffraction limited

imaging [3].

Considering the imaging system configuration and the size of the airy disk, the diffraction effect

that limits the minimum particle image diameter can be accounted with the following expression:

ddiff = 2.44λ(1 +M)f# (2.5)

The diameter of the Airy disk ddiff represents the smallest particle image that can be obtained for
a given imaging system. Hence, an acceptable estimate of the particle image diameter is given by

the Euclidean sum of the geometric particle diameter and the diameter due to diffraction effects:

dτ =
√

d2geom + d2diff (2.6)

In PIV, ddiff is more predominant when recording small particles (≈ few microns) at small

magnifications. On the contrary, the geometric diameter dgeom becomes more significant in the

case of larger particles and/or larger magnifications. As depicted in Figure 2.3, the size of the

Airy disk depends on the aperture. A smaller aperture will produce a larger airy disk compared to

a larger aperture.

The particle image diameter is defined by Equation 2.6 only when particle images are in focus,

i.e. when the light sheet thickness ∆z0 is smaller than the focal depth or depth of field δz of the
optical system given by:

δz = 2f#ddiff
M + 1

M2
= 4.88f2

#

(
M + 1

M

)2

λ (2.7)

When trying to record such small objects like tracer particles, the CCDs or CMOS pixel size

needs to be accounted. If the pixel size exceeds the size of the individual particle image, then

the entire position of the particle, including its light intensity distribution, will be lost as depicted

in Figure 2.5 (left). Particle images sizes should be between 2–4 pixels to keep the effects of

peak-locking error to a minimal level [9] [10].

Figure 2.5: Digital imaging of small particles. Source: [11].

When two consecutive recordings have been acquired, the images are divided into small

sections, called interrogation windows, that contain a statistically significant number of tracer

particles. The interrogation windows from each image frame are cross-correlated with each other,

pixel by pixel. This process returns the discrete cross-correlation map, whose highest signal peak
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position relative to the origin indicates the average particle displacement. An image’s smaller

scale is a pixel, which means that the resulting particle displacement will be given as an integer

number of pixels that the particle has moved in time. Therefore, in order to obtain the particle

image displacement with sub-pixel precision, the correlation peak needs to be interpolated around

its maximum. This is commonly done by approximating the cross-correlation curve to a Gaussian

curve. By repeating the process to the whole image area, the velocity field over the recorded flow

domain is obtained.

Figure 2.6: Sketch of cross-correlation and peak search for velocity vector determination. Source: [12].

PIV presents several advantages that makes the technique very appealing. It is a non-intrusive

velocity measurement, which means that no objects that could disturb the mechanical properties

of the flow domain are introduced into the fluid. This enables a more accurate measurement,

compared to other techniques like hot-wire velocimetry (HWA) or pressure probes. PIV is a whole

field technique, therefore it does not provide point information within the flow domain, but allows

capturing instantaneous and time-resolved information on the whole flow field domain.

Figure 2.7: Planar and Stereo-PIV set-ups. Source: [13].

Planar PIV (2D-2C) was introduced in the decade of the 80’s as an innovative and cutting-edge

technology to measure instantaneous two velocity components (u and v) within the plane domain
(x, y). Since then it has been used in a wide variety of areas. Guida et al. investigated the effects
of the azimuthal position of the measurement plane in a fully baffled vessel agitated by a pitched
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blade turbine [14]. Terra et al. performed 2D PIV experiments on the flow in the wake of a cylinder

in cross flow [15]. Brito et al. used the technique to get the flow field on the middle section of

a coiled copper pipe [16]. An analysis of multiple air jets impinging on a moving flat plate was

carried out by Barbosa et al. [17]. In the field of sports aerodynamics, Jux et al. [18] analysed

three different bike wheel tires in cross wind conditions with planar PIV measurements in the TU

Delft Open Jet Facility.

Themeasurement of the instantaneous velocity vector fields with the three velocity components

(u, v and w) within a two-dimensional plane domain (x, y) is possible thanks to planar stereoscopic
PIV (2D-3C). By introducing a second camera in an angle (see setup in Figure 2.7) and considering

that the laser sheet has a certain thickness, the third velocity component can be retrieved as

the out-of-plane velocity component [19]. Spoelstra et al. used large-scale stereoscopic PIV

measurements on a plane crossed by a cyclist to analyse the flow in action (Ring of Fire technique)

[20]. This technique has also been implemented on the health field, for instance on the analysis

of the rupture risk of intracranial aneurysms [21]. [22]. The wind energy field also makes use of

this technique; some studies involve the analysis of the wake deflection of a vertical axis wind

turbine (VAWT) [23] or rotor–wake and wake–wake interaction of VAWTs [24].

Figure 2.8: Planar PIV raw images. Source: [25].

2.1.1. 3D Volumetric PIV

Planar and stereoscopic PIV provide information about the velocity field in a 2D space. However,

turbulent flows are naturally 3D. Therefore, in order to be able to better understand them, these

should be resolved in all three dimensions, which is not possible with either planar or stereo PIV.

An approach that can be followed to retrieve information about a volume domain is multiplane

Stereo-PIV, which consists on performing multiple 2D planes measurements and, by comparing

them together, interpret the velocity field in a 3D space. Kahler invesitaged fully developed

turbulent boundary layer flow along a flat plate [26] and turbulent mixing in wall bounded flows

[27] by using multiplane Stereo-PIV. On the medical side, the flow within a transparent model

of a human lung is also studied by Schröder et al. [28] by means of this technique. However,

this process has limitations with its application. On one side, the 3D velocity field extracted from
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the different 2D planes is not instantaneous since they are not acquired at the same time. In

consequence, this technique would only suitable if the acquisition time between planes is smaller

than the minimum time scale of the flow. Also, high-speed cameras would be needed, which

increases the cost of experiment.

Figure 2.9: Tomographic-PIV set-up. Source: [13].

In 2006, Elsinga et al. [29] introduced Tomographic Particle Image Velocimetry (Tomographic-

PIV or Tomo-PIV) which, thanks to tomographic reconstruction techniques using multiple views,

allowing to capture instantaneous three-dimensional velocity vector field volume (3D-3C). The

working principle is similar to planar PIV: the velocity field is obtained by the displacement of the

particles from two subsequent images. However, there are some notable differences between

both approaches. Figure 2.9 depicts a simplified set-up for Tomo-PIV.

The imaging of the tracer particles in a Tomographic-PIV experiment is conducted at illumina-

tion intensity typically an order of magnitude smaller than that of planar PIV due to the expansion

of the laser beam over a large cross section. The problem is further exacerbated by the small

optical aperture (high f-number) of the imaging system, needed to ensure focused particles across

the whole measurement depth. As a result, the peak intensity of particle images decreases by

almost an order of magnitude when the volume depth is doubled. As a consequence, the intensity

counts of particle images rarely exceed a few hundreds.

The same tracer particles described in Section 2.1 can also be used for volumetric PIV.

However, in 2015, neutrally buoyant Helium-filled Soap Bubbless (HFSB) were introduced as

an alternative tracer particles to overcome the limitations of light scattering in larger-scale cases

[30]. These consist of soap bubbles filled with a gas that has a smaller density than air (typically

helium). By compensating the weight of the soap with the volume of the helium inside, the neutral

buoyancy condition can be obtained [31]. Thanks to their diameter of 0.3 mm and a response

time of less than 15 µs scatter 10000x more light than µm-particles, it makes them suitable for

large scale PIV/PTV experiments in the lower subsonic regime.

The measurement flow domain is not a plane, but a volume. Therefore, to illuminate this

volume, the thickness of the laser light sheet is expanded thanks to a beam expander. The

intensity of the light is inversely proportional to the thickness of the measurement volume since, as

the laser expands it is less concentrated, making its intensity weaker. This is a limiting factor on

the range of measurement volume size able to illuminate and the light intensity scattered by the

tracer particles. The latter limitation is also related to the recording device characteristics. In order
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to track the particles, all of them need to be in focus across the whole depth of the measurement

domain. To achieve this, the focal depth of all the cameras should be significantly long, which

normally is possible by increasing the numerical aperture of the objectives until the focal depth

matches the thickness of the volume illuminated. This can also be achieved by using lens-tilt

adapters that align the focal plane with the mid plane of the measurement volume (Scheimpflug

condition [29] [32]).

2.1.1.1. Tomographic reconstruction

To retrieve the instantaneous measurement of all three velocity components in a complete 3D

measurement volume (3D-3C), at least three cameras pointing with different angles towards the

measurement volume are required. The more cameras are used, the more additional information

on the particles from different angles, which increases reconstruction accuracy. For a 4-camera

set-up, as shown in Figure 2.10, four pairs of images with different views are obtained. After the

image recordings are acquired, the tomographic reconstruction step for both time steps takes

place, which is basically a mapping function between image and object spaces.

Figure 2.10: Tomographic-PIV flow-chart. Source: [29].

The measurement volume containing the particle distribution (the object) is discretized as a

3D array of cubic voxel elements with their intensity value. Voxel is short for volume pixel, a 3D

equivalent of a 2D pixel. The gray values of each pixel from every camera are projected into the

voxel space by a weighting matrix where the different values are multiplied with one another. The
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2D images are reconstructed into the 3D particle distribution volume by means of a tomographic

reconstruction algorithm (Multiplicative Algebraic Reconstruction Technique, MART) as a 3D

light intensity distribution for each voxel [33]. Then, the three-dimensional cross-correlation is

performed, allowing to retrieve the 3D velocity field within the measurement volume.

Figure 2.11: Volume self-calibration. Red line: original projection; black dot: assumed correct particle

position; dotted green line: corrected back-projection; solid blue arrow: disparity vector. Source: [34].

In order to mitigate reconstruction inaccuracies, a 3D self-calibration [35] of all the cameras

must be done. Each camera records images of a reference calibration plate from different

views. Then, the particles or calibration points are detected and their triangulation in 3D space is

performed. Due to inaccuracies in the calibration function, particles in the measurement volume

are imaged at slightly shifted positions in the camera images - see Figure 2.11. By averaging these

variations across the set of particles within a local sub-volume, 3D disparity maps are constructed,

leading to corrections in the calibration function. This calibration procedure establishes the relation

between image coordinates and the object or physical space.

Figure 2.12 shows the resulting disparity maps of a calibration procedure for a four-camera

tomographic PIV setup, where the top-left shows the reference calibration pattern. Top-right and

bottom-left show acceptable calibration results with the peaks of the ”particles” in the center of

each quadrant, whereas the bottom-right presents displaced peaks, probably due to camera

displacement after calibration. The quality of this procedure will affect the accuracy in the

reconstruction step.

One of the main issues of this technique is the appearance of ghost particles. These are a

number of particles that appear with respect to those actually present in the illuminated mea-

surement volume. This phenomenon increases with higher particle density, the particle diameter

and the length of the line of sight in the volume. An increased particle density produces a larger

percentage of ghost particles, thus decreasing the reconstruction quality. However, at the same

time, a large number of particles allows a higher spatial sampling rate of the flow, returning

a potentially higher spatial resolution. Hence, a high particle density is preferred but always

considering the effect of ghost particles. A way to minimize this effect is to increase the number

of cameras; this allows capturing the measurement domain from different views and therefore,

improving the triangulation of real particle images in the reconstruction step. Another limitation is

the high processing time required for the 3D reconstruction and the velocity field computation,

which supposes a high computational cost.
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Figure 2.12: Disparity maps for a four-camera tomographic system obtained with the 3D self-calibration

technique. Source: [3].

2.1.1.2. Shake-the-Box

Shake-the-Box (STB) is a 3D Lagrangian Particle Tracking Velocimetry (PTV) algorithm [36]. It

combines the calibration methods (volume self-calibration and OTF, Optical Transfer Function,

calibration) of Tomographic-PIV and the iterative triangulation and the image matching (shaking)

by Iterative Particle Reconstruction technique (IPR). The process can be divided into the following

three stages:

• Initialization. First, an initial prediction of the particles locations over a few recordings

(typically the first four time-steps) is done by means of the particle-based Iterative Particle

Reconstruction technique (IPR) [37], whose objective is to pair particles between frames.

The identified particles are considered particle candidates if such particles for which a track

can be identified are considered as true, reconstructed particles. The rest of the particles

(untracked) are potential ghost particles, particles that do not exist but can appear due to

reconstruction. After identifying the particles, the corresponding trajectories are extracted

from the distributions of particle candidates. Consecutive frames are checked and matches

are to be found by applying a search radius around either the particle position or a predictor

location.

• Convergence phase. A prediction for the particles position at the next time-step is done

from the initial particles positions obtained in the previous initialization stage. The particle

tracks predicted position is slightly modified in a process referred to as shaking with the

aim to correct for possible deviations in particle positions between the predicted projected

image and the original image. By doing the residual of the predicted and original images,

new particle positions appear and these are stored as candidate particles. This process

if repeated for every time-step. In the case that these candidate particles appear in four

consecutive time-steps, they are considered as real particles and are kept in the residual,

otherwise they are removed. This process is represented in Figure 2.13.

• Converged phase. The algorithm needs some time-steps where the number of particles
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Figure 2.13: Schematic representation of the Shake-The-Box (STB) for a single time-step. Source: [36].

between time-steps does not change significantly, therefore the process reaches its end,

its converged state. In this stage, these are mostly new particles that have entered the

measurement domain within the last four time-steps.

By tracking the position of each particle tracer at a specific time step∆t, STB allows evaluating

the displacement of each of these particles captured within the measurement volume. This

approach allows fast processing of three-dimensional data with high particle concentrations, while

capturing the vast majority of true particles and minimizing ghost particles.

The Shake-the-Box algorithm allows its implementation in different modes:

• Time-Resolved Shake-the-Box (TR-STB). This is the STB algorithm described above.

• Double-Frame Shake-the-Box (DF-STB). In some cases, time-resolved measurements

cannot be performed due to hardware limitations, especially when the flow of interest is too

fast for the available cameras or illumination characteristics. In this situation, an alternative

approach is Double-Frame Shake-the-Box (DF-STB). In this mode, two sets of double-frame

images are recorded at a pulse separation of different duration (one shorter and one longer).

Saredi et al. [38] proposed a method in which the set of images measured with the shorter

time separation is employed to generate a robust displacement predictor that is used on the

longer time separation to extend and complement the measurement.

2.1.1.2.1 Binning

The data obtained from Shake-the-Box shows the velocity of particles tracked over time as

scattered data over the measurement domain, commonly called unstructured data. In order to

simplify the results and facilitate their interpretation, a binning step can performed to transform

the unstructured velocity information to a structured one.

Binning is a data reduction technique used with the aim to reduce the size and complexity of

3D volumetric flow measurements datasets. It is based on grouping neighboring velocity vectors

within specific previously defined volumes or cells called bins. After this process, a single velocity

value is assigned to each of these bins, resulting in a structured velocity field. This is particularly

advantageous in the case of high-resolution images that contain a big amount of individual particle

track data or when there is a lot of noise or outliers in the data. With the binning, an averaging

of the flow field is being done, which helps reducing the noise in the data. However, this data

reduction approach is case-dependent, so its processing parameters need to be carefully selected

to obtain the desired data with minimally losing the most important features of the flow.
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2.1.1.3. Robotic Volumetric PIV

Robotic PIV consists of a robotic arm fitted with the cameras and the laser light source, all aligned

in a compact housing. Figure 2.14 shows an example of how this technique is used to measure

the flow around a cyclist [39]. The robot arms allows a more flexible data acquisition since if a

new volume wants to be measured, just the robot sequence needs to be changed. This reduces

the complexity of the experimental setup in the test section that can suppose Tomographic PIV

(as seen in Figure 2.9).

Figure 2.14: Robotic PIV set-up in a wind tunnel. Source: [39].

The Robotic PIV configuration is similar to Tomographic PIV (recall Figure 2.9), but as

previously discussed, instead of having a fixed recording and illumination systems, these are

located within a robot arm that facilitates the recording of measurement volumes from different

angles. Multiple 3D velocity measurements are performed with Coaxial Volumetric Velocimetry

(CVV) setup [40] as shown in Figure 2.15. Since the cameras and the laser are aligned, the

proper volume measurement acquisition is guaranteed without the need to manually align them,

which could lead to human errors and a compromise to the measurement accuracy.

Figure 2.15: (Left) Tomographic PIV setup and (Right) Coaxial velocimeter (CVV) setup. Where cameras

(blue), field of view (grey), laser illumination (green) and optical fiber (orange). Source: [40].

Furthermore, knowing the position of the robot base with respect to the domain reference

frame and the robot head CVV position with respect to the robot base, it is possible to transform

the particles reconstructed (e.g. by STB) into the main reference frame and, hence obtain the 3D

velocity field in the physical space.
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2.2. Reflection Treatment Techniques

As exposed in Section 2.1, the basic fundamental requirement of PIV is to be able to track particles.

When these can be properly tracked, their displacement can be determined, and thus velocity

field can be retrieved. At the moment the particles can no longer be traced or are not visible in

the images, the accuracy in the velocity field calculation is compromised.

Some of the best practices to record PIV images for a proper particle-tracking would be: tracer

particles big enough to be visible, camera characteristics such that all particles are in focus,

optimum seeding density (sufficient particles in the field of view but avoid tracers to overlap) and

high contrast between background and particles.

Figure 2.16: Signal-to-Noise ratio 1D representation, where primary peak is peak 1 and secondary peak

is peak 2. Source: [41].

The latter plays a significantly important role to accurately detect and track particles and can

be quantified by the Signal-to-Noise ratio (SNR), which is defined as:

SNR =
peak1

peak2
(2.8)

peak 1 is the highest peak of the cross-correlation, representing where the particles coincide

from one frame to the other. The cross-correlation also shows additional peaks due to noise and

the correlation of non-paired particles. Hence, peak 2 is the second highest peak and can be

interpreted as the background noise of the image. A high SNR yields a situation with dark particles

on a brighter background, which allows distinguishing more easily particles from the background.

Otherwise, in the case of low values of SNR, the particle can no longer be distinguished from the

background, thus their tracking would not be possible.

An important phenomenon that can lead to low SNR values (and even loss of particles) is

light reflections. These are high intensity (typically one order of magnitude higher than particle

intensity) areas that appear due to the laser light impinging on a surface; when the angle of

incidence is close to 90 degrees, this light reflection becomes more intense. Figures 2.17 and

2.18 serve as examples of the effect of these reflections on PIV images and the capability to

detect and track particles. Left images clearly show that the particles in the surroundings of the

surface will almost be untraceable, whereas right images mitigate these reflections but still keep

the presence of the tracers.

These light reflections imply a big detriment when retrieving the velocity field of the measure-

ment domain. When the cross-correlation is performed, reflections can appear as a peak that

would affect the detection of the displacement peak. By human eye, it is clear that a reflection is

a reflection when it appears in a PIV raw image. However, removing them manually would be

a tedious job and it is not feasible with the high amount of data acquired in a PIV experiment

(specially with Volumetric PIV). For this reason, it is particularly important to have an efficient
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Figure 2.17: Flow in the wake of a cylinder obstacle raw image taken by tomographic PIV (left) and

pre-processed image (right). Source: [3].

Figure 2.18: (Left) Raw image of Ariane 5 launcher and (right) pre-processed image with temporal

high-pass filter. Source: [3] [42].

procedure to completely remove them or at least minimize their intensity with the aim to have a

high SNR for particles to be visible and detectable. In the last few years, there have been a few

studies to best define a procedure to mitigate this phenomenon.

The following sections aim to serve as a review of the current methodologies for reflections

detection and their mitigation in different stages of the PIV pipeline.

2.2.1. Reflection treatment methodologies in literature

As described in the previous sections, the PIV pipeline is composed of different steps. There have

been a few studies on reflection detection and mitigation in the different stages of PIV pipeline.

The first simplest option that one could think of to avoid light reflections on the surface of the

model would be to modify the surfaces where the cameras are pointing. One way to do it is to

apply a treatment on the surface of the model. A common strategy is to use matt black paint to

cover the model which makes most of the light to be absorbed instead of being reflected. Another

common approach is to either paint the model with a fluorescent coating (e.g. Rhodamine) ([43],

[44]) or add a fluorescent dye to the particles ([45], [46], [47], [48]). The light reflected by either

the surface or the particles will shift with a different wavelength than the laser light and, by adding

a band-pass optical filter on the camera, the shifted wavelength will be filtered and only the laser

light will be picked up. Another option would be to change the camera view angles with the aim to

avoid light reflections impinging perpendicular to the camera; get a camera view that captures the

surface minimizing the associated reflections ([49], [50]). Nevertheless, in some cases, applying
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the latter techniques is not trivial as complex geometries can suppose a barrier to these set-up

changes for reflection mitigation. For this reason, alternative approaches need to be taken on the

PIV stages concerning data processing.

A statistical model by means of a median detector was introduced by Westerweel [51] to find

the occurrence of spurious vectors in PIV data. Westerweel and Scarano [52] did a follow-up on

the latter approach by establishing a normalized median with respect to a robust estimate of the

local variation of the velocity, which is commonly called universal outlier detection. Wang et al

[53] applied proper orthogonal decomposition (POD) to detect and replace outliers by dynamically

approximating the original pure velocity field. [54]. A way to classify the flow field can be classified

depending on the type of outliers was set up by Tang et al [55] by using the penalized least-

squares (PLS): PIV vector fields containing scattered outliers are detected and corrected using

higher-order differentials, while lower-order differentials are used for the flows with clustered

outliers. Recently, Saredi et al [56] proposed velocity field outlier detection based on the turbulent

kinetic energy (TKE) transport equation; the ratio between local advection and production terms

of the TKE on a streamline determines whether the data is admissible or not.

Despite the previous reflection detection approaches, the most commonly used methodologies

involve pre-processing of raw images. This allows the removal of the pixel intensity corresponding

to light reflections in a stage previous to the velocity field computation. A widespread approach is

background removal of PIV images, which consists of generating a background (or reference)

image and then subtracting it from the raw image. This reference image can be obtained by means

of several ways: recording an image without particles, obtaining the average or local minimum

(Minimum Subtraction) of a set of recordings ([57], [58]), for instance. Willert [8] proposed using a

high-pass filter by subtracting a low-pass-filtered image from the original (typically a 7x7 pixel

smoothing kernel) and then the resulting image is a smoothed with a 2 × 2 pixel kernel filter. This

showed a good performance in bringing most particle images to the same intensity level. LaVision

also introduced an option that subtracts the sliding temporal minimum or sliding average intensity

of each pixel over multiple time steps [59]. Honkanen and Nobach [60] proposed a double-frame

image pre-processing based on subtracting the second frame from the first frame. Their main

assumption is that what is kept still is assumed to be a source of bias and is removed; in this

case, light reflections would be included in this source of bias as they generally stay still for more

than one frame. However, this procedure is limited by the fact that the particle displacements

should be more than one particle image width, not to consider also the particle images as a

source of bias and subtract them. As a continuation of the latter, Mejia-Alvarez and Christensen

[61] introduced a modification by computing a local-median normalization of the intensity with

respect to the difference between sliding median and minimum intensities. [62]. Wang et al [63]

proposed a cut-off filter based on the ratio between the mean gray-scale intensity map and the

original image (called ratio cut method). This approach is shown to be unsuitable for time-varying

reflections with strong intensity since their variance affects the average intensity map. Also, a

non-dimensional threshold has to be manually set, which does not have a universal value yet,

hence a study on which value to set should be done every time this approach is applied.

There are three image pre-processing approaches to highlight that show good performance

on minimizing light reflections on PIV raw images: (1) temporal high-pass (Butterworth) filter-

ing, (2) background image via Proper Orthogonal Decomposition (POD) and (3) background

image generation via anisotropic diffusion. These are presented more in depth in the following

subsections.



2.2. Reflection Treatment Techniques 19

2.2.1.1. Temporal high pass filter

The use of a temporal high-pass filter for the elimination of both steady and unsteady reflections

was proposed by Sciacchitano and Scarano [64]. The intensity signal in time for a specific pixel is

shown in Figure 2.19. Here, reflections and particles can be clearly distinguished from each other:

in the case of a reflection, its intensity appears as a much higher peak and longer duration of

high intensity, which represents low-frequency content. On the other side, particles show as short

pulses of a much lower intensity, hence would be contained as high frequencies in the frequency

domain.

Figure 2.19: Intensity signal at a pixel location in time. Source: [64].

The proposedmethod consists of the decomposition of the pixel intensity signal in the frequency

domain at individual pixel locations by means of Fourier transform. Then, assuming that high

frequencies represent the transit of seeding particles, while low frequency is unwanted reflections.

In order to filter the low frequencies associated with light reflection, a high-pass filter (HPF) is

applied on the light intensity signal. Specifically, a Butterworth HPF is used for this purpose.

Figure 2.20: ARIANE V after-body (a) PIV raw image, (b) minimum intensity subtraction (c) Butterworth

HPF with cut-off frequency 30% of Nyquist frequency. Source: [64].
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The main advantage of this approach is that it can be applied on both steady and unsteady

reflections. However, there are a few limitations to bear in mind. In the case of the pixel intensity

increase rapidly from 0 to maximum intensity value corresponding to a reflection, the use of

the temporal high pass filter would strongly attenuate the reflection, but will not completely

remove it. It also relies on the assumption that the separation of timescales between particle and

object movements should be long enough. Therefore, when objects move at similar speed as

surrounding particles, this approach would not be suitable.

2.2.1.2. POD-based background removal

Mendez et al. [65] proposed using Proper Orthogonal Decomposition (POD) of a sequence of

PIV images with the aim of generating a Reduced Order Model (ROM) that only maintains the

PIV particles. The idea would be to apply a POD filter that is able to automatically detect and

remove the minimal number of modes that represent the background noise.

Figure 2.21 presents a PIV raw image and a comparison of different methodologies to remove

reflections. These results show that POD performs quite well compared to the other techniques

presented. This approach is independent of temporal resolution of recording sequence, and the

sharpness or intensity of the background noise.

Figure 2.21: (a) Raw image, (b) minimum background substraction, (c) Butterworth high pass filter, (d)

CLAHE recontrasting, (e) mininum/maximum adjusting and (f) POD filter approach. Source: [65].

This method requires a large dataset of images for the POD to converge. It also need that

the reflection stays in the same or approximate pixel locations for several number of images,

otherwise the reflection is at risk of being confused with particles that come and go and will

not be removed. Its dependence to threshold selection for ROM reconstruction and its high

computational cost also constitute as additional limitations.
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2.2.1.3. Anisotropic diffusion-based background removal

Adatrao and Sciacchitano [66] proposed the generation of a background image by anisotropic

diffusion of the intensity distribution of the raw image. The main idea is to consider that diffusion

occurs along the edges and not across them, leaving large areas of high intensity, which represent

reflections, in the background image. Then, this background image is used to be subtracted from

the raw image, resulting in a pre-processed image with no reflections but with the presence of

particles.

Figure 2.22: (Top) Raw image with comparison of background and pre-processed images obtained by

anisotropic diffusion method with (middle two rows) tf = 300 and different threshold numbers (K = 5, 10,

50) and (bottom two rows) K = 10 after different numbers of iterations (tf = 10, 300, 1000). Source: [66].

The background image intensity can be obtained as the solution I(x, y, t) of the following

diffusion equation:

∂I

∂t
= ∇ · [c(x, y, t)∇I] = c(x, y, t)∆I +∇c · ∇I (2.9)
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where c is the diffusion coefficient as a function of the magnitude of the intensity gradient |∇I|
and g a monotonic function:

c(x, y, t) = g [∇I(x, y, t), In] g(x, y, t) =
1

1 +
(

|∇I|
K·In

)2 (2.10)

The diffusion coefficient is calculated considering both the magnitude of the intensity gradient

|∇I| and the local normalized intensity In. This allows distinguishing between reflections (bigger
areas of bright pixels) which are considered to have small values of local normalized intensity In
compared to |∇I| and small bright spots (i.e. particle images) with large values of In compared to
|∇I|. To be able to solve Equation (2.9), the threshold parameter K and the number of iterations

tf must be determined. It is found that higher values of K lead to isotropic diffusion, hence

smoothing the reflections and tf defines the number of pixels that will be taken into account in
the diffusion process. The authors advise to perform a study on both these parameters before

applying this approach.

This methodology is suitable for removing reflections single-frame PIV images since it only

takes into account the intensity distribution of the recording. Therefore, it can be applied to

either steady and unsteady reflections (e.g. propellers, pitching airfoil). Conversely, an important

limitation of this procedure is its dependence on good selection of the threshold parameter K and

number of iterations tf , as shown in Figure 2.22. A wrong calculation of these could lead to an

unsuccessful background removal.
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2.3. Fourier Analysis in image processing

2.3.1. 1D Fourier transform

Fourier analysis is named after Jean Baptiste Joseph Fourier (1768-1830), a French mathe-

matician and physicist. He made the following claim: any continuous periodic signal can be

represented as the sum of sines and/or cosines of different frequencies, each multiplied by

different coefficients [67]. This sum is what is commonly known as Fourier series. Non-periodic

functions can also be expressed as the integral of sines and/or cosines multiplied by weighting

function, process that is called Fourier transform. Both the Fourier series and transform have a

common key characteristic: they can be reconstructed completely by means of an inverse process

without any loss of information. This allows the user to work in the Fourier or frequency domain

and then come back to the original domain without losing any information about the function.

The Fourier transform decomposes any function in the temporal or spatial domain into a sum

of sinusoidal basis functions in the frequency domain. Each of these basis functions is a complex

exponential of a different frequency in Hertz (Hz) or the number of cycles per second.

• In the time domain t:

G(f) =

∫ ∞

−∞
g(t)e−j2πftdt (2.11)

• In the spatial domain x:

G(kx) =

∫ ∞

−∞
g(x)e−j2πkxxdx (2.12)

where g(t) and g(x) are continuous temporal and spatial signals, respectively with f being the

frequency in the time domain (Hz or cycles per second) and kx the frequency in space domain
(cycles per unit of space); the two latter are continuous variables. Then to recover the functions

g(t) and g(x) back in the temporal or spatial domain from the corresponding function in the

frequency domain, the inverse Fourier transform is used.

• In the time domain t:

g(t) =

∫ ∞

−∞
G(f)ej2πftdf (2.13)

• In the spatial domain x:

g(x) =

∫ ∞

−∞
G(kx)e

j2πkxxdkx (2.14)

Equations 2.11 and 2.13 represent the so-called Fourier transform pair in the time, which

is often denoted as g(t) ⇔ G(f). Likewise, Equations 2.12 and 2.14 is the Fourier transform

pair in the spatial domain: g(x) ⇔ G(kx). The double arrow means that the right expression

can be obtained by computing the forward Fourier transform of the expression in the left, and,

similarly, the expression in the left can be obtained by taking the inverse Fourier transform of the

expression in the right. Figure 2.23 shows some examples of Fourier transform pairs.

In the case of image processing, as images are finite (specific number of pixels in width and

height), the Discrete Fourier Transform (DFT) will be used. This is the discrete version of the

Fourier Transform (FT) that transforms a signal (or discrete sequence) from the time or spatial

domain to its representation in the frequency domain. An important term to have in mind is the

Fast Fourier Transform (FFT), which refers to any efficient algorithm that computes the DFT.

Therefore, Equations 2.12 and 2.14 can be rewritten into its discrete form as follows:
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• Discrete Fourier Transform (spatial domain):

G(kx) =
N−1∑
x=0

g(x)e−j2πkxx/N (2.15)

• Inverse Discrete Fourier Transform (spatial domain):

g(x) =

N−1∑
kx=0

G(kx)e
j2πkxx/N (2.16)

Figure 2.23: Examples of Fourier transform pairs. Source: [68].

The previous expressions can be re-written using Euler’s formula ejx = cos(x)−jsin(x), where
x is the term accompanying j in the exponent. If g(x) is real (which in the case of an image, it will
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be), the Fourier transform will generally have complex terms, with the formG(kx) = R(kx)+jI(kx),
where R(kx) is the real part of the Fourier transform and I(kx) the imaginary part. The Fourier
transform can also be expressed in the polar form as G(kx) = |G(kx)| ejϕ(kx), composed by a
magnitude and phase for every frequency. The magnitude, phase angle and power of Fourier

transform can be defined as follows.

• Magnitude of the Fourier transform |G(kx)|, which is commonly called Fourier spectrum or

frequency spectrum |G(kx)|, is the square root of the sum of the squares of the real and

imaginary parts.

|G(kx)| =
√

R(kx)2 + I(kx)2 (2.17)

The magnitude refers to the strength or amplitude of individual frequencies that contribute

more to g(x). It shows how much of a specific frequency is present in the signal. When

visualized, the magnitude spectrum represents the distribution of amplitudes across various

frequencies. If g(x) is real, then the amplitude spectrum is symmetric around the Nyquist

frequency (refer to Section 2.3.1.1 for further information about the Nyquist frequency).

When plotting the magnitude |G(kx)|, the x-axis represents the frequency and the y-axis is
the amount of every frequency component in the signal. Rapidly changing functions require

more high frequency content, whereas functions that are moving more slowly will have less

high frequency components.

• Phase angle of the Fourier transform ϕ(kx). The phase spectrum denotes the shift or

position of each frequency component with respect to a reference point, typically the origin.

It indicates the timing or where each frequency’s peak occurs within the signal. The phase

information can significantly influence the signal’s behavior, especially when reconstructing

the original signal from its frequency components.

ϕ(kx) = arctan

(
R(kx)

I(kx)

)
(2.18)

• Power spectrum P (kx). It is obtained as the squared magnitude and represents a metric
of power spectral density (PSD), i.e. the power or energy associated with each frequency

component.

P (kx) = R(kx)
2 + I(kx)

2 (2.19)

The power spectrum allows for the identification of dominant frequencies or peaks in the

signal, facilitating understanding the energy distribution across the frequency domain. Its

application is particularly useful in multiple fields, such as signal processing, engineering

and physics, where understanding the frequency characteristics and relative power of a

signal is essential for analysis, filtering or modification.

Both the magnitude and phase provide a detailed representation of the frequency domain

characteristics of a signal. They allow for the reconstruction of the original signal and analysis of

its frequency content and temporal characteristics. The importance of each of these parts of a

Fourier transform in image reconstruction will be further explained in Section 2.3.2.

Let’s present an example to better understand how to relate the Fourier analysis to PIV image

processing. Recall from Chapter 2.1 that, in PIV, due to diffraction-limited imaging, particle

intensity can be approximated as a Gaussian distribution with standard deviation σ. Therefore,
the corresponding Fourier transform pair is:

g(x) =
1

σ
√
2π

e

(
− x2

2σ2

)
⇔ G(kx) = e−2π2σ2k2x (2.20)



26 Chapter 2. Literature Review

(a) (b)

(c)

Figure 2.24: (a) Gaussian distribution with σ = 0.1, (b) its Fourier spectrum and (c) Fourier transform

phase.

The Gaussian distribution g(x), the magnitude of its Fourier transform (or Fourier spectrum)

|G(kx)| and the phase are plotted in Figure 2.24. It can be observed that the Fourier transform of

the Gaussian function is also a Gaussian (although missing the normalization constant). Moreover,

notice that in Equation 2.20, the standard deviation σ moves from the denominator in the signal

in the spatial domain to the numerator in the Fourier transform (frequency domain). This means

that when the Gaussian distribution exhibits increased spread within the real spatial domain, its

corresponding Gaussian Fourier transform in the frequency domain experiences a narrowing in

its width, and conversely.

2.3.1.1. Nyquist frequency

The Nyquist frequency refers to the maximum frequency that can be accurately represented or

sampled in a digitized signal. It is fundamental in the field of signal processing and is derived

from the Nyquist-Shannon sampling theorem. The Nyquist theorem specifies that a sinuisoidal

function in time or distance can be recovered with no loss of information as long as it is sampled

at a frequency greater than or equal to twice the Nyquist frequency.

This means that for a discrete signal sampled at a frequency Fs, the highest frequency that

can be represented without aliasing (where frequencies fold back incorrectly) is Fs/2, which is
the Nyquist frequency. Frequencies above the Nyquist frequency would appear ”aliased” or
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incorrectly reflected in the digitized signal, distorting the original frequency content. Therefore,

to avoid aliasing and accurately represent frequencies in a digitized signal, the signal must be

sampled at a rate at least twice the highest frequency component of interest to prevent information

loss or distortion.

2.3.1.2. Convolution

Convolution of two functions entails flipping (rotating by 180◦) one function with respect to its
origin and sliding it past the other function. It is mathematically defined as the integral over all

space of one function at τ multiplied another function at x− τ , taken with respect to τ . The latter
can represent any variable including time, frequency or even one, two or three dimensional space.

Convolution will result in a function of a new variable τ , which will represent the same domain as
the original variable x. This operation can be represented by a cross in a circle ⊗ (tensor product

symbol) or by an asterisk ∗. In this document, the asterisk notation will be used to represent
convolution. Given two continuous functions g(x) and h(x), with x being a continuous variable,
the convolution is:

(g ∗ h)(x) =
∫ ∞

−∞
g(τ)h(x− τ)dτ (2.21)

In Equation 2.21, the flipping mentioned previously is given by the minus sign in (x− τ), where x
is the displacement required to slide one function past the other, and τ is a dummy variable that
is integrated out.

Then, considering the Fourier transforms G(kx) and H(kx) of g(x) and h(x), respectively, the
Convolution Theorem [67] states that the Fourier Transform of the convolution of two functions, in

this case in spatial domain, is the product of the Fourier Transforms of the functions. Conversely,

if we have the product of the two transforms, we can obtain the convolution in the spatial domain

by computing the inverse Fourier transform. In other words, g ∗h andG ·H are a Fourier transform

pair and can be expressed as:

g(x) ∗ h(x) ⇔ G(kx) ·H(kx) (2.22)

This states that convolution in the spatial domain is analogous to multiplication in the frequency

domain, the two being related by the forward and inverse Fourier transforms, respectively. This

means that for linear, time-invariant systems, where the input/output relationship is described by

a convolution, one can avoid convolution in the spatial domain by using Fourier Transforms. The

convolution theorem is the foundation for filtering in the frequency domain: the real input signal

can be modified by applying a filter H(kx) in the frequency domain and then apply inverse Fourier
transform to recover the signal.

2.3.1.3. Filtering in frequency domain

A function in the temporal or spatial domain can be modified by filtering in the frequency domain.

Given the Convolution Theorem described previously, this can be done by multiplication of a filter

and the Fourier transform of the initial function. There are several types of filters used to modify

frequency content and they can be generally classified into four main types (see Figure 2.25 for a

visual example of each filter):

• Low-pass filter. This filter allows frequencies below a certain cutoff frequency to pass

through and attenuates frequencies above that limit. It is typically used to remove high fre-

quencies associated with noise or undesired components while keeping the lower-frequency

components in a signal.

• High-pass filter. Opposite to a low-pass filter, a high-pass filter permits frequencies above a

specific cutoff frequency and removes those below that cutoff. It is often used to eliminate

low-frequency noise or to isolate high-frequency components.
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• Band-pass filter. This type of filter allows a range or band of frequencies to pass through,

while attenuating frequencies outside the specified range. It is employed when specific

frequency bands within a signal are of interest, and the surrounding frequencies need to be

filtered out.

• Band-stop filter (low-high or notch filter). Opposite to a band-pass filter, this filter blocks a

specific range or band of frequencies, allowing frequencies outside that range to stay in the

signal. It is useful when particular frequencies need to be eliminated from a signal, but at

the same time keeping the rest of the spectrum relatively unaltered.

Figure 2.25: Types of filters. Source: [69].

Frequency domain filtering enables the selective manipulation (modify, enhance or isolate) of

specific frequency components within signals or images, allowing for targeted enhancements,

noise reduction, and various analysis techniques in diverse fields ranging from image and audio

processing to telecommunications and beyond.

An illustrative example will be presented to enhance the understanding of how these filters

work and their resulting outcomes. Low-pass and high-pass filters in the form of a Gaussian

distribution with different values of standard deviation σ are applied to the previously presented

Gaussian function distribution from Equation 2.20 depicted in Figure 2.24. Figures 2.26 and 2.27

show the low-pass and high-pass filters, respectively, with their resulting filtered Fourier transform

and inverse Fourier transform signals.

(a) (b) (c)

Figure 2.26: (a) Gaussian low-pass filter H(kx), (b) filtered Fourier transform G(kx) ·H(kx) and (c) its
inverse Fourier transform g′(x) for different values of standard deviation σ.

In the case of a low-pass filter, as the standard deviation increases, the filter becomes more

outspread, leading to more higher frequencies filtered out. Hence, a filter with high σ will suppress

higher frequencies compared to a filter with lower σ. This is shown in the filtered Fourier transform
signal in Figure 2.26 (b). As the filter size increases (higher standard deviation), the resultant

filtered Fourier transform more closely resembles the original FT, which will result in the same

initial function in space domain when the inverse FT operation is performed. This is depicted



2.3. Fourier Analysis in image processing 29

in Figure 2.26 (c). A narrow filter results in a a filtered signal with decreased amplitude (-70%

amplitude loss) compared to the original. Whereas, a more conservative low-pass filter (high

standard deviation) will provide a signal that with more similarity to the input signal treated.

(a) (b) (c)

Figure 2.27: (a) Gaussian high-pass filter H(kx), (b) filtered Fourier transform G(kx) ·H(kx) and (c) its
inverse Fourier transform g′(x) for different values of standard deviation σ.

Similar to the low-pass filter, as the standard deviation σ is increased, the high-pass filter H
will filter out more high frequencies. Figure 2.27 (b) shows that as more frequencies are filtered

out, the filtered signal amplitude decreases significantly until losing 96% of its amplitude with the

highest standard deviation σ = 0.1. Even the narrowest filter (σ = 0.01) supposes a loss of 30%

of the amplitude. This is because a high-pass filter is being applied, which means that the low

frequency components that are related to the mean of the signal are being removed. A noticeable

phenomenon that occurs with narrower high-pass filters is the negative overshoot that appears

when the signal’s amplitude approaches zero. This phenomenon is a consequence of the Gibbs

effect, which will be further explained in the following Section 2.3.1.4.

2.3.1.4. Gibbs effect

In one-dimensional Fourier analysis, the Gibbs effect, or Gibbs phenomenon, refers to an over-

shoot or ringing artifact that occurs when approximating a discontinuous signal or a signal with

sharp transitions using a finite number of Fourier components. This phenomenon happens

because the Fourier basis functions are oscillatory and, hence they cannot represent or contain

sharp transitions or discontinuities. However, when these are present in the modified Fourier

transform and the inverse operation of the Fourier transform is performed, the resulting signal

overshoots near the discontinuity, leading to oscillations that do not converge to the true value.

This is precisely what happened in the previous example in Figure 2.27. The filtered or modified

Fourier transforms with a low standard deviation high-pass filters present a discontinuity near the

zero frequency. When the inverse Fourier transform is obtained the resulting signals overshoot

near the discontinuity.

Another example would be when representing a signal with sharp changes, such as a square

wave, using a Fourier transform with a finite number of terms. The reconstructed signal might

manifest oscillations near the discontinuities as depicted in Figure 2.28.

The Gibbs phenomenon is a fundamental limitation when approximating discontinuous signals

using a finite number of Fourier components and is an inherent property of Fourier analysis when

dealing with signals that have sharp transitions or discontinuities. Albeit the oscillations near the

discontinuities cannot be completely eliminated, the amplitude of these can be reduced by using

a higher number of Fourier components in the approximation.
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Figure 2.28: Gibbs effect example on a rectangle pulse (where N is the number of terms used to

approximate the pulse, with N5 > N4 > N3 > N2 > N1). Source: [70].

2.3.2. 2D Fourier transform

The 2D Fourier transform is an extension of the 1D Fourier transform, used to analyze two-

dimensional signals, such as images. It is a significantly important tool in image processing, used

to decompose an image into its sine and cosine components. The result represents the image in

the Fourier or frequency domain, contrasting with the original input image, which exists in the

spatial domain.

• Fourier Transform:

G (kx, ky) =

∫ ∞

−∞

∫ ∞

−∞
g(x, y)e−j2π(kxx+kyy)dxdy (2.23)

• Inverse Fourier Transform:

g(x, y) =

∫ ∞

−∞

∫ ∞

−∞
G (kx, ky) e

j2π(kxx+kyy)dkxdky (2.24)

where kx and ky are the frequencies associated to the x (horizontal) and y (vertical) axis, respec-
tively.

As mentioned in the previous Section, the Discrete Fourier Transform (DFT) is used to analyze

discrete signals, such as digital audio and images. It decomposes a discrete signal into its

individual frequency components, allowing for the analysis of the frequency content of the signal.

The DFT and its inverse operation in the 2-dimensional space are computed as follows:

• Discrete Fourier Transform:

G (kx, ky) =

N−1∑
x=0

M−1∑
y=0

g(x, y)e
−j2π

(
kx
N

x+
ky
M

y
)

(2.25)

where g(x, y) is an image of size (NxM ), kx the spatial frequency in the x-axis and kx
the spatial frequency in the y-axis. These equations are evaluated for values of the kx =
0, 1, 2, ..., N − 1 and ky = 0, 1, 2, ...,M − 1.

• Inverse Discrete Fourier Transform:

g(x, y) =
1

NM

N−1∑
kx=0

M−1∑
ky=0

G (kx, ky) e
j2π

(
kx
N

x+
ky
M

y
)

(2.26)

for x = 0, 1, 2, ..., N − 1 and y = 0, 1, 2, ...,M − 1.



2.3. Fourier Analysis in image processing 31

The DFT is the sampled Fourier Transform and therefore does not contain all frequencies

forming an image, but only a set of samples which is large enough to fully describe the spatial

domain image. The number of frequencies corresponds to the number of pixels in the spatial

domain image, i.e. the image in the spatial and Fourier domain are of the same size.

2.3.2.1. Properties of the 2D Fourier transform

Linearity

The principle of superposition states that the response produced by the combined effect of

several inputs on a system equals the sum of the individual responses that each input would

cause independently. Hence, a system is linear if its response to two signals is equal to the sum

of the responses of the individual signals. A system that satisfies the principle of superposition is

linear. In the case of a Fourier transform, it is a linear operation since one can affirm that:

F(Ag1 +Bg2) = AF(g1) +BF(g2) (2.27)

where F denotes the Fourier transform operation and g1 and g2 represent two signals. This
equation shows that if you take the Fourier transform of a linear combination or sum of functions,

the resulting Fourier transform is equal to the sum of their individual Fourier transforms.

The application of the linearity property in the Fourier transform allows analysis and manipu-

lation of signals in the frequency domain. It enables the decomposition of complex signals into

simpler sinusoidal components in the frequency domain, enabling a deeper understanding of

the frequency content of the signals for its analysis and reconstruction. This means that images

can be divided by looking at their frequency domain content and identifying the corresponding

components.

Shift invariance Shift invariance, also known as translation invariance, in Fourier analysis

refers to a property where a system or an operation remains unaffected by shifts or translations in

the input signal’s domain, specifically concerning time or space. In the context of Fourier analysis,

a system or operation is considered shift-invariant when the Fourier transform of a translated or

shifted input signal is directly related to the Fourier transform of the original signal, with the same

shift applied to the transformed signal.

Figure 2.29: Example of shift invariance in Fourier transform. Source: [71].
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This property essentially means that if all features in an image are shifted or if this image is

captured from a different position, the magnitude of the Fourier transform will remain unchanged,

but there will be a phase shift in the frequency domain. Shift invariance is a significant property

because it ensures that the phase change caused by a shift is consistent across all frequencies.

Shift invariance is vital in many signal processing and analysis applications. For instance,

in image processing, a shift-invariant system ensures that features or patterns in an image are

identifiable and can be recognized even if the image is shifted. This property enables various

algorithms, filters, and operations to be more robust and effective in analyzing signals or images

regardless of their spatial or temporal position.

Low and high frequency components In Fourier analysis, the frequency components of a

signal can be categorized into low and high frequencies, each carrying distinct characteristics.

Low frequencies are associated with slower oscillations or gradual changes in a signal. In the

frequency domain, they are near the origin as shown in Figures 2.30 (a) and (b). The origin is

commonly known as the dc component and it is where the average value of the original image is

contained. For instance, in an image, low-frequency components represent smoother transitions

between intensities. Lower frequency components contribute to the base or background of the

signal.

On the other side, high frequencies are situated further from the origin and imply rapid changes

in pixel intensity as can be sharp edges or features in the image (see Figures 2.30 (c) and (d)).

These pertain to faster oscillations or rapid changes in a signal. High frequencies in the frequency

domain represent the components of a signal that change rapidly or have shorter cycles. They

capture fine details or sharp changes in images, such as edges or textures.

(a) (b)

(c) (d)

Figure 2.30: Examples of sinusoid gratings with different frequency and direction. Source: [72].

Note in the figure above that the Fourier transform components appear in the opposite direction

of their corresponding original image. This is because the change in pixel intensity occurs in the

contrary direction compared to the horizontal or vertical bars. For instance, Figure 2.30 shows

horizontal lines that change intensity in the vertical direction, thus the Fourier transform shows

the frequency components in the vertical axis.
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Symmetry Another property of a Fourier transform is that if a function g(x, y) in the spatial

domain is real, its Fourier transform is a conjugate symmetric, thus

G∗(kx, ky) = G(−kx,−ky) (2.28)

This can also be applied on the opposite case: when the function g(x, y) in the spatial domain
is imaginary, its Fourier transform is a conjugate antisymmetric: G∗(−kx,−ky) = −G(kx, ky).
This will be important in image processing when filtering in the frequency domain and then

reconstructing the filtered function in the spatial domain via the inverse Fourier transform operation.

An image is generally real per se, hence if a filter is applied in its Fourier transform, the output of

the inverse FT will have to be real as well. In consequence, the filtered FT must be a conjugate

symmetric for the resulting image to be real.

In Matlab, the function ifft2() is used to perform the inverse Fourier transform in a 2D variable

(i.e. an image). Its input is the filtered Fourier transform and, optionally, if the ’symmetric’ flag

is used as second argument, it will treat the filtered FT as conjugate symmetric by ignoring

the second half of its elements (that are in the negative frequency spectrum). This option is

useful when the filtered Fourier transform is not exactly conjugate symmetric, merely because of

round-off error. If this option is not used, the resulting image would contain imaginary elements,

which would not represent properly the filtered image.

Fourier transform components Similar to the 1D case, the 2D Fourier transform is generally

complex and can be expressed as

G(kx, ky) = R(kx, ky) + jI(kx, ky) = |G(kx, ky)| ejϕ(kx,ky) (2.29)

(where R and I are the real and imaginary parts of G(kx, ky). Therefore, in order to represent
its components, the magnitude or Fourier spectrum |G(kx, ky)| and the phase angle or phase
spectrum ϕ(kx, ky) are visualized. Their calculation is analogous to the process shown in Section
2.3.1 in Equations 2.17 and 2.18. However, as a reminder and for clarification, the corresponding

equation in 2D space are presented below.

|G(kx, ky)| =
√
R(kx, ky)2 + I(kx, ky)2 ϕ(kx, ky) = arctan

[
R(kx, ky)

I(kx, ky)

]
(2.30)

From Equation 2.25, and considering the origin of the frequency domain (kx = 0, ky = 0), the
discrete Fourier transform is:

G(0, 0) =

N−1∑
x=0

M−1∑
y=0

g(x, y)

This proofs that the zero-frequency component DFT is proportional to the average of the signal in

the spatial domain g(x, y), as

G(0, 0) = NM
1

NM

N−1∑
x=0

M−1∑
y=0

g(x, y) = MNg

where g represents the average value of a function g(x, y). Additionally,

|G(0, 0)| = MN |g| (2.31)

As the proportionality constant MN is usually large, |G(0, 0)| typically is the largest component
of the spectrum by several orders of magnitude larger than the rest of the content. Since the
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Figure 2.31: Two examples and their Fourier and phase spectrums (from left to right). Source: [71].

frequency components kx and ky are zero at the origin, the term |G(0, 0)| is commonly called the
dc component of the transform.

All these concepts might seem somewhat abstract, hence, Figure 2.31 serves as an illustration

for a visual interpretation of what magnitude and phase represent in the image Fourier domain.

The magnitude shows how much signal there is at a particular frequency component and the

phase encodes the spatial information (indirectly) about how the image features are distributed. In

the magnitude plot in Figure 2.31 (B) and (E), the area around the origin of the magnitude contains

the highest values (and thus appears brighter in the image). As explained previously, this area is

the dc component and includes the average of the input image. Because this term dominates,

the dynamic range of other intensities in the displayed image appear rather compressed (shown

clearer in (E)).

But, which term is more relevant when reconstructing an image: the magnitude or the phase?

This question can be answered with the example in Figure 2.32, which shows two examples of

input images, their corresponding Fourier and phase spectrums and, additionally, reconstruction

of the images from only using the magnitude and only the phase.

The spectral components of the Discrete Fourier Transform (DFT) dictate the amplitudes of

the sinusoidal elements that constitute an image. A higher amplitude at a particular frequency

indicates a greater influence of the corresponding sinusoid within the image, while a lower

amplitude suggests its reduced presence. If the inverse DFT of the image example presented

before is done only based on the Fourier spectrum (setting the phase angle to 0), the resulting

images (Figure 2.32 (b)) exclusively retain data about the intensity of the pixels, with the dc term

being the most dominant. However, the resulting image lacks shape details due to the phase

being set to zero; the pixels are not arranged with a coherent form, not giving any information to

the user for self-interpretation of the image.

Although less straightforward, the phase components hold similar significance as the magni-

tude. They denote the positional displacement of the sinusoidal constituents from their origins.

Although there is no detail in the phase that would lead us by visual analysis to associate it with

the structure of its corresponding image, the information they provide to image reconstruction is

crucial in determining shape features of the image. To illustrate this, the input images in Figure
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2.32 were reconstructed using only its phase angle (computing the inverse DFT using ϕ(kx, ky),
but setting |G(kx, ky)| = 1). It is can be seen that much of the intensity information has been
lost since the information is carried by the spectrum since it was not used in this reconstruction.

However, the shape features from the original raw image are clearly maintained and the faces of

the original images can be clearly recognised, even though with no such intensity.

(a)

(b) (c)

(d) (e)

Figure 2.32: (a) Input images, (b) Fourier spectrum |G(kx)|, (c) phase angle, (d) images reconstructed
using only their spectrum and (e) images reconstructed using only their phase angle. Source: [73].

As a further example, Figure 2.33 show two examples of what occurs if an image is recon-

structed when the magnitude is maintained but the phase is swapped with the phase information

of another image. The left images show the original images of a cameraman and a girl. In the right

hand side, there are the reconstructed images. The top one is regenerated with the cameraman

magnitude and the phase of the girl’s image. The features shown are clearly from the girl’s image;

no information about the cameraman can be interpreted in this image. Similarly, the bottom one
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is again regenerated, but with the girl’s magnitude and the cameraman’s phase. Again, only the

shape of the camera man can be distinguished. This strongly illustrates the importance of the

phase angle in determining shape characteristics in an image.

Figure 2.33: Two images are Fourier transformed. Their phases are swapped and then, they are inverse

Fourier transformed. Source: [74].

To sum up, the magnitude of the 2-D DFT contains the intensities or the amount of a specific

frequencies within the image, while the associated phase represents the angles that provide

positional information about the spatial localization of features within the image. Note from

the previous examples that, in general, visual interpretation of phase angle images yields little

intuitive information. However, it has been shown that the phase is extremely important when

reconstructing an image as it provides powerful information of the features and where they are

located within an image.

2.3.2.2. Nyquist frequency

Analogously to 1D (see Section 2.3.1.1), the Nyquist frequency in 2D space is the maximum

spatial frequency that can be accurately represented or sampled in an image in both the horizontal

(x-axis) and vertical (y-axis) directions. It is significantly important as it ensures that the image is
properly sampled without aliasing, where higher frequencies fold back or create artifacts due to

undersampling.

Figure 2.34: Nyquist frequency representation in 2D.
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For a 2D digital image, the Nyquist frequency is related to the maximum frequency content

that can be accurately captured during the digitization process. For this, if an image is sampled

at a rate of fs samples per second (or per unit distance) in the x and y directions, the Nyquist
frequency will be fs/2 cycles per unit distance in both horizontal and vertical dimensions. When

the function domain is distance, as in the case of image processing, the sample rate might be

pixels/cm and the corresponding Nyquist frequency would be in cycles/cm.

2.3.2.3. Filtering in 2D spatial frequency domain

To explain filtering, recall convolution from Section 2.3.1.2 applied to 1D signals. Extrapolating

the expression to 2D results in the called 2D circular convolution:

(g ∗ h)(x, y) =
N−1∑
x=0

M−1∑
y=0

g(n,m)h(x− n, y −m) (2.32)

for x = 0, 1, 2, ..., N − 1 and y = 0, 1, 2, ...,M − 1. The 2D Convolution theorem states that

g(x, y) ∗ h(x, y) ⇔ G(kx, ky) ·H(kx, ky) (2.33)

g(x, y) · h(x, y) ⇔ 1

NM
G(kx, ky) ∗H(kx, ky) (2.34)

where G(kx, ky) and H(kx, ky) are the the Fourier transforms of the 2D space functions g(x, y)
and h(x, y). Equation 2.33 represents an equivalence between the spatial and frequency domain
and is considered the basis of linear filtering in the frequency domain.

Filtering in the frequency domain consists of modifying the Fourier transform of an image by

multiplying the latter by a filter or filter function H(kx, ky), then computing the inverse transform to

obtain the spatial domain representation of the processed result. Frequency is directly related to

spatial rates of change, it is not difficult intuitively to associate frequencies in the Fourier transform

with patterns of intensity variations in an image. As proofed in Section 2.3.2.1, the slowest varying

frequency component (kx, ky) = (0, 0) is proportional to the average intensity of an image. As
we move away from the origin of the transform, the low frequencies correspond to the slowly

varying intensity components of an image. As we move further away from the origin, the higher

frequencies begin to correspond to faster and faster intensity changes in the image. These are

the edges of objects and other components of an image characterized by abrupt changes in

intensity.

Filtering techniques in the frequency domain are based on modifying the Fourier transform to

achieve a specific objective, and then computing the inverse DFT to return to the spatial domain.

The two components of the transform that can be interpreted are the transform magnitude

(spectrum) and the phase angle. Visual analysis of the phase component generally is not

very useful, whereas the spectrum provides some useful guidelines as to the gross intensity

characteristics of the image from which the spectrum was generated.

2.3.2.4. Applications of image filtering in frequency domain

Image processing using the Fourier transform in the spatial domain finds applications in various

fields due to its ability to analyze, enhance, and manipulate signals and images by understanding

their spatial frequency content. It enables the analysis of an image’s frequency content, revealing

details and patterns that might not be easily discernible in the spatial domain. Some significant

fields where this technique is applied include:

• Medical Imaging. Fourier-based image processing is used in medical imaging techniques

like MRI, CT scans, and ultrasound to enhance image quality, reduce noise, and improve
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diagnostic capabilities by isolating and analyzing specific features in the images ([75], [76],

[77]).

• Artificial Intelligence and Computer Vision. Fourier-based image processing is used in com-

puter vision tasks, like object detection, segmentation, and feature extraction, contributing

to machine learning and AI algorithms for various applications. It also helps in biometric

image enhancement and feature extraction for facial or fingerprint recognition systems [78],

[79], [80].

• Image Compression and Storage. Fourier techniques are employed in image compression

methods (e.g., JPEG) to reduce file size while retaining essential information, making it

feasible to store and transmit images efficiently ([81], [82]).

• Astronomy and Astrophysics. In astronomy, Fourier-based image processing assists in

cleaning and enhancing astronomical images, enabling clearer observations and analysis

of celestial objects ([83], [84]).

Image processing via Fourier Transform in the spatial domain is a powerful tool that finds

applications across multiple fields, contributing to better analysis, enhancement, and interpretation

of images for various purposes, including medical diagnostics, security, artificial intelligence, and

more.



3
Characterization of

reflections

Recall that the aim of the project is to reduce or mitigate the impact of reflections while preserving

the pixel intensity of particles in order to improve particle tracking in robotic PIV. To achieve this,

it is crucial to understand what are the main characteristics associated with reflections and those

linked to particles. Characterizing laser light reflections involves analysing how they appear in

the images acquired by the imaging system and in the resulting processed Shake-the-box data.

Therefore, it is essential to perform a reflection characterization prior to proposing a methodology.

3.1. Reflection characterization in PIV images

The shape of the reflection highly depends on the laser beam characteristics. Figure 3.1 shows a

set of examples of raw images with reflections for two different PIV techniques.

(a) (b)

Figure 3.1: Laser light reflection on (a) a planar PIV case, (b) robotic PIV case. Source: [85], [86].

In the case of 2D planar PIV (Figure 3.1 (a)), the laser beam is more concentrated and,

therefore the resulting reflections appear as concentrated areas or sharp edges. Whereas in the

case of 3D robotic PIV, as a volume is to be acquired, the laser beam is expanded in a conical

shape, which results in a large, diffused region of high intensity as depicted in Figure 3.1 (b).

The reflection can easily be spotted, as a glare spot, of high variable intensity, and much bigger

than the particles, which, due to diffraction effects, typically appear in a Gaussian shape with

a small diameter of a few pixels. In the worst case, it can saturate the detector but in general,

39
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the reflection intensity is higher or similar than that of the particles, which will have a significant

impact on the resulting velocity field. This will be important when trying to distinguish them from

particle images.

Let’s take a closer look at the sphere case of Figure 3.1 (b). A close-up on the reflection and

particle images is shown in Figure 3.2.

(a)

(b) (c)

Figure 3.2: (a) Instantaneous Robotic PIV raw image of sphere case, close-up on a region (b) with

particles and (c) the reflection.

The main and, in general, most obvious characteristic of reflections is their size: they appear

as large areas of high pixel intensity, often to the point of saturation of the camera detector. This

characteristic makes them visually prominent in images. On the other side, particles appear as

small areas of high pixel intensity (around a few pixels) that resembles a Gaussian distribution.

Filtering by pixel intensity is not accurate since both particle images and reflection have similar

intensity values, but there is a clear difference in the size that allows us to distinguish reflections

and particles by their respective wavelengths. Reflections tend to have longer wavelengths, while

particles, being smaller, have much shorter characteristic wavelengths, as shown in Figure 3.2.
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3.2. Reflection characterization in Shake-the-Box data

From the literature review, it has been shown that occasionally the image pre-processing tech-

niques fail to fulfil the task of fully removing reflections. When this occurs, the resulting processed

3D data appears highly affected by their presence, leading to inconsistencies and potentially

affecting negatively its interpretation. To understand how reflections appear in the processed

Shake-the-Box data, two cases are compared in Figure 3.3: processed data from raw images (no

image pre-processing applied) and from pre-processed images with the Butterworth time filter

(considering a filter length of 9 images).

(a) (b)

(c) (d)

Figure 3.3: Left: Raw and time-filtered (Butterworth) images (top to bottom). Right: corresponding

Shake-the-Box data.

The raw image case in Figure 3.3 (a-b) shows that the reflection appears as an accumulation of

particles in a cylinder shape that propagates along the line-of-sight of the camera. These particles

are often referred to as ghost particles or false positives, because as the reflection contains pixels

with similar intensity as particles, the particle tracking algorithm confuses these as particles inside

the reflection region, although no particles are actually present. This misinterpretation is clearly

proven by looking at the Butterworth case, where the reflection is accurately fully mitigated (thanks

to its steadiness over time). The processed STB data shows no or little evidence of the presence

of a reflection and, as a result, allows to track particle tracers that cross over the reflection region.
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These particles are completely lost in the raw image processed case. Therefore, it is essential to

mitigate reflections, as they yield misleading and confusing results. These artifacts can distort

data interpretation, potentially leading to erroneous conclusions.

By human eye, it is fairly simple to identify the location of the reflection by its shape and distinct

behaviour compared to its environment. But, is there a variable that can be used to distinguish

regions of reflections from real particle tracks? Particles detected inside reflection regions can

appear with a wide spectrum of velocities: either high or low. Hence, analysis of the velocity

information fails to yield definitive distinctions between particles and reflections. Consequently,

an alternative parameter should be investigated as potential reflection-particles distinguishable

characteristic in 3D data.

Recall from Section 2.1.1.2.1, binning is used as an averaging processing of the whole set of

data. This binning averages the track information into bins, which results in a set of parameters

that can be checked.

• Acceleration

• Standard deviation

• Number of particles

• Reynolds stresses

• Average kinetic energy

• Turbulent kinetic energy

• Turbulent shear stress

• Uncertainty for mean values

All of them are closely related to the motion of the tracks, except for one of them: the number

of particles. The latter is accounted by the tracer particles Shake-the-Box is able track over

time. In each bin, this value is averaged for all time steps and the particle concentration can be

computed (given the bin size and the number of images processed). Figure 3.4 shows the particle

concentration on the raw image and the Butterworth cases studied previously, considering the

following binning parameters: 40x40x40 voxels with 0% overlap and second order polynomial

approximation.

(a) (b)

Figure 3.4: Particle concentration on (a) raw image case and (b) time-filtered (Butterworth) case.

The binning performed on the processed raw images shows that the particle concentration

on the reflection has distinguishable higher values compared to the rest of the domain. This

indicates that the particle concentration parameter could be potentially used as variable that

allows to distinguish between reflection and real particles within the flow field.



4
Reflection treatment

techniques

This chapter introduces three novel approaches developed with the aim to improve the reliability

and accuracy of PIV data by addressing light reflection in both PIV images and 3D data. The

data from an experimental database of a flow around a sphere (for further details, refer to [86]) is

employed to verify the validity of the principles. The pre-processed images from a single view

acquired with the Robotic PIV system are analysed with the Shake-the-Box particle tracking

algorithm.

4.1. Reflection attenuation via Spatial Fourier Filtering

Section 2.3 presented an overview of the diverse applications of Fourier Analysis in various

fields. Now, let’s explore its potential application in the PIV (Particle Image Velocimetry) image

processing pipeline. As described in Section 2.3.2, spatial Fourier frequency analysis can be

employed as an image pre-processing technique. This allows to transform an image in real space

into its distribution of spatial frequencies. This spatial frequency can also be called wavenumber

and is represented with the Greek letter κ.

κ =
1

λ
(4.1)

Equation 4.1 defines the wavenumber the inverse of the wavelength [px−1] of a given signal.

Images in wavenumber space are obtained by means of the Fourier transform operation. Reflec-

tions are big in general, thus will tend to have a much larger wavelengths compared to particle

images, which normally appear with a particle size/diameter of approximately 3-5 pixels.

Figure 4.1: Reflection-particle wavelength comparison.

43
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Consequently, particles will contain high wavenumber information, whereas reflections will be

represented by lower wavenumbers. Hence, in order to filter out reflections and keep particle

content, a high-pass filter must be used on the Fourier space. Let’s visualize this effect with

an example in 1D. Three different cases are displayed: a unit impulse signal, a Gaussian with

low standard deviation (representing a particle) and a Gaussian with high standard deviation

(representing a reflection).

(a) (b)

(c) (d)

(e) (f)

Figure 4.2: Left: particle, reflection and unit impulse signals (top to bottom). Right: The corresponding

Fourier transforms.

Figure 4.2 (a) and (c) depict a narrow (low-standard deviation) and a wider (higher-standard

deviation) Gaussian signals in the real space, representing a particle and a reflection, respectively.

When the Fourier transform is applied, the reflection signal appears as a narrower Gaussian mainly

represented by smaller wavenumbers, while the particle signal appears as a wider Gaussian with

higher associated wavenumbers. Recall from Section 2.3.2.1 that the 0 wavenumber (also called
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DC component) represents the mean of the signal, so when dealing with images, this component

will contain the average of the whole image intensity. Therefore, as reflections normally dominate

the image, the reflection content in Fourier domain is expected to be concentrated on the lowest

wavenumbers, close to this DC component.

Additionally, a unit impulse signal is also presented in Figure 4.2 (e). This serves as an

example of the case when particles are too small or too far away that the imaging system is not

able to capture their whole shape. When the Fourier decomposition is applied, it results that

this signal contains all single-wavenumber components with unit magnitude. This means that to

reconstruct the unit impulse signal, all the frequencies need to be taken into account.

4.1.1. Working principle

Taking advantage of the difference in wavelengths between reflections and particles, the spatial

Fourier transform (presented in Section 2.3) can be used to decompose the image signal into

wavenumber components. Low wavenumbers will correspond to reflections, while high wavenum-

bers will correspond to small objects, like particles. The key to distinguishing between reflections

and particles lies in filtering out the low wavenumbers that correspond to reflections and keeping

the particle images by leaving unaffected the content corresponding to high wavenumbers. This

can be done by employing a high-pass filter on the Fourier transform signal to modify the image

content information. By doing so, the unwanted large-scale intensity variations from the image

data are removed, allowing to isolate the signal associated with particles. In Fourier analysis

for image processing, there are three main steps: obtaining the Fourier transform, modifying it

and performing the inverse Fourier transform operation. Knowing this about Fourier analysis, the

following pipeline is introduced as proposed methodology (check the code for this approach in

Appendix A.1). A more detailed examination of each step is presented below.

Input
Raw Image

Fourier
Transform

fft2()

Fourier
Transform
Filtering

Inverse
Fourier Transform

ifft2()

Output
Filtered Image

4.1.1.1. Fourier transform

Following the sphere case example, take a raw image in Figure 4.3 (a) and perform the 2D Fast

Fourier transform (2dftt() in Matlab) operation, obtaining Figure 4.3 (b).

(a) (b)

Figure 4.3: (a) Raw image and its (b) Fourier transform.
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Recall that the 2D Fourier Transform of an image decomposes the image into its constituent

spatial frequencies, revealing information about the variation of pixel values across the image.

Low-frequency components correspond to large-scale features with smooth variations in pixel

values across the image and are usually located near the center of the Fourier transform image

(DC component). High-frequency components represent rapid changes in pixel values, such

as edges, textures, and fine details in the image. The magnitude of the Fourier transform at a

particular point indicates the strength of the corresponding spatial frequency component. Higher

magnitudes indicate a stronger presence of that frequency in the image. The intensity distribution

in the wavenumber space features a broad distribution with a grainy pattern. The latter is due to

the random distribution of particles. A small peak at the origin (DC) is noticed in the figure, which

is due to the pixel intensity being semi-definite positive, yielding a nonzero image mean value.

4.1.1.2. Fourier transform filtering

To eliminate the unwanted reflection, the high-pass filter of Equation 4.2 is applied.

H(κx, κy) = 1− e
− κ2x

2κ2
f · e

−
κ2y

2κ2
f (4.2)

This filter takes the form of a 2D Gaussian distribution centered at the 0 wavenumber component,
with its standard deviation determined by the cut-on wavenumber κf . This shape of the filter is
selected to avoid the Gibbs effect and have smooth transitions in the filtered Fourier transform,

ensuring a good image reconstruction. The cut-on wavenumber plays a crucial role in this

process, and for that, three criteria must be satisfied. First, the criterion of non-rejection of particle

intensity states that the cut-on wavenumber should be smaller than the inverse of the particle

image diameter to ensure that particles are not removed. Secondly, criterion of rejection of

reflection intensity defines that κf should be larger than the inverse of the length of the reflection,
guaranteeing the removal of the reflection. Last but not least, the criterion of separability ensures

that the size of the reflection is significantly larger than that of the particles, creating a distinct

range of wavenumbers between them. This ensures a clear separation (as depicted in the figure

below) and prevents unintentional removal of particles while eliminating the reflection.

Figure 4.4: Fourier Transform magnitude for particle (blue) and reflection

(red) signals.

Criterion of non-rejection

of particle intensity

κf <
1

dτ

Criterion of rejection

of reflection intensity

κf >
1

Lr

Criterion of separability

s =
Lr

dτ
>> 1

Multiplying the Fourier-transformed image with the high-pass filter allows to obtain a filtered

version of the original input image by employing the inverse Fourier transform operation. A series

of filter examples, along with the resulting filtered Fourier transform and filtered images, are

presented in Figure 4.5. These examples demonstrate the effect of the cut-on wavenumber κf
on the Fourier transform and, consequently, on the filtered image.
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(a)

(b) (c) (d)

(e) (f) (g)

(h) (i) (j)

Figure 4.5: (a) Raw image. (b)-(j) Left: high-pass filters with different cut-on wavenumbers. Middle:

filtered Fourier transforms. Right: resulting filtered images.

To check whether the resulting filtered images are well suited, the Signal-to-Noise ratio or

SNR can be checked as image quality parameter. This SNR is typically used in PIV to check

whether particle signal intensity versus the reflection or noise in the image is sufficient to track

the particles. This ratio should be as high as possible, meaning that the particles’ intensity is

utterly dominant over the reflection. Here, the SNR is defined as the relation of the particle

intensity over the reflection intensity, where the particle intensity is computed by taking the 100

largest local maximums of a region with only particles and the reflection intensity is considered
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by averaging the region with only the reflection. Figure 4.6 shows a plot of the SNR vs different

cut-on wavenumbers for the sphere case previously presented.

SNR =
particles intensity

reflection intensity
(4.3)

Figure 4.6: Signal-To-Noise ratio (SNR) vs. κf for the sphere case.

As κf increases, the size of the filter increases, leading to greater attenuation of image intensity
in the spatial domain. The SNR correspondingly increases, suggesting that higher κf values
may produce more desirable outcomes. However, while a larger κf may yield an acceptable
SNR, when transformed back to the space domain, the resulting image exhibits a reduction of the

reflection intensity but also some of the particles, yielding distortions to the shape of particles.

This distortion can deform particles, causing them to lose their original shapes and, thus affect

their proper tracking. Figure 4.7 shows this effect on a region with only particles for the three filter

sizes studied previously.

Figure 4.7: Signal-To-Noise ratio (SNR) vs. κf for the sphere case.

A κf of 0.2 px
−1 means that the intensity of all objects with wavelengths larger than 5 px will

be attenuated. Hence, even smaller particles will suffer this attenuation as the filter size increases,

even leading to particles losing their original shape. This effect is more notable in larger particles

as their wavenumber content is closer to the cut-on wavenumber.
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To quantify this effect, the distance ∆ε̂G between particle peaks of the raw and Fourier-filtered

images with sub-pixel accuracy is computed. Figure 4.8 shows 150pixel x100 pixel region from

both raw and Fourier- filtered images where the sub-pixel position of the particles will be evaluated.

Figure 4.8: Region within (left) raw and (right) Fourier-filtered images.

This sub-pixel position ε̂G is obtained using Equation 4.4 [87], where R∗
0 is the intensity of

the central pixel, R∗
−1 the left pixel and R∗

+1 the right pixel (or bottom and top if considering the

vertical position).

ε̂G =
lnR∗

−1 − lnR∗
+1

2
(
lnR∗

−1 + lnR∗
+1 − 2 lnR∗

0

) (4.4)

Once the distances between raw and filtered images∆ε̂G are computed, the probability density

function (pdf) of these values shown in Figure 4.9 is obtained. The mean and standard deviation

of the resulting distribution is 0 px and 0.05 px, respectively. This indicates that the effect in the

particle intensity and shape due to the implementation of the Fourier filter is significantly low;

particle peaks suffer almost no change when applying the filter.

Figure 4.9: Probability density function of ∆ε̂G (between raw and Fourier-filtered images).

The user is advised to make the selection of the filter’s cut-on wavenumber κf based on the
criteria presented above and the overall size of the particles on the particular case of interest.



50 Chapter 4. Reflection treatment techniques

4.1.2. Results on CVV measurements for the flow over a sphere

Let us consider the filter with κf = 0.1 px−1. The resulting filtered image shows a significant

attenuation of the reflection compared to the original image; however, residual components of the

reflection remain visible.

(a) (b)

Figure 4.10: (a) Raw image and its (b) Fourier-filtered image.

Upon closer inspection, it becomes clear that within the area of the reflection (denoted in red in

the previous figure) in Figure 4.11, particles are present, but also other high-wavenumber compo-

nents that remain unaffected by the filter. This is because light reflections in experimental images

are non-Gaussian and often contain a bit of granularity (represented by smaller wavelengths)

due to surface imperfections.

Figure 4.11: Close-up on the reflection region of the Fourier filtered image (κf = 0.1 px−1).

Figure 4.19 shows the resulting velocity field after processing 100 images with the Shake-the-

Box algorithm of three different cases: raw images (no image pre-processing applied), Butterworth

time-filter and Spatial Fourier Filter.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.12: Left: Processed images (from top to bottom: raw images, time-filtered Butterworth and

spatial Fourier-filtered). Right: Resulting velocity field.

No image pre-processing clearly affects the STB data as the algorithm tracks particle tracers

within the reflection region that in reality do not exist. On the contrary, the Butterworth time filter

effectively removes the reflection due to its steadiness over time, resulting in a clean-of-reflections

velocity field. The Spatial Fourier Filter strategy reduces the reflection’s presence, resulting in an

improvement compared to the untreated images case. However, particles are still visible within

the region affected by reflection as an accumulation of particles that propagate along the camera’s

line-of-sight, albeit smaller in size compared to when processing the raw images. Despite this

small improvement, it can still impact the accuracy of results.
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As a summary, this filtering strategy attenuates the reflection intensity compared to that of the

particle tracers. However, as the reflection contains high-wavenumber components, the choice

of the filter size κf may result in the reflections not being fully removed or the particle images
being attenuated and distorted by the filter. Besides, light reflections in experimental images

do not follow exactly a Gaussian distribution and often contain certain level of granularity or

speckle (represented by smaller wavelengths) due to surface imperfections and laser coherence.

Therefore, to overcome this limitation, the methodology presented in the following chapter is

introduced.

4.2. Spatial frequency-based approach for reflection identification

and masking

In order to overcome the limitations posed by the previous reflection treatment approach, a second

methodology is introduced in this chapter. The objective of this method is to completely eliminate

the regions of reflections. To do this, two main steps will be followed: first, identify the reflection(s)

and the corresponding location and secondly, create a mask and apply it to the original image to

remove the reflection.

4.2.1. Working principle

In order to mask the reflection specifically, identify and locate it first is a must. It is clear that is

easy to do this by human eye, however when large datasets of images need to be processed,

there must be a way for the computer to automatically do it for every image (see Appendix A.2

for the implementation of the code). Recall the filtered image obtained from the Fourier-filtering

method introduced in the previous chapter in Figure 4.13 below.

(a) (b)

Figure 4.13: (a) Raw image and its (b) spatial Fourier-filtered image.

There is a clear difference between the raw image and the filtered one, particularly in the

region dominated by the reflection. The reason is that the high-pass filter is known to affect the

intensity of the reflection more than that of the tracer particles. Therefore, an option to highlight

and locate the reflection(s) is to quantify which parts of the raw image have changed most when

the spatial Fourier high-pass filter has been applied. This is made using the Structure Similarity

Index Measure (SSIM), which is a widely used method for measuring the similarity between two

images [88]. SSIM compares local patterns of pixel intensities between the two images being
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compared. The similarity is evaluated in terms of luminance, contrast, and structure, which are

key components of human perception – see Figure 4.14. Below there is a brief summary of these

three components:

• Luminance Comparison. SSIM measures the similarity in terms of brightness between

corresponding pixels in the two images.

• Contrast Comparison. It examines the contrast similarity, which refers to the difference in

brightness between neighboring pixels.

• Structure Comparison. SSIM evaluates the similarity in terms of image structure, which

captures spatial dependencies among pixels.

Figure 4.14: SSIM pipeline. Source: [88].

This index provides a normalized comparison between images with a range of SSIM values

between -1 and 1. A value of 1 indicates perfect similarity, thus that the compared images are

identical in terms of structure, contrast, and luminance. In other words, there is perfect similarity

between the images. When SSIM ≈ 0 indicates little to no similarity between the images, which

could mean that the images are significantly different. Last, but not least, a value of -1 indicates

perfect dissimilarity. Negative values of SSIM imply that the compared images are not only

dissimilar but are also inversely related in terms of structure, contrast, or luminance. In the case

of the spatial Fourier filtered image, only the intensity of the image changes (while structure and

contrast remain unchanged). This yields a SSIM value that may decrease but generally remains

relatively high compared to more significant changes. This is because SSIM is designed to be

robust to changes in intensity while primarily focusing on the structural and contrast similarities

between images. Therefore, in the cases that concern this project, extremely low values of

SSIM will not be expected, but rather slightly lower values in the regions that have suffered most

intensity change due to the spatial Fourier filter.

Let’s continue with the example of the sphere case. Figure 4.15 shows the SSIM map of the

spatial Fourier-filtered image with respect the raw image (Figures 4.13 (b) and (a), respectively).

A higher SSIM value suggests greater similarity between the images being compared and the low

values correspond to areas affected by reflections. In the low values regions, there are also a

few particles that are being picked up. These particles have suffered a decrease in their intensity

after the spatial Fourier filtering, therefore this is why they appear as low SSIM value regions

in the SSIM map. However, the reflection region clearly shows two main characteristics: low

SSIM value and large area. In order to keep only the reflection region, two additional steps will

be required.
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Figure 4.15: SSIM map on the sphere case image from Figure 4.13.

First, a threshold on the SSIM value is applied to the SSIM map to keep only the regions that

have changed most (assuming that the reflection is the part of the image that would suffer the

largest variation). For instance, in SSIM map presented above, the reflection region certainly

contain values of SSIM below or equal to 0.999 (called 0.(9)3 henceforth). The mask that results

from applying this values as cut-on threshold (everything below or equal this value will be 0 and

above 1) is presented in Figure 4.16.

Figure 4.16: Mask obtained after applying SSIM threshold to SSIM Map.

As shown in Section 3.1, particles are composed of high wavenumber components, but also

low wavenumber content. When applying the high pass filter, the intensity of these particles

inevitably decreases, leading some of them to exhibit low SSIM values in the SSIM map, similar

to reflections. Including particles in the mask can result in data loss, as the algorithm cannot

accurately track them. To specifically retain shapes associated with reflections, the area of each

blob in the mask is computed. Particles typically have a diameter of 3 to 10 pixels and assuming
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that after applying the SSIM threshold their area can slightly increase, an area threshold of 200

pixels is used in this case. Then, only the shapes with an area greater than this value are retained

as shown in Figure 4.17.

Figure 4.17: Mask obtained from considering the blobs with area larger than 200 px2.

The resulting mask is then applied to the spatial Fourier-filtered image to obtain the masked

image in Figure 4.18 without the reflection.

Figure 4.18: Masked filtered image.

Now let’s compare this methodology with other image-processing techniques: no filter applied

(raw images), Butterworth time filter and Spatial Fourier Filter. Figure 4.19 shows the pre-

processed images on the left and the resulting Shake-the-Box data on the right.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.19: Left: raw, Butterworth time-filtered, spatial Fourier filtered and Fourier masked images (top to

bottom). Right: resulting Shake-the-Box data.

The comparison of the four cases shows distinct outcomes in treating light reflections. As

discussed previously, both untreated and Spatial Fourier Filter cases show particles within the

reflection region, although the latter approach reduces the size of this area. On the other side,
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the Butterworth time filter accurately removes the reflection, resulting in a clean-of-reflections

velocity field (Figure 4.19 (c-d)).

The Spatial Fourier Filter + Mask approach shows a void of spurious regions due to the

reflection (Figure 4.19 (g-h)), and confirms that the image pre-processing technique can robustly

eliminate the contribution of light reflection areas while leaving the rest of the domain unmodified.

Due to the masking operation, possible particles going over these regions will also be masked.

Thus, regions in space along the lines of sight of affected cameras will be empty of particle

trajectories. However, for the case of robotic volumetric PIV, these can be measured and filled in

from a different robot position. Therefore, the previously presented Spatial Fourier Filter procedure

used to filter out the reflection can be made less sensitive to the choice of κf if the filter is not
used directly as a weighting function, but rather to guide the operation of automated masking.

4.3. 3D Particle Concentration-based reflection masking

The reflection treatment techniques proposed in the previous sections involve its implementation

in the image pre-processing stage. However, in the case that image pre-processing techniques

are not successful in properly removing reflections, these would still appear as erroneous data in

the Shake-the-Box results corresponding to not-fully removed reflections. Therefore, a reflection

treatment method should be applied in a later stage of the Robotic PIV processing pipeline. This

section introduces a third reflection treatment approach that aims to remove any residual region

of reflections in the Shake-the-Box data by particle concentration analysis.

4.3.1. Working principle

Having characterized reflections in STB data as accumulations of particles that propagate along

the line-of-sight, a methodology that analyses the particle concentration on each bin of the

measurement volumes is proposed. This relies on the characteristic described in Section 3.2 that

reflections will generally appear in STB data as regions of high particle concentration compared

to the real tracks. Hence, the aim of this method is to isolate regions of high particle concentration

that theoretically belong to spurious regions (e.g. reflections), and with them create a mask to

apply to the instantaneous STB data. With this principle in mind, the following steps are proposed.

1 Shake-the-Box track data

Figure 4.20: Shake-the-Box data on the pre-processed images with Minimum Subtraction (over entire

series) for the sphere case.
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The process begins with the Shake-the-Box results. Following the trend of the previous

chapters, the explanation of this method will also use the sphere case data. Recall the

Shake-the-Box results from processing the pre-processed images with Minimum Subtraction

(over entire series) in Figure 4.20. In the 3D results, there is a clear spurious region that

crosses the sphere that does not convey any physical meaning of the flow field, and should

therefore be removed to prevent misinterpretation.

2 Binning and average particle concentration distribution

Once obtained the STB data, a binning step is performed over the measurement volume.

In this particular case of the sphere, only one measurement volume is analyzed. However,

in scenarios where multiple measurement volumes are present, the current method should

be applied to each of them individually. Recall that the binning divides the volume into

small cells or bins, and averages the flow field information over time. Figure 4.21 shows

the particle concentration distribution over the domain around the sphere after performing

this step. As stated in Section 3.2, the region due to the reflection shows a higher values of

particle concentration compared to the rest of the flow domain.

Figure 4.21: Particle concentration CHFSB on the pre-processed images with Minimum Subtraction (over

entire series) for the sphere case.

Therefore, there is a way to separate good regions of real particles (exhibit low CHFSB

values) from wrong regions of reflections (higher CHFSB) by applying a threshold on the

particle concentration distribution.

3 Particle concentration reference value

The particle concentration threshold or reference value CHFSB0 should be such that takes

into account the experimental conditions since every experiment is different. This value

can be established by analysing the expected or theoretical particle concentration on the

measurement region (or test section), which can be approximated as [89]:

CHFSB =
Ṅ

Arake
n · U∞

(4.5)

where

• Ṅ : effective bubble production rate of the seeding rake
[
particle

s

]
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• Arake: area occupied by the seeding rake
[
cm2

]
• n: wind tunnel contraction ratio [−]

n =
Asettling chamber

Atest section
=

Aseeding rake

Aseeded region
(4.6)

where Asettling chamber, Atest section, Aseeding rake, Aseeded region are the areas shown in

Figure 4.22.

• U∞: free-stream velocity [m/s]

Figure 4.22: Representation of wind tunnel contraction.

For instance, considering a seeding of 30,000 bubbles/s per nozzle and assuming all nozzles

are working at their 100%, the theoretical seeding particle concentration CHFSB is plotted

vs. the wind velocity in Figure 4.23 for the three possible test-sections of the W-tunnel (204

nozzles) and the Open-Jet Facility (OJF) wind tunnel (398 nozzles) [90].

Figure 4.23: Particle seeding concentration vs. velocity for different contraction ratios and wind tunnels

(considering a production rate of 30,000 bubbles/s per nozzle).

These values can be taken into consideration as reference, however occasionally they

can be slightly optimistic; the seeding rake does not always work at its 100%. However,
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this value can taken such that if there is any bin with a particle concentration above that

value, that will certainly be a spurious region. For this reason, the user is advised to take

a clean region (for instance, in the free-stream) without any artifacts, check the particle

concentration in this area and consider that value as reference.

4 Mask generation from reflection data

When the particle concentration reference value CHFSB0 is selected, it is used to threshold

the bin data to separate between spurious regions (bins where CHFSB > CHFSB0) and

real particle tracks (bins where CHFSB ≤ CHFSB0). This threshold is applied in the Shake-

the-Box data from processing the images with the minimum subtraction filter. The isolated

reflection data of the sphere case is shown in Figure 4.24.

Figure 4.24: Isolated reflection binning data.

The isolated data corresponding to reflections is used to generate a 3D volume employing

alpha shape approximation [91]. This is depicted in Figure 4.25. This volume is then used

as a 3D mask, allowing the removal of unwanted points in the Shake-the-Box data.

Figure 4.25: Reflection volume obtained by alpha shape approximation.
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5 Resulting masked data

All points that fall inside this volume are considered reflections or artifacts and thus are

removed, whereas the points outside this region are considered good tracks and are kept

untouched. Figure 4.26 shows the effect of applying this mask on the Shake-the-Box data.

(a) (b)

Figure 4.26: (a) Original Shake-the-Box data and (b) Masked Shake-the-Box data.

The approach is able to remove the part of the reflection that showed the largest particle

concentration in the binning data. However, it is not effective at removing the rest of it due

to a lower particle density in this region. Despite these preliminary results, the method will

be tested on the results from the experimental campaign planned for this project.



5
Experimental setup and

procedures

This chapter describes the experimental campaign performed to test out the proposed reflection

treatment methodologies presented in previous chapters. The main goal of these experiments

is to acquire images with regions of reflections to later apply the developed reflection treatment

approaches. Therefore, different geometries that produce different types of reflections are to be

tested.

5.1. Wind tunnel

The experiments were performed at the W-Tunnel at TU Delft Aerospace Engineering faculty’s

High-Speed Laboratory (HSL). This consists of an open jet open-return-circuit wind tunnel that

allows interchangeable square exit test sections: 40×40cm, 50×50cm and 60×60cm. In this

case, a square test section with a 60×60 cm2 cross section is used (contraction ratio of 4:1). The

wind tunnel allows a maximum velocity of 35 m/s, with a minimum turbulence intensity of 0.5%.

The velocity is controlled by setting the revolutions per minute (rpm) of the wind tunnel fan.

Figure 5.1: W-Tunnel at TU Delft’s HSL. Source: [92].
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5.2. Test models

As already stated, the main goal of these experiments is to acquire images with regions of

reflections to later apply the proposed reflection treatment methodologies. For this reason, three

models with different complexities in their geometry were tested during the experimental campaign.

The variation in geometries will yield diverse shapes and types of reflections that will be valuable in

the implementation and evaluation of the methodologies developed. Table 5.1 shows an overview

of the test objects used in the experiments, which are described in more detail in the following

sections.

Steady reflections Unsteady reflections

Side-view mirror Formula 1 car Propeller

Simple geometry Complex geometry Moving-object

Table 5.1: Overview of models tested.

5.2.1. Side-view mirror

The first test object is a side-view mirror model, which consists of a half cylinder of 10 cm diameter

with a quarter sphere attached at the top, resulting in a total height of 15 cm – see Figure 5.2 (a).

This object has already been tested by Saredi et al. [93]. The model is installed on a 2.0 m long

flat plate with smooth curved leading edge, which is placed at 20 cm height above the bottom

edge of the exit as shown in Figure 5.2 (b).

(a) (b)

Figure 5.2: Side-view mirror (a) model and (b) setup.

5.2.2. Formula 1 Car

The second test object is a Formula 1 car small scale model, more specifically the Fernando

Alonso 2005 championship-winning Renault R25. The model is 3D-printed in-house with resin

and had dimensions of 22×9×6cm (length×width×height). This serves as a more complex

geometry with all the little details that contain this type of cars, including the small side-view

mirrors, wheels, front and rear wings, etc. The model is placed on the same 2.0 m long flat plate

as the side-view mirror. A close-up view of the car model is presented in Figure 5.3.
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(a) (b)

Figure 5.3: Formula 1 car (a) model and (b) setup.

5.2.3. Propeller

The last object to be tested is the propeller model shown in Figure 5.4 (used and tested by Cueto

in [94]). It is an APC propeller 7x5 with 2 blades and constant pitch with a diameter of 7 inch/17.7

cm installed in a pusher configuration. The propeller is powered by a Maxon Motor RE310007

60 W brushed DC motor that allows a maximum rotational speed of 9100 RPM and a maximum

nominal torque of 83.5 mNm. The latter is controlled thanks to a DC power source.

Figure 5.4: Propeller model setup.
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5.3. Robotic PIV system

5.3.1. Acquisition PC

A specific PC must be used for both acquisition and processing of Robotic PIV data. This PC

has the DaVis software installed. DaVis is LaVision’s integrated software for data acquisition,

visualization and processing. Before starting the experiments, the PC had to be properly installed

and connected to the Robot and CVV hardware. DaVis version 10.2.0.74211 is used for image

acquisition and processing during the experimental campaign.

To be able to control and position the robot, DaVis has to be connected to the RoboDK

software. RoboDK allows the user to position the robotic arm in a virtual environment. Robot

positions that have been predefined in this virtual environment can be uploaded to the robotic arm

before image acquisition. The robot-RoboDK connection is achieved thanks to a router that has

to be connected to the acquisition PC. Then with the robot IP address, RoboDK can detect and

connect to the robot. This allows to control and move the robotic arm and set the target positions

for each measurement volume to acquire. Figure 5.5 shows an example of the RoboDK interface.

Figure 5.5: Example RoboDK interface. Source: [95].

5.3.2. Coaxial Volumetric Velocimetry system

Robotic PIV uses a coaxial volumetric velocimeter (CVV) device (see Section 5.3). Specifically,

in this experiment the LaVision MiniShaker Aero is used. The CVV probe consists of four CMOS

cameras (10 bits, 640×476 pixels, 4.8µm pixel pitch) and an optical fibre located between the

imaging system that is responsible of the volumetric laser illumination. The laser is generated

by a Quantronix Darwin Duo Nd:YLF unit (527nm wavelength, 2×25mJ pulse energy @ 1kHz),

allowing the illumination in a conical shape thanks to its expansion through a spherical lens. The

device is housed in an aerodynamically shaped case and is attached to the robotic arm described

in the following section.
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5.3.3. Robotic Arm

The CVV probe is mounted at the end of a robotic arm from Universal Robots. This is the UR5

robot, which has 6 rotating joints as degrees of freedom and 850 mm of reach [96]. Position and

orientation of the arm are set either directly by the dedicated controller (robot screen) or through

the interface with DaVis and RoboDK softwares. The robotic arm is installed on a X95 beam

structure built on-site as shown in Figure 5.6.

(a) (b)

Figure 5.6: (a) Robotic arm and (b) its installation setup.

The installation should not be modified or moved during the whole duration of the experimental

campaign to avoid issues and affecting the system calibration. Moreover, special care has to be

taken with the optical fiber mounted on the CVV probe as it is extremely fragile.

5.3.4. Seeding system

Helium-Filled Soap Bubbles (HFSB) are used with the Robotic PIV technique. To generate these

bubbles, the TU Delft’s HSL has an in-house built rake that consists of 204 nozzles distributed

over a 10-row streamlined strut or wing assembly. Each nozzle is able to produce between

20,000-50,000 bubbles per second with a diameter of 300-500 µm [97]. This rake is placed inside

the settling chamber of the W-tunnel (see behind the propeller in Figure 5.4). The seeding system

includes a Fluid Supply Unit (FSU) that allows to independently modify the values of the pressure

of the air, soap and helium. The effective production rate of the whole system depends on the

functioning of each nozzle; it is important to take into consideration that nozzles are prone to

blockage from soap accumulation or dirt.
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5.3.5. System calibration

Geometric Calibration

Volumetric measurements based on multi-camera systems require a proper geometric calibra-

tion. This is the process that accurately determines the relationship between image coordinates

(pixels) and real-world spatial coordinates (typically in millimeters or meters). This calibration

is essential for translating the displacement of particles in the captured images into actual flow

velocities. One of the most used calibration models is the pinhole calibration, which is a computer

model that allows to map real-world points to the camera sensor. In this process, the parameters

of the imaging system are determined and adjusted to ensure accurate and consistent measure-

ments of objects in the real world. This calibration involves various parameters such as focal

length, lens distortion, and image sensor characteristics.

The calibration process involves scanning a calibration plate in different positions: frontal view

and then moving the plate forth or back and tilting it vertically or horizontally relative to the initial

frontal view. This enhances calibration robustness by capturing variations in perspective. The

angles between the views should be as large as possible, whereas keeping all markers on the

calibration plate in focus. It is recommended that the markers of the calibration plate fill the whole

region of interest required for the later measurement for each camera position, however it is of

highly importance that the 3 disk-shaped markers located at the center of the plate are always

visible by all cameras in all the robot positions acquired. Figure 5.7 shows the calibration plate

used and the 4 views recorded for executing the robot geometric calibration.

(a) (b)

(c) (d)

Figure 5.7: Calibration plate acquired images.

The system does not require calibration after repositioning of the CVV probe. In the case of

moving the whole Robotic PIV system (CVV + robotic arm), such calibration must be re-done.
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Volume Self-Calibration (VSC)

After the geometric calibration, the called Volume Self-Calibration has to be performed to

correct and refine the initial calibration and reduce calibration errors to below 0.1 pixels [35]. A

set of images where the robot only captures particle tracks (no models and avoiding reflections

in all camera views) as shown in Figure 5.8 is recorded. The particle images are detected and

triangulated in 3D space, yielding the preliminary 3D positions. The process involves back-

projecting triangulated particles onto the different camera views and determining the differences

between the back-projected particles and the original particle peaks. These differences indicate

the degree of decalibration among the cameras. By averaging these differences across a large

number of particles, disparity vectors are obtained. These vectors are then used to refine the

initial image-to-world mapping functions obtained from the geometric calibration.

Figure 5.8: Volume Self-Calibration instantaneous image with recorded particles.

5.4. Data acquisition

For the side-view mirror and Formula 1 car models, the wind velocity is set at 12 m/s (following

the study done by Saredi et al. in [93] with the same side-view mirror model). In the side-view

mirror case, 8 robot positions are measured, whereas 10 views are acquired for the Formula 1 car.

For both models, 5,000 images are recorded in sequence at each robot position in Double-Frame

Shake-the-Box (DF-STB) mode with the following two time steps: dt1 = 100 µs and dt2 = 500 µs.

The propeller model is tested at a wind velocity of 5 m/s, as it is of use and interest to continue

Cueto’s study [94]. At the same time, the propeller rotational speed is set to 3600 RPM. The

robot sequence consisted of 9 measurement volumes with 5,000 images recorded at each view

in Time-Revolved Shake-the-Box (TR-STB).

The test matrix of all the experimental campaign is presented in Table 5.2.
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Test

number
Model

Velocity

[m/s]

Propeller

[rpm]
Acquisition

Images

Acquired

Number

of views

1
Side-view

Mirror
15 -

Double

frame

5,000 (dt1 = 100 µs)

5,000 (dt2 = 500 µs)
8

2 F1 Car 15 -
Double

frame

5,000 (dt1 = 100 µs)

5,000 (dt2 = 500 µs)
10

3 Propeller 7 3600
Single

frame
5,000 9

Table 5.2: Test matrix.

5.5. Data processing and reduction

As the aim of the experiment is to test and validate the proposed reflection treatment method-

ologies, the latter together with typical state-of-the-art image pre-processing approaches are

applied to the acquired images. Hence, the raw images are pre-processed with four different

techniques: minimum subtraction over the entire series of images, Butterworth time filter with a

filter length of 9 images, spatial Fourier filter with a cut-on wavenumber κf = 0.1 px
−1 and the

spatial Fourier filter + mask. Then, the obtained images are processed with the particle tracking

algorithm Shake-the-Box (see Section 2.1.1.2). Due to processing time limitations, only 500

images are processed for each method and test object. To remove outliers, velocity range and

median filters are applied to the resulting data. The data obtained from Shake-the-Box shows the

velocity of particles tracked over time as scattered data over the measurement domain. For the

sake of simplicity and to facilitate interpretation of the flow field, a binning step is performed to

transform the unstructured velocity information to a structured one.

The measurement volumes acquired for the side-view mirror are averaged in space and time

within sphere-shaped voxels (or bins) of 15 mm diameter with a 75% overlap of neighbouring

voxels, yielding a spacing of 3.75 mm between velocity vectors. The same binning is applied to

the Formula 1 car case. For the propeller, the track data is interrogated within spherical bins with

a diameter of 24 mm and 75% overlap (resulting in 6 mm of space between velocity vectors).

Following Agüera et al. [98], a quadratic (2nd order) weighting function is employed on all cases

to perform the velocity averaging inside each bin. Additionally, the set of measurement volumes

are merged into a single dataset and the binning with the same parameters as for the individual

views is applied.
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Results and discussion

This chapter presents and discusses the results obtained from the experimental campaign, where

three different geometries were tested: side-view mirror, Formula 1 car and propeller. The raw

data acquired has been processed (considering the parameters from Section 5.5) with the aim to

validate and check the performance of the proposed reflection treatment methodologies. Four

image pre-processing techniques are compared: Minimum Subtraction over entire series (gener-

ates a background image with the minimum and then subtracts it from all images), Butterworth

time filter (see Section 2.2.1.1), Spatial Fourier Filter and Spatial Fourier Filter + Mask1. Then, in

the STB results, the 3D-based Particle Concentration Mask is also compared. The results are

presented in separate sections, each corresponding to the individual test objects.

6.1. Side-view mirror case

For the side-view mirror geometry, eight different views were acquired in DF-STB mode with

the robot. The sequence of measurement volumes is created such that it captures most of the

flow field around the mirror, specially focusing on the wake. Figure 6.1 shows the individual

measurement volumes (denoted in green) for the side-view mirror.

Figure 6.1: Set of measurement volumes acquired for the side-view mirror.

1Henceforth referred to as SFF and SFFM, respectively
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For further details of what it is captured in each view, an instantaneous raw recording of each of

the acquired views along with their pre-processed images are presented in Figure B.1 in Appendix

B. All raw images show distinct and clear reflections that are easy to detect and identify by human

eye. View 1 contains a large dense reflection caused by the floor (CVV probe too perpendicular

to this surface) and the whole set of views presents a reflection due to the HFSB foam adhered

to the surface of the mirror. The Minimum Subtraction fails to remove the reflections in all views.

While the Butterworth filter effectively eliminates reflections in most views, it struggles with view 1,

where the reflection is large and slightly unsteady, making it difficult to completely eliminate using

this method. Regarding the proposed reflection treatment methodologies, the Spatial Fourier

Filter does reduce the intensity of unwanted regions. However, as discussed in Chapter 4.1, it

is unable to remove the high-wavenumber components present in reflections. Consequently,

residual reflection components are still visible in the Spatial Fourier Filtered images, especially in

view 1. The SFFM images demonstrate that the method can robustly remove the reflection region

from all views by creating a mask around them. Hence, blank empty regions can be observed in

these images. Recall that this technique presents the drawback of removing real particles that

pass over the spurious region that is being masked. Nevertheless, it shows great potential in

terms of adaptive masking, and to check this capability, a set of four consecutive recordings for

views 2 and 3 are shown in Figures 6.2 and 6.3, pre-processed with the Butterworth and Spatial

Fourier Filter + Mask approaches.

Figure 6.2: Set of consecutive pre-processed images (from left to right) with no filter, Butterworth time

filter and Spatial Fourier Filter + Mask (View 2).

Some views suffered the presence of large foam blobs caused by the malfunctioning of a

few nozzles, and the images above show two examples of this for the case of view 2 and view 3.

These foam blobs appear as big areas of high intensity, easily distinguishable from particles and

their surroundings. They pose a significant challenge to particle tracking, as their appearance

is random and can blind particles being tracked, thus interrupting the tracking process. For this

reason, it is essential to remove these sporadic artifacts when they make their appearance. As

they appear and disappear at a similar rate of the particle tracks, the Butterworth time filter is

unable to mitigate the blobs (as shown in the top row in Figures 6.2 and 6.3). However, the
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SFFM clearly is able to identify these regions in each acquired image and, then eliminate them

by masking them. This empty space in the image can be filled in thanks to the multiple-view

capability of Robotic PIV. By measuring views that overlap, regions that are blank in one view

can contain data in another view, thus making it possible to fill in the gaps when merging all the

measurement volumes.

Figure 6.3: Set of consecutive pre-processed images (from left to right) with no filter, Butterworth time

filter and Spatial Fourier Filter + Mask (View 3).

Figure 6.4 presents the number of tracked particles by the Shake-the-Box algorithm for each

recording and view, and comparing the different reflection treatment methodologies considered.

Figure 6.4: Number of tracked particles per recording for each view (side-view mirror case).
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Two key observations can be made from the plots: the Butterworth time filter yields the highest

number of tracked particles, while the SFFM method provides the least. This result is logical

because the side-view mirror is a steady reflections case, where the Butterworth is able to robustly

remove the reflections regions from the images. Conversely, in the case of the Fourier filter

+ mask, as a mask is being applied, reflections and particles are being eliminated, which can

interrupt the detection and tracking of the latter. This explains why this method tracks the fewest

number of particles compared to the others, with a common trend of SFFM approach tracking

approximately half the particles compared to the Butterworth. Regarding the Minimum Subtraction

and Particle Concentration Mask, both show similar tracked particles in most of the views, which

can be translated into that the second fails to mask the reflection.

6.1.1. Individual views

Let us check the effect of each method on a few individual measurement volumes. Figure 6.5

shows the raw and pre-processed images of View 1.

Figure 6.5: Side-view mirror acquired and pre-processed images of View 1.

View 1 has the presence of two main reflections: bottom large one that originates on the floor

and top smaller one coming from the foam adhered on the mirror surface. Neither of these are

removed by the Minimum Subtraction or the Spatial Fourier Filter, moreover in the regions of the

floor reflection there are still a big amount of particles that will surely slow down the Shake-the-Box

process. The Butterworth time filter attenuates both reflections, but still does not removes them

completely. And the Spatial Fourier Filter + Mask successfully creates a mask of the two spurious

regions and, thus removes their appearance. This reflection appears in the results shown in

Figure 6.6 for View 1. All methodologies present regions that correspond to the reflection (some

approaches in smaller size), except for the SFFM which successfully removes it.
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Figure 6.6: Side-view mirror binning results on the YZ plane at x = -50 mm (View 1).

Having discussed the results of View 1with a clear large reflection, let us focus onmeasurement

volume 8 that contains a smaller reflection, almost not perceived in the Butterworth and SFFM

cases, as shown in Figure 6.7. This measurement volume mainly focuses on the wake of the

Figure 6.7: Side-view mirror acquired and pre-processed images of View 8.

mirror, capturing the back and a portion of the top of the mirror. In the acquired images, there are

reflections that originate from the foam stuck on the mirror surface and thinner ones caused by

the edge of the mirror. As with View 1, the Minimum Subtraction and Spatial Fourier Filter are not

able to remove fully these regions, whereas Butterworth and SFFM are. The latter presents blank
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areas on the edges of the mirror and where the foam was captured in the image. However, the

reflection on the edge of the mirror is not masked in all images equally since this region can be

too small in size, with its resulting area in px2 being too similar to some of the biggest particles.
Therefore, in the step of the SFFM where only the biggest artifacts are kept, the reflections from

thin edges can be excluded.

Figures 6.8 and 6.9 show the XZ and YZ planes, respectively, of the mean velocity and mean

velocity standard deviation for View 8.

Figure 6.8: Side-view mirror binning results on the XZ plane at y = 0 mm (View 8).

Figure 6.9: Side-view mirror binning results on the YZ plane at x = 50 mm (View 8).
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All the methods, except SFFM, show similar results in the velocity field. Minimum Subtraction,

Spatial Fourier Filter and Particle Concentration Mask approaches fail to remove the regions

due to the foam stuck on the mirror surface, with the latter approach yielding a higher standard

deviation compared to the other methods. The SFFM result shows a particular characteristic:

there are voids within the data (resembling the appearance of Emmental cheese), consequence

of masking regions in the images processed with Shake-the-Box – see Figure 6.10. The algorithm

cannot find anything in this area, which translates into in missing data in the resulting flow field.

This can be seen as a clear drawback (since having gaps in the data is detrimental to a good

understanding of the flow field), however thanks to the advantageous characteristic that Robotic

PIV offers of being able to easily acquire measurement volumes from different views, these empty

regions can potentially be filled in by another measured view.

Figure 6.10: Close-up view of Spatial Fourier Filter and Spatial Fourier Filter + Mask methods in View 8.

6.1.2. Complete measurement domain

Once all the individual views are processed, the complete measurement volume around the

side-view mirror can be obtained. DaVis software offers the option called ”Particle Track Stitching”

that merges the set of tracks of a multi-set (more than one view) to one joint set. After the merged

set is obtained, the binning operation with the same parameters as used for the individual views

can be performed.

Figures 6.11, 6.12 and 6.13 show the XZ, YZ and XY planes, respectively, of the particle

concentration, mean velocity and mean velocity standard deviation for joint dataset of measure-

ment volumes. The Particle Concentration Mask approach performs poorly, failing to remove

reflection regions and resulting in an incorrect flow field. The Minimum Subtraction, Butterworth,

Spatial Fourier Filter, and Spatial Fourier Filter + Mask present a similar mean velocity distribution.

However, there is a notable difference between the standard deviation of these methods, with

the Spatial Fourier Filter and Spatial Fourier Filter + Mask exhibiting a lower standard deviation

compared to the other three methods. Recall the results of View 8 for the SFFM that showed

holes in the data in the three planes displayed. This was due to the masking step on the images

that yielded no data after processing with Shake-the-Box. After performing the merge of data, it

is proven that this gaps are filled in by the data of other views since there are no empty spaces

in the flow field for the SFFM in Figures 6.11, 6.12 and 6.13 (fourth column). This is thanks to

having acquired several views whose volumes in space overlap and, thus allow to compensate

the loss of data due to masking.
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Figure 6.11: Side-view mirror binning results on the XZ plane at y = -10 mm (all views).

Figure 6.12: Side-view mirror binning results on the YZ plane at x = 50 mm (all views).
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Figure 6.13: Side-view mirror binning results on the XY plane at z = 85 mm (all views).

It is worth noticing that the Field of View (FOV) for the Spatial Fourier Filter and Spatial Fourier

Filter + Mask is smaller in all planes shown compared to the Butterworth. Both upstream and

downstream regions show a more complete velocity field for the Butterworth, yielding a longer

wake behind the mirror. This is an important characteristic since it allows to retrieve as much

information as possible with the measurement volumes acquired.

When inspecting the processed images, in the case of SFF and SFFM the particles close to

the edges of the image have a decaying intensity with respect the ones in the center; for instance,

inhomogeneous laser illumination can be a cause of this effect. However, this is not observed

for the Butterworth, which might explain its resulting larger FOV as it allows the particle tracking

algorithm to detect more easily the particles further from the center of the image. This suggests

that Butterworth operation performs an intensity normalization after having applied the time filter

on the images to counteract nonuniform intensity over the image. One way to avoid this the

decaying particle intensity effect in the proposed image pre-processing approaches is to add an

additional step of intensity normalization on the images.

Therefore, to check that the FOV loss is due to inhomogeneous image intensity, an intensity

normalization (over 100 pixel) is applied to the SFFM images to make the intensity uniform across

the image. The results of this operation can be observed in Figures 6.14, 6.16 and 6.15.
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Figure 6.14: Side-view mirror Butterworth, SFFM and SFFM with intensity normalization results on the XZ

plane at y = -10 mm (all views).

Figure 6.15: Side-view mirror Butterworth, SFFM and SFFM with intensity normalization results on the XY

plane at z = 85 mm (all views).
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Figure 6.16: Side-view mirror Butterworth, SFFM and SFFM with intensity normalization results on the YZ

plane at x = 50 mm (all views).

After applying intensity normalization to the SFFM images, the resulting flow field expands in

size in all displayed planes. Although the field of view remains smaller than that of the Butterworth

filter, it is noticeably larger than the not normalized SFFM result. Furthermore, the standard

deviation shows lower values compared to the Butterworth filter. This indicates that SFFM with

intensity normalization is an effective reflection treatment methodology, producing similar results

to those of the Butterworth time filter.

6.1.3. Further discussion on Butterworth - SFFM

Among all the reflection treatment methodologies tested, the Butterworth time filter and the spatial

Fourier filter and masking approach show the better performance in removing the spurious regions

of reflections. Therefore, in order to check their results with when processing a higher number of

images, the 5,000 images acquired are processed for both the methodologies. The results of

processing these images with STB are presented in Figures 6.17 and 6.18, by showing the binned

velocity field on XZ and YZ planes, respectively. The results are given for three single views as

well as the merged dataset. For the latter, the standard deviation of the velocity magnitude is

also given in the figure.

Overall, the resulting velocity field of the masked case does resemble the Butterworth’s with a

similar mean velocity in the single views and in the merged case, with almost no blank spaces

appearing in the single views. The presence of no empty spaces is significantly important to

notice since these appeared when only processing 500 images. This is thanks to the amount

of data when processing the set of 5,000 images. Therefore, it is key to take into account this

feature when implementing the spatial Fourier filter and mask approach.

The Butterworth case shows a small region of outliers at the front of the side-view mirror

in View 4. This is due to foam attached to the surface of the mirror that the time filter is not

able to fully remove because of its fluctuating behaviour. Conversely, the spatial Fourier filter

and mask approach is able to completely remove this region, avoiding its appearance in the

processed results. This blank space in the 2D images is translated into an empty gap in the

velocity field along the line of sight of the velocimeter (see Figure 6.18, View 4). However, this

void is almost entirely filled in the merged dataset velocity field, thanks to the presence of other
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views that contain information within this region of the domain. In this case, View 8 is an example

of measurement volume that has data where there View 4 presents a gap (top left of the mirror).

Figure 6.17: Side-view mirror binned results on XZ plane at y = 0 mm for single and merged views

(Butterworth and Spatial Fourier Filter and Mask).

Figure 6.18: Side-view mirror binned results on YZ plane at x = 30 mm for single and merged views

(Butterworth and Spatial Fourier Filter and Mask).

Comparing the merged datasets of both methods, the mean velocity is in excellent agreement,

but the standard deviation presents slightly different features, particularly in the shear layer in

Figure 6.17. The Butterworth shows high standard deviation in the wake close to the mirror, while

the masking method exhibits high standard deviation on top of the mirror. This phenomena are

due to the local effect from the presence of residual reflection not being fully removed. Despite of

this, the proposed spatial Fourier filtering and masking method performs as well as the Butterworth

time filter in the case of stationary objects.
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6.2. Formula 1 car case

In the case of the Formula 1 car, ten views were measured in DF-STB mode with the robot. Figure

6.19 shows the individual measurement volumes (denoted in green) obtained for the F1 car.

Figure 6.19: Set of measurement volumes acquired for the Formula 1 car.

Views 1, 2, 9 and 10 focus on the front of the car, views 3 and 8 on the main car geometry and

views 4, 5, 6 and 7 capture mostly the rear. This can be observed on the raw images displayed in

Figure C.1 in Appendix C. In all views, reflections originate from the Formula 1 car model and

objects on the floor (e.g. screws). In the case of the side-view mirror, reflections appears more

concentrated in certain regions, whereas for the F1 car, reflections are slightly more distributed,

adopting the shape of the geometry. This characteristic is important to understand the resulting

images processed with the Spatial Fourier Filter + mask methodology. For instance, View 1

shows a reflection from the front wing, front left tire and suspensions and also from a screw on

the floor. As there are these many details, where some of them are smaller in size, the SFFM

approach finds difficulty to identify and mask all the artifacts properly, which results in some of

them not being mask in some of the views. In this case, reflections are mainly steady, which

benefits the implementation of the Butterworth time filter.

Figure 6.20: Number of particles per recording for each view (Formula 1 car case).
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The number of particles tracked per recording is plotted for each view and reflection treatment

method in Figure 6.20. Similarly to the side-view mirror case, the Spatial Fourier Filter + Mask

approach presents the fewest number of particles tracked over the set of images, which is

logical given that a region is being removed when applying the mask. Regarding the rest of

methodologies, they approximately show similar results in all views, which does not allow to draw

clear conclusions.

6.2.1. Individual view

All measurement volumes present similar reflection characteristics with a steady nature, therefore

in this case only the results of a single individual view is analysed in this section. View 6 is

selected to take a closer look as it is examples of volume measured at the rear of the car, yielding

the velocity field at the wake. Figure 6.21 shows the raw and processed images for View 6. The

images present a reflection that emanates from the back of the car, which are attenuated but

not completely removed by the Minimum Subtraction and the Spatial Fourier Filter. The images

resulting from the latter approach still contain residual artifacts from the reflection that the Fourier

filter is not able to eliminate. However, when applying the extra step of masking with the Spatial

Fourier Filter + Mask, these artifacts are almost fully mitigated. The Butterworth filter proves to be

the most effective option (due to the reflection being steady), completely removing the reflection

content from the image while retaining only the particle tracks.

Figure 6.21: Formula 1 car acquired and pre-processed images of View 6.

The binning results of View 6 for the XZ, YZ and XY planes are shown in Figures 6.22, 6.23

and 6.24, respectively. The Particle Concentration Mask approach fails to remove the regions

of reflections, resulting in an erroneous velocity field and a much higher standard deviation

compared to the other methods. Regarding the other techniques, they all show similar results

with a similar velocity field: low velocity zone at the back of the car due to the presence of the

rear wing. Although SFFM shows a similar result, it presents a blank space near the rear wing,

which is due to masking reflection caused by this part of the car.
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Figure 6.22: Formula 1 car binning results on the XZ plane at y = 0 mm (View 6).

Figure 6.23: Formula 1 car binning results on the YZ plane at x = 220 mm (View 6).

Figure 6.24: Formula 1 car binning results on the XY plane at z = 20 mm (View 6).
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6.2.2. Complete measurement domain

After processing all the measurement volumes separately, the entire resulting flow field can be

obtained by merging all the views. Then the binning operation with the same parameters as with

the individual views is executed. The particle concentration, mean velocity and mean velocity

standard deviation of the merged dataset are depicted in Figures 6.25, 6.27 and 6.26 for the XZ,

YZ (rear), YZ (front) and XY planes, respectively.

Figure 6.25: Formula 1 car binning results on the XZ plane at y = 0 mm.

Figure 6.26: Formula 1 car binning results on the XY plane at z = 20 mm.
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Figure 6.27: Formula 1 car binning results on the YZ plane at x = 220 mm.

Looking at the results from the Particle Concentration Mask, one can see that this method

does not remove the reflection, but more importantly, the resulting flow field deviates from the

expected one such that it leads to misunderstanding. The Butterworth case exhibits the most

complete flow field with the largest field of view and some of a Formula 1 car flow field features

that can be observed, as the deceleration at the rear of the car caused by the presence of the

rear wing. This phenomenon is also observed in the Minimum Subtraction, SFF and SFFM. Both

Minimum Subtraction and SFF show regions of higher particle concentration at the front and rear

of the car (see planes XZ and XY), caused by the reflections that appear on the surface of the

car. The resulting velocity field contains areas that do not match their surroundings, leading to

erroneous data in the velocity field.

In the case of SFFM, it shows similar results as the Minimum Subtraction and SFF, with a

smaller FOV than the Butterworth’s. Recall from the View 6 results, there were a few voids in the

velocity field that appeared in all the planes showed, particularly in planes XZ (Figure 6.22) and

YZ (Figure 6.22) with blank spaces caused by masking the rear wing’s reflection. These gaps are

no longer present in the merged-view results as they are successfully filled in by data from other

views. However, there are still a few empty regions that are not properly addressed as occurs

at the top of the rear wing in Figure 6.27 (fourth column), where there is a clear region that is

successfully retrieved by the Minimum Subtraction, Butterworth and SFF, but not by the SFFM.

Unfortunately, the measurement volumes acquired are not sufficient to fill in the gaps posed by

the masking of this method. However, this could be fixed by acquiring additional measurement

volumes with proper overlap between views.
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The flow field at the top of the car and in the wake seem incomplete for the case of SFFM. As

done for the side-view mirror, an intensity normalization is applied after the masking step to check

if this increases the FOV. The results of this operation are shown in Figures 6.28 and 6.29.

Figure 6.28: Formula 1’s Butterworth, SFFM and SFFM with intensity normalization results on the XZ

plane at y = 0 mm (all views).

Figure 6.29: Formula 1’s Butterworth, SFFM and SFFM with intensity normalization results on the YZ

plane at x = 220 mm (all views).

The FOV is significantly increased, especially in those regions that the SFFM had voids in the

data compared to the Butterworth. The top part of the car (near the exhaust) has been filled in

with data, as well as the front and rear. However, there are still some non-removed parts of the

reflection that can be identified in the flow field as clear outliers with higher standard deviation

compared to the Butterworth’s. All in all, adding an extra step of intensity normalization to the

SFFM method does increase the amount of 3D data that is retrieved, but reflections regions that

were not successfully removed have to be taken into account when examining the velocity field.
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6.3. Propeller case

Finally, the last geometry tested is a propeller in pusher configuration and with a rotational speed

of 3600 RPM. This geometry is expected to present unsteady reflections caused by the rotation

of the blades and act as a crucial validation test case to check if the proposed methodologies are

effective in mitigating unsteady spurious regions. The main focus of the robotic PIV measurements

was the wake, trying to capture the propeller’s streamtube features. The propeller in pusher

configuration facilitates this, with the vertical and horizontal struts being upstream the region of

the wake. Hence, the nine measurement volumes depicted in Figure 6.30 were acquired.

Figure 6.30: Set of measurement volumes acquired for the propeller.

It can be observed that all views capture the same region: downstream the propeller, on the

wake. Most of them are centred on the propeller, except a few of them that point more towards the

left-hand side (View 3), or the right (Views 7 and 8). What is really being recorded can be checked

in Figure D.1 (see Appendix D) that shows an instantaneous of the raw and pre-processed images

for each view. Not all views have dense reflections; for instance, in the case of views 6, 7 and

8 where there is no or little reflection in the images. In these cases, the Butterworth is able to

remove almost all these regions. The problem arises with the rest of views, where the reflection

on the propeller surface becomes more significant. There are three main sources of reflections:

steady reflection from the vertical strut, unsteady reflection from the vibration of the horizontal

strut and hub, and unsteady reflection from the blades. The one in the vertical strut can be easy

to tackle by the Butterworth as it is steady. However, this technique fails to remove the other

reflections that are fluctuating over time. One example of this is View 2, where the reflections are

easily identified and occupy a big part of the image. The Butterworth case is able to eliminate the

vertical strut’s, but not the rest due to their fluctuating nature. The Spatial Fourier Filter is able

to attenuate significantly all the regions with reflections, but, once more, there are still residual

artifacts on these areas that do not get removed. When applying the extra step of masking in

the Spatial Fourier Filter + Mask (SFFM), all the spurious regions are successfully and entirely

removed from the images. This results in a clean-of-reflections set of images that will avoid the

presence of spurious regions in the processed Shake-the-Box data.

A single instantaneous image is not sufficient to prove the ability of adaptive masking of SFFM.

For this reason, a set of four consecutive recordings for views 2 and 4 are displayed in Figure 6.31

and 6.32, pre-processed with the Butterworth and Spatial Fourier Filter + Mask methodologies.

The time filter fails to mitigate the intensity contribution corresponding to reflections on the moving

objects. Conversely, this set of images proves the effectiveness of SFFM to generate a mask
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specific for each recording. Notice that the shape of the mask changes for each recording, yielding

a robustly elimination of all reflections that neither the Butterworth or the SFF could remove.

Figure 6.31: Set of consecutive pre-processed images (from left to right) with no filter, Butterworth time

filter and Spatial Fourier Filter + Mask (View 2) of the propeller.

Figure 6.32: Set of consecutive pre-processed images (from left to right) with no filter, Butterworth time

filter and Spatial Fourier Filter + Mask (View 4) of the propeller.
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The number of particles tracked over time for each view and methodology is presented in

Figure 6.33. First of all, the Minimum Subtraction fails no attenuate the reflections and, thus

presents the highest number of particles detected (not all being real particles). Contrary to the

trend observed for the side-view mirror (Figure 6.4) and Formula 1 car (Figure 6.20), here the

Butterworth does not show the largest amount of number of particles and SFFM does not show

the fewest Np. The Butterworth, SFF and SFFM exhibit similar values of particles detected for

several views (5, 6, 7 and 8), where the resulting images processed with the three approaches

are similar in terms of reflection being attenuated and the amount of particles kept (see Figure

D.1). In the rest of the views, there is a noticeable difference of Np, with SFFM having the lowest

value, result of applying a mask to the images. Finally, regarding the Particle Concentration Mask,

from view 4 to 9 it is able to identify regions of reflection and remove them since it shows less

number of particles detected than the Minimum Subtraction (Particle Concentration Mask masks

the result from this approach).

Figure 6.33: Number of particles per recording for each view (propeller case).

6.3.1. Individual views

In order to see how each methodology performs in a single view, the measurements volumes 2

and 4 are examined in this section (examples of views with the largest reflections). Figure 6.34

show the raw and pre-processed images of View 2.

Figure 6.35 shows the YZ plane at the wake of the propeller (5 cm downstream) of View 2. In

all cases, the streamtube from the propeller can be identified, presenting a velocity increase from

5 m/s to approximately 8 m/s. The Minimum Subtraction and Particle Concentration Mask do

not remove the reflection caused by the blade, producing the appearance of an artifact with the

shape of the blade in the velocity field. This phenomenon also occurs in the Butterworth, although

smaller in size. This does not happen in the case of SFF and SFFM, with the latter showing a

blank due to the mask. The reflection caused by the propeller struts can be observed on the XZ

and XY planes in Figures 6.36 and 6.37, respectively. All cases, except the SFFM, show a region

of higher particle concentration, mean velocity and standard deviation that is due to the struts’

reflections. This does not appear in the case of SFFM, where there is a void in the data, which

is expected to be filled in by other views. Additionally, the latter approach exhibits the lowest

standard deviation in all planes (indicator of good and reliable results).
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Figure 6.34: Propeller acquired and pre-processed images of View 2.

Figure 6.35: Propeller binning results on the YZ plane at x = 50 mm (View 2).



92 Chapter 6. Results and discussion

Figure 6.36: Side-view mirror binning results on the XZ plane at y = 0 mm (View 2).

Figure 6.37: Side-view mirror binning results on the XY plane at z = 200 mm (View 2).
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The next measurement volume to examine is View 4 with its corresponding images shown

in Figure 6.38. This view presents a steady large reflection from the propeller strut and an

unsteady one originated by the blade’s rotation. As discussed previously, the MinimumSubtraction

result does not deviate much from the raw image, while the Butterworth and SFF attenuate the

reflection significantly, but not completely. Then, thanks to the additional masking step, the

SFFM successfully removes the existing reflection resulting in a void in this region, where also no

particles will be tracked.

Figure 6.38: Propeller acquired and pre-processed images of View 4.

Figures 6.40 and 6.39 show the results at XZ and YZ planes of View 4. Similarly to View 2, the

reflection caused by the blade and the strut appear in the Minimum Subtraction, Butterworth and

Particle Concentration Mask resulting flow field. For the latter approach, it can be observed how

it manages to mask the areas with higher particle concentration, but it still does not translate into

a correct velocity field. SFF and SFFM show the propeller’s streamtube with the corresponding

velocity increase and a low standard deviation. Moreoever, in the case of SFFM there is a gap in

the data caused by the propeller’s strut mask.
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Figure 6.39: Side-view mirror binning results on the XZ plane at y = 0 mm (View 4).

Figure 6.40: Propeller binning results on the YZ plane at x = 50 mm (View 4).
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6.3.2. Complete measurement domain

Once processed all measurement volumes separately, the complete resulting flow field is obtained

by performing the merging operation of the whole set of views. Then, the binning operation is

executed using the same parameters as those applied to the individual views. The particle

concentration, mean velocity and mean velocity standard deviation of the merged dataset can be

checked in Figures 6.41, 6.42 and 6.43 for the YZ (wake), XZ (propeller’s symmetry plane) and

XY planes, respectively.

The YZ plane (Figure 6.41) shows the flow field 5 cm downstream, at the wake of the propeller.

Almost the entire streamtube can be observed in the case of the Butterworth, SFF and SFFM. The

part missing may be due to that region being less accessible by the robot. The Butterworth result

has a slightly larger field of view than the SFF and SFFM, but the standard deviation is lower in

the latter two cases. In the XZ plane (Figure 6.42), a side view of the flow field at the propeller’s

symmetry plane can be analysed, and the XY plane (Figure 6.43) shows a top view of the propeller

with respect the propeller’s hub (where the blades are attached). Both these planes clearly show

the wake from the propeller’s streamtube. The Minimum Subtraction, Butterworth and Particle

Concentration Mask’s flow fields present the influence of the blade and strut’s reflection that

propagate along the line-of-sight when processing with the Shake-the-Box algorithm. SFF shows

similar results to SFFM, but has higher standard deviation, which indicates worse quality of the

results. Additionally, it is important to notice that the voids that appeared in the individual views

are successfully filled in in the merged-view case.

Figure 6.41: Propeller binning results on the YZ plane at x = 50 mm (all views).
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Figure 6.42: Side-view mirror binning results on the XZ plane at y = 0 mm (all views).

Figure 6.43: Side-view mirror binning results on the XY plane at z = 200 mm (all views).
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As occurred with the side-view mirror and Formula 1 car, it is important to notice that the field

of view of the SFFM is slightly smaller than the Butterworth. Even though, the time filter was not

effective in removing the reflections, the particles that remained in the pre-processed images are

real and they are the reason why this approach results in a larger FOV. For this reason, the SFFM

results of the propeller are also tested with the implementation of an intensity normalization with

a local average over 100 pixel.

Figure 6.44: Propeller Butterworth, SFFM and SFFM with intensity normalization results on the YZ plane

at x = 50 mm (all views).

Figure 6.45: Propeller Butterworth, SFFM and SFFM with intensity normalization results on the XZ plane

at y = 0 mm (all views).



98 Chapter 6. Results and discussion

Figure 6.46: Propeller Butterworth, SFFM and SFFM with intensity normalization results on the XY plane

at z = 200 mm (all views).

An important implication is that the reduction in FOV of SFFM compared to the Butterworth

filter is primarily due to a non-uniform intensity distribution across the image. This issue is easily

addressed by performing intensity normalization on the entire set of images as proven in Figures

6.44, 6.45 and 6.46, thus allowing for the recovery of the lost FOV, while maintaining low standard

deviation values (indicator of good quality of the results).

6.3.3. Further discussion on Butterworth - SFFM

The Butterworth time filter and the proposed masking approach are the two methodologies that

exhibit the best results. Therefore, this section presents the results of processing the whole set of

5,000 images with STB with these two strategies. Figures 6.47 and 6.48 show the binned velocity

field on YZ and XY planes, respectively. The results are given for three single views as well as

the merged dataset. For the latter, the standard deviation of the velocity magnitude is also given

in the figure.

The most noticeable feature is that the spatial gaps that appeared in the previous results of

only processing 500 images are completely filled. This is thanks to the amount of data present in

the set of 5,000 images. Hence, it is important to consider the number of images to acquire when

implementing the spatial Fourier filter and mask approach.

Figure 6.47 shows the resulting velocity field on the YZ plane for two single views and the

merged-view case, showing the flow field 5 cm downstream, at the wake of the propeller. The

Butterworth attenuates the reflection, but not completely as the rotating blade shape appears in

the domain due to the residual artifacts not removed on this region (as shown in Figure 12), which

propagate along the line-of-sight of the velocimeter when processing with the Shake-the-Box

algorithm. The spatial Fourier filter and mask velocity field presents regions that are not captured

in the single views compared to the Butterworth’s: bottom streamtube in View 1 and bottom and

top right in View 2. However, as expected, these gaps are successfully filled in when merging all

the views together. The entire streamtube can be observed in both cases, exhibiting a velocity

increase from 7 m/s to 8 m/s. The additional masking step allows to successfully remove the

reflection from the blades, showing a lower mean velocity and standard deviation. The latter is

the most distinguishable feature of this method, showing a much cleaner and reliable flow field.
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Figure 6.47: Propeller binned results on YZ plane at x = 50 mm for single and merged views (Butterworth

and Spatial Fourier Filter and Mask).

Figure 6.48: Propeller binned results on XY plane at z = 200 mm for single and merged views

(Butterworth and Spatial Fourier Filter and Mask).
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The Butterworth flow field shows the influence of the propeller horizontal strut reflection, which

appears as a high mean velocity region as observed in View 4 (Figure 6.48). This does not occur

for the masking method, which shows a small gap, consequence of masking this area. Since

View 2 contains data in the region within this void, the latter is entirely filled in the merged-view

case. For the complete velocity field, the mean velocity and its standard deviation is shown. It is

important to highlight that the spatial Fourier filtering and masking approach has a significantly

lower standard deviation compared to the Butterworth, indicating much more reliable results. This

is thanks to the successful removal of both steady and unsteady reflections with the masking

approach. Conversely, the Butterworth shows a significant high standard deviation in the region

of the horizontal strut as a result of the reflection that emanates from this part of the geometry.



7
Conclusions and

recommendations

In this chapter, a summary of the study’s key findings is provided along with the discussion of

their implications, reflecting on the significance of the research and its potential impact on the

field. It also identifies areas for further research and suggests possible directions for future work

based on the insights gained from the analysis.

7.1. Conclusions

This study introduced and evaluated three novel approaches for mitigating laser light reflections in

instantaneous data from Robotic Particle Image Velocimetry (PIV) experiments. These methods

aimed to address the challenge of high-intensity reflection regions corrupting particle detection

and analysis in volumetric PIV systems, particularly in Robotic PIV.

The first and second methods involved image filtering and masking techniques in the wavenum-

ber space, by using the 2D discrete Fourier transform (DFT) to decompose the image signal

into low- and high-wavenumber components. In the first method named Spatial Fourier Filter,

a high-pass filter is applied to attenuate the intensity of reflection regions composed mainly by

low-wavenumber content. Then the second method called Spatial Fourier Filter + Mask was

introduced, following the same process as the first method with an additional automated adaptive

masking step to remove residual reflection areas that the filtering could not eliminate.

In the case that none of the existing or proposed image pre-processing methodologies work,

the third methodology 3D-based Particle Concentration Mask applied on a later stage of the

processing pipeline is proposed. This creates a 3D mask on the instantaneous processed Shake-

the-Box data by analyzing the particle concentration distribution over the flow domain and applying

a threshold with a selected reference value.

These approaches were tested and compared to state-of-the-art techniques on experimental

data obtained from Robotic PIV experiments conducted on three different geometries: a side-view

mirror, a Formula 1 car, and a propeller. The results demonstrated the effectiveness of the

proposed approaches in eliminating reflection regions and preventing the appearance of spurious

particle tracks. Comparison between raw and pre-processed images, as well as particle tracking

results, confirmed the successful removal of reflection-induced artifacts using the spatial Fourier

filter automated masking approach. The outcome of the experiments is addressed by revisiting

the research questions.

101
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The research question and subquestions posed in Chapter 1 are repeated below for conve-

nience; RQ refers to Research Question and RSQ refers to Research Subquestion.

(RQ.) How can a methodology effectively identify and mitigate the effects of spurious regions

of reflections in Robotic PIV across various PIV datasets?

(RSQ1) Which image pre-processing technique can be applied to detect and mitigate

reflections by only using an instantaneous image?

The literature review revealed several state-of-the-art techniques for reflection mitigation.

However, most of them were mostly effective in cases of steady reflections, like the POD [65]

and Butterworth time filter [64] approaches. There is one methodology proposed by Adatrao et

al. [66] that deals with unsteady reflections, but just when these are sharp. These would not

be effective removing reflections from Robotic PIV images as they generally appear as glare

spots. By inspecting the reflection characteristics compared to those of the particle tracks, one

can see that there is a potential way to distinguish between both objects by filtering or classifying

the image objects by their size or wavelength. Reflection larger in size by nature have longer

wavelengths, while particles being smaller (around a few pixels) present shorter wavelengths.

Therefore, here there is the possibility of filtering out by wavelength size or in other words, by

wavenumber (inverse of the wavelength) content by using spatial Fourier analysis. This follows a

similar methodology of the Butterworth time filter, but instead of filtering in the time frequency

domain, it is done in the spatial frequency or wavenumber domain. Spatial Fourier filtering is a

common technique used in image pre-processing that can have several applications: using a

low-pass filter to smooth the images or highlight the edges of an image by applying a high pass

filter. For processing the PIV acquired images and only keeping the particles, a high-wavenumber

filter must be used. This leaves out the low wavenumber content corresponding to big artifacts in

the images, like reflections, and keeps the high wavenumber objects, like particles. This proposed

methodology is called Spatial Fourier Filter (also referred to as SFF).

As a further step, one can take advantage of the reflection attenuation to identify the regions

in the image that have suffered the most intensity variation after applying the filter. Then, after

identifying these areas, a mask around them can be created with the aim to remove all the

components of the reflection for every single instantaneous recording, leading to an automated

adaptive masking approach denominated as Spatial Fourier Filter + Mask (or SFFM).

(RSQ2) How do reflections appear in the 3D velocity field? Is there a distinguishable

characteristic that could be attributed to and, hence used to remove this region of the

data?

A reflection characterization has been done in both PIV images and the processed Shake-the-

Box results. Reflections appear in the 3D velocity field as regions with distorted or erroneous

velocity information. They often manifest as accumulations of particles that propagate along the

line-of-sight of the camera. These particles, known as ghost particles or false positives, appear

within the reflection region due to their similar intensity to the particles. As a result, the particle

tracking algorithm misinterprets these pixels as particles, even though no particles are actually

present.

When examining the velocity information within reflection regions, it is challenging to distinguish

between real particle tracks and reflections. Particles detected inside reflection regions can exhibit

a wide range of velocities, varying from high to low. Therefore, analyzing velocity information

alone does not provide a clear distinction between particles and reflections. However, when
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analysing the particle concentration over the flow field domain, the regions of reflection show

higher particle density values compared to the rest of the flow. The Robotic PIV data acquired for

a sphere geometry by Jux et al. [86] is used as example to test if the methodology hypothesis

is correct. In this test case, there is a clear reflection that emanates from the surface of the

sphere, which then appears as an accumulation of particles in the processed 3D velocity data.

As expected, this region also appears as a higher particle concentration area compared to the

rest of the flow field. Hence, by selecting a particle concentration reference value, the dataset

can be masked such that regions with higher or equal concentration than the reference value are

removed, and regions with lower values are kept.

The following two subquestions are addressed simultaneously, with each of the proposed

methodologies discussed separately for the reader’s convenience.

(RSQ3) What are the advantages of the developed methodologies against state-of-the-art

techniques in identifying and mitigating spurious regions?

(RSQ4) What are the potential challenges and limitations in implementing the proposed

methodology and how can these be addressed?

To study the implications and differences of the three proposed reflection treatment method-

ologies, the later are compared with two state-of-the-art techniques: the Minimum Subtraction

over the entire series and the Butterworth high-pass time filter.

First, recall the reflection characteristics on each of the geometries tested. The side-view

mirror presented several reflection across the set of views acquired. The most significant came

from the floor and the foam attached on the surface of the mirror. In the case of the Formula 1 car,

the reflections appeared in a different manner: they adopt the shape of the car and its little details

(e.g. the front wing or front suspensions). And finally, the propeller posed the most challenging

case with reflections originating form three different sources: steady ones from the propeller’s

vertical and horizontal struts, and unsteady ones caused by the blades’ rotation. As the last one

is moving over the entire set of images, its consequential reflection does not appear in all images,

but indeed depends on the rotation of the blade and its position with respect the CVV probe.

Spatial Fourier Filter (SFF)

The Spatial Fourier Filter is able to attenuate the regions of reflections from each instantaneous

recording in all test objects, reducing the size of unwanted regions. However, it has an important

drawback: it fails to remove the high-wavenumber components present in reflections. This is

because reflections are not perfectly uniform, but they show some granularity, which makes the

reflection not only contain low-wavenumber, but also high-wavenumber content. Consequently,

residual reflection components are still visible in the SFF images. This is particularly noticeable in

the case of the Formula 1 car, where the resulting velocity field shows nonphysical regions. Despite

this limitation, this approach shows a lower standard deviation compared to the state-of-the-art

methods, which is an indicator of good flow field quality.

Spatial Fourier Filter + Mask (SFFM)

The clear limitation posed by SFF can be overcome by the Spatial Fourier Filter + Mask approach,

where the regions of reflections are identified and masked out, yielding an resulting image and

3D processed velocity field free of reflections. This method does the same as SFF, but with and

additional step of automated adaptive masking; the areas that suffer the largest variation with

respect the original image are considered potential artifacts to be masked. This is clearly proven

in the resulting images of the side-view mirror, Formula 1 car and propeller. The steady reflections

from the first two cases are properly masked, yielding a velocity field similar to the Butterworth’s.

Note that in this case of steady reflections, the Butterworth results are considered as ground truth.
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Hence, both Butterworth and SFFM are successful at removing all spurious regions, but in the

case of SFFM, it additionally shows a lower standard deviation within the flow field.

The propeller case supposed a challenging case, crucial to determine the effectiveness of

SFFM in reflection mitigation of unsteady reflections in individual instantaneous images. As

stated before, most of the propeller’s views showed a big reflection coming from the strut and a

moving reflection from the blade. Also, the horizontal strut suffered a slight vibration due to the

blades’ rotation, which supposed an additional challenge for the state-of-the-art techniques. The

Minimum Subtraction failed at removing any of the artifacts, and the Butterworth time filter could

remove part of the steady reflections from the vertical strut, but could not manage to eliminate the

others. Here, the SFFM makes a difference, being able to create a mask of all existing reflections

and mitigate their contribution to the 3D Shake-the-Box results. Furthermore, a set of consecutive

images for different views have been displayed proving the method’s capability to generate an

adaptive mask for each of the instantaneous images, adopting the shape of the spurious regions

and effectively capturing and removing the reflection on the rotating blade.

The potential side effect of masking an image is that it leaves a empty space without reflections,

but also without any particle tracks that could have crossed that region. This will be translated

into the 3D velocity field as a blank in the data; no data will be shown for that region. This has

been shown in the results of each individual view presented. However, the voids that appeared in

the individual views are proven to be successfully filled in in the merged-view case. Thanks to the

simplicity of probe positioning that Robotic PIV offers, there is an existing overlap between the

measurement volumes, allowing the empty gaps in the data caused by SFFM to be compensated

by another view. Furthermore, it has also been shown that when processing a high number

of images (5,000 in this case), the spatial gaps introduced by the masking method are almost

completely filled.

Regarding the propeller’s velocity field results, both Minimum Subtraction and Butterworth

present significant regions of outliers caused by the reflections from the struts and, more impor-

tantly, from the rotation of the blade. The latter could be observed in the YZ plane at the wake of

the propeller. An important aspect is that SFFM showed low standard deviation values, indicating

a good quality of the results.

While inspecting the results for the three geometries, there was something that was noticeable:

the field of view of the SFFM was much smaller than the Butterworth’s. This is because the

Butterworth time filter’s process includes an intensity normalization step that allows to have a

uniform intensity across the whole image domain. By observing the SFFM images, one can

notice that the particles further away from the centre of the image have a decaying intensity

compared to the centre. Therefore, an intensity normalization step was performed at the end of

the methodology pipeline. The resulting velocity field showed a significant increase of the field of

view, without affecting the flow field results.

3D-based Particle Concentration Mask

Overall, this methodology failed at detecting and removing the regions of reflections over the three

datasets from the experiments performed. It was applied on the Minimum Subtraction results

with the aim to have a larger particle concentration separation between reflections and particles.

However, as shown in the results, this separation was not sufficient for the method to effectively

eliminate the reflection’s contribution. The velocity field results provided a difficult to interpret

data, that is far from the results of both state-of-the-art and the proposed image pre-processing

techniques.
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7.2. Recommendations

It has been shown that one of the three proposed methodologies shows great potential in reflection

mitigation, yielding a good quality of the resulting 3D velocity field. However, there are a few

opportunities for improvement to refine the study.

1. A set of 5,000 images were acquired for each view in DF-STB in the case of the side-view

mirror and Formula 1 car and in TR-STB for the propeller. Due to time constraints in the

project timeline, the post-processing was only done in 500 images per view. If a further

accuracy is desired, the whole set of 5,000 images should be processed. This will make

the data statistically more reliable, allowing to retrieve a larger amount of data over the

measurement domain.

2. The original Spatial Fourier Filter or Spatial Fourier Filter + Mask processes did not consider

the additional step of intensity normalization. However, it has been proven that it significantly

extends the field of view obtained with these approaches. Hence, it is recommended to add

this extra operation on the methodology pipeline with the aim to obtain a larger field of view,

which is beneficial if a part of the flow field needs to be studied and lies within this extended

FOV.

3. There was no reference results for neither of the geometries tested, hence the obtained

results could not be completely validated. For future studies and by means of further

validation, a test case should be selected and tested with two different systems: a bigger

aperture system set-up and with Robotic PIV.

4. A possible future line of work that can further extend this project is to investigate a way

of automated filling in the masked regions. The idea would be to create an algorithm that

can predict the regions of the measurement volume that will be blank due to the SFFM

implementation and, then propose new measurement volumes to acquire with Robotic PIV

with the aim to have all the gaps filled in.

5. The 3D-based Particle Concentration Mask has been shown to not provide the desired

results, not being able to identify the regions of reflection by particle concentration. However,

this could be due to the way the number of particles is computed. A possible alternative to

obtain this particle concentration could be defined, which could weight more the regions of

reflections (regions with accumulation of particles) than regions with particles tracks.
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A
Algorithms

This appendix contains the algorithms developed for the proposed reflection treatment method-

ologies.

A.1. Spatial Fourier filter method

A.1.1. Implementation of Fourier high-pass filter

1 function [filtered_image] = FT_Filter(input_image , kappaf)
2 % Inputs:
3 % input_image - Input image
4 % kappaf - Filter 's cut-on wavenumber/standard devistion [1/

pixel]
5 %
6 % Outputs:
7 % filtered_image - Filtered image
8

9 % Get Fourier Transform of the input_image
10 % using fft2 (2D fast fourier transform)
11 FT_img = fftshift(fft2(input_image));
12

13 % Generate Gaussian High-pass filter with standard deviation =
kappaf

14 filter = generate_filter(I, J, kappaf);
15

16 % Mask the Fourier Transform by multiplying by the filter
17 G = FT_img.*filter;
18

19 % Get filtered image in the space domain
20 % by using the Inverse Fourier Transform operation
21 filtered_image = uint16(ifft2(ifftshift(G),'symmetric'));
22

23 if isreal(filtered_image) == false
24 fprintf('WARNING: IFFT is complex \n')
25 end
26

27 filtered_image(filtered_image <0) = 0;
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28 end



A.2. Spatial Fourier filter and mask method 115

A.1.2. Generation of Gaussian high-pass filter

1 function [filter] = generate_filter(I, J, kappaf)
2 % Inputs:
3 % I - Image width [pixels]
4 % J - Image height [pixels]
5 % kappaf - Filter 's cut-on wavenumber/standard devistion [1/

pixel]
6 %
7 % Outputs:
8 % filter - Gaussian high-pass filter
9

10 % Define the x and y grid in wavenumber space
11 % (Nyquist frequency is 0.5 cycles/px)
12 x = linspace(-0.5,0.5-1/I,I);
13 y = linspace(-0.5,0.5-1/J,J);
14 [X,Y] = meshgrid(x,y);
15

16 % Generate Gaussian high-pass filter
17 filter = 1 - exp(-X.^2/(2*kappaf^2)).* exp(-Y.^2/(2*kappaf^2));
18 end

A.2. Spatial Fourier filter and mask method

1 function [masked_image] = Fourier_filter_mask_implementation(
input_image , filtered_image , SSIM_threshold , Area_threshold)

2 % Inputs:
3 % input_image - Input image
4 % filtered_image - Fourier -filtered image
5 % SSIM_threshold - SSIM value threshold [-]
6 % Area_threshold - Area value threshold [pixel^2]
7 %
8 % Outputs:
9 % masked_image - Masked image
10

11 % Obtain SSIM map from comparing input and filtered images
12 [ssimval,ssimmap] = ssim(filtered_image , input_image);
13

14 % Obtain mask from thresholding SSIM coefficient plot
15 ssimmapmask = ssimmap;
16 ssimmapmask(ssimmapmask >SSIM_threshold) = 1;
17 ssimmapmask(ssimmapmask <=SSIM_threshold) = 0;
18

19 % Retrieve contours from Structural similarity (SSIM) plot
20 contours = ssimmapmask == 0;
21 [L, num] = bwlabel(contours , 8);
22

23 % Count number of pixels in each blob (area of each blob)
24 counts = sum(bsxfun(@eq,L(:),1:num));
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25

26 % Find contours biggest than a set threshold area
27 [~,ind] = find(counts > Area_threshold);
28

29 % Generate mask with largest contours
30 num_indxs = size(ind,2);
31 if num_indxs > 0
32 biggestContours = ones(J, I);
33 for i = 1:num_indxs
34 K = L;
35 out = (K==ind(i));
36 if i == 1
37 biggestContours = out & biggestContours;
38 else
39 biggestContours = out + biggestContours;
40 end
41 end
42 mask = uint16(~biggestContours);
43 end
44

45 % Mask image
46 masked_image = filtered_image.*mask;
47 end



B
Side-view mirror

B.1. Instantaneous images for each view
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Figure B.1: Side-view mirror raw and pre-processed images from Views 1-8.



C
Formula 1 Car

C.1. Instantaneous images for each view
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Figure C.1: Formula 1 car raw and pre-processed images from Views 1-10.



D
Propeller

D.1. Instantaneous images for each view
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Figure D.1: Propeller raw and pre-processed images from Views 1-9.
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